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Abstract—Accurate localization of anatomical landmarks is an
important step in medical imaging, as it provides useful prior
information for subsequent image analysis and acquisition meth-
ods. It is particularly useful for initialization of automatic image
analysis tools (e.g. segmentation and registration) and detection
of scan planes for automated image acquisition. Landmark
localization has been commonly performed using learning based
approaches, such as classifier and/or regressor models. However,
trained models may not generalize well in heterogeneous datasets
when the images contain large differences due to size, pose
and shape variations of organs. To learn more data-adaptive
and patient specific models, we propose a novel stratification
based training model, and demonstrate its use in a decision
forest. The proposed approach does not require any additional
training information compared to the standard model training
procedure and can be easily integrated into any decision tree
framework. The proposed method is evaluated on 1080 3D high-
resolution and 90 multi-stack 2D cardiac cine MR images. The
experiments show that the proposed method achieves state-of-the-
art landmark localization accuracy and outperforms standard
regression and classification based approaches. Additionally, the
proposed method is used in a multi-atlas segmentation to create a
fully automatic segmentation pipeline, and the results show that
it achieves state-of-the-art segmentation accuracy.

Index Terms—Automatic landmark localization, stratified
forests, cardiac image analysis, multi-atlas image segmentation

I. INTRODUCTION

Accurate detection of anatomical landmarks is important
for clinical applications that require fully-automated image
segmentation and registration. In many cases, landmark lo-
calization is a prerequisite for the initialization of subsequent
image analysis steps, such as initialization of deformable
model and atlas based approaches [4] for cardiac modelling.
Similarly, detected landmarks can be used to facilitate fully
automatic planning of image acquisitions, such as cardiac
MRI examinations [28]. Additionally, landmark localization
in cardiac images, e.g. right ventricle (RV) insertion points,
can be used to analyse left ventricle function according to
AHA myocardial segmentation models [7]. However, variable
imaging quality and variations of the heart’s shape, size and
orientation across subjects and populations pose a great chal-
lenge to fully automatically detect landmarks from medical
images, particularly in cardiac MR images.

A common approach to locate landmarks of interest is based
on predictions of a trained classifier or regressor. This achieves

Fig. 1: A comparison between standard Hough and proposed
stratified decision forests for landmark localization in two
different short axis cardiac MR images. The first image
(top) has a significantly different heart orientation than the
population average shown by the red bar (right); similarly the
heart in the second image (bottom) is larger in terms of size
in comparison to the average heart size in the training images.
The proposed approach is able to cope with these variations
by learning adaptive and patient-specific regression models.

reliable and accurate results as long as both the learned model
and the training data are similar enough. However, existing
approaches mostly use averages or other simple statistics over
subsets of training examples which can yield large prediction
errors on test data. In this paper, we propose a generic learning
approach (stratification) that can be used in the context of
decision trees to learn more adaptive classifiers and regressors
without requiring additional training information. With the
proposed method, models are trained not only with local
information collected from image patches, but also with global
information such as shape, size, and pose differences of the
organs. Indeed, it is the main motivation for the use of the
term stratification for the proposed method. In this way, the
landmark detection accuracy can be improved as shown in
Figure 1: This example shows that the proposed method
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can localize the anatomical landmarks accurately although
the organ of interest (in this case the heart) exhibits large
variations in terms of pose, size and shape.

II. RELATED WORK

Landmark localization has been a particular research area in
both computer vision and medical image analysis over the last
decades. Landmark localization methods in both medical and
natural images can be mainly categorized into two subgroups,
namely image registration and model based approaches. The
approaches in the former category identify dense correspon-
dences between target and atlas images to localize anatomical
landmarks. Robust image alignment [2], [31], [38] and non-
rigid registration [8], [34] techniques can be used to relate
anatomical correspondences between images.

The approaches in the later category, on the other hand,
learn discriminative and generative models through training
datasets to associate anatomical landmark locations with prior
information, such as shape and appearance information of
tissues. These approaches can be further categorised into three
subgroups as classification, regression, and graphical models
[33]. In addition to these categories, there are several examples
such as Hough Forests [18] in which the regression and
classification approaches are combined in a hybrid manner. In
the first category, work based on the marginal space learning
(MSL) framework [42] proposed the use of cascaded boosting
tree detectors to identify pose and landmark locations in
medical images. The presented cascaded classifiers method
[28], [26] is applied on 2D cardiac MR images to detect
landmarks. In computer vision, Shotton et al. [36] used trained
classifier trees to identify body parts in depth images, which
is used as an intermediate step to locate joint positions in
human body. Similarly, Donner et al. [16] proposed a decision
forest based classifier to locate hand joint locations in X-ray
images. More recent work [41] proposed the use of separable
filters that are learned via multi-layer perceptrons, in boosting
tree classifiers. However, the main limitation of classifier
based approaches is caused by the limited number of positive
training samples. Moreover, classifier based approaches are
susceptible to imaging artefacts and low imaging quality in
image regions where the landmarks are located. In ultrasound
images, shadowing [29] can be another limitation for the
classifier based approaches, which is similar to occlusions in
natural images.

