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Problem Definition and Literature Review

Problem:
Left ventricle (LV) endocardium segmentation in 3D Echo
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Motivation:
Estimation of clinical indices: (1) ejection fraction,

(2) stroke volume, and (3) cardiac motion

The existing work in the literature:
1. B-spline based active surfaces [Barbosa et al., 2013]
2. Statistical-shape models [Butakoff et al., 2011]

3. Edge based level-set segmentation [Rajpoot et al., 2011]
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Multi-Atlas Image Segmentation

= |t uses the manually labeled atlases to
segment the target organ.

= |t does not require any training or prior
estimation.

= Successfully applied in

i.  Brain MRI Segmentation
[Aljabar et al. 2009 Neurolmage]

ii. Cardiac MRl Segmentation
[Isgum et al. 2009 TMI]
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Proposed Segmentation Framework p

Atlas Speckle Structural
Image Reduction Representation

Image Reduction

Representation Registration Output

Target Speckle - Structural Image Segmentation
|
|
I




STMI’14 — September 2014

Patch Based Spectral Representation

_ _ Input image Patch matrix
Structural image representation

Unsupervised learning of shape
and contextual information.

Laplacian Eigenmaps.

Lower dimensional
embedding

Useful for echo images since
intensity data does not explicitly
reveal the structural
information.

Wachinger C. and Navab N.: “Entropy
and Laplacian images: Structural
representations for multi-modal
registration”

Medical Image Analysis 2012.
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Dictionary Based Spectral Representation

Computationally
prohibitive

“ > Spectral embedding
of image patches

Target image
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Dictionary Based Spectral Representation
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What is the main motivation for the sparsity and dictionary learning ?

= Computationally efficient due to elimination of redundancy

= Large number of images can be mapped to the same embedding
space
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Dictionary Based Spectral Representation
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Dictionary Based Spectral Representation
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Eigen decomposition
VAV

Laplacian Graph
L=D-W
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Sparse and Local Coding for Spectral
Representation

Input Image
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Locality constrained linear coding
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1. K. Yuetal. : “Nonlinear learning using local coordinate coding” NIPS 2009
2. :

J. Wang et al. : “Locality-constrained linear coding for image classification” CVPR 2010
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Dictionary Based Spectral Representation
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Registration Strategy

Atlas Image Target Image
K
T > 184,(T(P)) = St.(P)II° + BR(P)
k=1
Mode 1 Mode 1
peR’, T:R?— R’
/7,\;

= B-spline free-form deformations.

i /\ i [Rueckert et al. TMI 99]
= Sum of squared differences similarity

Mode K Mode K
SAK (STK) measure.

= Number of modes K = 4.

Single deformation field (7)
for all 3D-3D spectral image pairs
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The Proposed Segmentation Framework
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Validation Dataset

1. Training Dataset (Atlases) (15 Patients)

e 3D+T echo scans.

« Cross-validation is performed on the training dataset.
« Ground-truth segmentations are available for ED and ES frames.

2. Testing Dataset (15 Patients)

« 3D+T echo scans, obtained from different view angles.
* Only the ED and ES frames are segmented
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Other Image Representations

Intensity and phase features

« Encodes only the tissue
boundary information.

It is not sufficient for image
analysis applications

Spectral representation

 Encodes the contextual
information

1. Rajpoot, K. et al.: ISBI 2009

2. Zhuang, X. et al.: I1SBI 2010

Boundary Image [1] Spectral Representation




Mesh Surface Distance Errors (mm)

Surface to Surface Distance Errors
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Estimation of Clinical Indices
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Qualitative Results

Segmentation using the
proposed spectral representation

Segmentation using
local phase image

Testing Dataset

Training Dataset

Ground-truth
segmentation
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Conclusion & Acknowledgements p

= Conclusion

We propose a novel structural representation for
echocardiography

This representation enables accurate multi-atlas segmentation

= Future work

The linear approximation of non-linear manifold can be improved

Application of the proposed feature in echocardiography strain
imaging

Explore application to multi modal image registration (echo / CT)
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Comparison against the state-of-the-art
echocardiographic image segmentation methods

Table 1: Comparison of the proposed multi-atlas approach (A) against the
state-of-the-art echocardiogaphy segmentation: active surfaces [1] and active
shape model [2]. Estimated ejection fraction (E'F) and end-diastolic volume
(EDV) are compared against their reference values. The correlation accuracy
is reported in terms of Pearson’s coefficient (R) and Bland-Altman’s limit of
agreement (BA).

Mean (mm) REF BAEF (,LL:l:QO') REDV BAEDV (/J:l:20') # of Patients

(A)  2.324+0.78 0.923  -0.74+6.26 0.926 12.88+35.71 15
1] - 0.907 -2.4423 0.971 -24.60+21.80 24
2] 1.84+1.86 - 0419 - 3.06446.86 10

1. Barbosa, D., et al.: Fast and fully automatic 3-D echocardiographic segmentation using B-spline
explicit active surfaces. Ultrasound in medicine and biology (2013)

2. Butakoff, C., et al: Order statistic based cardiac boundary detection in 3D+T echocardiograms. FIMH.
Springer (2011)



Accuracy of the Derived Clinical Indices

Table 2: This table shows the accuracy of the derived clinical indices for the
training (Patient 1 to 15) and testing datasets (Patient 16 to 30). Pearson’s
correlation coefficient (PCC) and Bland-Altman’s limit of agreement (p+1.960)
values are given for the following indices: ejection fraction, stroke volume, end-
systolic volume, and end-diastolic volume.

Testing dataset PCC LOA (u+1.960)
ED volume (ml) 0.926 12.81£33.77
ES volume (ml) 0.936 ST.77T+£28.27
Ejection fraction (%)  0.923 0.74+7.58
Stroke volume (ml) 0.832 -5.054+12.49
Training dataset PCC LOA (p+1.960)
ED volume (ml) 0.983 0.80-£45.66
ES volume (ml) 0.961 11.21+£56.91
Ejection fraction (%)  0.787 -1.07418.52

Stroke volume (ml) 0.856 -1.38427.08




Method runtime @

= Results on 3 GHz machine

= Speckle reduction: 3 min

= Shape representation: 2.5 min

= Deformable registration (5 atlases): 30 min



