
A Spatial Logic for Querying Graphs

Luca Cardelli, Philippa Gardner and Giorgio Ghelli1

Abstract. We study a spatial logic for reasoning about labelled directed
graphs, and the application of this logic to provide a query language for
analysing and manipulating such graphs. We give a graph description
using constructs from process algebra. We introduce a spatial logic in
order to reason locally about disjoint subgraphs. We extend our logic to
provide a query language which preserves the multiset semantics of our
graph model. Our approach contrasts with the more traditional set-based
semantics found in query languages such as TQL, Strudel and GraphLog.

1 Introduction

Semi-structured data plays an important role in the exchange of information
between globally distributed applications: examples include BibTex files and
XML documents. Whilst the research community mostly agree on defining semi-
structured data using labelled directed graphs or trees with ‘graphical’ links, the
study of how to query, modify and manipulate such data is still very active.

Motivating Examples A standard example used by the semi-structured data
community [ABS00] is a bibtex file with an article entry of the form:

x

y

citation

Buneman

Suciu

author

title
date

Abiteboul
‘Data on the Web’

‘2000’

publication

The global name (object identifier) x denotes the citation name of the publi-
cation, which is used to refer to the particular bibtex entry. The citation entry
might be a simple text entry, or might point to another entry in the bibtex file.
Another example with a more graphical emphasis is the correspondence between
counties and towns, where counties contain towns and towns are in counties. A
more complicated example is given by links between web pages, where names
correspond to URLs. Such links display all manner of graphical linking. These
simple examples illustrate that the typical data models for semi-structured data
are either labelled directed graphs, or labelled trees with ‘graphical links’. In
this paper, we focus on labelled directed graphs.

1 Cardelli’s address: Microsoft Research, Cambridge. Gardner’s address: Imperial Col-
lege of Science, Technology and Medicine, London. Supported by an EPSRC Ad-
vanced Fellowship. Ghelli’s address: University of Pisa, Pisa.

Graph Model We use a well-known graph description based on constructs
from process algebra [CMR94]. The models consist of labelled edges and two
kinds of nodes: the global nodes identified with unique names x, y, z and the lo-
cal nodes whose identifiers are not known. In our bibtex example, the citation x
corresponds to a global node labelled x, whereas the author field has no explicit
citation. Similarly, the Internet’s Domain Name Service globally registers IP ad-
dresses, but not all IP addresses are global. Our notation for describing graph (a)
is a(x, y) | b(y, x), where a(x, y) denotes an edge and | is the usual composition
operator for processes used in this case to describe multisets of edges.

Graph(a) Graph(b)

a a

x

b

y

x

b

Graph (b) is given by (local y)(a(x, y) | b(y, x)). The local operator is analogous
to restriction in the π-calculus. It means that the previously identified node
cannot now have any more edges attached to it.

Spatial Logic for Graphs Spatial logics were introduced by Caires, Cardelli
and Gordon for reasoning about trees and processes [CG00,Cai99], and also
by O’Hearn and Reynolds for reasoning about pointers [IO01,Rey00] using the
bunched logic of O’Hearn and Pym [OP99]. Such logics provide local reasoning
about disjoint substructures. We introduce a spatial logic for analysing graphs.
It combines standard first-order logic with additional structural connectives. The
structural formula φ |ψ specifies that a graph can be split into two parts: one part
satisfying φ, the other ψ. Composition allows us to count edges. For example,

∃x,y, z,u. a(x,y) | b(y, z) | a(z,u) | true (†)

specifies that there are at least three different edges in the graph, with a following
b following a. In contrast, conjunction allows us to describe paths with

∃x,y, z,u. (a(x,y) | true) ∧ (b(y, z) | true) ∧ (a(z,u) | true)

describing the existence of a path a followed by b followed by a. The path formula
is satisfied by graph (a), but the composition formula (†) is not.

Our graph logic (without recursion) sits naturally between first-order logic
FOL and monadic second-order logic MSOL: in FOL we can only quantify over
single edges; in our logic, the formula φ | true existentially quantifies a property
φ over all subgraphs; in MSOL we can arbitrarily nest quantifications over sets of
edges. Our logic can be viewed as a sublogic of MSOL. However, we can reason
locally about disjoint subgraphs. FOL and MSOL require complex disjointness
conditions to reason about such subgraphs: for example, the composition formula
(†) requires such conditions to specify that the three edges are disjoint. Dawar,
Gardner and Ghelli are studying expressivity results for the graph logic. Our
current results are reported in [CGG01].