To avoid these problems, the regression based methods com-
bine the knowledge from different image regions that can be
near or distant from the target landmark locations. Aggregation
of predictions from several regions can yield more robust
localization and addresses the problems mentioned above.
Particularly, for the skeletal joint localization problem, recent
methods [20], [37] proposed regression based localization
approaches and showed an improved performance over the
classification methods. Similarly, in the context of medical
image analysis, Criminisi et al. [10] have used regression
trees to locate 3D bounding boxes corresponding to organs in
abdominal CT images. In a recent work [19], the regression
formulation is modified by changing the standard offset model

parameters with atlas scale and position regression parameters.
This was shown to achieve improved localization performance
in CT images as it makes use of global shape information of
organs.

Hybrid approaches, on the other hand, integrate regression
and classification models in a single detector framework.
These approaches benefit from richer annotations as the re-
gression models are conditioned on segmentation labels. In
[35], a joint model is proposed to locate vehicles in natural
images. Similarly, Hough forests [18] are used for pedestrian
and horse detection in natural images.

The common parametric model used in regression models
is based on multivariate normal distributions. For this reason,
the learned models may not be specific enough for all cases,
in particular where the sub-populations form multiple clus-
ters, e.g. different heart size and shape in medical images.
Similarly, in the context of facial image analysis, the pose
of the human head is an important latent variable that can
affect the model performance. For facial gesture recognition,
the methods presented in [13], [40] address this problem by
proposing conditional and hierarchical decision trees. How-
ever, the conditional trees require additional classifiers to
estimate the probability of this latent variable, and based on
its value the required decision trees are selected for inference.
Similarly, spectral forest methods [25] have been proposed to
allow population specific bagging to train specialized decision
trees, which showed an improved segmentation performance
compared to the standard bagging. However, the proposed tree
selection process in testing requires the computation of nearest
neighbours for each test image as a pre-processing step.

In this paper, we present a single unified decision tree
training approach that generalizes the previously presented
cascaded localization frameworks. Particularly, the latent vari-
able parameters are computed within the stratified trees in a
probabilistic way rather than using auto-context models as in
MSL. Additionally, the proposed approach does not require
any additional training information, specialized decision trees
[13], or externally applied dimensionality reduction methods
[25] for training and inference. Our method is along the same
line as the previously proposed neighbourhood approxima-
tion forests [23], where anatomically similar training images
are grouped together in the sub-tree architecture to obtain
population clusters. Differently, in the proposed method, we
show that this type of clustering with stratification nodes can
enhance the classification and regression performance without
adding significant computational costs. The proposed novelties
in this paper can be characterized as follows:
• A stratification training objective is presented to learn

more data adaptive decision tree models in an implicit
way. In this way, the learned model can be more rep-
resentative for datasets showing large variations such as
object shape and size.

• The proposed model does not require cascaded classifiers
[26] or specialized trees [13], [25] to learn the statistics
of latent variables, such as pose parameters. Therefore, it
can be considered as a generalization of cascaded models
and can be more easily adapted to other classification/re-
gression problems.
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TABLE I: A short summary of related work, decision forest
based classification and regression approaches in the literature

Related Method DescriptionWork

Criminisi et
al. [10]

A regression forest based landmark detection
method is applied to locate visceral organs in
full-body CT images.

Gall et al.
[18]

Hough forest method is presented for joint
training of classification and regression nodes.

Konukoglu
et al. [23]

Neighbourhood approximation forest (NAF) is
proposed to cluster brain MR images based on
subjects’ age and pathology group. In testing
time, the learned models are used to find most
similar subjects among the training images.

• The presented work shows the application of joint clas-
sification and regression based approach on anatomical
landmark localization in cardiac MR images.

Besides the proposed novelties, the method presented in this
paper is built on some existing classification and regression
techniques in the literature (see Table I). The improvements
upon these existing approaches can be described as follows:
• Criminisi et al. [10]: Regression splits are defined in a

similar way, but the leaf node prediction models are char-
acterised by the prior information which is the probability
of class labels and global shape characteristics.

• Gall et al. [18]: In addition to classification and regression
labels, global characteristics of organs (e.g. shape/size/-
pose) are incorporated in a tree model to learn more
representative regression models.

• Konukoglu et al. [23]: We show that clustering of training
samples based on their global characteristics, such as
size and shape, can actually improve classification and
regression accuracy. In contrast to this, [23] is used in
subject clustering and nearest-subject search problems.

The proposed method is validated on 1080 3D and 90 multi-
stack 2D short-axis cardiac MR images acquired with different
scanners. The results show that it achieves more accurate
localization results compared to Hough forests and MSL based
cascaded classifier localization methods. The experiments also
show that it provides better initialization for subsequent multi
atlas image segmentation [32].

III. THEORY

A decision tree is a tree-structured predictor consisting of
two types of nodes, split nodes ψ ∈ T and leaf nodes ` ∈
L. Split nodes route samples x ∈ X to leaf nodes to find
the best match for a given sample against a set of training
examples, whereas leaf nodes store the posterior distributions
p(y|x) for output variable y ∈ Y and make a prediction for
the sample x ∈ X . Split nodes are characterized by decision
stumps ψ(x) : X → {0, 1} which route samples to left and
right sub-decision trees. An ensemble of uncorrelated decision
tree classifiers is known as a decision forest [6].

