
15

Automating Elimination of Idle Functions by Runtime Reconfiguration

XINYU NIU, THOMAS C. P. CHAU, QIWEI JIN, and WAYNE LUK, Imperial College London
QIANG LIU, Tianjin University
OLIVER PELL, Maxeler Technologies

A design approach is proposed to automatically identify and exploit runtime reconfiguration opportunities
with optimised resource utilisation by eliminating idle functions. We introduce Reconfiguration Data Flow
Graph, a hierarchical graph structure enabling reconfigurable designs to be synthesised in three steps: func-
tion analysis, configuration organisation, and runtime solution generation. The synthesised reconfigurable
designs are dynamically evaluated and selected under various runtime conditions. Three applications—
barrier option pricing, particle filter, and reverse time migration—are used in evaluating the proposed
approach. The runtime solutions approximate their theoretical performance by eliminating idle functions
and are 1.31 to 2.19 times faster than optimised static designs. FPGA designs developed with the proposed
approach are up to 43.8 times faster than optimised CPU reference designs and 1.55 times faster than
optimised GPU designs.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design Aids—
Optimization

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Runtime reconfiguration, reconfigurable computing, high performance
computing

ACM Reference Format:
Xinyu Niu, Thomas C. P. Chau, Qiwei Jin, Wayne Luk, Qiang Liu, and Oliver Pell. 2015. Automating
elimination of idle functions by runtime reconfiguration. ACM Trans. Reconfig. Technol. Syst. 8, 3, Article 15
(May 2015), 28 pages.
DOI: http://dx.doi.org/10.1145/2700415

1. INTRODUCTION

Resource sharing and allocation for multicore and manycore processors are usually
achieved through thread management at runtime [Cong et al. 2009]. Such runtime
thread management is general purpose but does not support reorganisation and cus-
tomisation of computational resources to meet application-specific requirements. Re-
configurable computing supports design customisation at compile time and runtime.
However, such customisation often restricts resource sharing to function level, since

This work was supported in part by the UK EPSRC; the European Union Seventh Framework Programme
under grant agreements 287804, 318521, and 257906; the HiPEAC NoE; the Maxeler University Programme;
Xilinx; the National Natural Science Foundation of China under grant 61204022; and the Natural Science
Foundation of Tianjin under grant 12JCYBJC30700.
Authors’ addresses: X. Niu, T. C. P. Chau, Q. Jin, and W. Luk, Department of Computing, Imperial College
London, London, UK; emails: {niu.xinyu10, c.chau10, qiwei.jin04, w.luk}@imperial.ac.uk; Q. Liu, School of
Electronic Information Engineering, Tianjin University, Tianjin China; email: qiangliu@tju.edu.cn; O. Pell,
Maxeler Technologies, London, UK; email: oliver@maxeler.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1936-7406/2015/05-ART15 $15.00
DOI: http://dx.doi.org/10.1145/2700415

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

http://dx.doi.org/10.1145/2700415
http://dx.doi.org/10.1145/2700415

15:2 X. Niu et al.

a static design customised to support one function often cannot support a different
function.

This article proposes a novel approach for designing runtime reconfigurable systems
that improve resource utilisation and data throughput. The approach is intended to
support resource sharing at multiple levels of design abstraction. Applications are pre-
sented as dataflow graphs (DFGs) and optimised through multiple designs steps to
generate efficient runtime solutions, which are translated into runtime reconfigurable
designs. In the current work, the design steps proposed here are automatic, whereas
the generation of DFGs and the translation from runtime solutions to hardware de-
scriptions are manual.

The contributions of this work include the following:

—A novel method to automatically generate runtime reconfigurable designs for appli-
cations based on Reconfiguration Data Flow Graph (RDFG), a hierarchical graph
structure for analysing and optimising designs. (See Section 3.)

—Algorithms to identify reconfiguration opportunities through function property ex-
traction and data dependency assignment; the as timely as possible (ATAP) as-
signment method is introduced to preserve algorithm parallelism and to identify
reconfiguration opportunities. (See Section 4.)

—Configuration generation and optimisation approaches to dynamically exploit avail-
able hardware resources. Generated configurations are optimised based on function
properties to fully utilise available resources. (See Section 5.)

—Techniques for searching runtime reconfigurable designs by grouping configurations
in different time slots. An ending-segment search algorithm is proposed to reduce the
search space by introducing hardware design rules. Generated designs are evaluated
in terms of overall throughput. (See Section 6.)

—A runtime evaluation approach to dynamically select partitions with maximum per-
formance. A runtime performance model is introduced to estimate execution time
and reconfiguration overhead from runtime data sizes. Constant coefficients for ap-
plication characteristics and designs properties are extracted by traversing RDFGs.
(See Section 7.)

—Evaluation of the proposed approach by three high-performance applications in fi-
nance, control, and seismic imaging, with comparisons against CPU and GPU de-
signs, for both single-chip and multichip reconfigurable systems. (See Section 8.)

2. RELATED WORK

Runtime reconfiguration is a technique exclusive to FPGA technology for improving
productivity and performance. The possibility to dynamically evolve circuits provides
an opportunity to optimise hardware designs. Today, utilisation of the runtime tech-
nique is still limited due to large reconfiguration overhead and the lack of scenarios
where runtime reconfiguration can be beneficial. In the past decade, both industry and
the academic community seek opportunities to apply runtime reconfiguration to recon-
figurable designs. The beneficial scenarios for runtime reconfiguration can be divided
into three categories.

First, application-specific scenarios concern applying runtime techniques to certain
types of applications. For example, network applications require runtime reconfig-
uration to support an on-the-fly update of communication protocols, as well as dy-
namic routing of data packets during execution. A reconfigurable switch is proposed
[Young et al. 2003] to replace multiplexing operations with runtime reconfiguration of
routing switches. Routing switches are mapped into one FPGA, and a corresponding
reconfiguration controller is implemented in another FPGA to generate and download
configuration bitstreams. A 16 times improvement in logic density is achieved, and re-
configuration of multiplexing operations takes 220us. FPX is a reconfigurable platform

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:3

for packet processing [Lockwood et al. 2001]. One FPGA is configured as a network
interface device (NID) to provide packet switches and runtime reconfiguration of the
reprogrammable application device (RAD). During runtime, packets are switched in
the NID, and various processing modules are dynamically loaded into the RAD to pro-
cess the switched packets. Software defined radio (SRD) is another important candidate
for runtime reconfiguration, where various waveform modules can be replaced during
execution [Sedcole et al. 2006]. For automotive control [Becker et al. 2007], data sorting
[Koch and Torresen 2011], and robotic control [Nava et al. 2010], runtime reconfigu-
ration is applied to map various modules into the same reconfigurable region. Besides
reconfiguration overhead, one major limitation for the application-specific methods is
the generality. The developed architectures, platforms, and tools are specific to one
application field and thus are difficult to apply to other applications with similar char-
acteristics.

Second, design tuning scenarios concern the use of runtime reconfiguration in appli-
cations where design properties are occasionally updated to deeply customise circuits
implemented in each period. For example, constant coefficients in finite impulse re-
sponse (FIR) filters [Bruneel and Stroobandt 2008] and option pricing [Becker et al.
2011; Jin et al. 2012] are utilised to construct constant-specific operators. When coef-
ficients are updated during execution, variations in customised operators are updated
with runtime reconfiguration. The customised operators consume less resources and
operate at higher frequency compared to general-purpose operators. Resource con-
sumption for FIR filters and finite-difference computational kernels is reduced by 36%
and 22%, respectively. Benefits for applying runtime reconfiguration come from the
slowly varying coefficients. Therefore, these approaches are limited to applications
with such properties.

Third, runtime reconfiguration can help when a target application does not fit into
the available resources all at once. The application is divided into subprograms, which
are sequentially reconfigured into the available resources. For example, in temporal
partitioning [Purna and Bhatia 1999], target applications are partitioned into multiple
configurations. The configurations are swapped in and out of reconfigurable fabrics
in a specific sequence to implement the application functionality. Application tasks
are represented using DFGs and partitioned under resource constraints. The problem
is formulated as an integer nonlinear programming (INLP) model [Kaul and Vemuri
1998] to minimise communication between partitioned segments. Spatial partitioning
is covered in Hudson et al. [1998] to support multiple devices. The temporal and spatial
partitioning approaches are applicable to applications that cannot be accommodated
by available resources. As Moore’s law continues, logic capacity in recent FPGAs has
increased to a level where lots of applications can be accommodated without being
dynamically reconfigured. Area constraints in the temporal and spatial partitioning
methods will still be satisfied even when all operations are partitioned into the same
configuration. However, as discussed in this article, even when there are sufficient
resources to implement the target application, grouping all application functions into
the same configuration does not necessarily provide the optimal solution.

In this work, we propose a new scenario to apply runtime reconfiguration, where
idle functions are automatically detected with high-level analysis and eliminated with
runtime reconfiguration. Application functions are partitioned into various design con-
figurations to separate functions active at different time intervals, and the grouped
functions are parallelised to fully utilise available resources for each configuration.
The proposed approach can benefit applications with idle functions, as long as such
applications can be accelerated by parallelising the execution of the application tasks.
The design objective is to achieve the maximum application performance on the target
reconfigurable platform, bounded by available resources.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:4 X. Niu et al.

