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We introduce TaDA Live, a separation logic for reasoning compositionally about the termination of blocking

fine-grained concurrent programs. The logic contributes several innovations to obtain modular rely/guarantee

style reasoning for liveness properties and to blend them with logical atomicity. We illustrate the subtlety of

our specifications and reasoning on some paradigmatic examples.

1 INTRODUCTION

Compositional reasoning for fine-grained concurrent programs interacting with shared memory

is a fundamental, open research problem. We are beginning to obtain a good understanding

of compositional reasoning about safety properties of concurrent programs: i.e. if the program

terminates and the input satisfies the precondition, then the program does not fault and the result

satisfies the postcondition. Following [2, 25], which introduced concurrent separation logic for

reasoning compositional about course-grained concurrent programs, there has been a flowering

of work on modern concurrent separation logics for reasoning about safety properties of fine-

grained concurrent programs: e.g. CAP [8], TaDA [4]; Iris [15]; and FCSL [23]. It is now possible to

provide compositional reasoning about safety properties of concurrent programs, with specifications

that match the intuitive software interface understood by the developer, and formally verified

implementations and clients.

We have comparatively little understanding of compositional reasoning about progress (liveness)
properties for fine-grained concurrent algorithms: i.e. something good eventually happens. Examples

of progress properties include termination, livelock-freedom, or that every user request is eventually

served. The intricacies of the design of concurrent programs often arise precisely from the need to

make the program correct with respect to progress properties. Such properties therefore form an

essential part of the software interface: in java.util.concurrent, the lockmodule has a parameter

called ‘fair’ that a developer can set to determine the progress behaviour of the chosen lock, with

different locks being suitable for different clients. Such properties should be precisely stated in the

specifications of concurrent programs. The goal of this paper, is to devise a verification system able

to compositionally prove total specifications for blocking concurrent programs. Blocking happens

when a thread is waiting for an action to be performed by some other thread. This pattern of

interaction represents a key challenge for compositional termination arguments.

There has been work on reasoning about progress for synchronisation patterns of coarse-grained

language primitives such as primitive locks and communication channels [1, 14, 17]. In this work, all

the blocking behaviour of a program is focussed on the use of these primitive constructs. Although

verification is challenging even under this assumption, this approach suffers from two drawbacks:

first, it makes it difficult to have abstract specifications for high-level blocking components since

the specification will need to refer to actions generated by the blocking primitives; second, it does
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not generalise to the combination of blocking primitives and blocking that arises from more general

busy-waiting patterns.

Consider instead fine-grained concurrent programs where the primitives never block and instead

blocking constructs are implemented by sophisticated busy-waiting patterns. For example, high-

level blocking synchronisation primitives like locks and channels are implemented on top of

non-blocking primitives such as compare-and-swap. One way to handle this more general setting

is by history-based reasoning [11, 16]: specifications are described using abstract histories and

interference is given by a rely/guarantee relation on such histories. This approach provides a

general, expressive framework in which to explore many forms of concurrent behaviour. However,

with termination, the specifications are complex and the verification requires explicit manipulation

of the histories. We have a different approach, to verify program specifications that are based on

more standard abstract state updates, rather than general histories.

Another natural way of dealing with busy-waiting blocking patterns is to use refinement to show

that their behaviour can be replaced by some blocking primitive. With this approach, blocking

code can be replaced with some primitive blocking code which implements the same functionality

without busy waiting. LiLi [21], the only concurrent separation logic to prove directly termination

results for fine-grained concurrency with blocking, adopts this approach. However, to accurately

capture the behaviour of the fine-grained code, the abstract code used as specification is non-atomic

and represents the termination argument as behaviour of the abstract code. Any proof which tries

to use the specification in a larger proof would have to reconstruct the termination argument from

the structure of the abstract code. This results in duplication of effort and unnecessarily complicated

proofs. We discuss this further in Section 6 and Appendix.

We explore a radical new way of representing and reasoning about blocking. Instead of using

blocking primitives embedded directly into an operational semantics, we think of blocking be-

haviour as the reliance of termination on liveness properties of the environment. The proof of safety
properties usually requires the establishment of resource invariants of the form “always Ψ” for
some condition Ψ: for example, a lock has the invariant property that it is always either locked or

unlocked. In contrast, we build our termination arguments on what we call liveness invariants of
the form “always eventually Ψ”: for example, a lock operation is blocking because it terminates

conditionally on the property that the environment will induce traces where the lock is always

eventually unlocked.

We introduce TaDA Live, a compositional separation logic for reasoning about the termination of

fine-grained concurrent programs. Our view of blocking is the source of all TaDA Live’s innovations:

• Abstract atomic specifications for blocking operations which express termination guarantees

conditionally on an environment liveness assumption of the form “always eventually Ψ”.
• Extension of Rely/Guarantee compositional reasoning to incorporate thread-local liveness

invariants, through the introduction of liveness ghost state called obligations.
• Layered liveness invariants to allow the sound composition of arguments based on mutually

dependent liveness invariants. This mechanism is crucial for proving that there is no deadlock.

TaDA Live is fully compositional, obtaining thread-locality and modularity as a simple consequence

of using our environment liveness invariants. The specifications leak only the details strictly

necessary for expressing termination properties, and abstract atomicity enables direct reasoning

about dependencies between abstract actions as opposed to indirect reasoning via the primitive

actions.

Our work on TaDA Live builds on TaDA [4], a compositional separation logic for reasoning

about safety properties of fine-grained concurrent programs. The proof of soundness of TaDA

Live required a number of technical innovations. A substantial re-definition of the model partly

influenced by ideas from Iris [15], partly attempting at a more direct refinement-like semantics,



TaDA Live 3

simplifies the understanding and manipulation of the semantics of the specifications. The sim-

plification allowed for a principled extension of the model to include obligations and to express

the associated liveness constraints. Inspired by [19], we have introduced a subjective composition

operation for obligations, to keep track of available liveness assumptions in a thread-local way.

Using TaDA Live, we have verified a number of paradigmatic examples including spin lock, CLH

lock, our distinguishing client, a blocking counter module and a lock-coupling set. We present

here and in Appendix two fine-grained implementations of locks (CLH and spin lock) and a simple

client using locks to illustrate the main points of our reasoning principles.

2 TADA LIVE SPECIFICATIONS

We motivate TaDA Live specification and verification, using two implementations of a lock module

which have the same safety specification, but different termination specifications.

Two Lock Implementations. Consider the spin lock and the CLH lock given in Fig. 1. The implemen-

tations enable threads to compete for the acquisition of a lock at address x by running concurrent

invocations of the lock(x) operation. Only one thread will succeed, leaving the others to wait

until the unlock(x) operation is called by the winning thread.

We use a simple, fine-grained concurrent while language for manipulating shared state. The

shared state comprises heap cells which have addresses and store values (addresses, integers,

booleans). The [x] notation denotes the value stored at the heap cell with address x.

Spin Lock� �
1 lock(x){
2 var d= 0 in
3 while(d= 0){
4 dB CAS(x,0,1);
5 }
6 }
7 unlock(x) {[x]B 0;}� �

CLH Lock� �
1 lock(x) { var c,p,v in
2 cB alloc(1); [c]B 1;
3 pB FAS(x + 1, c);
4 vB [p];
5 while(v, 0) { vB [p]; }
6 [x]B c;
7 dealloc(p)
8 }
9 unlock(x) {hB [x]; [h]B 0;}� �

Fig. 1. Two locks.

The primitive commands, such as assignment, lookup and mutation,

are assumed to be primitive atomic and non-blocking: every primitive

command, if given a CPU cycle, will terminate. Since reads and writes

may race, the language is equipped with a compare-and-swap primitive

command, CAS(x,v1,v2), which checks if the value stored at x isv1: if
so, it atomically storesv2 at x and returns 1; otherwise it just returns 0.
Similarly, the fetch-and-set primitive command, FAS(x,v), stores v at

x returning the value that was stored at x just before overwriting it.

The spin lock in Fig. 1 is standard. Its state comprises a heap cell

at x which stores either 0 (unlocked) or 1 (locked). The Craig-Landin-

Hagersten (CLH) lock in Fig. 1 serves threads competing for the lock

in a FIFO order. It queues requests, keeping a head and a tail pointer

(at x and x+1 respectively). The predecessor pointers are stored in

each thread’s local state (in p). The lock is acquired by a thread when

the predecessor signals release of the lock by setting its node to 0.

Unlocking a node corresponds to setting the head node value to 0.

TaDA Safety Specification. We introduce the partial safety specifications of TaDA using our lock

example. The spin lock and the CLH lock have the same safety behaviour, and hence satisfy the

same TaDA safety specification.

TaDA specifications combine data abstraction, introduced for concurrent separation logics in the

CAP logic [8], with time abstraction captured by abstract atomicity. Consider the concurrent trace
in Figure 2: the local thread invokes the operation lock(x); the environment continues to lock and

unlock the lock during this invocation. Linearizability [13] is probably the best known technique

for describing abstract atomicity. It is a correctness condition for concurrent traces that, when

satisfied, enables us to find a sequential trace which has no invocation overlaps and is equivalent

to the original concurrent trace. One well-known technique for establishing linearizability is to

identify the ‘linearization points’, illustrated by the bullet points in Figure 2, which are steps in the

invocation of an operation where the abstract state change becomes visible to the client: with the
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L(x, 1)
L(x, 0)

time

abs. state

environ.

local thread L(x, 1) lock(x)

Concurrent Trace

Linearizability L(x, 0)

TaDA

Fig. 2. Linearizability versus TaDA.

spin lock, the linearization point is the successful CAS; with the CLH lock, the linearization point

is line 6. The linearization points give rise to a sequential trace where the order of the operations

coincides with the order of execution of the corresponding linearization points, in Fig. 2.

One aim of linearizability is to reduce reasoning about concurrent traces of primitive events

to reasoning about sequential traces of operation invocations, enabling the use of sequential

specifications to describe the operations. In the case of lock, the use of sequential specifications
is problematic. The linearisation point satisfies the triple ⊢

{
L(x, 0)

}
lock(x)

{
L(x, 1)

}
. However,

using this triple as a specification of the whole operation does not work. As illustrated in Fig. 2, a lock

can also be called when it is locked. Relaxing the triple to ⊢
{
L(x, 0) ∨ L(x, 1)

}
lock(x)

{
L(x, 1)

}
is not enough: the same triple holds for a simple assignment x B 1; the triple does not express the
property that, upon termination of the operation, we can claim that we have acquired the lock.

TaDA safety specifications describe the inherently concurrent behaviour of the lock operation

accurately. Consider the execution of the abstract atomic lock operation in Fig. 2, labelled TaDA.

The call is not collapsed to a single instant in time, but instead is represented by an interval of time

from its invocation to the linearization point, called the interference phase of the call. During this
phase, the environment is able to make changes to the abstract state, represented in the figure by ◦,
but the local thread can only change the lock from unlocked to locked at the linearization point,

represented in the figure by •. The TaDA safety specification for lock is the partial atomic triple:

⊢ A

l ∈ {0, 1}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
(1)

The interference precondition

A

l ∈ {0, 1}.⟨L(x, l)⟩ describes the interference phase. It states that
the environment must preserve the existence of the lock at x but may change the value of l , and
the implementation of the lock must tolerate these environmental changes. The pseudo-quantifier

A

l ∈ {0, 1} is unusual, behaving like an evolving universal quantifier in that the environment is able

to keep changing l over time and behaving like an existential quantifier in that the implementation

can assume that the lock always exists with l ∈ {0, 1}. The triple (1) states that, if the environment

satisfies the interference precondition and the operation terminates, then the implementation

guarantees that, just before the the linearization point, the lock must have been available for

locking (l = 0) and, just afterwards, the lock has been locked by the operation (L(x, 1)). Exclusive
ownership of the lock after the operation terminates can be derived from the l = 0 assertion in the

postcondition: just before we locked it, nobody else can claim that they owned the lock.

The partial specification of unlock is ⊢ A

l ∈ {1}.
〈
L(x, l)

〉
unlock(x)

〈
L(x, 0)

〉
. This triple

1

states that, to be used correctly, the unlock operation requires the lock to be locked and not

1
We typically omit the pseudo-quantifier in the case where the set is just one element.
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changed by the environment during the interference phase; in return, the operation promises to

atomically set the lock to be unlocked.

TaDA Live Total Specification. TaDA Live builds on the TaDA specification format. To turn the

TaDA triple for lock into a total specification, the termination guarantee must depend on the

environment: if the environment decides to hold the lock indefinitely, no lock implementation

should allow the lock operation to terminate. A common approach to represent this behaviour, used

for example by [21], is to appeal to a notion of primitive blocking built into the operational semantics.

Intuitively, this associates to a blocking command an enabledness condition: that is, a condition B
on the state such that if B holds then the command can take a step, otherwise not. The injection of

this concept of primitive blocking seems artificial in fine-grained concurrency: at the machine level,

every command can always take a step. In addition, for fine-grained primitives, the reasoning only

needs to assume a weakly fair scheduler that promises to eventually execute a step of every active

thread. In contrast, for blocking primitives, a strongly fair scheduler assumption may be needed

(for example, for the distinguishing client discussed later), where the scheduler promises never to

produce a trace where a command is infinitely often enabled but never executed. Representing and

appealing to these fairness assumptions in the reasoning is tricky. Since fine-grained primitives can

be used to implement both blocking constructs with the strongly fair, or weakly fair semantics, we

should be able to find a uniform specification format that can abstractly represent all these forms

of blocking (primitive or derived) without resorting to a notion of primitive blocking.

We obtain a uniform treatment of blocking by making a fundamentally different choice. We

express blocking behaviour as a liveness condition on the environment during the interference

phase of an abstractly atomic operation. The CLH lock operation will terminate under weak

fairness, provided that, if the lock is locked by the environment during the interference phase, the

environment will eventually unlock it. In general, a blocking operation will require an environment

that is live: it will always eventually bring the abstract state to a good state (e.g. unlocked).

In Fig. 3(a) we show a diagram of the evolution of the abstract state induced by a live environment

in the interference phase of lock. Note that we do not require the environment to promise to

eventually keep the lock always unlocked. Progress towards termination of the lock is guaranteed

by the progress measure charted in Fig. 3(b): every time the environment unlocks, the value of

l decreases from 1 to 0; when the environment locks, although l increases to 1, the number q of

threads in front of us in the queue decreases. One crucial aspect of our specification design is

that we do not want to expose the progress argument to the client unless part of the argument
needs to be made by the client. With CLH, the part of the argument appealing to the queue of

threads is completely internal to the implementation of the operation, while the argument for the

environment’s liveness must be provided by the client (the implementation has no power over this).

The TaDA Live total specification of the CLH lock is:

⊢ A

l ∈ {0, 1} ↠ {0}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
(2)

The interference precondition is

A

l ∈ {0, 1} ↠ {0}.⟨L(x, l)⟩ with the pseudo-quantifier now in-

corporating the environment liveness condition. As well as stating that the environment can

keep changing the lock, the interference precondition also states that if the lock is in a bad state

(l ∈ {0, 1} \ {0}) then the environment must always eventually change it to a good state (l ∈ {0}).
The implementation needs to ensure termination under the assumption that the lock always even-

tually returns to the unlocked state. Note that the environment is allowed to change l back to 1

arbitrarily many times, provided it always eventually sets it back to 0. With this assumption about

the environment, the CLH lock operation will terminate with the desired behaviour: when the

lock is unlocked and we are not at the head of the queue, the current head is guaranteed internally
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time

abs. state

L(x, 1)
L(x, 0)

(a)

always eventually good state

time

abs. state

L(x, 1)
L(x, 0)

(c)

x x x

bounded

impedance

always eventually good state

time

variant
2q + l

(b)

time

variant
2α + l

(d)

Fig. 3. Live environment (a); measure of progress for CLH lock where q is the number of threads ahead in the

queue (b); live environment with bounded impedance (c); measure of progress for spin lock (d).

to acquire the lock and move us one step closer to the head of the queue; if the lock is locked, the

implementation can appeal to the assumption provided by the pseudo-quantifier, and argue that

eventually the lock is going to be unlocked. We prove this formally in the Appendix.

Now let us consider the spin lock implementation. The spin lock operation cannot promise to

terminate just by relying on a live environment. The problem is that when the environment locks

the lock, there is no measure of progress that decreases: we are genuinely delayed by this action.

We call this effect impedance. We conceptualise impedance as a greater leaking of the progress

argument to the client. In the spin lock example, the whole of the progress argument needs to

be provided by the client: the client needs to ensure that the environment will always eventually

unlock the lock, and that it will only impede the operation a bounded number of times. To represent

this extra bounded impedance requirement (depicted in 3(c)), we extend the abstract state of the

lock with an ordinal α , an impedance budget that strictly decreases when the lock state is set to 1.

We arrive at the following TaDA Live specification for spin lock:

∀ϕ . ⊢ A

l ∈ {0, 1} ↠ {0},α .
〈
L(x, l ,α) ∧ ϕ(α) < α

〉
lock(x)

〈
L(x, 1,ϕ(α)) ∧ l = 0

〉
(3)

The lock is now represented by the predicate assertion L(x, l ,α) with ordinal α , which can also be

changed by the environment during the interference phase. As well as expressing the dependency

on a live environment on l , this triple states that every lock operation consumes the budget α by

a non-trivial amount, thus providing a logical measure of progress from good to bad states. The

initial value of the budget and the function ϕ from ordinals to ordinals is determined by the client,

which must demonstrate that the budget is enough to make all its calls.

While the TaDA Live specification of unlock for the CLH lock is the same as that for TaDA, the

specification for spin lock needs to incorporate the ordinals: ⊢
〈
L(x, 1,α)

〉
unlock(x)

〈
L(x, 0,α)

〉
.

The impedance budget α is preserved by unlock. This encodes the fact that unlock does not impede

the other operations, but also that by unlocking we cannot increase the budget. By combining these

assumptions about the budget (it decreases when locking, stays constant when unlocking), the spin

lock implementation can conclude termination using the progress measure in 3(d). Crucially, for

spin lock, the whole of the progress argument is provided by (and thus visible to) the client.

The impedance budget technique was first introduced to concurrent separation logics for non-

blocking operations using Total TaDA [5]. Here, we smoothly integrate ordinals into TaDA Live

that fully supports blocking. It is interesting to note that the CLH and spin lock implementations

behave as a primitive blocking lock under the strongly fair and weakly fair scheduler assumptions

respectively. This means that we can do all our reasoning uniformly relying on weak fairness, and

still handle a mixture of abstract operations with the different termination guarantees. Additionally,

the logic is not sensitive to the fact that these abstract operations are seen as primitive or as

implemented by more primitive means.
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3 TADA LIVE VERIFICATION

We show how TaDA Live achieves compositional verification, using a distinguishing client which

terminates with CLH locks but not with spin locks.

Example 3.1 (Distinguishing client). The distinguishing client is:

lock(x);

[done]B true;

unlock(x);

var d= false in

while(¬d){
lock(x); dB [done]; unlock(x);

}

Under weak fairness, when x is a spin lock, this client program does not always terminate. It is

possible for the lock invocation of the left thread to be scheduled infinitely often but always in a

state in which the lock is locked. As a result, done will never be set to true, making the while loop

spin forever. The spin lock has been starved by the other thread. In contrast, when x is a CLH lock,

this client program is guaranteed to terminate: a fair scheduler will eventually allow the left thread

to enqueue its node; from then on, the thread on the right can only acquire the lock at most once;

after unlocking, the next lock(x) call of the right thread would enqueue it after the left thread,

which is now the only unblocked thread. The CLH lock is starvation free.

We show that the distinguishing client terminates with the CLH lock, by proving the Hoare triple

⊢
{
L(x, 0) ∗ done 7→ false

}
Cℓ ∥ Cr

{
True

}
, where Cℓ and Cr are the left and right threads of the

example, respectively. Since our triples are total, this triple immediately guarantees termination of

the program. Our overall argument is as follows. The CLH specification guarantees termination of

a call to lock(x) if the lock is always eventually unlocked by the environment. This is intuitively

true for both threads: they always unlock the lock after having acquired it. The call to lock(x)
will therefore terminate in both threads. The only other potentially non-terminating operation

is the while loop in the right thread. The loop is implementing a busy-wait pattern on done, and
needs the help of the left thread to terminate. We will be able to prove that since done is going to

be eventually set to true (and never reset to false), the loop will terminate.

Let us formalise the argument in TaDA Live. The two threads of the distinguishing client both

access the lock x and the heap cell done. In TaDA, such shared resource is represented by a shared
region, which comprises an abstraction of the contents of the shared heap and a protocol for

coordinated interference on the region. We use region assertions to describe such shared regions, a

technique first invented in the CAP logic [8] and now used by many modern concurrent separation

logics, albeit in slightly different ways. In our example, we use the region assertion cr (x, done, l ,d),
where c is a region type, r is a region identifier, and (x, done, l ,d) is the abstract state of the

region where l and d denote the abstract values associated with addresses x and done respectively.

Although in this case the abstraction is not hiding any detail, since both l and d are visible, in

general the abstraction of the contents is an essential mechanism for reasoning about abstract
atomicity.

The region assertion cr (x, done, l ,d) is substantially different from the assertion L(x, l) ∗done 7→ d
in that it declares a shared region that can be accessed by many threads rather than resource owned

by one thread. The region is affected by concurrent interference as specified by an associated

interference protocol Tc. For example, here we want to formalise the fact that only the left thread

will ever change the done flag, and at most once from false to true. To do so, we introduce a form
of ghost state called guard d, which gives exclusive permission to update the done flag. Formally,

guards (probably first introduced in deny-guarantee reasoning [9]) form a partial commutative

monoid (PCM), where in this case d • d is undefined to capture exclusive permission: if a thread

owns d nobody else can own it at the same time. To link d with the ability to change done, the
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protocol Tc has the transition d : d = false ⇝ d = true, and no other transition that can

modify done, to encode the fact that, once set, the flag cannot be reset to false. Using guards, one

can only express what may happen due to interference. In blocking code, such as our example,

we need to formalise the fact that something must happen due to interference: e.g. the eventual

assignment [done] B true must happen. To do this, TaDA Live introduces a new kind of ghost

state called obligations. They also form a PCM, but their semantics encodes liveness invariants:

an environment owning obligation O will guarantee that eventually O will be fulfilled. In our

example, we declare an obligation d (reusing the symbol we used for the corresponding guard)

which, if owned, represents the responsibility of setting done. Symmetrically, if d is known to be

owned by the environment, it allows us to assume that done will eventually be set to true. This
obligation invariant is again expressed in the protocol by extending the previous transition to

d : (d = false,d)⇝ (d = true, 0) which states that whichever thread is updating d from false
to true will go from owning the responsibility to do that (owning obligation d) to not having the

responsibility (0). Repeating the same story for the lock, we obtain the full protocol Tc:
0 : ((0,d), 0)⇝ ((1,d), k) (4)

k : ((1,d), k)⇝ ((0,d), 0) (5)

d : ((l , false),d)⇝ ((l , true), 0) (6)

where the transitions describe how the abstract state
2 (l ,d) and the obligations are affected by the

update. We introduce the guard k and obligation k (with k • k undefined) to represent the ability

and the responsibility of unlocking the lock, respectively. Transition (4) allows anybody to acquire

the lock (the 0 guard means no permission needed), with the effect of obtaining the obligation k.

When considering blocking code compositionally, one needs to represent locally facts about

what are the responsibilities of the environment. TaDA Live introduces a way to do so, inspired by

the subjective separation of [19], in the form of two assertions: ⌊k⌋Lr , representing local ownership

of obligation k, and ⌊k⌋Er , indicating that the environment owns (at least) k. What makes these

assertions interesting is the way they compose: that is, ⌊d⌋Lr ⇔ ⌊d⌋Lr ∗ ⌊d⌋Er . If we start with local

obligation d and we want to fork into two threads, we use ∗ to give responsibility of d to one thread

and knowledge that the environment has this responsibility to the other.

When assertions involve shared regions, they may be invalidated by environment interference.

For example, the assertion cr (x, done, l , false) can be invalidated by an environment executing

the allowed transition (6). Assertions that cannot be invalidated by the environment are called

stable. For example, the assertion cr (x, done, l , false) ∗ ⌈d⌉r is stable since the environment cannot

own the d guard necessary to be able to perform transition (6). Since the interference protocol

similarly specifies how obligations change as one updates a shared region, environment obli-

gation assertions are also subjected to interference. For example, ∃l ,d . cr (x, done, l ,d) ∗ ⌊k⌋Er is

not stable, as the environment may execute (5) loosing k.A stable version of the assertion is
3

∃l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er which states that the environment owns k only when the lock

is locked. In TaDA Live, the pre- and postconditions of Hoare triples must be stable.

To complete the definition of shared region c, we link its abstract state to the actual heap content

that it encapsulates using the region interpretation:

I(cr (x, done, l ,d)) ≜ L(x, l) ∗ done 7→ d ∗ (([k]Lr ∧ l = 0) ∨ (⌊k⌋Er ∧ l = 1))∗
∗ (([d]Lr ∧ d) ∨ (⌊d⌋Er ∧ ¬d))

2
Strictly speaking, the abstract state is (x, done, l, d ). We simplify, just giving the part of the abstract state that is changed

by Tc.
3
When P is pure, P

.⇒ Q is syntactic sugar for (¬P ∧ emp) ∨Q .
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⊤ ⊢{
L(x, 0) ∗ done 7→ false

}{∃r , l . cr (x, done, l , false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}

∃E
l
i
m

{(∃l . cr (x, done, l , false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er ) ∗ (∃l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∗ ¬d
.⇒ ⌊d⌋Er )}

1 ⊢{∃l . cr (x, done, l , false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}

S
t
e
p
1

A

l ∈ {0, 1}.〈∃d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er
〉

L
i
v
e
C

A

l ∈ {0, 1} ↠ {0}.〈∃d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er
〉

S
t
e
p
2

A

l ∈ {0, 1} ↠ {0}.〈
L(x, l)

〉
lock(x);〈
L(x, 1) ∧ l = 0

〉〈∃d . cr (x, done, 1,d) ∗ [k]Lr 〉〈∃d . cr (x, done, 1,d) ∗ [k]Lr 〉{
cr (x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

}
[done]B true;{
cr (x, done, 1, true) ∗ [k]Lr

}
unlock(x);{∃l . cr (x, done, l , true)}

⊤ ⊢{∃l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∗ ¬d
.⇒ ⌊d⌋Er

}
var d= false in{∃β0, l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β0 = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er

}

∃E
l
i
m

{∃l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β0 = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er

}

W
h
i
l
e

while(¬d) { ∀β ,b .{∃l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β = (d ? 0 : 1) ∧ b ⇒ d ∧ ¬d

}
lock(x);
dB [done];
unlock(x);{∃γ , l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ γ = (d ? 0 : 1) ∧ γ ≤ β ∧ b ⇒ γ < β

}
}{∃β , l ,d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er ∧ d ∧ β ≤ β0

}
{∃l . cr (x, done, l , true)}

{∃l . cr (x, done, l , true) ∗ ∃l . cr (x, done, l , true)}{∃r , l . cr (x, done, l , true)}
Fig. 4. Proof Sketch of the Distinguishing Client.

This assertion describes a portion of the heap being shared (the lock at x and the cell done) and the

linking of the ghost state (the guards and obligations) with the abstract state. The assertion [k]Lr is
an abbreviation for ⌈k⌉r ∗ ⌊k⌋Lr , which indicates local ownership of the guard k and obligation k.