In this paper, a new stratification training objective is pro-
posed to learn node split models that can group samples based

on their global characteristics such as organ shape, size, and
orientation. The presented training scheme includes structured
classification, regression, and stratification split nodes, which
will be explained in the following sections.

A. Input Space

The input space of the decision trees is characterized by
image channels I, and there are C channels for each training
sample Ii = (I1

i , I
2
i , . . . , I

C
i ). The channels are defined by

multi-resolution appearance, histograms of gradients (HoG)
[12], and gradient magnitude image patches of size (Ma)3.
The appearance channels are formed by constructing a two-
scale Gaussian image pyramid, where the original input is
downsampled by factor of 2 in the top layer. The smoothed
gradient magnitude and orientation are computed with oriented
Gaussian derivative kernels. Orientation histograms are com-
puted using soft-binning, where bin weights are determined
by the gradient magnitude (cf. [14]). The features for each
patch Pi centred at pc are extracted from each channel
α ∈ {1, 2, . . . , C} by performing comparisons of the average
intensity of boxes (R1, R2) within the patch boundaries in a
similar fashion to [11], [36].

qλ(pc) =
1

|R1|
∑
p∈R1

Iα(p) − 1

|R2|
∑
p∈R2

Iα(p) (1)

For a single dimensional decision stump, the split node pa-
rameters are defined by the parameter set λ = (R1, R2, α) and
threshold value γ. For pairwise channel comparisons, the box
regions Ri are chosen to be non-zero, and for single channel
comparisons R2 is chosen to be zero. Using the same notation,
the split function is defined as:

ψ(qλ(pc)) =

{
1, if qλ(.) ≥ γ
0, otherwise

(2)

B. Structured Classification

In the proposed method, the information stored in the leaf
nodes (output space Y) is characterized by class labels, re-
gression, and stratification model parameters. In other words, a
single decision tree model is learned to perform multiple tasks
simultaneously, such as organ surface delineation, landmark
location regression, and shape information regression. The
joint training of classification and regression nodes benefit
from each other to learn more representative and class spe-
cific models since more ground-truth information is provided
during training as suggested by Gall et al. [18].

For the organ surface delineation task, the class labels are
stored in the leaf nodes as label patches by applying the
structured learning methods proposed in [15], [22] which have
been shown to increase the segmentation accuracy over single
point estimates as they produce regularized and smoother class
labellings. Dollar et al. [15] proposed a method to enable
the split of training samples Pi = (Ii(p), yi(p)) with label
patches y ∈ Z(Me)3 of size (Me)

3. The label patches are
mapped into an intermediate space in which the Euclidean
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distances between the samples can be used to perform dimen-
sionality reduction. In this way, the label patches are mapped
into one dimensional space and the standard entropy based
training objective Hc can be used to split the training samples.

In a related work [30], this approach is applied on 3D
cardiac MR and ultrasound images to generate probabilistic
surface maps of the heart in medical images. Similarly, in this
work, the leaf nodes cast predictions to find the probabilistic
map of the object surface E(p) for the given input channels.

p(E(p) | I) =
1

|Ωp| ·Ntree

∑
i∈Ωp

∑
`∈Li

p( y(pi) = 1 | ` ) (3)

where Ωp is the set of input patches that are overlapping at the
location p. Ntree denotes the number of trees and p( y(pi) =
1 | ` ) is the probability of the event whether the binary edge
patch stored in the leaf node ` is positive at p or not. The
learned class posterior distributions in the leaf nodes are used
as weighting terms in the regression function. The regression
node training and inference information is provided in the next
section.

C. Regression of Landmark Locations

The structured forest model can be enhanced by adding re-
gression nodes in addition to the structured classification split
nodes. In this way, the trained classifier can cast regression
votes for anatomical landmark locations. More importantly,
this combination enables to train class specific regression
models. Each training sample {Pi = (Ii, yi,Di)} is now
characterized by a set of offset vectors to each landmark
point. The set of offsets Di = (d1

i ,d
2
i , . . . ,d

L
i ) contain

3D displacement vectors from the patch centre to the target
landmark location, where L is the number of landmarks.

The regression split nodes are trained by minimizing the
determinant of full covariance matrix [10] defined by the land-
mark offset vectors. In this way, the inter-dependency between
the landmark locations are partially taken into account, and it
allows the model to learn an implicit shape model of the organ.

In the leaf nodes `, the regression information from the
training samples is stored using a parametric model p(dn` ) =
N (dn;dn` ,Σ

n
` ): The mean dn` and covariance matrix Σn`

parameters are computed for the 3L dimensional multivariate
normal distribution. This regression model is preferred over the
non-parametric models, such as Parzen estimation or Mean-
shift mode seeking, due to its computational simplicity. Similar
to the work proposed in [35], offset vector models in the
leaf nodes are conditioned based on segmentation label of the
training samples. In other words, samples collected around
the target organ surface have a separate regression model
p(dn|y = k, `) than the background samples. As in [18], [35],
we assume that the background pixels are not as informative
as the organ surface voxels in detecting anatomical landmarks.
As the pose variations can be quite large, long range regression
votes are observed to be decreasing the landmark localization
accuracy and confidence. Therefore, the Hough vote maps

Fig. 2: An illustration of the stratified decision tree structure.
The standard Hough tree structure [18] is modified by adding
the proposed stratification node splits.

