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Abstract. Echocardiography is one of the primary imaging modalities
used in the diagnosis of cardiovascular diseases. It is commonly used
to extract cardiac functional indices including the left ventricular (LV)
volume, mass, and motion. The relevant echocardiography analysis meth-
ods, including motion tracking, anatomical segmentation, and registra-
tion, conventionally use the intensity values and/or phase images, which
are highly sensitive to noise and do not encode contextual information
and tissue properties directly. To achieve more accurate assessment, we
propose a novel spectral representation for echo images to capture struc-
tural information from tissue boundaries. It is computationally very effi-
cient as it relies on manifold learning of image patches, which is approx-
imated using sparse representations of dictionary atoms. The advantage
of the proposed representation over intensity and phase images is demon-
strated in a multi-atlas LV segmentation framework, where the proposed
spectral representation is directly used in deformable registration. The
results suggest that the proposed spectral representation can provide
more accurate registration between images. This in turn provides a more
accurate LV segmentation. Finally, it is the first time that a multi-atlas
approach achieves state-of-the-art results in echo image segmentation.

1 Introduction

In the diagnosis of cardiovascular diseases, echocardiography is still the most im-
portant and widely used tool due to its high availability and ease of use. It has
been used to extract functional and quantitative indices like left ventricular (LV)
mass, volume and motion. The accuracy of these measurements depends on the
correct delineation of endocardial boundary; thus, automated segmentation tools
are more desirable for analysis as manual tracing is subject to inter-observer vari-
ability and human error. However, volumetric segmentation is still a challenging
task for echo images due to image artefacts and low image quality.

The existing approaches to echocardiography segmentation can be divided
into model-based and data-driven. Deformable surface models [2] and active-
shape models [5] are two examples of the former category, which require a good
model initialization or training to learn shape prior information to subsequently
segment the ventricle boundary in target images. Although these approaches
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achieve state-of-the-art segmentation results, they are limited by inter-subject
anatomical variations due to the extensive training needed to cope with large
shape variations. On the other hand, the second category relies on intensity
distributions instead of a trained model. Thus, they are less sensitive to inter-
subject variability, but are highly susceptible to the noise level and inconsisten-
cies in the intensity distribution. Two common examples are edge-based level
sets [12] and multi-atlas segmentation [20]. Particularly, although atlas based
approaches have been successful for MRI segmentation [1], large registration
errors on echo images prevent them from being effective for echo images.

Indeed, intensity and phase images are not representative enough to guide
image registration because they do not directly reflect properties of the tissues or
their contextual information. In this paper, to address this problem we propose
a novel spectral representation for echo images, through which we extend and
outperform the multi-atlas segmentation framework proposed in [20]. The new
image representation captures structural information and guides the deformable
registration to obtain a better tissue alignment. It also reduces the noise sensi-
tivity and removes the need for image compounding, and ultimately achieving
higher segmentation accuracies.

Spectral embedding is employed to compute the proposed representation,
which has been successfully applied in min-cut segmentation [8], multi-modal im-
age registration [16], and large deformation estimation problems [10]. Neverthe-
less, spectral embedding is not directly applicable to 3D echo images due to the
large number of image patches, resulting in long computation times and intensive
memory usage. We therefore propose, as an additional contribution, a more effi-
cient embedding that exploits the redundant nature of echo image patches. The
underlying manifold structure is learned only for atoms from a trained dictionary
that sparsely represent the image patches. A single over-complete dictionary is
assumed to be representative enough for all echo image patches to approximate
the low dimensional space and each image patch is mapped to the underlying
manifold space as a sparse linear combination of atoms yielding a set of spectral
coordinates. To preserve the geodesics and local structure, sparse selection in
coding is achieved by enforcing the locality constraint [17], which implies both
sparsity and locality as explained in [18].

In the context of this paper, the proposed image patch embedding is referred
as spectral representation. The paper is structured as follows: In section 2 of this
paper, we introduce the relevant theory of dictionary learning and sparse coding
for the manifold approximation. Section 3 presents validation results on the
CETUS challenge data [4], which shows significant improvement in segmentation
accuracy using the proposed representation over phase and intensity images. In
the last section, the paper concludes by a brief discussion of the results.

