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Abstract. Motion, together with shape, reflect important aspects of
cardiac function. In this work, a new method is proposed for learning
of a cardiac motion descriptor from a data-driven perspective. The re-
sulting descriptor can characterise the global motion pattern of the left
ventricle with a much lower dimension than the original motion data.
It has demonstrated its predictive power on two exemplar classification
tasks on a large cohort of 1093 normal subjects.

1 Introduction

Motion, together with shape, reflect important aspects of cardiac function. De-
tecting abnormal motion of the cardiac ventricles is of clinical interest for both
diagnosis and prognosis [1]. To characterise the dynamics of cardiac motion,
many clinical features have been proposed, such as the ejection fraction, seg-
mental velocity, strain, strain-rate, time to peak velocity, time to peak strain,
wall motion score index etc [1–3]. Apart from these, some statistical features
have also been proposed, such as the cross correlation of intensity profiles across
time [4] or the distance of the intensity distribution across time [5]. These indices
are normally empirically defined and present an intuitive picture of the motion
profile.

Apart from the empirical features, an alternative way is to describe the mo-
tion from a purely data-driven perspective and to learn a descriptor of the motion
pattern from a large group of subjects. For example, in [6], a pixelwise Gaus-
sian distribution of the velocity is learnt from a normal population and used
for detection of motion abnormality. A challenge for cardiac motion analysis is
that its data is normally of high dimension. Therefore, dimensionality reduction
techniques are often used to discover the underlying structure of the data. For
example, in [7–9], principal component analysis (PCA) and independent compo-
nent analysis (ICA) have been proposed to learn the modes of myocardial shape
variation at end-systole (ES). Whereas PCA assumes a Gaussian distribution



and performs linear dimensionality reduction, manifold learning is a non-linear
technique which aims to preserve the local structure of the data. It has recently
gained a lot of attention in the medical imaging community [10,11].

In this work, we propose to learn a global descriptor of cardiac motion from
segmental motion trajectories using dimensionality reduction techniques. The
descriptor is not confined to a single voxel or a single segment, but instead
it characterises the global motion pattern of the whole left ventricle (LV). We
compare the performance of both PCA and Isomap manifold learning for dimen-
sionality reduction. To demonstrate the value of the motion descriptor, we use
it to predict the gender and age of a subject and evaluate the performance on a
large data set of 1093 normal subjects.

Fig. 1: The flowchart consists of motion tracking, spatial normalisation, descrip-
tor learning and classification.



2 Methods

Prior to the learning of a motion descriptor, we first estimate motion from cine
cardiac MR images. Since the heart of each subject lies at different locations and
with different orientations, we perform spatial normalisation by registering and
transporting all motion fields to a template space. The segmental motion trajec-
tories are extracted and concatenated to form a high-dimensional feature vector.
Dimensionality reduction is applied to the high-dimensional data leading to a
global motion descriptor. Finally, we use the motion descriptor in exemplar clas-
sification tasks for gender classification and age prediction. Figure 1 illustrates
the flowchart of the method and we will explain each step in the following.

2.1 Motion Tracking

In this work, we use cine MR for cardiac motion analysis. Other imaging modali-
ties such as tagged MR or ultrasound (US) can also be used to capture the motion
of the heart, which can provide different spatio-temporal resolution and image
quality. The proposed motion descriptor is not confined to a specific imaging
modality.

Motion tracking is performed for each subject using a 4D spatio-temporal B-
spline image registration method with a sparseness regularisation term (TSFFD)
[12]. The motion field estimate is represented by a displacement vector at each
voxel and at each time frame t, which measures the displacement from the 0-th
frame to the t-th frame. All the cine images in this work were acquired using the
same imaging protocol, consisting of 20 time frames across a cardiac cycle with
the 0-th frame representing the end-diastolic (ED) frame. Therefore, we do not
perform temporal normalisation for the motion field.

2.2 Template Image and Spatial Normalisation

A template image is built by registering all the subject images at the ED frame
and computing the average intensity image. In addition, the subject images are
all segmented using a multi-atlas segmentation method [13]. The segmentation of
the template image is then inferred by averaging all the subject segmentations.
A template surface mesh is reconstructed from its segmentation and manually
divided into 17 segments using the AHA model. The template and the segmental
surface mesh are displayed at the top-right corner of Figure 1.