F (pn) are formulated as follows:

p(F (pn) | I ) =
∑

k={0,1}
p(F (pn), y(p) = k | I)

p(F (pn) | I ) ≈ p(F (pn) | I , y(p) = 1) p(y(p) = 1)
(4)

Here only the points along the organ surface (y(p) = 1) are
allowed to cast votes for the landmark locations. However,
landmarks can be positioned at any arbitrary location either
inside or along the organ surface. The probability of a voxel
classified as a point on the organ surface is obtained through
the use of classification node splits (Section III-B). In this way,
the landmark prediction function is constructed as:

p(F (pn) | I ) ≈ 1

Ntree ·N
· · ·

N∑
i=1

∑
`∈Li

wn` p(E(p | I)) K

pn −
(
p(i,c) + dn`

)
h

 (5)

where N is the number of image voxels, K is a Gaussian
kernel with bandwidth parameter h, wn` = 1

trace(Σn
l ) is the

confidence parameter for landmark n. The subscript (i, c)
denotes the centre voxel of input patch. After computing the
Hough vote map, the landmark location is determined by
choosing the voxel with highest probability value as proposed
in [10]:

p̂n = argmax
pn

p(F (pn) | I ) (6)

D. Stratification of Global Characteristics

Modelling the offset vectors to landmarks in leaf nodes as
Gaussian distribution biases the learning towards the average
landmark distribution observed in training data. In datasets
with smaller variations in terms of pose and object shape, this
is unlikely to introduce too much error. However, in cases such
as cardiac MR imaging, the orientation and size of the heart
can exhibit large degrees of variation. For these cases, it is
useful to have population groupings in sub-trees to increase
the localization accuracy.
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Fig. 3: Proximity plot (left) of the training images is shown,
where the color code displays the heart orientation (bottom)
and size (top) information of each image. The axes correspond
to the first 3 dimensions in the lower dimensional space. The
selected images are visualized on the right side to demonstrate
the size and pose variations.

Along the same line, neighbourhood approximation forests
[23] were proposed to cluster brain MR images of patients
from different population groups. Our method takes this ap-
proach one step further by making use of the implicit cluster-
ing in a decision tree composed of classification and regression
nodes. This clustering of the data can be viewed as a popula-
tion stratification and allows our method to achieve improved
landmark localization accuracy. The proposed method does not
require additional training data and information compared to
standard Hough forests.

To achieve this goal, the training images are annotated with
size and pose parameters. These parameters are computed
automatically using only the given input landmark point sets.
A reference point set Fr = {p1

r,p
2
r, . . . ,p

L
r }, obtained from

a selected reference MR cardiac image, is used to quantify in-
plane orientation θi and size βi of a given training image. To
obtain these parameters for each training image i, the ground-
truth landmark point set Fi is aligned to Fr by computing an
affine transformation T(i,r).

The meta informationMi = {θi, βi} is used in stratification
nodes ψs to cluster training samples with similar pose and size.
The impurity of training samples S = {Pi = (Ii, yi,Di,Mi)}
in terms of the size parameter is defined based on mean
squared differences Hβ(S) =

∑
i(βi − β̃)2. Similarly we

compute the impurity in terms of the orientation parameter
Hθ(.). The two impurity measures Hβ and Hθ may have
quite different ranges depending on the problem and its
dimensionality, and one of them could easily dominate the
other one during optimization. Hence, we combine the two in
a single stratification uncertainty term Hs(.) by normalizing

the two uncertainty terms similar to the joint training objective
proposed in [21]:

Hs(S) =
1

2

(
Hθ(S)

Hθ(S0)
+

Hβ(S)

Hβ(S0)

)
(7)

Here S0 denotes the training sample set reaching the root node,
and S represents the selected samples after the node split.
With this formulation, we assume that the random variables
corresponding to size and orientation are independent of each
other, i.e. the joint entropy can be expressed as p(θ, β|I) =
p(θ|I) · p(β|I). In the negative log domain, the joint entropy
is expressed as summation of the two terms, which leads to
the equation in (7).

As shown in Figure 2, the trees are trained in a joint manner
using the following split node types: structured classification
ψc, regression ψr, and stratification nodes ψs. As proposed
in [18], the training objective at each split node is selected
randomly among the listed three objectives. Based on our
initial experiments, the node selection probabilities are fixed
to p(c) = p(r) = 0.4, p(s) = 0.2.

The stratification splits can be trained with the box features
presented in Section III-A. However, global scale features
are found to be more expressive in separating images in
terms of shape and pose parameters as shown in the work
[40] of iterative facial landmark localization. For this reason,
we introduce global shape features to represent all samples
collected from the same image, and they are used only for
the stratification splits. These features are (i) inter-landmark
distances and distance ratios [40], which are calculated through
initial landmark location predictions, and (ii) histograms of
gradients (HoG) [12] computed using only the initial edge map
prediction of the target organ. Based on our experiments, these
features achieve better stratification and regression results;
however, their computation requires a two stage cascaded
model as the landmark distance features are computed based
on the initial estimates of the landmark locations. In other
words, the initial tree model in the cascaded approach is used
only to obtain a coarse representation of the organ surface
and landmark locations, which are later used to perform
stratification splits in training of subsequent decision trees.

