
Decidability of Context Logic

Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Department of Computing, Imperial College London, UK
{ccris,td202,pg}@doc.ic.ac.uk

Abstract. We consider the problem of decidability for Context Logic
for sequences, ranked trees and unranked trees. We show how to trans-
late quantifier-free formulae into finite automata that accept just the
sequences or trees which satisfy the formulae. Satisfiability is thereby
reduced to the language emptiness problem for finite automata, which
is simply a question of reachability. This reduction shows that Context
Logic formulae define languages that are regular; indeed, we show that
for sequences they are exactly the star-free regular languages. We also
show that satisfiability is still decidable when quantification over con-
text hole labels is added to the logic, by reducing the problem to the
quantifier-free case.

Keywords: Context Logic, decidability, trees, automata

1 Introduction

Context Logic (CL) [1] was introduced by Calcagno, Gardner and Zarfaty to
reason about structured data (e.g. trees), in contrast with O’Hearn and Pym’s
Bunched Logic (BL) [2] which reasons about unstructured resource (e.g. heaps).
Using CL, it is possible to provide local Hoare reasoning about tree update, such
as specifying and reasoning about the XML update library DOM [3]. This work
was inspired by O’Hearn, Reynolds and Yang’s previous work on local Hoare
reasoning about heap update [4–6], using Separation Logic (SL) based on BL
for heaps. This type of reasoning is not possible using Cardelli and Gordon’s
Ambient Logic (AL) [7], an earlier logic for reasoning about trees. It is made
possible by CL’s context composition connective [8], which describes a tree in
terms of an arbitrary subtree and its surrounding context. Composition has two
right adjoints, which describe a tree in terms of the result of inserting it into a
certain context and a context in terms of the result of inserting a tree into it.

We are interested in the decidability of model checking, satisfiability and
validity for Context Logic for sequences and trees. A model-checking procedure
verifies assertions about data: e.g., that an XML document satisfies a schema.
A satisfiability procedure checks if any data satisfy an assertion. A validity pro-
cedure checks that an assertion is satisfied by all data and can, for instance,
play an important part in automatically checking specifications for programs
that manipulate tree data. Validity may be expressed in terms of satisfiability:
a formula is valid exactly when its negation is unsatisfiable.

2 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

With others, Calcagno has already proved the decidability of model checking
and satisfiability for SL [9] and AL [10] without quantification (i.e. a constant-
only fragment), based on a size argument about heaps and trees. Such a size
argument does not work for CL, since context composition can be used to ex-
plore arbitrarily deeply within a data structure. Dal Zilio et al used an approach
based on a class of automata to show decidability for AL [11]. We also use au-
tomata for our results: we show how the connectives of CL — in particular,
context composition and its adjoints — can be implemented by automaton con-
structions. These constructed automata accept exactly the sequences or trees
which satisfy the corresponding formulae. Model checking a formula against a
tree can be decided by simply running the corresponding automaton on that
tree. Satisfiability can be decided by determining whether there is a path to an
accepting state in the automaton; such a path provides a witness to satisfiability.
We present our results for the multi-holed CL that we previously studied in [12];
this logic subsumes the original single-holed logic.

Our results also link the expressive power of CL with classes of regular lan-
guages. Regular languages are exactly those definable by finite automata and so
our results immediately imply that CL formulae define regular languages. We
demonstrate CL for sequences corresponds to the star-free regular languages, by
appealing to Schützenberger’s characterisation of the star-free regular languages
as the aperiodic languages [13]. McNaughton and Papert showed that these are
exactly the languages definable in First-order Logic (FOL) over words [14] (a
proof may also be found in [15]). CL for ranked trees (via an adjunct-elimination
result along the lines of [12]) corresponds to Heuter’s special star-free regular
languages, which are exactly the tree languages definable in FOL over ranked
trees [16]. The unranked tree case is less clear. Bojańczyk has shown that the
unranked tree languages definable in FOL correspond to a form of regular expres-
sions that are equivalent to single-holed CL without the structural adjoints [17].
Although we showed in [12] that the structural adjoints can be eliminated from
multi-holed CL, at present we can only conjecture that single- and multi-holed
CL are equally expressive without adjoints. This would imply that CL corre-
sponds to FOL in definability of unranked trees.

The final results of this paper show the decidability of CL with quantification
over the hole labels, which may only occur linearly; decidability does not hold
for quantification over arbitrary node labels, which do not have to be unique.
Our key observation is that existential quantification can be encoded using the
freshness quantification of Gabbay and Pitts. It is then possible to convert for-
mulae with freshness quantification into a prenex normal form, as in [18], for
which decidability reduces to the quantifier-free case.

2 Sequences

In this section, we consider decidability of multi-holed Context Logic for se-
quences, without quantification, abbreviated CLm

Seq . The sequence model for
Context Logic considers finite sequences of symbols from alphabet Σ, taken to

Decidability of Context Logic — October 9, 2008 3

be finite. In the framework of multi-holed Context Logic, we consider the alpha-
bet to be partitioned into two sets: Υ the set of labels, which is ranged over by
a, b, and Ω the set of hole labels, ranged over by x, y. The distinction between the
two is that, while labels may be repeated within a sequence, hole labels may oc-
cur at most once (linearly) and are treated as context holes into which another
sequence may be placed. We distinguish between the words over Σ, in which
each hole label may occur arbitrarily often, and sequences, in which the hole
labels occur linearly. We are primarily interested in sequences, but automata are
defined in terms of words.

Definition 1 (Words). The set of words over Σ = Υ !Ω, SΣ, ranged over by
w, is defined inductively as

w ::= ε
∣∣ a

∣∣ x
∣∣ w1 · w2 (a ∈ Υ, x ∈ Ω)

modulo structural equivalences given by the ‘·’ operator being associative with
identity ε (the empty word). In other words, SΣ is Σ∗, the free monoid over Σ.

Definition 2 (Multi-holed Sequence Contexts). A multi-holed sequence
context (or simply sequence) is a word from SΣ in which each x ∈ Ω occurs at
most once. The set of multi-holed sequence contexts over Υ and Ω is denoted by
SΥ,Ω, and s, s1, s2 denote elements of this set. The set of hole labels that occur
in s is denoted by fn(s).

Definition 3 (Context Composition). Context composition is a set of par-
tial functions indexed by hole labels, cpx : SΥ,Ω × SΥ,Ω ⇀ SΥ,Ω, defined by

cpx(s1, s2) =
{

s1[s2/x] if x ∈ fn(s1) and fn(s1) ∩ fn(s2) ⊆ {x}
undefined otherwise.

The notation s1 ©x s2 is used as an abbreviation of cpx(s1, s2).

We define quantifier-free CLm
Seq . The formulae of Context Logic make use of

variables which range over hole labels. The variable names are taken from an
infinite set of atoms, the set of hole variables Θ, ranged over by α, β.

Definition 4 (Formulae). The set of formulae of CLm
Seq , denoted FSeq and

ranged over by P, P1, P2, is defined by:

P ::= 0
∣∣ a

∣∣ P1 · P2 (a ∈ Υ) sequence formulae

α
∣∣ P1 ◦α P2

∣∣ P1 ◦−∃α P2

∣∣ P1 −◦∃α P2 (α ∈ Θ) structural formulae

False
∣∣ P1 ⇒ P2 Boolean formulae.

The satisfaction relation for CLm
Seq describes the satisfaction of a formula by

a sequence with respect to an environment that assigns hole labels to the hole
variables that occur in the formula.

Definition 5 (Environment). An environment is a finite partial function σ :
Θ ⇀fin Ω which assigns hole labels to hole variables.

4 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Definition 6 (Satisfaction Relation). The satisfaction relation for CLm
Seq is

defined inductively on the structure of the formulae as follows, where x = σ(α):

s, σ |= 0 ⇐⇒ s = ε

s, σ |= a ⇐⇒ s = a

s, σ |= P1 · P2 ⇐⇒ ∃s1, s2. s = s1 · s2 ∧ s1, σ |= P1 ∧ s2, σ |= P2

s, σ |= α ⇐⇒ s = x

s, σ |= P1 ◦α P2 ⇐⇒ ∃s1, s2. s = s1 ©x s2 ∧ s1, σ |= P1 ∧ s2, σ |= P2

s, σ |= P1 ◦−∃α P2 ⇐⇒ ∃s1, s2. s2 = s1 ©x s ∧ s1, σ |= P1 ∧ s2, σ |= P2

s, σ |= P1 −◦∃α P2 ⇐⇒ ∃s1, s2. s2 = s ©x s1 ∧ s1, σ |= P1 ∧ s2, σ |= P2

s, σ /|= False
s, σ |= P1 ⇒ P2 ⇐⇒ s, σ |= P1 =⇒ s, σ |= P2.

The standard Boolean connectives (∧,∨,¬,True) are all derivable from the
minimal set provided in our formulation. In other work, we have used the right
adjoints of ‘◦’, denoted ‘◦−’ and ‘−◦’, as the primitive connectives, and derived
the existential variants ‘◦−∃’ and ‘−◦∃’ in terms of these. Here, we take the oppo-
site approach, defining P1◦−αP2 ! ¬(P1◦−∃α¬P2) and P1−◦αP2 ! ¬(P1−◦∃αP2).
Our choice is motivated by the fact that existential quantification sits more
naturally in the framework of non-deterministic automata than universal quan-
tification. The same choice was made in [8] in order to give a normal modal
presentation of Context Logic.

2.1 Automata

Given formula P and environment σ, we are interested in the problems of model
checking and satisfiability. In terms of LP,σ = {s | s, σ |= P}, model checking
asks whether s ∈ LP,σ and satisfiability asks whether LP,σ .= ∅.

We shall show that each LP,σ is a regular language; that is, a set of words
that is recognised by a finite automaton. We show this by constructing automata
that correspond to CLm

Seq -formulae. That is, for a given P and σ, we define an
automaton AP,σ that accepts exactly the language LP,σ.

First, we define finite automata. We are mainly concerned with non-deter-
ministic finite automata with ε-transitions since their flexibility leads to a more
concise presentation of our constructions than other variations would allow. Al-
though our primary interest is in sequences, there is no natural, structural defi-
nition of automata for sequences, and so we deal with automata for words.

Definition 7 (ε-NFA). A non-deterministic finite automaton with ε-transi-
tions, abbreviated ε-NFA, is a tuple A = (Q, e, {f l}l∈Σ${ε}, A) where: Q is the
set of states, a finite set; e ∈ Q is the initial state; for every l ∈ Σ, f l ⊆ Q×Q
is the state transition relation for l; fε ⊆ Q × Q is the non-consuming state
transition relation; and A ⊆ Q is the set of accepting states.

For a given q ∈ Q, the notation f l(q) is used for the set {q′ | (q, q′) ∈ f l}.
An ε-NFA having fε = ∅ is a non-deterministic finite automaton, abbreviated

Decidability of Context Logic — October 9, 2008 5

NFA. An NFA for which f l is a partial function for all l ∈ Σ is a deterministic
finite automaton, abbreviated DFA. A pre-automaton is an automaton without
a set of accepting states, i.e. Â = (Q, e, {f l}l∈Σ${ε}).

To formally define the language recognised by an automaton, we make some
auxiliary definitions. The ε-closure of a state is the set of states reachable by
any number of ε-transitions. That is, ε-closure ⊆ Q×Q is the reflexive-transitive
closure of fε: ε-closure = (fε)∗. Each automaton A induces a function !−"A :
SΣ → P(Q) that maps each word to a set of states as follows:1

!ε"A = ε-closure(e)

!w · l"A = {q ∈ Q | ∃q′ ∈ !w"A. q ∈ (ε-closure ◦ f l)(q′)}.

A word w is said to be accepted by A if !w"A ∩A .= ∅. The language LA defined
by A is the set {w ∈ SΣ | !w"A ∩ A .= ∅}. An automaton A also induces a
function #−$A : SΣ → P(Q × Q) that maps each word to a state transition
relation as follows:

#ε$A = ε-closure

#w · l$A = ε-closure ◦ f l ◦ #w$A.

The relation #w$A captures the behaviour of the automaton A on reading the
word w from any state. This describes the way the automaton interprets the word
in any context, and so is useful for constructing automata for CLm

Seq -formulae.
With finite automata, language membership and emptiness are decidable.

For membership, it is sufficient to consider the runs of an automaton on a given
word. For emptiness, it is sufficient to determine whether an accepting state
is reachable from the initial state by any combination of transitions. This is
effectively an instance of the reachability problem for finite directed graphs.

The class of languages definable by automata is the class of regular languages.
A full exposition of regular languages and automata may be found in [19].2 For
our purposes, it is important that regular languages include the empty language,
all single-element languages and SΥ,Ω , and are closed under union, intersection,
complementation with respect to SΣ , and language concatenation.

We require automaton constructions to implement the structural connectives
‘◦’, ‘◦−∃’ and ‘−◦∃’. To this end, we generalise context composition to words with
non-linear holes. Two possible generalisations given by substituting each x by
either the same or different words from some language. The first is non-regular
and would lead to undecidability, while the second does not have two right
adjoints. Hence, we use non-deterministic linear substitution.

Definition 8 (Non-deterministic Linear Substitution). Given words w1,
w2 ∈ SΣ, define the non-deterministic linear substitution w1 %x w2 to be the set
of words obtained by replacing exactly one occurrence of x in w1 by the word
1 Here, ◦ is used to denote relational composition.
2 Note that in [19], λ is used where we have used ε.

6 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

w2. For languages L1, L2 ⊆ SΣ, non-deterministic linear substitution and the
existential variants of its two right adjoints are defined as follows:

L1 %x L2 =
⋃

w1∈L1,w2∈L2

w1 %x w2

L1 −%∃
x L2 = {w ∈ SΣ | ∃w′ ∈ L1. (w %x w′) ∩ L2 .= ∅}

L1 %−∃x L2 = {w ∈ SΣ | ∃w′ ∈ L1. (w′ %x w) ∩ L2 .= ∅}.

Automaton Constructions We now present automaton constructions for the
operation ‘%’, and the related operations ‘−%∃’ and ‘%−∃’.

Definition 9 (‘%’ Construction). Given x ∈ Ω and ε-NFA A1 = (Q1, e1,
{f l

1}, A1) and A2 = (Q2, e2, {f l
2}, A2) accepting languages L1 and L2 respec-

tively, define the ε-NFA A1 %x A2 = (Q, e, {f l}, A) by:
– Q = Q1 × (Q2 ! {0, 1});
– e = (e1, 0);
– for l ∈ Σ, f l is the smallest relation satisfying: (q′1, n) ∈ f l((q1, n)) whenever

q′1 ∈ f l
1(q1), and (q1, q′2) ∈ f l((q1, q2)) whenever q′2 ∈ f l

2(q2);
– fε is the smallest relation satisfying: (q′1, n) ∈ fε((q1, n)) whenever q′1 ∈

fε
1 (q1), (q1, q′2) ∈ fε((q1, q2)) whenever q′2 ∈ fε

2 (q2), (q1, e2) ∈ fε((q1, 0)),
and (q′1, 1) ∈ fε((q1, q2)) whenever q′1 ∈ fx

1 (q1) and q2 ∈ A2; and
– A = A1 × {1}.

Proposition 1. The automaton A = A1 %x A2 accepts the language L1 %x L2.

When this automaton is run on a word, it initially behaves like A1; the state has
the form (q1, 0). At some point in the run, the automaton may switch to behave
like A2 from its initial state by making a ε-transition and keeping a record of
the state of A1 it was previously in; the state then has the form (q1, q2). If
the automaton eventually reaches an accepting state of A2, the automaton may
switch back to behave like A1 as if it had just read x instead of the word from L2

it actually read; the state then has the form (q1, 1). Once the run is completed, if
the automaton is in an accepting state, it has read a word of the form w′

1 ·w2 ·w′′
1

where w′
1 · x · w′′

1 ∈ L1 and w2 ∈ L2.

Definition 10 (‘−%∃’ Construction). Given x ∈ Ω and ε-NFA A1 = (Q1, e1,
{f l

1}, A1) and A2 = (Q2, e2, {f l
2}, A2) accepting languages L1 and L2 respec-

tively, define the ε-NFA A1 −%∃
x A2 = (Q, e, {f l}, A) by:

– Q = Q2 × {0, 1};
– e = (e2, 0);
– {f l} is the set of the smallest relations satisfying: for l ∈ Σ ! {ε}, (q′2, n) ∈

f l((q2, n)) if and only if q′2 ∈ f l
2(q2), and (q′2, 1) ∈ fx((q2, 0)) if and only if,

for some w ∈ L1, q′2 ∈ #w1$A2(q2); and
– A = A2 × {1}.

Proposition 2. The automaton A = A1−%∃
xA2 accepts the language L1−%∃

xL2.

Decidability of Context Logic — October 9, 2008 7

When this automaton is run on a word, it starts in state (e2, 0) and proceeds
to read the word as A2 would. Eventually, it may be in state (q2, 0) having so
far read w′

2, say, and about to read the symbol x; we know that q2 ∈ !w′
2"A2 .

On reading the x, the automaton may transition to the state (q′2, 1) if there is
some w1 ∈ L1 with q′2 ∈ #w1$A2(q2). At this point, the automaton has consumed
w′

2 · x and is in state (q′2, 1) where q′2 ∈ !w′
2 · w1"A2 for some w1 ∈ L1. The

automaton then proceeds to read the remainder of the word, call it w′′
2 , as A2

would, eventually reaching a state (q′′2 , 1), say, where q′′2 ∈ !w′
2 · w1 · w′′

2 "A2 for
some w1 ∈ L1. If this is an accepting state, that signifies that the automaton
has read w′

2 · x · w′′
2 for some w′

2, w
′′
2 with w′

2 · w1 · w′′
2 ∈ L2 for some w1 ∈ L1.

In order for the construction of A1 −%∃
x A2 to be effective, we must be able

to determine if there is some w1 ∈ L1 with q′2 ∈ #w1$A2(q2) for any given
q2, q′2 ∈ Q2. This may be done by considering the product pre-automaton Â1 ×
Â2 = (Q1×Q2, (e1, e2), {f l

1× f l
2}). This pre-automaton behaves like A1 and A2

run in parallel, and so there is a path in Â1 × Â2 from state (e1, q2) to state
(q′1, q′2), for some accepting q′1 ∈ A1, if and only if there is some w1 ∈ L1 with
q′2 ∈ #w1$A2(q2).