Query Language We define a query language based on pattern matching and
recursion. Our approach integrates well with our graph description, and contrasts
with the standard set-based approach found in Cardelli and Ghelli’s TQL, a
query language based on the ambient logic [CG01a], and the graphical query
languages StruQL [FFK+97] and GraphLog [CM90] based on first-order logic.

To illustrate the standard approach, consider a simple query input graph �?

a(x,y) | true. This query asks for a substitution σ such that the satisfaction
relation input graph �σ a(x,y) | true holds in our logic. For example, if the input
graph is a(x, y) | b(y, x), then there are two solutions:

(a 7→ a, x 7→ x, y 7→ y) or (a 7→ b, x 7→ y, y 7→ x)

The from/select expressions take such solutions and build new graphs. For ex-
ample, the expression

from input graph �
? a(x,y) | true select a(y,x) (∗)

takes every substitution σ which satisfies the query, and creates a new graph
consisting of the composition of the edges aσ(yσ,xσ). In our example, the result-
ing new graph is a(y, x) | b(x, y). Given the input graph a(x, y) | a(x, y) instead,
there is one substitution σ : x 7→ x,y 7→ y which satisfies the query. The result-
ing graph is just a(y, x). This collapse of information can be an advantage. It
does mean however that we cannot accurately take a copy of a graph.

Instead we define a query language based on queries and transducers. Queries
build new graphs from old. Transducers relate input graphs with output graphs.
A basic transducer φ ⇛ Q relates any input graph satisfying φ with the query
Q which might depend on witnesses from φ. For example, the transducer

∃a,x,y. (a(x,y) | true ⇛ a(y,x))

relates an input graph with edge aσ(xσ,yσ) with the output graph aσ(yσ,xσ).
Given the input graph a(x, y) | b(y, x), there are two possible output graphs,
either a(y, x) or b(x, y). This example does the pattern-matching part of the
from/select expression (∗). It does not combine the inverted edges. Instead this
role is played by recursion. Consider the transducer

R
def
= (nil ⇛ nil) ∨ (∃a,x,y. (a(x,y) ⇛ a(y,x)) |R)

Either the input graph is empty and relates to the empty output graph. Or the
input graph can be split into an edge and the rest of the graph. The output
graph consists of the inverted edge composed with the output associated with
the remaining graph. Given input graph a(x, y) | a(x, y) for example, the output
graph is the exact inverted copy a(y, x) | a(y, x).

We study two query languages: a basic language which can express our mo-
tivating examples, and a general language which has a simple formalism but is
too expressive to implement. We were surprised to observe that the from/select
expressions can be embedded in our general language.

2 Labelled Directed Graphs

We use a simple graph algebra [CMR94] to describe labelled directed graphs.
Assume an infinite set X of names ranged over by u, . . . , z, and an infinite set
of edge labels A ranged over by a, b, c. We also use the notation z̃ to denote a
sequence of names, and |z̃ | to denote the length of the sequence.

Definition 1
The set G(X ,A) of graph terms generated by X and A is given by the grammar

G ::= nil empty
a(x, y) edge
G |G composition
(local x)G hiding

We sometimes write G instead of G(X ,A). The definitions of free and bound
names are standard: the hiding operator (local x)G binds x in G; x is free in
process a(x, y). We write fn(G) to denote the set of free names in G. We use the
capture-avoiding substitution, denoted by G{y/x}.

Our graph model is based on a multiset semantics, with the graph term
a(x, y) | a(x, y) denoting a graph with two edges. We give a natural structural
congruence on graph terms (definition 2) which corresponds to the usual notion
of graph isomorphism [CMR94]. Our choice contrasts with the approach taken in
the query language StruQL, which has a set-based semantics with a(x, y) | a(x, y)
corresponding to a(x, y). It also contrasts with the language UnQL [BDHS96],
which is based on graph bisimulation rather than graph isomorphism.

Definition 2
The structural congruence between graph terms, written ≡, is the smallest con-
gruence closed with respect to | and (local x) , and satisfying the axioms:

G | nil ≡ G (local x)(local y)G ≡ (local y)(local x)G

(G1 |G2) |G3 ≡ G1 | (G2 |G3) (local x)(G1 |G2) ≡ (local x)G1 |G2, x 6∈ fn(G2)

G1 |G2 ≡ G2 |G1 (local x)nil ≡ nil

(local x)G ≡ (local y)G{y/x}, y 6∈ fn(G)

2.1 Comparison with Courcelle

We give a set-theoretic description of graphs in the spirit of Courcelle [Cou97],
which is equivalent to our graph description. We have made some different choices
to Courcelle, which we will discuss after the definition. We assume disjoint infi-
nite sets of vertices V , edge identifiers E , edge labels A, and names X .