E. Visualization of the Stratification Splits

To better understand the advantages of the proposed method,
a proximity analysis is performed on a trained stratified deci-
sion forest. In the training procedure, this analysis is normally
not required to be done; however, it is a useful technique to
understand the role of the stratification splits. In more detail,
we are able to visualize the mapping of the training images
from the root node to leaf nodes. The computed proximities
will demonstrate that images with similar organ size and pose
parameters are automatically mapped to closer leaf nodes in
the tree structure.

To perform this analysis, the trained forest is analysed by
computing the proximity matrix of the training samples, as
explained in [6], which is a MxM matrix and M is the total
number of training images. If the two images are mapped
into the same leaf node, then their proximity is increased by
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Fig. 4: From top left to bottom right: Input cardiac MR
image, probabilistic surface map of the heart, and Hough vote
maps for the location of six different anatomical landmarks.
The Hough vote maps, shown in jet color-map, are obtained
with the stratified forest, and they are overlaid on top of the
probabilistic surface maps. Voxels with high probability are
shown in red color.

one. Similarly, an adjacency matrix can be derived from these
proximities, and the connections between the images can be
visualized by applying a non-linear dimensionality reduction
technique. In our setting, the adjacency matrix is analysed
using the Laplacian Eigenmaps method [5], and the images
are mapped into a two dimensional manifold space as can be
seen in Figure 3.

In this figure, it can be seen that the cardiac short axis
images with similar in-plane orientation and heart size are
mapped into closer leaf nodes and share the same sub-trees.
In this way, regression and classification information stored in
leaf nodes are population specific, and it allows the nodes to
make more accurate landmark predictions.

IV. RESULTS

For the training and evaluation of the proposed method, we
used two separate and disjoint cardiac MR datasets, which are
referred to as Dataset1 and Dataset2. The first set contains
1080 cine short-axis MR images of resolution 1.50x1.50x2.00
mm from the UK Digital Heart Project [3]. Dataset1 is
randomly partitioned into three equal sized subsets for 3-
fold cross-validation, so in total 720 images are used to
train the models for all the methods. The second dataset
consists of 90 cine short-axis MR images with lower resolution
1.50x1.50x8.00 mm. This dataset is part of the Cardiac Atlas
Project (CAP) [17] and it is publicly available. The images
from both datasets were acquired in different clinical sites with
different MR scanners. As a preprocessing step, all images are

Fig. 5: Histogram of the landmark localization errors for
the Dataset1. The distribution of mean (top) and maximum
(bottom) localization errors are shown.

linearly up-sampled to the same resolution as the images in the
first dataset. Additionally, a data-augmentation strategy [24] is
utilized to increase the number of training samples, which is
performed by using label-preserving spatial transformations.

For evaluation of the proposed method, two different types
of experiments are performed using these datasets. The first
experiment demonstrates the accuracy of different landmark
localization methods. The proposed stratified forest is com-
pared against the standard Hough forest and image registration
based localization techniques in two separate sub-experiments.
For all the methods, we used the same training datasets
and data-augmentation strategy. In the first experiment, the
proposed method is compared to the baseline localization
results obtained from the standard Hough forest. In the second
experiment, image registration methods (block-matching [31]
and 3D-SIFT alignment [38]) are employed prior to Hough
forest to reduce the pose and size variations of the heart
observed in the training and testing images. The spatially
aligned images are later processed with Hough forest for
training and inference purposes.

The second evaluation focuses on the application of the
proposed method for image segmentation. A state-of-the-art
multi-atlas segmentation method [32] is augmented with the
proposed landmark localization method, and the obtained
results are compared against the current semi-automatic ap-
proach in which the landmarks are identified manually.

A. Anatomical Landmark Localization

The decision trees for Hough and stratified forests are
trained to locate |L| = 6 anatomical landmark locations.
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TABLE II: Landmark localization errors for the two datasets, namely Dataset1 (1.5x1.5x2.00 mm) and Dataset2 (1.5x1.5x8.0
mm). The landmark localization errors are reported in terms of mean and median Euclidean distances for all 6 landmark
locations. Additionally, the localization error for the centre point of all the landmarks is provided in the central column. The
last column shows the localization errors in each orthogonal direction in the image space. The proposed stratified forest (D)
is compared against the 3D-SIFT robust alignment [38] & Hough forest (A), standard Hough forest (B), and block matching
[31] & Hough forest (C) approaches. Please refer to Section IV for a detailed description of the approaches. The inter-observer
errors are reported in (E).