2 Methodology

In the proposed segmentation framework, echo images are first sparsely recon-
structed with dictionary atoms for speckle reduction. Secondly, a spectral repre-
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Fig. 1. Block diagram of the proposed multi-atlas segmentation framework

sentation is extracted from the processed images by mapping image patches to
the manifold space of the dictionary atoms. Then, atlas labels are propagated
to the target image by deformable registration using the spectral representation.
The framework is shown in Fig. 1 and detailed below.

Speckle reduction: Target echo sequences are preprocessed prior to segmen-
tation to increase signal-to-noise ratio. Instead of relying on standard speckle re-
duction techniques [6], images are denoised using dictionary learning and sparse
coding similar to the image denoising application in [7]. On top of achieving state-
of-the-art denoising, dictionary learning provides global patch analysis by build-
ing a set of atoms from training data that sparsely represent image patches. For
echo images, these atoms have characteristic edge patterns. We use the K-SVD
algorithm [7] to approximate image patches yn ∈ RP as sparse combinations
xn ∈ RM of atoms from an over-complete dictionary C ∈ RP×M with a preci-
sion bounded by ε, namely solving: min

C,X

∑N
n=1 ‖xn‖0 s.t. ∀n , ‖yn −Cxn‖2 ≤

ε | ε ∈ R+. Patches are overlapping and wrap around image boundaries, meaning
there are N patches for an image of N pixels.

Spectral representation: As shown in previous works [10,16], spectral co-
ordinates can be computed using non-linear dimensionality reduction of image
patches; this paper particularly focuses on Laplacian Eigenmaps (LE) [3]. The
algorithm computes the Laplacian graph L = I −D−1/2AD−1/2 using the ad-
jacency and degree matrices A,D ∈ RN×N corresponding to all image patches.
Then, spectral coordinates are obtained by finding the lowest K eigenvectors of
the matrix L. This representation is suited for small datasets such as small stacks
of MRI slices, but is prohibitive for 3D echo volumes due to the large amounts
of voxels in the image that result in a very large adjacency matrix. Furthermore,
finding a fixed low-dimensional space for all images is also challenging and is
usually solved by point-matching algorithms.

To overcome these problems, we propose to perform manifold learning on dic-
tionary atoms (cm ∈ RP ) and then the spectral coordinates are approximated
by sparse linear combinations of dictionary atoms. For this approximation, two
main assumptions are made: (1) echo image patches can be sparsely represented
by dictionary atoms and (2) these patches can be expressed in a manifold [11]
that groups atoms with similar edge patterns. In that respect, the learned dic-
tionary atoms that are the byproduct from the speckle reduction step are trans-
formed into spectral coordinates with LE. Dictionary atoms of similar shape are
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Fig. 2. The lowest two spectral coordinates of the dictionary atoms (left), locality
constrained linear coding of a query patch to map it to manifold space (right).

grouped together in the spectral coordinates and the variance of the patches is
maximized, as shown in Fig. 2. With the embedding learned, each image patch
(yn) is mapped to the lower dimensional space through linear combinations (x̃n)
of spectral coordinates corresponding to dictionary atoms (sc ∈ RM×K) solv-
ing: syn = x̃>n sc. The linear codes are found by minimizing the cost function
min
X

∑
n ‖yn − Cx̃n‖2 + λ ‖bn � x̃n‖2 s.t. ∀n ,1>x̃n = 1, where � denotes

the element-wise multiplication and λ ∈ R+. This formulation enforces a local-
ity constraint [17] based on pair-wise distances bn = [b(n,1), . . . , b(n,M)] where
b(n,m) = exp ( ‖(yn − cm‖2 / σ ) and σ is the variance term. The penalty term
assigns higher weights to dictionary atoms cm that are close to the patch yn.