Definition 11 (‘%−∃’ Construction). Given x ∈ Ω and ε-NFA A1 = (Q1, e1,
{f l

1}, A1) and A2 = (Q2, e2, {f l
2}, A2) accepting languages L1 and L2 respec-

tively, define the ε-NFA A1 %−∃x A2 = (Q, e, {f l}, A) by:
– Q = P(Q2 ×Q2);
– e = ε-closure2;
– for l ∈ Σ, f l(q) = {ε-closure2 ◦ f l

2 ◦ q};
– fε = ∅; and
– q ∈ A if and only if ∃w. !w"Â1×Âq

∩ (A1 ×Aq) .= ∅ where
• Aq = (Q2 × {0, 1}, (e2, 0), {f l

q}, Aq),
• for l .= x, f l

q = {((q2, n), (q′2, n)) | (q2, q′2) ∈ f l
2, n ∈ {0, 1}},

• fx
q = {((q2, n), (q′2, n)) | (q2, q′2) ∈ fx

2 , n ∈ {0, 1}} ∪ {((q2, 0), (q′2, 1)) |
(q2, q′2) ∈ q},

• Aq = A2 × {1}.

Proposition 3. The automaton A = A1%−∃xA2 accepts the language L1%−∃xL2.

The automaton A is deterministic, and the state on reading a word w is a
relation expressing the effect of reading w in A2 from any given state. That
is, !w"A = {#w$A2}. The automaton Aq where q = #w$A2 accepts a word w′

if and only if (w′ %x w) ∩ L2 .= ∅. This is since to reach a state of the form
(q2, 1), the automaton must at some point read x and make a transition in the
first component of the state equivalent to reading the word w. The condition
!w′"Â1×Âq

∩ (A1×Aq) .= ∅ is then equivalent to w′ ∈ L1 ∧ (w′ %x w)∩L2 .= ∅.

Decidability Given automata A∅, ASΥ,Ω and A{w} recognising the languages
∅, SΥ,Ω and {w} respectively, together with the operators for constructing au-
tomata corresponding to concatenation, union, complementation with respect

8 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

to SΣ , and those defined above, we can define an encoding of a formula P and
environment σ as an automaton AP,σ as follows, where x = σ(α):

AP1·P2,σ = (AP1,σ · AP2,σ) ∩ ASΥ,Ω A0,σ = A{ε}

AP1◦αP2,σ = (AP1,σ %x AP2,σ) ∩ ASΥ,Ω Aa,σ = A{a}

AP1◦−∃
αP2,σ = (AP1,σ %−∃x AP2,σ) ∩ ASΥ,Ω Aα,σ = A{x}

AP1−◦∃αP2,σ = (AP1,σ −%∃
x AP2,σ) ∩ ASΥ,Ω AFalse,σ = A∅

AP1⇒P2,σ = (AP1,σ ∩ ASΥ,Ω) ∪ AP2,σ.

Theorem 1. Given formula P ∈ FSeq , environment σ : Θ ⇀fin Ω, and se-
quence s ∈ SΥ,Ω, it is decidable whether s, σ |= P .

Theorem 2. Given formula P ∈ FSeq and environment σ : Θ ⇀fin Ω, it is
decidable whether there exists a sequence s ∈ SΥ,Ω such that s, σ |= P .

Since each formula mentions only a finite number of variables, it is only
necessary to consider a finite number of environments in order to determine
whether a sequence satisfies the formula in any possible environment.

Corollary 1. Given formula P ∈ FSeq , it is decidable whether there exist an
environment σ : Θ ⇀fin Ω and sequence s ∈ SΥ,Ω such that s, σ |= P .

2.2 Expressivity

By embedding CLm
Seq into regular languages, we can immediately infer that regu-

lar languages are at least as expressive as CLm
Seq . In fact, we can refine this result

somewhat to show that CLm
Seq -definable sequences are exactly the star-free reg-

ular languages: the smallest class of languages containing the empty language,
all single-element languages, and closed under Boolean operations and language
concatenation. As previously mentioned, the star-free regular languages are also
the aperiodic languages and the languages definable by formulae of First-order
Logic interpreted over words.

We observe that CLm
Seq , even without the connectives ‘◦’, ‘◦−∃’ and ‘−◦∃’,

is able to express the empty language, single-element languages, Boolean oper-
ations and language concatenation. Thus, CLm

Seq -formulae can express any star-
free regular language. (The only caveat is that linearity of elements of Ω must
be preserved, which may be assured by always choosing Ω so that it contains
no elements of Σ that occur non-linearly in the language under consideration
(which is over SΣ).) Conversely, it can be shown that, when L1 and L2 are star-
free regular languages and hence aperiodic, the languages L1 %x L2, L1 %−∃x L2

and L1 −%∃
x L2 are themselves aperiodic and hence star-free. This gives us the

following two results.

Theorem 3. The languages definable by formulae of CLm
Seq are exactly the star-

free regular languages.

Corollary 2. The connectives ‘◦’, ‘◦−∃’ and ‘−◦∃’ do not contribute to the ex-
pressivity of CLm

Seq .

Decidability of Context Logic — October 9, 2008 9

3 Trees

The decidability results for CLm
Seq also hold for Context Logic for ranked trees

(or terms), abbreviated CLm
Term . Again, the key step is constructing automata

corresponding to the connectives ‘◦’, ‘◦−∃’ and ‘−◦∃’; we do not give the con-
structions here. Automata for ranked trees are well known in the literature; for
a comprehensive treatment, see [20, 21].

For the remainder this section, we consider decidability of multi-holed Con-
text Logic for unranked trees (or forests), abbreviated CLm

Tree . The forest model
for Context Logic consists of forests with nodes labelled by a finite unranked
alphabet, Σ. A forest may have zero or more root nodes, and each node may
have zero or more children. As before, we consider the alphabet to be partitioned
into two sets: Υ the set of labels, which is ranged over by a, b, and Ω the set of
hole labels, ranged over by x, y. Only nodes without children may be labelled
from Ω.

Definition 12 (Unranked Trees). The set of unranked trees (or forests)
over Σ = Υ !Ω, TΣ, ranged over by t, t1, t2, is defined inductively as

t ::= ε
∣∣ a[t]

∣∣ x
∣∣ t1 | t2 (a ∈ Υ, x ∈ Ω)

modulo structural equivalences given by the ‘|’ operator being associative with
identity ε (the empty tree).

Definition 13 (Multi-holed Unranked Tree Contexts). A multi-holed un-
ranked tree context (or simply forest context) is a forest from TΣ in which each
x ∈ Ω occurs at most once. The set of forest contexts over Υ and Ω is denoted
by TΥ,Ω, and t, t1, t2 denote elements of this set.

Context composition is defined for forest contexts as it is for sequences. We
omit the definition here. We define quantifier-free CLm

Tree . As before, the names
of variables ranging over holes are taken from an infinite set of atoms, the set
of hole variables Θ, ranged over by α, β. The satisfaction relation for CLm

Tree

is defined with respect to an environment that assigns hole labels to the hole
variables that appear in the formula in question.

Definition 14 (Formulae). The set of formulae of CLm
Tree , denoted FTree and

ranged over by P, P1, P2, is defined by:

P ::= 0
∣∣ a[P]

∣∣ P1 | P2 (a ∈ Υ) tree formulae

α
∣∣ P1 ◦α P2

∣∣ P1 ◦−∃α P2

∣∣ P1 −◦∃α P2 (α ∈ Θ) structural formulae

False
∣∣ P1 ⇒ P2 Boolean formulae.

Definition 15 (Satisfaction Relation). The satisfaction relation for CLm
Tree

is defined inductively on the structure of the formulae. The definitions for the

10 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

structural and Boolean formulae are identical to the sequence case, and so we
only present the definitions for tree formulae.

t, σ |= 0 ⇐⇒ t = ε

t, σ |= a[P] ⇐⇒ ∃t′. t = a[t′] ∧ t′, σ |= P

t, σ |= P1 | P2 ⇐⇒ ∃t1, t2. t = t1 | t2 ∧ t1, σ |= P1 ∧ t2, σ |= P2.

3.1 Automata

We again consider automata in order to decide model checking and satisfiability.
Our definition of automata for unranked trees does not follow that of [21], but
can be seen to be equivalent by the first-child-next-sibling encoding of forests
into binary trees described ibidem. The definition here can be seen as a natural
extension of that for sequences by considering ‘|’ to be analogous to ‘·’; the
transition relation for each label considers not only the state after consuming
the tree to the left of the current node (as in sequences), but also the state given
by running the automaton on the subtree beneath the current node.

Definition 16 (ε-NFFA). A non-deterministic finite forest automaton with ε-
transitions, abbreviated ε-NFFA, is a tuple A = (Q, e, {fa}a∈Υ , {fx}x∈Ω , fε, A)
where: Q is the set of states, a finite set; e ∈ Q is the initial state; for every
a ∈ Υ , fa ⊆ Q × Q × Q is the state transition relation for a; for every x ∈ Ω,
fx ⊆ Q×Q is the state transition relation for x; fε ⊆ Q×Q is the non-consuming
state transition relation; and A ⊆ Q is the set of accepting states.

Given q1, q2 ∈ Q, the notation fa(q1, q2) is used for the set {q′ | (q1, q2, q′) ∈
fa}, and, given q ∈ Q, f l(q) is used for the set {q′ | (q, q′) ∈ f l} where l = ε or
l ∈ Ω.

As for sequences, the ε-closure of a state is defined to be the set of states
reachable by any number of ε-transitions: ε-closure is the reflexive-transitive
closure of fε. Each automaton A induces a function !−"A : TΣ → P(Q) that
maps each forest to a set of states according to the following definition:

!ε"A = ε-closure(e)
!t | x"A = {q ∈ Q | ∃q′ ∈ !t"A. q ∈ (ε-closure ◦ fx)(q′)}

!t1 | a[t2]"A =

{
q ∈ Q

∣∣∣∣∣
∃q1 ∈ !t1"A, q2 ∈ !t2"A.

q ∈ (ε-closure ◦ fa)(q1, q2)

}
.

A forest t is said to be accepted by A if !t"A ∩A .= ∅. The (forest) language LA
defined by A is the set {t ∈ TΣ | !t"A ∩ A .= ∅}. An automaton A also induces
a function #−$A : TΣ → P(Q × Q) that maps each forest to a state transition
relation as follows:

#ε$A = ε-closure

#t | x$A = ε-closure ◦ fx ◦ #t$A

#t1 | a[t2]$A =

{
(q, q′) ∈ Q×Q

∣∣∣∣∣
∃q1 ∈ #t1$A(q), q2 ∈ !t2"A.

q′ ∈ (ε-closure ◦ fa)(q1, q2)

}
.

Decidability of Context Logic — October 9, 2008 11

The language membership and emptiness problems for forest automata are
decidable in a similar fashion to the equivalent problems for automata on words.
The class of languages definable by forest automata is the class of regular forest
languages. This class includes the empty language, all single-element languages,
TΣ and TΥ,Ω , and is closed under union, intersection, complementation (with
respect to TΣ) and concatenation.

Automaton Constructions As in the case of words, we can define non-deter-
ministic linear substitution, ‘%’, and its related operations, ‘−%∃’ and ‘%−∃’, for
forests. We give automata constructions for each of these which are analogous
to those for words.

Definition 17 (‘%’ Construction). Given x ∈ Ω and ε-NFFA A1 = (Q1, e1,
{fa

1 }a∈Υ , {fx
1 }x∈Ω , fε

1 , A1) and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) accept-

ing languages L1 and L2 respectively, define the ε-NFFA A1 %x A2 = (Q, e,
{fa}a∈Υ , {fx}x∈Ω , fε, A) by:
– Q = (Q1 × (Q2 ! {0, 1})) !Q2 ! {e};
– e is fresh;
– for a ∈ Υ , fa is the smallest relation satisfying: (q′′1 , n′′) ∈ fa((q1, n), (q′1, n′))

whenever q′′1 ∈ fa
1 (q1, q′1) and n′′ = n + n′ with n, n′, n′′ ∈ {0, 1}, (q1, q′′2) ∈

fa((q1, q2), q′2) whenever q′′2 ∈ fa
2 (q2, q′2), and fa

2 ⊆ fa;
– for y ∈ Ω, fy is the smallest relation satisfying: (q′1, n) ∈ fy((q1, n)) when-

ever q′1 ∈ fy
1 (q1) and for n ∈ {0, 1}, (q1, q′2) ∈ fy((q1, q2)) whenever q′2 ∈

fy
2 (q2), and fy

2 ⊆ fy;
– fε is the smallest relation satisfying: (q′1, n) ∈ fε((q1, n)) whenever q′1 ∈

fε
1 (q1) and for n ∈ {0, 1}, (q1, q′2) ∈ fε((q1, q2)) whenever q′2 ∈ fε

2 (q2),
fε
2 ⊆ fε, (e1, 0), e2 ∈ fε(e), (q1, e2) ∈ fε((q1, 0)), and (q′1, 1) ∈ fε((q1, q2))

whenever q′1 ∈ fx
1 (q1) and q2 ∈ A2; and

– A = A1 × {1}.

Proposition 4. The automaton A = A1 %x A2 accepts the language L1 %x L2.

For a tree, t, the each state q ∈ !t"A is of one of five types. If q = e then t = ε.
If q ∈ Q2 then q ∈ !t"A2 . If q = (q1, 0) then q1 ∈ !t"A1 . If q = (q1, q2) then
t = t1 | t2 such that q1 ∈ !t1"A1 and q2 ∈ !t2"A2 . If q = (q1, 1) then t = t1 %x t2
such that q1 ∈ !t2"A1 and t2 ∈ L2. The set of states !t"A is the most general set
satisfying these requirements, so we can be sure that there is a q ∈ !t"A ∩ A if
and only if t ∈ L1 %x L2.

Definition 18 (‘−%∃’ Construction). Given x ∈ Ω and ε-NFFA A1 = (Q1,
e1, {fa

1 }a∈Υ , {fx
1 }x∈Ω , fε

1 , A1) and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) ac-

cepting languages L1 and L2 respectively, define the ε-NFFA A1−%∃
xA2 = (Q, e,

{fa}a∈Υ , {fx}x∈Ω , fε, A) by:
– Q = Q2 × {0, 1};
– e = (e2, 0);
– for a ∈ Υ , fa is the smallest relation such that for n, n′, n′′ ∈ {0, 1},

(q′′2 , n′′) ∈ fa((q2, n), (q′2, n′)) if and only if n′′ = n + n′ and q′′2 ∈ fa
2 (q2, q′2);

12 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

– for l ∈ Ω ! {ε}, f l is the smallest relation such that (q′2, n) ∈ f l((q2, n)) if
and only if q′2 ∈ f l

2(q2, q′2) and if l = x then (q′2, 1) ∈ f l((q2, 0)) if and only
if there is some t1 ∈ L1 such that q′2 ∈ #t1$A2(q2); and

– A = A2 × {1}.
Proposition 5. The automaton A = A1−%∃

xA2 accepts the language L1−%∃
xL2.

As in the sequence case, a state of the form (q2, 0) records that the consumed tree
has state q2 in the automaton A2, while a state of the form (q2, 1) records that
the consumed tree, after one instance of x is replaced by a particular tree from
L1, has state q2 in the automaton A2. In order for this construction to be effective
we must be able to determine if there is some t1 ∈ L1 with q′2 ∈ #t1$A2(q2). This
can be done in the same manner as in the sequence case.

Definition 19 (‘%−∃’ Construction). Given x ∈ Ω and ε-NFFA A1 = (Q1,
e1, {fa

1 }a∈Υ , {fx
1 }x∈Ω , fε

1 , A1) and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) ac-

cepting languages L1 and L2 respectively, define the ε-NFFA A1 %−∃xA2 = (Q, e,
{fa}a∈Υ , {fx}x∈Ω , fε, A) by:
– Q = P(Q2 ×Q2);
– e = ε-closure2;
– for a ∈ Υ , fa(q, q′) = {ε-closure2 ◦ {(q2, q′2) | ∃q′′2 ∈ q(q2), q′′′2 ∈ q′(e2). q′2 ∈

fa
2 (q′′2 , q′′′2)}};

– for y ∈ Ω, fy(q) = {ε-closure2 ◦ fy
2 ◦ q};

– fε = ∅; and
– q ∈ A if and only if ∃t. !t"Â1×Âq

∈ A1 ×Aq where
• Aq = (Q2 × {0, 1}, (e2, 0), {fa

q }a∈Υ , {fy
q }y∈Ω , fε

q , Aq),
• fa

q = {((q2, n), (q′2, n′), (q′′2 , n′′)) | (q2, q′2, q
′′
2) ∈ fa

2 , n + n′ = n′′},
• for y .= x, fy

q = {((q2, n), (q′2, n)) | (q2, q′2) ∈ fy
2 , n ∈ {0, 1}},

• fx
q = {((q2, n), (q′2, n)) | (q2, q′2) ∈ fx

2 , n ∈ {0, 1}} ∪ {((q2, 0), (q′2, 1)) |
(q2, q′2) ∈ q},

• fε
q = {((q2, n), (q′2, n)) | (q2, q′2) ∈ fε

2 , n ∈ {0, 1}}, and
• Aq = A2 × {1}.

Proposition 6. The automaton A = A1%−∃xA2 accepts the language L1%−∃xL2.

A state of A is a relation describing how the consumed tree would behave when
appended to any other tree in the automaton A2. The principle of this construc-
tion is the same as in the sequence case.

Decidability The automaton constructions we have described, together with
the standard closure properties of regular forest languages allow us to translate
all formulae of CLm

Tree into automata, as we did for CLm
Seq . Hence we get the

following decidability results.
Theorem 4. Given formula P ∈ FTree , environment σ : Θ ⇀fin Ω and forest
context t ∈ TΥ,Ω, it is decidable whether t, σ |= P .

Theorem 5. Given formula P ∈ FTree and environment σ : Θ ⇀fin Ω, it is
decidable whether there exists a forest context t ∈ TΥ,Ω such that t, σ |= P .

Corollary 3. Given formula P ∈ FTree , it is decidable whether there exist an
environment σ : Θ ⇀fin Ω and forest context t ∈ TΥ,Ω such that t, σ |= P .

Decidability of Context Logic — October 9, 2008 13

4 Decidability with Quantifiers

We extend our results to Context Logic with quantification over hole labels. In
this setting, we naturally assume the set of hole labels, Ω to be infinite — the
finite case is degenerate and may be solved by replacing quantified formulae by
disjunctions or conjunctions.3 For the most part, our results are also independent
of the model of Context Logic used. We take CΩ to be the set of contexts of an
arbitrary model, ranged over by c, c1, c2.