Definition 3
The graph structure GS = 〈V ∪ E ∪ A, {edge ⊆ E ×A× V × V }, src : X → V 〉
is defined by

1. V ⊆ V , E ⊆ E , A ⊆ A, X ⊆ X are finite sets;

2. each edge identifier has a unique label, domain node and codomain node:
∀e, ai, vi, wi.edge(e, a1, v1, w1)∧ edge(e, a2, v2, w2) ⇒ a1 = a2 ∧ v1 = v2 ∧w1 = w2;

3. the edge identifiers, edge labels and vertices are related using edge:

∀d ∃d1, d2, d3.

edge(d, d1, d2, d3) ∨ edge(d1, d, d2, d3) ∨ edge(d1, d2, d, d3) ∨ edge(d1, d2, d3, d)

4. src is an injective function.

This definition differs from Courcelle’s approach in several ways. Courcelle per-
mits nodes to be unattached to edges. He considers both finite and infinite
graphs, whereas we use the finite case since it is enough for this paper. He also
does not treat A as part of the domain. Instead, he defines a family of relations
edgea ⊆ E × V × V . This last point is significant when comparing our different
logics for reasoning about graphs. Courcelle considers two systems, one where src
is injective and one where it is not. The graphs presented here correspond to the
injective case; the non-injective case corresponds to adding name fusions x = y
to our graphical description, as introduced by Gardner and Wischik [GW00].

In [Cou97], Courcelle studies a graph grammar which is similar to ours. Cour-
celle’s motivation is to explore the expressive power of MSOL. In contrast, our
motivation is to use our graphs to model semi-structured data, and to introduce
a spatial logic for locally reasoning about such data.

3 The Graph Logic

We will only consider the simple case of graphs without hiding. It is possible to
incorporate a quantifier for reasoning about hidden nodes [CC01,CG01b], and we
believe that our query language will extend. For the rest of this paper, G ranges
over the terms generated by the simple grammar: G ::= nil | a(x, y) | G |G.
The set G(X ,A) denotes the set of all such terms.

3.1 Logical Formulae

Formulae are constructed from a name set X and label set A. They also depend
on the disjoint sets of name variables VX , label variables VA and parametrised
recursion variables VR. A recursion variable R comes with a fixed arity |R|.

Definition 4 (Logical formulae)
The set of pre-formulae Fpre(X ,A) is given by the grammars

name expressions ξ ::= x name, x ∈ X

x name variable

label expressions α ::= a label, a ∈ A

a label variable

formulae φ, ψ ::= nil empty

α(ξ1, ξ2) edge

φ |ψ composition

true true

φ ∧ ψ conjunction

¬φ classical negation

quantifiers ∃x.φ exist. quant. over names

∃a.φ exist. quant. over labels

recursion R(ξ̃) |R| = |ξ̃|

(µR(x̃). φ)ξ̃ least fix-pt; |ξ̃| = |x̃| = |R|,

R(ξ̃) occurs positively,

equality tests ξ1 = ξ2, α1 = α2 equalities

The sets of free variables are standard. The set of formulae F(X ,A) are those
pre-formulae with no free recursion variables. The order of binding precedence
is = , ¬ , | , ∧ , with negation binding strongest. We write x 6= y for
¬(x = y). The scope of ∃x. and µR(x̃). is always the maximum possible.

The nil formula specifies the empty graph. The edge formula α(ξ1, ξ2) specifies
that a graph is just one edge. The composition formula φ |ψ specifies that a
graph can be split into two parts with one part satisfying φ and the other ψ.
The other formulae should be familiar. It is also logically natural to add other
connectives such as a spatial negation and implication [OP99,CG00].

3.2 Satisfaction Relation

The satisfaction relation determines which graphs satisfy which formulae. It is
defined by an interpretation function which maps pre-formulae to sets of graphs.