As explained in [18], the locality constraint also implies sparsity, thus the
solution can be considered as a sparse weighting of the dictionary atoms. The
sparse codes computed in Euclidean space can be applied in manifold space as
long as the locality constraint is applied. A single component of approximated
spectral coordinates is displayed in Fig. 3.

Multi-atlas segmentation: The proposed spectral representation is used in
image registration to perform multi-atlas segmentation on echocardiographic
images. Different than the standard multi-atlas approach [1], the image similarity
metric in the proposed registration algorithm is based on image descriptors. In
that respect, images are aligned to each other by minimizing sum-of-squared
differences (SSD) between their spectral coordinates instead of image intensity
values.

The proposed segmentation framework is described as follows: All atlases
collected from the training dataset are linearly aligned to a target image using
manually selected three landmarks (left ventricle apex, mid-ventricle, and mitral
valve). Similar to the approach in [1], a subset of atlases is selected by computing
normalized mutual information (NMI) over a region of interest defined by the
atlas labels and target image. The most similar L atlases are then selected and
spectral represented atlases (SA) are deformable registered to the target spectral
image (ST ) with B-spline FFD [14]. The following cost function is minimized:



5∑K
k=1 ‖SAk

(p + u) − STk
(p)‖2 + βR(u), where p, u and k denote position,

displacement and spectral coordinate dimension. The regularization R is defined
as bending energy and weighted by β ∈ R+. The algorithm estimates a single
common displacement field between volumetric spectral image pairs (in total
K) while minimizing the cost function. Lastly, the segmentation is decided by
majority voting of the propagated atlas labels.

Local phase images: The work in [20] on multi-atlas echocardiograhy segmen-
tation uses local phase images to register atlases to target images. To demon-
strate the contribution of the proposed spectral representation, local phase im-
ages are evaluated in the same segmentation framework. Images are first con-
verted to a band-pass signal with Laplacian of Poisson filter [19]: F{LOP}(w)
= −8π3|w|2 exp(−2π|w|ρ), where w ∈ R3 is the position vector in the frequency
domain and ρ controls the central frequency. In our experiments, this filter selec-
tion achieved better results compared to Gaussian derivative filter. Afterwards,
an analytic signal is obtained by filtering with an isotropic Riesz filter, and the
phase image is characterized by the angle between real and imaginary compo-
nents as explained in [20]. Additionally, local-phase based boundary images [13]
are evaluated in the same framework, which are computed in multi-scale (ρ ∈ R3)
using a monogenic signal. An example of the computed phase and boundary im-
ages is displayed in Fig. 3. In the registration step of multi-atlas segmentation,
the cost function is defined as C = ω1 .NMI(IA, IT ) + ω2 .NMI(φA, φT ), where
φ and I denote phase and intensity images. A similar formulation is used for
boundary images by replacing phase images in the cost function.

3 Implementation and Results

Validation dataset: The proposed segmentation framework is validated on
the dataset provided by the MICCAI 2014 CETUS challenge [4], consisting of a
set of 3D echo cardiac image sequences acquired from 30 subjects and separated
into training (15 subjects) and testing (15 subjects) datasets. As ground truth
segmentations for the testing set are not provided, the validation is performed
blindly using the evaluation system provided by the CETUS.

Fig. 3. Left to right: (1) input image, (2) phase-based boundary detection, (3) local
phase image, (4) proposed spectral representation (single component of embedding)
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Table 1. Multi-atlas segmentation results on training (cross-validation) and testing
datasets based on (A) Unprocessed images, (B) Speckle reduced images, (C) Local
phase-based boundary images [13], (D) Local phase images [20], and (E) Proposed
spectral representation. EF and SV values are reported based on the percentage error
measure. Surface distances are given in terms of mean and maximum values.