The motion field estimate lies within the space of each subject. To enable
inter-subject comparison and analysis, all the subject images are aligned to the
template image by non-rigid B-spline image registration [14]. Using the transfor-
mation between the template space and subject space, we transport the motion
field of each subject to the template space. Let x′ = T (x) denote the trans-
formation from the template space to the subject space, where x and x′ are
respectively the coordinates in the template space and in the subject space. By
considering the spatial transformation as a change of coordinates, we have,

d(x, t) = JT−1(x′)d′(x′, t) (1)



where d′ denotes an infinitesimal displacement in the subject space, d denotes the
corresponding infinitesimal displacement in the template space and JT−1(x′) ≡
dx
dx′ denotes the Jacobian matrix of the inverse transformation.

2.3 Segmental Motion Trajectory

To characterise cardiac motion both spatially and temporally, we empirically
define a high-dimensional feature vector using the segmental motion trajectory.
S denotes the number of left ventricular segments. Since we use the AHA 17-
segment model, S = 17. T denotes the number of time frames, which is equal
to 20 for our data set. d denotes the dimension of the displacement vector and
d = 3, which consists of radial, longitudinal and circumferential components.
We compute the mean displacement for each segment at each time frame. The
displacements across time for all the segments are concatenated to form the
feature vector, which has the dimension of S × T × d and contains information
about the cardiac motion both spatially and temporally.

In principle, we can increase the spatial segments S so the feature vector
describes more detailed motion at a higher spatial resolution. For example, we
can compute the displacement for all the vertices of the myocardial mesh and
concatenate them. However, we have found that it becomes computationally pro-
hibitive to perform dimensionality reduction for vertex-wise motion data using
techniques such as PCA. Also, since the cardiac motion is estimated using B-
splines, displacements at neighbouring vertices are very similar and we may not
need all the vertices to represent the motion data. Therefore, we adopt segment-
wise motion data in this work.

2.4 Learning of a Motion Descriptor

Given the high-dimensional feature vector, we perform dimensionality reduction
in order to find a descriptor which can characterise the motion with a low di-
mension. We compare two techniques, PCA and Isomap manifold learning [15].
The resulting low-dimensional coordinates are used as a motion descriptor.

PCA looks for a low-dimensional embedding of the data points that best
preserves the variance. In the new coordinate system, the greatest variance of
the data lies on the first coordinate, the second variance of the data on the sec-
ond coordinate and so on. It is accomplished by eigen-decomposition of the data
covariance matrix. In contrast to this, Isomap looks for a low-dimensional em-
bedding that best preserves the geodesic distances between pairs of data points,
i.e. the local data structure. It analyses the data structure as a graph, where each
node denotes a data point and it is connected with K neighbours. The geodesic
distances in the neighbourhood are preserved in the new coordinate system.

2.5 Application to Classification Tasks

To demonstrate the abundant information contained in the motion descriptor,
we use the motion descriptor for two exemplar classification tasks, training SVM
classifiers namely for gender classification and age prediction.



(a) Subject 1 (b) Subject 2

Fig. 2: Two exemplar cardiac MR images. Three orthogonal views are shown for
each subject.

(a) (b)

(c) (d)

Fig. 3: Plot of the 1093 data points using the first two coordinates given by
PCA (top row) or Isomap (bottom row). The data points are colour-coded using
gender or age.



3 Experiments and Results

The data set used in this work consists of cardiac MR images of 1093 normal sub-
jects (493 males, 600 females; age range 19-75 yr, mean 40.1 yr), which forms
part of the UK 1000 Cardiac Phenomes project Cardiac MR was performed
on a 1.5T Philips Achieva system (Best, Netherlands). The maximum gradient
strength was 33 mT/m and the maximum slew rate 160 mT/m/ms. A 32 ele-
ment cardiac phased-array coil was used for signal reception. Scout images were
obtained and used to plan a single breath-hold 3D cine balanced steady-state
free precession (b-SSFP) images in the left ventricular short axis (LVSA) plane
from base to apex using the following parameters: repetition time msec/echo
time msec, 3.0/1.5; flip angle, 50◦; bandwidth, 1250 Hz/pixel; pixel size 2.0 ×
2.0 mm; section thickness 2 mm overlapping; reconstructed voxel size, 1.25 ×
1.25 × 2 mm; number of sections, 50 - 60; cardiac phases, 20; sensitivity en-
coding (SENSE) factor, 2.0 anterior-posterior and 2.0 right-left direction. Two
exemplar images are displayed at Figure 2.