Based on different runtime reconfiguration scenarios, various approaches and tools
have been proposed to utilise runtime reconfiguration. The SCORE project [Caspi
et al. 2001] abstracts reconfigurable programmes as fixed-size compute pages that are
swapped into reconfigurable resources during runtime. Page schedulers are developed
to make reconfiguration decisions, minimising execution time or data buffers. In a
multithread system, multiple reconfiguration candidates exist at each reconfiguration
interval. A knapsack-based scheduler is proposed by Fu and Compton [2005] to select
the configurations (design kernels) with maximum speedup. The scheduler is further
improved by Fu and Compton [2008] by adaptively adjusting reconfiguration intervals,
which reduces the overall scheduling overhead by 85%. Reconfiguration overhead is
one of the major issues that limit performance of reconfigurable designs. In Kooti et al.
[2011], the reconfiguration time is known before execution and used as a constant dur-
ing scheduling. A partition approach is proposed in He et al. [2012], where functions
activated at different time intervals are combined into the same reconfigurable mod-
ule. Under the same resource constraints, grouping functions activated at different
time intervals reduces the number of reconfiguration operations, thus reducing the
overall reconfiguration time. The proposed approach saves up to 70% of the overall
reconfiguration time.

Previous approaches that adopt runtime reconfiguration select from existing con-
figurations: they focus on optimisations with scheduling the configurations based on
data dependencies, performance, and real-time constraints. This work proposes a novel
end-to-end approach to develop reconfigurable designs. The proposed approach starts
from application functions and generates reconfigurable designs step by step. A re-
configurable design contains one or multiple design configurations. The configurations
are optimised and scheduled based on design properties derived from the proposed
approach.

3. OVERVIEW OF APPROACH

To capture and exploit reconfiguration opportunities in high-performance applications,
the major challenges include (1) how to identify reconfiguration opportunities (i.e., idle
functions), (2) how to estimate and utilise the benefits gained from reconfiguring idle
functions, and (3) how to generate a runtime reconfigurable design that ensures func-
tional correctness while improving system performance. To address these challenges,
RDFG, a new hierarchical design representation, is proposed. We represent applica-
tion functions with function nodes and capture I/O operations of connected functions
with edges. An algorithm-level graph for a function node shows the node’s arithmetic
operations and internal data dependencies.

In this section, we first demonstrate the basic idea of this work with a motivating
example. Then we discuss the design flow of the proposed approach. The RDFG graph
structure is explained, and how the design challenges are met is illustrated. Finally,
we introduce an example application, which is used in the following sections to explain
the proposed algorithms.

3.1. Motivating Example

In a static design, all functions are mapped into reconfigurable fabrics and replicated
as much as possible to optimise concurrency. However, limited by data dependency and
mapping strategies, some computational resources can be left idle from time to time.
This situation is shown in Figure 1(b): there are four function units, each implementing
the functions A, B, C, and D, respectively, in the DFG in Figure 1(a). Given that each
function takes n cycles, the entire computation would take 4n cycles. It is assumed
that the application RDFG indicates that each function consumes one resource unit,
and computation within functions starts once the last output datum of the leading

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:5

Fig. 1. Motivating example. The idle function nodes during runtime are shaded. (a) Application DFG with
four functions (A, B, C, and D) and eight function instances. Each function has n data items to process.
(b) Static implementation, showing which function units are inactive (with dotted boundaries) during t=0
to 4n cycles. The same configuration is executed, consuming n cycles for each frame. (c) Dynamic imple-
mentation. Executed configuration only contains functions active in a particular frame. Execution time for
a time frame depend on configuration parallelism. As an example, in the second time frame, configuration
parallelism is 2 (two copies of functions A and B are implemented), reducing the execution time to n

2 .

functions becomes available. For t=0..4n-1, several function units would become idle.
How could runtime reconfiguration be used to reduce the number of cycles required for
this computation?

One possibility involves reconfiguration of the idle function units to perform useful
work. Let us assume that there is sufficient data independence in each function to
enable linear speedup with additional function units: for k function units, the function
takes n/k cycles to complete. Thus, for k=1, it takes n cycles to complete the function
as described before, and if k=n, it could potentially only take one cycle, although in
practice, k is likely to be smaller than n.

With this assumption, Figure 1(c) shows a design that speeds up computing the
functions A and B in the second level of the DFG in Figure 1(a) by reconfiguring the
two idle function units C and D to A and B. This increase in parallelism means that
these functions can be completed in n/2 cycles, during t=n..3n/2-1. For the functions in
the third level of the DFG, B and C are reconfigured as A and D, finishing computation
in A and D in n/2 cycles, during t=3n/2..2n-1. Then the same can be done in computing
the last function C in the DFG: this time, all four function units are configured to
compute C so that it can be completed in n/4 cycles, during t=2n..9n/4-1. The total
number of cycles is thus 9n/4, reduced from the 4n cycles for the static design in
Figure 1(b). The speedup stems from reconfiguring the resource occupied by the idle
functions to generate multiple replications of the active functions, leading to increased
parallelism.

One can observe that in the preceding reconfigurable design, limited by the recon-
figuration granularity, function unit D is inactive from t=0..n-1. If target platforms
support finer reconfiguration granularity, the one resource unit can be evenly split
between A, B, and C; this increase in parallelism would reduce the number of cycles of
the first frame from n to 3n/4 so that the total number of cycles for computing the DFG
in Figure 1(a) would become 2n.

Of course, the scenario for the motivating example is not realistic; many real-world
issues, such as the time required in reconfiguring the function units, are not considered.
In the following, we introduce an approach that supports the performance improvement
illustrated by this example while taking into account practical issues in reconfigurable
design.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:6 X. Niu et al.

Fig. 2. Design flow of the proposed approach.

3.2. Design Flow

The design flow of the proposed approach is demonstrated in Figure 2. The approach
starts from an application represented with a hierarchical DFG:

A = (G, EG) G = (V, E), (1)

where A indicates a function-level graph and G indicates an algorithm-level graph.
G and EG represent application functions and function I/O operations, respectively.
Within a function node G, V indicates the arithmetic operations of this function, and
E indicates the interconnections between the arithmetic operations.

To group and optimise application functions into runtime reconfigurable designs step
by step, we build a hierarchy in this work. From bottom to top, a function-level RDFG
is divided into segments, configurations, and partitions:

—Segments: Function nodes that can be executed without stalling are combined into
a segment S = (G1, G2...). Segments are the basic elements that respect data depen-
dency and expose speedup potential of applications.

—Configurations: A configuration C = (S1, S2...) contains one or multiple segments. A
configuration can be synthesised and executed in hardware.

—Partitions: A valid partition P = (C1, C2...) is a combination of configurations that
is capable of properly accomplishing the application functionality. The generated
partitions for an application are compiled with a host program. In this work, we
consider a valid partition as a runtime reconfigurable design.

The proposed approach starts from an application represented as an RDFG, fol-
lowing the design flow in Figure 2. The approach contains three compile-time steps
and one runtime step. The compile-time steps generate various reconfigurable designs
for the target applications. Each reconfigurable design is associated with a specific

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:7

Fig. 3. An example for the proposed design flow. The example RDFG is shown in (a). Output graphs
for function analysis, configuration organisation, and partition generation are shown in (b), (c), and (d),
respectively. The execution of generated partitions (partition 0 is selected in this example) is shown in (e).
The duplicated segments are removed from the segments, as shown in (b), which is explained in Section 5.

runtime reconfiguration strategy. The runtime step evaluates the generated reconfig-
urable designs to select the design with maximum throughput.

The first step—function analysis—estimates function properties and groups function
nodes into segments based on function idle cycles. The second step—configuration
organisation—combines segments into configurations, which are optimised to
achieve maximum parallelism under available resources. The third step—partition
generation—schedules and links the optimised configurations as valid partitions.
Basic hardware modules are developed for application functions. We feed the design
parameters of the generated partitions (the amount of parallelism, configuration
organisation, etc.) into the hardware modules. The design parameters of the hardware
modules are updated correspondingly. The updated hardware descriptions go through
vendor tool chains to generate bitstreams, which are compiled with the host program.
The fourth step—runtime evaluation—uses a runtime performance model to predict
the overall execution time of generated partitions. During runtime, the host program
selects the partitions with the minimum execution time to download into FPGAs, based
on the predicted results. In the current approach, we automate function analysis, con-
figuration organisation, partition generation, and runtime evaluation. The remaining
steps in Figure 2—extracting the RDFG graph, developing hardware modules, and
building the host program—are accomplished manually. Full reconfiguration is used
in our approach to switch between configurations within a partition.

3.3. Example Application

Throughout this article, we use an example application to demonstrate how an appli-
cation RDFG is processed step by step to generate reconfigurable designs. Figure 3(a)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:8 X. Niu et al.