Definition 5 (Satisfaction)
We assume name set X and edge set A. Let σ : VX → X denote a substitution
from name and label variables to names and labels respectively, and let ρ send
recursion variables of arity n to elements of the set of functions (Xn → P(G)).
The satisfaction interpretation [[]]σ;ρ : Fpre → P(G) is defined inductively by:

[[nil]]σ;ρ = {G : G ≡ nil}

[[α(ξ1, ξ2)]]σ;ρ = {G : G ≡ ασ(ξ1σ, ξ2σ)}

[[φ |ψ]]σ;ρ = {G : G ≡ G1 |G2 ∧G1 ∈ [[φ]]σ;ρ ∧G2 ∈ [[ψ]]σ;ρ}

[[true]]σ;ρ = G

[[φ ∧ ψ]]σ;ρ = [[φ]]σ;ρ ∩ [[ψ]]σ;ρ

[[¬φ]]σ;ρ = G/[[φ]]σ;ρ

[[∃x. φ]]σ;ρ =
⋃

x∈X

[[φ]]σ,x 7→x;ρ

[[∃a. φ]]σ;ρ =
⋃

a∈A

[[φ]]σ,a 7→a;ρ

[[R(ξ̃)]]σ;ρ = Rρ(ξ̃σ), |ξ̃| = n, Rρ : Xn → P(G)

[[(µR(x̃).φ)ξ̃]]σ;ρ = ({S ∈ (X |x̃| → P(G)) : (λỹ. [[φ]]σ,x̃ 7→ỹ;ρ,R 7→S) ⊑ S})(ξ̃σ)

where S ⊑ S′ iff ∀ỹ ∈ X |x̃|. S(ỹ) ⊆ S′(ỹ)

[[ξ1 = ξ2]]σ;ρ = G, if ξ1σ = ξ2σ; ∅ otherwise

[[α1 = α2]]σ;ρ = G, if α1σ = α2σ; ∅ otherwise

Definition 5 is shown to be well-defined by structural induction on formulae. For
the recursive case, observe that the set of all pointwise-ordered total functions of
type X |x̃| → P(G) is a complete lattice. Define the satisfaction relation G �σ φ
for formula φ if and only if G ∈ [[φ]]σ; , where denotes an arbitrary ρ.

Proposition 6 (Satisfaction Properties)
The satisfaction relation satisfies the following standard properties:

G �
σ nil ⇔ G ≡ nil

G �
σ α(ξ1, ξ2) ⇔ G ≡ ασ(ξ1σ, ξ2σ)

G �
σ φ |ψ ⇔ ∃G1, G2 ∈ G. (G ≡ G1 |G2 ∧ G1 �

σ φ ∧G2 �
σ ψ)

G �
σ true ⇔ G ∈ G

G �
σ φ ∧ ψ ⇔ G �

σ φ ∧ G �
σ ψ

G �
σ ¬φ⇔ ¬(G �

σ φ)

G �
σ ∃x.φ⇔ ∃x ∈ X . G �

σ φ{x/x}

G �
σ ∃a.φ⇔ ∃a ∈ A. G �

σ φ{a/a}

G �
σ (µR(x̃). φ)(ξ̃) ⇔ G �

σ φ{ξ̃/x̃}[(µR(x̃).φ)/R]

G �
σ ξ1 = ξ2 ⇔ ξ1σ = ξ2σ

G �
σ α1 = α2 ⇔ α1σ = α2σ

The recursion case requires a substitution and monotonicity lemma showing that
the function λỹ. [[φ]]σ,x̃ 7→ỹ;ρ,R 7→S is monotone in S. Then we apply the fix-point
theorem.

Definition 7 (Derived Formulae)
We give some derived formulae which are used throughout the paper:

false
def
= ¬true φ ||ψ

def
= ¬(¬φ | ¬ψ)

φ ∨ ψ
def
= ¬(¬φ ∧ ¬ψ) subgraph∃(φ)

def
= φ | true

φ⇒ ψ
def
= ¬φ ∨ ψ subgraph∀(φ)

def
= φ || false

∀x. φ
def
= ¬∃x.¬φ

The connective || is the de Morgan dual of | . The binding precedence is ∧ ,
∨ , ⇒ , with conjunction binding strongest. The scope of ∀x. is the maximum
possible.

Example We revisit the two examples discussed in the introduction:

∃x,y, z,u. a(x,y) | b(y, z) | a(z,u) | true

∃x,y, z,u. (a(x,y) | true) ∧ (b(y, z) | true) ∧ (a(z,u) | true)

Recall that the first formula specifies that a graph has at least three different
edges; the second that a graph has a path of three edges.