The interpretation of a region establishes the invariant that, when l = 0, the guard and obligation k

will be “owned” by the region (and by no thread as a consequence). When l = 1, the ⌊k⌋Er assertion
indicates that the obligation k is owned by some thread. Similar links are established between the

value of d and d.

We have specified how threads interact abstractly on the shared region. Now we describe the

proof sketch of the distinguishing client given in Figure 4, using the simplified TaDA Live rules

given in Fig. 6. The first step is to weaken the initial precondition to the shared region c using
the consequence rule. In TaDA and other modern separation logics such as Iris, implication is

generalised to the viewshift construct (⇛) from [6], which allows the consistent update of ghost

information. Here, the precondition can be augmented with the ghost state necessary establish the

region invariant with l = 0,d = false, and thus allocate the region ∃r . cr (x, done, 0, false). To
obtain a stable assertion, we need to weaken the information on l , by existentially quantifying it.

We must obtain the obligation d locally since ⌊d⌋Er must be in the region invariant as d = false.

We also duplicate the assertion ⌊k⌋Er from the invariant, because it is needed in the proof. This

assertion is however not stable on its own and needs to be weakened to l = 1 Û⇒⌊k⌋Er which is stable.

Next, we apply the Par rule, which requires an assertion of the form P1 ∗ P2 for stable P1 and P2.
Here, with another application of consequence, we split the local information, giving to both threads

the stable assertion l = 1

.⇒ ⌊k⌋Er . Since we assign responsibility of d to the left thread with ⌊d⌋Lr ,
we separate ⌊d⌋Er to give it to the right thread. Again, we weaken it to ¬d .⇒ ⌊d⌋Er , which is stable.
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Let us focus on the left-hand thread first. The difficult step is the execution of the first instruction,

since this is the only potentially non-terminating instruction of the thread. Step 1 follows a standard

TaDA proof pattern:

1 ⊢ A

l ∈ {0, 1}.
〈∃d . cr (x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈∃d . cr (x, done, 1, d ) ∗ [k]Lr 〉
1 ⊢ A

l ∈ {0, 1}.
〈
cr (x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
cr (x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

〉 FrameA

1 ⊢
〈∃l . cr (x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
cr (x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

〉 A∃Elim
1 ⊢

{∃l . cr (x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}
lock(x)

{
cr (x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

} AtomW

The combination of A∃Elim and AtomW simply states that if we can prove a command performs

an update atomically, and the pre- and postconditions are stable, then we can prove the command

also performs the update non-atomically.

Step 2, in Appendix, lifts the specification of lock to where it is being used, which in this

case is the region c. Step 2 uses standard TaDA rules, adapted minorly to propagate the liveness

assumption of the pseudo-quantifier.

Step 1 and Step 2 can almost be put together, except that there is a gap. Step 2 has the liveness

assumption,

A

l ∈ {0, 1} ↠ {0}, promising termination conditionally on the environment liveness,

whereas Step 1 has no liveness assumption,

A

l ∈ {0, 1}, requiring unconditional termination of the

operation. To reconcile the two specifications, TaDA Live provides the LiveC rule, which states that

if in the current context we can prove the environment does indeed satisfy the liveness assumption

of the pseudo-quantifier, then the liveness assumption can be removed from the specification. The

(simplified) LiveC rule is:

m ⊢ ∃x ∈ X . P(x) M−−↠ ∃x ′ ∈ X ′. P(x ′) m ⊢ A

x ∈ X ↠ X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
m ⊢ A

x ∈ X .
〈
P(x)

〉
C

〈
Q(x)

〉 LiveC

This rule enables us to join Step 1 and Step 2 together, discharging the environment assumption

given by the pseudo-quantifier, as long as the crucial environment liveness condition given by the

first premise is satisfied. For our example, the instantiation of the environment liveness is:

1 ⊢ ∃l ∈ {0, 1}. ∃d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er −−↠ ∃d . cr (x, done, 0,d)
where M is omitted because it is straightforward. Intuitively, the condition requires that, when

we have a lock, then either the lock is in the “target” state (l = 0), or there is an obligation in the

environment which, when fulfilled, takes us to a target state. In our example, thanks to transition (5)

and the assertion l = 1

.⇒ ⌊k⌋Er , the k is such an obligation. The condition implies that the target

states are always eventually reached (under the assumption that the environment always eventually

fulfils its obligations).

The environment liveness condition is used in the LiveC andWhile rules. Its general form is

m ⊢ L M−−↠ T , where L is an invariant assertion that determines all possible states of the resource, T
specifies the target states that are the ones we want to prove are always eventually reached, andM
is a well-founded measure of environment progress. The condition requires that, at any point in a

trace where every state satisfies L, either: (i) the state is in T ; or (ii) the measure is not increased by

the next transition and there exists some obligation in the environment, the fulfilment of which

would strictly decrease the measure. This implies that, in infinite traces where L is always true and

the environment obligations are always eventually fulfilled, the target states are always eventually
reached. Note that, when transitions terminate in T , the progress measure can be reset. This means

that that the environment liveness condition does not ensure that eventually T is always true.

We now focus on the right-hand thread. The difficult step is the application of theWhile rule. In

addition to the loop invariant, a standard technique for proving non-blocking termination is to use

a well-founded variant to decrease at every iteration. For blocking loops like this one, however, a
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local variant is impossible to find since there will inevitably be iterations where there is absolutely

no measurable progress. The (simplified) While rule for TaDA Live is:

m ⊢ L M−−↠ T non-incr(L,M)
∀β ≤ β0. ⊢

{
P(β) ∧ B

}
C

{∃γ . P(γ ) ∧ γ ≤ β
}

∀β ≤ β0. ⊢
{
P(β) ∗T ∧ B

}
C

{∃γ . P(γ ) ∧ γ < β
}

⊢
{
P(β0) ∗ L

}
while(B){C}

{∃β . P(β) ∗ L ∧ ¬B ∧ β ≤ β0
} While

Some aspects of the standard While rule are still present: P is the loop invariant, parametrised by

an ordinal-valued variant β . The two triples in the premises require the verification of the loop body

in two situations: when the iteration starts from a blocked state, in which case the variant β is only

required not to increase (γ ≤ β); when the iteration starts from an unblocked state (T ), in which

case the variant has to decrease strictly (γ < β). Notice that the L has been framed off, which means

it will hold constantly for the duration of the loop. In addition, the rule requires the proof of an

environment liveness condition stating that the unblocked states T are always eventually reached.

By itself, this is not enough to build a termination argument: the statesT could be always eventually

reached, but the loop could be always scheduled so that it will never witnessT being reached. Thus,

the while loop also needs T to eventually always being true. The conjunction of the environment

liveness condition with the non-incr(L,M) judgement achieves this since non-incr(L,M) states
that the environment progress measureM can never increase whilst L holds. This ensures that the

measure cannot be reset when T is reached and, in the worst case, will eventually reach 0 in which

case T will be true until the next iteration.

TheWhile rule given in Fig. 6 and used in Fig. 4 combines the two triples in the premises into

one for convenience:

∀β ≤ β0. ∀b ∈ Bool. ⊢
{
P(β) ∗ (b .⇒ T ) ∧ B

}
C

{∃γ . P(γ ) ∧ γ ≤ β ∗ (b .⇒ γ < β)
}

In our example, T is d = false. The environment liveness condition asks us to find, in states with

d = true, an obligation in the environment (⌊d⌋Er given by L, displayed in red in Fig. 4 ) which,

when fulfilled, takes us closer toT . Here d can only be fulfilled by executing (6) which immediately

makes T hold. We also have to show that eventually the environment cannot invalidate T , which
in this case holds trivially as no transitions in the protocol allow setting d = true from d = false.
Finally, the proof of the loop body is a routine derivation. Notice that the proof of the lock(x) call

can reuse the derivation we had for the left-hand thread, followed by an application of FrameH to

match the loop invariant.

Layers. We have outlined the termination argument for the distinguishing client but, unless

refined, this line of argument can lead to unsound circularity. Consider a variant of the dis-

tinguishing client, where the lock is acquired outside of the loop in the right thread: C′r =
lock(x);while(¬d){dB [done]};unlock(x). The program Cℓ ∥ C′r is non-terminating even

when using a CLH lock. To see where our argument goes wrong, reconsider the application of

LiveC. There we appealed to the environment responsibility of fulfilling kwhilst we are continuously
holding (and thus not fulfilling) d. If the environment also relies on our fulfilment of d to fulfil k,

as is the case for Cℓ ∥ C′r , we have an unsound circular argument. Our solution is to associate

layers with obligations, i.e. elements of a well-founded partial order using a function lay with the

intuition that, if lay(O1) < lay(O2), then local fulfilment of O2 can depend on the environment’s

fulfilment of O2. Using layers, we can refine our argument: the environment liveness condition can

only appeal to progress using obligations known to be held by the environment, if they have layer
strictly lower than any obligation we may be holding. In the proof of the left thread, this requires

lay(k) < lay(d) since we appeal to the environment responsibility to fulfil k while holding d. With
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Cℓ ∥ Cr , the same constraint is fine to complete the termination argument of the loop and the lock
operation in the body of the loop. With Cℓ ∥ C′r , the proof of C′r requires lay(d) < lay(k) which
leads to a contradiction. If a proof requires to appeal to fulfilment of obligations of layer k we say

the proof assumes k is live.
To conclude our proof for Cℓ ∥ Cr , the Par rule checks that, in the postcondition of each thread,

there is no pending obligation of layers on which the other thread might depend. In our example,

this is trivially satisfied as both postconditions do not hold obligations. If we had forgotten to

unlock x in the left thread for example, we would obtain ⌊k⌋Lr in the postcondition. Since we use

a classical interpretation of separation, it is not possible to use consequence to remove the local

obligation without fulfilling it. The Par rule would detect the problem by seeing that the layer of

some obligation in the postcondition of the left thread, is lower or equal than the layers assumed

live by the proof of the right thread. This information is stored in the context of the judgement

(i.e. what is on the left of the turnstile) as a layer indicating an upper-bound on the layers that may

be assumed live by a proof of the judgement. Here 0 = lay(k) < lay(d) = 1. The Par rule would

see that the right thread may use liveness of both d and k, since the layer in the context is ⊤, so it

requires neither are owned by the left thread at its postcondition.

The layer in the context is also used crucially when framing: when we apply any of the two

frame rules, the frame can only mention obligations of layer higher or equal than the one in the

context. This way we don’t forget that we are continuously holding responsibilities at that layer.

This is used in Step 1 of Fig. 4 when we frame ⌊d⌋Lr as part of the left proof, which is valid since

lay(d) = 1. It is this application of FrameA that forced the triple for the left thread to have 1 in the

context instead of the less restrictive ⊤. In the simplifiedWhile rule above, we omitted that the

loop invariant cannot hold obligations that we may need to invoke in the environment liveness

condition.

Spin Lock. Where does the argument fail, if instead of CLH locks we used spin locks? The crucial

difference is that spin locks have the impedance budget given by ordinal α in their abstract state.

To start the proof, we need to choose an ordinal for the lock and show that, every time we call

lock, the ordinal will be high enough for us to make it strictly decrease. Since there is no bound on

the number of times lock is going to be called, this initial ordinal cannot be found.

4 THE TADA LIVE PROGRAM LOGIC

This section summarises the formal definitions needed to understand the TaDA Live proof system;

see Appendix for details. Our commands come from a standard heap-manipulating While language

with compare-and-swap (CAS) and fetch-and-set (FAS) primitives. For simplicity, our function

definitions are not recursive; all unbounded behaviour is expressed using while.
The TaDA Live assertions, in Fig. 5, are built from the standard classical connectives and quanti-

fiers of separation logic,
4
TaDA region and guard assertions, and new TaDA Live obligation and

layer assertions. We assume some basic infinite sets: region types, RType ∋ t; region identifiers,
RId ∋ r ; guards,Guard ∋ G; levels, Lvl ≜ N ∋ λ; and abstract states, AState ∋ a,b, including sets and
lists of values. Levels are a technical device, also used in e.g. TaDA and Iris, to prevent regions being

opened up twice. We also assume a user-supplied, well-founded partial order of layers, (L, ⩽,⊤,⊥),
with k1 < k2 ≜ k1 ⩽ k2 ∧ k2 ̸⩽ k1.

4
TaDA interprets the separating conjunction intuitionistically. With TaDA Live, we interpret it classically in order to not

loose information about the obligations.
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P F B | ∃x . P | E ∈ X | ¬P | P ∧Q | emp | P ∗Q | E 7→ E | tλr (E) | r Z⇒ d

| ⌈E⌉r | ⌊E⌋Lr | ⌊E⌋Er | emp
R
Ob

| r Qm

d F ♦ | ♢ | (E, E) t ∈ RType, λ ∈ Lvl, r ∈ RId ∪ LVar, R ⊆ RId,m ∈ L .

Fig. 5. Syntax of Assertions. Logical expressions, E, and logical boolean expressions, B, are standard.

Assertions and their models are built around partial commutative monoids.
5
Heaps form a

cancellative PCM with disjoint union. Guards provide support for custom auxiliary ghost state.

They give rise to a guard algebra (Grd, •, {0}), for Grd ⊆ Guard, which is a PCM specified by the

user of the logic. Similarly to guards, obligations represent ghost state for describing the liveness
invariants. They form an obligation algebra and are associated with layers.

Definition 4.1 (Obligation Algebras). TaDA Live is parametrised by a layered obligation structure:
that is, a pair (Oblig, lay) where Oblig ⊆ Guard and lay : Oblig → L such that ∀O ∈ Oblig.⊥ <
lay(O) ⩽ ⊤. A obligation algebra is a cancellative6 guard algebra (Obl, •, {0}) where Obl ⊆ Oblig

and ∀O1,O2 ∈ Obl.O1 ⊑ O2 ⇒ lay(O1) ≥ lay(O2). The set AOb ⊆ Oblig is a subset of obligations

that we call atoms. For each obligation algebra Obl,

AOb ∩Obl = {O ∈ Obl | ∀O1,O2 ∈ Obl.O ⊑ O1 •O2 ⇒ O ⊑ O1 ∨O ⊑ O2}

In practice, obligation algebras are often constructed from some basic set of atoms (e.g. the k

and d of Fig. 4), to which we assign some layers, and then extend the layers to the compositions of

atoms by taking the minimum layer of the composed atoms (e.g. since lay(k) < lay(d), we can set

lay(k • d) = lay(k)).
We summarise the intuitive meaning of our assertions. Their models and satisfaction relation

are given in the Appendix.

• TaDA region assertion tλr (a) asserts the existence of a shared region with type t, identity r ,
level λ and abstract state a. Region assertions represent shared resources and, hence, are

duplicable. We have ⊢ tλr (a) ⇔ tλr (a) ∗ tλr (a).
• TaDA atomic tracking assertion r Z⇒ ♦ gives permission to perform a single atomic change

of the state of region r . Once the change is performed, the assertion becomes r Z⇒ (a1,a2)
recording the abstract states just before and after the change (the linearization point). The

assertion r Z⇒ ♢ asserts that the environment has the permission to do the atomic update.

We have ⊢ r Z⇒ ♦ ∗ r Z⇒ ♦⇒ False, and ⊢ r Z⇒ ♦⇔ (r Z⇒ ♦ ∗ r Z⇒ ♢).
• TaDA guard assertion ⌈G⌉r asserts that the guard G is held locally. Guard composition is

reflected by separation: ⊢ ⌈G1 •G2⌉r ⇔ ⌈G1⌉r ∗ ⌈G2⌉r .
• TaDA Live local obligation assertion ⌊O⌋Lr asserts that obligation O is held locally. We have

⊢ ⌊O1 •O2⌋Lr ⇔ ⌊O1⌋Lr ∗ ⌊O2⌋Lr . Separating conjunction is interpreted classically precisely

so that we do not loose local obligation information: that is, ⊢ ⌊O⌋Lr ̸⇒ emp. It is often useful

to use the same guard algebra for guards and obligations. We write [O]Lr ≜ ⌈O⌉r ∗ ⌊O⌋Lr .
• TaDA Live environment obligation assertion ⌊O⌋Er asserts that O is held by the environment:

⊢ ⌊O1 • O2⌋Er ⇔ ⌊O1⌋Er ∗ ⌊O2⌋Er . Unlike for local obligations, it is possible to loose this

information, ⊢ ⌊O⌋Er ⇒ emp, because we not need to keep track of the full obligations held by

5
A (multi-unit) partial commutative monoid (PCM) is a tuple (X , •, E) comprising a set X , an associative, commutative

binary partial composition operation • : X × X ⇀ X and a set of unit elements E , such that ∀x ∈ X . ∃e ∈ E . x • e = x .
For x, y ∈ X , write x # y if x • y , ⊥ and x ⊑ y if ∃x1 . y = x • x1. A PCM is cancellative when, for any x1, x2, x3 ∈ X , if

x1 • x2 = x1 • x3 then x2 = x3.
6
Cancellativity is a simplifying assumption. Although it can be lifted, we found no evidence that non-cancellative obligation

algebras are needed in proofs.
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the environment, just a lower bound. The composition of environment and local obligation

assertions is subtle, inspired by the subjective separation of [19]. The existence of the local

obligation can be recorded in a frame: ⊢ ⌊O⌋Lr ⇔ ⌊O⌋Lr ∗ ⌊O⌋Er . We also have the derived

law ⊢ ⌊O1 •O2⌋Lr ⇔ (⌊O1⌋Lr ∗ ⌊O2⌋Er ) ∗ (⌊O1⌋Er ∗ ⌊O2⌋Lr ), giving knowledge to each thread of

the obligations delegated to the other.

• TaDA Live empty obligation assertion emp
R
Ob

asserts that no obligation is locally held for

regions with identifiers in R.
• TaDA Live layer assertion r Q m asserts that the layer of the obligations held locally for

region with identifier r is greater or equal thanm. We often use notation such as r Qm ≤ m′

to denote r Qm ∧m ≤ m′
.

Each region type t is associated with an interference protocol Tt and an interpretation I(tλr (a)).
The interference protocol is a function Tt : Guard → ℘((AState ×Oblig) × (AState ×Oblig)) that
associates to each guard a set of transitions between abstract states of the region and obligations.

Tt(G) represent the allowed updates to the region, given ownership of the guard G . Every function

Tt is required to satisfy three properties:

• monotonicity in the guards: ∀G1,G2.G1 ⊑ G2 ⇒ Tt(G1) ⊆ Tt(G2);
• reflexivity: ((a, 0t), (a, 0t)) ∈ Tt(0t) for all a ∈ AState;

• closure under obligation frames: ∀O1,O2,O , if ((a1,O1), (a2,O2)) ∈ Tt(G) and O1 # O and

O2 # O then ((a1,O1 •t O), (a2,O2 •t O)) ∈ Tt(G).
The interpretation of a region, tλr (a), is an assertion which describes the resource that is being

shared by the region: that is, I(tλr (a)) = P . The assertion P is required to be stable and only own

local obligations of the region r : ⊢ P ⇒ emp
RId\{r }
Ob

. Notice that P can itself contain region assertions.

The levels, λ, provide a technical device to avoid inconsistencies due to this nesting of regions. To

improve readability, we usually omit the details related to levels, as they can be easily inferred from

the structure of the proofs, if needed.

Specification format. In our examples and in the simplified rules of Fig. 6, we only use atomic
and Hoare triples. In general, a command may manipulate some resources Ph non-atomically, and

some other resources Pa(x) atomically, at the same time. The specifications in their general form

are therefore an hybrid of pure atomic and Hoare triples, called hybrid triples:

m; λ;A ⊨ A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 C 〈
Qh(x)

��Qa(x)
〉

The Hoare precondition Ph is a resource that is owned by the command and, as such, cannot be

invalidated by actions of the environment. The command is allowed to manipulate this owned

resource non-atomically, provided it satisfies the Hoare postcondition Qh upon termination. The

atomic precondition Pa(x) represents the resource that can be shared between the command and

the environment. The environment can update it, but only with the effect of going from Pa(x) for
some x ∈ X to Pa(x ′) for some x ′ ∈ X . The command is allowed to update it exactly once from Pa(x)
to perform its linearisation point, transforming it to a resource satisfying the atomic postcondition

Qa(x). The atomic postcondition only needs to be true just after the linearisation point as the

environment is allowed to update it immediately afterwards. The pseudo-quantified variable x has

two important uses: it represents the “surface” of allowed interference by the environment; it is

bound in the postcondition to the value of the parameter of the atomic precondition just before the
linearisation point.

The atomic triple is a hybrid triple with Ph = Qh = emp. A Hoare triple is a hybrid triple

with Pa(x) = Qa(x) = emp. We omit the pseudo-quantifier from an atomic triple when the

pseudo-quantified variable does not occur in the triple, and thus could be trivially quantified as
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A

x ∈ AVal↠⊥ AVal. When the liveness assumption is trivial, i.e.

A

x ∈ X ↠k X , we abbreviate it
with

A

x ∈ X .

The context of the triplem, λ,A consists of a layerm, a level λ, and an atomicity context A. These

components record information about the proof context of the judgement. The layerm indicates

that we are in a context where we are forbidden from considering obligations with layers ≥ m as

live. The level λ restricts the opening of regions. The atomicity context records information about

which pseudo-quantifications were present in the goal judgement (MkAtom transfers them from a

specification to the context, for instance).

Let us now elaborate on the intuitive liveness meaning of the triple. A hybrid triple guarantees

termination of the command only if the environment satisfies the layered liveness invariants

represented by pseudo-quantifiers (of the specification and inA) and obligations. Consider the case

of liveness invariants encoded by obligations. The idea is to examine the traces instrumented with

the logical state, and consider for each position which obligations are held by the environment and

which are held locally. Now suppose the environment always eventually fulfils every obligation

(i.e. for each obligation O there are infinitely many positions where O is not held by the environ-

ment). This environment is certainly good with respect to the liveness assumptions. When is the

environment allowed to keep an obligation O forever? Only when we locally hold forever some

obligation of layer strictly smaller than lay(O). This intuition about obligations extends to liveness

assumptions attached to pseudo-quantifications in the triple and in the atomicity context. All these

assumptions need to be layered to avoid unsound circularities, which is why the pseudo-quantifier

carries a layer k .

5 TADA LIVE RULES

The general TaDA Live proof system for hybrid triples is given in the Appendix. Figure 6 gives key

derived rules for atomic and Hoare triples which capture the essence of our liveness reasoning.

The most important rules for liveness are the LiveC andWhile rules discussed in Section 3.

The LiveC and While rules. These rules depend crucially on the environment liveness condition,

discussed in detail below. For the full LiveC rule, the triple context is now complete and the

pseudo-quantifier is indexed by its layer k ≥ n. For the While rule, we now have the target states

T (β) can depend on the variant (this parametrisation is for example necessary for verifying spin

lock); the not-incr(L,M) condition in the simplified rule corresponds to the stability requirement

∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable which requires the measure to never increase by stating

that whatever upper bound α on the measure may hold at some point, no transition can make

the measure exceed it in the future; a layer condition ∀β ≤ β0. ⊢A P(β) Q m(β) ⩾ m which

requires the loop invariant to only contain obligations of layers that cannot be assumed live; and a

straightforward condition on the modified variables of C.

The Par rule. Rule Par is the usual rule of parallel, but with premises constraining the layers.

They require that, for every layer k that may be assumed live by thread 1, thread 2 does not hold

any obligations at that level or lower in its postcondition, and vice versa. This is because joining a

parallel requires both threads to terminate, and obligations held at the postcondition will be held

constantly until the other thread terminates.

The FrameA and FrameH rules. The interesting aspect of the frame rules is their condition on

layers: the frame can only contain obligations of layer greater or equal than the one in the context.