Definition 20 (Freshness). For hole label x and context c, if x /∈ fn(c) then
we write x * c. For hole label x and environment σ, if x /∈ range(σ) then we
write x *σ . We write x * c, σ to indicate that x *c and x *σ .

We extend the formulae of Context Logic with additional connectives to the
set F∃, N, as follows.

P ::= · · ·
∣∣ !P

∣∣ 2−&
∣∣ ∃α. P

∣∣ Nα. P

The satisfaction relation is extended correspondingly.

c, σ |= !P ⇐⇒ ∃x ∈ Ω, c1, c2 ∈ CΩ . c = c1 ©x c2 ∧ c2, σ |= P

c, σ |= 2−& ⇐⇒ ∃x ∈ Ω. c = x

c, σ |= ∃α. P ⇐⇒ ∃x ∈ Ω. c, σ[α 2→ x] |= P

c, σ |= Nα. P ⇐⇒ ∃x ∈ Ω. x * c, σ ∧ c, σ[α 2→ x] |= P

Our automata techniques can be extended to decide satisfiability for formulae
with containing ‘!’ and ‘2−&’. We show how to decide satisfiability for formulae
containing classical quantification (∃) and Gabbay-Pitts fresh quantification (N).

Two formulae, P1 and P2, are logically equivalent, denoted P1 ≡ P2, if they
are satisfied by exactly the same contexts and environments.

Lemma 1 (Encoding Existential with Freshness). For all P ,

∃α. P ≡ Nα. P ◦α



2−& ∧ ¬
∨

β∈fv(P)\{α}

β



 ∨ P ∨
∨

β∈fv(P)\{α}

P [β/α].

Consequently, every formula can be rewritten to an equivalent formula that con-
tains no existential quantifiers.

Lemma 2 (Prenex Normalisation). Every ∃-free formula is equivalent to a
formula in which all quantifiers appear at the head of the formula — the prenex
normal form.
3 Without quantification, extending our automata techniques to handle infinite alpha-

bets requires some technical manipulation which we do not describe here.

14 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Lemma 3 (Deciding Satisfiability). For all environments σ, formulae P ,
and hole variables α with α /∈ dom(σ),

∃c ∈ CΩ . c, σ |= Nα. P

⇐⇒ ∃y ∈ Ω. y * σ ∧ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α

⇐⇒ ∀y ∈ Ω. y * σ =⇒ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α.

By rewriting a formula with Lemmata 1 and 2 and applying Lemma 2, we
can reduce the problem of deciding an arbitrary formula of Context Logic to the
problem of deciding a quantifier-free formula, which we have already shown to
be decidable. We sum up these results in the following theorems.

Theorem 6. Given formula P ∈ F∃, N, environment σ : Θ ⇀fin Ω and context
c ∈ CΩ, it is decidable whether c, σ |= P .

Theorem 7. Given formula P ∈ F∃, Nand environment σ : Θ ⇀fin Ω, it is
decidable whether there exists a context c ∈ CΩ such that c, σ |= P .

Corollary 4. Given formula P ∈ F∃, N, it is decidable whether there exist an
environment σ : Θ ⇀fin Ω and unranked tree context c ∈ CΩ such that c, σ |= P .

5 Conclusions

We have shown how to decide model-checking and satisfiability for multi-holed
Context Logic for sequences and trees. We have shown how classical quantifi-
cation over the linear hole labels (∀,∃) can be re-expressed with Gabbay-Pitts
fresh quantification (N), which can be extruded so that decidability reduces to
the quantifier-free case. For this case, we have shown how to construct automata
corresponding to formulae, which may be used to decide model-checking and sat-
isfiability. These constructions embed Context Logic into the regular languages,
and we have shown how the logic relates to other known classes of languages —
in particular, the close correspondence with first-order definable languages.

Although our results settle the question of decidability for Context Logic,
they do leave open several avenues for further work. Firstly, our decision pro-
cedure gives a poor upper bound on the complexity of satisfiability and model-
checking. In particular, the construction for A1 %−∃x A2 has 2n2

states if A2 has
n states. Since this state space must be explored to determine satisfiability, this
gives a complexity upper bound that is NONELEMENTARY in the number of
connectives in a formula. Our experiments in implementing the procedures pre-
sented here have not so far achieved practically useful complexity for reasonable
examples.4 Hence, the questions of what the true complexity of decidability is
and whether good performance can be achieved in practise remain open.

Decision procedures based on automata can produce witnesses to satisfia-
bility — the path to an accepting state corresponds to a sequence that the
4 Our prototype Haskell implementation can be found at: http://www.doc.ic.ac.uk/

~td202/automaton3.hs

Decidability of Context Logic — October 9, 2008 15

automaton accepts. Validity of a formula, on the other hand, is essentially de-
cided by eliminating all counterexamples and so our procedure does not directly
produce a proof. The search for a practical proof procedure for Context Logic is
therefore another interesting avenue for further work.

References

1. Calcagno, C., Gardner, P., Zarfaty, U.: Context Logic and tree update. In: POPL
’05. (2005) 271–282

2. O’Hearn, P., Pym, D.: Logic of bunched implications. Bulletin of Symbolic Logic
5(2) (1999) 215–244

3. Gardner, P.A., Smith, G.D., Wheelhouse, M.J., Zarfaty, U.D.: Local hoare reason-
ing about dom. In: PODS ’08, New York, NY, USA, ACM (2008) 261–270

4. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL ’01. (2001)

5. Reynolds, J.C.: Separation Logic: A logic for shared mutable data structures. In:
LICS ’02. (2002) 55–74

6. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: ETAPS ’02
and FOSSACS ’02. (2002)

7. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: POPL ’00. (2000) 365–377

8. Calcagno, C., Gardner, P., Zarfaty, U.: Context Logic as modal logic: completeness
and parametric inexpressivity. In: POPL ’07. (2007) 123–134

9. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: FSTTCS ’01. (2001) 108–119

10. Calcagno, C., Cardelli, L., Gordon, A.D.: Deciding validity in a spatial logic for
trees. SIGPLAN Not. 38(3) (2003) 62–73

11. Dal Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In: POPL
’04. (2004) 135–146

12. Calcagno, C., Dinsdale-Young, T., Gardner, P.: Adjunct elimination in Context
Logic for trees. In: APLAS ’07. (2007)

13. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Informa-
tion and Control 8 (April 1965) 190–194

14. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. research mono-
graph no. 65). The MIT Press (1971)

15. Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages,
vol. 3: beyond words. Springer, New York (1997) 389–455

16. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity.
Informatique théorique et applications 25(2) (1991) 125–145

17. Bojańczyk, M.: Forest expressions. In: CSL ’07. (2007)
18. Conforti, G., Ghelli, G.: Decidability of freshness, undecidability of revelation. In:

FOSSACS ’04. (2004) 105–120
19. Yu, S.: Regular languages. In: Handbook of formal languages, vol. 1: word, lan-

guage, grammar. Springer, New York (1997) 41–110
20. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of formal languages, vol.

3: beyond words. Springer, New York (1997) 1–68
21. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007) release October, 12th 2007.

16 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

A Proofs

This appendix (not for publication) contains proof details not given in the body
of the paper, for the benefit of referees.

A.1 Sequence Constructions

Correctness of ‘%’ Construction Given ε-NFA A1 = (Q1, e1, {f l
1}l∈Σ∪{ε}, A1)

and A2 = (Q2, e2, {f l
2}l∈Σ∪{ε}, A2) accepting languages L1 and L2 respectively,

let A = A1 %x A2 = (Q, e, {f l}l∈Σ∪{ε}, A) as per Def. 9.

Lemma 4. For all w ∈ SΣ, q ∈ Q1,

(q1, 0) ∈ !w"A ⇐⇒ q1 ∈ !w"A1 .

Proof. Both directions: by induction on the structure of w.
⇒:

Base case: w = ε so (q1, 0) ∈ ε-closure((e1, 0)), and hence q1 ∈ ε-closure1(q1),
and q1 ∈ !ε"A1 .

Inductive case: w = w′ · l (for l ∈ Σ). In this case (q1, 0) ∈ (ε-closure ◦ f l)(q′)
for some q′ ∈ !w′"A. That is, (q1, 0) ∈ ((fε)n ◦ f l)(q′) for some n. This implies
that q′ = (q′1, 0) and that q1 ∈ ((fε

1)n ◦ f l
1)(q′1), and hence q1 ∈ !w"A1 .

⇐:
Base case: w = ε so q1 ∈ ε-closure1(e1), and hence (q1, 0) ∈ ε-closure(e).

Inductive case: w = w′ · l (for l ∈ Σ). In this case q1 ∈ (ε-closure1 ◦ f l
1)(q′1)

for some q′1 ∈ !w′"A1 . That is, q1 ∈ ((fε
1)n ◦ f l)(q′1) for some n. Since by the

inductive hypothesis (q′1, 0) ∈ !w′"A, this implies that (q1, 0) ∈ !w"A. 56

Lemma 5. For all w ∈ SΣ, q1 ∈ Q1, q2 ∈ Q2,

(q1, q2) ∈ !w"A ⇐⇒ ∃w1, w2. w = w1 · w2 ∧ q1 ∈ !w1"A1 ∧ q2 ∈ !w2"A2 .

Proof. Both directions: by induction on the structure of w.
⇒:

Base case: w = ε so (q1, q2) ∈ ε-closure((e1, 0)). Thus, by the definition of A, it
must be the case that:

– (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2), and q2 ∈ !ε"A2 ;
– (q1, e2) ∈ fε((q1, 0)); and
– (q1, 0) ∈ !ε"A and so q1 ∈ !ε"A1 (by Lem. 4).

Inductive case: w = w′ · l (for l ∈ Σ). In this case (q1, q2) ∈ (ε-closure◦f l)(q′).
Either q′ = (q1, q′2) or q′ = (q′1, 0).

In the former case, q2 ∈ (ε-closure2 ◦ f l
2)(q′2), by the definition of A. By the

inductive hypothesis, there are w1, w′
2 with w = w1 · w′

2 · l, q1 ∈ !w1"A1 and
q′2 ∈ !w′

2"A2 . Hence q2 ∈ !w′
2 · l"A2 , and so the choice of w1 and w2 = w′

2 · l fulfills
the requirements.

In the latter case, it must be that:

Decidability of Context Logic — October 9, 2008 17

– (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2), and q2 ∈ !ε"A2 ;
– (q1, e2) ∈ fε((q1, 0)); and
– (q1, 0) ∈ !w"A and so q1 ∈ !w"A1 (by Lem. 4).

Therefore, the choice of w1 = w and w2 = ε fulfills the requirements.
⇐:

Base case: w = ε. In this case, w1 = ε and w2 = ε. By Lem. 4, (q1, 0) ∈ !ε"A,
and so, since (q1, e2) ∈ fε((q1, 0)), (q1, e2) ∈ !ε"A. Now, it must be the case that
q2 ∈ ε-closure2(e2) and hence (q1, q2) ∈ !ε"A as required.

Inductive case: w = w′ · l. Here, either w2 = w′
2 · l, or w2 = ε and w1 = w =

w′ · l.
In the former case, q2 ∈ (ε-closure2 ◦ f l

2)(q′2) for some q′2 with q′2 ∈ !w′
2"A2 .

Hence, by the inductive hypothesis, (q1, q′2) ∈ !w1 ·w′
2"A. By the definition of A,

it follows that (q1, q2) ∈ !w1 · w2"A, as required.
In the latter case, q1 ∈ !w"A1 and so, by Lem. 4, (q1, 0) ∈ !w"A. It follows

then that (q1, e2) ∈ !w"A. Further, since q2 ∈ !ε"A2 = ε-closure2(e2), it follows
that (q1, q2) ∈ !w"A, as required. 56

Lemma 6. For all w ∈ SΣ, q1 ∈ Q1,

(q1, 1) ∈ !w"A ⇐⇒ ∃w1, w2. w ∈ w1 %x w2 ∧ q1 ∈ !w1"A1 ∧ w2 ∈ L2

Proof. Both directions: by induction on the structure of w.
⇒:

Base case: w = ε. It must be the case that there are some q′1, q
′′
1 , q2 with:

– (q′′1 , q2) ∈ !ε"A, and hence q′′1 ∈ !ε"A1 and q2 ∈ !ε"A2 ;
– (q′1, 1) ∈ fε((q′′1 , q2)), and hence q′1 ∈ fx

1 (q′′1) and q2 ∈ A2, so q′1 ∈ !x"A2 and
ε ∈ L2; and

– (q1, 1) ∈ ε-closure((q′1, 1)), and hence q1 ∈ ε-closure1(q′1), so q1 ∈ !x"A2 .

Thus, w1 = x and w2 = ε fit the requirements: ε ∈ x %x ε.
Inductive case: w = w′ · l for some w′ and some l ∈ Σ. There must be some

q′1 with either:

– (q1, 1) ∈ (ε-closure ◦ f l)((q′1, 1)) and (q′1, 1) ∈ !w′"A; or
– (q1, 1) ∈ ε-closure((q′1, 1)) and (q′1, 1) ∈ fε((q′′1 , q2)) for some q′′1 , q2 with

(q′′1 , q2) ∈ !w"A.

In the former case, by the inductive hypothesis, there are w′
1 and w2 with w′ ∈

w′
1 %x w2, q′1 ∈ !w′

1"A1 , and w′
2 ∈ L2. By the definition of A, q1 ∈ (ε-closure1 ◦

f l
1)(q1) and so q1 ∈ !w′

1 · l"A1 . Observing that (w′
1 %x w2) · {l} ⊆ (w′

1 · l) %x w2,
the sequences w1 = w′

1 · l and w2 fit the requirements.
In the latter case, by Lem. 5 there are w′

1, w2 with w = w′
1 ·w2, q′′1 ∈ !w′

1"A1

and q2 ∈ !w2"A2 . It follows, by the definition of fε, that q′1 ∈ !w′
1 · x"A1 and

q2 ∈ A2. Thus w1 = w′
1·x and w2 fit the requirements: w = w′

1·w2 ∈ (w′
1·x)%xw2,

q1 ∈ ε-closure1(q′1) ⊆ !w1"A1 and w2 ∈ L2.
⇐:

Base case: w = ε. In this case, w1 = x and w2 = ε. Since q1 ∈ !w1"A1 , it

18 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

follows that q1 ∈ (ε-closure1 ◦ fx
1)(q′1) for some q′1 ∈ !ε"A1 . Hence, by Lem. 5,

(q′1, q2) ∈ !ε"A. Thus, by the definition of fε, (q1, 1) ∈ ε-closure((q′1, q2)) and so
(q1, 1) ∈ !w"A as required.

Inductive case: w = w′ · l for some w′ and some l ∈ Σ. Either:

– w = w′′
1 · w2 and w1 = w′′

1 · x; or
– w′ ∈ w′

1 %x w2 and w1 = w′
1 · l.

In the former case, there is a q′′1 ∈ !w′′
1 "A1 such that q1 ∈ (ε-closure1◦fx

1)(q′′1),
and a q2 ∈ !w2"A2∩A2. By Lem. 5, (q′′1 , q2) ∈ !w′′

1 ·w2"A = !w"A. It follows, using
the definition of fε, that (q1, 1) ∈ ε-closure((q′′1 , q2)), and hence (q1, 1) ∈ !w"A,
as required.

In the latter case, there is a q′1 ∈ !w′
1"A1 such that q1 ∈ (ε-closure1 ◦ f l

1)(q′1).
By the inductive hypothesis, (q′1, 1) ∈ !w′"A. By the definition of A, (q1, 1) ∈
(ε-closure ◦ f l)((q′1, 1)), and hence (q1, 1) ∈ !w"A as required. 56

Proposition 1. The automaton defined in Def. 9 accepts the language L1%xL2.

Proof.

w ∈ L1 %x L2

⇐⇒ ∃w1, w2. w ∈ w1 %x w2 ∧ w1 ∈ L1 ∧ w2 ∈ L2

⇐⇒ ∃q1 ∈ A1. (q1, 1) ∈ !w"A (by Lem. 6)
⇐⇒ A ∩ !w"A .= ∅.

56

Correctness of the ‘−%∃’ construction Given ε-NFA A1 = (Q1, e1, {f l
1}l∈Σ∪{ε}, A1)

and A2 = (Q2, e2, {f l
2}l∈Σ∪{ε}, A2) accepting languages L1 and L2 respectively,

let A = A1 −%∃
x A2 = (Q, e, {f l}l∈Σ∪{ε}, A) as per Def. 10.

Lemma 7. For all words, w, and all q2 ∈ Q2

(q2, 1) ∈ !w"A ⇐⇒ ∃w1, w2. w1 ∈ L1 ∧ q2 ∈ !w2"A2 ∧ w2 ∈ w %x w1.

Proof. ⇒:
Supposing that (q2, 1) ∈ !w"A, it must be the case that there exist q′2, q

′′
2 and

w′, w′′ such that

w = w′′ · x · w′

(q2, 1) ∈ #w′$A((q′2, 1))
(q′2, 1) ∈ fx((q′′2 , 0))

(q′′2 , 0) ∈ !w′′"A.

Decidability of Context Logic — October 9, 2008 19

By the definition of A, we see that q′′2 ∈ !w′′"A2 . Similarly, there exists some w1 ∈
L1 such that q′2 ∈ #w1$A2 , and hence q′1 ∈ !w′′ · w1"A2 . Further, q2 ∈ #w′$A2(q′2)
and so q2 ∈ !w′′ · w1 · w′"A2 . If we let w2 = w′′ · w1 · w′, clearly w2 ∈ w %x w1.
Thus, w1 and w2 fit the requirements.

⇐:
Supposing that there are w1 and w2 with w1 ∈ L1, q2 ∈ !w2"A2 and w2 ∈ w%xw1,
it must be the case that there exist q′2, q

′′
2 and w′, w′′ such that

w = w′′ · x · w′

w2 = w′′ · w1 · w′

q2 ∈ #w′$A2(q
′
2)

q′2 ∈ #w1$A2(q
′′
2)

q′′2 ∈ !w′′"A2 .

It follows from the definition of A that (q′′2 , 0) ∈ !w′′"A. Similarly, since w1 ∈ L1,
(q′2, 1) ∈ fx((q′′2 , 0)) and so (q′2, 1) ∈ !w′′ · x"A. Further, (q2, 1) ∈ !w′′ · x ·w′"A =
!w"A as required. 56

Proposition 2. The automaton defined in Def. 10 accepts the language L1−%∃
x

L2.