Table I. Variables and Parameters in the Proposed Approach

Function Analysis
Gi Function node i
S<i, j> Function segment at the ALAP level i and the ATAP level j
Ls LUT resource usage Fs FF resource usage
Ds DSP resource usage Ms Number of used BRAM bits
Ni Number of operator type i in a

function
Rj,i Resource type j consumed for one

operator i
memmax Maximum offset value in a

function
memmin Minimum offset value in a function

RM Memory bits for one datum Nid,ext Number of external idle cycles of a
function

Nid,int Number of internal idle cycles of
a function

Configuration Organisation
C<i, j> Configuration that contains j − i + 1 segments, starting from segment i and ending with
segment j
P Parallelism (number of

data-paths)
AL/F/D Available resources

IL/F/D Infrastructure resource usage AB Available bandwidth
Nin Number of input edges of a

configurations
Nout Number of output edges of a

configuration
Br Bandwidth requirement of a

configuration
Partition Generation

Pi Partition i
Runtime Evaluation

Ti Execution time for segment Si Oj Time to reconfigure configuration j
ds Data size φ Throughput of data transfer interface
γ Bitstream size for 1% chip usage θ Throughput of reconfiguration

interface

shows the function-level graph of the example application along with the algorithm-
level graph of function node G0. The processing steps of the example RDFG are sum-
marized as follows. Table I lists parameters and notations used in these steps.

Function analysis takes the algorithm-level graph of a function node and estimates
resource consumption and idle cycles for the function. Based on analysed idle cycles, we
group the functions active at the same time into the same segment. Algorithm details
of function node G0 are shown in Algorithm 1, where x and y are input and output data
arrays, respectively, and c j are multiplication coefficients. As shown in Figure 3(a),
arithmetic operators are mapped as arithmetic nodes, and indices of accessed data are
mapped to offset edges. Functions in the same segments can be executed at the same
time without stalling, as shown in Figure 3(b) with node G5 merged with G0 for A, G6
merged with G3 for B, and G7 merged with G4 for C.

Configuration organisation refers to the combination of function segments and the
optimisation of the associated functions. As shown in Figure 3(c), a configuration can
contain only one segment, such as configuration 0, or it can include multiple seg-
ments, such as configuration 4. configuration 0 may achieve higher design paral-
lelism than configuration 4, as it requires fewer hardware resources. On the other
hand, the first configuration needs to be reconfigured to execute G2, which introduces
additional reconfiguration overhead compared to configuration 4. The objective of
configuration organisation is to generate all possible segment combinations and opti-
mise each of the generated configurations to achieve maximum parallelism.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:9

ALGORITHM 1: Algorithm detail for function G0.
1: function G0(float* x, float* y){
2: for i ∈ (4,n-4) do
3: float a1 = x[i-1] + x[i+1];
4: float a2 = x[i-2] + x[i+2];
5: float a3 = x[i-3] + x[i+3];
6: float a4 = x[i-4] + x[i+4];
7: y[i] = a1 * c1 + a2 * c2 + a3 * c3 + a4 * c4;
8: end for
9: }

Partition generation refers to linking optimised configurations as a complete recon-
figurable design. As demonstrated in Figure 3(d), if configuration 4 is included in
the current partition, to ensure that the partition can be executed during runtime, the
next configuration must include a segment with functions A, B, and C. Given this con-
straint and available configurations, either configuration 5 or configuration 6 can
be combined into current partition. A searching algorithm is required to select proper
configurations to finish the remaining tasks. To reduce the search space, invalid and
inefficient configuration combinations are eliminated.

Runtime evaluation refers to the selection of generated partitions during runtime.
The execution time of a partition depends on configuration properties, reconfiguration
time, and runtime data size. Whereas configuration properties and reconfiguration
time are known once a partition is generated, data size of the target application re-
mains unknown in compile time. As shown in Figure 3(e), partition 0 achieves higher
parallelism since functions in the first and second time frames are divided into two
configurations. As a consequence, more reconfiguration operations are introduced to
switch between the configurations. In the current approach, to preserve the data stored
in FPGA off-chip memories, the memory data are first transferred back into host mem-
ories before a reconfiguration operation. After FPGAs are reconfigured, the stored data
are transferred back into FPGA memories, as shown in Figure 3(e). For a given data
size, if the reduction in execution time outweighs the increase in reconfiguration time,
then partition 0 is selected. A performance model is built to dynamically evaluate
design performance when data size is available. The partition with the minimum exe-
cution time is selected and executed.

4. FUNCTION ANALYSIS

To separate functions active at different time intervals, and to duplicate a function
when there are available resources, we analyse the algorithm details inside a function
node to estimate the amount of idle cycles and resource usage. After extracting function
details, we schedule function nodes based on (1) interactions between them and (2)
function internal idle cycles. A segment S contains function nodes scheduled in the
same time frame.

4.1. Function Property Extraction

The properties of a function include its resource consumption, its associated data access
patterns, and its number of idle cycles. The algorithm-level graph within a function
node Gi provides implementation details for the specific function. Fully pipelined data
paths and on-chip memory architectures are constructed to support full resource util-
isation of consumed resources—in other words, as long as Gi is active, one data path
for Gi generates one result per clock cycle.

Arithmetic operations within a function are implemented as a pipelined data path.
Within a function node, the resources consumed by arithmetic operations can be

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:10 X. Niu et al.

Fig. 4. Data buffering for offset edges in Algorithm 1, to calculate y[4] (a) and y[5] (b).

estimated as

Ls =
∑
i∈�

Ni · RL,i � = {+,−, ∗,÷}, (2)

where Ls accounts for the resource consumption for LUTs, Ni indicates the number
of operators for arithmetic operation type i, and RL,i indicates the number of LUTs
consumed by one arithmetic operator i. Similarly, resource consumption for FFs (Fs)
and DSPs (Ds) can be estimated.

A function is active once its arithmetic operators start processing data. The number
of idle cycles before a function becoming active depends on the number of cycles it takes
to get the first input data (i.e., external idle cycle Nid,ext), and the number of cycles it
takes to start processing, once the first input data are available (i.e., internal idle cycle
Nid,int). As an example, for function node G0, as shown in Algorithm 1, processing of
y[i] requires x[i − 4] ∼ x[i + 4]. If we assume that input data item x[0] in function G0 is
available at cycle n, and the function streams one data item each cycle, the arithmetic
operations in the function thus start at cycle n + 9.

Inside a function node, we analyse memory usage and internal idle cycles based on
data offset values. The on-chip memory resources are used to buffer input data when
not all accessed data are available. In Algorithm 1, to calculate y[i], data items before
x[i + 4] need to be buffered before x[i + 4] arrives. The offset edges in Figure 3(a) are
thus mapped into memory buffers, with the relative position between the maximum
and the minimum offsets indicating the buffer size. For a function node Gi, its input
nodes are traversed and the offset values are combined into Gi.mem. In mem, memmax
and memmin indicate the maximum and the minimum offset values, respectively. As an
example, there are eight offset edges for Algorithm 1, as shown in Figure 3(a). We thus
group the offset edges into mem of G0 as [−4, 4], where memmax = 4 and memmin = −4.
A memory architecture buffering nine consecutive data is generated. The buffered data
to calculate y[4] are shown in Figure 4(a). In the next cycle, x[9] is streamed into the
memory architecture to update buffered data. A data path connected to the memory
architecture can run without stalling. An on-chip memory resource used by a function
node can be calculated with the relative position as follows. RM is the number of bits
of one datum.

Ms = (memmax − memmin + 1) · RM (3)

Nid,int indicates the number of cycles that arithmetic operators in a function have
to wait after the first input datum is available. This normally happens when the
arithmetic operations in a function depend on more than one datum. For the example

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:11

Fig. 5. (a) RDFG of the example application. (b) RDFG after assigning the initial ALAP and ATAP levels.
(c) Generated segments based on assigned ALAP and ATAP levels.

in Figure 4, the computation depends on nine data and cannot start when x[0] is
available. The number of cycles a function needs to wait depends on the distance
between the required data—that is, the distance between memmin and memmax. Since
memmin and memmax can be either positive or negative, Nid,int can be expressed as

Nid,int = memmax + |memmin| − memmin

2
+ 1. (4)

When memmin is less than 0, such as –4 in Algorithm 1, the minimum offset edge
points at the first input datum. Nid,int is the number of cycles to buffer data in mem
(i.e., memmax − memmin + 1). When memmin is above 0, for example, if we add 100 to all
data indices in Algorithm 1, the minimum offset edge (96) points to the 96th data after
the first input datum. The computation in this function waits until all input data are
ready, and therefore starts at the 96th cycles. The memmin is added into Nid,int to take
the initial delay into account. Nid,int is therefore expressed as memmax + 1.

4.2. Segment Generation

A segment Si includes function nodes that are active at the same time. We use external
idle cycles and internal idle cycles to classify application functions: functions with the
same Nid,ext and Nid,int are grouped into the same segment, indicating that these func-
tions can be activated at the same time. Nid,ext of a function depends on the execution
status of its predecessor functions, which can only be properly estimated once complete
reconfigurable designs (partitions) are generated. In this stage, the design objective is
to differentiate functions active at different time intervals. As-late-as-possible (ALAP)
levels are assigned based on function-level edges EG. Functions that depend on the
same input data would have the same external idle cycles (i.e., the same ALAP levels).
Within the same ALAP level, internal idle cycle count Nid,int is used to further separate
functions with different offset values. As an example, if another function node Gx starts
its computation once x[0] is available, Gx and G0 are active at different cycles while
they share the same Nid,ext. To demonstrate the segment generation process, we use
the RDFG in Figure 5 as an example. Nid,int = N for functions A and B, and Nid,int = M
for function D. Arithmetic operations in function C are

∀i ∈ (0, n) z[i] = x[i] ∗ y[i], (5)

where computation starts as soon as input data are ready (i.e., Nid,int = 0).
To simplify context saving and recovery operations, we assign ALAP levels [Gajski

et al. 1992] to function nodes. Various scheduling algorithms have been proposed to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:12 X. Niu et al.