Mean (mm) Max (mm) Dice Score Ejection fraction Stroke volume

T
es

ti
n

g

(A) 3.85±2.06 12.24±5.12 0.80±0.11 0.62±0.21 0.72±0.22
(B) 2.84±1.07 10.00±3.04 0.85±0.06 0.81±0.14 0.77±0.16
(C) 2.98±1.20 8.99±3.05 0.84±0.07 0.85±0.11 0.76±0.15
(D) 2.67±0.92 8.69±2.78 0.85±0.05 0.85±0.10 0.78±0.13
(E) 2.32±0.78 7.41±1.84 0.87±0.04 0.93±0.05 0.87±0.09

T
ra

in
in

g

(A) 2.67±0.86 8.81±3.23 0.87±0.06 0.63±0.11 0.58±0.14
(B) 2.39±0.62 8.55±2.90 0.88±0.05 0.72±0.25 0.74±0.34
(C) 2.60±0.75 8.48±2.66 0.88±0.05 0.72±0.22 0.72±0.21
(D) 2.31±0.67 7.71±2.55 0.89±0.04 0.73±0.23 0.74±0.21
(E) 2.19±0.56 7.63±2.43 0.89±0.04 0.80±0.18 0.86±0.15

Implementation details: The patch and dictionary sizes selected for dictio-
nary learning are P = 7x7x7 and M = 850. The adjacency graph is constructed
by linking each dictionary atom to its 8 most similar neighbours in terms of
`2 norm distance. In total K = 4 spectral components are selected for spectral
representation. In locality constraint coding, parameters are set to λ = 0.3 and
σ = 0.2 for normalized images. The bandpass filter parameter for the compu-
tation of phase images is chosen to be ρ = 4.5 and ρ = [3.5, 5.0, 7.0] for the
boundary images. To conclude, the regularization weights in the registration
cost functions are defined as ω1 = ω2 = β = 1, and L = 5 atlases are selected
from the training dataset for label propagation.

Validation strategy and results: In the validation, LV segmentation is done
only for the end-diastolic and systolic frames. The accuracy of computed segmen-
tations and clinical indices are used as criteria to evaluate the proposed method
and compared against phase and intensity images. In that respect, multi-atlas
segmentation is performed on 5 different types of image surrogates, which are
provided in Table 1. The evaluation is performed separately for testing and train-
ing datasets (cross-validation). As shown, the best result for the testing dataset
is obtained using spectral representation based multi-atlas segmentation, which
achieves 2.32 mm mean error and 0.87 Dice score. In comparison to intensity
and phase images, an improvement of 1.53 and 0.35 mm is observed for the mean
surface distance and a similar figure of merit is seen for Dice score results. This
suggests that the proposed representations provide more useful information to
guide the registration algorithm. Moreover, the results for the cross-validation on
the training dataset also demonstrate that spectral representation outperforms
segmentation based on speckle reduced intensity images.
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Table 2. Comparison of the proposed multi-atlas approach (E) against the state-
of-the-art echocardiogaphy segmentation: active surfaces [2] and active shape model
[5]. Estimated ejection fraction (EF ) and end-diastolic volume (EDV ) are compared
against their reference values. The correlation accuracy is reported in terms of Pearson’s
coefficient (R) and Bland-Altman’s limit of agreement (BA).

Mean (mm) REF BAEF (µ± 2σ) REDV BAEDV # of Patients

(E) 2.32±0.78 0.923 -0.74±6.26 0.926 12.88±35.71 15
[2] - 0.907 -1.0±9.8 0.971 -1.4±23.2 24
[5] 1.84±1.86 - 0±19 - 3.06±46.86 10

To assess the clinical usefulness of the proposed framework, ejection fraction
(EFc) and stroke volume (SVc) are evaluated for each patient and compared
against their reference values (EFr). The comparison is done by the percentage
error measure CEF = 1−|EFc−EFr|/EFr, similarly for the stroke volume CSV .
The mean value of the percentage errors given in Table 1 demonstrate that the
values computed using the spectral representation show a closer agreement with
reference values compared to the other representations. Furthermore, a qualita-
tive comparison of the segmentations obtained with the spectral representation
and phase image is given in Fig. 4. Finally, the validation results are compared
against two state-of-the-art methods in echocardiography segmentation, shown
in Table 2. Although the given results are obtained for different datasets, the
comparison demonstrates that multi-atlas segmentation can be as successful as
the best-performing methods in estimation of important clinical parameter val-
ues.