Individual Landmarks, |L| = 6 Centre Point of Landmarks Distribution of the Errors

Mean (mm) Med (mm) Mean (mm) Med (mm) X (mm) Y (mm) Z(mm)

D
a
ta
se
t1

(A) 14.51±10.74 12.236 6.92±5.33 5.187 6.53±6.83 6.47±6.62 7.70±7.64
(B) 10.74±6.32 9.224 6.05±4.12 5.572 5.36±4.38 5.47±4.45 5.86±4.89
(C) 10.44±8.24 8.399 5.33±4.30 4.283 4.21±4.92 4.46±5.14 5.22±6.41
(D) 8.03±5.11 7.067 4.10±2.81 3.422 3.37±3.78 3.31±3.73 3.65±4.13
(E) 6.67±4.17 6.293 2.90±3.42 2.842 2.44±3.61 2.40±3.94 2.99±5.50

D
a
ta
se
t2

(A) 16.36±10.35 14.798 8.48±6.82 6.928 7.72±8.09 6.83±7.09 8.07±6.65
(B) 12.42±6.12 11.245 7.36±3.61 6.314 5.75±4.23 5.62±4.23 7.65±5.64
(C) 12.54±10.25 10.587 7.10±6.36 5.385 5.86±8.04 5.19±5.20 6.20±6.99
(D) 9.12±4.64 8.412 4.62±2.63 4.312 3.65±3.31 3.51±2.13 5.43±5.71
(E) 6.82±3.95 6.197 2.96±2.04 2.719 2.54±2.74 2.57±3.42 3.03±3.16

TABLE III: Landmark localization errors for the two datasets, namely Dataset1 (1.5x1.5x2.00 mm) and Dataset2 (1.5x1.5x8.0
mm). The localization errors for each landmark point is provided in terms of mean Euclidean distance. The proposed stratified
forest (D) is compared against the 3D-SIFT robust alignment [38] & Hough forest (A), standard Hough forest (B), and block
matching [31] & Hough forest (C) approaches. Please refer to Section IV for a detailed description of the approaches. The
inter-observer errors are reported in (E).

LM1 (mm) LM2 (mm) LM3 (mm) LM4 (mm) LM5 (mm) LM6 (mm) P-val

D
a
ta
se
t1

(A) 11.14±7.62 21.90±13.84 13.00±9.71 13.64±7.68 16.49±11.76 10.94±7.88 -
(B) 9.71±5.65 17.03±8.88 10.65±5.20 10.18±5.77 8.62±4.55 8.27±4.51 -
(C) 8.80±6.73 18.00±16.73 9.51±6.75 10.62±8.26 7.99±5.71 7.70±5.25 -
(D) 7.02±4.93 12.23±6.94 7.92±5.52 7.36±4.22 6.74±4.12 6.32±3.95 -
(E) 5.88±4.65 10.60±8.09 5.60±5.79 6.67±5.30 5.97±3.28 5.30±2.98 -

(C-D) 1.78 5.77 1.59 3.26 1.25 1.38 �1e-3

D
a
ta
se
t2

(A) 13.28±8.60 21.96±9.70 12.95±7.11 15.92±8.75 19.06±8.53 15.02±13.47 -
(B) 12.12±6.87 19.03±12.31 10.41±6.64 12.31±5.94 11.31±4.21 9.13±4.53 -
(C) 11.78±11.04 18.76±19.76 10.16±6.83 13.14±12.18 12.27±6.30 9.15±5.47 -
(D) 8.42±4.42 10.12±5.02 8.04±4.08 11.32±4.16 10.41±4.15 7.21±3.38 -
(E) 6.99±4.40 8.34±4.52 6.78±4.37 6.66±3.91 6.23±2.89 5.96±3.61 -

(C-D) 3.36 8.64 2.12 1.82 1.86 1.93 �1e-3

These landmark locations correspond to LV lateral wall mid-
point, RV insert points (intersection between the RV outer
boundary and the LV epicardium), RV lateral wall turning
point (the point where the RV outer boundary changes di-
rections significantly within the image), apex, and center of
the mitral valve. The anatomical landmarks are shown in
Figure 4. In Table II, the detection results for these landmark
locations are shown, which are produced by averaging the
results obtained from the three folds of the cross-validation.
The localization errors are reported in terms of mean and
median of Euclidean distance between the detected landmark
position and the corresponding ground truth which is manually
annotated by two experts. Additionally, the location of the
center point of these landmarks p̂c = 1

L

∑L
n=1 p̂

n is also

computed as this point is less influenced by the inter-observer
variability in the manual annotations. The experimental results
show that the use of the proposed stratification split nodes
significantly increases the landmark localization accuracy as
it is better able to cope with variations of the size and pose of
the heart as observed in the cardiac MR images. Table II also
shows the distribution of the errors along each image axis. The
errors are mostly concentrated in the through plane direction
due to the lower resolution in that direction. In Table III, the
localization errors for each landmark point are shown.

The predictions for the second landmark (RV lateral) have a
higher error compared to the other landmarks. The significant
performance difference is due to lack of consistent definition
of RV lateral landmark, and the large shape variability of RV
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TABLE IV: Heart pose and size estimation accuracy results
for the Dataset1 (DS1) and Dataset2 (DS2). Distribution
of the ground-truth pose values are reported in terms of value
range and standard deviation. The rotation values are given in
radians and scale values are unitless.

