Structured Decision Forests For Multi-modal Ultrasound Image Registration

Ozan Oktay¹, Andreas Schuh¹, Martin Rajchl¹, Kevin Keraudren¹, Alberto Gomez³, Mattias P. Heinrich², Graeme Penney³, Daniel Rueckert¹

¹ Department of Computing, Imperial College London, UK ² Institute of Medical Informatics, University of Lübeck, Germany ³ Division of Imaging Sciences and Biomedical Engineering, King's College London, UK

KING'S Imperial College

Image Guided Cardiac Interventions

Probabilistic Edge Maps (PEMs)

GM: Intensity Gradient Magnitude – SSC: Self-Similarity Context Descriptor

- 1. Heinrich et al.: "Towards real-time multimodal fusion for image guided interventions using self-similarities." MICCAI'13
- 2. Wein et al.: "Global registration of US to MRI using the LC2 metric for enabling neurosurgical guidance." MICCAI'13

Advantages of Probabilistic Edge Maps

- A. Modality independent (e.g. CT, MRI, US)
- A. Computationally efficient (20s per image)
- A. Target organ specific image registration
- B. Accurate and smooth anatomical representation
- A. Same training and testing configuration is applied to all three modalities.
- B. It does not require image segmentation.

Structured Decision Forest (SDF)

• All the votes are aggregated by averaging.

Output edge patch labels

- 3. Dollar et al.: "Structured forests for fast edge detection." ICCV 2013
- 4. Kontschieder et al.: "Structured class-labels in random forests for semantic image labeling." ICCV 2011

The Proposed Multi-Modal Registration Framework

Input cardiac images	PEM representation	Initial Alignment of the images	Global alignment with robust block matching [2]	B-spline FFD based non-rigid registration [1]
	PEM-CT			
	PEM-US			
Computation Time (Quad-core 3.0GHz)	~20s per image		~21s per image	~73s per image

- 5. Rueckert et al.: "Non-rigid registration using free-form deformations: Application to breast MR images." TMI'99
- 6. Ourselin et al.: "Reconstructing a 3D structure from serial histological sections." Image and Vision Computing '01

US/CT and US/MR Image Alignment Results

Structured Regression Forest (SRF)

- 7. Gall J., et al. "Class-Specific Hough Forests for Object Detection." CVPR 2009.
- 8. Criminisi A., et al. "Regression Forests for Efficient Anatomy Detection and Localization in CT Studies." MCV 2010.

9

Structured Decision Forests For Multi-modal Ultrasound Image Registration

Acknowledgements:

Source code will be available at http://www.doc.ic.ac.uk/~oo2113/