It is observed that the use of a larger number of atlases does not increase the
accuracy significantly because the dataset is small and contains large variations,
so limiting the number of atlases to 5 in all experiments reduced computation
time. Experiments were carried out on a 3.00 GHz quad-core machine, and the
approximate computation time per image was 3 min for denoising, 2.5 min for
spectral representation, and 30 min for deformable registrations with 5 atlases.

Fig. 4. Left ventricle segmentation of two different subjects. Segmentation obtained
with the spectral representation (in blue) delineates the endocardium more accurately
than the local phased multi-atlas segmentation (in orange).
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4 Discussion and Conclusion

In this paper, we presented a new spectral representation for echocardiograhy
images based on sparse reconstruction of dictionary atom spectral embeddings.
The advantages of this representation are both quantitatively and qualitatively
demonstrated in a multi-atlas LV segmentation framework. The results show
that it outperforms the local phase and boundary representations in terms of
segmentation accuracy. This finding can be related to an improved noise robust-
ness and the explicit use of encoded contextual information, the lack of which in
intensity and phase images is an important limitation for guiding the deformable
registration in multi-atlas segmentation.

In addition, the proposed representation is computationally efficient and does
not require image feature design by hand-crafting as in phase images since dis-
tinctive spectral representation is learned from the data itself. Another interest-
ing realization is that spectral representation based multi-atlas segmentation can
achieve state-of-the-art results in echocardiography LV segmentation, without re-
quiring any shape prior models. Previous attempts on multi-atlas segmentation
required image compounding, and they were not as successful as the proposed
framework due to inaccuracies in registration algorithm.

The proposed image descriptors could alternatively be replaced by the sparse
coding coefficients without a need for spectral embedding, as proposed in [15]
for image segmentation and in [9] for image registration. One particular example
would be the use of histogram of sparse codes to represent the image patches.
However, the spectral embedding has two main advantages in comparison to
the coefficient based representation: Spectral coordinates obtained from differ-
ent image patches are comparable, and they allow the use of globally smooth
distance metrics which are necessary for the registration stage. On the other
hand, sparse codes in an overcomplete dictionary, unlike in an orthonormal ba-
sis, are non-unique and are therefore unsuitable for image patch comparison.
Locality constrained coding yields a locally smooth sparse selection of atoms,
meaning that a distance metric could potentially be defined locally at best, but
not globally. The other advantage of spectral embedding is the reduced computa-
tion time. The spectral coordinates provide a compact and rich representation of
patches with a few components, whereas histogram of coefficients would require
a large number of computations for comparison and a large vector to represent
an image patch.

In conclusion, sparse and parametrizable characteristics of echo images enable
us to develop a consistent spectral representation that contains rich structural
information. The proposed representation is generic, and can be applied to other
ultrasound image applications which require image registration.
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15. Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., Rueckert, D.: Segmentation of MR
images via discriminative dictionary learning and sparse coding: application to
hippocampus labeling. NeuroImage 76, 11–23 (2013)

16. Wachinger, C., Navab, N.: Entropy and Laplacian images: Structural representa-
tions for multi-modal registration. Medical Image Analysis 16(1), 1–17 (2012)

17. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR. pp. 3360–67. IEEE (2010)

18. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In:
NIPS. vol. 9, p. 1 (2009)

19. Zhang, L., Zhang, D., Guo, Z.: Monogenic-LBP: a new approach for rotation in-
variant texture classification. In: ICIP. pp. 2677–2680. IEEE (2010)

20. Zhuang, X., Yao, C., Ma, Y., Hawkes, D., Penney, G., Ourselin, S.: Registration-
based propagation for whole heart segmentation from compounded 3D echocardio-
graphy. In: ISBI. pp. 1093–1096. IEEE (2010)


	Lecture Notes in Computer Science
	Introduction
	Methodology
	Implementation and Results
	Discussion and Conclusion