ALGORITHM 2: ATAP assignment. The algorithm merges functions that start at the same
time into one segment.
input: G, function nodes assigned with ALAP levels
output: S, generated segments
1: for Gi ∈ G do
2: Gi .atap ← Gi .Nid,int
3: for Gj ∈ Gi .outputs do
4: if Gj .alap = Gi .alap + 1 then
5: if !Gj .Nid,int then
6: Gj .alap ← Gj .alap - 1
7: Gj .atap ← Gi .atap
8: end if
9: end if
10: end for
11: S<Gi .alap,Gi .atap>.add(Gi)
12: end for

ensure correct execution of nodes in a graph [Purna and Bhatia 1999; Hudson et al.
1998]. As full reconfiguration is used in the present method, the communication be-
tween consecutive configurations in a reconfigurable design is not affected by recon-
figuration: output data of the current configuration are transferred from local mem-
ories into host memories before reconfiguration takes place, and from host memories
to local memories after reconfiguration, as shown in Figure 3(e). For the example in
Figure 5(a), if scheduled as-soon-as-possible, function node G0 will be executed once
the application starts. The output data of G0, on the other hand, are only used when
G4 is executed. Complex memory control is required to store and transfer the output
data of G0 properly. By assigning ALAP levels, we ensure that only output data of the
previous configuration need to be transferred, as shown in Figure 5(b).

Inside an ALAP level, function nodes with different Nid,int are further separated
into different levels (ATAP levels). The ATAP level of a function node is assigned with
respect to its Nid,int (line 2 of Algorithm 2). After assigning the ATAP levels, there are
three scenarios to consider. First, inside the same ALAP level, function nodes with the
same ATAP levels can run in parallel at the same time. Therefore, these nodes are
assigned to the same segment. Second, a function node with Nid,int = 0 indicates that
its arithmetic operations can start as soon as input data from previous ALAP level are
ready (line 5). Implemented in hardware, such a function node can be pipelined with
functions in its previous ALAP levels. As shown in Figure 5(b), G4 depends on G0 and
G3. In hardware, G4 is implemented as a multiplier, with its offset edges mapped as on-
chip wires. The multiplier can be merged into the data paths of G0 and G3. Therefore,
G4 can be executed at the same time as G0 and G3. In the scheduling algorithm, the
ALAP level of G4 is reduced by 1, and its ATAP level is assigned as N, indicating that it
starts once G0 and G3 start (lines 6 and 7). Third, function nodes with different ALAP
levels or ATAP levels are assigned to different segments (line 11), as these functions
will be active in different time intervals.

5. CONFIGURATION ORGANISATION

After function-level RDFG is divided into segments, operations at the configuration
level include distributing segments into different configurations and optimising each
configuration to fully utilise available resources. A configuration is expressed as C<i, j>,
where i indicate the starting segment and j implies the ending segment. Therefore,
C<i, j> contains j − i + 1 segments.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:13

Fig. 6. (a) Segments generated from function analysis. (b) Compressed segments based on Rule 1. (c) Gen-
erated configurations that start from the first segment S0, following the combination order defined by
Rule 2.

5.1. Configuration Generation

Ideally, every segment can be considered as a configuration, and design inefficiency
can be eliminated by dynamically reconfiguring segments. For the generated segments
in Figure 6(a), the five segments can be mapped into six separated configurations,
which are configured and executed as scheduled. Theoretically, optimal performance
is achieved as no idle cycle is introduced. In practice, such a configuration generation
scheme introduces two problems. First, there are configurations with the same func-
tion nodes. As shown in Figure 6(a), S<2,N> and S<3,N> share the same functions. One
configuration is capable of accomplishing the functions of the two segments. Separat-
ing them into two configurations introduces reconfiguration overhead. Second, large
reconfiguration overhead makes this scheme impractical. In this approach, we use full
reconfiguration to switch between different configurations; the reconfiguration over-
head includes the time to configure the FPGA and the time to preserve computational
context. If we generate one configuration for each segment, we introduce frequent
reconfigurations. When the number of eliminated idle cycles is less than the reconfig-
uration overhead, overall performance is reduced. To generate reconfigurable designs
with the minimum overall execution time (including the execution time and the recon-
figuration time of configurations), we generate all valid configurations from segments.
During runtime, the configurations are selected based on data size and reconfiguration
overhead.

Design rules for configuration is introduced to reduce complexity for generating valid
configurations. Combining segments into configurations is a combinatorial problem
where all subsets of of segments (S1, S2, S3...) are generated. However, the number of
combinations can easily become too large to process when graph size increases. We
introduce two design rules to remove redundant and invalid segment combinations.

Rule 1. Consecutive segments with the same functions are defined as duplicated
segments. The duplicated segments are removed to leave just one such segment. In
hardware, the duplicated segments can be executed with the same hardware modules.
Distributing these segments into different configurations cannot provide better run-
time performance. For example, as shown in Figure 6(a), S<2,N> and S<3,N> share the
same functions and can be assigned to different configurations. If we assign S<1,N>,
S<2,N>, and S<3,N> to the same configuration, when the configuration is executing the
functions in S<2,N>, only S<2,N> in this configuration is active. The hardware modules
(A, B, C) in S<3,N> remain idle since these modules depend on the output of S<2,N>,
although these two segments share the same hardware functions. By removing the du-
plicated segments, we eliminate such inefficient configurations. Moreover, we reduce

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:14 X. Niu et al.

ALGORITHM 3: Configuration generation. The algorithm enumerates all legal sequences of
segments over the setsof compressed segments.
Input: compressed segments S = (S0, S1...)
Output: all valid configurations C = (C0, C1...)
1: for i = 0 → S.size do
2: Cbuf ← ∅
3: for j = i → S.size do
4: Cbuf .add(Sj)
5: C<i, j> ← Cbuf
6: end for
7: end for

the search space to generate configurations. For large-scale applications, the same func-
tions can iteratively be called thousands of times. The removal of duplicated segments
can significantly reduce the complexity of generating configurations.

Rule 2. As function segments are arranged according to data dependency levels, only
configurations with consecutive segments are considered as valid. In Figure 6(b), a
configuration that contains S0 and S3 is considered as an invalid configuration. If such
a configuration is downloaded into an FPGA, either S0 or S3 would stall: when S0 is
executed, S3 remains idle, as it needs output data from S2; when S3 is executed, the
function in S0 has been accomplished. For a configuration with consecutive segments,
it respect data dependencies between involved segments.

While Rule 1 reduces the number of segments, Rule 2 defines which segments can
be combined into one configuration. Algorithm 3 (lines 1 through 3) searches segments
in a consecutive manner, from source nodes to segments assigned the maximum levels,
and each valid combination is stored as a configuration (lines 4 and 5). As shown in
Figure 6(c), configuration C<0,0> indicates that a configuration starts from segment
0 and contains 1 segment. Similarly, C<0,3> contains all four segments, starting from
segment 0. After generating all configurations that start from the first segment, the
algorithm restarts the process from the second segment (line 1).

5.2. Configuration Optimisation

With functions active at different time intervals distributed into different configura-
tions, hardware resources occupied by the idle functions are freed. The freed resources
are utilised by optimising each configuration. Required resources are first extracted
from the segments in a configuration, and relevant functions are replicated to fully
utilise available resources.

The required resources include hardware resources and bandwidth requirements. As
all arithmetic operators in data paths run concurrently, consumed resources cannot be
shared. Therefore, in a configuration, resource consumed on data paths can be directly
accumulated as follows, where C is the target configuration; S and G are all segments
and function nodes included in C, respectively; and NG,i is the number of operations of
type i in function node G. The LUT resource usage Ls is given by

Ls = P ·
∑
S∈C

∑
G∈S

∑
i∈�

NG,i · RL,i � = {+,−, •,÷}. (6)

On-chip memories, on the other hand, can be shared by replicated functions. As an
example, for the function node G0 in Figure 3, if two data paths are implemented,
memi ∪ memi+1 only increases from [1,9] to [1,10]. Instead of doubling the memory
resource usage, implementing one more data path only requires one more datum to
be buffered. Figure 7 demonstrates the additional memory usage when the arithmetic

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:15

Fig. 7. Data buffering for offset edges in Algorithm 1 to calculate two results per cycle (y[5] and y[6]).

operators are duplicated. For a function with parallelism P, its memory space can be
updated as the union of buffered data mem = ⋃P

i=1 memi. Besides additional memory
storage resources, more memory I/O ports are required to run the duplicated arithmetic
operators in parallel. We use memedge to indicate the number of edges in a segment and
Nport to indicate the number of I/O ports for a BRAM. Therefore, the memory resource
usage for a segment is determined by the maximum value of I/O bounded BRAM usage
(P·memedge+P

Nport
) and storage bounded BRAM usage ((memmax − memmin + 1) · RM). The

memory resource usage for a configuration C can then be accumulated as

Ms =
∑
S∈C

∑
G∈S

max
(

P · memedge + P
Nport

, (memmax − memmin + 1) · RM

)
. (7)

Besides resources consumed by data paths and memory architectures, communication
infrastructures consume resources for connecting on-chip memory architectures to off-
chip data ports. The consumed LUTs, FFS, DSPs, and BRAMs are labelled as IL, IF , ID,
and IM, respectively, and are considered as constant parameters for each configuration.