Proof.

w ∈ L1 −%∃
x L2

⇐⇒ ∃w1, w2. w1 ∈ L1 ∧ w2 ∈ L2 ∧ w2 ∈ w %x w1

⇐⇒ ∃q2 ∈ A2.∃w1, w2. w1 ∈ L1 ∧ q2 ∈ !w2"A2 ∧ w2 ∈ w %x w1

⇐⇒ ∃q2 ∈ A2. (q2, 1) ∈ !w"A
⇐⇒ !w"A ∩A .= ∅.

56

Correctness of the ‘%−∃’ construction Given ε-NFA A1 = (Q1, e1, {f l
1}l∈Σ∪{ε}, A1)

and A2 = (Q2, e2, {f l
2}l∈Σ∪{ε}, A2) accepting languages L1 and L2 respectively,

let A = A1 %−∃x A2 = (Q, e, {f l}l∈Σ∪{ε}, A) as per Def. 11.

Lemma 8. For all w ∈ SΣ,

!w"A = {#w$A2}.

Proof. By induction on the structure of w. Note that, since fε = ∅, ε-closure is
the identity relation.

20 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Base case: w = ε.

!ε"A = ε-closure(e)
= ε-closure(ε-closure2)
= {ε-closure2}
= {#ε$A2}.

Inductive case: w = w′ · l for some w′ ∈ SΣ , l ∈ Σ.

!w′ · l"A = {q | q′ ∈ !w′"A, q ∈ (ε-closure ◦ f l)(q′)}
(by IH) = {q | q ∈ (ε-closure ◦ f l)(#w′$A2)}

= f l(#w′$A2)

= {ε-closure2 ◦ f l
2 ◦ #w′$A2}

= {#w′ · l$A2}.

56

For r ∈ Q, let Ar be as given in Def. 11.

Lemma 9. Suppose that r = #w$A2 for some w ∈ SΣ. Then for w1 ∈ SΣ, for
all q2 ∈ Q2,

(q2, 1) ∈ !w1"Ar ⇐⇒ ∃w2 ∈ SΣ . q2 ∈ !w2"A2 ∧ w2 ∈ w1 %x w.

Proof. ⇒:
Supposing (q2, 1) ∈ !w1"Ar , it must be the case that there exist q′2, q

′′
2 ∈ Q2 and

w′
1, w

′′
1 ∈ SΣ such that

w1 = w′′
1 · x · w′

1

(q2, 1) ∈ #w′
1$Ar ((q

′
2, 1))

(q′2, 1) ∈ fx
r ((q′′2 , 0))

(q′′2 , 0) ∈ !w′′
1 "Ar .

By the definition of Ar, we see that q′′2 ∈ !w′′
1 "A2 . Similarly, q′2 ∈ r(q′′2) =

#w$A2(q′′2) and so q′2 ∈ !w′′
1 · w"A2 . Futhermore, q2 ∈ #w′

1$A2(q′1) and so q2 ∈
!w′′

1 ·w ·w′
1"A2 . Taking w2 = w′′

1 ·w ·w′
1, we have q1 ∈ !w2"A2 and w2 ∈ w1 %x w,

as required.
⇐:

Supposing that w2 ∈ SΣ is some word such that q2 ∈ !w2"A2 and w2 ∈ w1 %x w,
it must be the case that there exist q′2, q

′′
2 ∈ Q2 and w′

1, w
′′
1 ∈ SΣ such that

w1 = w′′
1 · x · w′

1

w2 = w′′
1 · w · w′

1

q2 ∈ #w′
1$A2(q

′
2)

q′2 ∈ #w$A2(q
′′
2)

q′′2 ∈ !w′′
1 "A2 .

Decidability of Context Logic — October 9, 2008 21

It follows from the definition of Ar that (q′′2 , 0) ∈ !w′′
1 "Ar . Similarly, (q′2, 1) ∈ fx

r

and so (q′2, 1) ∈ !w′′
1 · x"Ar . Furthermore, (q2, 1) ∈ #w′

1$Ar (q′2) and so (q2, 1)!w′′
1 ·

x · w′
1"Ar = !w1"Ar , as required. 56

Proposition 3. The automaton defined in Def. 11 accepts the language L1 %−∃x
L2.

Proof.

w ∈ L1 %−∃x L2

⇐⇒ ∃w1, w2. w1 ∈ L1 ∧ w2 ∈ L2 ∧ w2 ∈ w1 %x w

⇐⇒ ∃w1, w2.∃q2. w1 ∈ L1 ∧ q2 ∈ !w2"A2 ∧ q2 ∈ A2 ∧ w2 ∈ w1 %x w

⇐⇒ ∃r. r = #w$A2 ∧ ∃w1, w2.∃q2. w1 ∈ L1 ∧ q2 ∈ !w2"A2 ∧ q2 ∈ A2 ∧ w2 ∈ w1 %x w

⇐⇒ ∃r. r = #w$A2 ∧ ∃w1.∃q2. w1 ∈ L1 ∧ (q2, 1) ∈ !w1"Ar ∧ (q2, 1) ∈ Ar

⇐⇒ ∃r. r = #w$A2 ∧ ∃w1. !w1"A1 ∩A1 .= ∅ ∧ !w1"Ar ∩Ar .= ∅
⇐⇒ ∃r. r = #w$A2 ∧ r ∈ A

⇐⇒ ∃r. r = !w"A ∧ r ∈ A

⇐⇒ !w"A ∩A .= ∅.

56

A.2 Sequence Expressivity

Lemma 10. The aperiodicity number of SΥ,Ω is 2.

Proof. For w1, w2, w3 with w1 · w2
2 · w3 ∈ SΥ,Ω , it must be the case that no

x ∈ Ω occurs in w2 and may only occur linearly in one of w1 or w3, and hence
w1 ·w3

2 ·w3 ∈ SΥ,Ω . Likewise, for w1, w2, w3 with w1 ·w3
2 ·w3 ∈ SΥ,Ω , it must be

the case that no x ∈ Ω occurs in w2 and may only occur linearly in one of w1

or w3, and hence w1 · w2
2 · w3 ∈ SΥ,Ω .

Fig. 1. A pathological splitting of w = w1 · w(2n+m+2)
2 · w3 as u1 · v · u2

22 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Lemma 11. Suppose that L1 and L2 are star-free regular languages with ape-
riodicity numbers n and m respectively. The aperiodicity number of L1 %x L2 is
no greater than 2n + m + 2.

Proof. Suppose that w = w1 · w(2n+m+2)
2 · w3 ∈ L1 %x L2. Then w = u1 · v · u2

for some u1, u2, v with u1 · x · u2 ∈ L1 and v ∈ L2. One of the following must
then be the case: u1 = w′

1 · wn
2 · w′

3, v = w′
1 · wm

2 · w′
3 or u2 = w′

1 · wn
2 · w′

3,
such that the block of repeated w2s are part of the w(2n+m+2)

2 block of w. (To
see this, consider Fig. 1. No alternative splitting can decrease the number of
consecutive w2s in all three blocks.) Correspondingly, by aperiodicity, either
w′

1 ·w
(n+1)
2 ·w′

3 ·x ·u2 ∈ L1, w′
1 ·w

(m+1)
2 ·w′

3 ∈ L2 or u1 ·x ·w′
1 ·w

(n+1)
2 ·w′

3 ∈ L1.
Hence, w1 · w(2n+m+3)

2 · w3 ∈ L1 %x L2.
All of the implications in the above can be reversed to prove the converse. In

order to reverse the final implication, we require the bound on the aperiodicity
number to be 2n + m + 2, since a splitting such as in Fig. 1 could be possible
otherwise.

Lemma 12. Suppose that L1 and L2 are star-free regular languages with aperi-
odicity numbers n and m respectively. The aperiodicity number of L1 −%∃

x L2 is
no greater than 2m + 1.

Proof. Suppose that w = w1 · w(2m+1)
2 · w3 ∈ L1 −%∃

x L2. Then w = u1 · x · u2

and there is some v ∈ L1 such that u1 · v · u2 ∈ L2. Either u1 = w′
1 · wm

2 · w′
3 or

u2 = w′
1 ·wm

2 ·w′
3. Correspondingly, by aperiodicity of L2, either w′

1 ·w
(m+1)
2 ·w′

3 ·
v · u2 ∈ L2 or u1 · v ·w′

1 ·w
(m+1)
2 ·w′

3 ∈ L2. Hence w1 ·w(2m+2)
2 ·w3 ∈ L1−%∃

x L2.
Conversely, suppose that w1 ·w(2m+2)

2 ·w3 ∈ L1 −%∃
x L2. Then w = u1 · x · u2

and there is some v ∈ L1 such that u1 · v · u2 ∈ L2. Either u1 = w′
1 ·w

(m+1)
2 ·w′

3

or u2 = w′
1 ·w

(m+1)
2 ·w′

3. Correspondingly, by aperiodicty of L2, either w′
1 ·wm

2 ·
w′

3 · v · u2 ∈ L2 or u1 · v ·w′
1 ·wm

2 ·w′
3 ∈ L2. Hence w1 ·w(2m+1)

2 ·w3 ∈ L1−%∃
x L2.

Lemma 13. Suppose that L1 and L2 are star-free regular languages with aperi-
odicity numbers n and m respectively. The aperiodicity number of L1 %−∃x L2 is
no greater than m.

Proof. Suppose that w = w1 ·wm
2 ·w3 ∈ L1 %−∃x L2. This is the case if and only

if for some u1, u2, u1 · w1 · wm
2 · w3 · u2 ∈ L2. By the aperiodicity of L2, this is

the case if and only if u1 · w1 · w(m+1)
2 · w3 · u2 ∈ L2. This in turn is the case if

and only if w1 · w(m+1)
2 · w3 ∈ L1 %−∃x L2.

A.3 Ranked Tree Constructions

Automata As with sequences, we are motivated to consider automata for
ranked trees in order to decide model checking and satisfiability. Our defini-
tion of automata for ranked trees generalises the definition for words in a nat-
ural fashion. We deal only with frontier-to-root (or bottom-up) automata; for a
comprehensive treatment of automata for ranked trees, see [20, 21].

Decidability of Context Logic — October 9, 2008 23

Definition 21 (ε-NFTA). A non-deterministic finite (ranked) tree automa-
ton with ε-transitions, abbreviated ε-NFTA, is a tuple A = (Q, {f l}l∈Σ${ε}, A)
where:

– Q is the set of states, a finite set;
– for every l ∈ Σ, f l ⊆ Snl+1 is the state transition relation for l, which is an

(nl + 1)-ary relation on S where nl is the arity of l;
– fε ⊆ S×S is the non-consuming state transition relation, a binary relation;
– A ⊆ S is the set of accepting states.

Given q1, . . . qnl ∈ Q, the notation f l(q1, . . . , qnl) is used for the set {q′ | (q1, . . . , qnl , q) ∈
f l}. A pre-automaton is an automaton without a set of accepting states, i.e.
Â = (Q, {f l}l∈Σ${ε}).

To formally define the language recognised by an automaton, we make some
auxilliary definitions. As for sequences, the ε-closure of a state is the set of states
reachable by any number of ε-transitions: ε-closure is the reflexive-transitive
closure of fε. Each automaton, A, induces a function, !−"A : RΣ → P(Q), that
maps each ranked tree to a set of states according to the following definition:

!l(r1, . . . , rn)"A =
{
q | q1 ∈ !r1"A, . . . , qn ∈ !rn"A, q ∈ (ε-closure ◦ f l)(q1, . . . , stn)

}
.

A tree r is said to be accepted by A if !r"A ∩ A .= ∅. The (tree) language LA
defined by A is the set {r ∈ RΣ | !r"A ∩A .= ∅}.

The language membership and emptiness problems for tree automata are
decidable in a similar fashion to the equivalent problems for automata on words.
The class of languages definable by tree automata is the class of regular tree
languages. This class is closed under a number of operations; if L, L′, L1, . . . , Ln

are regular tree languages, then so are

– ∅, RΥ,Ω , RΣ ,
– L ∪ L′, L ∩ L′, L ! RΣ \ L, and
– {a(r1, · · · , rna) | ri ∈ Li} where a ∈ Υ has rank na.

For details, consult [20]. Other closure properties that are known in the literature
could be used to implement the structural connectives of CLm

Term . However, we
present constructions analogous to those in the sequence case to implement these
connectives.

Correctness of ‘%’ Construction

Definition 22 (‘%’ Construction). Given ε-NFTA A1 = (Q1, {f l
1}, A1) and

A2 = (Q2, {f l
2}, A2) accepting languages L1 and L2 respectively, define the ε-

NFTA A = A1 %x A2 = (Q, {f l}, A) as follows.

– Q = (Q1 × {0, 1}) !Q2;
– for l ∈ Σ with rank m, f l is the smallest relation satisfying:

• (q′1, n) ∈ f l((q1,1, n1), . . . , (q1,m, nm)) if q′1 ∈ f l
1(q1,1, . . . , q1,m) and n =∑m

i=1 ni, and

24 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

• q′2 ∈ f l(q2,1, . . . , q2,m) if q′2 ∈ f l
2(q2,1, . . . , q2,m);

– fε is the smallest relation satisfying:
• (q′1, n) ∈ fε((q1, n)) whenever q′1 ∈ fε

1 ((q1, n)),
• q′2 ∈ fε(q2) whenever q′2 ∈ fε

2 (q2), and
• for each q1 ∈ fx and q2 ∈ A2, (q1, 1) ∈ fε(q2); and

– A = A1 × {1}.

Lemma 14. For all r ∈ RΣ, q2 ∈ Q2,

q2 ∈ !r"A ⇐⇒ q2 ∈ !r"A2 .

Proof. By induction on the structure of the tree r.
Base case: r = l for some l ∈ Σ with rank 0.

q2 ∈ !r"A
⇐⇒ ∃q′2 ∈ Q2. q

′
2 ∈ f l ∧ q2 ∈ ε-closure(q′2)

⇐⇒ ∃q′2 ∈ Q2. q
′
2 ∈ f l

2 ∧ q2 ∈ ε-closure2(q′2)
⇐⇒ q2 ∈ !r"A2 .

Inductive case: r = l(r1, . . . , rm) for some l ∈ Σ with rank m and r1, . . . , rm ∈
RΣ .

q2 ∈ !r"A
⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. q

′
2 ∈ f l(q2,1, . . . , q2,m)∧

q2,1 ∈ !r1"A ∧ · · · ∧ q2,m ∈ !rm"A ∧
q2 ∈ ε-closure(q′2)

(by IH) ⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. q
′
2 ∈ f l(q2,1, . . . , q2,m)∧

q2,1 ∈ !r1"A2 ∧ · · · ∧ q2,m ∈ !rm"A2 ∧
q2 ∈ ε-closure(q′2)

⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. q
′
2 ∈ f l

2(q2,1, . . . , q2,m)∧
q2,1 ∈ !r1"A2 ∧ · · · ∧ q2,m ∈ !rm"A2 ∧
q2 ∈ ε-closure2(q′2)

⇐⇒ q2 ∈ !r"A2 .

56

Lemma 15. For all r ∈ RΣ, q1 ∈ Q1,

(q1, 0) ∈ !r"A ⇐⇒ q1 ∈ !r"A1 .

Decidability of Context Logic — October 9, 2008 25

Proof. By induction on the structure of the tree r.
Base case: r = l for some l ∈ Σ with rank 0.

(q1, 0) ∈ !r"A
⇐⇒ ∃q′1 ∈ Q1. (q′1, 0) ∈ f l ∧ (q1, 0) ∈ ε-closure((q′1, 0))

⇐⇒ ∃q′1 ∈ Q1. q
′
1 ∈ f l

1 ∧ q1 ∈ ε-closure1(q′1)
⇐⇒ q1 ∈ !r"A1 .

Inductive case: r = l(r1, . . . , rm) for some l ∈ Σ with rank m and r1, . . . , rm ∈
RΣ .

(q1, 0) ∈ !r"A
⇐⇒ ∃q′1, q1,1, . . . , q1,m ∈ Q1. (q′1, 0) ∈ f l((q1,1, 0), . . . , (q1,m, 0))∧

(q1,1, 0) ∈ !r1"A ∧ · · · ∧ (q1,m, 0) ∈ !rm"A ∧
(q1, 0) ∈ ε-closure(q′1)

(by IH) ⇐⇒ ∃q′1, q1,1, . . . , q1,m ∈ Q1. (q′1, 0) ∈ f l((q2,1, 0), . . . , (q2,m, 0))∧
q1,1 ∈ !r1"A1 ∧ · · · ∧ q1,m ∈ !rm"A1 ∧
(q1, 0) ∈ ε-closure((q′1, 0))

⇐⇒ ∃q′1, q1,1, . . . , q1,m ∈ Q1. q
′
1 ∈ f l

1(q1,1, . . . , q1,m)∧
q1,1 ∈ !r1"A1 ∧ · · · ∧ q1,m ∈ !rm"A1 ∧
q1 ∈ ε-closure1(q′1)

⇐⇒ q1 ∈ !r"A1 .

56

Lemma 16. For all r ∈ RΣ, q1 ∈ Q1,

(q1, 1) ∈ !r"A ⇐⇒ ∃r1, r2 ∈ RΣ . r ∈ r1 %x r2 ∧ r2 ∈ L2 ∧ q1 ∈ !r1"A1 .

Proof. By induction on the structure of the tree r.
Base case: r = l for some l ∈ Σ with rank 0.

(q1, 1) ∈ !l"A
⇐⇒ ∃q′1 ∈ Q1, q2, q

′
2 ∈ Q2. (q1, 1) ∈ ε-closure((q′1, 1)) ∧ (q′1, 1) ∈ fε(q2)∧

q2 ∈ ε-closure(q′2) ∧ q′2 ∈ f l

⇐⇒ ∃q′1 ∈ Q1, q2, q
′
2 ∈ Q2. q1 ∈ ε-closure1(q′1) ∧ q′1 ∈ fx

1 ∧ q2 ∈ A2 ∧
q2 ∈ ε-closure2(q′2) ∧ q′2 ∈ f l

⇐⇒ q1 ∈ !x"A1 ∧ !l"A2 ∩A2 .= ∅
⇐⇒ r1, r2 ∈ RΣ . l ∈ r1 %x r2 ∧ r2 ∈ L2 ∧ q1 ∈ !r1"A1 .