Rule LayW can be used to lower the layer artificially in preparation for such a step. The idea is

that if we are framing an obligation, we will be holding it continuously for the execution of the

command, which means we are forbidden from assuming obligations of higher layer live.
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n; λ;A ⊢ ∃x ∈ X . P(x) M−−−↠ ∃x ′ ∈ X ′. P(x ′) m,k ⩾ n
m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
m; λ;A ⊢Φ

A

x ∈ X .
〈
P(x)

〉
C

〈
Q(x)

〉 LiveC

∀β ≤ β0.m(β); λ;A ⊢ L M−−−↠ T (β) ∀β ≤ β0. ⊢A P(β) Qm(β) ⩾ m
∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable pv(T ,L,M) ∩mod(C) = ∅

∀β ≤ β0. ∀b ∈ Bool.m; λ;A ⊢Φ
{
P(β) ∗ (b .⇒ T (β)) ∧ B

}
C

{∃γ . P(γ ) ∧ γ ≤ β ∗ (b .⇒ γ < β)
}

m; λ;A ⊢Φ
{
P(β0) ∗ L

}
while(B){C}

{∃β . P(β) ∗ L ∧ ¬B ∧ β ≤ β0
} While

m1; λ;A ⊢Φ
{
P1

}
C1

{
Q1

}
⊢A Q1 Qm2 ⩽ m

m2; λ;A ⊢Φ
{
P2

}
C2

{
Q2

}
⊢A Q2 Qm1 ⩽ m

m; λ;A ⊢Φ
{
P1 ∗ P2

}
C1 ∥ C2

{
Q1 ∗Q2

} Par

m1 ⩽ m2

m1; λ;A ⊢Φ
{
P
}
C

{
Q

}
m2; λ;A ⊢Φ

{
P
}
C

{
Q

} LayW

fv(R(x)) ∩mod(C) = ∅
∀x ∈ X . ⊢A R(x) Qm ∀x ∈ X .A ⊨ R(x) stable

m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P(x) ∗ R(x)

〉
C

〈
Q(x) ∗ R(x)

〉 FrameA

fv(R) ∩mod(C) = ∅
⊢A R Qm A ⊨ R stable

m; λ;A ⊢Φ
{
P

}
C

{
Q

}
m; λ;A ⊢Φ

{
P ∗ R

}
C

{
Q ∗ R

} FrameH

A ⊨ P stable

A ⊨ Q stable

m; λ;A ⊢Φ
〈
P
〉
C

〈
Q

〉
m; λ;A ⊢Φ

{
P
}
C

{
Q

} AtomW

λ < λ′ r < dom(A) A ′ = A[r 7→ (X ,k,X ′,T )] T ⊆ Tt(G) R = io(T )
m; λ′;A ′ ⊢Φ

{∃x ∈ X . tλr (x) ∗ r Z⇒ ♦
}
C

{∃x ,y.R(x ,y) ∧ r Z⇒ (x ,y)
}

m; λ′;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
tλr (x) ∗ ⌈G⌉r

〉
C

〈∃y. tλr (y) ∗ ⌈G⌉r ∧ R(x ,y)
〉 MkAtom

A′ = A[r 7→ ⊥] r ∈ dom(A)
A ⊨ I(tλr (z)) ∗Q1(x, z) ∧ R(x, z) λ⇛λ+1 Q ′

1
(x, z) A ⊨ I(tλr (z)) ∗Q2(x, z) ∧ x = z λ⇛λ+1 Q ′

2
(x, z)

⊢A P (x ) ⋑ ⌊O0(x )⌋Lr ⊢A Q1(x, z) ⋑ ⌊O1(x, z)⌋Lr ⊢A Q2(x ) ⋑ ⌊O2(x )⌋Lr
{ ((x, O0(x )), (z, O1(x, z))) | x ∈ X ∧ R(x, z) } ∪ { ((x, O0(x )), (x, O2(x ))) | x ∈ X } ⊆ tr(A, r )

m; λ;A′ ⊢Φ

A

x ∈ X ↠k X ′.
〈
I(tλr (x )) ∗ P (x )

〉
C

〈
∃z . I(tλr (z)) ∗

(
R(x, z) ∧Q1(x, z)

∨ x = z ∧Q2(x )

)〉
m; λ+1;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
tλr (x ) ∗ P (x ) ∗ r Z⇒ ♦

〉
C

〈
∃z . tλr (z) ∗

(
Q ′

1
(x, z) ∗ r Z⇒ (x, z)

∨ Q ′
2
(x ) ∗ r Z⇒ ♦

)〉 UpdReg

⊢A P(x) ⋑ ⌊O1⌋Lr ⊢A Q(x , z) ⋑ ⌊O2(x , z)⌋Lr
{ ((x ,O1(x)), (z,O2(x , z))) | x ∈ X ∧ R(x , z) } ⊆ Tt(G)

r ∈ dom(A) ⇒ R = id A ⊨ I(tλr (z)) ∗Q(x , z) ∧ R(x , z) λ⇛λ+1 Q ′(x , z)
m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
I(tλr (x)) ∗ ⌈G⌉r ∗ P(x)

〉
C

〈∃z.I(tλr (z)) ∗Q(x , z) ∧ R(x , z)
〉

m; λ+1;A ⊢Φ

A

x ∈ X ↠k X ′.
〈

tλr (x) ∗ ⌈G⌉r ∗ P(x)
〉
C

〈∃z. tλr (z) ∗Q ′(x , z)
〉 LiftA

m; λ;A ⊢Φ

A

x ∈ X ↠k X ′, z ∈ Z .
〈
P(x , z)

〉
C

〈
Q(x , z)

〉
m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈∃z ∈ Z . P(x , z)

〉
C

〈∃z ∈ Z .Q(x , z)
〉 A∃Elim

Fig. 6. TaDA Live rules. Abbreviations:

⊢A P Q k means ∀r ∈ RId. ⊢A P ⇒ r Q k ;

⊢A P ⋑ ⌊O⌋Lr means ⊢A P ⇒ ⌊O⌋Lr ∗ emp
r
Ob

.
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A ⊨ L stable ⊢A L ⇒ L ∗ ∃α .M (α )
m; λ;A ⊢ L ∗M (α ) : L ∗M (α ) −−↠ T

m; λ;A ⊢ L M−−−↠ T
EnvLive

m; λ;A ⊢ L(α) : L1(α) −−↠ T
m; λ;A ⊢ L(α) : L2(α) −−↠ T

m; λ;A ⊢ L(α) : L1(α) ∨ L2(α) −−↠ T
ECase

∀α . ⊢A T ′(α) ⇒ T

m; λ;A ⊢ L(α) : T ′(α) −−↠ T
LiveT

imprA (tλr , L, L′, io(R), R′, T ) m > lay(O ) ∀α . ⊢A L(α ) ▷ lay(O ) O ∈ AOb

λ < λ′ R =
⋃ {Tt(G′) | G′

# G } R′ = { (a1, a2) | ((a1, O1), (a2, O2)) ∈ R, O ⊑ O1, O ̸⊑ O2 }
m; λ′;A ⊢ L′(α ) : L(α ) ∗ ∃x . tλr (x ) ∗ ⌈G ⌉r ∗ ⌊O ⌋Er −−↠ T

LiveO

imprA (tλr , L, L′, R, R′, T ) m > k ∀α . ⊢A L(α ) ▷ k λ < λ′

(X ↠k X ′) = live(A, r ) R =
⋃ {io(Tt(G′)) | G′

# G } R′ = {(a1, a2) ∈ R | a2 ∈ X ′ }
m; λ′;A ⊢ L′(α ) : L(α ) ∗ ∃x . tλr (x ) ∗ ⌈G ⌉r ∗ r Z⇒ ♢ −−↠ T

LiveA

Fig. 7. Environment Liveness Condition Rules

The Atomicity Rules. The atomicity Rules MkAtom, LiftA and UpdReg are standard TaDA rules,

adapted to TaDA Live by simply propagating the liveness assumptions. The MkAtom rule says

that a Hoare triple can be promoted to an atomic triple if it contains a “certificate” of atomicity for

the region r , that is it goes from owning r Z⇒ ♦ to some r Z⇒ (x ,y). The important aspect for TaDA

Live is that the liveness assumption of the atomic triple is recorded in the atomicity context. This

way it becomes available for supporting environment liveness condition proofs. The proof of spin

lock and CLH lock in the appendix illustrate applications of MkAtom.

The rules LiftA and UpdReg are used to lift atomic updates performed on the interpretation

of a region to the region itself. Rule UpdReg is used to declare the update a linearization point

(storing the fact that it happened in the atomicity tracking assertion). The side-conditions of these

two rules check that the update is consistent with the transition system of the region (LiftA) or

the expected linearization point as recorded in A (UpdReg).

5.0.1 The Environment Liveness Condition. The essence of the termination argument is captured

by the conditions of the form m; λ;A ⊢ L
M−−↠ T in LiveC and While. They establish “always

eventually T holds” facts. The condition is parametrised by L, an assertion that holds at any point

in the traces we are considering, an assertion T , characterising the so-called target states, and
an assertion M(α) parametric on some ordinal α , which represents the environment progress

measure. Intuitively, the condition states that, from any state satisfying L ∗M(α), for some α , we
can find an environment transition that must happen that would take us either to T , or to some

state satisfying L ∗M(α ′) with α ′ < α . Additionally, any transition from L to L that may happen

does not strictly increase the progress measure, unless they end in a target state. The transitions

that must happen are characterised by being those that either: (1) fulfil some obligation known

to be in the environment and with layer lower than the ones we may hold locally, (2) fulfil some

environment liveness assumption stored in A with layer lower than the ones we may hold locally.

Take the environment liveness condition required by the application of LiveC in the proof of

Example 3.1. There we have:m = 1,M(α) = (α = 0) and

L = ∃l ∈ {0, 1},d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er
T = ∃l ∈ { 0 },d . cr (x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er
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That is, during the interference phase, we know that at any point in time the atomic precondition

will hold for some l ∈ {0, 1}; we want to prove that the environment will always eventually set l to 0.
Here this is particularly easy to show: L states that when l = 1 the obligation k is held by the

environment; since lay(k) = 0 < 1 (and L does not hold obligations) we can assume the obligation

will be eventually fulfilled; the only transition that can fulfil it is the one that sets l = 0, so in exactly

one such step we reach T . This justifies the trivial definition ofM : we do not need to keep track of

progress towards T as we reach it in exactly one of the steps that must happen.
Technically, the environment liveness condition can be proven using the rules in Fig. 7. The

only rule that applies directly is EnvLive, which checks that in a state satisfying L one can always

measure progress (second premise), and then asks to discharge an auxiliary judgement of the form

m; λ;A ⊢ L(α) : L(α) M−−↠ T which allows case analysis on L by means of rule ECase, until we reach

one of the base cases. Rule LiveT is the case where we are already in T . Rule LiveO is the case

where we justify progress by appealing to an environment-owned atomic obligation O of some

region with id r . The layer of O needs to be lower than the layer of any obligation we may be

holding (premises two and three). We then compute the set of allowed transitions R for r , and the

set of transitions R′
that fulfil O (which must happen), and check that, when the environment will

fulfil O , the progress measure will improve, as ensured by the imprA condition defined as follows.

The condition imprA(tλr ,L,R,R′,T ) holds if, R′ , ∅, and for every α1, α2, every (x1,x2) ∈ R and

every statesw1 andw2 satisfying L(α) ∗ tλr (x1) and L′(α) ∗ tλr (x1) respectively, we have that either
(a)w2 satisfies T ∗ True, or (b) α1 ≤ α2 and, if (x1,x2) ∈ R′

then α1 < α2.
Rule LiveA is the case where we justify progress by appealing to an environment liveness

assumption stored in A. Similarly to LiveO, R and R′
represent the allowed transitions and the

transitions fulfilling the environment liveness assumption respectively. The layer of the assumption

needs to be lower than any layer we may be holding. Since the environment liveness assumptions

only hold in the interference phase of an update, the rule needs evidence that the linearisation

point on r has not occurred yet, which is provided by r Z⇒ ♢.
In the proof of Example 3.1, the environment liveness condition is proved by:

∀α . ⊢∅ L0(α) ⇒ T

1; ∅ ⊢ L(α) : L0(α) −−↠ T
LiveT

impr∅(cr ,L1,L,Rc,Rk,T )
1; ∅ ⊢ L(α) : L1(α) −−↠ T

LiveO

1; ∅ ⊢ L(α) : L0(α) ∨ L1(α) −−↠ T
ECase

1; ∅ ⊢ L M−−−↠ T
EnvLive

Since L trivially implies L ∗ ∃α .M(α), we can apply EnvLive, setting L(α) = (L ∧ α = 0). Then we

apply ECase to split on the value of l : L(α) = L0(α) ∨ L1(α) where L0(α) = cr (x, done, 0, _) ∧ α = 0

and L1(α) = cr (x, done, 1, _) ∗ ⌊k⌋Er ∧ α = 0. If l = 0 we can apply LiveT as we are already in T ;

if l = 1, L1 entails ⌊k⌋Er so we can apply LiveO with G = 0, O = k, Rc =
⋃

G Tc(G) (i.e. all the
transitions of the interference protocol of c), and Rk = {((1,d), (0,d)) | d ∈ Bool}, that is, the only
transition which fulfils k. The imprA condition is satisfied: every transition in Rc does not increase

α , and any transition in Rk takes us directly to T .

Soundness. Specifications S are hybrid triples with the command omitted; our model, defined

in Appendix, defines an (infinite) trace semantics for specifications JSK. The infix syntactic judge-
ment used in rules can be written as ⊢ C : S. The corresponding semantic judgement ⊨ C : S is
defined as JCK ⊆ JSK.

Theorem 5.1 (Soundness). If ⊢Φ C : S then ⊨Φ C : S.
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1; ∅ ⊢ A

l ∈ {0, 1} ↠0 {0}.
〈
L(r , x, l)

〉
A
∃E

l
i
m

A

l ∈ {0, 1} ↠0 {0},o,h.
〈
clhr (x ,h, l ,o) ∗ ⌈e⌉r

〉
A
∃E

l
i
m
;
M
k
A
t
o
m

1; [r 7→ (X1, 0,X2,R)] ⊢{∃l ,o,h. clhr (x,h, l ,o) ∗ r Z⇒ ♦}
cB alloc(1); [c]B 1;
pB FAS(x + 1, c);
vB [p];{
P(1) ∗ L

}

W
h
i
l
e while(v, 0) {

vB [p];
}{

P(0) ∧ v = 0

}
[x]B c;
dealloc(p){∃l ′,o′. clhr (x, l ′,o′)
∗ ∃l ,o. r Z⇒ ((_, l ,o), (_, 1,o + 1)) ∧ l = 0

}
〈∃h′. clhr (x,h′, 1,o + 1) ∗ ⌈e⌉r ∧ l = 0

〉{
L(r , x, 1) ∧ l = 0

}

L(r, x, l ) ≜ ∃o ∈ N. ∃h ∈ Addr. clhr (x, h, l, o) ∗ ⌈e⌉r
X1 ≜ {(x, h, l, o) | x, h ∈ Addr, l ∈ {0, 1}, o ∈ N}
X2 ≜ {(x, h, 0, o) | x, h ∈ Addr, o ∈ N}

e : ((x, h, l, o), 0)⇝ ((x, h, l, o), p(t ))
e : ((x, h, 0, o), p(o + 1))⇝ ((x, h′, 1, o + 1), 0) (= R)
e : ((x, h, 1, o), 0)⇝ ((x, h, 0, o), 0)

lay(p(i)) ≜ i ∀i ∈ N. 1 > i > 0

P (β ) ≜ ∃l, o, t, h . clhr (x, h, l, o) ∗ r Z⇒ ♦ ∧ o < t

∗ ⌈t(p, c, t )⌉r ∗ ⌊p(t )⌋Lr ∗∗t−1
i=o+1 ⌊p(i)⌋

E

r

∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v

Fig. 8. Proof of CLH lock. On the right: auxiliary definitions, the transitions of Tclh, the layers of obligations.

5.1 Proving CLH lock correct

The proof of CLH is sketched in Fig. 11. We explain here the important steps and refer to Appendix

for the full details.

CLH locks work by maintaining an internal FIFO queue of threads requesting the lock. This

queue is virtual, in that the next pointers are not kept in main memory: each requesting thread

keeps a pointer of the previous thread in a local variable p. We maintain an abstract view of this

queue, which precise enough to support the termination argument, but abstract enough to only see

an update at the linearisation point of the lock operation. We associate, through ghost state, to

each thread requesting the lock, a ticket number t ∈ N which corresponds to the order of arrival.

Every time a thread joins the queue, it gets assigned the next available ticket. We also keep track of

the ticket number o of the thread at the head of the queue, the owner. The region representing the

shared lock state is thus clhr (x ,h, l ,o) where x is the address of the lock, h is the address of the

head of the queue (important for verifying the unlock operation) l ∈ Bool is the abstract state of

the lock and o ∈ N is the current owner number. We record o in the region as this is global shared

information about the lock’s state, while the ticket number of the current thread is local, and stored

as the argument of the obligation p(t), which is obtained locally once a thread joins the queue.

The proof needs to show atomicity of the operation, which is done by applying theMkAtom

rule. The rule requires proving a Hoare triple, thus allowing multiple steps to be taken, but with

evidence (provided by the atomicity tracking component) of a single atomic update having taken

place for some region r . In such case, the update declared in the atomicity tracking component is

promoted to the atomic postcondition in the derived atomic triple. Note that the state of the region r
might have been changed by the environment after the update, a fact that would be reflected in

weak information about the state in the Hoare postcondition of the premise of MkAtom. The

atomic postcondition is however derived from the information in r Z⇒ (x ,y), which is stable, as it

is information about an event in the past, and not the current state.

The only part of the proof where the termination argument is non-trivial, is the application

of theWhile rule. The loop invariant P(β), the persistent invariant L, the environment progress
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measure, and the target states are defined as follows:

P(β) ≜ ∃l ,o, t ,h. clhr (x,h, l ,o) ∗ r Z⇒ ♦ ∗ ⌈t(p, c, t)⌉r ∗ ⌊p(t)⌋Lr ∗

∗t−1
i=o+1 ⌊p(i)⌋

E

r ∧ o < t ∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v

L = ∃l ,o,h. clhr (x,h, l ,o) ∗ ⌊p(t)⌋Lr ∗∗t−1
i=o+1 ⌊p(i)⌋

E

r ∗ r Z⇒ ♢ ∧ o < t

M(α) = ∃l ,o,h. clhr (x,h, l ,o) ∧ α = 2(t − o − 1) + l
T = ∃l ,o,h. clhr (x,h, l ,o) ∧ t = o + 1 ∧ l = 0 ∧ h = p

Here, t(p, c, t) is ghost state recording the current and previous pointers in the queue of threads

waiting for the lock. The natural number t is the order of arrival at the queue: it is incremented

every time a thread joins the queue and assigned to that thread. The obligation p(t), with layer t ,
represents the responsability of effectively acquiring the lock, once a thread reaches the head of the

queue. The liveness assumption X1 ↠0 X2 recorded in the atomicity context ensures the owner of

the lock will eventually unlock the lock. The persistent invariant L knows that every thread with

number i ahead in the queue (i.e. o < i < t ) owns the obligation p(i). The while loop is unblocked if

the lock is unlocked and the current thread is at the head of the queue, as formalised by T . The
measure of environment progress is 2(t − o − 1) + l . The number of threads ahead in the queue is

t − o − 1. To show that the environment eventually takes us stably to T we can split into two cases

(using ECase): either the lock is unlocked, in which case we can invoke the liveness assumption

in the atomicity context and deduce that l goes from 1 to 0 without changing the owner number,

which decreases the measure by 1 (using LiveA). In the other case, the lock is unlocked but t is not
the head of the queue. In that case there is some thread with number t ′ < t holding p(t ′) which
has layer strictly lower than t and we can apply LiveO. The only transition that can fulfill such

obligation is the one that increments the owner number while setting l from 0 to 1, bringing the

measure down by 1.

5.2 Evaluation

We have used TaDA Live to verify a number of representative examples. In Appendix, we present

detailed proofs of spin lock, CLH lock, our distinguishing client, a linearizable counter module

using multiple locks and a lock-coupling set. Spin lock illustrates blocking in the presence of

impedance. CLH lock requires a more interesting environment liveness condition that captures why

each thread will eventually reach the head of the queue, by combining liveness assumptions from

pseudo-quantifiers and obligations for internal blocking. The distinguishing client shows how TaDA

Live’s specifications lead to simple and modular client proofs. It also illustrates how obligations and

layers allow for sound reasoning with a mix of blocking operations and busy-waiting. The counter

module shows that for simple common programming patterns, the layer system leads to natural

and modular client proofs. Lock-coupling set is a challenging example with a dynamic number

of locks, which shows the flexibility and power of the layer system. These examples cover all the

proof patterns needed to prove all the examples of the LiLi papers [20, 21]. Notably, proofs in LiLi

involving modules that use locks, which require in-lining some non-atomic implementation of the

lock operations in the client, resulting in far less modular proofs and unnecessarily intertwined

termination arguments.

5.3 Limitations

Non-local linearization points. As with other total program logics, TaDA Live does not support

helping/speculation. Such patterns are challenging for the identification of the linearization point,

which is entirely a safety property. Extensions to TaDA that could support such patterns are
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discussed in [3]. Such extensions are orthogonal to the termination argument. We therefore choose,

in line with the related literature, to explore termination in a simpler logic.

Non-structural thread creation. TaDA Live currently supports only structural parallel. We believe

the support of non-structural fork/join would not require substantial new ideas. For comparison,

LiLi does not support parallel nor fork/join.

Scheduling non-determinism. Amore interesting limitation comes from our approach to specifying

impedance. For non-blocking programs, the ordinal-based approach is complete. It is not complete

for blocking programs. Consider C2 ≜ (C1 ∥ [done]B true) where C1 is the distinguishing client

with a spin lock. Scheduler fairness guarantees C2 will be eventually executed. The specification of

spin lock, however, states that every call to lock needs to consume budget, forcing the client to

provide an upper bound for the total number of calls to initialise the budget. Unfortunately, C2 will
call lock an arbitrary unbounded number of times, determined only by the choices of the scheduler.

It is, thus, not possible to provide the initial budget, and TaDA Live cannot prove that the program

terminates. The impedance on the lock is only relevant when the client is unblocked (i.e. done
is true) but the specifications do not allow for the distinction. To accommodate this behaviour,

we could introduce α(S) to represent a prophecy of the number of steps it will take to fulfil live
obligation s. This would solve the problem for C2, because α(s) + 1 (where s is fulfilled by setting

done to true) would be the required budget. To the best of our knowledge, none of the approaches

in the literature can handle this example.

Loop body specifications. Consider a loop invariant asserting the possession of obligation k. We

cannot distinguish, by only looking at the specification of the loop body, the case where k is

continuously held throughout the execution of the body, from the case where k is fulfilled and then

reacquired before the end of an iteration. The current While rule conservatively rules out the use

of assumptions with layer higher than or equal to lay(k); doing otherwise would be unsound in the

case when k is held continuously. A solution would be to introduce an assertion live(k), certifying
that an obligation is fulfilled at some point in a block of code. It would allow the While rule to

only forbid layers which may depend on obligations one holds in the loop invariant and for which

it was not possible to prove live(k).

More Expressive Layers. It might be possible to shorten some program proofs if the lay function is

constrained through assertions, rather than statically specified. This would potentially enable layers

to change as result of interference, provided their relative order is preserved. We are not aware

of any example that cannot be proved using static layers and critically requires more expressive

layers. It is not clear how to ensure soundness if interference on layers is allowed.

6 RELATEDWORK

Primitive Blocking. There has been work on termination and deadlock-freedom of concurrent

programs with primitive blocking constructs. Starting from the seminal work of [17], the idea of

tracking dependencies between blocking actions and ensuring their acyclicity has been used to prove

deadlock-freedom of shared-memory concurrent programs using primitive locks and (synchronous)

channels [1, 18]. Similar techniques have been used in [12] to prove global deadlock-freedom (a

safety property requiring that at least some thread can take a step), and [14] to prove termination.

This entire line of work assumes the invocation of lock/channel primitives as the only source of

blocking. As a consequence, this methodology provides no insight on the issue of understanding

abstract blocking patterns arising from busy waiting and shared memory interference. Our solution

uniformly handles programs that mix blocking primitives and ad-hoc synchronisation patterns.

The notion of “obligations” found in [1, 12, 14, 18] is only superficially related to our obligations.
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First, obligations found in the literature represent primitive blocking events (like the acquisition of

a lock). They are also typically equipped with a structure to represent causal dependencies between

these events, to detect deadlocks. Our layered obligations are associated with arbitrary abstract
state changes, removing the need for ad-hoc treatment of primitives, and supporting abstraction

and abstract atomicity. Moreover, our layers do not represent causal dependencies between events,

but rather dependencies between liveness assumptions in a termination argument. This reflects in

our specifications, e.g. a lock operation does not return an obligation in its post-condition. Whether

there is a need for an obligation linked to that lock is entirely dependent on how the client will

decide to use the lock. Nevertheless, the specification precisely captures the termination guarantees

of lock operations. Finally, obligations in the literature have a purely safety semantics, from which

one can only derive safety properties as non-blocking or deadlock-freedom. Our obligations explain

how to express proper liveness invariants, how to blend them with the layers, and how to use them

for proving termination.

History-based methods. The CertiKOS project [11, 16] developed mechanised techniques for

the specification and verification of fine-grained low-level code with explicit support for abstract

atomicity and progress verification. The approach is based on histories: the abstract state is a log
of the abstract events of a trace; and the specification of an atomic operation inserts exactly one

event in the log. Local reasoning is achieved by rely/guarantee through complex automata product

constructions. The framework is very expressive, with the downside that specifications are more

complex and difficult to read, and verification requires manipulation of abstract traces/interleavings.

Our work is similar in aim and scope, but our strategy is different. We try to specify/verify programs

using theminimalmachinery possible, keeping the specifications as close to the developer’s intuition

as we can. As a result, our specifications are more readable (compare our fair-lock specification

with the corresponding 30-line specification from Fig. 7 in [16]), and our reasoning is simpler (the

layered obligation system leads to a more intuitive proof compared to the proof of MCS locks

in [16]).
7

Higher-order logics. Iris [15] has been extended to reason about termination [26, 27]. The idea

is to establish a non-contextual refinement between two programs, one acting as a specification

and one as an implementation. A crucial shortcoming is that the approach is not modular: the

refinement concerns two closed programs and cannot be reused as part of a larger program (like a

module and its clients).

Contextual refinement. There has been work on extending linearizability, characterised as a

contextual refinement, to support reasoning about progress properties, e.g. [10]. This work only

supports atomic specifications for non-blocking operations. Liang et al. [22] studies the exact rela-

tionship between common progress properties of fine-grained operations and contextual refinement.

The study of the contextual refinement induced by our triple semantics is future work.

LiLi. The work closest to ours is LiLi [20, 21]. LiLi was the first program logic to prove total

specifications for linearizable concurrent objects with internal blocking [20]. LiLi is also a concurrent

separation logic, but proves linearizability via contextual refinement: specifications are expressed

as atomic programs and verification proves a refinement relation between these programs and their

implementations. Recently, LiLi was extended to handle external blocking [21]. Although we share

most of our goals with LiLi, our approach is radically different. LiLi’s specifications use a primitive

blocking operation to represent abstract blocking operations, and appeal to scheduler fairness

assumptions to communicate sensitivity to impedance. Lili’s verification is limited to proving a

7
The proof is a variation of the one for CLH.
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module correct with respect to its specification but it does not support parallel composition and

does not directly support client verification. Our environment liveness condition was informed by

LiLi’s definite progress condition. Our obligations are similar in spirit to LiLi’s definite actions, but

attain higher locality of the argument thanks to subjectivity and layers. See Appendix for details.

7 CONCLUSIONS AND FUTUREWORK

We have introduced TaDA Live, a sound separation logic for reasoning compositionally about

the termination of fine-grained concurrent programs. Our key contribution is our approach to

abstract atomic blocking as reliance of termination on liveness properties of the environment. We

have illustrated the subtlety of our reasoning using a spin lock and a CLH lock, and a client. We

have given many other examples in the Appendix. We believe our work provides a substantial

contribution to the understanding of compositional reasoning about progress for fine-grained

concurrent algorithms.

In future, we will study the notion of contextual refinement implied by our semantic triples.

This would allow us to integrate our proof techniques in a refinement calculus, following the

approach of TaDA Refine [24]. This should give us mechanisms for extending our compositional

reasoning towards general liveness for reactive systems. We would, eventually, like to provide a

semi-automatic implementation of TaDA Live based on CAPER [7].
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Appendix

A PROGRAM PROOFS CONVENTIONS

A.1 Specification abbreviations

Here is a summary of all the abbreviations we use in writing specifications. The full hybrid

specification format is

m; λ;A ⊨ A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 C ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
The ∃y quantification is a normal existential quantification but its scope extends over both the

Hoare and the atomic postconditions. We omit it when y does not occur in the triple.

A

x ≜

A

x ∈ Val

A

x ∈ X ≜

A

x ∈ X ↠⊥ X

A

x1 ∈ X1 ↠k X ′
1
,x2 ∈ X2 ↠k X ′

2
. ≜

A(x1,x2) ∈ (X1 × X2)↠k (X ′
1
× X ′

2
).

An omitted pseudo-quantifier is to be understood as the trivial pseudo-quantifier

A

x ∈ AVal↠⊥ AVal,

for an unused x .
The triples

m, λ,A ⊢
{
P
}
C

{
Q

}
m, λ,A ⊢ A

x ∈ X ↠k X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
are abbreviated with

m; λ;A ⊢
〈
P
��
emp

〉
C

〈
Q

��
emp

〉
∀®v0.m; λ;A ⊢ A

x ∈ X ↠k X ′.
〈
®v0 � ®v0

�� P ′(x)
〉
C ∃®v1.

〈
®v0 � ®v0 ∧ ®v1 � ®v1

��Q ′(x)
〉

respectively, where ®v0 = pv(P(x)), ®v1 = pv(Q(x))\®v0, P ′(x) = P(x)[ ®v0/®v0 ] andQ ′(x) = Q(x)[ ®v0/®v0, ®v1/®v1 ]
(for technical reasons the atomic pre/post-conditions in the general triples cannot contain program

variables). In other words, the program variables mentioned in the atomic pre/post-conditions refer

to the value stored in them at the beginning of the execution of the command. Most commonly, the

program variables used this way are actually not modified by the command.

A.2 Guard and Obligation Algebras

Defining a guard algebra can be tedious. In program proofs, we will define guard algebras by

generating them from some guard constructors and some axioms defining the guard operation. We

explain this construction by introducing some unsurprising auxiliary definitions.