We extracted motion descriptors using PCA or Isomap from this data set.
Figure 3 shows the first coordinates given by PCA and Isomap. The data points
are colour-coded using gender or age. Figure 3(a) shows that the male subjects
are more likely to be distributed at the bottom-right corner using the PCA
coordinates, whereas the female subjects are more likely to be at the top-left
corner. Figure 3(b) shows that the age of the subjects follows a right-to-left trend,
gradually changing from young to old. The Isomap coordinates in Figure 3(c)
and (d) reflect a similar trend as the PCA coordinates. This means that the
motion descriptor, though in a low dimension, contains abundant information
for motion data analysis.

SVM classifiers were trained using the segmental trajectories or the motion
descriptors as input. We used the radial basis function (RBF) as the kernel and
the default parameter settings in R. Ten-fold cross-validation was performed for
performance evaluation. The performance was evaluated using the percentage of
correct gender classification and the age prediction error. There is one parameter
for Isomap, which is the number of neighbours K. We tuned the parameter and
found that K = 20 achieved the best performance.

Table 1 lists the classification performance using the original segmental tra-
jectories and using the motion descriptors with different dimensions. The original
dimension of the feature is S × T × d = 1020. It shows that the best accuracy is
achieved using the original high-dimensional feature vector, which is over 89%
accuracy rate for gender classification and only -0.13 yr error for age prediction.
However, with a much lower dimension of only 100, PCA can also achieve very
high accuracy, with over 87% accuracy rate for gender classification and -0.36
yr error for age prediction. More dimensions in PCA do not necessarily improve
the performance, since the first few coordinates of PCA have already encoded
most of the data variance.

For Isomap manifold learning, it achieves worse gender accuracy rate of
80.15% and age prediction error of -0.47 yr, when the same dimension of 100 is
used. This may hint that the high-dimensional feature vectors are located in a



Table 1: Classification performance using the original segmental trajectories and
using the motion descriptors with different dimensions. Gender classification is
evaluated using the percentage of correct classification and age prediction is
evaluated using the prediction error.

Dim Gender Age (yr) Dim Gender Age (yr)

Original 1020 89.94% -0.13±7.09

PCA 10 76.21% -0.65±9.27 Isomap 10 76.30% -1.03±9.82

50 84.63% -0.50±8.12 50 80.60% -0.60±9.36

100 87.38% -0.36±7.77 100 80.15% -0.47±9.47

150 86.74% -0.30±8.03 150 78.78% -0.47±9.69

200 86.46% -0.16±8.42 200 77.68% -0.50±9.94

relatively flat manifold and therefore do not need non-linear techniques for di-
mensionality reduction. We have also tested two other manifold learning meth-
ods, namely locally linear embedding (LLE) and Laplacian eigenmaps. They
achieve similar or slightly worse performance than Isomap.

4 Discussion and Conclusions

In this work, we learn a motion descriptor completely from a data-driven per-
spective on a large population of subjects by looking for a low-dimensional em-
bedding which can explain either the data variance (PCA) or the local data
structure (Isomap). We have demonstrated the resulting motion descriptor can
be useful for both data visualisation and classification tasks.

There are mainly two reasons that motivate us to use the dimensionality
reduction techniques. First, it allows convenient visualisation of high-dimensional
data so that we can appreciate the data distribution in a better way. Second, it
avoids the curse of dimensionality that may occur during data analysis. However,
the SVM classifier seems to be well adapted to high-dimensional data. This
explains why classification using the original high-dimensional data also yields
a very good performance, as shown in Table 1.

In this work, segmental displacement trajectory is used as a representation
of cardiac motion. However, other representations such as velocity, strain and
diastolic filling rate can characterise motion in different ways. Our future work
includes estimation of myocardial strain and potentially segmental strain can
also be concatenated into the feature vector and used for learning a motion
descriptor.

Registration is a key step to normalise the motion field of each subject into
a template space. Two measures are taken to reduce the impact of potential
registration errors on subsequent motion analysis. First, six landmarks are used
to initialise the image registration so that severe registration error is less likely
to happen. Second, the mean motion trajectory is computed for each segment,
which is more robust than vertex-wise motion trajectory.



Although we only show exemplar applications for gender and age prediction
on a data set of normal subjects, potentially we can also apply the motion de-
scriptor to other tasks which require motion as input. In the future, we plan to
explore its application on cardiac patient classification, for example, to classify
between CRT respondents and non-respondents by combining the motion de-
scriptor with other information such as QRS duration, myocardial scar amount
etc, which may together reveal interesting findings about cardiac diseases.
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