Dataset and Ground-truth Standard Estimation
pose parameter value range deviation error (RMS)

DS1
Rot [-0.24 1.81] 0.501 0.11±0.08
Size [0.86 1.33] 0.097 0.05±0.03

DS2
Rot [-0.36 1.67] 0.447 0.12±0.11
Size [0.91 1.32] 0.083 0.05±0.04

wall. These factors also increase the variance in manual anno-
tations for this particular landmark. Compared to the Hough
forest based localization, the proposed approach improves the
detection accuracy significantly in both of the datasets. To
observe the number of failure cases, the distribution of the
errors is shown in the histogram in Figure 5. One can see
that there are only a few outliers in the histogram. Moreover,
the proposed method consistently performs better than the
Hough forest based method as it can be seen on the cumulative
distribution of the errors.

It is observed that a slight performance improvement in
mean accuracy can be achieved when the Hough forest is
preceded by a robust image alignment method. However, this
improvement comes at the cost of increased variance of errors
when the registration algorithm fails to align images. This
situation can be explained by two reasons: (i) Variation in the
training data is reduced due to spatial alignment of images to a
reference space. (ii) Image alignment results are susceptible to
large anatomical variations observed in organs other than heart,
which leads to incorrect alignment results as the heart label
information is not used. In particular, the poor registration
results obtained with 3D SIFT features are attributed to the
large slice thickness, which reduces the number of matched
features between the images.

In addition to the landmark localization results, the per-
formance of the pose and size estimations is measured. The
root mean square (RMS) is adopted to evaluate the pose
estimation results, and the ground truth information is obtained
by globally aligning the manually annotated landmark points
with an affine transformation. The pose estimation results for
both datasets are shown in Table IV. The results show that
the proposed stratified forest estimates the target pose and
size parameters very accurately, which results in improved
landmark localization performance.

B. Cardiac MR Image Segmentation

Landmark localization can be useful for subsequent image
analysis such as segmentation and registration. In our experi-
ments, a state-of-the-art multi-atlas patch based segmentation
technique [9] is selected for this task. In comparison to
classifier based methods, multi-atlas approaches have been
more successful in the semantic segmentation of cardiac MR
images as reported in the recent RV segmentation challenge

Fig. 6: Cardiac MR image multi-atlas segmentation results:
dice score and mean surface distances are obtained for four
different registration initialization techniques. Mean values are
shown with coloured square boxes.

[32]; however, they often require manual initializations. For
this reason, the proposed landmark localization is used in a
multi-atlas segmentation framework to create a fully-automatic
segmentation pipeline.

The localized landmarks are used to initialize the registra-
tion algorithm between the target and atlas images. A simi-
larity transformation with 9 degrees of freedom is computed
using the detected landmark point sets. The global alignment
is followed by a B-spline based free-form deformable image
registration [34]. The propagated labels are fused together us-
ing majority voting, and a graph-cut segmentation is applied as
a post-processing to fill the gaps and smooth the segmentation
labels.

In the experiments, four different segmentation frameworks
are tested. All the frameworks made use of the same multi-
atlas segmentation method, but the registration initializations
were done either with different landmark point sets or by
using an affine image registration. In that respect, we used
manual annotations (I), Hough forest based landmarks (II), the
proposed stratified decision forest based landmarks (III), and
a robust block matching method (IV) [31]. In this experiment,
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TABLE V: Stratification forest parameter specifications

Parameter value Description

(Ma)3 = (28)3 3D Input patch size

(Me)
3 = (12)3 3D Output PEM patch size

Ntree = 10 Number of decision trees

L = 6 Number of landmarks

Dmax = 36 Maximum allowed tree depth

α = 7
Number of feature channels
3 channels for stratification splits

Npos = 1.5 x 106 Number of positive training samples

Nneg = 1.5 x 106 Number of negative training samples

we investigate the influence of landmark localization accuracy
on segmentation results. Also, we compare the performance
difference between the landmark and affine registration based
initialization [43] on the segmentation method. Here, a sepa-
rate dataset of cardiac images is used, which is publicly avail-
able and part of the Cardiac Atlas Project [17]. The dataset was
used in the MICCAI’13 SATA challenge to benchmark differ-
ent cardiac segmentation methods. It consists of 50 manually
annotated image sequences acquired from healthy subjects,
patients with LV hypertrophy and wall abnormalities due to
prior myocardial infarction. Segmentations are performed only
on the end-diastolic frames extracted from the sequences, and
RV segmentation labels are collected by manually annotating
the images. The segmentation results, shown in Figure 6, are
achieved using 20 fixed atlases selected from the dataset.

Based on the results, we observe that the robust block
matching method (RBM), in some cases, completely fails to
find correspondences between the atlas and target images,
which causes the observed outliers and large variations in
the segmentation accuracy. It can be mainly explained with
orientation and shape differences between the target and atlas
images, and RBM is more sensitive to these conditions. On
the other hand, the results show that most of the landmark lo-
calization errors can be compensated during the segmentation
process. For this reason, the performance difference between
the two automatic localization methods is less prominent in the
segmentation results. However, we observe that in some cases
the Hough forest landmark predictions fail, and this results in
incorrect segmentations as can be seen in Figure 6 in form
of outliers. More importantly, it is observed that the proposed
landmark localization and segmentation initialization method
yields similar accuracy as the semi-automatic segmentation
method that is based on manual landmark identification. There-
fore, we conclude that the proposed method is accurate enough
in landmark localization to guide a multi-atlas segmentation
method.