Definition A.1. Given a set X , the set M(X ) ≜ X → N is the set of multisets over X ; ∅ is the

empty multiset (i.e. the function mapping every element to 0) and ⊕ : M(X ) × M(X ) → M(X )
is multiset union (i.e. the pointwise lifting of +). The expression Hx1, . . . ,xnI denotes the mul-

tiset containing the elements x1, . . . ,xn . Given a set X , the free commutative monoid over X
is the monoid (M(X ), ⊕, ∅). Given a commutative monoid (X , •, 0) and a congruence relation

� ⊆ X × X , the quotient (X/�, •/�, [0]�) is a commutative monoid. Given a commutative monoid

(X , •, 0) and a set U ⊆ X with 0 < U , the PCM over X induced by U is (X |U , •U , 0) where
X |U = {x ∈ X | ∀u ∈ U . �y ∈ X . x = u • y} and for x ,y ∈ X |U , x •U y = x • y if x • y ∈ X |U ,
otherwise undefined.
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For each guard algebra to be defined, we will introduce a number of symbols G1, . . . ,Gn , called

guard constructors each with some guard domain dom(Gi ) ⊆ AVal
ki

for some ki ∈ N. They induce

the set of guard terms GT ≜
⋃n

i=1 {Gi (®a) | ®a ∈ dom(Gi )} By specifying some guard constructors,

a congruence � ⊆ M(GT) × M(GT) and a set U ⊆ M(GT)/� one obtains the guard algebra

((M(GT)/�)|U , (⊕/�)U , [∅]�).
The guard constructors are specified by listing their domains, writing G : D to mean dom(G) = D.
The congruence � is specified as the smallest congruence satisfying given axioms of the form

HGi1 (®ai1 ), . . . ,Gik (®aik )I � HGj1 (®aj1 ), . . . ,Gjk′ (®ajk′ )I
which we write using the syntax

Gi1 (®ai1 ) • · · · • Gik (®aik ) = Gj1 (®aj1 ) • · · · • Gjk′ (®ajk′ )
The setU is specified as the smallest set satisfying given axioms of the form[

HGi1 (®ai1 ), . . . ,Gik (®aik )I
]
�
∈ U

which we write using the syntax

Gi1 (®ai1 ) • · · · • Gik (®aik ) = ⊥
Example A.2. The guard algebra used in Example 3.1, is expressed by using two guard constructors

with empty domain, k and d, and axioms: k • k = ⊥, d • d = ⊥ Note that with no congruence

axioms, the induced congruence relation is equality. These induce the guard algebra with elements

{ ∅, HkI, HdI, Hk,dI }.

A.3 Levels

Region levels are used to remove the possibility of unsound duplication of resources by opening

regions. To see the problem consider a generic region tλr (a); we have tλr (a) ≡ tλr (a) ∗ tλr (a): this
is the essence of what it means for a region to be a shared resource. When we open a region

however, we obtain ownership of the contents of its interpretation I(tλr (a)); the interpretation
can contain resources that are not shared, for example heap assertions, in which case we have

I(tλr (a)) . I(tλr (a)) ∗ I(tλr (a)) ≡ False. Without constraining levels, one could start with tλr (a),
produce the equivalent tλr (a) ∗ tλr (a), open the first region assertion with UpdReg or LiftA, then

open the second region assertion and end up with False. Levels are a mean to avoid unsound

derivations that use the above chain of implications. A level λ in the context of a judgement records

that all the regions of level λ or higher might have been already opened and should not be opened

again. The rules that do open regions (rules UpdReg and LiftA) can only open a region of level λ if

the level in the context is λ + 1, and they record the operation by setting the context level to λ, so
that the region cannot be opened again.

The presentation of the program proofs omits the level annotations to ease readability. The levels

can be unambiguously derived from the sequence of application of the UpdReg and LiftA rules.

A.4 Layers

TaDA Live specifications include two layers: one in the context, and one decorating the liveness

assumption. These layers are the only ones that “leak” in the abstract specifications. To make

the specifications as reusable as possible, a common pattern is to allow instantiating the layers

of a specification with different layers per instance of the module. For example, the fair lock

specifications are

1r ⊢

A

l ∈ {0, 1} ↠0r {0}.
〈
L(r , x, l)

〉
lock(x)

〈
L(r , x, 1) ∧ l = 0

〉
0r ⊢

〈
L(r , x, 1)

〉
unlock(x)

〈
L(r , x, 0)

〉
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where 1r and 0r are layers parametrised on r , which uniquely identifies the shared lock at x. In the

proof of the implementation, one may have internal layers which do not leak, but that need to be

kept parametric on r . To be able to associate unambiguously a layer to obligations, the obligations

need to be parametric on r as well, leading to the pattern lay(O(r , ®a)) =mr . To remove the noise

generated by this uniform parametrisation on the region identifiers, we omit it from the proofs of

the implementation, writing simply lay(O(®a)) =m, with the understanding that the proof can be

unambiguously parametrised.

A.5 (Meta-)Quantification

Following standard conventions, free meta-variables are implicitly universally quantified. For

example, we may write

a(x) • b(y) , ⊥ ⇔ x = y

to denote the set of axioms

∀x ∈ dom(a),y ∈ dom(b). a(x) • b(y) , ⊥ ⇔ x = y

A.6 Region type specifications

— Abstract state domain. It can be tedious (and detrimental to readability) to always explicitly

write the domains of quantified variables in the assertions of program proofs, especially when

they can be easily inferred from context. Consider the case of regions. Some of the rules, for

exampleMkAtom, need the precise domain of the abstract state (∃x ∈ X ) because it needs to match

the pseudo-quantifier’s domain (

A

x ∈ X ). To improve readability, we adopt the following strategy.

Suppose the region type t has abstract state in the domain A. We can define the interpretation

function so that it constrains the domain of the abstract state accordingly: I(tλr (a)) = a ∈ A ∧ · · · .
Then we trivially have that λ′;A ⊨ ∃a. tλr (a) ⇛ ∃a ∈ A. tλr (a). We thus can omit the domains

from existential quantification and implicitly apply rule Cons whenever the domain information is

needed in the proof.

To ease even further the specification of region types, when defining a new region type we will

introduce, once and for all, the domain of the corresponding abstract state, and omit the obvious

constraint from the interpretation definition.

— Fixed parameters. It is very common to have a product domain as abstract state of regions, as

one needs to assemble in an abstract state many bits of information that characterise region’s

state. Typically, the abstract state domain A can be seen as the product of two domains F × S , the
domain of the fixed parameters F and the domain of the non-fixed parameters S . (Both F and S can

be themselves products of simpler domains.) The fixed parameters are set at the point of creation

of the region, and can never be updated; they typically define the “interface” of the region. For

example, the address of a lock module instance x is the fixed parameter of a region lockr (x , l)
and l ∈ {0, 1} is the non-fixed parameter representing the state of the lock. When introducing a

new region type we will specify which parameters are fixed, and they will be omitted from the

region interference specification, as they are left untouched by every transition. For example, for

the hypothetical region lockr (x , l) above, we may write g : (0, 0)⇝ (1, k) and g : (1, k)⇝ (0, 0) to
denote g : ((x , 0), 0)⇝ ((x , 1), k) and g : ((x , 1), k)⇝ ((x , 0), 0).

— Interference protocols and atomicity contexts. Definition E.8 requires Tt to be monotone in the

guards, reflexive and closed under obligation frames. Since writing the whole function can be

tedious and redundant, we will only write a number of expressions of the form

G : (a1,O1)⇝ (a2,O2) (7)
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which will set Tt(G) ∋ {
(
(a1,O1), (a2,O2)

)
}, and implicitly complete the function by closing Tt

under the properties above.

Similarly, atomicity contexts associate to some region identifier records A(r ) = (X ,k,X ′,R) that
have (unguarded) transition relations as their last component R. We therefore borrow the syntax

from (7), and write R = (a1,O1)⇝ (a2,O2) to specify R as the minimal relation that include such

relations and is closed under obligation frames.

A.7 Proof patterns

There are some recurring patterns in TaDA Live proofs, which we summarise here to help the

reader navigate the examples.

— The exclusive guard. It is very common to express some exclusive permission on some shared

resource by means of some guard e that cannot be composed with itself: i.e. e • e = ⊥. Local
ownership of e is exclusive in that no other thread can at the same time assert ownership of e.

An ubiquitous use of this guard is in representing the resource offered by a module. Take for

example a concurrent counter module. Abstractly we have a (fixed) location x for the module

instance and an abstract state n ∈ N representing the current value of the counter. Since this is

a concurrent counter it uses internally shared resources. We therefore have a region cntr (x ,n)
encapsulating the shared internal resources of the counter. From the perspective of the client,

however, at the moment of creation of the counter with, say, an operation makeCounter(), the
counter is exclusively owned by the client. This, for example, is reflected in the fact that, until

the client shares the counter or invokes operations on it, the value of the counter will be stably 0.

To represent this fact, one typically defines an exclusive guard e guarding each transition of the

region interference: e.g. e : (n,O1)⇝ (m,O2). Then the makeCounter() operation can be given

the specification

⊢
{
emp

}
xB makeCounter()

{
cntr (x, 0) ∗ ⌈e⌉r

}
which gives to the client the stable assertion cntr (x , 0) ∗ ⌈e⌉r . (Note how cntr (x , 0) is not stable.)
To re-share the counter, the client will create its own region encoding the invariants governing the

interaction over the counter (and the other resources of the client) the interpretation of which will

contain cntr (x , 0) ∗ ⌈e⌉r .
Note that the assertion cntr (x , 0) ∗ ⌈e⌉r has a very different meaning if occurring in the atomic

precondition of a triple, as opposed to the Hoare precondition: the resources in the atomic precon-

dition are not owned by the local thread, but only acquired instantaneously at the linearisation

point. For example, in the triple

⊢ A

n ∈ N.
〈
cntr (x,n) ∗ ⌈e⌉r

〉
incr(x)

〈
cntr (x,n + 1) ∗ ⌈e⌉r

〉
the exclusivity of e is only granted instantaneously to the thread acting on it atomically, i.e. either

the environment during the interference phase as allowed by the pseudo-quantifier, or the local

thread at the linearisation point.

Since this pattern is ubiquitous, we reserve the e guard constructor for this use, and will omit

the e • e = ⊥ axiom when specifying guard algebras.

A.8 Modules

TaDA Live is a logics that emphasizes modularity of the proofs. One aspect of this is that when a

program is naturally structured as a collection of modules, one would want the proof of correctness

to be decomposed into independent proofs of each module exporting some specifications for the

externally accessible operations, and a proof that the client of these modules is correct, which

depends only on these abstract module specifications.
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In our model, a module is nothing but a conceptually related set of operations f1, . . . , fn that are

defined in a let statement: let f1(®x1)=C1 in . . .let fn(®xn)=Cn in C. Here C is what we

call “client” of a module offering operations f1, . . . , fn . The operation deals with let statements

by populating a function φ associating each function name fi to its formal parameters ®xi and its

implementation Ci .
Similarly, the proof of correctness of C, will need to fetch the abstract specifications of the

functions (which appear as free names in C) from some mapping Φ from function names to their

specifications. The fact that the implementation of each operation satisfies its specification is

checked in the proof derivation for the let statement (rule Let) but then the proof of the client and

of the module are done separately.

For this reason, we present proofs of just a module against its abstract specifications, which

can be used as if they were axioms in the proof of any client using them. To talk about modules

independently of their clients we introduce the notation def f(x) {C} which can be understood

as populating an entry of φ for f. We will then prove some specification for f which will populate

an entry of Φ for f.
In the proof of some client, we will recall the module specifications that are assumed in Φ, and

use rule Call to handle the calls to the operations of the module. We will omit from the proof

outlines Φ and the applications of rule Call for readability.

A.9 Proof outlines

In program proof outlines, we adopt a number of notational conventions. First, unless it involves a

viewshift or we want to highlight it, we will apply rule Cons without mentioning it. Similarly, we

omit the obvious applications of rules Var, Call and SubPq and the axioms (i.e. the rules associated

with primitive commands).

Next, in outline such as

A;k ⊢

A

x ∈ X ↠ X ′.〈
P(x)

〉

o
u
t
e
r

〈
P ′(x)

〉

i
n
n
e
r ...〈

Q ′(x)
〉〈

Q(x)
〉

...

A;k ⊢ A

x ∈ X ↠ X ′.
〈
P ′(x)

〉
C

〈
Q ′(x)

〉 inner

A;k ⊢ A

x ∈ X ↠ X ′.
〈
P(x)

〉
C

〈
Q(x)

〉 outer

the specification of the inner step inherits the context and the pseudo-quantifier of the specifica-

tion of the outer step, as in the derivation on the right.
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B THE TADA LIVE PROOF SYSTEM

In this section, we present the full proof system of TaDA Live.

For brevity we use the metavariable

↠
X to range over expressions of the form X1 ↠k X2 and is

used in rules when the pseudo-quantification is simply copied verbatim from premise to conclusion.

In the rules we use the following abbreviations:

⊢A P Q k ≜ ∀r ∈ RId. ⊢A P ⇒ r Q k

⊢A P ⋑ ⌊O⌋Lr ≜ ⊢A P ⇒ ⌊O⌋Lr ∗ emp
r
Ob

B.1 Liveness rules

For reference we reproduce the liveness-related rules.

n; λ;A ⊢ ∃x ∈ X . P(x) M−−−↠ ∃x ′ ∈ X ′. P(x ′) m,k ⩾ n
m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
m; λ;A ⊢Φ

A

x ∈ X .
〈
P(x)

〉
C

〈
Q(x)

〉 LiveC

∀β ≤ β0.m(β); λ;A ⊢ L M−−−↠ T (β) ∀β ≤ β0. ⊢A P(β) Qm(β) ⩾ m
∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable pv(T ,L,M) ∩mod(C) = ∅

∀β ≤ β0. ∀b ∈ Bool.m; λ;A ⊢Φ
{
P(β) ∗ (b .⇒ T (β)) ∧ B

}
C

{∃γ . P(γ ) ∧ γ ≤ β ∗ (b .⇒ γ < β)
}

m; λ;A ⊢Φ
{
P(β0) ∗ L

}
while(B){C}

{∃β . P(β) ∗ L ∧ ¬B ∧ β ≤ β0
} While

m1; λ;A ⊢Φ
{
P1

}
C1

{
Q1

}
⊢A Q1 Qm2 ⩽ m

m2; λ;A ⊢Φ
{
P2

}
C2

{
Q2

}
⊢A Q2 Qm1 ⩽ m

m; λ;A ⊢Φ
{
P1 ∗ P2

}
C1 ∥ C2

{
Q1 ∗Q2

} Par

B.1.1— The Environment liveness rules. The Environment liveness rules use the imprA condition

defined as follows:

Definition B.1 ( imprA). Given assertions L(α), L′(α) andT , and relations R,R′ ⊆ AState×AState,

the condition imprA(tλr ,L,L′,R,R′,T ) holds if and only if, R′ , ∅ and for all w1,w2 ∈ WorldA ,
α1,α2, and (x1,x2) ∈ R:(

w1 ⊨A L(α1) ∗ tλr (x1) ∧w2 ⊨A L′(α2) ∗ tλr (x2)
)

⇒
(
(α2 ≤ α1 ∧ ((x1,x2) ∈ R′ ⇒ α2 < α1)) ∨w2 ⊨A T ∗ True

)
Intuitively, L(α)∗ tλr (x1) describes configurations with abstract state x1 and environment progress

measure α , corresponding to the current subset of possible configurations taken as starting point.

L′(α) ∗ tλr (x1) describes the same, but for the possible end-point configurations (the whole of the

invariant). R describes the possible abstract state transitions, R′
describes the possible abstract

state transitions to a good state, T describes the target configurations. The imprA(tλr ,L,R,R′,T )
condition then encodes the check that

(1) there is a transition to a good state possible (R′ , ∅)
(2) if we compare the measure α1 and α2, taken before and after a transition in R occurred,

respectively, then we obtain that either (a) the measure did not increase and it decreased if it

was a transition to a good state, or (b) we reached the target T

A ⊨ L stable ⊢A L ⇒ L ∗ ∃α .M(α)
m; λ;A ⊢ L ∗M(α) : L ∗M(α) −−↠ T

m; λ;A ⊢ L M−−−↠ T
EnvLive
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m; λ;A ⊢ L(α) : L1(α) −−↠ T
m; λ;A ⊢ L(α) : L2(α) −−↠ T

m; λ;A ⊢ L(α) : L1(α) ∨ L2(α) −−↠ T
ECase

∀α . ⊢A T ′(α) ⇒ T

m; λ;A ⊢ L(α) : T ′(α) −−↠ T
LiveT

imprA (tλr ,L,L′, io(R),R′,T ) m > lay(O) ∀α . ⊢A L(α) ▷ lay(O) O ∈ AOb

λ < λ′ R =
⋃ {Tt(G ′) | G ′

# G} R′ = { (a1,a2) | ((a1,O1), (a2,O2)) ∈ R,O ⊑ O1,O ̸⊑ O2 }
m; λ′;A ⊢ L′(α) : L(α) ∗ ∃x . tλr (x) ∗ ⌈G⌉r ∗ ⌊O⌋Er −−↠ T

LiveO

imprA (tλr ,L,L′,R,R′,T ) m > k ∀α . ⊢A L(α) ▷ k λ < λ′

(X ↠k X ′) = live(A, r ) R =
⋃ {io(Tt(G ′)) | G ′

# G} R′ = {(a1,a2) ∈ R | a2 ∈ X ′}
m; λ′;A ⊢ L′(α) : L(α) ∗ ∃x . tλr (x) ∗ ⌈G⌉r ∗ r Z⇒ ♢ −−↠ T

LiveA

B.2 General forms

The following rules are the general forms of some of the rules in Fig. 6.

∀x ∈ X . ⊢A R
h
∗ Ra(x) Qm

fv(R
h
,Ra(x)) ∩mod(C) = ∅ A ⊨ R

h
stable ∀x ∈ X .A ⊨ Ra(x) stable

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x) 〉
C ∃y.〈Q

h
(x ,y)

��Qa(x ,y)
〉

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
∗ R

h

�� Pa(x) ∗ Ra(x)〉 C ∃y.〈Q
h
(x ,y) ∗ R

h

��Qa(x ,y) ∗ Ra(x)
〉 Frame

λ < λ′ r < dom(A) A ′ = A[r 7→ (X ,k,X ′,T )] T ⊆ Tt(G) R = io(T )
m; λ′;A ′ ⊢Φ

{
P
h
∗ ∃x ∈ X . tλr (x) ∗ r Z⇒ ♦

}
C

{∃x ,y.R(x ,y) ∗Q
h
(x ,y) ∗ r Z⇒ (x ,y)

}
m; λ′;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P
h

�� tλr (x) ∗ ⌈G⌉r
〉
C ∃y.〈Q

h
(x ,y)

�� tλr (y) ∗ ⌈G⌉r ∗ R(x ,y)
〉 MkAtomG

r ∈ dom(A) A ′ = A[r 7→ ⊥] A ⊨ Q
h
(x ,y) λ⇛λ+1 Q ′

h
(x ,y)

A ⊨ I(tλr (z)) ∗Q1(x , z) ∧ R(x , z) λ⇛λ+1 Q ′
1
(x , z)

A ⊨ I(tλr (z)) ∗Q2(x , z) ∧ x = z λ⇛λ+1 Q ′
2
(x , z) ⊢A P

h
⇒ emp

r
Ob

⊢A Q
h
(x ,y) ⇒ emp

r
Ob

⊢A P(x) ⋑ ⌊O0(x)⌋Lr ⊢A Q1(x , z) ⋑ ⌊O1(x , z)⌋Lr ⊢A Q2(x) ⋑ ⌊O2(x)⌋Lr
{ ((x ,O0(x)), (z,O1(x , z))) | x ∈ X ∧ R(x , z) } ∪ { ((x ,O0(x)), (x ,O2(x))) | x ∈ X } ⊆ tr(A, r )

m; λ;A ′ ⊢Φ

A

x ∈
↠
X .

〈
P
h

��� I(tλr (x)) ∗ Pa(x)〉 C ∃y.
〈
Q
h
(x ,y)

��� ∃z.I(tλr (z)) ∗ (
R(x , z) ∧Q1(x ,y, z)

∨ x = z ∧Q2(x ,y)

)〉
m; λ+1;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

��� tλr (x) ∗ Pa(x) ∗ r Z⇒ ♦〉 C ∃y.
〈
Q ′
h
(x ,y)

��� ∃z. tλr (z) ∗ (
Q ′
1
(x ,y, z) ∗ r Z⇒ (x , z)

∨ Q ′
2
(x ,y) ∗ r Z⇒ ♦

)〉 UpdRegG

A ⊨ Q
h
(x ,y) λ⇛λ+1 Q ′

h
(x ,y) A ⊨ I(tλr (z)) ∗Qa(x ,y, z) ∧ R(x ,y, z) λ⇛λ+1 Q ′

a
(x ,y, z)

⊢A P
h
⇒ emp

r
Ob

⊢A Q
h
(x ,y) ⇒ emp

r
Ob

⊢A Pa(x) ⋑ ⌊O1(x)⌋Lr ⊢A Qa(x ,y, z) ⋑ ⌊O2(x , z)⌋Lr
r ∈ dom(A) ⇒ R = id R(x , z) ⇒ ((x ,O1(x)), (z,O2(x , z))) ∈ Tt(G)

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� I(tλr (x)) ∗ Pa(x) ∗ ⌈G⌉r
〉
C ∃y.〈Q

h
(x ,y)

�� ∃z.I(tλr (z)) ∗Qa(x ,y, z) ∧ R(x , z)
〉

m; λ+1;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� tλr (x) ∗ Pa(x) ∗ ⌈G⌉r
〉
C ∃y.〈Q ′

h
(x ,y)

�� ∃z. tλr (z) ∗Q ′
a
(x ,y, z)

〉 LiftAG

A ⊨ P
h
∗ P stable ∀x ∈ X ,y.A ⊨ Q

h
(x ,y) ∗Q(x ,y) stable

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� P ∗ Pa(x)
〉
C ∃y.〈Q

h
(x ,y)

��Q(x ,y) ∗Qa(x ,y)
〉

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
∗ P

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y) ∗Q(x ,y)

��Qa(x ,y)
〉 AtomWG

m; λ;A ⊢Φ

A

x ∈
↠
X , z ∈ Z .

〈
P
h

�� Pa(x , z)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y, z)
〉

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

��∃z ∈ Z . Pa(x , z)
〉
C ∃y.〈Q

h
(x ,y)

��∃z ∈ Z .Qa(x ,y, z)
〉 A∃ElimG
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k1; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉

k1 ⩽ k2

k2; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉 LayWG

B.3 Logical manipulation rules

The rules below allow for basic logical manipulation.

λ;A ⊨ P
h
⇛ P ′

h∀x ∈ X . λ;A ⊨ Pa(x)⇛ P ′
a
(x)

∀x ∈ X ,y. λ;A ⊨ Q ′
h
(x ,y)⇛Q

h
(x ,y)

∀x ∈ X ,y. λ;A ⊨ Q ′
a
(x ,y)⇛Qa(x ,y)

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P ′
h

�� P ′
a
(x)

〉
C ∃y.〈Q ′

h
(x ,y)

��Q ′
a
(x ,y)

〉
m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉 Cons

∀v ∈ X . m; λ;A ⊢Φ
{
P(v)

}
C

{
Q

}
m; λ;A ⊢Φ

{∃x ∈ X .P(x)
}
C

{
Q

} ∃Elim

∀k ⩽ m.k ; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
(k) ∧ k ⩽ m

�� Pa(k,x)〉 C ∃y.〈Q
h
(k,x ,y)

��Qa(k,x ,y)
〉

∀k ⩽ m.m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
(k)

�� Pa(k,x)〉 C ∃y.〈Q
h
(k,x ,y)

��Qa(k,x ,y)
〉 QL

f : X → Y Y ′ = f (X ′) ∀x ∈ X . ⊢A P ′
a
(x) ⇒ Pa(f (x))

∀x ∈ X , z. ⊢A Q
h
(f (x), z) ⇒ Q ′

h
(x , z) ∀x ∈ X , z. ⊢A Qa(f (x), z) ⇒ Q ′

a
(x , z)

m; λ;A ⊢Φ

A

y ∈ Y ↠k Y ′.
〈
P
h

�� Pa(y)〉 C ∃z.〈Q
h
(y, z)

��Qa(y, z)
〉

m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P
h

�� P ′
a
(x)

〉
C ∃z.〈Q ′

h
(x , z)

��Q ′
a
(x , z)

〉 SubPq

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉

m; λ;A ⊎A ′ ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉 ACExt

m; λ;A ⊢Φ

A

x ∈ X ↠k X ′′.
〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉

X ′ ⊆ X ′′ ⊆ X

m; λ;A ⊢Φ

A

x ∈ X ↠k X ′.
〈
P
h

�� Pa(x)〉 C ∃y.〈Q
h
(x ,y)

��Qa(x ,y)
〉 LiveW

B.4 Axioms

m; λ;A ⊢Φ
{
E Û≥ 0

}
xB alloc(E)

{∗E−1i=0 x + i 7→ _

} Alloc

m; λ;A ⊢Φ
{
E 7→ _

}
dealloc(E)

{
emp

} Dealloc

m; λ;A ⊢Φ

A

v .
〈
E 7→ v

〉
xB [E]

〈
E 7→ v ∧ x = v

〉 Read

m; λ;A ⊢Φ

A

v .
〈
E1 7→ v

〉
[E1]B E2

〈
E1 7→ E2

〉 Mutate

m; λ;A ⊢Φ

A

v .

〈
E1 7→ v

〉
xB CAS(E1,E2,E3)

〈
(x = 1 ∧ E1 7→ E3 ∧v = E2) ∨
(x = 0 ∧ E1 7→ v ∧v , E2)

〉 CAS

m; λ;A ⊢Φ

A

v .
〈
E1 7→ v

〉
xB FAS(E1,E2)

〈
E1 7→ E2 ∧ x = v

〉 FAS

B.5 Standard Hoare rules

m; λ;A ⊢Φ
{
P
}
C1

{
R
}

m; λ;A ⊢Φ
{
R
}
C2

{
Q

}
m; λ;A ⊢Φ

{
P
}
C1;C2

{
Q

} Seq

m; λ;A ⊢Φ
{
P ∧ B

}
C1

{
Q

}
m; λ;A ⊢Φ

{
P ∧ ¬B

}
C2

{
Q

}
m; λ;A ⊢Φ

{
P
}
if(B){C1}else{C2}

{
Q

} If
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x < fv(P
h
) ∪ fv(Q

h
) ∪ fv(E) m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
∧ x = E

�� Pa(x)〉 C 〈
Q
h
(x ,y)

��Qa(x ,y)
〉

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h

�� Pa(x)〉 var x=E in C
〈
Q
h
(x ,y)

��Qa(x ,y)
〉 Var

(
®x, Ax ∈

↠
X .

〈
P
h

�� Pa(x)〉 · ∃y.〈Q
h
(x ,y, ret)

��Qa(x ,y)
〉
m;λ;A

)
∈ Φ(f)

m; λ;A ⊢Φ

A

x ∈
↠
X .

〈
P
h
[ ®E/®x]

�� Pa(x)〉 zB f(®E) ∃y.〈Q
h
(x ,y, z)

��Qa(x ,y)
〉 Call

pv(S) ⊆ ®x ∪ {ret} f < dom(Φ) Φ′ = Φ[f 7→ (®x,S)] ⊢Φ C1 : S1 ⊢Φ′ C2 : S2

⊢Φ let f(®x)=C1 in C2 : S2
Let

P ,Q ∈ SL ∀x ∈ X .⊥; 0; ∅ ⊢Φ
{
P(x)

}
C

{
Q(x)

}
⊥; 0; ∅ ⊢Φ

A

x ∈ X .
〈
P(x)

〉
⟨C⟩

〈
Q(x)

〉 PrAt

B.6 On Stablity Checks

A triple is well-defined, according to Definition E.19, if the Hoare pre- and post-conditions are

both stable assertions. The rules all assume the triples in the premises are well-defined and ensure

that the triple in the conclusion is well-defined as well. The only exceptions are rulesMkAtomG,

Cons, SubPq, and ∃Elim, where the Hoare pre-/post-conditions should be checked for stability to

ensure the conclusion is a well-defined triple. We omitted these stability checks from these rules to

improve readability.