26 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Inductive case: r = l(r(1), . . . , r(m)) for some l ∈ Σ with rank m and r(1), . . . , r(m) ∈
RΣ . We consider the implications in each direction separately.

⇒:
By definition, (q1, 1) ∈ ε-closure(q′) where q′ ∈ f l(q(1), . . . , q(m)) for some q′ ∈ Q,
q(i) ∈ !r(i)"A. From the definition of fε, either q′ = (q′1, 1) for some q′1 ∈ Q1, or
q′ = q2 for some q2 ∈ Q2. We consider each case.

In the first case, it must be the case that for exactly one k, q(k) = (q1,k, 1) and
for all i .= k, q(i) = (q1,i, 0). By the inductive hypothesis, there are r′1, r2 ∈ RΣ

with r(k) ∈ r(k)
1 %x r2, r2 ∈ L2 and q1,k ∈ !r(k)

1 "A1 . By Lem. 15, for i .= k,
q1,i ∈ !r(i)"A1 . By definition, q′1 ∈ f l

1(q1,1, . . . , q1,m), and so

q′1 ∈ !l(r(1), . . . , r(k−1), r(k)
1 , r(k+1), . . . , r(m))"A1 .

Let
r1 = l(r(1), . . . , r(k−1), r(k)

1 , r(k+1), . . . , r(m))
and observe that r ∈ r1 %x r2. Further, since (q1, 1) ∈ ε-closure((q′1, 1)), q1 ∈
ε-closure1(q′1). Hence, q1 ∈ !r1"A1 , as required.

In the second case, there must be some q′1 ∈ Q1 and q′2 ∈ Q2 such that
(q1, 1) ∈ ε-closure((q′1, 1)), (q′1, 1) ∈ fε(q′2), and q′2 ∈ ε-closure(q2). By the
definition of fε, it follows that q1 ∈ ε-closure1(q′1), q′1 ∈ fx

1 , q′2 ∈ A2 and
q′2 ∈ ε-closure2(q2). Hence, q1 ∈ !x"A1 . Further, since q2 ∈ !r"A2 by Lem. 14,
q′2 ∈ !r"A2 ∩ A2, and so r ∈ L2. Let r1 = x and r2 = r, and observe that
r ∈ r1 %x r2, as required.

⇐:
Either r1 = x or r1 .= x. We consider each case.

In the first case, r = r2 ∈ L2 and so there is some q2 ∈ !r"A2 ∩ A2. By
Lem. 14, q2 ∈ !r"A. Also, since q1 ∈ !x"A1 , there is some q′1 ∈ Q1 with q′1 ∈ fx

1

and q1 ∈ ε-closure1(q′1). Hence, by the definition of fε, (q′1, 1) ∈ fε(q2) and
(q1, 1) ∈ ε-closure((q′1, 1)). Thus, (q1, 1) ∈ !r"A as required.

In the second case, it must be that, for some l ∈ Σ of rank m, r1,1, . . . , r1,m, r′ ∈
RΣ , k with 1 ≤ k ≤ m

r1 = l(r1,1, . . . , r1,m)
r = l(r1,1, . . . , r1,k−1, r

′, r1,k+1, . . . , r1,m)
r′ ∈ r1,k %x r2.

Since q1 ∈ !r1"A1 it follows that there are q′1, q1,1, . . . , q1,m ∈ Q1 with

q1 ∈ ε-closure1(q′1)

q′1 ∈ f l
1(q1,1, . . . , q1,m)

for 1 ≤ i ≤ m q1,i ∈ !r1,i"A1 .

Hence, by the inductive hypothesis, (q1,k, 1) ∈ !r′"A. By Lem. 14, (q1,i, 0) ∈
!r1,i"A for 1 ≤ i ≤ m. By definition,

(q′1, 1) ∈ f l((q1,1, 0), . . . , (q1,k−1, 0), (q1,k, 1), (q1,k+1, 0), . . . , (q1,m, 0)).

Also, (q1, 1) ∈ ε-closure(q′1, 1). Hence, (q1, 1) ∈ !r"A, as required. 56

Decidability of Context Logic — October 9, 2008 27

Proposition 7. The automaton defined in Def. 22 accepts the language L1 %x

L2.

Proof.

r ∈ L1 %x L2

⇐⇒ ∃r1, r2. r ∈ r1 %x r2 ∧ r1 ∈ L1 ∧ r2 ∈ L2

(by Lem. 16) ⇐⇒ ∃q1 ∈ A1. (q1, 1) ∈ !r"A
⇐⇒ A ∩ !r"A .= ∅.

56

Correctness of ‘−%∃’ Construction

Definition 23 (‘−%∃’ Construction). Given ε-NFTA A1 = (Q1, {f l
1}, A1)

and A2 = (Q2, {f l
2}, A2) accepting languages L1 and L2 respectively, define the

ε-NFTA A = A1 −%∃
x A2 = (Q, {f l}, A) as follows.

– Q = Q2 × {0, 1};
– for l ∈ Σ ! {ε}, where l has rank m (m = 1 in the case of ε), f l is the

smallest relation satisfying
• (q′2, n) ∈ f l((q2,1, n1), . . . , (q2,m, nm)) if q′2 ∈ f l

2(q2,1, . . . , q2,m) and n =∑m
i=1 ni, and

• if l = x, then (q′2, 1) ∈ f l for every q′2 ∈ !r"A2 for any r ∈ L1; and
– A = A2 × {1}.

Lemma 17. For all r ∈ RΣ, q2 ∈ Q2,

(q2, 0) ∈ !r"A ⇐⇒ q2 ∈ !r"A2 .

Proof. By induction on the structure of the tree r.
Base case: r = l for some l ∈ Σ with rank 0.

(q2, 0) ∈ !r"A
⇐⇒ ∃q′2 ∈ Q2. (q′2, 0) ∈ f l ∧ (q2, 0) ∈ ε-closure((q′2, 0))

⇐⇒ ∃q′2 ∈ Q2. q
′
2 ∈ f l

2 ∧ q2 ∈ ε-closure2(q′2)
⇐⇒ q2 ∈ !r"A2 .

Inductive case: r = l(r1, . . . , rm) for some l ∈ Σ with rank m, and r1, . . . , rm ∈
RΣ .

28 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

(q2, 0) ∈ !r"A
⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. (q′2, 0) ∈ f l((q2,1, 0), . . . , (q2,m, 0))∧

(q2,1, 0) ∈ !r1"A ∧ · · · ∧ (q2,m, 0) ∈ !rm"A ∧
(q2, 0) ∈ ε-closure(q′2, 0)

(by IH) ⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. (q′2, 0) ∈ f l((q2,1, 0), . . . , (q2,m, 0))∧
q2,1 ∈ !r1"A2 ∧ · · · ∧ q2,m ∈ !rm"A2 ∧
(q2, 0) ∈ ε-closure(q′2, 0)

⇐⇒ ∃q′2, q2,1, . . . , q2,m ∈ Q2. q
′
2 ∈ f l

2(q2,1, . . . , q2,m)∧
q2,1 ∈ !r1"A2 ∧ · · · ∧ q2,m ∈ !rm"A2 ∧
q2 ∈ ε-closure2(q′2)

⇐⇒ q2 ∈ !r"A2 .

56

Lemma 18. For all r ∈ RΣ, q2 ∈ Q2,

(q2, 1) ∈ !r"A ⇐⇒ ∃r1, r2 ∈ RΣ . r2 ∈ r %x r1 ∧ r1 ∈ L1 ∧ q2 ∈ !r2"A2 .

Proof. By induction on the structure of tree r.
Base case: r = l for some l ∈ Σ with rank 0.

(q2, 1) ∈ !l"A
⇐⇒ ∃q′2 ∈ Q2. (q′2, 1) ∈ f l ∧ (q2, 1) ∈ ε-closure((q′2, 1))
⇐⇒ r = x ∧ ∃q′2 ∈ Q2, r1 ∈ L1. q

′
2 ∈ !r1"A2 ∧ q2 ∈ ε-closure2(q′2)

⇐⇒ r = x ∧ ∃r1 ∈ L1. q2 ∈ !r1"A2

⇐⇒ r = x ∧ ∃r1, r2 ∈ RΣ . r2 ∈ r %x r1 ∧ r1 ∈ L1 ∧ r1 = r2 ∧ q2 ∈ !r2"A2

⇐⇒ ∃r1, r2 ∈ RΣ . r2 ∈ r %x r1 = l %x r1 ∧ r1 ∈ !r2"A2 .

Inductive case: r = l(r(1), . . . , r(m)) for some l ∈ Σ with rank m and r(1), . . . , r(m) ∈
RΣ . Note that we do not consider l = x, since this is the base case. We consider
the implications in each direction separately.

⇒:
For some q2, q2,1, . . . , q2,m ∈ Q2 and some 1 ≤ k ≤ m, it must be the case that

for i .= k (q2,i, 0) ∈ !r(i)"A
(q2,k, 1) ∈ !r(k)"A

(q′2, 1) ∈ f l((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))
(q2, 1) ∈ ε-closure((q′2, 1)).

Decidability of Context Logic — October 9, 2008 29

By Lem. 17,
for i .= kq2,i ∈ !r(i)"A2 .

By the inductive hypothesis, there exist r′2, r1 ∈ RΣ such that the following hold:

r′2 ∈ r(k) %x r1

r1 ∈ L1

q2,k ∈ !r′2"A2 .

Let
r2 = l(r(1), . . . , r(k−1), r′2, r

(k+1), . . . , r(m))

and observe that
r2 ∈ r %x r1.

By the definition of A,

q′2 ∈ f l
2(q2,1, . . . , q2,m)

q2 ∈ ε-closure2(q′2).

Hence
q2 ∈ !l(r(1), . . . , r(k−1), r′2, r

(k+1), . . . , r(m))"A2 = !r2"A2 .

We have therefore shown the existence of r1, r2 ∈ RΣ such that

r2 ∈ r %x r1 ∧ r1 ∈ L1 ∧ q2 ∈ !r2"A2

as required.
⇐:

For some 1 ≤ k ≤ m, and some r′2, the following must hold:

r2 = l(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m))

r′2 ∈ r(k) %x r1.

Since q2 ∈ !r2"A2 , it must be that for some q′2, q2,1, . . . , q2,m ∈ Q2,

for i .= k q2,i ∈ !r(i)"A2

q2,k ∈ !r′2"A2

q′2 ∈ f l
2(q2,1, . . . , q2,k−1, q2,k, q2,k+1, . . . , q2,m)

q2 ∈ ε-closure2(q′2).

By Lem. 17,
for i .= k(q2,i, 0) ∈ !r(i)"A.

By the inductive hypothesis,

(q2,k, 1) ∈ !r(k)"A.

30 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

By the definition of A,

(q′2, 1) ∈ f l((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))
(q2, 1) ∈ ε-closure(q′2, 1).

Therefore,
(q2, 1) ∈ !l(r(1), . . . , r(m))"A = !r"A

as required. 56

Proposition 8. The automaton defined in Def. 23 accepts the language L1−%∃
x

L2.

Proof.

r ∈ L1 −%∃
x L2

⇐⇒ ∃r1, r2. r2 ∈ r %x r2 ∧ r1 ∈ L1 ∧ r2 ∈ L2

(by Lem. 18) ⇐⇒ ∃q2 ∈ A2. (q2, 1) ∈ !r"A
⇐⇒ A ∩ !r"A .= ∅.

Correctness of ‘%−∃’ Construction

Definition 24 (‘%−∃’ Construction). Given ε-NFTA A1 = (Q1, {f l
1}, A1)

and A2 = (Q2, {f l
2}, A2) accepting languages L1 and L2 respectively, define the

ε-NFTA A = A1 %−∃x A2 = (Q, {f l}, A) as follows.

– Q = Q2

– f l = f l
2 for all l ∈ Σ ! {ε}; and

– q ∈ A if and only if ∃r ∈ RΣ . !r"Â1×Âq
∩ (A1 ×Aq) .= ∅ where

• Aq = (Q2 × {0, 1}, {f l
q}, Aq),

• for l ∈ Σ ! {ε}, where l has rank m (m = 1 in the case of ε), f l
q is the

smallest relation satisfying
∗ (q′2, n) ∈ f l

q((q2,1, n1), . . . , (q2,m, nm)) if q′2 ∈ f l
2(q2,1, . . . , q2,m) and

n =
∑m

i=1 ni, and
∗ if l = x, then (q, 1) ∈ f l

q, and
• A = A2 × {1}.

Lemma 19. For all r ∈ RΣ, q2 ∈ Q = Q2,

q ∈ !r"A ⇐⇒ q ∈ !r"A2 .

Proof. By definition. 56

For q ∈ Q, let Aq be given as in Def. 24.

Lemma 20. For all q ∈ Q, for all r ∈ RΣ, q2 ∈ Q2,

(q2, 0) ∈ !r"Aq ⇐⇒ q2 ∈ !r"A2 .

Decidability of Context Logic — October 9, 2008 31

Proof. By definition. 56

Lemma 21. For all r, r1 ∈ RΣ, q2 ∈ Q2,

∃q ∈ Q2. q ∈ !r"A2 ∧ (q2, 1) ∈ !r1"Aq

⇐⇒
∃r2 ∈ RΣ . r2 ∈ r1 %x r ∧ q2 ∈ !r2"A2 .

Proof. We consider each direction of implication separately, in each case pro-
ceeding by induction on the structure of the tree r1.

⇒:
Base case: r1 = l.
In this case, there must be some q′2 ∈ Q2 with

(q2, 1) ∈ ε-closureq((q′2, 1))

(q′2, 1) ∈ f l
q.

The definition of Aq means that r1 = l = x and q′2 = q. Let r2 = r. Clearly,
r2 ∈ r1 %x r. Also, by definition,

q′2 = q ∈ !r"A2 = !r2"A2

q2 ∈ ε-closure2(q′2),

and so q2 ∈ !r2"A2 , as required.
Inductive case: r1 = l(r(1), . . . , r(m)) for some m, l ∈ Σ of rank m and

r(1), . . . , r(m) ∈ RΣ .
In this case, since (q2, 1) ∈ !r1"Aq , there must be some q′2, q2,1, . . . , q2,m and
1 ≤ k ≤ m with

for i .= k (q2,i, 0) ∈ !r(i)"Aq

(q2,k, 1) ∈ !r(k)"Aq

(q′2, 1) ∈ f l
q((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))

(q2, 1) ∈ ε-closureq((q′2, 1)).

By the inductive hypothesis, there is some r′2 ∈ RΣ such that r′2 ∈ r(k) %x r and
q′2 ∈ !r′2"A2 . Let

r2 = l(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m))

and observe that r2 ∈ r1 %x r. By Lem. 20, for each i .= k, q2,i ∈ !r(i)"A2 . By
the definition of Aq,

q′2 ∈ f l
2(q2,1, . . . , q2,m)

q2 ∈ ε-closure2(q′2),

and so
q2 ∈ !r2"A2

32 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

as required.
⇐:

Base case: r1 = l.
In this case, r1 = x, since r2 ∈ r1 %x r. This means that r2 = r. Let

q = q2 ∈ !r2"A2 = !r"A2 .

By definition,

(q2, 1) = (q, 1) ∈ fx
q ⊆ !r1"Aq ,

as required.
Inductive case: r1 = l(r(1), . . . , r(m)) for some m, l ∈ Σ of rank m and

r(1), . . . , r(m) ∈ RΣ .
In this case, there must be some 1 ≤ k ≤ m and some r′2 ∈ RΣ such that the
following hold:

r′2 ∈ r(k) %x r

r2 = l(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m)).

Since q2 ∈ !r2"A2 , it follows that there are some q′2, q2,1, . . . , q2,m with

for i .= k q2,i ∈ !r(i)"A2

q2,k ∈ !r′2"A2

q′2 ∈ f l
2(q2,1, . . . , q2,m)

q2 ∈ ε-closure2(q′2).

By the inductive hypothesis, there is some q ∈ Q2 such that q ∈ !r"A2 and
(q2,k, 1) ∈ !r(k)"Aq . By Lem. 20, for each i .= k, (q2,i, 0) ∈ !r(i)"Aq . By the
definition of Aq,

(q′2, 1) ∈ f l
q((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))

(q2, 1) ∈ ε-closureq((q′2, 1)),

and so

(q2, 1) ∈ !r1"Aq ,

as required. 56

Proposition 9. The automaton defined in Def. 24 accepts the language L1 %−∃x
L2.

Decidability of Context Logic — October 9, 2008 33

Proof.

r ∈ L1 %−∃x L2

⇐⇒ ∃r1, r2 ∈ RΣ . r2 ∈ r1 %x r ∧ r1 ∈ L1 ∧ r2 ∈ L2

⇐⇒ ∃r1 ∈ L1, q2 ∈ A2.∃r2 ∈ RΣ . r2 ∈ r2 %x r ∧ q2 ∈ !r2"A2

(by Lem. 21) ⇐⇒ ∃r1 ∈ L1, q2 ∈ A2.∃q ∈ Q2. q ∈ !r"A2 ∧ (q2, 1) ∈ !r1"Aq

(by Lem. 17) ⇐⇒ ∃r1 ∈ L1, q2 ∈ A2.∃q ∈ Q. q ∈ !r" ∧ (q2, 1) ∈ !r1"Aq

⇐⇒ ∃q ∈ !r"A.∃r1 ∈ RΣ , q1 ∈ A1, q2 ∈ A2. q1 ∈ !r1"A1 ∧ (q2, 1) ∈ !r1"Aq

⇐⇒ ∃q ∈ !r"A.∃r1 ∈ RΣ . !r"Â1×Âq
∩ (A1 ×Aq) .= ∅

⇐⇒ A ∩ !r"A .= ∅.

56

A.4 Unranked Tree Constructions

Correctness of ‘%’ Construction Given ε-NFFA A1 = (Q1, e1, {fa
1 }a∈Υ , {fx

1 }x∈Ω , fε
1 , A1)

and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) accepting languages L1 and L2 re-

spectively, let A = A1 %x A2 = (Q, e, {fa}a∈Υ , {fx}x∈Ω , fε, A) as per Def. 17.

Lemma 22. For all t ∈ TΣ,

e ∈ !t"A ⇐⇒ t = ε.

Proof. By definition, e ∈ !ε"A. If t .= ε, then each q ∈ !t"A must be the result
of a transition from some other state(s) and e is not the result of any such
transition. 56

Lemma 23. For all t ∈ TΣ, q2 ∈ Q2,

q2 ∈ !t"A ⇐⇒ q2 ∈ !t"A2 .