The bandwidth requirement Br depends on the number of I/O edges of a configuration.
The number of input edges Nin and output edges Nout of a configuration can be updated
by searching all edges in the configuration. As only edges not connected to internal
function nodes would involve memory access, an input edge is considered as an input
edge of a configuration if its input node is not included in the configuration. Similarly,
if an output edge is pointing at function nodes outside its configuration, it is included
in the configuration output edges. Br can then be expressed as

Br = P · (Nin + Nout) · fdp · dw, (8)

where fdp is the data path operating frequency and dw is the width of represented
data.

In a reconfigurable system, available resources for a configuration includes on-chip
resources (AL, AF , AD, and AM) and off-chip memory bandwidth (AB). AL, AF , AD,
and AM are the available LUTs, FFs, DSPs, and BRAMs resources in a target plat-
form. Along with resources consumed by the communication infrastructures, resource
constraints for a configuration with parallelism P can be expressed as

P ·
∑
S∈C

∑
G∈S

∑
i∈�

NG,i · RL/F/D,i ≤ AL/F/D − IL/F/D (9)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:16 X. Niu et al.

Fig. 8. (a) Compressed segments from configuration organisation. (b) Generated configurations in a config-
uration map. The example search operation starts from C<0,2> and looks for the remaining configurations.
(c) A valid partition P6 with configurations C<0,2> and C<3,3>. (d) All valid partitions for the example
application.

∑
S∈C

∑
G∈S

(memmax − memmin + 1) · RM ≤ AM − IM (10)

P · (Nin + Nout) · fdp · dw ≤ AB. (11)

The optimisation objective is to achieve the maximum parallelism for the given func-
tions to utilise the resources previously occupied by the idle functions. Therefore, the
maximum P satisfying the resource constraints is selected as the configuration paral-
lelism. To preserve generality of this approach, the optimisation problem is simplified.
Application-specific optimisation techniques can be applied to further improve configu-
ration performance. As an example, domain decomposition can be applied to problems
with multidimensional data [Niu et al. 2012] to reduce resources consumed by on-chip
memory architectures.

6. PARTITION GENERATION

A valid partition consists of a combination of configurations that respects data depen-
dencies and does not have redundant functions. Optimised configurations are combined
into a partition as a complete reconfigurable design. During runtime, an FPGA is dy-
namically configured following a specific order determined at compile time. As shown in
Figure 8, partition Pn contains configurations C<0,2> and C<3,3>. The search algorithm
finds C<0,2> first and then combines C<3,3> into Pn. During runtime, a host program
downloads configurations based on the order of combination. The host program first
configures C<0,2> into the available FPGAs. When C<0,2> finishes its function opera-
tions, the host program then reconfigures FPGAs with C<3,3> to finish the remaining
functions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:17

Similar to the configuration generation process, random combinations will generate
invalid designs. Several rules for partition generation are applied to construct the
search space.

Rule 3. Data dependencies between configurations are implied by the combined seg-
ments. Configurations must be included into partitions in a way that ensures segments
with a lower data dependency level finish first. For configurations generated from seg-
ments in Figure 8(a), combining configuration C<0,2> as the first configuration in Pn
indicates that C<0,2> will be executed first. As function node G1 (segment 0) will be
instantiated first in the target application, C<0,2> needs to contain segment 0 to ensure
correct execution. In other words, configurations starting from segment 0 (C<0,0> ∼
C<0,3>) need to be combined into a partition first. This requires the search process to
start from configurations including segments with the lowest level.

Rule 4. As a complete reconfigurable design, the generated partitions must be ca-
pable of accomplishing the target applications. To finish the example application in
Figure 3(a), all functionalities A, B, C, D, and E must be contained in a partition. As
function nodes are grouped as segments, this requires that a partition contains all
function segments. As an example, if all configurations in a partition do not include
S3, the partition cannot finish the application in Figure 8(a). This requires that all
compressed segments must be included in a valid partition.

Rule 5. To ensure hardware efficiency, configurations with overlapped segments can-
not be combined into the same partition. Otherwise, the same functions will be imple-
mented multiple times, introducing redundant hardware.

∀(Ci, C j) ∈ Pi Ci ∩ C j = ∅
For the application in Figure 8(b), if Pn contains C<0,2> and C<2,3>, S2 is included in
both configurations. When S2 is executed, only one of the configurations is downloaded
into FPGAs. The S2 in the other configuration is never activated, introducing hardware
inefficiency.

We search valid partitions recursively, as shown in Algorithm 4. The starting point
of each search operation is defined in the main function. The present partition and
the starting point for the next search operation are passed into the search function
Find_Partition (lines 10 and 21 in Algorithm 4). If the search function finds a valid
partition, it returns the partition. Otherwise, the search function recursively calls
another search function. The rules listed earlier define the initial starting point in the
main function, the starting point for the next search operation, and the ending point
for a partition search.

Rule 3 defines the initial starting point of the search operations. We organise the
generated configurations in a configuration map, as shown in Figure 8(b), where the
y-axis indicates the starting segment of the configuration (i in C<i, j>) and the x-axis
indicates the number of segments in this configuration (j in C<i, j>). The search process
begins from the starting point with configurations in the first row in Figure 8(b). This
is ensured by the first line of Algorithm 4. In this example, we pick C<0,2> as the first
configuration. It contains three segments (S0, S1, S2).

Rule 5 defines the starting point for the next search operation. Given that the current
configuration C<0,2> contains segments (S0, S1, S2), the next configuration should start
from S3 to prevent overlapping with segments in existing configurations. Therefore,
the next search operation finds configurations in the fourth column of the configuration
graph (line 10). Since the starting point of the next search operation depends on the
ending segment of the last configuration in the current partition Pbuf , we call the
algorithm the ending-segment search algorithm.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:18 X. Niu et al.

ALGORITHM 4: Ending-segment search algorithm. The algorithm searches all valid combina-
tions of configurations that are capable ofaccomplishing application functionality.
1: Find Partition(Pbuf , start) {
2: num segments : number of compressed segments in S.
3: i ← start
4: for j = i→ (num segments-1) do
5: Pbuf .add(C<i, j>)
6: if j == (num segments -1) then
7: Partitions.add(Pbuf)
8: return
9: else
10: Find Partition(Pbuf , j+1)
11: end if
12: Pbuf .pop(C<i, j>)
13: end for
14: return
15: }
16:
17: main() {
18: Pbuf ← ∅;
19: Partitions ← ∅;
20: start ← 0;
21: Find Partition(Pbuf , start);}

Rule 4 defines the ending point of the search operation. As a valid partition contains
all segments, once the search algorithm finds out that all segments are included
in the current partition, it returns the current partition. After a configuration is
found, the search algorithm checks whether all segments have been included by
comparing the number of segments num segment with the ending segment of the last
configuration in Pbuf (line 6). In this example, the search algorithm finds C<3,3> in
the fourth column of the configuration map. j = 3 indicates that all segments have
been included in current partition. Current search operation is terminated, and the
partition is saved as a valid partition (lines 7 and 8).

7. RUNTIME EVALUATION

The performance of the generated partitions depends on the application characteristics,
design properties, and data size. Application characteristics and design properties are
available during compile time, and thus their impacts on partition performance can be
analysed before execution. The data size of application functions, on the other hand, can
either be hard coded as static constants or dynamically specified during execution. If
data sizes are implemented as compile-time coefficients, performance of each partition
can be determined during compile time, and the optimal partition with maximum
performance can be selected before execution. However, such a static approach is only
applicable to applications with deterministic data sizes. A runtime performance model
is introduced in the proposed approach. The execution time and the reconfiguration
overhead of partitions are estimated based on data sizes, with constant coefficients
indicating application characteristics and design properties.

The constant coefficients for the performance model can be extracted by traversing
the uncompressed segments with the generated partitions, as shown in Algorithm 5
(lines 4 through 11). For each segment, the current partition is searched to find a config-
uration with all segment functions included (line 3 in Algorithm 5). The configuration
is named as the current configuration. Since functions in a segment can be executed in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:19

ALGORITHM 5: Partition scheduling algorithm. The algorithm estimates the execution time
ofgenerated partitions.
Variables: vi : nodes, pi: partitions, Cur: current configuration
Functions Conf(vi , pi): find the configuration in partition pi that vi ∈ci

1: for pi ∈ Partitions do
2: for vi ∈ Source Nodes do
3: Cur ← Conf(vi , pi)
4: while vi .NextNode = ∅ do
5: if vi /∈ Cur then
6: Cur ← Conf(vi , pi)
7: pi.T + = Cur.Cre + Cur.Cm
8: end if
9: pi.T + = Cur.Ct
10: vi ← vi .NextNode
11: end while
12: end for
13: end for

parallel, the execution time for a segment Si can be expressed with segment data size
dsi, configuration parallelism P, and data path frequency fdp:

Ti = dsi

P · fdp
. (12)

Design parallelism P and operating frequency fdp are statically configured in each
configuration and are updated when reconfiguration occurs.