In practice, however, this way of handling stability has a drawback: if one starts with a goal that

has unstable pre-/post-conditions, one would only see the mistake much further up in the proof,

typically at applications of AtomW or Frame (which requires stability of the frames) just before

applications of the axioms. Therefore, in practice, to make the proof fail early in case of mistakes,

one would want to additionally check stability at the top-level goal, and applications of Par.
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C EXAMPLES

This section contains the full details of the proofs of total correctness of some representative

examples. We start with the spin lock and CLH lock implementations, followed by Example 3.1.

Finally, we consider a bigger more challenging example: a concurrent set implemented using the

lock-coupling protocol.

Note that the presentation of the program proofs follows the notation and conventions introduced

in Appendix A.

C.1 Spin lock

— Code. The spin lock module implements a lock by storing a single bit in a heap cell; locking is

implemented by trying to CAS the bit from 0 to 1 until the CAS succeeded, unlocking simply sets

the bit back to 0.

def makeLock() {

retB alloc(1);
[ret]B 0;

}

def lock(x) {

var d= 0 in
while(d= 0){
dB CAS(x,0,1);

}

}

def unlock(x) {

[x]B 0;

}

— Specifications. We will prove the module satisfies the specifications:

∀α . 0 ⊢
{
emp

}
makeLock()

{∃r . L(r , ret, 0,α)}
∀ϕ . 1 ⊢ A

l ∈ {0, 1} ↠0 {0},α .
〈
L(r , x, l ,α) ∧ α > ϕ(α)

〉
lock(x)

〈
L(r , x, 1,ϕ(α)) ∧ l = 0

〉
0 ⊢

〈
L(r , x, 1,α)

〉
unlock(x)

〈
L(r , x, 0,α)

〉
where L(r , x, l ,α) abstractly represents the lock resource at abstract location r and concrete address x,
with abstract state l ∈ {0, 1} and impedance budget α (an ordinal). Here ϕ : O→ O is a function

that can be freely instantiated by the client upon usage of the specification, and it indicates precisely

how much the budget will decrease after this call (which is client dependent information). Note how

the specification of makeLock allows the client to pick an arbitrary ordinal as the initial budget.

— Region Types. The abstract shared lock resource will be represented by a region spinr (x , l ,α)
where x ∈ Addr, l ∈ {0, 1}, α ∈ O. Here x is a fixed parameter of the region. The lock resource is

abstractly represented by the predicate L(r ,x , l ,α) ≜ spinr (x , l ,α) ∗ ⌈e⌉r .

— Guards and Obligations. For the spin region we only the exclusive guard e, and no obligation con-

structors, as the implementation has no internal blocking. All the blocking behaviour is represented

by the liveness assumption in the pseudo-quantifier of the specification of lock.

— Interference protocol. The interference protocol for spin is very simple:

e : ((0,α), 0)⇝ ((1, β), 0) only if β < α

e : ((1,α), 0)⇝ ((0,α), 0)
It states that whoever owns e can freely acquire or release the lock, provided that at each acquisition,

some budget is spent (β < α ).

— Region interpretation. The implementation uses a single bit stored in the heap, and we have no

non-trivial guards/obligations; the interpretation is thus straightforward:

I(spinr (x , l ,α)) ≜ x 7→ l
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Proof of lock(x):

1; ∅ ⊢ A

l ∈ {0, 1} ↠0 {0}, α .〈
L(r, x, l, α ) ∧ α > ϕ(α )

〉
C
o
n
s

〈
spinr (x, l, α ) ∗ ⌈e⌉r ∧ α > ϕ(α )

〉
M
k
A
t
o
m

1; [r 7→
(
{0, 1} × O, 0, {0} × O, ((0, α ), 0)⇝ ((1, ϕ(α )), 0)

)
] ⊢{∃l, α . spinr (x, l, α ) ∧ α > ϕ(α ) ∗ r Z⇒ ♦

}
var d= 0 in{∃l, α . spinr (x, l, α ) ∧ α > ϕ(α ) ∗ r Z⇒ ♦ ∧ d = 0

}

S
t
e
p
3

while(d= 0){
∀b ∈ {0, 1}, β .{∃l, α . spinr (x, l, α ) ∧ α > ϕ(α ) ∧ β ≥ α

∧ b ⇒ (l = 0 ∨ β > α ) ∗ r Z⇒ ♦ ∧ d = 0

}

A
t
o
m
W
;
A
∃E

l
i
m

A

l ∈ {0, 1}, α .〈
spinr (x, l, α ) ∧ α > ϕ(α ) ∧ β ≥ α ∧
b ⇒ (l = 0 ∨ β > α ) ∗ r Z⇒ ♦ ∧ d = 0

〉

U
p
d
R
e
g

〈
x 7→ l ∧ α > ϕ(α ) ∧ β ≥ α
b ⇒ (l = 0 ∨ β > α )

〉

F
r
a
m
e

〈
x 7→ l

〉
dB CAS(x,0,1);〈
x 7→ 1 ∧ ((d = 0 ∧ l = 1) ∨ (d = 1 ∧ l = 0))

〉〈
∃δ . x 7→ 1 ∧

(
(d = 0 ∧ l = 1 ∧ δ = α ∧ α > ϕ(α ) ∧ b ⇒ β > α )

∨ (d = 1 ∧ l = 0 ∧ δ = ϕ(α ) ∧ β > ϕ(α ))

)〉
〈
∃δ . spinr (x, 1, δ ) ∗

(
(d = 0 ∧ l = 1 ∧ δ > ϕ(δ ) ∧ b ⇒ β > δ ∧ r Z⇒ ♦)

∨ (d = 1 ∧ l = 0 ∧ β > δ ∧ r Z⇒ ((l, α ), (1, ϕ(α ))))

)〉
〈∃γ , δ . spinr (x, 1, δ ) ∧ γ ≥ δ ∧ b ⇒ γ < β

∗
(

(d = 0 ∧ δ > ϕ(δ ) ∧ r Z⇒ ♦)
∨ (d = 1 ∧ l = 0 ∧ r Z⇒ ((l, α ), (1, ϕ(α ))))

)〉

∃l ′, α ′, γ . spinr (x, l ′, α ′) ∧ γ ≥ α ′ ∧ b ⇒ γ < β

∗
( (

d = 0 ∧ α ′ > ϕ(α ′) ∧ r Z⇒ ♦
)

∨
(∃l, α . d = 1 ∧ r Z⇒ ((l, α ), (1, ϕ(α ))) ∧ l = 0

) )
}{∃l, α . spinr (x, _, _) ∗ r Z⇒ ((l, α ), (1, ϕ(α ))) ∧ l = 0

}〈
spinr (x, 1, ϕ(α )) ∗ ⌈e⌉r ∧ l = 0

〉〈
L(r, x, 1, ϕ(α )) ∧ l = 0

〉
Fig. 9. Spin lock: proof of lock.

Proof of makeLock():

0; ∅ ⊢{
emp

}

C
o
n
s

{
emp

}
retB alloc(1);
[ret]B 0;{
ret 7→ 0

}{∃r . L(r, ret, 0, α )}

Proof of unlock(x):

0; ∅ ⊢〈
L(r, x, 1, α )

〉

C
o
n
s

〈
spinr (x, 1, α ) ∗ ⌈e⌉r

〉

S
t
e
p
4

〈
x 7→ 1

〉
[x]B 0;〈
x 7→ 0

〉〈
spinr (x, 0, α ) ∗ ⌈e⌉r

〉〈
L(r, x, 0, α )

〉
Fig. 10. Spin lock: proof of makeLock and unlock. Here Step 4 is LiftA, Frame, SubPq .

Note how α is pure ghost state in that it is not linked to any information in the concrete memory.

This interpretation is trivially valid, as the only obligation is 0.
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— Proof of lock. Figure 9 shows the outline of the proof of the lock operation. The only step that

involves reasoning about termination is Step 3, which applies rules Cons, ∃Elim,While as justified

below.

The loop invariant is

P(β) ≜ ∃l ′,α ′. spinr (x, l ′,α ′) ∧ β ≥ α ′ ∗
( (

d = 0 ∧ r Z⇒ ♦ ∧ α ′ > ϕ(α ′)
)

∨
(∃l ,α . d = 1 ∧ r Z⇒ ((l ,α), (1,ϕ(α))) ∧ l = 0

) )
which contains:

• the safety information to prove the linearisation point, namely that if the CAS failed (d = 0)

then we have not touched the resource yet and we still have permission to perform the

linearisation point (r Z⇒ ♦); whereas if the CAS succeeded (d = 1) then we did perform the

linearisation point with the expected effect.

• the definition of the local variant β as an upper bound on the impedance budget α .

Indeed, whenever some budged is spent, the loop is getting closer to termination as eventually

an exhausted budget means no more interference is possible. Without additional information

however, we cannot show the local variant will strictly decrease after every iteration: in the case

l = 1 we cannot exit the loop and the environment is not forced to spend budget. Therefore, the

termination argument will need the assumption that the environment always eventually unlocks

the lock, which is available in the atomicity context A = [r 7→ ({0, 1} × O, 0, {0} × O,R)] with
R = ((0,α), 0)⇝ ((1,ϕ(α)), 0).

We therefore declare the target states as the ones where, either the linearisation point has been

performed, or the lock is unlocked, or some budget was spent:

T (β) ≜ ∃l ,α . spinr (x, l ,α) ∧ (r Z⇒ (_, _) ∨ l = 0 ∨ β > α)

The persistent loop invariant here is simply L = spinr (x, _, _), which is a valid stable frame of

the loop.

Given these parameters, Step 3 first establishes the loop invariant holds at the beginning for

some β0, by applying Cons:

∃l ,α . spinr (x, l ,α) ∧ α > ϕ(α) ∗ r Z⇒ ♦ ∧ d = 0 =⇒ ∃β0. P(β0) ∗ L
∃β0, β . P(β) ∗ L ∧ d , 0 ∧ β0 ≥ β =⇒ ∃α . spinr (x, _, _) ∗ r Z⇒ ((0,α), (1,ϕ(α))) ∧ l = 0

Then ∃Elim on β0 gets rid of the existential quantification, so we are ready to apply While.

To apply While we need to specifym(β), which in this case is simply 1 which satisfies the layer

constraints of the rule; and the environment progress measureM :

M(αe) ≜ ∃l ,α . spinr (x, l ,α) ∧ αe = 2α + l

(here we use the variable αe for the environment progress measure variable, to avoid clashes with

the impedance budget α .)
To complete the application of the rule we need to show

∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable (8)

1;A ⊢ L M−−↠ T (β) (9)

Condition (8) is easily seen to hold: Suppose, for an arbitrary α , that ∃α0. L ∗M(α0) ∧ α0 ≤ α
holds for some world w and consider a world w ′

such that w RA w ′
; certainly w ′

would satisfy

∃α1. L ∗M(α1) and such α1 would be such that α1 ≤ α0 ≤ α .



TaDA Live 37

Finally, condition (9) is proven as follows. We observe that:

L(αe) = L ∗M(αe) ≡
(∃l ,α . spinr (x, l ,α) ∧ αe = 2α + l ∧ (r Z⇒ (_, _) ∨ l = 0)

)
(L1(αe))

∨ ( ∃α . spinr (x, 1,α) ∧ αe = 2α + 1 ∧ r Z⇒ ♢) (L2(αe))
L2(αe) ≡ L(αe) ∗ ⌈0⌉r ∗ r Z⇒ ♢

We can then derive the environment liveness condition:

∀αe. ⊢A L1(αe) ⇒ T (β)
1;A ⊢ L(αe) : L1(αe) −−↠ T (β)

LiveT

imprA(spinr ,L2,L,R,R′,T (β))
1;A ⊢ L(αe) : L2(αe) −−↠ T (β)

LiveA

1;A ⊢ L(αe) : L(αe) −−↠ T (β)
ECase

1;A ⊢ L M−−↠ T (β)
EnvLive

Intuitively, L1 encodes the case where we performed the linearisation point or the lock is unlocked,

while L2 the case where we still have not performed the linearisation point and the lock is locked. If

L1 holds then T holds, so no progress of the environment is needed. This is used in the application

of rule LiveT. If L2 holds then we can apply rule LiveA to invoke the liveness assumption stored in

A: if the lock is unlocked, αe strictly decreases.

Formally, the application of EnvLive requires to prove ⊢A L ⇒ L ∗ ∃αe.M(αe) which is trivial.

For the application of LiveA we have

R = {((1,α), (0,α)) | α ∈ O} ∪ {((0,α), (1, β)) | α > β}
R′ = {((1,α), (0,α)) | α ∈ O}

with which it is easy to see that imprA(spinr ,L2,L,R,R′,T (β)) holds: the transitions in R make αe
strictly decrease in all cases.

To conclude the argument, we briefly comment on the proof of the body of the loop. The

applications of rules UpdReg and Frame lift the concrete atomic CAS to a (potential) update to the

spinr region. An application of Cons allows us to introduce γ as an upper bound to the impedance

budget from now on.

Then, we apply rule A∃Elim to remove the pseudo-quantification on l and α . At this point, the
abstract state l ′,α ′

of the region is weakened to any state that might be reached before or after the

linearisation point as modified by the environment. We however keep record of what happened

exactly at the linearisation point because of the r Z⇒ _ assertions. The later application ofMkAtom

will be able to fetch the atomic update witness r Z⇒ ((l ,α), (1,ϕ(α))) and declare the appropriate

atomic update in the overall specification. Note that the overall Hoare postcondition after the

application of AtomW is stable.

— Proof of makeLock and unlock. Figure 10 shows the proof outlines for the makeLock and unlock
operations. The only notable step of the proof of makeLock is the last application of Cons to

viewshift the postcondition from ret 7→ 0 to ∃r . spinr (x , l ,α) ∗ ⌈e⌉r , which is possible because

the interpretation of the region matches with the initial resource, so the reification of the two

assertions coincide, and because rule wr3 of the world rely allows arbitrary creation of regions to

be frame-preserving.

The proof of unlock is a straightforward lifting of the atomic reset of the cell at x to the region

spinr . Neither proof involves liveness arguments.
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C.2 CLH lock

— Code. A CLH lock is an implementation of a fair lock module that guarantees fairness by queuing

the threads that are waiting to take its possession. This queue is represented by associating each

thread queuing for the lock with a cell in memory and having each queuing thread hold a pointer to

the cell associated with the thread ahead of it in the queue. The local variables p and c in the lock
operation are the addresses of the cell associated with the previous and current threads respectively.

To implement this queue, a tail pointer for the queue is required. When a thread wishes to

enqueue itself, a FAS operation is performed on the tail pointer, placing the current thread’s cell at

the tail of the queue, and returning the address of its predecessor to the current thread.

Each thread’s cell is initially set to the value 1. Once a thread possesses the lock, if it wishes to

release it, it may set its associated cell to the value 0, signaling the thread behind it in the queue

that it has relinquished the lock. Once signaled, the next thread may take possession of the lock.

The while loop in the lock implementation repeatedly reads the current thread’s predecessor’s

cell, waiting for it to signal that it has relinquished the lock.

As in most practical implementations, the lock stores, in addition to the tail pointer, a pointer to

the current lock holder’s cell. The content of this cell, 1 or 0, indicates the state of the lock, as it is

set to 0 once the lock’s owner relinquishes it. By storing a head pointer, the unlock operation can

access the cell associated with the head to change its value to 0.

1 def makeLock() {

2 var x,h in
3 hB alloc(1); [h]B 0;

4 xB alloc(2);
5 [x]B h;

6 [x + 1]B h;

7 retB x;

8 }

1 def lock(x) {

2 var c,p,v in
3 cB alloc(1); [c]B 1;

4 pB FAS(x + 1, c);

5 vB [p];

6 while(v, 0) { vB [p]; }

7 [x]B c

8 }

1 def unlock(x) {

2 var h in
3 hB [x];

4 [h]B 0;

5 }

An interesting aspect of this example is that it features a combination of internal and external

blocking: the client needs to always eventually unlock the lock — external blocking, leaks in the

pseudo-quantifier — and the lock operation needs to finally take possession of the lock once the

previous thread signalled the release of the lock — internal blocking, dealt with using obligations

not exposed in the specification. The proof will therefore involve an environment liveness condition

proved by using both LiveO and LiveA.

— Specifications. We will prove the standard fair lock module specifications:

1 ⊢ A

l ∈ {0, 1} ↠0 {0}.
〈
L(r , x, l)

〉
lock(x)

〈
L(r , x, 1) ∧ l = 0

〉
0 ⊢

〈
L(r , x, 1)

〉
unlock(x)

〈
L(r , x, 0)

〉
where L(r , x, l) abstractly represents the lock resource at abstract location r and concrete address x,
with abstract state l ∈ {0, 1}.

— Notation. Given n ∈ X and ns,ns ′ ∈ X ∗
, we write n ⊕ ns , ns ⊕ n, and ns ⊕ ns ′ for prepend,

append, and concatenation, respectively; |ns | is the length of ns , and ns(i) = n states that the i-th
element (from 0) in ns is n and i < |ns |; fst(ns) and last(ns) are the first and the last element of ns ,
respectively.

— Region Types. The abstract shared lock resource will be represented by a region clhr (x ,h, l ,o)
where x ,h ∈ Addr, l ∈ {0, 1}, o ∈ N. Here x , the address of the lock, is the fixed parameter of the
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region: The abstract state of the region includes l , which represents its state, o, which is the ticket
number, explained later, of the lock’s current owner, and h is the address of the cell associated with

the owner. The lock resource is abstractly represented by the predicate:

L(r ,x , l) ≜ ∃o ∈ N. ∃h ∈ Addr. clhr (x ,h, l ,o) ∗ ⌈e⌉r
— Guard algebra: Take p, c ∈ Addr,ns ∈ Addr

∗,o, t ∈ N arbitrary. For this proof, two guards

will be necessary. First t(p, c, t), which represents the ownership of a position in the queue. The

parameters c,p ∈ Addr are pointers to the cell associated with the current thread and its predecessor

respectively. Here, t ∈ N is the ticket number associated with the thread owning the t(p, c, t) guard.
The second guard we need is q(ns,o), which is used to track the overall queue, by tracking the cells

associated with enqueued threads, ns ∈ Addr
∗
, and the ticket number of the current owner, o ∈ N.

To use this as intended, a few axioms on the guard algebra will be required. First, an axiom to

create new tickets, adding a new cell to the queue and associated a new, unique ticket number to

the thread:

q(ns ⊕ [p],o) = q(ns ⊕ [p, c],o) • t(p, c,o + |ns | + 1)
This will be used to create the relevant guard resources t, when a lock operation enqueues itself on

line 4. Similarly, an axiom to remove a ticket from the queue once it can take possession of the lock:

q([p, c] ⊕ ns,o) • t(p, c,o + 1) = q(c ⊕ ns,o + 1)
This will be used to update the relevant guard resources q with the relevant t, when a lock

operation takes possession of the lock on line 7. Finally, an axiom to guarantee that a ticket guard,

t is well-formed with respect to the queue in a guard q:

q(ns,o) • t(p, c, t) , ⊥ ⇔ ns(t − o − 1) = p ∧ ns(t − o) = c

— Obligation algebra: Take o,o′, t , t ′ ∈ N arbitrary. To verify the totality of the CLH lock operation,

once a thread is enqueued, if its predecessor gains and then relinquishes possession of the lock, it

must eventually take possession of it (and in fact unlock it, as indicated by the lock specification’s

pseudoquantifier) or subsequent enqueued threads will not be able to guarantee they terminate, as

the lock operation’s while loop will never terminate and so they will never get the opportunity to

take possession of the lock.

To do this, we associate an obligation p(t) with the ownership of the ticket t ∈ N. The region’s
transition system then requires that a thread with ticket o ∈ N must return the obligation p(o) to
the region when taking possession of the lock. The layer associated with p(t) is then t , so that these
obligations are resolved in the order the associated threads are enqueued. Finally, as with the guard

algebra, we have an obligation o(o, t), which will remain in the shared region’s state and track the

owner’s ticket, o, and the next ticket to be handed out, t , associated with the obligation p via the

obvious axioms.

o(o, t) = o(o, t + 1) • p(t) o(o + 1, t) = o(o, t) • p(o + 1)
o(o, t) • p(t ′) , ⊥ ⇔ o ≤ t ′ < t

L ≜ N ∪ {1, 0} ∀i ∈ N. 1 > i > 0 lay(o(o,o′)) = 0 lay(p(t)) = t

— Interference protocol. The interference protocol for the CLH lock is as follows:

e : ((h, l ,o), 0)⇝ ((h, l ,o), p(t))
e : ((h, 0,o), p(o + 1))⇝ ((h′, 1,o + 1), 0)
e : ((h, 1,o), 0)⇝ ((h, 0,o), 0)



40 E. D’Osualdo, A. Farzan, P. Gardner, J. Sutherland

The first transition allows a thread to place itself in the queue waiting to obtain the CLH lock.

While doing so, the threads acquires an obligation, p(t), requiring it to eventually take possession

of the lock once it is at the head of the queue. The second, allows the thread at the head of the

queue to take possession of the lock, by changing the state, l , incrementing the owner ticket, o,
to its own (tracked by the thread’s obligation) and changing the owner pointer of the lock. This

discharges the obligation p(o + 1), as the thread then leaves the queue, to take possession of the

lock. Finally, the third transition allows the lock to be unlocked.

— Region interpretation. As explained above, the thread queue is represented by an abstract queue

of the addresses associated with each thread, ns. While threads are queuing, the associated cells

must have value 1; this is represented using the predicate ones:

ones(ns) ≜ ns(1) 7→ 1 ∗ · · · ∗ ns(|ns | − 1) 7→ 1

The implementation holds the cells associated with each queued thread, this is represented by the

resource ones(ns) in the region interpretation.

The implementation also holds a pointer to the tail of the queue, ns, as well as a pointer to the cell
associated with the thread possessing the lock, whose state is the the state of the lock, as described

above. This is described by the resource:

x 7→ h, last(ns) ∗ h 7→ l

This is then tied together with the ghost state, using t , the next available ticket number and

environmental obligations are kept for each obligation p held by the environment, from p(o + 1),
the next ticket to possess the lock, to p(t − 1), the last ticket that has been handed to an enqueued

thread:

⌈q(ns,o)⌉r ∗ ⌊o(o, t)⌋Lr ∗∗t−1
i=o+1⌊p(i)⌋

E

r

Finally, the invariant t − o = |ns | is used to guarantee that each thread that holds a ticket

is associated with a cell in the queue ns. All of this ties together to give the following region

interpretation:

I(clhr (x ,h, l ,o)) ≜ ∃ns ∈ Addr
∗, t ∈ N. x 7→ h, last(ns) ∗

h 7→ l ∗ ones(ns) ∗ ⌈q(ns,o)⌉r ∗ ⌊o(o, t)⌋Lr ∗∗t−1
i=o+1⌊p(i)⌋

E

r ∧ t − o = |ns |

— Proof of lock. Figure 11 gives a high-level outline of the clh lock operation implementation, the

definition of the loop invariant P(β) will be given later. The steps involving liveness are the FAS
operation, the while loop and setting the owner of the lock, at line 7. First the details of the FAS
operation’s proof are as follows:

1; [r 7→ (X1, 0, X2, R)] ⊢{∃l ∈ {0, 1}, o ∈ N, h ∈ Addr. clhr (x, h, l, o) ∗ r Z⇒ ♦ ∗ c 7→ 1

}

S
t
e
p
5

1; [r 7→ (X1, 0, X2, R)] ⊢A

l ∈ {0, 1}, o, t ∈ N, h ∈ Addr, ns ∈ Addr
∗ .〈

x 7→ h, last(ns) ∗ h 7→ l ∗ ones(ns) ∗ ⌈q(ns, o)⌉r ∗ ⌊o(o, t )⌋Lr ∗∗t−1
i=o+1 ⌊p(i)⌋

E

r ∧ t − o = |ns | ∗ c 7→ 1

〉

L
a
y
W
;
F
r
a
m
e

0; [r 7→ (X1, 0, X2, R)] ⊢〈
x + 1 7→ last(ns)

〉
pB FAS(x + 1, c);〈
x + 1 7→ c ∧ p = last(ns)

〉〈
∃ns′ ∈ Addr

∗ . x 7→ h, last(ns′) ∗ h 7→ l ∗ ones(ns′) ∗ ⌈q(ns′, o)⌉r ∗ ⌊o(o, t + 1)⌋Lr ∗∗t
i=o+1 ⌊p(i)⌋

E

r ∧ (t + 1) − o = |ns′ | ∧ o < t ∧ ns′ = ns ⊕ c ∗ ( ⌈t(p, c, t )⌉r ∗ ⌊p(t )⌋Lr ∗∗t−1
i=o+1 ⌊p(i)⌋

E

r )

〉
{
∃l ∈ {0, 1}, o, t ∈ N, h ∈ Addr. clhr (x, h, l, o) ∗ r Z⇒ ♦ ∗ ⌈t(p, c, t )⌉r ∗ ⌊p(t )⌋Lr ∗∗t−1

i=o+1 ⌊p(i)⌋
E

r ∧ o < t
}
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1; ∅ ⊢ A

l ∈ {0, 1} ↠0 {0}.〈
L(r, x, l )

〉
A
∃E

l
i
m

1; ∅ ⊢

A

l ∈ {0, 1} ↠0 {0}, o, h .〈
clhr (x, h, l, o) ∗ ⌈g⌉r

〉
M
k
A
t
o
m

1; [r 7→ (X1, 0, X2, R)] ⊢{∃l, o, h . clhr (x, h, l, o) ∗ r Z⇒ ♦}
cB alloc(1); [c]B 1;{∃l, o, h . clhr (x, h, l, o) ∗ r Z⇒ ♦ ∗ c 7→ 1

}
pB FAS(x + 1, c);
vB [p];{∃β . P (β ) ∗ L}
while(v, 0) { vB [p]; }{
P (0) ∧ v = 0

}
[x]B c;{∃l ′, o′ ∈ N. clhr (x, l ′, o′) ∗ p 7→ 0 ∗
∃o ∈ N, h, h′. r Z⇒ ((h, 0, o), (h′, 1, o + 1)) ∧ l = 0

}
dealloc(p){∃l ′, o′. clhr (x, l ′, o′) ∗
∃o, . r Z⇒ ((_, 0, o), (_, 1, o + 1)) ∧ l = 0

}
〈∃h′. clhr (x, h′, 1, o + 1) ∗ ⌈g⌉r ∧ l = 0

〉〈
L(r, x, 1) ∧ l = 0

〉

X1 ≜ {(h, l, o) | h ∈ Addr, l ∈ {0, 1}, o ∈ N}
X2 ≜ {(h, 0, o) | h ∈ Addr, o ∈ N}
R ≜ {((h, 0, o), (h′, 1, o)) | h, h′ ∈ Addr, o ∈ N}

P (β ) ≜ ∃l, o, t, h . clhr (x, h, l, o) ∗ r Z⇒ ♦ ∧ o < t

∗ ⌈t(p, c, t )⌉r ∗ ⌊p(t )⌋Lr ∗∗t−1
i=o+1 ⌊p(i)⌋

E

r

∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v

Fig. 11. Outline of CLH lock proof.

where Step 5 is composed of the rules: Frame, AtomW, A∃Elim, LiftA, A∃Elim. The application
of the Frame rule frames of the view r Z⇒ ♦, the AtomW rule then transfers all the remaining

resources to the atomic precondition and postcondition, the A∃Elim rule then pseudoquantifies l , o
and h, LiftA then opens up the region and the final application of A∃Elim rule pseudoquantifies

ns.
The consequence rule is implicitly applied to the postcondition of the antecedent of the inner rule

application, using the relevant guard and obligation axioms to reestablish the region interpretation,

consequently retaining the guard assertion ⌈t(p, c, t)⌉r and the obligation assertion ⌊p(t)⌋Lr outside
of the region. A stable copy of the environment assertions within the region are also retained

locally. These environmental assertions will be necessary for the application of the While rule.