Example We specify the property that there exists a path from x to y in our
logic without recursion. This is interesting since it is not expressible in first-order
logic without recursion. First we give some preliminary derived formulae:

no edge into x in0(x)
def
= ¬∃y, a. a(y, x) | true

n+ 1 edges into x inn+1(x)
def
= ∃y, a. a(y, x) | inn(x)

a minimal graph satisfying φ min(φ)
def
= φ ∧ ¬(φ | ¬nil)

x is a node in the graph in graph(x)
def
= ∃y, a. (a(x,y) ∨ a(y, x)) | true

The formulae outn(x) are defined similarly to inn(x). We now give a formula
which specifies that a graph is just a straight path from x to y and does not
contain a cycle (when x = y the formula is satisfied by the empty graph):

straight path(x,y)
def
= min[x = y ∨ (in0(x) ∧ out1(x) ∧ in1(y) ∧ out0(y)∧

∀z. z 6= x ∧ z 6= y ∧ in graph(z) ⇒ out1(z) ∧ in1(z))]

This formula specifies that the graph contains one start node x, one end node
y and all the other nodes must have one incoming and one outgoing edge
(hence no cycles). Minimality ensures that there are no disconnected cycles. The
property that there exists a path from x to y is now specified by the formula

exists path(x,y)
def
= subgraph∃(straight path(x,y)).

ExampleWe give an equivalent formula to exists path(x, y) using recursion—we

use the notation R(x̃)
def
= φ, as an abbreviation for R(ξ̃)

def
= (µR(x̃). φ)(ξ̃):

exists path(x,y)
def
= x = y ∨ (∃z, a. a(x, z) | exists path(z,y)).

This combination of composition and recursion can be regarded as an induction
on the graph structure. Consider the graph a(x, z) | b(z, z) | c(z, y). There are just
two ways to check that this graph satisfies the formula: either by checking that
edge a is followed by c; or that a is followed by b is followed by c.

Example A classic property associated with compiler optimisation is ‘a node z
dominates node y iff every path from some declared initial node x to y passes
through z’. First we specify the property that a graph is a path from x to y:

path(x,y)
def
= (x = y ∧ nil) ∨ (∃z, a. a(x, z) |path(z,y))

The addition of nil ensures that all the edges are checked. For example, in graph
a(x, z) | b(z, z) | c(z, y) the only way that path(x,y) is satisfied is by checking
that a follows b follows c. It is now simple to specify the property we seek:

dominates(x, y, z)
def
= subgraph∀(path(x, y) ⇒ in graph(z)).

4 A Query Language

Our basic language consists of queries and transducers. Queries build new graphs
from old. Transducers associate input graphs with output graphs. These concepts
are related. The basic transducer φ ⇛ Q relates input graphs satisfying φ with
output graphs given by Q. The query (apply τ to Q) applies the transducer τ
to the input graphs given by Q, to yield the corresponding set of output graphs.

Definition 8 (Query Language)
The sets of pre-queries and pre-transducers, denoted Qpre(X ,A) and Tpre(X ,A)
respectively, are given by the grammars from definition 4 and the grammars:

Q ::= queries τ ::= transducers

G graph variable φ⇛ Q basic transducer

nil empty graph λG.Q abstraction

α(ξ1, ξ2) edge graph τ | τ transducer composition

Q |Q composition τ ∨ τ disjunction

apply τ to Q application ∃x.τ exist. quant. of names

∃a.τ exist. quant. of labels

RT recursion

µRT. τ least fix-pt, RT positive

The sets of queries and transducers, denoted by Q(X ,A) and T (X ,A), contain
those pre-queries and pre-transducers with no free recursion variables. We use

RT

def
= τ to denote RT

def
= µRT. τ . We overload notation: | denotes the compo-

sition of formulae, queries and transducers. The connective ⇛ has the weakest
binding strength; the other connectives are as before. A glaring omission is the
absence of a renaming technique for node identifiers, such as Skolemization. Our
approach is enough for this paper. Other transducer connectives are feasible. Our
choice was determined by our aim to have a simple language in which to express
our motivating examples. We describe a more general approach in section 4.1.