Proof. By induction on the structure of the tree t.
Base case: t = ε:

Observe that e2 ∈ !ε"A, that fε
2 ⊆ fε and that q2 ∈ fε(q′) implies q′ ∈ Q2 and

q2 ∈ fε
2 (q′). Consequently, q2 ∈ !ε"A if and only if q2 ∈ !ε"A2 .

Inductive case: t = t′ | y for some y ∈ Ω:

q2 ∈ !t"A ⇐⇒ ∃q′2 ∈ Q. q2 ∈ (ε-closure ◦ fy)(q′2) ∧ q′2 ∈ !t′"A
⇐⇒ ∃q′2 ∈ Q2. q2 ∈ (ε-closure2 ◦ fy

2)(q′2) ∧ q′2 ∈ !t′"A
⇐⇒ ∃q′2 ∈ Q2. q2 ∈ (ε-closure2 ◦ fy

2)(q′2) ∧ q′2 ∈ !t′"A2

⇐⇒ q2 ∈ !t′ | y"A2 = !t"A2 .

34 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Inductive case: t = t′ | a[t′′] for some a ∈ Υ :

q2 ∈ !t"A ⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q. q2 ∈ ε-closure(q′′′2) ∧ q′′′2 ∈ fa(q′2, q
′′
2)

∧ q′2 ∈ !t′"A ∧ q′′2 ∈ !t′′"A
⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. q2 ∈ ε-closure2(q′′′2) ∧ q′′′2 ∈ fa

2 (q′2, q
′′
2)

∧ q′2 ∈ !t′"A ∧ q′′2 ∈ !t′′"A
⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. q2 ∈ ε-closure2(q′′′2) ∧ q′′′2 ∈ fa

2 (q′2, q
′′
2)

∧ q′2 ∈ !t′"AA2 ∧ q′′2 ∈ !t′′"A2

⇐⇒ q2 ∈ !t′ | a[t′′]"A2 = !t"A2

56

Lemma 24. For all t ∈ TΣ, q1 ∈ Q1,

(q1, 0) ∈ !t"A ⇐⇒ q1 ∈ !t"A1 .

Proof. By induction on the structure of the tree t.
Base case: t = ε:

Observe that (e1, 0) ∈ !ε"A, and that, for all q′, q′′ ∈ Q with q′ ∈ fε(q′′),

∃q′1 ∈ Q1. q
′ = (q′1, 0) =⇒ ∃q′′1 ∈ Q1. q

′′ = (q′′1 , 0) ∧ q′1 ∈ fε
1 (q′′1)

∃q′′1 ∈ Q1. q
′′ = (q′′1 , 0) =⇒ ∃q′1 ∈ Q1. q

′ = (q′1, 0) ∧ q′1 ∈ fε
1 (q′′1).

Consequently, (q1, 0) ∈ !ε"A if and only if q1 ∈ !ε"A1 .
Inductive case: t = t′ | y for some y ∈ Ω:

(q1, 0) ∈ !t"A ⇐⇒ ∃q′ ∈ Q. (q1, 0) ∈ (ε-closure ◦ fy)(q′) ∧ q′ ∈ !t′"A
⇐⇒ ∃q′1 ∈ Q1. q1 ∈ (ε-closure1 ◦ fy

1)(q′1) ∧ (q′1, 0) ∈ !t′"A
⇐⇒ ∃q′1 ∈ Q1. q1 ∈ (ε-closure1 ◦ fy

1)(q′1) ∧ q′1 ∈ !t′"A1

⇐⇒ q1 ∈ !t′ | y"A1 = !t"A1 .

Inductive case: t = t′ | a[t′′] for some a ∈ Υ :

(q1, 0) ∈ !t"A ⇐⇒ ∃q′, q′′, q′′′ ∈ Q. q2 ∈ ε-closure(q′′′) ∧ q′′′ ∈ fa(q′, q′′)
∧ q′ ∈ !t′"A ∧ q′′ ∈ !t′′"A

⇐⇒ ∃q′1, q′′1 , q′′′1 ∈ Q1. q1 ∈ ε-closure1(q′′′1) ∧ q′′′1 ∈ fa
1 (q′1, q

′′
1)

∧ (q′1, 0) ∈ !t′"A ∧ (q′′1 , 0) ∈ !t′′"A
⇐⇒ ∃q′1, q′′1 , q′′′1 ∈ Q1. q1 ∈ ε-closure1(q′′′1) ∧ q′′′1 ∈ fa

1 (q′1, q
′′
1)

∧ q′1 ∈ !t′"AA1 ∧ q′′1 ∈ !t′′"A1

⇐⇒ q1 ∈ !t′ | a[t′′]"A1 = !t"A1

56

Decidability of Context Logic — October 9, 2008 35

Lemma 25. For all t ∈ TΣ, q1 ∈ Q1, q2 ∈ Q2,

(q1, q2) ∈ !t"A ⇐⇒ ∃t1, t2. t = t1 | t2 ∧ q1 ∈ !t1"A1 ∧ q2 ∈ !t2"A2 .

Proof. Both directions: by induction on the structure of t.
=⇒:

Base case: t = ε and so (q1, q2) ∈ ε-closure(e). By the definition of A, it follows
that

– (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ !ε"A2 ;
– (q1, e2) ∈ fε((q1, 0)); and
– (q1, 0) ∈ !ε"A and so q1 ∈ !ε"A2 (by Lem. 24).

Inductive case: t = t′ | y for some y ∈ Ω. In this case, (q1, q2) ∈ (ε-closure ◦
fy)(q′) for some q′ ∈ Q. Either q′ = (q1, q′2) for some q′2 ∈ Q2, or q′ = (q′1, 0) for
some q′1 ∈ Q1.

If the former, it follows from the definition of A that q2 ∈ (ε-closure2◦fy
2)(q′2).

By the inductive hypothesis, there are t1, t′2 with t = t1 | t′2 | y, q1 ∈ !t1"A1 and
q′2 ∈ !t′2"A2 . Hence q2 ∈ !t′2 | y"A2 and so the choice of t1 and t2 = t′2 | y fulfills
the requirements.

If the latter, it must be that:

– (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ !ε"A2 ;
– (q1, e2) ∈ fε((q1, 0)); and
– (q1, 0) ∈ !t"A and so q1 ∈ !t"A1 (by Lem. 24).

Therefore the choice of t1 = t and t2 = ε fulfills the requirements.
Inductive case: t = t′|a[t′′] for some a ∈ Υ . In this case, (q1, q2) ∈ ε-closure(q′′′)

for some q′′′ ∈ Q with q′′′ ∈ fa(q′, q′′) for some q′, q′′ ∈ Q with q′ ∈ !t′"A and
q′′ ∈ !t′′"A. Either q′′′ = (q1, q′2) for some q′2 ∈ Q2, or q′′′ = (q′1, 0) for some
q′1 ∈ Q1.

If the former, it follows from the definition of A that q′ = (q1, q′2) and q′′ = q′′2
for some q′2, q

′′
2 ∈ Q2 with q′2 ∈ fa

2 (q′2, q′′2). By the inductive hypothesis, there are
t1, t′2 with t′ = t1 |t′2, q1 ∈ !t1"A1 and q′2 ∈ !t′2"A2 . Furthermore, by Lem. 23, q′′ =
q′′2 ∈ !t′′"A2 and so q′2 ∈ !t′2 | a[t′′]"A2 . It must also be that q2 ∈ ε-closure2(q′2),
and so q2 ∈ !t′2 | a[t′′]"A2 . Therefore choosing t1 and t′2 = t′2 | a[t′′] fulfills the
requirements.

If the latter, it must be that:

– (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ !ε"A2 ;
– (q1, e2) ∈ fε((q1, 0)); and
– (q1, 0) ∈ !t"A and so q1 ∈ !t"A1 (by Lem. 24).

Therefore the choice of t1 = t and t2 = ε fulfills the requirements.
⇐=:

Base case: t = ε. In this case, t1 = ε and t2 = ε. By Lem. 24, (q1, 0) ∈ !ε"A,
and so, since (q1, e2) ∈ fε((q1, 0)) by definition, (q1, e2) ∈ !ε"A. Furthermore, it
must be that q2 ∈ ε-closure2(e2) and hence (q1, q2) ∈ !ε"A as required.

36 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Inductive case: t = t′ | y for some y ∈ Ω. Here, either t2 = t′2 | y, or t2 = ε
and t1 = t = t′ | y.

If the former, q2 ∈ (ε-closure2 ◦ fy
2)(q′2) for some q′2 ∈ Q2 with q′2 ∈ !t′2"A2 .

By the inductive hypothesis, (q1, q′2) ∈ !t2 | t′2"A. Therefore, by the definition of
A, (q1, q′2) ∈ !t1 | t′2 | y"A = !t"A as required.

If the latter, q1 ∈ !t"A1 and hence (q1, 0) ∈ !t"A (by Lem. 24). It follows
then that (q1, e2) ∈ !t"A. Furthermore, since q2 ∈ !ε"A2 = ε-closure2(e2), we can
conclude that (q1, q2) ∈ !t"A by the definition of A.

Inductive case: t = t′ | a[t′′] for some a ∈ Υ . Here, either t2 = t′2 | a[t′′], or
t2 = ε and t1 = t = t′ | a[t′′].

If the former, q2 ∈ ε-closure2(q′′′2) for some q′′′2 ∈ Q2 with q′′′2 ∈ fa
2 (q′2, q′′2)

for some q′2, q
′′
2 ∈ Q2 with q′2 ∈ !t′2"A2 and q′′2 ∈ !t′′2"A2 . By the inductive

hypothesis, (q1, q′2) ∈ !t1 | t′2"A = !t′"A. By Lem. 23, q′′2 ∈ !t′′2"A. Hence,
(q1, q′′′2) ∈ fa((q1, q′2), q′′2) ⊆ !t′ | a[t′′]"A = !t"A. Therefore, since by definition
(q1, q2) ∈ ε-closure(q1, q′′′2), we conclued that (q1, q2) ∈ !t"A as required.

If the latter, q1 ∈ !t"A1 and hence (q1, 0) ∈ !t"A (by Lem. 24). It follows
then that (q1, e2) ∈ !t"A. Furthermore, since q2 ∈ !ε"A2 = ε-closure2(e2), we can
conclude that (q1, q2) ∈ !t"A by the definition of A. 56

Lemma 26. For all t ∈ TΣ, q1 ∈ Q1,

(q1, 1) ∈ !t"A ⇐⇒ ∃t1, t2. t ∈ t1 %x t2 ∧ q1 ∈ !t1"A1 ∧ t2 ∈ L2.

Proof. Both directions: by induction on the structure of t.
=⇒:

Base case: t = ε. It must be the case that there are some q′1, q
′′
1 ∈ Q1, q2 ∈ Q1

with:

– (q′′1 , q2) ∈ !ε"A, and hence q′′1 ∈ !ε"A1 and q2 ∈ !ε"A2 (by Lem. 25);
– (q′1, 1) ∈ fε((q′′1 , q2)), and hence q′1 ∈ fx

1 (q′′1) and q2 ∈ A2, so q′1 ∈ !x"A2 and
ε ∈ L2; and

– (q1, 1) ∈ ε-closure((q′1, 1)), and hence q1 ∈ ε-closure1(q′1), so q1 ∈ !x"A2 .

Thus, t1 = x and t2 = ε fit the requirements: ε ∈ x %x ε.
Inductive case: t = t′ | y for some y ∈ Ω. There must be some q′1 ∈ Q1 with:

– (q1, 1) ∈ (ε-closure ◦ fy)((q′1, 1)) and (q′1, 1) ∈ !t"A; or
– (q1, 1) ∈ ε-closure((q′1, 1)) and (q′1, 1) ∈ fε((q′′1 , q2)) for some q′′1 ∈ Q1, q2 ∈

Q2 with (q′′1 , q2) ∈ !t"A.

If the former, then, by the inductive hypothesis, there are t′1 and t2 with t′ ∈
t′1%x t2, q′1 ∈ !t′1"A1 and t2 ∈ L2. By the definition of A, q1 ∈ (ε-closure1◦fy

1)(q′1)
and so q1 ∈ !t′1 | y"A1 . Observing that (t′1 %x t2) | y ⊆ (t′1 | y) %x t2, we can see
that the choice of t1 = t′1 | y and t2 fulfills the requirements.

If the latter, then, by Lem. 25, t = t′1 | t2 with q′′1 ∈ !t′1"A1 and q2 ∈ !t2"A2 .
Furthermore, by the definition of A, q2 ∈ A2 and so t2 ∈ L2. Also, q′1 ∈ fx

1 (q′′1),
so q′1 ∈ !t′1 | x"A1 . Moreover, q1 ∈ ε-closure1(q′1), so q1 ∈ !t′1 | x"A1 . Observing

Decidability of Context Logic — October 9, 2008 37

that t′1 | t2 ∈ (t′1 | x) %x t2, we can see that the choice of t1 = t′1 | x and t2 fulfills
the requirements.

Inductive case: t = t′ | a[t′′] for some ainΥ . There must be some q′′′1 ∈ Q1

with (q1, 1) ∈ ε-closure(q′′′1 , 1) such that one of the following holds:

– (q′′′1 , 1) ∈ fa((q′1, 1), (q′′1 , 0)) for some q′1, q
′′
1 ∈ Q1 with (q′1, 1) ∈ !t′"A and

(q′′1 , 0) ∈ !t′′"A;
– (q′′′1 , 1) ∈ fa((q′1, 0), (q′′1 , 1)) for some q′1, q

′′
1 ∈ Q1 with (q′1, 0) ∈ !t′"A and

(q′′1 , 1) ∈ !t′′"A; or
– (q′′′1 , 1) ∈ fε((q′1, q2)) for some q′1 ∈ Q1, q2 ∈ Q2 with (q′1, q2) ∈ !t"A.

In the first case, by the inductive hypothesis, there are t′1, t2 with t′ ∈ t′1%x t2,
q′1 ∈ !t′1"A1 and t2 ∈ L2. Furthermore, by Lem. 24, q′′1 ∈ !t′′"A1 . By the definition
of A, q′′′1 ∈ fa

1 (q′1, q′′1), and so q′′′1 ∈ !t′1 | a[t′′]"A1 . Moreover, q1 ∈ ε-closure1(q′′′1),
so q1 ∈ !t′1 | a[t′′]"A1 . Observing that (t′1 %x t2) | a[t′′] ⊆ (t′1 | a[t′′]) %x t2, we can
see that the choice of t1 = t′1 | a[t′′] and t2 fulfills the requirements.

In the second case, by Lem. 24, q′1 ∈ !t′"A1 . Furthermore, by the inductive
hypothesis, there are t′′1 , t2 with t′′ ∈ t′′1 %x t2, q′′1 ∈ !t′′1"A1 and t2 ∈ L2. By
the definition of A, q′′′1 ∈ fa

1 (q′1, q′′1), and so q′′′1 ∈ !t′ | a[t′′1]"A1 . Moreover, q1 ∈
ε-closure1(q′′′1), so q1 ∈ !t1|a[t′′1]"A1 . Observing that t′|a[t′′1%xt2] ⊆ (t′|a[t′′1])%xt2,
we can see that the choice of t1 = t′ | a[t′′1] and t2 fulfills the requirements.

In the third case, by Lem. 25, t = t′1 | t2 with q′1 ∈ !t′1"A1 and q2 ∈ !t2"A2 .
Furthermore, by the definition of A, q2 ∈ A2 and so t2 ∈ L2. Also, q′′′1 ∈ fx

1 (q′1),
so q′′′1 ∈ !t′1 | x"A1 . Moreover, q1 ∈ ε-closure1(q′′′1), so q1 ∈ !t′1 | x"A1 . Observing
that t′1 | t2 ∈ (t′1 | x) %x t2, we can see that the choice of t1 = t′1 | x and t2 fulfills
the requirements.

⇐=:
Base case: t = ε. In this case, it must be that t1 = x and t2 = ε. Since q1 ∈ !x"A1

it follows that q1 ∈ ε-closure1(q′1) for some q′1 ∈ fx
1 (q′′1) for some q′′1 ∈ !ε"A1 .

Further, since ε = t2 ∈ L2, there must be some q2 ∈ A2 with q2 ∈ !ε"A2 . By
Lem. 25, (q′′1 , q2) ∈ !ε"A. By the construction of A, it follows that (q′1, 1) ∈
fε(q′′1 , q2) and so (q′1, 1) ∈ !ε"A. Also, (q1, 1) ∈ ε-closure(q

′
1, 1) and so (q1, 1) ∈

!ε"A as required.
Inductive case: t = t′ | y for some y ∈ Ω. One of the following must hold:

– t = t′′1 | t2 and t1 = t′′1 | x; or
– t′ ∈ t′1 %x t2 and t1 = t′1 | y.

If the former, there is a q′′1 ∈ !t′′1"A1 such that q1 ∈ (ε-closure1 ◦ fx
1)(q′′1), and

q2 ∈ !t"A2 ∩A2. By Lem. 25, (q′′1 , q2) ∈ !t′′1 | t2"A = !t"A. From the definition of
fε, it follows that (q1, 1) ∈ ε-closure((q′′1 , q2)) and so (q1, 1) ∈ !t"A as required.

If the latter, there is a q′1 ∈ !t′1"A1 such that q1 ∈ (ε-closure1 ◦ fy
1)(q′1).

By the inductive hypothesis, (q′1, 1) ∈ !t′"A. By the definition of A, (q1, 1) ∈
(ε-closure ◦ fy)(q′1, 1), and so (q1, 1) ∈ !t"A as required.

Inductive case: t = t′ | a[t′′] for some a ∈ Υ . One of the following must hold:

– t = t′′1 | t2 and t1 = t′′1 | y;
– t′ ∈ t′1 %x t2 and t1 = t′1 | a[t′′]; or

38 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

– t′′ ∈ t′′1 %x t2 and t1 = t′ | a[t′′1].

In the first case, there is a q′′1 ∈ !t′′1"A1 such that q1 ∈ (ε-closure1 ◦ fx
1)(q′′1),

and q2 ∈ !t"A2 ∩A2. By Lem. 25, (q′′1 , q2) ∈ !t′′1 | t2"A = !t"A. From the definition
of fε, it follows that (q1, 1) ∈ ε-closure((q′′1 , q2)) and so (q1, 1) ∈ !t"A as required.