Next, consider the proof of the while loop. The loop invariant is:

P(β) ≜ ∃l ,o,h.clhr (x,h, l ,o) ∗ ⌈t(p, c, t)⌉r ∧ o < t

∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v

which asserts that:

• ⌈t(p, c, t)⌉r , the local thread is queueing for the lock, with predecessor cell p, current cell c,
and ticket t .

• o < t , the current owner must come before the local thread with ticket t . This is stable due to
the t guard.

• v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p), if v, the last read of the value of the predecessor cell is 0,

then the owner is the predecessor of the current thread, therefore t = o + 1, and the lock is

unlocked, l = 0. The owner’s cell, h, will also take the value of that of the predecessor.
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• β is 0 once the thread has observed that its predecessor has taken possession of and relin-

quished the lock (by reading the cell at address p). β will have value 1 otherwise.

A thread with ticket t can take possession of a CLH lock once its predecessor has taken possession

of and relinquished the lock. Once the lock reaches this state, o = t − 1 and l = 0, it holds stabily as

all transitions from this state would set the owner of the lock to t , which can only be done by a

thread holding the appropriate t guard.

The intent of this loop is to wait till this condition holds, allowing the thread to safely take

possession of the lock once the loop terminates. Hence, the goal state, is:

T = ∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∧ t = o + 1 ∧ l = 0 ∧ h = p

Once the lock reaches this state, a subsequent iteration of this while loop will terminate with v = 0,

breaking the loop. To reach the goal state, threads that come before the current thread must both

take possession and relinquish the lock. The first is guaranteed due to obligations p(t ′) for t ′ < t
and the second due to the pseudoquantifier, guaranteeing that the lock must always eventually be

released. The progress measure

M(α) = ∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∧ α = 2(t − o − 1) + l

is decreased by both of these actions, and as t > o, 2(t − o − 1) + l ≥ 0, the progress measure

is well-founded. To support this argument, the persistent loop invariant, L, must contain the

resource r Z⇒ ♦ to make use of the liveness assumptions of the pseudoquantifier, and the relevant

environmental liveness assertions for threads queued before the current thread:

L = ∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∗ ⌊p(t)⌋Lr ∗∗t−1
i=o+1⌊p(i)⌋

E

r ∗ r Z⇒ ♦ ∧ o < t

The While rule is applied as follows:

1; [r 7→ (X1, 0,X2,R)] ⊢{∃t ∈ N. ∃β0. P(β0) ∗ L}

C
o
n
s
;
∃E

l
i
m

∀β0, t ∈ N.
1; [r 7→ (X1, 0,X2,R)] ⊢{
P(β0) ∗ L

}

W
h
i
l
e

while(v, 0) {
∀β ≤ β0,b ∈ B.{
P(β) ∗ b .⇒ T (β) ∧ v , 0

}
vB [p];{∃γ . P(γ ) ∧ γ ≤ β ∧ b

.⇒ γ < β
}

}{∃β . P(β) ∗ L ∧ β ≤ β0 ∧ v = 0

}{∃o ∈ N. clhr (x, p, 0,o) ∗ r Z⇒ ♦ ∗ ⌈t(p, c,o + 1)⌉r ∗ ⌊p(o + 1)⌋Lr
}

The rule ∃Elim is applied to quantify t and β0 over the antecedent.
To complete the application of the rule we need to show

∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable (10)

1;A ⊢ L M−−↠ T (β) (11)

Condition (10) holds trivially. Suppose, for an arbitrary α , that ∃α0. L ∗M(α0) ∧ α0 ≤ α holds for

some worldw and consider a worldw ′
such thatw RA w ′

; certainlyw ′
would satisfy ∃α1. L∗M(α1)

and such α1 would be such that α1 ≤ α0 ≤ α .
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To prove (11), take

L′(α) =
(

∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∗ ⌊p(t)⌋Lr ∗∗t−1
i=o+1⌊p(i)⌋

E

r ∗ r Z⇒ ♦ ∧ ((l = 0 ∧ o + 1 < t) ∨ (l = 1))

)
∗M(α)

L′
0
(α) =

(
∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∗ ⌊p(t)⌋Lr ∗∗t−1

i=o+2⌊p(i)⌋
E

r ∗ r Z⇒ ♦ ∧ l = 0 ∧ o + 1 < t

)
∗M(α)

L′
1
(α) =

(
∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∗ ⌊p(t)⌋Lr ∗∗t−1

i=o+1⌊p(i)⌋
E

r ∗ r Z⇒ ♦ ∧ l = 1

)
∗M(α)

L(α) = L ∗M(α)

First split on α = 0 ∨ α > 0:

1;A ⊢ L(α) : L(0) M−−−↠ T
LiveT

1;A ⊢ L(α) : L′(α) ∧ α > 0

M−−−↠ T

1;A ⊢ L(α) : L(α) M−−−↠ T
ECase

1;A ⊢ L M−−−↠ T
EnvLive

Int the case α = 0, the rule LiveT applies directly. To show 1;A ⊢ L(α) : L′(α) ∧ α > 0

M−−↠ T holds,

split on the state of the lock, l = 0 ∨ l = 1. In either case, the set of permitted transitions on the

state of the clh lock region is:

Rclh = {((h, 0,o), (h′, 1,o + 1)) | h,h′ ∈ Addr,o ∈ N} ∪ {((h, 1,o), (h, 0,o)) | h ∈ Addr,o ∈ N}

In the case l = 0, the environment is guaranteed to eventually take possession of the lock due to

the environmental obligation assertion ⌊p(o + 1)⌋Er , so the LiveO rule is applied:

imprA(clhr ,∃o ∈ N. L′
0
(α ,o),L,Rclh,Rp,T )

1;A ⊢ L(α) : L′
0
(α) ∗ ∃o. clhr (x, _, _,o) ∗ ⌊p(o + 1)⌋Er

M−−↠ T
LiveO

where

Rp = {((h, 0,o), (h′, 1,o + 1)) | h ∈ Addr,o ∈ N}
is the set of transitions that return an obligation of the form p(o + 1) to the shared region. As none

of the transitions in Rclh can increase the progress measure, and all of the transitions in Rp clearly

decrease it, imprA(clhr ,∃o ∈ N. L′
0
(α ,o),L,Rclh,Rp,T ) holds, as required.

In the case l = 1, progress is guaranteed due to the assumptions in the atomicity context, A, that

eventually, the lock must be released, so the LiveA rule is applied:

imprA(clhr ,L′1,L,Rclh,Rpq ,T )

1;A ⊢ L(α) : L′
1
(α) M−−↠ T

LiveA

where

Rpq = {((h, 1,o), (h, 0,o)) | h ∈ Addr,o ∈ N}
As before, since none of the transitions in Rclh can increase the progress measure, and all of the

transitions in Rpq clearly decrease it, imprA(clhr ,L′1,L,Rclh,Rpq ,T ) holds, as required.
The argument for the body of the while loop’s proof is purely a safety argument, the full proof

is as follows:
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∀β0, t ∈ N, β,b ∈ B.
1; [r 7→ (X1, 0,X2,R)] ⊢{
(∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (x,h, l ,o) ∗ ⌈t(p, c, t)⌉r ∧
o < t ∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v ∧ b ⇒ (t = o + 1 ∧ l = 0 ∧ h = p) ∧ (v , 0)

}
A
t
o
m
W
;
L
i
f
t
A
;
A
∃E

l
i
m
;
C
o
n
s

1; [r 7→ (X1, 0,X2,R)] ⊢A

l ∈ {0, 1},h ∈ Addr,ns ∈ Addr
∗,o,nt ∈ N.〈

x 7→ h, last(ns) ∗ h 7→ l ∗ ones(ns) ∗ ⌈q(ns,o)⌉r ∗ ⌊o(o,nt)⌋Lr ∗∗nt−1
i=o+1⌊p(i)⌋

E

r ∧ nt − o = |ns | ∗
(⌈t(p, c, t)⌉r ∧ o < t ∧ β ≥ 1 ∧ b ⇒ (t = o + 1 ∧ l = 0 ∧ h = p) ∧ p ∈ ns)

〉

L
a
y
W
;
F
r
a
m
e

0; [r 7→ (X1, 0,X2,R)] ⊢A

v ∈ {0, 1}.〈
p 7→ v

〉
vB [p];〈
p 7→ v ∧ v = v

〉〈
x 7→ h, last(ns) ∗ h 7→ l ∗ ones(ns) ∗ ⌈q(ns,o)⌉r ∗ ⌊o(o,nt)⌋Lr ∗∗nt−1

i=o+1⌊p(i)⌋
E

r ∧ nt − o = |ns | ∗
(⌈t(p, c, t)⌉r ∧ β = 1 ∧ ∃v ∈ {0, 1}. v = v ∧ b ⇒ v = 0 ∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)))

〉
{∃l ∈ {0, 1},o ∈ N,h ∈ Addr,γ . clhr (x,h, l ,o) ∗ ⌈t(p, c, t)⌉r ∧
o < t ∧ (v = 0 ⇒ (t = o + 1 ∧ l = 0 ∧ h = p)) ∧ γ = v ∧ γ ≤ β ∧ b ⇒ γ = 0

}
Finally, we consider the details of the linearization point, when the lock operation takes posses-

sion of the lock.

1; [r 7→ (X1, 0,X2,R)] ⊢{∃o ∈ N. clhr (x, p, 0,o) ∗ r Z⇒ ♦ ∗ ⌈t(p, c,o + 1)⌉r ∗ ⌊p(o + 1)⌋Lr
}

S
t
e
p
6

1; ∅ ⊢

A

t ∈ N,ns ∈ Addr
∗.〈

x 7→ p, last(ns) ∗ p 7→ 0 ∗ ones(ns) ∗ ⌈q(ns,o)⌉r ∗ ⌊o(o, t)⌋Lr ∗∗t−1
i=o+1⌊p(i)⌋

E

r ∧ t − o = |ns | ∗
(⌈t(p, c,o + 1)⌉r ∗ ⌊p(o + 1)⌋Lr ∧ ns(1) = c)

〉

L
a
y
W
;
F
r
a
m
e 0; ∅ ⊢〈

x 7→ p
〉

[x]B c;〈
x 7→ c

〉〈
∃ns ′ ∈ Addr

∗. x 7→ c, last(ns ′) ∗ c 7→ 1 ∗ ones(ns ′) ∗ ⌈q(ns ′,o + 1)⌉r ∗ ⌊o(o + 1, t)⌋Lr ∗∗t−1
i=o+2⌊p(i)⌋

E

r ∧ t − (o + 1) = |ns ′ | ∗ (p 7→ 0 ∗ ns = p ⊕ ns ′)

〉
{∃l ′∈ {0, 1},o′∈ N. clhr (x, l ′,o′) ∗ p 7→ 0 ∗ ∃o ∈ N,h,h′ ∈ Addr. r Z⇒ ((h, 0,o), (h′, 1,o + 1)) ∧ l = 0

}
Where Step 6 is ∃Elim, AtomW, UpdReg, A∃Elim, Cons. First ∃Elim is applied to quantify

the ticket of the current owner, o, (the predecessor of the current thread) over the antecedent.

Then the AtomW and UpdReg rules are applied to atomically update the region state by acting

on its invariant. The A∃Elim is then applied to pseudoquantify t and ns , the two variables that

are existentially quantified within the region invariant and finally the Cons rule is applied to

re-establish the invariant in the postcondition by adjusting the ghost state. Specifically, the guard T

and the obligation P are reabsorbed into Q and O respectively, to update the list of threads waiting

on the lock and increment the owner. The inner part of the proof then decreases the layer and

frames of unecessary resources to apply the update.

This ends the proof of the lock operation.
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— Proof of unlock. Let

X = {(h, 1,o) | h ∈ Addr,o ∈ N} R = {((h, 1,o), (h, 0,o)) | h ∈ Addr,o ∈ N}
The proof of the unlock operation is as follows:

0; ∅ ⊢〈
L(r , x, 1)

〉
S
t
e
p
7

0; [r 7→ (X , 0,X ,R)] ⊢{∃o ∈ N,h ∈ Addr. clhr (x ,h, 1,o) ∗ r Z⇒ ♦
}

hB [x];{∃o ∈ N. clhr (x , h, 1,o) ∗ r Z⇒ ♦
}

[h]B 0;{∃o ∈ N. r Z⇒ ((h, 1,o), (h, 0,o))
}〈

L(r , x, 0)
〉
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C.3 Distinguishing Client

Here we expand on the proof of the distinguishing client presented in Section 3, particularly

focusing on the details of the application of LiveC in the left-hand thread and the application of

While in the right-hand thread.

— Code.

lock(x);

[done]B true;

unlock(x);

var d= false in
while(¬d){
lock(x); dB [done]; unlock(x);

}

— Specifications. As above, we assume the following lock specifications for starvation-free locks:

1 ⊢ A

l ∈ {0, 1} ↠0 {0}.
〈
L(s, x, l)

〉
lock(x)

〈
L(s, x, 1) ∧ l = 0

〉
0 ⊢

〈
L(s, x, 1)

〉
unlock(x)

〈
L(s, x, 0)

〉
— Region Types. The two threads share the variables x and done; we will encode their state as the
region cr (x, done, l ,d) for l ∈ {0, 1} (the state of the lock at x) and d ∈ Bool (the value stored at

done).

— Guards and Obligations. We use obligations k and d which double as guards, using the same

composition operator defined by

k • k = ⊥ d • d = ⊥ lay(k) = 0 < 1 = lay(d)

— Interference protocol.

d : ((l , false),d)⇝ ((l , true), 0)
0 : ((0,d), 0)⇝ ((1,d), k)
k : ((1,d), k)⇝ ((0,d), 0)

— Region Interpretation.

I(cr (s, x, done, l ,d)) ≜ L(s, x, l) ∗ done 7→ d

∗ (([k]Lr ∧ l = 0) ∨ (⌊k⌋Er ∧ l = 1))
∗ (([d]Lr ∧ d) ∨ (⌊d⌋Er ∧ ¬d))

— Proof of Distinguishing Client. The proof outline is reproduced in Fig. 12. Step 1 follows a standard
TaDA proof pattern:

1 ⊢ A

l ∈ {0, 1}.
〈∃d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈∃d . cr (s, x, done, 1, d ) ∗ [k]Lr 〉
1 ⊢ A

l ∈ {0, 1}.
〈
cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
cr (s, x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

〉 FrameA

1 ⊢
〈∃l . cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
cr (s, x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

〉 A∃Elim
1 ⊢

{∃l . cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}
lock(x)

{
cr (s, x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

} AtomW

The derivation for Step 9 is as follows:

1 ⊢ A

l ∈ {0, 1} ↠ {0}.
〈
L(s, x, l )

〉
lock(x)

〈
L(s, x, 1) ∧ l = 0

〉
1 ⊢ A

l ∈ {0, 1} ↠ {0}, d ∈ Bool.
〈
L(s, x, l )

〉
lock(x)

〈
L(s, x, 1) ∧ l = 0

〉 SubPq

1 ⊢ A

l ∈ {0, 1} ↠ {0}, d ∈ Bool.
〈
I(cr (s, x, done, l, d )) ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
I(cr (s, x, done, 1, d )) ∗ [k]Lr

〉 FrameA

1 ⊢ A

l ∈ {0, 1} ↠ {0}, d ∈ Bool.
〈
cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈
cr (s, x, done, 1, d ) ∗ [k]Lr

〉 LiftA

1 ⊢ A

l ∈ {0, 1} ↠ {0}.
〈∃d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉
lock(x)

〈∃d . cr (s, x, done, 1, d ) ∗ [k]Lr 〉 A∃Elim
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⊤ ⊢{
L(s, x, 0) ∗ done 7→ false

}{∃r, l . cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}

∃E
l
i
m

{(∃l . cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er ) ∗ (∃l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∗ ¬d .⇒ ⌊d⌋Er )}

1 ⊢{∃l . cr (s, x, done, l, false) ∗ [d]Lr ∗ l = 1

.⇒ ⌊k⌋Er
}

S
t
e
p
8

A

l ∈ {0, 1}.〈∃d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉

L
i
v
e
C

A

l ∈ {0, 1} ↠0 {0}.〈∃d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er
〉

S
t
e
p
9

A

l ∈ {0, 1} ↠0 {0}.〈
L(s, x, l )

〉
lock(x);〈
L(s, x, 1) ∧ l = 0

〉〈∃d . cr (s, x, done, 1, d ) ∗ [k]Lr 〉〈∃d . cr (s, x, done, 1, d ) ∗ [k]Lr 〉{
cr (s, x, done, 1, false) ∗ [d]Lr ∗ [k]Lr

}
[done]B true;{
cr (s, x, done, 1, true) ∗ [k]Lr

}
unlock(x);{∃l . cr (s, x, done, l, true)}

⊤ ⊢{∃l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∗ ¬d .⇒ ⌊d⌋Er
}

var d= false in{∃l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∗ ¬d .⇒ ⌊d⌋Er ∧ ¬d
}{∃β0, l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β0 = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er

}

∃E
l
i
m

{∃l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β0 = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er

}

W
h
i
l
e

while(¬d) {
∀β, b .{∃l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β = (d ? 0 : 1) ∧ b ⇒ d ∧ ¬d

}
{∃l, d . cr (s, x, done, l, d ) ∗
l = 1

.⇒ ⌊k⌋Er ∧ β = 1 ∧ b ⇒ d

}
lock(x);{∃d . cr (s, x, done, 1, d ) ∗ [k]Lr ∧ β = 1 ∧ b ⇒ d

}
dB [done]{∃d . cr (s, x, done, 1, d ) ∗ [k]Lr ∧
β = 1 ∧ b ⇒ d ∧ d ⇒ d

}
unlock(x);{∃γ , l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ γ = (d ? 0 : 1) ∧ γ ≤ β ∧ b ⇒ γ < β

}
}{∃β, l, d . cr (s, x, done, l, d ) ∗ l = 1

.⇒ ⌊k⌋Er ∧
d ⇒ d ∧ β = (d ? 0 : 1) ∗ ¬d .⇒ ⌊d⌋Er ∧ d ∧ β ≤ β0

}
{∃l . cr (s, x, done, l, true)}

{∃l . cr (s, x, done, l, true) ∗ ∃l . cr (s, x, done, l, true)}{∃r, l . cr (s, x, done, l, true)}
Fig. 12. Proof outline for the distinguishing client

The application of LiveC. asks us to prove the environmental liveness condition 1; ∅ ⊢ L M−−↠ T
with

L = ∃l ∈ {0, 1},d . cr (s, x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er
T = ∃l ∈ { 0 },d . cr (s, x, done, l ,d) ∗ l = 1

.⇒ ⌊k⌋Er ≡ cr (s, x, done, 0, _)

Here we can choose a trivial progress measure M(α) = (α = 0) and since L trivially implies

L ∗ ∃α .M(α), we can set L(α) = (L ∧ α = 0) and apply EnvLive. The derivation of the environment

liveness condition goes as follows:

∀α . ⊢∅ L0(α) ⇒ T

1; ∅ ⊢ L(α) : L0(α) −−↠ T
LiveT

impr∅(cr ,L1,L,Rc,Rk,T )
1; ∅ ⊢ L(α) : L1(α) −−↠ T

LiveO

1; ∅ ⊢ L(α) : L0(α) ∨ L1(α) −−↠ T
ECase

1; ∅ ⊢ L M−−↠ T
EnvLive

To apply ECasewe split on the value of l :L(α) = L0(α)∨L1(α)whereL0(α) = cr (s, x, done, 0, _)∧α =
0 and L1(α) = cr (s, x, done, 1, _) ∗ ⌊k⌋Er ∧ α = 0. If l = 0 we can apply LiveT as we are already in T ;
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if l = 1, L1 entails ⌊k⌋Er so we can apply LiveO with G = 0, O = k, and

Rc ≜ Tc(_) =
⋃
l,d

{((0,d), (1,d)), ((1,d), (0,d)), ((l , false), (l , true))}

Rk ≜ {((1,d), (0,d)) | d ∈ Bool}
that is, all the transitions of the interference protocol of c, and the only transition which fulfils k,

respectively. The imprA condition is satisfied: every transition in Rc does not increase α , and any

transition in Rk takes us directly to T .

The application ofWhile also requires an environment liveness condition check 1; ∅ ⊢ L′ M−−↠ T ′
,

where:

T ′ ≜ cr (s, x, done, _, true) L′ ≜ T ′ ∨ cr (s, x, done, _, false) ∗ ⌊d⌋Er
HereM is again trivial,M(α) = (α = 0), and L′(α) = L′ ∗ α = 0. Note how, in this case, the target

states T ′
do not need to depend on the loop variant β , which itself is rather trivial.

Using these parameters, the following derivation tree for the environmental liveness check holds:

⊤; λ;A ⊢ L′(α) : T ′ −−↠ T ′ LiveT
imprA (cr , cr (s, x, done, _, false),L′,Rio ,Rd,T )

⊤; λ;A ⊢ L′(α) : cr (s, x, done, _, false) ∗ ⌊d⌋Er −−↠ T ′ LiveO

⊤; λ;A ⊢ L′(α) : L′(α) −−↠ T ′ ECase

⊤; λ;A ⊢ L′ M−−−↠ T ′
EnvLive

Here Rc = Tc(_) as before and Rd ≜ {((0,d), (0,d)) | d ∈ {true, false}} is the set of transitions
fulfilling d.

We split L′ into two cases using ECase. In the first case,T ′
holds, so the rule LiveT discharges the

goal. In the second, since lay(d) = 1s < ⊤, d is a live obligation. Trivially, none of the transitions

in Rc increase the progress measureM . The transitions in Rd take us directly to T ′
thus satisfying

the imprA condition.
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C.4 Blocking Counter

We briefly sketch the proof of a blocking counter module: a single natural number protected by a

lock for concurrent access. The example illustrates how the TaDA Live specifications and proofs

neatly support hiding blocking when it is unobservable by the client. It also shows a common

proof pattern of TaDA Live: there is an inner region that exposes all the information needed for

the termination argument (here both the counter value and the lock state) and an outer one that

hides enough information to make the operation abstractly atomic: here we need to hide the state

of the lock, or the region would be updated three times instead of only once. This pattern nicely

separates the concerns in the proof: proving atomicity is done via the outer region, termination via

the inner one.

— Code. The implementation of the module’s operations are:

1 def makeCounter(x) {

2 var x, l in

3 xB alloc(2);

4 lB newLock();

5 [x]B l;

6 [x + 1]B 0;

7 retB x;

8 }

1 def incr(x) {

2 lB [x];

3 lock(l);

4 vB [x + 1];

5 [x + 1]B v + 1;

6 unlock(l);

7 retB v;

8 }

1 def read(x) {

2 retB [x + 1];

3 }

— Specifications. The abstract predicate C(s,x ,n) represents a blocking counter at address x with

value n.

1 ⊢
{
emp

}
makeCounter()

{∃s .C(s, ret, 0)}
1 ⊢ A

n ∈ N.
〈
emp

��
C(s, x,n)

〉
incr(x)

〈
ret = n

��
C(s, x,n + 1)

〉
1 ⊢ A

n ∈ N.
〈
emp

��
C(s, x,n)

〉
read(x)

〈
ret = n

��
C(s, x,n)

〉
— Region Types. This proof will use two region types: cntr (r ′,x , la,n) and lcntr ′(x , la, l ,n) where
r , r ′ ∈ RId, x , la ∈ Addr, l ∈ {0, 1} and n ∈ N. Here r ′, x and la are the fixed parameters of the

regions. The blocking counter resource is abstractly represented by the predicateC((r , r ′, la),x ,n) ≜
cntr (r ′,x , la,n) ∗ ⌈e⌉r .

— Guards and Obligations. We associate a single obligation k with the region type lcnt. This
obligation encodes ownership of the blocking counter’s lock, as well as the obligation to unlock it.

We set lay(k) = 0.

— Interference Specification. The guard-labeled transition system of the region cnt is:

e : (n, 0)⇝ (n + 1, 0)

and the guard-labeled transition system of the region lcnt is:

e : ((0,n), 0)⇝ ((1,n), k)
e : ((1,n), 0)⇝ ((1,n + 1), 0)
e : ((1,n), k)⇝ ((0,n), 0)
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Proof of incr(x):

1; ∅ ⊢ A

n ∈ N.〈
emp

��
C(s, x, n)

〉
C
o
n
s
;
s
=
(r
,r
′ ,l
a)

〈
emp

�� cntr (r ′, x, la, n) ∗ ⌈e⌉r
〉

M
k
A
t
o
m

1; [r 7→ (N, 0, N, {(n, n + 1) | n ∈ N})] ⊢{∃n . cntr (r ′, x, la, n) ∗ r Z⇒ ♦}
lB [x];{∃n, l . cntr (r ′, x, l, n) ∗ lcntr ′ (x, l, l, n) ∗ r Z⇒ ♦ ∗ l = 1

.⇒ ⌊k⌋Er ′
}

lock(l);{∃n . cntr (r ′, x, l, n) ∗ r Z⇒ ♦ ∗ ⌊k⌋Lr ′
}

vB [x + 1];{∃n . cntr (r ′, x, l, n) ∗ r Z⇒ ♦ ∗ ⌊k⌋Lr ′ ∧ v = n
}

[x + 1]B v + 1;{∃n . cntr (r ′, x, l, n + 1) ∗ r Z⇒ ⟨n, n + 1⟩ ∗ ⌊k⌋Lr ′ ∧ v = n
}

unlock(l);{∃n . r Z⇒ ⟨n, n + 1⟩ ∧ v = n
}

retB v;{∃n . r Z⇒ ⟨n, n + 1⟩ ∧ ret = n
}〈

ret = n
�� cntr (r ′, x, la, n + 1) ∗ ⌈e⌉r

〉〈
ret = n

��
C(s, x, n + 1)

〉
Fig. 13. Blocking counter: proof of incr.

— Region Intepretations. The interpretation of the locked counter region lcnt links the state of the
lock and counter to the abstract state of the region and the ownership of k. The region cnt is a
simple wrapper around the lcnt region that hides the state of the lock.

I(lcntr (x , la, l ,n)) ≜ ∃s . x 7→ la,n ∗ L(s, la, l) ∗ ((l = 0 ∧ ⌊k⌋Lr ) ∨ (l = 1 ∧ ⌊k⌋Er ))
I(cntr (r ′,x , la,n)) ≜ ∃l ∈ {0, 1}. lcntr ′(x , la, l ,n) ∗ ⌈e⌉r ′

— Proof of incr. The proof of incr can be found in Fig. 13. The only step requiring liveness

reasoning is the call lock(x), which is handled very similarly to the same call in the left thread of

the distinguishing client (Example 3.1) where the environment liveness condition of the LiveC rule

application is discharged using l = 1 ⇒ ⌊k⌋Er .
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C.5 Double Blocking Counter

Here we develop the proof of a double blocking counter module, that is a module encapsulating two

integers each protected by a lock. The module offers linearizable operations to increment/read each

counter in isolation and an incrBoth operation to atomically increment both. The implementation

of incrBoth needs to deal with the ubiquitous pattern of locking multiple locks in a nested fashion,

which is one of the most common sources of deadlocks in coarse-grained concurrent programs. The

example illustrates how the specification format and layer system of TaDA Live allow for modular

proofs of deadlock-freedom. In particular, verifying the example in LiLi would require: (i) replacing

the calls to the lock operations with some non-atomic abstract code (ii) build a termination argument

that talks about the queues of the two fair locks; in particular the variant argument would need

to consider both queues at the same time and argue about all the possible ways the threads in

the environment may enter and exit both queues. We avoid these complications by: (i) reusing

the (fair) lock specifications which are truly atomic and properly hide the queues (ii) arguing

about termination by means of two obligations with layers the order of which reflect the order of

acquisition of locks. These obligations only represent the liveness invariant that each lock is always

eventually released, the layers represent the dependency between the two locks. The proof requires

no detail about why, thanks to the internal queues, this is sufficient to ensure global progress: that

part of the argument has already been made in proving the lock specifications!