Definition 9 (Query interpretation)
Assume name set X and label set A. Let σ denote a substitution from name and
label variables to names and labels respectively, let δ denote a substitution from
graph variables to elements of G, and let function ρ map transducer recursion
variables to the set P(G × G). The query interpretation [[]]σ;τ ;ρ : Qpre → P(G)
and the transducer interpretation [[]]σ;ρ;τ : Tpre → P(G × G), are defined by a
simultaneous induction on the structure of pre-queries and pre-transducers:

[[G]]σ;δ;ρ = {G : G ≡ Gδ}

[[nil]]σ;δ;ρ = {G : G ≡ nil}

[[α(ξ1, ξ2)]]σ;δ;ρ = {G : G ≡ ασ(ξ1σ, ξ2σ)}

[[Q1 |Q2]]σ;δ;ρ = {G : G ≡ G1 |G2 ∧G1 ∈ [[Q1]]σ;δ;ρ ∧G2 ∈ [[Q2]]σ;δ;ρ}

[[apply τ to Q]]σ;δ;ρ = {G′ : ∃G. (G,G′) ∈ [[τ]]σ;δ;ρ ∧G ∈ [[Q]]σ;δ;ρ}

[[φ⇛ Q]]σ;δ;ρ = {(G,G′) : G ∈ [[φ]]σ; ∧G′ ∈ [[Q]]σ;δ;ρ}

[[λG. Q]]σ;δ;ρ = {(G,G′) : G′ ∈ [[Q]]σ;δ,G 7→G;ρ}

[[τ1 | τ2]]σ;δ;ρ =

{(G,G′) : G ≡ G1 |G2 ∧G′ ≡ G′
1 |G

′
2 ∧ (G1, G

′
1) ∈ [[τ1]]σ;δ;ρ ∧ (G2, G

′
2) ∈ [[τ2]]σ;δ;ρ}

[[τ1 ∨ τ2]]σ;δ;ρ = [[τ1]]σ;δ;ρ ∪ [[τ2]]σ;δ;ρ
[[∃x.τ]]σ;δ;ρ =

⋃
x∈X [[τ]]σ,x 7→x;δ;ρ

[[∃a.τ]]σ;δ;ρ =
⋃

a∈A[[τ]]σ,a 7→a;δ;ρ

[[RT]]σ;δ;ρ = RTρ

[[µRT. φ]]σ;δ;ρ =
⋂
{S ∈ P(G × G) : [[φ]]σ;δ;ρ,RT 7→S ⊆ S}

Example: inverting edges Consider the transducer

∃a,x,y. a(x,y) | true ⇛ a(y,x)

It returns one inverted edge of any non-empty input graph. The transducer is
non-deterministic: given input graph a(x, y) | b(y, x), the set of possible output
graphs is {a(y, x), b(x, y)}. Now consider the query

apply (∃a,x,y. a(x,y) | true ⇛ a(y,x)) to input graph

When the input graph is a(x, y) | b(y, x) the resulting output is either a(y, x) or
b(x, y); when the input graph is a(x, y) | a(x, y) the result can only be a(y, x).

Example: case analysis The connective ∨ can be used for case analysis:

(nil ⇛ nil) ∨ (∃a,x,y. a(x,y) | true ⇛ a(y,x))

Either the input graph is empty and we return the empty output graph. Or the
input graph is non-empty and we return an inverted edge.

Example: exact inverted copy We can execute a query against every edge.
For example, the transducer relating an input graph with its inverted copy is

RT

def
= (nil ⇛ nil) ∨ (∃a,x,y. a(x,y) ⇛ a(y,x)) |RT

Either the input graph is empty and we return the empty graph. Or the graph
can be split into an edge and the rest of the graph. We return the inverted
edge and execute the transducer on the smaller graph. Given the input graph
a(x, y) | a(x, y), we return the exact inverted copy.

We can adapt this example to execute a query against every edge provided
it satisfies a certain logical formula. For example, consider the transducer

RT

def
= (nil ⇛ nil) ∨

(∃a,x,y. ((a(x,y) ∧ x 6= y ⇛ a(y,x)) ∨ (a(x,y) ∧ x = y ⇛ nil)) |RT)

Either the input graph is empty and we return the empty graph. Or the input
graph is non-empty and we pick an edge. If the domain and codomain of the

edge are different then return the inverted edge; if they are the same then return
the empty graph. Apply the transducer to the remaining smaller graph.

Example: transitive closure A standard example is the transitive closure of
a graph. It illustrates the power of mixing abstraction with recursion. For this
example only, we assume the edge labelled set A = {a}. The following transducer,
when applied to graph G, returns the minimum graph TC which contains G and
satisfies the property: if a(x, y) and a(y, z) are in TC then so is a(x, z):

RT

def
= λG. (¬∃x,y, z. (a(x,y) | true ∧ a(y,z) | true ∧ ¬(a(x,y) | true)) ⇛ G) ∨

∃xy, z. a(x,y) | true ∧ a(y,z) | true ∧ ¬(a(x, z) | true) ⇛ apply RT to (G | a(x, z))

4.1 Generalised Transducers

We generalise the definition of transducers (definition 8). Our approach is simple,
but too expressive to implement. The semantic interpretation (definition 11)
gives us the flexibility to adapt our choice of basic language if we wish.