In a different experimental setting, the stratified forest and
block matching methods were applied together sequentially
to initialize the multi-atlas segmentation. This approach did
not improve the segmentation accuracy significantly. However,

TABLE VI: Localization accuracy of RV insertion points on
2D short axis slices. The proposed stratified forest is compared
against the boosting tree classifier based landmark localization
method [27] in terms of computation time and localization
accuracy. The methods are benchmarked on the same dataset
(Dataset2) that was used in the STACOM’12 LV Landmark
Detection Challenge. The name of the datasets are abbreviated
as DS1 and DS2 in the table.

Evaluation Dataset Mean±Std Median Time
and Method (mm) (mm) (sec)

DS1 Stratified Forest 4.63±3.81 3.57 0.11

DS2
MSL PBT [27] 7.90±11.50 4.70 0.14
Stratified Forest 5.55±3.66 4.42 0.11

as the computational cost increase significantly with block
matching, in practice one can safely opt for a stratified forest
only based initialization.

V. IMPLEMENTATION DETAILS

In Table V, the parameter values used in the experiments
are specified. Better localization results could be obtained on
the same datasets by tuning the parameter values, which was
not performed in our experiments. As the leaf nodes store
structured patch label information, the number of required
randomized trees is not as large as the standard decision
forest approaches. Landmark localization and block matching
experiments were carried out on a Intel-i7 3.40 GHz quad-
core machine, and the approximate computation time to ini-
tialize each atlas was 12s for stratified forest and 2.1min for
block matching. The non-rigid registration experiments were
conducted on a machine with a graphical processing unit
(GPU), and the average computation time was 49.2s per atlas.
Therefore, with the proposed fully-automatic segmentation
pipeline each atlas can be accurately mapped into target image
space within a minute.

VI. DISCUSSION

The proposed stratified forest method is compared with
the MSL classifier based landmark localization approaches
[26], [42]. In [27], RV insert points localization results on
2D short axis images are reported, which were evaluated
on the same CAP testing dataset as the one used in our
experiments (Dataset2). The results presented in Section
IV-A are recomputed in 2D space by projecting the ground-
truth and detected landmark points to the corresponding short
axis plane. The corresponding landmark localization results
and computation time per 2D slice are shown in Table VI.

Similarly, the regression only forest is tested on the same
image datasets, and the localization results are observed to
be less accurate than the Hough forest based localization
results. The difference can be explained with the fact that in
Hough forest landmark votes are collected only from the heart
surface, and this produces more consistent landmark position
hypotheses. However, regression only approaches have been
used in medical image analysis, particularly in [10], [19] to
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detect bounding boxes around the abdominal organs in CT
images.

Other multi-atlas label fusion techniques [1], [39] could be
chosen to segment cardiac MR images. These methods showed
slight performance improvement over conventional majority
voting and patch based fusion techniques when they were used
to segment brain MR [1] and abdominal CT [39] images. In
particular, the key-point transfer segmentation method elimi-
nates the need for non-rigid image registration between target
and atlas images, which basically reduces the dependency of
segmentation algorithm on prior image alignment accuracy.

Moreover, in the experiments, a graph based regularization
is tested on Hough vote images (in total 6 channels) as a post-
processing step to constrain the landmark detections based
on a learned inter-landmark distance model. However, we
have not observed an improved performance by taking this
approach. This can be explained with the joint training of all
landmarks, where the regression training objective minimizes
the determinant of covariance matrix in a joint manner for all
the landmarks. Therefore, our approach does not require this
type of post-processing as in [16].

During the inference, the proposed stratified forest does not
predict a single deterministic orientation and scale value as in
the case of the cascaded pose estimation methods. Testing sam-
ples can be routed in leaf nodes with different pose parameter
models, which enables a probabilistic modelling of the latent
variable. This can be considered as another improvement over
the marginal space learning based approaches.

In the experiments, we performed additional tests by allow-
ing the background long-range pixels to cast Hough votes as
well. It is observed that due to pose and shape variations,
the background pixels introduce more dispersed landmark
prediction maps which reduces the algorithm accuracy. For
this reason, the predictions are only performed by the heart
surface voxels in the images. Additionally, one could learn
regression models conditioned on the label of different heart
tissues. However, this would require multi-class segmentation.

VII. CONCLUSION

In this paper, a novel learning objective is proposed to
learn more representative and patient specific decision forest
classifier and regressor models. This new feature increases the
landmark localization accuracy, as the models trained with
stratification splits are better able to cope with pose and size
variations of the organs observed in the images. Moreover, the
proposed method provides better guidance for the subsequent
image analysis techniques. As shown in the experiments, state-
of-the-art multi-atlas segmentation achieves better accuracy
and displays robust performance when the proposed method
is used an initialization technique. Moreover, the proposed
patient stratification approach is generic and modular; as such
it can be used in any decision tree structure to achieve better
classification and regression results. This includes applications
to different modalities and other target organs. In that regard,
the future work will investigate the use of stratified decision
forests on 3D ultrasound images to identify viewing planes
and organ locations.
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