— Code. The implementation of the module’s operations are:

1 def makeDCounter() {

2 var x,l1,l2 in

3 xB alloc(4);

4 l1B newLock();

5 l2B newLock();

6 x.lock1B l1;

7 x.lock2B l2;

8 x.cnt1B 0;

9 x.cnt2B 0;

10 retB x

11 }

1 def incr1(x) {

2 var l,v in

3 lB x.lock1;

4 lock(l);

5 vB x.cnt1;

6 x.cnt1B v + 1;

7 unlock(l);

8 retB v

9 }

1 def incr2(x) {

2 var l,v in

3 lB x.lock2;

4 lock(l);

5 vB x.cnt2;

6 x.cnt2B v + 1;

7 unlock(l);

8 retB v

9 }

1 def incrBoth(x) {

2 var l1,l2,v in

3 l1B x.lock1;

4 l2B x.lock2;

5 lock(l1);

6 lock(l2);

7 vB x.cnt1;

8 x.cnt1B v + 1;

9 vB x.cnt2;

10 x.cnt2B v + 1;

11 unlock(l2);

12 unlock(l1)

13 }

1 def read1(x) {

2 var l1 in

3 l1B x.lock1;

4 lock(l1);

5 retB x.cnt1;

6 unlock(l1)

7 }

1 def read2(x) {

2 var l2 in

3 l2B x.lock2;

4 lock(l2);

5 retB x.cnt2;

6 unlock(l2)

7 }

using the following abbreviations for readability:

x.lock1 ≜ [x] x.lock2 ≜ [x+1] x.cnt1 ≜ [x+2] x.cnt2 ≜ [x+3]
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— Specifications. The abstract predicate DC(t ,x ,n,m) represents a double counter at address x with

values n andm respectively. The goal of the proof is proving the specifications

1 ⊢
{
emp

}
makeDCounter()

{∃s .DC(t , ret, 0, 0)}
1 ⊢ A

n,m ∈ N.
〈
DC(t , x,n,m)

〉
incrBoth(x)

〈
DC(t , x,n + 1,m + 1)

〉
1 ⊢ A

n,m ∈ N.
〈
emp

��
DC(t , x,n,m)

〉
incr1(x)

〈
ret = n

��
DC(t , x,n + 1,m)

〉
1 ⊢ A

n,m ∈ N.
〈
emp

��
DC(t , x,n,m)

〉
incr2(x)

〈
ret =m

��
DC(t , x,n,m + 1)

〉
1 ⊢ A

n,m ∈ N.
〈
emp

��
DC(t , x,n,m)

〉
read1(x)

〈
ret = n

��
DC(t , x,n,m)

〉
1 ⊢ A

n,m ∈ N.
〈
emp

��
DC(t , x,n,m)

〉
read2(x)

〈
ret =m

��
DC(t , x,n,m)

〉
given the fair lock specifications:

1s ⊢

A

l ∈ {0, 1} ↠0s {0}.
〈
L(s, x, l)

〉
lock(x)

〈
L(s, x, 1) ∧ l = 0

〉
0s ⊢

〈
L(s, x, 1)

〉
unlock(x)

〈
L(s, x, 0)

〉
It is important to note here that we are making explicit the parametrisation of the layers in the

region identifiers s , because we will need to associate different layers with the two instances

of the lock. See Appendix A.4 for details on this parametrisation. As we will see later, we will

have two region identifiers s1 and s2, one per lock, with associated layers 1s1 , 0s1 , 1s2 , 0s2 . The lock
specifications themselves only require 1s1 > 0s1 and 1s2 > 0s2 but we will additionally impose, for

this client proof, 0s1 > 1s2 . This represents the fact that, in this client, the release of lock 1 will

depend on the release of lock 2.

— Region Types. As for the single counter example, we need two nested regions, one to prove

the atomicity of the operation (dcnt) and an inner one to prove termination (ldcnt). They differ

in that dcnt only records the abstract states of the counters, while ldcnt includes the abstract

states of the locks. Formally: dcntr1 ((r0, t0),x ,n,m) and ldcntr0 (t0,x , l1, l2,n,m) where r0, r1 ∈ RId,

x ∈ Addr, l1, l2 ∈ {0, 1} and n,m ∈ N, and t0 is a tuple (la1, la2, s1, s2) with la1, la2 ∈ Addr and

s1, s2 ∈ RId. Here (r0, t0),x , and t0,x are the fixed parameters of the two regions respectively. The

double blocking counter resource is abstractly represented by the predicate DC((r1, t1),x ,n,m) ≜
dcntr1 (t1,x ,n,m) ∗ ⌈e⌉r1 .

— Guards and Obligations. We introduce the guard constructors bi , ci , and wi , for i ∈ {1, 2}, for
bookeeping of the value of the counters. We need this ghost state because in incrBoth there is an

intermediate state where one counter has been updated but the other hasn’t; we cannot update

the abstract state in two steps because we are proving atomicity of the operation, so we need to

update both counter values in the abstract state in one go. We record the intermediate concrete

state in these guards so the information is there locally without affecting the shared abstract state

prematurely. The guard composition satisfies the axioms

b1 = c1(n,n′) •w1(n,n′) b2 = c2(n,n′) •w2(n,n′)
Here ci (n,n′) is the reference value (left in the region interpretation) for the i-th counter’s abstract

(n) and concrete (n′) value and wi is a local “witness” for the same information about the i-th
counter, which can only be obtained when locking the i-th lock (otherwise it would not be stable

information). This is enforced by the interpretation given later.

We associate two obligations k1 and k2 with the region type ldcnt, encoding ownership of the

double counter’s locks respectively, as well as the obligation to unlock them:

k1 • k1 = ⊥ k2 • k2 = ⊥
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As anticipated, we choose the layers of the lock specifications in a way that represents the

dependency between the two locks. We have a (double-counter-local) top (1) and bottom (0) layers,
and intermediate layers for the locks:

8

0 = 0s2 = lay(k2) < 1s2 < 0s1 = lay(k1) < 1s1 = 1

— Interference Specification. The interference protocol of the region dcnt trivially allows for any

change to the counter values:

e : ((n,m), 0)⇝ ((n′,m′), 0)
The interference protocol of the region ldcnt encodes the constraint that we can update a counter

only by holding the corresponding lock:

e : ((0, l ,n,m), 0)⇝ ((1, l ,n,m), k1) e : ((l , 0,n,m), 0)⇝ ((l , 1,n,m), k2)
e : ((1, l ,n,m), k1)⇝ ((0, l ,n,m), 0) e : ((l , 1,n,m), k2)⇝ ((l , 0,n,m), 0)
e : ((1, l ,n,m), k1)⇝ ((1, l ,n′,m), k1) e : ((l , 1,n,m), k2)⇝ ((l , 1,n,m′), k2)

— Region Intepretations. The interpretation of dcnt formalises the fact that the outer region simply

hides the state of the locks for the atomicity argument, while the actual internal protocol of the

module is encoded in the interpretation of the inner region ldcnt:

I(dcntr1 ((r0, t0),x ,n,m)) ≜ ∃l1, l2 ∈ {0, 1}. ldcntr0 (t0,x , l1, l2,n,m) ∗ ⌈e⌉r0
I(ldcntr0 ((la1, la2, s1, s2),x , l1, l2,n,m)) ≜ ∃n′,m′ ∈ N.

x 7→ la1, la2,n
′,m′ ∗ L(s1, la1, l1) ∗ L(s2, la2, l2)

∗
(

(l1 = 0 ∧ ⌊k1⌋Lr0 ∗ ⌈b1⌉r0 ∧ n = n′)
∨ (l1 = 1 ∧ ⌊k1⌋Er0 ∗ ⌈c1(n,n′)⌉r0 )

)
∗

(
(l2 = 0 ∧ ⌊k2⌋Lr0 ∗ ⌈b2⌉r0 ∧m =m′)

∨ (l2 = 1 ∧ ⌊k2⌋Er0 ∗ ⌈c2(m,m′)⌉r0 )

)
— Proof of incrBoth. The proof outline of incrBoth is reproduced in Fig. 14. Most of the proof is

routine; the derivation for the acquisition of the first lock follows closely the pattern we already

explained in Appendices C.3 and C.4. We show the proof of the acquisition of the second lock in

more detail, to show the interplay between the layers. At that point we are continuously holding

the obligation of the first lock, with layer greater than 1s2 , so apply LayW to lower the layer to 1s2
enabling the application of Frame to frame r1 Z⇒ ♦ ∗ ⌊k1⌋Lr0 ∗ ⌈w1(n,n)⌉r0 . The obligation k2 has

layer lower than 1s2 so we are allowed to invoke it to discharge the environment liveness condition

of the LiveC application, in a way that is analogous to the derivations of Appendices C.3 and C.4.

8
The proof works with 1s2 = 0s1 too, but the ordered version better emphasizes the dependency between the locks.
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Proof of incrBoth(x):

1; ∅ ⊢ A

n,m ∈ N.〈
emp

��
DC(t, x, n,m)

〉
C
o
n
s
;
S
u
b
t
=
(r
1
,
t 1
),
t 1
=
(r
0
,
t 0
),
t 0
=
(la

1
,
la

2
,
s 1
,
s 2
)

〈
dcntr1 (t1, x, n,m) ∗ ⌈e⌉r1

〉
M
k
A
t
o
m

1;A ≜ [r1 7→ (N2, 0, N2, {((n,m), (n + 1,m + 1)) | n,m ∈ N})] ⊢{∃n,m . dcntr1 (t1, x, n,m) ∗ r1 Z⇒ ♦
}

l1B [x];
l2B [x + 1];
// t ′

1
≜ (r0, t ′

0
), t ′

0
≜ (l1, l2, s1, s2){∃n,m, l1, l2 . dcntr1 (t ′1, x, n,m) ∗ ldcntr0 (t ′0, x, l1, l2, n,m) ∗

r1 Z⇒ ♦ ∗ l1 = 1

.⇒ ⌊k1 ⌋Er0 ∗ l2 = 1

.⇒ ⌊k2 ⌋Er0

}
lock(l1);{∃n,m, l2 . dcntr1 (t ′1, x, n,m) ∗ ldcntr0 (t ′0, x, 1, l2, n,m) ∗
r1 Z⇒ ♦ ∗ ⌊k1 ⌋Lr0 ∗ ⌈w1(n, n)⌉r0 ∗ l2 = 1

.⇒ ⌊k2 ⌋Er0

}

L
a
y
W
;
F
r
a
m
e
;
A
t
o
m
W
;
A
∃E

l
i
m

1s2 ;A ⊢

A

n,m ∈ N, l2 ∈ {0, 1}.〈
dcntr1 (t ′1, x, n,m) ∗ ldcntr0 (t ′0, x, 1, l2, n,m) ∗ l2 = 1

.⇒ ⌊k2 ⌋Er0
〉

L
i
f
t
A

〈
ldcntr0 (t ′0, x, 1, l2, n,m) ∗ ⌈e⌉r0 ∗ l2 = 1

.⇒ ⌊k2 ⌋Er0
〉

L
i
v
e
C

1s2 ;A ⊢

A

n,m ∈ N, l2 ∈ {0, 1} ↠0s
2

{0}.〈
ldcntr0 (t ′0, x, 1, l2, n,m) ∗ ⌈e⌉r0 ∗ l2 = 1

.⇒ ⌊k2 ⌋Er0
〉

S
t
e
p
1
0

1s2 ;A ⊢

A

l2 ∈ {0, 1} ↠ {0}.〈
L(s2, l2, l2)

〉
lock(l2);〈
L(s2, l2, 1) ∧ l2 = 0

〉〈
ldcntr0 (t ′0, x, 1, 1, n,m) ∗ ⌈e⌉r0 ∗ ⌊k2 ⌋Lr0 ∗ ⌈w2(m,m)⌉r0

〉〈
ldcntr0 (t ′0, x, 1, 1, n,m) ∗ ⌈e⌉r0 ∗ ⌊k2 ⌋Lr0 ∗ ⌈w2(m,m)⌉r0

〉〈
dcntr1 (t ′1, x, n,m) ∗ ⌊k2 ⌋Lr0 ∗ ⌈w2(m,m)⌉r0

〉{∃n,m . dcntr1 (t ′1, x, n,m) ∗ r1 Z⇒ ♦ ∗
⌊k1 ⌋Lr0 ∗ ⌈w1(n, n)⌉r0 ∗ ⌊k2 ⌋Lr0 ∗ ⌈w2(m,m)⌉r0

}
vB x.cnt1;
x.cnt1B v + 1;
vB x.cnt2;
x.cnt2B v + 1;{∃n,m . dcntr1 (t ′1, x, n,m) ∗ r1 Z⇒ ♦ ∗
⌊k1 ⌋Lr0 ∗ ⌈w1(n, n + 1)⌉r0 ∗ ⌊k2 ⌋Lr0 ∗ ⌈w2(m,m + 1)⌉r0

}
unlock(l2);{∃n,m . dcntr1 (t ′1, x, n,m) ∗ r1 Z⇒ ((n,m), (n + 1,m + 1)) ∗
⌊k1 ⌋Lr0 ∗ ⌈w1(n + 1, n + 1)⌉r0

}
unlock(l1);{∃n,m . r1 Z⇒ ⟨(n,m ⟩, (n + 1,m + 1))

}〈
dcntr1 (t1, x, n + 1,m + 1) ∗ ⌈e⌉r1

〉〈
DC(t, x, n + 1,m + 1)

〉
Fig. 14. Double blocking counter: proof of incrBoth.

Step 10 is LiftA, Frame.
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C.6 Lock-coupling set

Here we develop the proof of a lock coupling set module.

— Code. The implementation of the module’s operations are:

1 def add(x, e) {

2 var p, c, v, n,

3 nl, pl, cl in

4 pB locate(x, e);

5 cB p.next;

6 vB c.val;

7

8 if(v, e) {

9 nB alloc(3);

10 nlB newLock();

11 n.lockB nl;

12 n.valB e;

13 n.nextB c;

14 p.nextB n;

15 unlock(nl);

16 }

17

18 plB p.lock;

19 clB c.lock;

20 unlock(cl);

21 unlock(pl);

22 }

1 def remove(x, e) {

2 var p, c, v,

3 n, pl, cl in

4 pB locate(x, e);

5 cB p.next;

6 vB c.val;

7

8 if(v= e) {

9 nB c.next;

10 p.next= n;

11 }

12

13 plB p.lock;

14 clB c.lock;

15 unlock(pl);

16 unlock(cl);

17 }

1 def locate(x, e) {

2 var p, c, v,

3 n, pl, cl in

4 pB x;

5 plB p.lock;

6 lock(pl);

7 cB p.next;

8 clB c.lock;

9 lock(cl);

10 vB c.value;

11 unlock(hl);

12

13 while(v < e) {

14 plB p.lock;

15 c'B c.next;

16 cl'B c'.lock;

17 lock(cl');

18 vB c'.val;

19 unlock(pl);

20 pB c;

21 cB c';

22 }

23

24 retB p;

25 }

The auxiliary operation locate is meant to only be used internally. The code uses a “record” syntax

for readability, desugared as follows:

x.lock ≜ [x] x.val ≜ [x + 1] x.next ≜ [x + 2]

— Specifications. The abstract predicate LCSet(s,x , S) represents a lock-coupling set at address x
abstractly representing the set S .

⊤ ⊢ A

S ∈ ℘(Z).
〈
LCSet(s, x, S) ∧ e ∈ N

〉
add(x,e)

〈
LCSet(s, x, S ∪ {e})

〉
⊤ ⊢ A

S ∈ ℘(Z).
〈
LCSet(s, x, S) ∧ e ∈ N

〉
remove(x,e)

〈
LCSet(s, x, S \ {e})

〉
— Notation.

ord(ls) ≜
{
True if ls = [] ∨ ls = [_]
v < v ′ ∧ ord((h′, la′,v ′, l ′) : ls ′) if ls = (_, _,v, _) : (h′, la′,v ′, l ′) : ls ′

vals(ls) ≜
{
∅ if ls = []
{v} ⊎vals(ls ′) if ls = (_, _,v, _) : ls ′
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— Region Types. This proof will utilise two region types: lcsetr (r ′,x ,hl , S) and lclistr (x ,h, ls)where
r ′ ∈ RId, x ,hl ∈ Addr, S ∈ ℘(Z), ls ∈ (Z ∪ {∞,−∞} × {0, 1})∗. Here r ′, x and hl are the fixed

parameters of the region. The lock-coupling set resource is abstractly represented by the predicate

LCSet((r , r ′,hl),x , S) ≜ lcsetr (r ′,x ,hl , S) ∗ ⌈e⌉r

— Guards and Obligations. We will use an obligation C(ls, lay) to track ls and the maximal layer

of any lock in the lock-coupling set, lay. The obligations U(h1, la1,v1, lay1), L(h1, la1,v1,h2, lay1)
and K(h1, la1,v1,h2, lay1) track the state of the lock associated with the cell h1,h2 ∈ Addr, are

the addresses of the associated cell and the next cell in the lock coupling set and la1 ∈ Addr,

v1 ∈ Z ∪ {∞,−∞} and lay are the address of the lock, the value and the layer associated with h1
respectively. The obligation U has as parameters all the fixed value associated with a cell in the

lock coupling list and L and K also contain h2, the address of the next cell, which is fixed when the

lock associated with h1 is locked.

This axiom allows a lock to be locked:

C(ls ⊕ ((v, 0) : ls ′), lay) • U(h1, la1,v1, lay1) =
C(ls ⊕ ((v, 1) : ls ′), lay) • L(h1, la1,v1,h2, lay1) • K(h1, la1,v1,h2, lay1)

Once a thread holds the obligation K(h1, la1,v1,h2, lay1), then, the list ls in the obligation C(ls, lay)
must contain the element (v1, 1) and the cell h1’s layer, lay

1
, must be smaller than or equal

to the maximum layer of any cell lay. Furthermore, if a L(h1, la1,v1,h2, lay1) obligation and a

K(h′
1
, la′

1
,v ′

1
,h′

2
, lay′

1
) have the same cell address, then they must agree on all other elements which

are invariant when the lock is held. This is expressed by the following axioms:

C(ls, lay) • K(h1, la1,v1,h2, lay1) , ⊥ ⇔ ∃ls ′, ls ′′. ls = ls ′ ⊕ ((v1, 1) : ls ′′) ∧ lay ≥ lay
1

L(h1, la1,v1,h2, lay1) • K(h′
1
, la′

1
,v ′

1
,h′

2
, lay′

1
) , ⊥ ⇔ v1 = v

′
1
⇒

(
h1 = h

′
1
∧ la1 = la

′
1
∧

h2 = h
′
2
∧ lay

1
= lay′

1

)
Next, we introduce the obligation W(h, la,v), which witness the fixed elements of a cell after a cell

held by the local thread. As a node, h1, must be locked to remove the next node, h2 from the list,

this information is stable if the lock of h1 is locked. The following axiom represent this fact:

K(h1, la1,v1,h2, lay1) • U(h2, la2,v2, lay2) = K(h1, la1,v1,h2, lay1) • U(h2, la2,v2, lay2) •W(h2, la2,v2)
K(h1, la1,v1,h2, lay1) • L(h2, la2,v2,h3, lay2) = K(h1, la1,v1,h2, lay1) • L(h2, la2,v2,h3, lay2) •W(h2, la2,v2)

U(h, l ,v, _) •W(h′, l ′,v ′) , ⊥ ⇔ (h = h′ ⇒ (l = l ′ ∧v = v ′))
L(h, l ,v, _, _) •W(h′, l ′,v ′) , ⊥ ⇔ (h = h′ ⇒ (l = l ′ ∧v = v ′))

While the locate operation performs the hand-over-hand locking to find the appropriate location

in the lock-coupling set to act on. There also needs to be a “space” in the region’s layer structure to

add in an obligation in the case of the add operation. To do this, we use an obligation, Free(lay),
which can be generated by increasing the maximal layer in C(ls, lay) to make space for an extra

lock. This obligation represents an exclusive right to create a cell with the layer lay. This space
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then needs to be moved along as the hand-over-hand locking occurs. These axioms allow this:

C((v1, 1) : ls, lay) • L(h1, la1,v1,h2, lay) • K(h1, la1,v1,h2, lay) =
C((v1, 1) : ls, lay + 1) • L(h1, la1,v1,h2, lay + 1) • K(h1, la1,v1,h2, lay + 1) • Free(lay)(

L(h1, la1,v1,h2, lay1 + 1) • K(h1, la1,v1,h2, lay1 + 1) • Free(lay1) •
L(h2, la2,v2,h3, lay2) • K(h2, la2,v2,h3, lay2)

)
=(

L(h1, la1,v1,h2, lay1 + 1) • K(h1, la1,v1,h2, lay1 + 1) • Free(lay2) •
L(h2, la2,v2,h3, lay2 + 1) • K(h2, la2,v2,h3, lay2 + 1)

)
C(ls, lay) • Free(lay

1
) , ⊥ ⇔ lay > lay

1

Finally, these axioms allow a cell to be added or removed from the lock-coupling list when the

appropriate locks are held using an appropriate obligation, Free(lay):(
C(ls ⊕ ((v1, 1) : (v3, 1) : ls ′), lay) • L(h1, la1,v1,h3, lay2 + 1) • K(h1, la1,v1,h3, lay2 + 1) •

L(h3, la3,v3,h4, lay3) • K(h3, la3,v3,h4, lay3) • Free(lay2)

)
=

©«
C(ls ⊕ ((v1, 1) : (v2, 1) : (v3, 1) : ls ′), lay) •

L(h1, la1,v1,h2, lay2 + 1) • K(h1, la1,v1,h2, lay2 + 1) •
L(h2, la2,v2,h3, lay2) • K(h2, la2,v2,h3, lay2) •
L(h3, la3,v3,h4, lay3) • K(h3, la3,v3,h4, lay3)

ª®®®¬(
C(ls ⊕ ((v1, 1) : (v2, 1) : ls ′), lay) • L(h1, la1,v1,h2, lay1 + 1) • K(h1, la1,v1,h2, lay1 + 1) •

L(h2, la2,v2,h3, lay2) • K(h2, la2,v2,h3, lay2) • Free(lay1)

)
=

C(ls ⊕ ((v1, 1) : ls ′), lay) • L(h1, la1,v1,h3, lay1 + 1) • K(h1, la1,v1,h3, lay1 + 1)

The layer structure is N ∪ {1,⊤, 0}, where ∀n ∈ N. 1 > ⊤ > n > 0. The obligation layers are:

lay(W(h, l ,v)) = ⊤
lay(L(h1, la1,v1,h2, lay1)) = lay

1

lay(Free(lay)) = lay

— Interference protocol. The guard-labeled transition system of the region lcsetr (r ′,x ,hl , S) is:

e : ∀v . (S, 0)⇝ (S ∪ {v}, 0)
e : ∀v . (S, 0)⇝ (S \ {v}, 0)

and the guard-labeled transition system of the region lclistr (x ,h, ls) is:

e :

(ls ⊕ ((v, 1) : (v ′′, 1) : ls ′), 0)⇝
(ls ⊕ ((v, 1) : (v ′, 1) : (v ′′, 1) : ls ′), 0) v < v ′ < v ′′

e : (ls ⊕ ((v, 1) : (v ′, 1) : ls ′), 0)⇝ (ls ⊕ ((v, 1) : ls ′), 0)
e : (ls ⊕ ((v, 0) : ls ′), 0)⇝ (ls ⊕ ((v, 1) : ls ′), L(h, la,v,h′, lay))
e : (ls ⊕ ((v, 1) : ls ′), L(h, la,v,h′, lay))⇝ (ls ⊕ ((v, 0) : ls ′), 0)

The first two interference specifications allow for elements to be added to and removed from the

list when the correct locks are held and the last two allow the locks associated with the nodes of

the lock-coupling set to be locked and unlocked.
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— Region interpretation.

I(lcsetr (r ′,x ,hl , S)) ≜ ∃ls . lclistr ′((x ,hl ,−∞, _) : ls) ∗ ⌈e⌉r ′ ∧ S ⊎ {∞} = vals(ls) ∧ ord(ls)

where ∀n ∈ Z.−∞ < n < ∞.