Definition 10 (Generalised Transducers)
Assume name set X and label set A. The set of generalised pre-transducers, de-
noted GT pre(X ,A), is given by the grammar:

τ ::= id identity nil empty input graph

τ1; τ2 composition . . . analogous cases from definition 4

G graph variable ∃G.τ existential quantification over graphs

Generalised transducers relate input and output graphs. A logical formula φ re-
garded as a generalised transducer relates input graphs satisfying φ to arbitrary
output graphs. The identity transducer relates structurally congruent graphs.
The transducer composition τ1; τ2 is relational composition. Identity and com-
position allows us to specify properties of the output graphs. For example, the
transducer true; (φ∧ id) relates arbitrary input graphs with output graphs satis-
fying φ. Queries correspond to such generalised transducers.

Definition 11 (Interpretation of Generalised Transducers)
Assume name set X and label set A. The query interpretation [[]]σ;δ;ρ : GT →
P(G × G), where σ denotes a substitution from name and label variables to
names and labels respectively, δ maps graph variables to graphs, and function ρ
maps recursion variables of arity n to functions Xn → R(G × G), is defined by
induction on the structure of the extended formulae:

[[id]]σ;δ;ρ = {(G,G′) : G ≡ G′}

[[τ1; τ2]]σ;δ;ρ = {(G,G′) : ∃G1. (G,G1) ∈ [[τ1]]σ;δ;ρ ∧ (G1, G
′) ∈ [[τ2]]σ;δ;ρ}

[[G]]σ;δ;ρ = {G : Gδ = G} × G

[[nil]]σ;δ;ρ = {G : G ≡ nil} × G

[[α(ξ1, ξ2)]]σ;δ;ρ = {G : G ≡ ασ(ξ1σ, ξ2σ)} × G

[[τ1 | τ2]]σ;δ;ρ =

{(G,G′) : G ≡ G1 |G2 ∧G′ ≡ G′
1 |G

′
2 ∧ (G1, G

′
1) ∈ [[τ1]]σ;δ;ρ ∧ (G2, G

′
2) ∈ [[τ2]]σ;δ;ρ}

[[true]]σ;δ;ρ = G × G

[[τ1 ∧ τ2]]σ;δ;ρ = [[τ1]]σ;δ;ρ ∩ [[τ2]]σ;δ;ρ
[[¬τ]]σ;δ;ρ = (G × G) \ [[τ]]σ;δ;ρ

[[∃x.τ]]σ;δ;ρ =
⋃

x∈X [[τ]]σ,x 7→x;δ;ρ

[[∃a.τ]]σ;δ;ρ =
⋃

a∈A[[τ]]σ,a 7→a;δ;ρ

[[∃G.τ]]σ;δ;ρ =
⋃

G∈G[[τ]]σ;δ,G 7→G;ρ

[[R(ξ̃)]]σ;δ;ρ = Rρ(ξ̃σ)

[[(µR(x̃). τ)(ξ̃)]]σ;δ;ρ = ({S ∈ X |x̃| → P(G × G) : λỹ. [[τ]]σ,x̃ 7→ỹ;δ;ρ,R 7→S ⊑ S})(ξ̃σ)

where S ⊑ S′ iff ∀ỹ ∈ X |x̃|. S(ỹ) ⊆ S′(ỹ)

[[ξ1 = ξ2]]σ;ρ = G × G if ξ1σ = ξ2σ; ∅ otherwise

[[α1 = α2]]σ;ρ = G × G if α1σ = α2σ; ∅ otherwise

Proposition 12
There exists embeddings ()◦ : Qpre → GT pre, ()

◦ : F → GT pre and ()◦ : Tpre →
GT pre such that

1. for all queries Q, [[Q◦]]σ;δ;ρ = G × [[Q]]σ;δ;ρ;

2. for all logical formulae φ, [[φ◦]]σ;δ;ρ = [[φ]]σ; × G;

3. for all basic transducers τ , [[τ◦]]σ;δ;ρ = [[τ]]σ;δ;ρ.