A reconfiguration operation is triggered during the graph traversal when a function
of the next segment is not included in the current configuration (lines 5 through 7 in
Algorithm 5). The current configuration is updated, and the reconfiguration overhead O
is accumulated. The reconfiguration overhead includes the time consumed for bitstream
downloading and context switching. The reconfiguration time can be estimated with the
configuration interface throughput θ and bitstream size. To switch context, context data
are loaded into the host memories before reconfiguration and written back after the
reconfiguration finishes. The data transfer time can be calculated as the ratio between
the transferred data 2 · ds and the data transfer throughput φ. The reconfiguration
overhead O can thus be expressed as

Oj = γ · max(P·Ls+IL
AL

,
P·Fs+IF

AF
, P·Ds+LD

AD
, Ms)+IM

AM
)

θ
+ 2 · ds

φ
, (13)

where Oj indicates the reconfiguration overhead when the current configuration is
switched to configuration Cj and γ is the bitstream size for 1% chip usage. We
estimate the chip usage with the maximum resource usage in all resource types:
max(P·Ls+IL

AL
,

P·Fs+IF
AF

, P·Ds+LD
AD

, Ms+IM
AM

). Theoretically, accumulating the bitstream size for
each resource type can provide better estimation. In practice, routing configuration
data occupy a large portion of a bitstream file. Considering that FPGA vendors do
not provide routing infrastructure details, the routing configuration data size cannot
be estimated. In our approach, we use the average chip usage coefficients γ and the
maximum resource usage to estimate bitstream size. The additional data transfer time
is given by 2 · ds/φ.

The overall execution time can be estimated by accumulating the execution time for
each segment and the reconfiguration overhead for each reconfiguration operation. For
an application with N uncompressed segments and a corresponding partition with M

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:20 X. Niu et al.

reconfiguration operations, the overall execution time can be expressed as

T =
N∑

i=1

dsi · Cexe,i +
M∑

j=1

(Crec, j + dsj · Ctra, j), (14)

where Cexe,i = 1
Pi · fdp

is the execution coefficient for segment Si, and for seg-
ments in the same configuration, the same clock frequency fdp is applied; Crec, j =
γ · max(P·Ls+IL

AL
,

P·Fs+IF
AF

, P·Ds+LD
AD

, Ms)+IM
AM

)/θ indicates the reconfiguration time for configu-
ration j; and Ctra, j = 2/φ is the data transfer coefficient for configuration j. dsi and dsj
in Equation (14) are updated to provide runtime evaluation of generated partitions. The
partition with the minimum overall execution time T is selected for the corresponding
dataset.

8. RESULTS

Benchmark applications are developed with the proposed design flow. The hardware
designs are produced by the Maxeler MaxCompiler version 2012.1, implemented on
Xilinx Virtex-6 SX475T FPGAs, each hosted by one of the four MAX3424A systems in
an MPC-C500 computing node from Maxeler Technologies. CPU designs are compiled
with an Intel Compiler (ICC) with -O3 flag opened, linked against OpenMP libraries,
and executed on a Dell PowerEdge R610 machine, with 24 Intel

R©
Xeon

R©
X5660 cores

running at 2.67GHz. An NVIDIA Tesla C2070 card with 448 CUDA cores is used for
GPU designs. GPU implementations are optimised with relevant techniques, such as
access blocking and data coalescing [Phillips and Fatica 2010]. For multi-FPGA designs,
GPIOs of FPGAs are used to exchange interdependent data between parallel devices.

8.1. Benchmark Applications

Our benchmark applications involve multiple functions. In addition to static designs,
runtime reconfigurable designs are produced and evaluated against CPU and GPU
implementations. Three high-performance applicationsbarrier option pricing (BOP),
particle filter (PF), and reverse time migration (RTM)—are developed using the pro-
posed approach.

Our first benchmark involves BOP. An option is a financial instrument that provides
the owner the right, but not the obligation, to buy or sell an asset at a fixed strike price
K in the future. BOP is an exotic multivariable option that changes the payoff function
if the price of underlying assets reaches the predetermined barrier. Equation (15) shows
the payoff function of a three-variable barrier put option, where vi is the payoff of the
option at the ith timestep; vEU

i is the price of a three-asset European option; bi is
the barrier level at timestep i; and S1, S2, and S3 are the underlying asset prices at
timestep i. In this case, the payoff function contains mutually exclusive operations
depending on the underlying asset barrier.

vi =
{

vEU
i , if bi < S3

max
(
0, K − 3

√
S1S2S3

)
, if bi ≥ S3

(15)

The explicit finite difference method is efficient in evaluating the payoff of financial
derivatives with up to three underlyings, as it can be applied easily to various types of
partial differential equations (PDEs) and the method is scalable for parallel execution.
In BOP, the finite difference method is used to solve the Black Scholes equation [Hull
2005] with three underlying assets. A 19-point convolution is constructed to calculate
the payoff option. The application RDFG is presented in Figure 9(a), with functions A
and B indicating the payoff functions before and after reaching the barrier.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:21

Fig. 9. Function-level RDFG of BOP (a), PF (b), and RTM (c).

Our second benchmark—PF—is a methodology for dealing with dynamic systems
having nonlinear and non-Gaussian properties. It estimates the state of a system by
a sample-based approximation of the state probability density function. PF has been
widely used in real-time applications including object tracking and robot localisation
[Montemerlo et al. 2002]. PF undergoes four key steps: particle generation, weight
updating, resampling, and grouping. A Monte Carlo method is used in the first step
to generate particles with random properties. An importance function is introduced
in the weighting step to evaluate the quality of generated particles. After resampling,
particles with higher weighting are accepted, whereas the others are rejected, thereby
refining the set of particles for the next step. The grouping stage rearranges the updated
particles. The grouping stage allows exchange of particles among parallel cores, and
the data are analysed to provide an overall perspective of current particles. As shown
in Figure 9(b), particle generation, weight updating, re-sampling, and grouping are
represented as function nodes A, B, C, and D, respectively.

Our third benchmark—RTM—is an advanced seismic imaging technique to detect
terrain images of geological structures, based on the Earth’s response to injected acous-
tic waves. The wave propagation within the tested media is simulated forward and cal-
culated backward, forming a closed loop to correct the terrain image. The propagation
of injected waves is modelled with the isotropic acoustic wave equation [Araya-Polo
et al. 2011] and solved with the finite-difference method.

d2 p(r, t)
dt2 + dvv(r)2 �2 p(r, t) = f (r, t) (16)

In our implementation, the propagation is approximated with a fifth-order Taylor
expansion in space and a first-order Taylor expansion in time. As demonstrated in
Figure 9(c), injected waves are first propagated from injected nodes into the detected
terrain, labelled as function A. Once the propagation reaches the bottom, a reversed
propagation and a backward propagation are instantiated simultaneously, represented
as function nodes A and B. The propagated data are convolved in function C to generate
the terrain image.

8.2. Design Flow Output

The RDFGs of benchmark applications are fed into the proposed design flow. Function
nodes are assigned ALAP and ATAP levels. Nodes A, B, and C for PF (Figure 9(b))
are combined into the same segment, as ATAP levels of B and C are 0. Similarly,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:22 X. Niu et al.

Table II. Output Results of Proposed Design Flow

App G S C P Static Dynamic0 Dynamic1
BOP 2000 2000 3 2 AB A B
PF 1501 501 3 2 ABCD ABC D
RTM 4000 2000 3 2 ABC A ABC

Fig. 10. Measured and estimated resource usage of static designs for BOP, PF, and RTM.

function C of RTM (Figure 9(c)) is moved into the segment containing function nodes
A and B. The number of generated segments are listed in Table II, where G, S, C,
and P stand for the number of function nodes, segments, configurations, and partitions
generated in the proposed approach, respectively. After the ATAP assignment, the
number of segments is reduced from 1,501 to 501 for PF and from 3,000 to 2,000
for RTM. Before generating configurations, the duplicated segments including same
functions are eliminated, leaving two segments for each application. Limited by Rules 1
and 2, three configurations are generated by Algorithm 3. For two segments, there will
not be nonconsecutive segments (i.e., so there will not be inefficient configurations). If
the number of segments goes beyond two (e.g., four segments), instead of generating
all 16 configurations, Algorithm 3 would only generate the 9 valid configurations.

The generated configurations are put into the configuration map shown in
Figure 8(b). Following Rules 3, 4, and 5, the ending-segment search algorithm gen-
erates two valid partitions for each application. As listed in Table II, one partition is
the static design, where all functions are included in one configuration, labelled as
static. The other partition refers to the design using runtime reconfiguration to elimi-
nate idle functions, with the first and second configurations labelled as dynamic0 and
dynamic1, respectively. With extracted function properties and reduced search space
thanks to the design rules, valid and efficient reconfigurable designs are generated
from large-scale application graphs.

Measured and estimated resource usage are shown in Figure 10. We show resource
usage of the static designs, as a static design contains all application functions. As
shown in Figure 10, the estimated resource consumption is within 90% of the measured

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:23

Table III. Performance of Generated Reconfigurable Designs. Resource
Utilisation and Speedup for Runtime Reconfigurable Designs are Marked in Bold.