In the second case, q1 ∈ ε-closure1(q′1) for some q′1 ∈ fa
1 (q′′1 , q′′′1) for some

q′′1 ∈ !t′1"A1 and q′′′1 ∈ !t′′"A1 . By the inductive hypothesis, (q′′1 , 1) ∈ !t′"A. By
Lem. 24, (q′′′1 , 0) ∈ !t′′"A. By the definition of A, (q′1, 1) ∈ fa((q′′1 , 1), (q′′′1 , 0)),
and so (q′1, 1) ∈ !t′ | a[t′′]"A = !t"A. Furthermore, (q1, 1) ∈ ε-closure(q′1, 1), and
so (q1, 1) ∈ !t"A as required.

In the third case, q1 ∈ ε-closure1(q′1) for some q′1 ∈ fa
1 (q′′1 , q′′′1) for some

q′′1 ∈ !t′"A1 and q′′′1 ∈ !t′′1"A1 . By Lem. 24, (q′′1 , 0) ∈ !t′"A. By the inductive
hypothesis, (q′′′1 , 1) ∈ !t′′"A. By the definition of A, (q′1, 1) ∈ fa((q′′1 , 0), (q′′′1 , 1)),
and so (q′1, 1) ∈ !t′ | a[t′′]"A = !t"A. Furthermose, (q1, 1) ∈ ε-closure(q′1, 1), and
so (q1, 1) ∈ !t"A as required. 56

Proposition 4. The automaton defined in Def. 17 accepts the language L1 %x

L2.

Proof.

t ∈ L1 %x L2

⇐⇒ ∃t1, t2. t ∈ t1 %x t2 ∧ t1 ∈ L1 ∧ t2 ∈ L2

⇐⇒ ∃q1 ∈ A1. (q1, 1) ∈ !t"A (by Lem. 26)
⇐⇒ A ∩ !t"A .= ∅.

56

Correctness of ‘−%∃’ Construction Given ε-NFFA A1 = (Q1, e1, {fa
1 }a∈Υ , {fx

1 }x∈Ω , fε
1 , A1)

and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) accepting languages L1 and L2 re-

spectively, let A = A1 −%∃
x A2 = (Q, e, {fa}a∈Υ , {fx}x∈Ω , fε, A) as per Def. 18.

Lemma 27. For all t ∈ TΣ, q1 ∈ Q1,

(q2, 0) ∈ !t"A ⇐⇒ q2 ∈ !t"A2 .

Proof. By induction on the structure of the tree t.
Base case: t = ε:

(q2, 0) ∈ !ε"A ⇐⇒ (q2, 0) ∈ ε-closure((e2, 0))
⇐⇒ q2 ∈ ε-closure2(e2)
⇐⇒ q2 ∈ !ε"A2 .

Decidability of Context Logic — October 9, 2008 39

Inductive case: t = t′ | y for some y ∈ Ω:

(q2, 0) ∈ !t′ | y"A ⇐⇒ ∃q′2 ∈ Q2. (q2, 0) ∈ (ε-closure ◦ fy)((q′2, 0)) ∧ (q′2, 0) ∈ !t′"A
⇐⇒ ∃q′2 ∈ Q2. q2 ∈ (ε-closure2 ◦ fy

2)(q′2) ∧ q′2 ∈ !t′"A2

⇐⇒ q2 ∈ !t′ | y"A2 .

Inductive case: t = t′ | a[t′′] for some a ∈ Υ :

(q2, 0) ∈ !t′ | a[t′′]"A ⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. (q2, 0) ∈ ε-closure((q′′′2 , 0))∧
(q′′′2 , 0) ∈ fa((q′2, 0), (q′′2 , 0)) ∧ (q′2, 0) ∈ !t′"A ∧ (q′′2 , 0) ∈ !t′′"A

⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. q1 ∈ ε-closure2(q′′′2)∧
q′′′2 ∈ fa

2 (q′2, q
′′
2) ∧ q′2 ∈ !t′"A2 ∧ !t′′"A2

⇐⇒ q2 ∈ !t′ | a[t′′]"A2 .

56

Lemma 28. For all t ∈ TΣ, q2 ∈ Q2,

(q2, 1) ∈ !t"A ⇐⇒ ∃t1, t2. t2 ∈ t %x t1 ∧ t1 ∈ L1 ∧ q2 ∈ !t2"A2 .

Proof. In both directions, the proof is by induction on the structure of the tree
t.

=⇒:
Base case: t = ε. There are no q′2, q

′′
2 ∈ Q2 such that (q′2, 1) ∈ fε((q′′2 , 0)) and so

it is not possible that (q2, 1) ∈ !t"A. Hence, the implication holds vacuuously in
this case.

Inductive case: t = t′ | y for some y ∈ Ω. Assume (q2, 1)!t"A. One of the
following must apply:

– (q2, 1) ∈ (ε-closure ◦ fy)((q′2, 1)) for some q′2 ∈ Q2 with (q′2, 1) ∈ !t′"A; or
– y = x and (q2, 1) ∈ ε-closure((q′2, 1)) for some q′2 ∈ Q2 with (q′2, 1) ∈

fx((q′′2 , 0)) for some q′′2 ∈ Q2 with (q′′2 , 0) ∈ !t"A.

In the first case, by the inductive hypothesis, there are t1, t′2 with t′2 ∈ t′%x t1,
t1 ∈ L1 and q′2 ∈ !t′2"A2 . By the definition of A, q2 ∈ (ε-closure2 ◦ fy

2)(q′2) and
so q2 ∈ !t2"A2 . Observe that t′2 | y ∈ (t′ | y) %x t1 and so the choice of t1 and
t2 = t′2 | y fulfills the requirements.

In the second case, Lem. 27, we know that q′′2 ∈ !t′"A2 . By the definition
of fx, q′2 ∈ #t1$A2(q′′2) for some t1 ∈ L1. Hence, t′2 ∈ !t′ | t1"A2 . Furthermore,
q2 ∈ ε-closure2(q′2) by the definition of A and so q2 ∈ !t′ |t1"A2 . Let t2 = t′ |t1 and
observe that t2 ∈ (t′ |x) %x t1 = t %x t1. Hence t1 and t2 fulfill the requirements.

Inductive case: t = t′ | a[t′′] for some a ∈ Υ . Assume (q2, 1) ∈ !t"A. It follows
that (q2, 1) ∈ ε-closure((q′′′2 , 1)) for some q′′′2 ∈ Q2 with either:

– (q′′′2 , 1) ∈ fa((q′2, 1), (q′′2 , 0)) for some q′2, q
′′
2 ∈ Q2 with (q′2, 1) ∈ !t′"A and

(q′′2 , 0) ∈ !t′′"A; or

40 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

– (q′′′2 , 1) ∈ fa((q′2, 0), (q′′2 , 1)) for some q′2, q
′′
2 ∈ Q2 with (q′2, 0) ∈ !t′"A and

(q′′2 , 1) ∈ !t′′"A.

In the first case, by the inductive hypothesis, there are t1, t′2 with t′2 ∈ t′%x t1,
t1 ∈ L1 and q′2 ∈ !t′2"A2 . By Lem. 27, we know that q′′2 ∈ !t′′"A2 . Hence, by the
definition of fa, it follows that q′′′2 ∈ fa

2 (q′2, q′′2) and so q′′′2 ∈ !t′2 | a[t′′]"A2 .
Furthermore, q2 ∈ ε-closure2(q′2) and so q2 ∈ !t′2 | a[t′′]"A2 = !t2"A2 . Let t2 =
t′2 |a[t′′] and observe that, since t′2 ∈ t′%x t1, t′2 |a[t′′] ∈ (t′ |a[t′′])%x t1 = t%x t1.
Thus, t1 and t2 fulfill the requirements.

In the second case, by Lem. 27, we know that q′1 ∈ !t′"A2 . By the inductive
hypothesis, there are t1, t′′2 with t′′2 ∈ t′′ %x t1, t1 ∈ L1 and q′′2 ∈ !t′′2"A2 . Hence,
by the definition of fa, it follows that q′′′2 ∈ fa

2 (q′2, q′′2) and so q′′′2 ∈ !t′ |a[A′′
2]"A2 .

Furthermore, q2 ∈ ε-closure2(q′2) and so q2 ∈ !t′ | a[t′′2]"A2 = !t2"A2 . Let t2 =
t′ |a[t′′2] and observe that, since t′′2 ∈ t′′%y t1, t′ |a[t′′2] ∈ (t′ |a[t′′])%x t1 = t%x t1.
Thus, t1 and t2 fulfill the requirements.

⇐=:
Base case: t = ε. There is no such t1 and t2 (since x does not appear in t).

Inductive case: t = t′ | y for some y ∈ Ω. Assume there are t1, t2 such that
t2 ∈ t %x t1, t1 ∈ L1 and q2 ∈ !t2"A2 Either:

– t2 = t′2 | y for some t′2 ∈ t′ %x t1; or
– y = x and t2 = t′ | t1.

In the first case, q2 ∈ (ε-closure2 ◦ fy
2)(q′2) for some q′2 ∈ Q2 with q′2 ∈ !t′2"A2 .

By the inductive hypothesis, (q′2, 1) ∈ !t′"A. By the definition of A, (q2, 1) ∈
(ε-closure ◦ fy)((q′2, 1)) and so (q2, 1) ∈ !t′"A as required.

In the second case, q2 ∈ #t1$A2(q′2) for some q′2 ∈ Q2 with q′2 ∈ !t′"A2 . By
Lem. 27, (q′2, 0) ∈ !t′"A. By definition, (q2, 1) ∈ fx((q′2, 0)) and so (q2, 1) ∈
!t′ | x"A = !t"A, as required.

Inductive case: t = t′ |a[t′′] for some a ∈ Υ . Assume there are t1, t2 such that
t2 ∈ t %x t1, t1 ∈ L1 and q2 ∈ !t2"A2 Either:

– t2 = t′2 | a[t′′] for some t′2 ∈ t′ %x t1; or
– t2 = t′ | a[t′′2] for some t′′2 ∈ t′′ %x t1.

In the first case, q2 ∈ ε-closure2(q′′′2) for some q′′′2 ∈ Q2 with q′′′2 ∈ fa
(q′2, q

′′
2)

for some q′2, q
′′
2 ∈ Q2 with q′2 ∈ !t′2"A2 , q′′2 ∈ !t′′"A2 . By the inductive hypothesis,

(q′2, 1) ∈ !t′"A. By Lem. 27, (q′′2 , 0) ∈ !t′′"A. By the definition of A, (q′′′2 , 1) ∈
fa((q′2, 1), (q′′2 , 0)) and so (q′′′2 , 1) ∈ !t′ | a[t′′]"A = !t"A. Furthermore, (q2, 1) ∈
ε-closure((q′′′2 , 1)) and so (q2, 1) ∈ !t"A as required.

In the second case, q2 ∈ ε-closure2(q′′′2) for some q′′′2 ∈ Q2 with q′′′2 ∈ fa
(q′2, q

′′
2)

for some q′2, q
′′
2 ∈ Q2 with q′2 ∈ !t′"A2 , q′′2 ∈ !t′′2"A2 . By Lem. 27, (q′2, 0) ∈ !t′"A.

By the inductive hypothesis, (q′′2 , 1) ∈ !t′′"A. By the definition of A, (q′′′2 , 1) ∈
fa((q′2, 0), (q′′2 , 1)) and so (q′′′2 , 1) ∈ !t′ | a[t′′]"A = !t"A. Furthermore, (q2, 1) ∈
ε-closure((q′′′2 , 1)) and so (q2, 1) ∈ !t"A as required. 56

Decidability of Context Logic — October 9, 2008 41

Proposition 5. The automaton defined in Def. 18 accepts the language L1−%∃
x

L2.

Proof.

t ∈ L1 −%∃
x L2

⇐⇒ ∃t1, t2. t1 ∈ L1 ∧ t2 ∈ L2 ∧ t2 ∈ t %x t1

⇐⇒ ∃q2 ∈ A2.∃t1, t2. t1 ∈ L1 ∧ q2 ∈ !t2"A2 ∧ t2 ∈ t %x t1

⇐⇒ ∃q2 ∈ A2. (q2, 1) ∈ !t"A
⇐⇒ !t"A ∩A .= ∅.

56

Correctness of ‘%−∃’ Construction Given ε-NFFA A1 = (Q1, e1, {fa
1 }a∈Υ , {fx

1 }x∈Ω , fε
1 , A1)

and A2 = (Q2, e2, {fa
2 }a∈Υ , {fx

2 }x∈Ω , fε
2 , A2) accepting languages L1 and L2 re-

spectively, let A = A1 %−∃x A2 = (Q, e, {fa}a∈Υ , {fx}x∈Ω , fε, A) as per Def. 19.

Lemma 29. For all t ∈ TΣ,

!t"A = {#t$A2}.

Proof. By induction on the structure of t. Note that, since fε = ∅, ε-closure is
the identity relation on Q.

Base case: t = ε.

!ε"A = ε-closure(e)
= ε-closure(ε-closure2)
= {ε-closure2}
= {#ε$A2}.

Inductive case: t = t′ | y for some y ∈ Ω.

!t′ | y"A = {q | q′ ∈ !t′"A, q ∈ (ε-closure ◦ fy)(t′)}
= {q | q ∈ (ε-closure ◦ fy)(#t′$A2)} = fy(#t′$A2)
= {ε-closure2 ◦ fy

2 ◦ #t′$A2}
= {#t′ | y$A2}.

Inductive case: t = t′ | a[t′′] for some a ∈ Υ .

!t′ | a[t′′]"A = {q | q′ ∈ !t′"A, q′′ ∈ !t′′"A, q ∈ (ε-closure ◦ fa)(q′, q′′)}
= {q | q ∈ (ε-closure ◦ fa)(#t′$A2 , #t′′$A2)}
= fa(#t′$A2 , #t′′$A2)
= {ε-closure2 ◦ {(q2, q

′
2) | q2 ∈ Q2, q

′′
2 ∈ #t′$A2(q2), q′′′2 ∈ #t′′$A2(e2), q′2 ∈ fa

2 (q′′2 , q′′′2)}}
= {{(q2, q

′
2) | q2 ∈ Q2, q

′′
2 ∈ #t′$A2(q2), q′′′2 ∈ !t′′"A2 , q

′
2 ∈ (ε-closure2 ◦ fa

2)(q′′2 , q′′′2)}}
= {#t′ | a[t′′]$A2}.

56

42 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

For q ∈ Q, let Aq be as given in Def. 19.

Lemma 30. For any q ∈ Q, q2 ∈ Q2, and t ∈ TΣ,

(q2, 0) ∈ !t"Aq ⇐⇒ q2 ∈ !t"A2 .

Proof. By induction on the structure of the tree t.
Base case: t = ε:

(q2, 0) ∈ !ε"Aq ⇐⇒ (q2, 0) ∈ ε-closure((e2, 0))
⇐⇒ q2 ∈ ε-closure2(e2)
⇐⇒ q2 ∈ !ε"A2 .

Inductive case: t = t′ | y for some y ∈ Ω:

(q2, 0) ∈ !t′ | y"Aq ⇐⇒ ∃q′2 ∈ Q2. (q2, 0) ∈ (ε-closure ◦ fy)((q′2, 0)) ∧ (q′2, 0) ∈ !t′"Aq

⇐⇒ ∃q′2 ∈ Q2. q2 ∈ (ε-closure2 ◦ fy
2)(q′2) ∧ q′2 ∈ !t′"A2

⇐⇒ q2 ∈ !t′ | y"A2 .

Inductive case: t = t′ | a[t′′] for some a ∈ Υ :

(q2, 0) ∈ !t′ | a[t′′]"Aq ⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. (q2, 0) ∈ ε-closure((q′′′2 , 0))∧
(q′′′2 , 0) ∈ fa((q′2, 0), (q′′2 , 0)) ∧ (q′2, 0) ∈ !t′"Aq ∧ (q′′2 , 0) ∈ !t′′"Aq

⇐⇒ ∃q′2, q′′2 , q′′′2 ∈ Q2. q1 ∈ ε-closure2(q′′′2)∧
q′′′2 ∈ fa

2 (q′2, q
′′
2) ∧ q′2 ∈ !t′"A2 ∧ !t′′"A2

⇐⇒ q2 ∈ !t′ | a[t′′]"A2 .

56

Lemma 31. Suppose that q = #t$A2 for some t ∈ TΣ. Then for all t1 ∈ TΣ, all
q2 ∈ Q2,

(q2, 1) ∈ !t1"Aq ⇐⇒ ∃t2 ∈ TΣ . q2 ∈ !t2"A2 ∧ t2 ∈ t1 %x t.

Proof. Both directions are by induction on the structure of the tree t1.
=⇒:
Base case: t1 = ε.

In this case, it is not possible that (q2, 1) ∈ !ε"Aq and so the implication holds
trivially.

Inductive case: t1 = t′1 | y for some y ∈ Ω.
In this case, (t2, 1) ∈ (ε-closureq ◦ fx

q)(qq) for some qq ∈ Qq with either:

– qq = (q′2, 1) for some q′2 ∈ Q2; or
– qq = (q′2, 0) for some q′2 ∈ Q1, y = y, and (q2, 1) ∈ ε-closureq((q′′2 , 1)) for

some q′′2 ∈ Q2 with (q′′2 , 1) ∈ fx
q ((q′2, 0)).

Decidability of Context Logic — October 9, 2008 43

In the first case, since (q′2, 1) ∈ !t′1"Aq , we have that q′2 ∈ !t′2"A2 for some
t′2 ∈ t′1 %x t, by the inductive hypothesis. From the definition of Aq, we can
deduce that q2 ∈ (ε-closure2 ◦ fy

2)(q′2) and hence q2 ∈ !t′2 | y"A2 . Observe that
t′2 |y ∈ (t′1 |y)%xt = t1%xt, and so the choice of t2 = t′2 |y fulfills the requirements.

In the second case, since (q′2, 0) ∈ !t′1"Aq , we have that q′2 ∈ !t′1"A2 by Lem. 30.
Since (q′′2 , 1) ∈ fx

q ((q′2, 0)), by the definition of Aq we have q′′2 ∈ q(q′2) = #t$A2q
′
2

and so q′′2 ∈ !t′1 | t"A2 . Furthermore, q− 2′ ∈ ε-closure2(q′′2) and so q2 ∈ !t′1 | t"A2 .
Observe that t′1 | t ∈ (q′1 |x) %x t = t1 %x t and so the choice t2 = t′2 | y fulfills the
requirements.