Proof. The embeddings are give in [CGG01]. The query (apply τ to Q) is inter-
preted by the sequential composition. The basic transducer φ⇛ Q is interpreted
by conjunction. The abstraction λG. Q by the existential quantification on G.

Example Consider the derived transducers:

subgraph
def
= id | (nil ⇛ true) strict subgraph

def
= id | (nil ⇛ ¬nil)

τ1;; τ2
def
= ¬(τ1;¬τ2) min out (τ)

def
= τ ∧ ¬(τ ; strict subgraph)

finite lub (τ)
def
= min out(τ ;; subgraph)

The transducer subgraph relates G1 to G2 if and only if G1 ⊆ G2: that is,
G1 |H ≡ G2 for some H . The strict subgraph is the strict version. The connective
;; is the de Morgan dual of ;. Unravelling the definition, it states that

(G,G′) ∈ [[τ1;; τ2]]σ;δ;ρ ⇔ (∀G1. (G,G1) ∈ [[τ1]]σ;δ;ρ ⇒ (G1, G
′) ∈ [[τ2]]σ;δ;ρ)

This operator allows us to work with all output graphs associated with a given
input. For example, the transducer τ ;; subgraph relates a graph G with all the
finite upper bounds of [[τ]](G) (where [[τ]](G) is the set of all graphs G′ such
that (G,G′) ∈ [[τ]]). These finite upper bounds do not necessarily exist, in which
case [[τ ;; subgraph]](G) is the empty set. We may adapt our finite semantics to the
infinite case, by using the infinite version of the set-theoretic presentation given in
section 2.1. Themin out(τ) transducer relates a graphG with the minimal graphs
in [[τ]](G). The transducer finite lub (τ) relates a graph G with the minimal finite
upper bound of [[τ]](G), when it exists. The infinite semantics would give rise to

a least upper bound. In the introduction, we discuss a standard set-theoretic
language based on from/select expressions. These expressions are embeddable in
our general language using this finite-lub construction [CGG01].

We must give an in-depth comparison between our query language and other
query languages based on graphs [FFK+97,CM90,BDHS96]. Our language is
closely related to XDuce [HP01], a processing language for XML documents
based on pattern-matching and a simple typing scheme analogous to the struc-
tural component of our spatial logic. Our ambitious aim is to achieve a level of
understanding of query languages for semi-structured data which rivals that of
languages associated with the relational model.

References

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kauf-
mann, 2000.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query lan-
guage and optimization techniques for unstructured data. In SIGMOD,
LNCS 2044, pages 505–515, 1996.

[Cai99] L. Caires. A Model for Declarative Programming and Specification with Con-
currency and Mobility. PhD thesis, University of Lisbon, 1999.

[CC01] L. Caires and L. Cardelli. A spatial logic for concurrency (part 1). In TACS,
LNCS 2215. Springer, 2001. Journal paper to be in Information and Comp.

[CG00] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In POPL. ACM, 2000.

[CG01a] L. Cardelli and G. Ghelli. A query language based on the ambient logic. In
ESOP/ETAPS, LNCS 2028. Springer, 2001.

[CG01b] L. Cardelli and A. Gordon. Logical properties of name restriction. In TLCA,
LNCS 2044. Springer, 2001.

[CGG01] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs.
Fuller version found at http://www.doc.ic.ac.uk/˜pg, 2001.

[CM90] M. Consens and A. Mendelzon. Graphlog: a visual formalism for real life
recursion. In Principles of Database Systems, pages 404–416. ACM, 1990.

[CMR94] A. Corradini, U. Montanari, and F. Rossi. An abstract machine for concur-
rent modular systems: Charm. TCS, 122:165–200, 1994.

[Cou97] Bruno Courcelle. The expression of graph properties and graph transfor-
mations in monadic second-order logic. Graph grammars and computing by
graph transformations, 1:313–400, 1997.

[FFK+97] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Strudel: A
web-site management system. In SIGMOD Management of Data, 1997.

[GW00] P. Gardner and L. Wischik. Explicit fusions. MFCS, LNCS 1893, 2000.
Journal version submitted to Theoretical Computer Science.

[HP01] H. Hosoya and B. Pierce. Regular expression pattern matching for xml. In
POPL. ACM, 2001.

[IO01] S. Ishtiaq and P. O’Hearn. Bi as an assertion language for mutable data
structures. In POPL, 664. ACM, 2001.

[OP99] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

[Rey00] J.C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
Millenial Perspectives in Computer Science, Palgrove, 2000.