App Design P T (s) Or(s) Utilisation Speedup
Static 24 111.84 0.79 0.496 1x

BOP Dynamic0 48 27.94 1.53 0.97 1.95x
Dynamic1 48 28.2

Static 4 20.9 1.1 0.346 1x
PF Dynamic0 10 7.41 2.2 0.76 2.19x

Dynamic1 5 0.39
Static 6 111.85 1.22 0.73 1x

RTM Dynamic0 12 27.96 2.38 0.962 1.31x
Dynamic1 6 55.93

value, which enables the configuration organisation step to properly duplicate the
relevant functions. The differences between the measured and the estimated resource
usage come from the neglected design parameters. One of the neglected design param-
eters is on-chip memory bandwidth. The current model estimates memory resource
usage by accumulating memory bits consumed to store on-chip data. However, memory
resource usage also depends on on-chip I/O operations. In Figure 4, as there are eight
data buffer elements that read from neighbouring elements and write to data paths,
eight memory dual-port memory blocks are consumed. For large-scale applications,
such as the three benchmark applications, millions of memory bits are used. The op-
timised designs are bounded by memory capacity instead of memory bandwidth. The
model errors due to the neglected parameters are thus small.

8.3. Performance of Generated Partitions

The generated reconfigurable designs are evaluated in terms of execution time and
resource utilisation ratio. The performance of the reconfigurable designs is measured
for the MPC-C500 node. The resource utilisation ratio is calculated as the ratio between
theoretical execution time and measured execution time. The theoretical execution time
is calculated assuming that every implemented data path generates one result per clock
cycle. For dynamic designs, the communication between consecutive configurations is
through memory transfers: output data of current configuration are transferred back
into host memories before reconfiguring FPGAs, and back after the reconfiguration. The
reconfiguration overhead Or includes all configuration time and data transfer time.

For the static BOP, the mutually exclusive functions determine that only half of
the resources can be used to generate useful results. The parallelism P is limited by
available on-chip resources. As listed in Table III, the idle functions in static BOP reduce
its utilisation ratio to only 0.496. By distributing functions A and B into two hardware
configurations, P is doubled for both configurations, increasing the resource utilisation
ratio to 0.97 and achieving 1.95 times speedup compared to the static design. The left
0.03 inefficiency is introduced by the reconfiguration overhead. For PF, the grouping
function D is stalled while particles are updated by functions A, B, and C. During the
grouping stage, functions A, B, and C are idle. Resources occupied by idle functions are
reconfigured to support active functions. The optimised dynamic design for PF runs
2.19 times faster than its static counterpart. For RTM, the static design is bounded by
available hardware resources and memory bandwidth. As shown in Figure 9, functions
A and B both require off-chip data. The memory channels connected to function B are
idle when only function A is processing data. The generated dynamic design releases
the idle resources and the idle memory channels, increasing the design parallelism of
the first configuration to 12. The resource utilisation ratio reaches 0.96, and a 1.31
times speedup is achieved for the dynamic design.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:24 X. Niu et al.

Fig. 11. Evaluation results from the performance model for the benchmark applications BOP, PF, and RTM.
For various data sizes, the overall execution time for the static and dynamic partitions are compared, and
the partition with the minimum execution time is selected.

8.4. Runtime Evaluation

Results presented in Section 8.3 are for initial data sizes of the benchmark applica-
tions. The performance model provides runtime evaluation for the generated partitions
when data size varies. For the three benchmarks, two partitions are generated for each
application. Constant coefficients are extracted from the partitions by traversing the
application graphs. For static partitions with only one configuration, there is no recon-
figuration overhead. For dynamic partitions, the parallelism in each configuration is
increased, whereas reconfiguration overhead is introduced to eliminate the idle func-
tions in each configuration. The parallelism for configuration in the static and dynamic
partitions is presented in Table III. All configurations operate at 100MHz, and the
throughput of PCI-E channels is 1GB/s. Functions in the same benchmark applica-
tion process the same dataset. Evaluation results from the performance model are
presented in Figure 11.

Evaluated data size varies from 100 to 109 data items for each application func-
tion. Reconfiguration overhead dominates the execution time when data size is small,
whereas the impact of eliminating idle functions becomes obvious as data size in-
creases. When there are more than 105 data items to process, the dynamic PF and
RTM partitions outperform their static counterparts. The dynamic BOP partition runs
faster than the static partition when the application data size is beyond 2 · 106. During
runtime, the performance model provides rapid estimation of execution time of various
partitions by updating the data size variable ds in Equation (14). Figure 12 compares
the measured execution time and the predicted execution time of the benchmark ap-
plications. The measured results align with the estimated values. The accuracy of the
runtime performance model is more than 95%.

8.5. Single-Device Performance Comparison

The performance of the optimised partitions is compared to CPU and GPU implemen-
tations. This verifies whether the method can provide high performance of optimised

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:25

Fig. 12. Measured and estimated execution time of BOP, PF, and RTM. The model accuracy is higher than
95%. Sta indicates the static partitions, and Dyn indicates the dynamic partitions.

Table IV. Comparison of the Application Performance of Single-Device Designs. Maximum Improvements in
Throughput and Power Efficiency for Each Application are Marked in Bold.

Barrier Option Pricing Particle Filter Reverse-Time Migration
CPU GPU Sta Dyn CPU GPU Sta Dyn CPU GPU Sta Dyn

frequency 2.67 1.15 0.1 0.1 2.7 1.15 0.1 0.1 2.67 1.15 0.1 0.1
T (s) 631 33.9 55.9 28.0 10 8.50 8.90 7.80 661 104 99.2 66.1
O (s) 0 0.43 0.80 1.53 0 1.50 1.10 2.20 0 0.59 1.22 2.38
throughputa 12.3 102 61.2 119 2.2 39.3 26.5 58.2 13.3 58.8 68.3 89.4
THimp 1x 8.3x 5.0x 9.6x 1x 18.0x 12.2x 26.7x 1x 4.4x 5.1x 6.7x
power (W)b 280 365 145 145 253 291 130 130 245 369 141 142
efficiency 44.0 280 422 819 8.6 135 204 448.0 54.2 159 484 630
Eimp 1x 6.4x 9.6x 18.6x 1x 15.7x 23.7x 52.0x 1x 2.9x 8.9x 11.6x

Note: Operating frequency is expressed in GHz, design throughput is expressed in GFLOPS, and power
efficiency is expressed in MFLOPS/W. T and O indicate execution time and reconfiguration time, respectively.
THimp and Eimp are improvements in throughput and efficiency.
aThroughput is calculated with all data transfer time and device configuration time included.
bPower consumption includes both static power and dynamic power.

hardware while achieving high resource utilisation and evaluates the efficiency of
the proposed method in a single-chip environment. To provide a fair comparison, the
throughput and efficiency results include reconfiguration overhead Or and static power
consumption.

The performance of the benchmark applications on various platforms is shown in
Table IV. CPU implementations are used as reference designs, generating 2.18 to
13.29 GFLOPS throughput. With high parallelism in processing units and local memory
systems, GPU designs achieve 4 to 18 times speedup. Based on results from the NVIDIA
Visual Profiler (NVPP), GPU performance is limited by memory operations to load
data from global memory into local memory. The efficiency is limited between 29.5%
and 34.3%—that is, three to four loading operations are required to load one block of
data into local memory. The inefficiency is introduced by the generality of the GPU

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:26 X. Niu et al.

Table V. Comparison of the Application Performance of Multidevice Designs. Maximum Improvements in
Throughput and Power Efficiency for Each Application are Marked in Bold.

Barrier Option Pricing Particle Filter Reverse-Time Migration
CPU GPU Sta Dyn CPU GPU Sta Dyn CPU GPU Sta Dyn

frequency 2.67 1.15 0.1 0.1 2.67 1.15 0.1 0.1 2.67 1.15 0.1 0.1
T (s) 631 33.9 55.9 27.96 10 8.50 8.90 7.80 661 104 99.2 66.1
O (s) 0 0.43 0.80 1.53 0 1.50 1.10 2.20 0 0.59 1.22 2.38
throughput 17.6 n/aa 232 431 3.2 n/a 92.0 140 16.6 n/a 262.1 327
T Himp 1x n/aa 13.2x 24.5x 1x n/a 28.8x 43.8x 1x n/a 15.8x 19.7x
power (W) 312 n/aa 510 512 292 n/a 490 482 298 n/a 502 503
efficiency 56.4 n/aa 455 842 10.9 n/a 188 291 55.7 n/a 522 650
Eimp 1x n/aa 8.1x 14.9x 1x n/a 17.2x 26.7x 1x n/a 9.37x 11.7x
scalability 0.71 n/aa 0.95 0.91 0.37 n/a 0.87 0.60 0.31 n/a 0.96 0.92

aLimited by available GPUs, results for multi-GPU designs are not available.
Note: Operating frequency is expressed in GHz, design throughput is expressed in GFLOPS, and power
efficiency is expressed in MFLOPS/W. T and O indicate execution time and reconfiguration time, respectively.
T Himp and Eimp are improvements in throughput and efficiency.

architectures. With runtime reconfiguration introduced, available resources can be
customised for each configuration, based on function properties extracted from the
hierarchical graphs. The dynamic designs achieve up to 118.7 GFLOPS throughput,
run up to 1.55 times faster, and are 2.9 to 3.9 times more efficient than the optimised
GPU designs. It is worth mentioning that the performance of static designs is lower
than or at the same level as the GPU performance. Although the general architecture
of CPUs and GPUs introduces inefficiency for operations such as data access, the
generality of such architectures enables the same computing units utilised by various
application functions, which compensates the comparatively low performance for each
function. The proposed approach enables resource sharing in the time dimension, with
high performance for each application function.