Inductive case: t1 = t′1 | a[t′′1] for some a ∈ Υ .
In this case, (q2, 1) ∈ ε-closureq((q′′′2 , 1)) for some q′′′2 ∈ Q2 with either:

– (q′′′2 , 1) ∈ fa
q ((q′2, 1), (q′′2 , 0)) for some q′2, q

′′
2 ∈ Q2 with (q′1, 1) ∈ !t′1"Aq and

(q′′2 , 0) ∈ !t′′1"Aq ; or
– (q′′′2 , 1) ∈ fa

q ((q′2, 0), (q′′2 , 1)) for some q′2, q
′′
2 ∈ Q2 with (q′1, 0) ∈ !t′1"Aq and

(q′′2 , 1) ∈ !t′′1"Aq .

In the first case, by the inductive hypothesis, q′2 ∈ !t′2"A2 for some t′2 ∈ t′1%xt.
By Lem. 30, q′′2 ∈ !t′′1"A2 . By the definition of Aq, q′′′2 ∈ fa

2 (q′2, q′′2) and so
q′′′2 ∈ !t′2 | a[t′′1]"A2 . Furthermore, q2 ∈ ε-closure2(q′′′2) and so q2 ∈ !t′2 | a[t′′1]"A2 .
Observe that t′2 | a[t′′1] ∈ (t′1 %x t) | a[t′′1] ⊆ (t1 | a[t′′1]) %x t and so the choice
t2 = t′2 | a[t′′1] fulfills the requirements.

In the second case, by Lem. 30, q′2 ∈ !t′1"A2 . By the inductive hypothesis,
q′′2 ∈ !t′′2"A2 for some t′′2 ∈ t′′1 %x t By the definition of Aq, q′′′2 ∈ fa

2 (q′2, q′′2) and so
q′′′2 ∈ !t′1 | a[t′′2]"A2 . Furthermore, q2 ∈ ε-closure2(q′′′2) and so q2 ∈ !t′1 | a[t′′2]"A2 .
Observe that t′1 | a[t′′2] ∈ t′1 | a[t′′1 %x t] ⊆ (t1 | a[t′′1]) %x t and so the choice
t2 = t′1 | a[t′′2] fulfills the requirements.

⇐=: Suppose that there is a tree t2 such that q2 ∈ !t2"A2 and t2 ∈ t1 %x t.
Base case: t1 = ε.

In this case, t1 %x t = ∅ and so there is no such t2 and the implication holds
trivially.

Inductive case: t1 = t′1 | y for some y ∈ Ω.
In this case, either:

– t2 = t′2 | y for some t′2 ∈ t′1 %x t; or
– y = y and t2 = t′1 | t.

In the first case, it must be that q2 ∈ (ε-closure2◦fy
2)(q′2) for some q′2 ∈ !t′2"A2 .

By the inductive hypothesis, (q′2, 1) ∈ !t′1"Aq . By the construction of Aq, we have
that (q2, 1) ∈ (ε-closureq ◦ fy

q)((q′2, 1)) and so (q2, 1) ∈ !t′1 | y"Aq = !t1"Aq , as
required.

In the second case, it must be that q2 ∈ #t$A2(q′2) = q(q′2) for some q′2 ∈
!t′1"A2 . By Lem. 30, (q′2, 0) ∈ !t′1"Aq . By the construction of Aq, we have that
(q2, 1) ∈ fq

x((q′2, 0)) and so (q′2, 1) ∈ !t′1 | x"Aq = !t1"Aq , as required.
Inductive case: t1 = t′1 | a[t′′1] for some a ∈ Υ .

In this case, either:

– t2 = t′2 | a[t′′1] for some t′2 ∈ t′1 %x t; or

44 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

– t2 = t′1 | a[t′′2] for some t′′2 ∈ t′′1 %x t.

In the first case, it must be that q2 ∈ ε-closure2(q′′′2), for some q′′′2 ∈ fa
2 (q′2, q′′2),

for some q′2 ∈ !t′2"A2 , q′′2 ∈ !t′′1"A2 . By the inductive hypothesis, (q′2, 1) ∈ !t′1"Aq .
By Lem. 30, t′′2 , 0) ∈ !t′′1"Aq . Furthermore, (q′′′2 , 1) ∈ fa

q ((q′2, 1), (q′′2 , 0)) and so
(q′′′2 , 1) ∈ !t′1 | a[t′′1]"Aq . Also, (q2, 1) ∈ ε-closure2((q′′′2 , 1)) and so (q2, 1) ∈ !t′1 |
a[t′′1]"Aq = !t1"Aq , as required.

In the second case, it must be that q2 ∈ ε-closure2(q′′′2), for some q′′′2 ∈
fa
2 (q′2, q′′2), for some q′2 ∈ !t′1"A2 , q′′2 ∈ !t′′2"A2 . By Lem. 30, (q′2, 0) ∈ !t′1"Aq . By the

inductive hypothesis, (t′′2 , 1) ∈ !t′′1"Aq . Furthermore, (q′′′2 , 1) ∈ fa
q ((q′2, 0), (q′′2 , 1))

and so (q′′′2 , 1) ∈ !t′1 | a[t′′1]"Aq . Also, (q2, 1) ∈ ε-closure2((q′′′2 , 1)) and so (q2, 1) ∈
!t′1 | a[t′′1]"Aq = !t1"Aq , as required.

56

Proposition 6. The automaton defined in Def. 19 accepts the language L1 %−∃x
L2.

Proof.

t ∈ L1 %−∃x L2

⇐⇒ ∃t1, t2. t1 ∈ L1 ∧ t2 ∈ L2 ∧ t2 ∈ t1 %x t

⇐⇒ ∃t1, t2.∃q2. t1 ∈ L1 ∧ q2 ∈ !t2"A2 ∧ q2 ∈ A2 ∧ t2 ∈ t1 %x t

⇐⇒ ∃q. q = #t$A2 ∧ ∃t1, t2.∃q2. t1 ∈ L1 ∧ q2 ∈ !t2"A2 ∧ q2 ∈ A2 ∧ t2 ∈ t1 %x t

⇐⇒ ∃q. q = #t$A2 ∧ ∃t1.∃q2. t1 ∈ L1 ∧ (q2, 1) ∈ !t1"Aq ∧ (q2, 1) ∈ Aq

⇐⇒ ∃q. q = #t$A2 ∧ ∃t1. !t1"A1 ∩A1 .= ∅ ∧ !t1"Aq ∩Aq .= ∅
⇐⇒ ∃q. q = #t$A2 ∧ q ∈ A

⇐⇒ ∃q. q = !t"A ∧ q ∈ A

⇐⇒ !t"A ∩A .= ∅.

56

A.5 Decidability with Quantifiers

The following lemma is assumed.

Lemma 32 (Duality of Freshness).

c, σ |= Nα. P ⇐⇒ ∀x ∈ Ω. x * c, σ =⇒ c, σ[α 2→ x] |= P

Lemma 33 (Environment Extensionality). For all c, σ, P , α, x where α /∈
dom(σ) and α /∈ fv(P),

c, σ |= P ⇐⇒ c, σ[α 2→ x] |= P .

Decidability of Context Logic — October 9, 2008 45

Proof. The proof is by induction on the structure of the formula P . The majority
of cases are trivial: since α /∈ fv(P), the criteria for the satifaction relation are
independent of whether α is bound in the environment. The only non-trivial case
is when P = Nβ. P ′, since this deals with σ. In this case:

c, σ |= Nβ. P ′ ⇐⇒ ∃y. y * c, σ ∧ c, σ[β 2→ y] |= P ′

(by swapping y and z) ⇐⇒ ∃z. z * c, σ[α 2→ x] ∧ c, σ[β 2→ z] |= P ′

(by inductive hypothesis) ⇐⇒ ∃z * c, σ[α 2→ x] ∧ c, σ[α 2→ x][β 2→ z] |= P ′

⇐⇒ c, σ[α 2→ x] |= Nβ. P ′.

56

We make use of the environment extensionality lemma extensively and often
implicitly.

Lemma 1 (Encoding Existential with Freshness). For all P ,

∃α. P ≡ Nα. P ◦α



2−& ∧ ¬
∨

β∈fv(P)\{α}

β



 ∨ P ∨
∨

β∈fv(P)\{α}

P [β/α].

Consequently, every formula can be rewritten to an equivalent formula that
contains no existential quantifiers.

Proof. By environment extensionality, we assume without loss of generality that
dom(σ) = fv(P) \ {α}. Let

P ′ = P ◦α



 2−& ∧ ¬
∨

β∈fv(P)\{α}

β



 ∨ P ∨
∨

β∈fv(P)\{α}

P [β/α].

=⇒: Suppose

c, σ |= ∃α. P

and hence

∃x. c, σ[α 2→ x] |= P .

We consider the possible cases for x.
If x * c, σ then c, σ |= Nα. P and so c, σ |= Nα. P ′.
If x ∈ range(σ) (and so x = σ(β) for some β) then c, σ |= P [β/α] (by

induction). Hence c, σ |= Nα. P ′.
If x *σ but x ∈ fn(c) then for y * σ, c

c = c[y/x] ©y x

c[y/x], σ[α 2→ y] |= P

x, σ[α 2→ y] |= 2−& ∧ ¬
∨

β∈fv(P)\{α}

β (since x *σ)

46 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

so

c, σ[α 2→ y] |= P ◦α



2−& ∧ ¬
∨

β∈fv(P)\{α}

β





∴ c, σ[α 2→ y] |= P ′

∴ c, σ |= Nα. P ′.

The three cases we have considered for x cover all possibilities, and hence we
can conclude, as required, c, σ |= Nα. P ′.

⇐=: Suppose

c, σ |= Nα. P ′

and hence

∃x. x * c, σ ∧ c, σ[α 2→ x] |= P ′.

One of the disjuncts of P ′ must be satisfied; we consider the possible cases.
If

c, σ[α 2→ x] |= P ′ ◦α



2−& ∧ ¬
∨

β∈fv(P)\{α}

β





then there exist c′ and y with y * σ such that

c = c′ ©x y and
c′, σ[α 2→ x] |= P .

By swapping x and y, we see that

c, σ[α 2→ y] |= P .

Hence

c, σ |= ∃α. P .

If c, σ[α 2→ x] |= P then c, σ |= ∃α. P .
If c, σ[α 2→ x] |= P [β/α] (where σ(β) = y) then c, σ[α 2→ y] |= P (by

induction on P). Hence, c, σ |= ∃α. P .
In each case, we have that c, σ |= ∃α. P , as required. 56

Decidability of Context Logic — October 9, 2008 47

Lemma 2 (Prenex Normalisation). The following logical equivalences hold.

a[Nα. P] ≡ Nα. a[P] (1)
P ′ | (Nα. P) ≡ Nα. P ′ | P (2)
(Nα. P) | P ′ ≡ Nα. P | P ′ (3)

P ′ ◦β (Nα. P) ≡ Nα. P ′ ◦β P (4)
(Nα. P) ◦β P ′ ≡ Nα. P ◦β P ′ (5)

P ′ −◦∃β (Nα. P) ≡ Nα. P ′ −◦∃β (P ∧ ¬!α) (6)

(Nα. P)−◦∃β P ′ ≡ Nα. (P ∧ ¬!α)−◦∃β P ′ (7)

P ′ ◦−∃β (Nα. P) ≡ Nα. P ′ ◦−∃β (P ∧ ¬!α) (8)

(Nα. P) ◦−∃β P ′ ≡ Nα. (P ∧ ¬!α) ◦−∃β P ′ (9)

! Nα. P ≡ Nα.!P (10)
¬ Nα. P ≡ Nα.¬P (11)

P ′ ∧ (Nα. P) ≡ Nα. P ′ ∧ P . (12)

Consequently, every ∃-free formula is equivalent to a formula in which all
quantifiers appear at the head of the formula — the prenex normal form.

Proof. Fix c, σ.
Equivalence (1):

c, σ |= a[Nα. P]
⇐⇒ ∃c′ ∈ CΩ . c = a[c′] ∧ ∃y ∈ Ω. y * c′, σ ∧ c′, σ[α 2→ y] |= P

(fn(c) = fn(c′))

⇐⇒ ∃y ∈ Ω. y * c, σ ∧ ∃c′. c = a[c′] ∧ c′, σ[α 2→ y] |= P

⇐⇒ c, σ |= Nα. a[P]

Equivalence (2):

c, σ |= P ′ | (Nα. P)
⇐⇒ ∃c1, c2 ∈ CΩ . c = c1 | c2 ∧ c1, σ |= P ′ ∧

∃y ∈ Ω. y * c2, σ ∧ c2, σ[α 2→ y] |= P

(swapping, since fn(c2) ⊆ fn(c))

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2. c = c1 | c2 ∧
c1, σ[α 2→ z] |= P ′ ∧ c2, σ[α 2→ z] |= P

⇐⇒ c, σ |= Nα. P | P ′.

The proof of (3) is symmetric to that of (2).

48 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Equivalence (4): Let x = σ(β).

c, σ |= P ′ ◦β (Nα. P)
⇐⇒ ∃c1, c2 ∈ CΩ . c = c1 ©x c2 ∧ c1, σ |= P ′ ∧

∃y ∈ Ω. y * c2, σ ∧ c2, σ[α 2→ y] |= P

(swapping, since fn(c2) ⊆ fn(c))

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2. c = c1 ©x c2 ∧
c1, σ[α 2→ z] |= P ′ ∧ c2, σ[α 2→ z] |= P

⇐⇒ c, σ |= Nα. P ′ ◦β P .

Equivalence (5): Let x = σ(β).

c, σ |= (Nα. P) ◦β P ′

⇐⇒ ∃c1, c2 ∈ CΩ . c = c1 ©x c2 ∧ c2, σ |= P ′ ∧
∃y ∈ Ω. y * c1, σ ∧ c1, σ[α 2→ y] |= P

(swapping, since fn(c1) ⊆ fn(c) ∪ {x} and y * σ =⇒ y .= x)

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2 ∈ CΩ . c = c1 ©x c2 ∧
c1, σ[α 2→ z] |= P ∧ c2, σ[α 2→ z] |= P ′

⇐⇒ c, σ |= Nα. P ◦β P ′.

Equivalence (6): Let x = σ(β).

c, σ |= P ′ −◦∃β (Nα. P)

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧ c1, σ |= P ′ ∧
∃y ∈ Ω. y * c2, σ ∧ c2, σ[α 2→ y] |= P

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧ c1, σ |= P ′ ∧
∃y ∈ Ω. y * σ ∧ c2, σ[α 2→ y] |= P ∧ ¬!α

(swapping)

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧
c1, σ[α 2→ z] |= P ′ ∧ c2, σ[α 2→ z] |= P ∧ ¬!α

⇐⇒ c, σ |= Nα. P ′ −◦∃β (P ∧ ¬!α).

Equivalence (7): Let x = σ(β).

c, σ |= (Nα. P)−◦∃β P ′

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧ c2, σ |= P ′ ∧
∃y ∈ Ω. y * c1, σ ∧ c1, σ[α 2→ y] |= P

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧ c2, σ |= P ′ ∧
∃y ∈ Ω. y * σ ∧ c1, σ[α 2→ y] |= P ∧ ¬!α

Decidability of Context Logic — October 9, 2008 49

(swapping)

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2 ∈ CΩ . c2 = c ©x c1 ∧
c2, σ[α 2→ z] |= P ′ ∧ c1, σ[α 2→ z] |= P ∧ ¬!α

⇐⇒ c, σ |= Nα. (P ∧ ¬!α)−◦∃β P ′.

Equivalence (9): Let x = σ(β).

c, σ |= P ′ ◦−∃β (Nα. P)

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c1 ∧ c1, σ |= P ′ ∧
∃y ∈ Ω. y * c2, σ ∧ c2, σ[α 2→ y] |= P

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c1 ∧ c1, σ |= P ′ ∧
∃y ∈ Ω. y * σ ∧ c2, σ[α 2→ y] |= P ∧ ¬!α

(swapping)

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c2 ∧
c1, σ[α 2→ z] |= P ′ ∧ c2, σ[α 2→ z] |= P ∧ ¬!α

⇐⇒ c, σ |= Nα. P ′ ◦−∃β (P ∧ ¬!α).

Equivalence (8): Let x = σ(β).

c, σ |= (Nα. P) ◦−∃β P ′

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c1 ∧ c2, σ |= P ′ ∧
∃y ∈ Ω. y * c1, σ ∧ c1, σ[α 2→ y] |= P

⇐⇒ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c1 ∧ c2, σ |= P ′ ∧
∃y ∈ Ω. y * σ ∧ c1, σ[α 2→ y] |= P ∧ ¬!α

(swapping)

⇐⇒ ∃z ∈ Ω. z * c, σ ∧ ∃c1, c2 ∈ CΩ . c2 = c1 ©x c2 ∧
c2, σ[α 2→ z] |= P ′ ∧ c1, σ[α 2→ z] |= P ∧ ¬!α

⇐⇒ c, σ |= Nα. P ′ ◦−∃β (P ∧ ¬!α).

Equivalence (11):

c, σ |= ¬ Nα. P

⇐⇒ ¬(∃y ∈ Ω. y * c, σ ∧ c, σ[α 2→ y] |= P)
⇐⇒ ∀z ∈ Ω. z * c, σ =⇒ c, σ[α 2→ z] |= P

⇐⇒ c, σ |= Nα.¬P .

50 Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Equivalence (12):

c, σ |= P ′ ∧ (Nα. P)
⇐⇒ c, σ |= P ∧ ∃y ∈ Ω. y * c, σ ∧ c, σ[α 2→ y] |= P

⇐⇒ ∃y ∈ Ω. y * c, σ ∧ c, σ[α 2→ y] |= P ′ ∧ c, σ[α 2→ y] |= P

⇐⇒ c, σ |= Nα. P ′ ∧ P .

56

Lemma 2 (Deciding Satisfiability). For all environments σ, formulae P ,
and hole variables α with α /∈ dom(σ),

∃c ∈ CΩ . c, σ |= Nα. P

⇐⇒ ∃y ∈ Ω. y * σ ∧ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α

⇐⇒ ∀y ∈ Ω. y * σ =⇒ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α.

Proof.

∃c ∈ CΩ . c, σ |= Nα. P

⇐⇒ ∃c ∈ CΩ .∃y ∈ Ω. y * c, σ ∧ c, σ[α 2→ y] |= P

⇐⇒ ∃y ∈ Ω. y * σ ∧ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α

⇐⇒ ∀y ∈ Ω. y * σ =⇒ ∃c ∈ CΩ . c, σ[α 2→ y] |= P ∧ ¬!α.

56