8.6. Multidevice Performance Comparison

Some partitioning methods [Purna and Bhatia 1999; Hudson et al. 1998; Kaul and
Vemuri 1998] target multi-FPGA platforms. Therefore, spatial partitioning [Hudson
et al. 1998] is introduced to support multiple devices. In our approach, identical configu-
rations and partitions are generated for each FPGA when multiple FPGAs are involved,
as the available resources bounding configuration optimisation (Equations (9) through
(11)) stay the same. Involving more FPGAs reduces the data size ds distributed into
each configuration and therefore increases the overall parallelism of generated parti-
tions. FPGA reconfiguration and data distribution are executed in parallel. Distributed
data in each FPGA can be exchanged using inter-FPGA communication channels in
the MPC-C500 system or shared in host memories. The performance of multicore de-
signs and FPGA designs are listed in Table V. Compared to the scaled CPU designs,
the dynamic designs achieve up to 43.8 times speedup and 26.7 times higher power
efficiency.

The scalability in Table V is calculated as the ratio between throughput of multi-
device designs and throughput of linearly scaled designs. In other words, a scalability
ratio 1 indicates linear scalability. For single-device CPU designs, six CPU cores are
used. If the 24-thread CPU designs achieve linear scalability, the throughput of the
CPU designs can be improved by four times. Scalability of CPU de signs is limited by
the inter-CPU communication operations. When multiple CPUs are involved, scalabil-
ity of the CPU designs is limited to a range between 0.31 and 0.71—that is, the design
throughput of benchmark applications is improved by up to 2.8 times. For multi-FPGA

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

Automating Elimination of Idle Functions by Runtime Reconfiguration 15:27

designs, the static designs achieve 0.87 to 0.96 scalability by utilising the inter-FPGA
communication channels. As reconfiguration operations and context switching are
executed in parallel, the reconfiguration overhead does not increase when more FPGAs
are involved. However, the reduced data size ds in each FPGA reduces execution time of
application segments, increasing the proportion of reconfiguration overhead in overall
execution time. The scalability of the dynamic designs is reduced to 0.91, 0.6, and 0.92
for BOP, PF, and RTM, respectively.

9. CONCLUSION

An automatic design method is proposed in this article. Runtime reconfiguration
enables effective exploitation of computational resources that otherwise would stay
idle, and we show that opportunities for such exploitation can be automatically
identified and optimised. Improvements compared to static FPGA designs, CPU, and
GPU designs are measured. Currently, the design method is limited by reconfiguration
overhead. Moreover, the generation of DFGs and the translation from partitions to
hardware descriptions are manual.

In the future, partial reconfiguration will be considered to reconfigure only the parts
that would change in successive configurations to minimise reconfiguration time. Run-
time solutions with improved granularity can thus be achieved. Moreover, runtime
optimisation will be integrated with design-time optimisation. Runtime optimisation
opportunities within a configuration will also be explored to incrementally optimise the
allocated active functions. Finally, a front-end tool will be developed that extracts RD-
FGs from high-level application descriptions and translates partitions into hardware
designs to complete the overall automatic design process.

REFERENCES

Mauricio Araya-Polo, Javier Cabezas, Mauricio Hanzich, Miquel Pericas, Fulix Rubio, Isaac Gelado,
Muhammad Shafiq, Enric Morancho, Nacho Navarro, Eduard Ayguade, Jose M. Cela, and Mateo Valero.
2011. Assessing accelerator-based HPC reverse time migration. IEEE Transactions on Parallel and
Distributed Systems 22, 1, 147–162.

Jurgen Becker, Michael Huebner, Gerhard Hettich, Rainer Constapel, Joachim Eisenmann, and Jurgen
Luka. 2007. Dynamic and partial FPGA exploitation. In Proceedings of the IEEE 95, 2, 438–452.

Tobias Becker, Qiwei Jin, Wayne Luk, and Stephen Weston. 2011. Dynamic constant reconfiguration for
explicit finite difference option pricing. In Proceedings of the 2011 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig’11). 176–181.

Karel Bruneel and Dirk Stroobandt. 2008. Automatic generation of run-time parameterizable configurations.
In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL’08).
361–366.

Eylon Caspi, Andre DeHon, and John Wawrzynek. 2001. A streaming multi-threaded model. In Proceedings
of the 3rd Workshop on Media and Stream Processors. 21–28.

Jason Cong, Karthik Gururaj, and Guoling Han. 2009. Synthesis of reconfigurable high-performance mul-
ticore systems. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA’09). 201–208.

Wenyin Fu and Katherine Compton. 2005. An execution environment for reconfigurable computing. In
Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’05). 149–158.

Wenyin Fu and Katherine Compton. 2008. Scheduling intervals for reconfigurable computing. In Proceedings
of the 16th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’08).
87–96.

Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, and Steve Y.-L. Lin. 1992. High-Level Synthesis: Introduction
to Chip and System Design. Kluwer Academic.

Ruining He, Yuchun Ma, Kang Zhao, and Jinian Bian. 2012. ISBA: An independent set-based algorithm for
automated partial reconfiguration module generation. In Proceedings of the 2012 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD’12). 500–507.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

15:28 X. Niu et al.

Rhett D. Hudson, David Lehn, Jason Hess, James Atwell, David Moye, Ken Shiring, and Peter Athanas.
1998. Spatiotemporal partitioning of computational structures onto configurable computing machines.
In Proceedings of SPIE 3526, Configurable Computing: Technology and Applications. 62.

John C. Hull. 2005. Options, Futures and Other Derivatives (6th ed.). Prentice Hall.
Qiwei Jin, Tobias Becker, Wayne Luk, and David B. Thomas. 2012. Optimising explicit finite difference option

pricing for dynamic constant reconfiguration. In Proceedings of the 2012 22nd International Conference
on Field Programmable Logic and Applications (FPL’12). 165–172.

Meenakshi Kaul and Ranga Vemuri. 1998. Optimal temporal partitioning and synthesis for reconfigurable
architectures. In Proceedings of Design, Automation, and Test in Europe (DATE’98). 389–396.

Dirk Koch and Jim Torresen. 2011. FPGASort: A high performance sorting architecture exploiting run-
time reconfiguration on FPGAs for large problem sorting. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA’11). 45–54.

Hessam Kooti, Deepak Mishra, and Eli Bozorgzadeh. 2011. Reconfiguration-aware real-time scheduling
under QoS constraint. In Proceedings of the 2011 16th Asia and South Pacific Design Automation
Conference (ASP-DAC’11). 141–146.

John W. Lockwood, Naji Naufel, Jonathan S. Turner, and David E. Taylor. 2001. Reprogrammable net-
work packet processing on the field programmable port extender (FPX). In Proceedings of the 2001
ACM/SIGDA 9th International Symposium on Field Programmable Gate Arrays (FPGA’01). 87–93.

Michael Montemerlo, Sebastian Thrun, and William Red Whittaker. 2002. Conditional particle filters for
simultaneous mobile robot localization and people-tracking. In Proceedigs of the IEEE International
Conference on Robotics and Automation (ICRA’02). 695–701.

Federico Nava, Donatella Sciuto, Marco Domenico Santambrogio, Stefan Herbrechtsmeier, Mario Porrmann,
Ulf Witkowski, and Ulrich Rueckert. 2010. Applying dynamic reconfiguration in the mobile robotics
domain: A case study on computer vision algorithms. ACM Transactions on Reconfigurable Technology
and Systems 4, 3, Article No. 29.

Xinyu Niu, Qiwei Jin, Wayne Luk, Qiang Liu, and Oliver Pell. 2012. Exploiting run-time reconfiguration in
stencil computation. In Proceedings of the 2012 22nd International Conference on Field Programmable
Logic and Applications (FPL’12). 173–180.

Everett H. Phillips and Massimiliano Fatica. 2010. Implementing the Himeno benchmark with CUDA on
GPU clusters. In Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS’10). 1–10.

Karthikeya Gajjala Purna and Dinesh Bhatia. 1999. Temporal partitioning and scheduling data flow graphs
for reconfigurable computers. IEEE Transactions on Computers 48, 579–590.

Pete Sedcole, Brandon Blodget, Tobias Becker, James Anderson, and Patrick Lysaght. 2006. Modular dynamic
reconfiguration in Virtex FPGAs. IEE Proceedings: Computers and Digital Techniques 153, 3, 157–164.

Steve Young, Peter Alfke, Colm Fewer, Scott McMillan, Brandon Blodget, and Delon Levi. 2003. A high
I/O reconfigurable crossbar switch. In Proceedings of the 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’03). 3–10.

Received April 2014; revised September 2014; accepted November 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 15, Publication date: May 2015.