I(lclistr (x ,hl , ls)) ≜ ∃lay. listr (ls, lay) ∗ [C(ls, lay)]r

where

listr ([(h, la,v, l)], lay) ≜ ∃s, lay′.h 7→ la,v, null ∗ TLock(s, la, l) ∗
((l = 0 ∧ ⌊U(h, la,v, lay)⌋Lr ) ∨ (l = 1 ∧ ⌊L(h, la,v,null , lay)⌋Er )) ∧ lay > lay′

listr ((h, la,v, l) : (h′, la′,v ′, l ′) : ls, lay) ≜ ∃s, lay′.
h 7→ la,v,h′ ∗ listr ((h′, la′,v ′, l ′) : ls, lay′) ∗ TLock(s, la, l) ∗

((l = 0 ∧ ⌊U(h, la,v, lay)⌋Lr ) ∨ (l = 1 ∧ ⌊L(h, la,v,h′, lay)⌋Er )) ∧ lay > lay′

— Proof of locate. We detail the application of LiveC in the proof of locate shown in Fig. 19. The

associated environment liveness condition is proved by:

1; λ;A ⊢ L(α) : T −−↠ T
LiveT

imprA(lclistr ,L1,L,Rio ,R′,T )
1; λ;A ⊢ L(α) : L1 −−↠ T

LiveO

1; λ;A ⊢ L(α) : L(α) −−↠ T
ECase

1; λ;A ⊢ L M−−↠ T
EnvLive

where L(α) ≜ L ∗M(α) and

M(α) ≜ ∃ls, ls ′,nv, l . lclistr ′(x, hl, ls ⊕ ((nv, l) : ls ′)) ∧ α = l

L ≜ lclistr ′(x, hl, ls ⊕ ((nv, l) : ls ′)) ∗ ⌊K(c, cl , v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’,nv)⌋Lr ′
∗ ∃lay ′. l = 1

.⇒ ⌊K(c’, cl’,nv, _, lay ′)⌋Er ∧ lay > lay ′

L1 ≜ lclistr ′(x, hl, ls ⊕ ((nv, 1) : ls ′)) ∗ ⌊K(c, cl , v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’,nv)⌋Lr ′
∗ ∃lay ′. ⌊K(c’, cl’,nv, _, lay ′)⌋Er ∧ lay > lay ′

T ≜ lclistr ′(x, hl, ls ⊕ ((nv, 0) : ls ′)) ∗ ⌊K(c, cl , v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’,nv)⌋Lr ′
∗ ∃lay ′. l = 1

.⇒ ⌊K(c’, cl’,nv, _, lay ′)⌋Er ∧ lay > lay ′

Rio ≜ {((0,d), (1,d)) | d ∈ Bool} ∪ {((1,d), (0,d)) | d ∈ Bool} ∪ {((l , false), (l , true)) | l ∈ {0, 1}}
R′ ≜ {(((1,d), k), ((0,d), 0)) | d ∈ Bool}
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Proof of add(x,e):

1; ∅ ⊢ A

S ∈ P(Z).〈
LCSet(s, x, S )

〉
C
o
n
s
;
S
u
b
s
=
(r
,r
′ ,h

l)

〈
lcsetr (r ′, x, hl, S ) ∗ ⌈e⌉r

〉
M
k
A
t
o
m

1; r : ∀S ∈ P(Z). S → S ∪ {e} ⊢{∃S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦}
pB locate(x, e);
∃la, la, v, v, h, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, h, lay + 1)⌋Lr ′ ∗ ⌊K(h, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
v < e ≤ v ∧ lay > lay



∃E
l
i
m
;
Q
L
;
C
o
n
s
;
F
r
a
m
e

0; r : ∀S ∈ P(Z). S → S ∪ {e} ⊢
∃la, la, v, v, h, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, h, lay + 1)⌋L∗ ⌊K(h, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
v < e ≤ v ∧ lay > lay


cB p.next;
∃la, la, v, v, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay′)⌋Lr ′ ∧
v < e ≤ v ∧ lay > lay′ > lay


vB c.val;
∃la, la, v, v, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
v < e ≤ v ∧ lay > lay ∧ v , e ⇒ e < v


if(v, e) {

∃la, la, v, v, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
v < e < v ∧ lay > lay


nB alloc(3);
nlB newLock();
n.lockB nl;
n.valB e;
n.nextB c;
∃la, la, v, v, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ r Z⇒ ♦ ∗
⌊K(p, la, v, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∗
n 7→ nl, e, c ∗ L(s, nl, 0) ∧ v < e < v ∧ lay > lay


p.nextB n;{
∃la, la, lay, lay, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, la, v, n, lay + 1)⌋Lr ′ ∗ ⌊K(n, nl, e, c, lay)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∧ lay > lay

}
unlock(nl);{
∃la, la, lay, lay, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, la, v, n, lay)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∧ lay > lay

}
}{
∃la, la, lay, lay, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, la, v, _1, lay)⌋Lr ′ ∗ ⌊K(c, la, v, _, lay)⌋Lr ′ ∧ lay > lay

}
plB p.lock;
clB c.lock;{
∃lay, lay, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, pl, v, _1, lay)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∧ lay > lay

}
{
∃lay, lay, v, v, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, pl, v, _, lay)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∧ lay > lay

}
unlock(cl);{∃lay, v, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗ ⌊K(p, pl, v, _, lay)⌋Lr ′

}
unlock(pl);{∃S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e})

}〈
lcsetr (r ′, hl, x, S ∪ {e}) ∗ ⌈g⌉r

〉〈
LCSet(s, x, S ∪ {e})

〉
Fig. 15. Proof outline of add operation.
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∃lay, lay, v, v, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗
⌊K(p, pl, v, _, lay)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∧ lay > lay

}
Q
L
;
C
o
n
s
;
F
r
a
m
e

lay ; r : ∀S ∈ P(Z). S → S ∪ {e} ⊢{∃v, S ′. lcsetr (r ′, x, hl, S ′) ∗
⌊K(c, cl, v, _, lay)⌋Lr ′∗

}
unlock(cl);{∃v, S ′. lcsetr (r ′, x, hl, S ′)}{∃lay, v, S, S ′. lcsetr (r ′, x, hl, S ′) ∗ r Z⇒ (S, S ∪ {e}) ∗ ⌊K(p, pl, v, _, lay)⌋Lr ′

}
Fig. 16. Details of unlock in add.

Proof of locate(x,e):

1; ∅ ⊢{∃S . lcsetr (r ′, x, hl, S )}
pB x;{∃S . lcsetr (r ′, x, hl, S ) ∧ p = x

}
plB p.lock;{∃S . lcsetr (r ′, pl, x, S ) ∧ p = x

}
lock(pl);{∃lay, S . lcsetr (r ′, pl, x, S ) ∗ ⌊K(p, pl, −∞, _, lay)⌋Lr ′

}
cB p.next;{∃lay, S . lcsetr (r ′, x, hl, S ) ∗ ⌊K(p, pl, −∞, c, lay)⌋Lr ′

}
clB c.lock;{∃lay, S . lcsetr (r ′, x, hl, S ) ∗ ⌊K(p, pl, −∞, c, lay)⌋Lr ′ ∗ ⌊W(c, cl, _)⌋Lr ′

}
lock(cl);{
∃lay, lay, S . lcsetr (r ′, x, hl, S ) ∗ ⌊K(p, pl, −∞, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, _, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′

}
vB c.value;{
∃lay, lay, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, −∞, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧ lay > lay

}

∃lay, lay, pl, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
lay > lay ∧ lv < e


while(v < e) {

plB p.lock;
c'B c.next;
cl'B c'.lock;
lock(cl’);
vB c'.val;
unlock(pl);
pB c;
cB c';

}
∃l, l, v, v, h, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, l, v, h, lay + 1)⌋Lr ′ ∗ ⌊K(h, l, v, _, lay)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lay > lay ∧ v < e ≤ v


return p;
∃l, l, v, v, h, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(ret, l, v, h, lay + 1)⌋Lr ′ ∗ ⌊K(h, l, v, _, lay)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lay > lay ∧ v < e ≤ v


Fig. 17. Proof outline of locate.
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1; ∅ ⊢
∃lay, lay, pl, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
lay > lay ∧ lv < e


while(v < e) {
∀β . 1; ∅ ⊢

∃lay, lay, pl, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∧
lv < e ∧ v < e ∧ β ≥ lay > lay


plB p.lock;
c'B c.next;
cl'B c'.lock;
∃lay, lay, cl, lv, nv, S, ls, ls′, l . lcsetr (r ′, x, hl, S ) ∗ lclistr ′ (x, hl, ls ⊕ ((nv, l ) : ls′)) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’, nv)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∗
l = 1

.⇒ ⌊K(c’, cl’, nv, _, _)⌋Er ∧ lv < e ∧ v < e ∧ β ≥ lay > lay


lock(cl');
∃lay, lay, lay′, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, _, _, lay′)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lv < e ∧ v < e ∧ β ≥ lay > lay > lay′


vB c'.val;
∃lay, lay, lay′, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, _, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, lv, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, v, _, lay′)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lv < e ∧ β ≥ lay > lay > lay′


unlock(pl);
∃lay, lay, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(c, cl, lv, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, v, _, lay)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lv < e ∧ β > lay > lay


pB c;
cB c';
∃lay, lay, pl, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, _, lay)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lv < e ∧ β > lay > lay


}
∃l, l, v, v, h, lay, lay, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, l, v, h, lay + 1)⌋Lr ′ ∗ ⌊K(h, l, v, _, lay)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lay > lay ∧ v < e ≤ v


Fig. 18. Details of while loop in locate.
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∃lay, lay, lay′, cl, lv, nv, S, ls, ls′, l . lcsetr (r ′, x, hl, S ) ∗ lclistr ′ (x, hl, ls ⊕ ((nv, l ) : ls′)) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’, nv)⌋Lr ′ ∗ ⌊Free(lay)⌋Lr ′ ∗
l = 1

.⇒ ⌊K(c’, cl’, nv, _, lay′)⌋Er ∧ lv < e ∧ v < e ∧ β ≥ lay > lay > lay′


S
t
e
p
1
1

lay ; ∅ ⊢

A

ls, ls′ ∈ Z∗, l ∈ {0, 1}.〈
lclistr ′ (x, hl, ls ⊕ ((nv, l ) : ls′)) ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’, nv)⌋Lr ′ ∗
∃lay′. l = 1

.⇒ ⌊K(c’, cl’, nv, _, lay′)⌋Er ∧ lay > lay′

〉
L
i
v
e
C

lay ; ∅ ⊢

A

ls, ls′ ∈ Z∗, l ∈ {0, 1} ↠lay {0}.〈
lclistr ′ (x, hl, ls ⊕ ((nv, l ) : ls′)) ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊W(c’, cl’, nv)⌋Lr ′ ∗
∃lay′. l = 1

.⇒ ⌊K(c’, cl’, nv, _, lay′)⌋Er ∧ lay > lay′

〉

S
t
e
p
1
2

A

l ∈ {0, 1} ↠lay {0}.〈
TLock(s, cl’, l )

〉
lock(cl');〈
TLock(s, cl’, 1) ∧ l = 0

〉〈
lclistr ′ (x, hl, ls ⊕ ((nv, 1) : ls′)) ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, _, _, lay′)⌋Lr ′

〉〈
lclistr ′ (x, hl, ls ⊕ ((nv, 1) : ls′)) ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, _, _, lay′)⌋Lr ′

〉

∃lay, lay, lay′, cl, lv, S . lcsetr (r ′, x, hl, S ) ∗
⌊K(p, pl, lv, c, lay + 1)⌋Lr ′ ∗ ⌊K(c, cl, v, c’, lay + 1)⌋Lr ′ ∗ ⌊K(c’, cl’, _, _, lay′)⌋Lr ′ ∗
⌊Free(lay)⌋Lr ′ ∧ lv < e ∧ v < e ∧ β ≥ lay > lay > lay′


Fig. 19. Details of lock in while loop of locate.

Step 11 is ∃Elim, AtomW, A∃Elim, LiftA, QL, Frame.
Step 12 is LiftA, Cons, Frame.
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D LANGUAGE DEFINITION

Wewill make regular use of partial functions. We writeX ⇀ Y for the set of partial function fromX
to Y , and X ⇀fin Y for the set of finite partial function. Given f : X ⇀ Y , we write f (x) = ⊥ if f is

undefined on x , and dom(f ) ≜ {x | f (x) , ⊥}. We will use the notation [x1 7→ y1, . . . , xn 7→ yn ]
for the finite function that maps each of the xi to yi and is undefined on any other input. Given

elements x ∈ X and y ∈ Y , and functions f : X ⇀ Y and д : X ′ ⇀ Y ′
, we define the following

function f [x 7→ y ] and f ⊎ д by:

(f [x 7→ y ])(z) ≜
{
y if z = x

f (z) otherwise

(f ⊎ д)(x) ≜
{
f (x) if x ∈ dom(f )
д(x) if x ∈ dom(д)

if dom(f ) ∩ dom(д) = ∅

We write f [x 7→ ⊥] for the partial function that is undefined on x but otherwise behaves like f .
The union of two partial function f ∪ д is a well-defined partial function as long as f (x) = д(x)
where their domains overlap.

Definition D.1 (PCM). A (multi-unit) partial commutative monoid (PCM) is a tuple (X , •,E)
comprising a setX , a binary partial composition operation • : X ×X ⇀ X and a set of unit elements

E, such that the following axioms are satisfied (where either both sides are defined and equal, or

both sides are undefined):

∀x ,y, z ∈ X . (x • y) • z = x • (y • z) (associativity)

∀x ,y ∈ X . x • y = y • x (commutativity)

∀x ∈ X .∃e ∈ E. x • e = x (identity)

For x ,y ∈ X , we write x # y if x • y , ⊥, and x ⊑ y if ∃x1.y = x • x1.

We use the set of Booleans, Bool ≜ {True, False} ∋ b,b1,b2, a set of values, Val ≜ Z ∪ Bool ∋
v,v1,v2, · · · , a set of program variables, PVar ∋ x, y, · · · , and a set of function names, FName ∋
f, g, · · · . The set PVar contains a special element, ret, that holds a function’s return value. Heap

addresses are represented by natural numbers, Addr ≜ N. The natural numbers in Val represent

both numeric values and heap addresses.

Definition D.2 (Numeric and Boolean Expressions). Let Vars be an arbitrary set of variables, and

Values and arbitrary set of values. The set of numerical expressions, Exp(Vars,Values) ∋ E,E1,E2, · · · ,
and the set of boolean expressions, BExp(Vars,Values) ∋ B,B1,B2, · · · , are defined by the grammars:

EF v | x | E + E | E − E | E ∗ E | · · · where v ∈ Values,x ∈ Vars

BF b | x | ¬B | B ∧ B | E = E | E < E | · · · where b ∈ Bool,x ∈ Vars

The numeric and Boolean program expressions are defined by the sets Exp(PVar,Val) and
BExp(PVar,Val) respectively. In Appendix E, we also work with logical expressions built from both

program and logical variables and values, hence the reason for the expression definition defined

over an arbitrary variable and value sets.

The functions fvE and fvB provide the sets of free variables for the numeric and Boolean

expressions respectively. They are defined inductively on the structure of expressions by:
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fvE(v) = ∅ v ∈ Values

fvE(x) = {x} x ∈ Vars

fvE(E1 + E2) = fvE(E1) ∪ fvE(E2)
fvE(E1 − E2) = fvE(E1) ∪ fvE(E2)
fvE(E1 ∗ E2) = fvE(E1) ∪ fvE(E2)
· · ·

fvB(b) = ∅ b ∈ {True, False}
fvB(x) = {x} x ∈ Vars

fvB(¬B) = fvB(B)
fvB(B1 ∧ B2) = fvB(B1) ∪ fvB(B2)
fvB(E1 = E2) = fvE(E1) ∪ fvE(E2)
fvB(E1 < E2) = fvE(E1) ∪ fvE(E2)
· · ·

Definition D.3 (Commands). The set of commands, Cmd ∋ C, is defined by the grammar:

C ::= skip (skip)
| xB E (assignment)
| xB [E] (read)
| [E]B E (mutate)
| xB CAS(E,E,E) (CAS)
| xB FAS(E,E,E) (FAS)
| xB alloc(E) (allocate)
| dealloc(E) (deallocate)
| let f(®x)=C in C (function definition)
| var x=E in C (local variable binding)
| if(B){C}else{C} (if)
| while(B){C} (while)
| xB f(®E) (function call)
| C;C (sequential composition)
| C ∥ C (parallel composition)
| ⟨C⟩ (primitive atomic block)

where E ∈ Exp(PVar,Val), B ∈ BExp(PVar,Val), x ∈ PVar, ®x ∈ PVar
∗
is a list of pairwise distinct

variables, and f ∈ FName.

We use [E] to denote the value of the heap cell with address given by E. In Fig. 20, we define

operators fv and mods, which identify the variables that a command can access and the variables

that are potentially modified by a command, respectively. In a command C1 ∥ C2, we apply a

strong syntactic restriction that mods(C1) = mods(C2) = ∅. Each individual thread is still able to

modify variables that are created locally and to modify shared heap cells, but are not allowed

to modify the free variables.
9
In a function definition let f(x1,. . .,xn)=C1 in C2, we use the

natural restriction fv(C1) ⊆ {x1, . . . , xn , ret}. Also for simplicity, we assume each function name

is given a definition at most once. The function fn : Cmd → ℘(FName) returns the function names

occurring in Cmd that are not bound by a let.

Definition D.4 (Variable Store). A program variable store, σ ∈ Store ≜ PVar ⇀ Val, is a finite

partial function from program variables to values. The right-biased union of variable stores, σ1 ◁ σ2,
is defined by:

(σ1 ◁ σ2)(x) =
{
σ2(x) if x ∈ dom(σ2)
σ1(x) otherwise

9
To lift this restriction, one could use standard techniques, such as “variables as resources”. Our restriction minimises the

noise generated by handling local state in the formalisation of the model and the assertions. Note that expressivity is not

really limited by our restriction: any local variable in the scope common to both thread that needs to be modified can be

instead implemented by using a shared memory cell.
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fv(skip) = ∅
fv(x B E) = {x} ∪ fvE (E)
fv(x B [E]) = {x} ∪ fvE (E)
fv([E1] B E2) = fvE (E1) ∪ fvE (E2)
fv(x B CAS(E1,E2,E3)) = {x} ∪ fvE (E1) ∪ fvE (E2) ∪ fvE (E3)
fv(x B alloc(E)) = {x} ∪ fvE (E)
fv(dealloc(E)) = fvE (E)
fv(let f(®x) =Cf in C) = fv(C)
fv(var x = E in C) = (fv(C) \ {x}) ∪ fvE (E)
fv(if(B){C1}else{C2}) = fvB (B) ∪ fv(C1) ∪ fv(C2)
fv(while(B){C}) = fvB (B) ∪ fv(C)
fv(x B f(®E)) = {x} ∪ fvE (E)
fv(C1;C2) = fv(C1) ∪ fv(C2)
fv(C1 ∥ C2) = fv(C1) ∪ fv(C2)

mods(skip) = ∅
mods(x B E) = {x}
mods(x B [E]) = {x}
mods([E1] B E2) = ∅
mods(x B CAS(E1,E2,E3)) = {x}
mods(x B alloc(E)) = {x}
mods(dealloc(E)) = ∅
mods(let f(®x) = Cf in C) = mods(C)
mods(var x = E in C) = mods(C) \ {x}
mods(if(B){C1}else{C2}) = mods(C1) ∪mods(C2)
mods(while(B){C}) = mods(C)
mods(x B f(®E)) = {x}
mods(C1;C2) = mods(C1) ∪mods(C2)
mods(C1 ∥ C2) = mods(C1) ∪mods(C2)

Fig. 20. The sets of free and modified program variables

Definition D.5 (Expression evaluation). Let ς : Vars⇀fin Values be an arbitrary function from an ar-

bitray set of variables to values. The numeric expression evaluation function, EJ · Kς : Exp(Vars,Values) →
Values, and the Boolean expression evaluation function, BJ · Kς : BExp(Vars,Values) → Bool, are de-

fined by:

EJvKς = v BJbKς = b
EJxKς = ς(x) BJ¬BKς = ¬BJBKς

EJE1 + E2Kς = EJE1Kς + EJE2Kς BJB1 ∧ B2Kς = BJB1Kς ∧ BJB2Kς
EJE1 − E2Kς = EJE1Kς − EJE2Kς BJE1 = E2Kς = (EJE1Kς = EJE2Kς )
EJE1 · E2Kς = EJE1Kς · EJE2Kς BJE1 < E2Kς = (EJE1Kς < EJE2Kς )

· · · · · ·

The program expressions are evaluated using program store σ ∈ Store ≜ PVar ⇀fin Val. In

Appendix E, we also work with logical expressions which are evaluated over both program and

logical variables and values. The right-biased union of stores is used to describe how, when nesting

scopes, a variable occurrence is bound by the innermost binder surrounding it. The notation

var x1,x2. . .,xn in C denotes var x1= 0 in var x2= 0 in . . . var xn= 0 in C.

Definition D.6 (Heap). A heap, h ∈ Heap ≜ Addr ⇀fin Val, is a finite partial function from

addresses to values. The set of heaps, Heap, forms a PCM (Heap,⊎, {∅}) with h1 ⊎ h2 defined only

if dom(h1) ∩ dom(h2) = ∅.

Definition D.7 (Function Implementation Context). A function implementation context,φ ∈ FImpl ≜
FName ⇀ (PVar∗,Cmd), is a finite partial function from function names to pairs comprising a

finite list of distinct variables and a command.

We write φ(f) = (®x,C), where variable list ®x represents the function arguments and C represents

the function body. We use the notation φvar and φcmd to refer to the arguments and function body

of f respectively.

In order to describe the behaviour of local variable binding and function calls, we define program

states which extends commands with variable stores. For example, the program state (σ ,C) indicates
that the command C is evaluated in the current store updated with the variables in σ .
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Definition D.8 (Program States). The set of program states, PState ∋ C,C1,C2, · · · is defined by

the grammar:

C F ✓ | (σ ,C) | C;C | let f(®x)=C in C | C ∥ C | C
The ✓ indicates a terminated program. It is a technical device so that every C ∈ Cmd, including

skip, takes at least one step.
In the operational semantics, we need to keep track of which thread is originating each step

to be able to define later concepts of fairness of the scheduling. We do this tracking using thread
identifiers t ∈ TId ≜ {l, r}∗ which are strings of letters l (for the left thread) and r (for the right

thread). ϵ will be used to denote the thread identifier which is an empty sequence. Intuitively, such

a string identifies a single thread as the path in the syntax tree of parallel compositions at which

the thread is found.

Definition D.9 (Command Semantics). A scheduler annotation t is an element of the set

Sched ≜ {loct | t ∈ TId} ⊎ {env}.
A program configuration c is an element of the set PConf ≜ (Store × Heap × PState) ⊎ { }. Let
φ ∈ FImpl. The operational semantics of the commands is given by the labelled relation, −→φ ⊆
PConf × Sched × PConf, defined in Fig. 21 and Fig. 22. We write a

t−→φ b for (a, t ,b) ∈ −→φ . We

also define
loc ∗−−→φ ≜ (∪t ∈TId

loct−−−→φ )∗.
To simplify the development, in our programming language the initial state’s store assigns

arbitrary values to the free variables of a program. With such assumption, every reference to a

local variable will be in the domain of the current store. This ensures that in every application of

the rules in Fig. 21 and Fig. 22 to construct a trace, the evaluations of (boolean) expressions are

well-defined.

Definition D.10 (Threads). Given a program state C ∈ PState, the set threads(C) is the set of
threads of C that can take a step. The function threads : PState → ℘(TId) is defined as follows:

threads(✓ ∥ ✓) ≜ {ϵ}
threads(C1 ∥ C2) ≜ {lt | t ∈ threads(C1)} ∪ {rt | t ∈ threads(C2)}

threads(✓;C) ≜ {ϵ}
threads(C;C) ≜ threads(C)

threads(let f(®x)=C in C) ≜ threads(C)
threads((σ ,C)) ≜ threads(C)

threads(✓) ≜ ∅
threads(_) ≜ {ϵ}

Definition D.11 (Program Traces and Fairness). We call program traces, the infinite sequences of
the form c0 π0 c1 π1 · · · where, for all i ∈ N, ci ∈ PConf, πi ∈ Sched. We use τ for ranging over

infinite suffixes of program traces and PTrace for the set of all program traces. For a program trace

τ = c0 π0 c1 π1 · · · , we define τ (i) ≜ (ci ,πi ), and τ /i ≜ ci πi ci+1 πi+1 · · · . We define the set of
φ-program traces

PTraceφ ≜ {c0 π0 c1 π1 · · · | ∀i ∈ N. ci π i−−→φ ci+1}.
A program trace (c0 π0 c1 π1 · · · ) ∈ PTraceφ is (weakly) fair if and only if:

∀i ∈ N. ∀C ∈ PState. ci = (_, _,C) ⇒ ∀t ∈ threads(C). ∃j ≥ i . (π j = loct ∨c j =  ) (12)

∀i ∈ N. ∃j ≥ i .π j=env (13)



σ , h, skip
locϵ−−−−→φ σ , h, ✓ σ , h, x B E

locϵ−−−−→φ σ [x 7→ EJEKσ ], h, ✓

EJEKσ ∈ dom(h)

σ , h, x B [E]
locϵ−−−−→φ σ [x 7→ h(EJEKσ )], h, ✓

EJE1Kσ ∈ dom(h)

σ , h, [E1] B E2
locϵ−−−−→φ σ , h

[
EJE1Kσ 7→ EJE2Kσ

]
, ✓

EJE1Kσ ∈ dom(h) h(EJE1Kσ ) = EJE2Kσ
σ , h, x B CAS(E1,E2,E3)

locϵ−−−−→φ σ [x 7→ 1], h[EJE1Kσ 7→ EJE3Kσ ], ✓

EJE1Kσ ∈ dom(h) h(EJE1Kσ ) , EJE2Kσ
σ , h, x B CAS(E1,E2,E3)

locϵ−−−−→φ σ [x 7→ 0], h, ✓

a = EJE1Kσ ∈ dom(h) v = EJE2Kσ
σ , h, x B FAS(E1,E2)

locϵ−−−−→φ σ [x 7→ h(a)], h[a 7→ v ], ✓

l = EJEKσ l > 0 {r, r + 1, · · · , r + l − 1} ∩ dom(h) = ∅ v0, v1, · · · , vl−1 ∈ Val

σ , h, x B alloc(E)
locϵ−−−−→φ σ [x 7→ r ], h

[
r 7→ v0, r + 1 7→ v1, · · · , r + l − 1 7→ vl−1

]
, ✓

EJEKσ ∈ dom(h)

σ , h, dealloc(E)
locϵ−−−−→φ σ , h[EJEKσ 7→ ⊥], ✓

σ , h, C
loct−−−−→φ′ σ ′, h′, C′ φ′ = φ[f 7→ (®x, Cf)]

σ , h, let f(®x) =Cf in C
loct−−−−→φ σ ′, h′, let f(®x) =Cf in C′ σ , h, let f(®x) =Cf in ✓

locϵ−−−−→φ σ , h, ✓

σ , h, var x = E in C
locϵ−−−−→φ σ , h, ([x 7→ EJEKσ ], C) σ , h, (σ ′, ✓) locϵ−−−−→φ σ , h, ✓

σ ◁ σ1, h, C
loct−−−−→φ σ ′ ◁ σ ′

1
, h′, C′

dom(σ ) = dom(σ ′) dom(σ1) = dom(σ ′
1
)

σ , h, (σ1, C) loct−−−−→φ σ ′, h′, (σ ′
1
, C′)

BJBKσ
σ , h, if(B){C1}else{C2}

loct−−−−→φ σ , h, C1

¬ BJBKσ
σ , h, if(B){C1}else{C2}

loct−−−−→φ σ , h, C2

BJBKσ
σ , h, while(B){C}

loct−−−−→φ σ , h, C;while(B){C}

¬ BJBKσ
σ , h, while(B){C}

loct−−−−→φ σ , h, ✓

φ(f) = (®x, C)

σ , h, y B f(®E) loct−−−−→φ σ , h, var ret=0 in (var ®x = ®E in C); y B ret

σ , h, C1

loct−−−−→φ σ ′, h′, C′
1

σ , h, C1;C2
loct−−−−→φ σ ′, h′, C′

1
;C2

σ , h, ✓;C
locϵ−−−−→φ σ , h, C

σ , h, C1

loct−−−−→φ σ ′, h′, C′
1

C2 , ✓

σ , h, C1 ∥ C2

loclt−−−−−→φ σ ′, h′, C′
1
∥ C2

σ , h, C2

loct−−−−→φ σ ′, h′, C′
2

C1 , ✓

σ , h, C1 ∥ C2

locrt−−−−−→φ σ ′, h′, C1 ∥ C′
2

σ , h, ✓ ∥ ✓ locϵ−−−−→φ σ , h, ✓

σ , h, C
loc ∗−−−→φ σ ′, h′, ✓

σ , h, ⟨C⟩ locϵ−−−−→φ σ ′, h′, ✓

h′ ∈ Heap

σ , h, C
env−−−−→φ σ , h′, C

Fig. 21. The small-step operational semantics
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EJEKσ < dom(h)

σ , h, t, x B [E]
locϵ−−−−→φ  

EJE1Kσ < dom(h)

σ , h, t, [E1] B E2
locϵ−−−−→φ  

EJE1Kσ < dom(h)

σ , h, t, x B CAS(E1,E2,E3)
locϵ−−−−→φ  

EJE1Kσ < dom(h)

σ , h, t, x B FAS(E1,E2)
locϵ−−−−→φ  

EJEKσ < dom(h)

σ , h, t, dealloc(E)
locϵ−−−−→φ  

σ , h, t, C
loct−−−−→φ′  φ′ = φ[f 7→ (®x, Cf)]

σ , h, t, let f(®x) =Cf in C
loct−−−−→φ  

σ ◁ σ ′, h, t, C
loct−−−−→φ  

σ , h, t, (σ ′, C) loct−−−−→φ  

f < dom(φ)

σ , h, y B f(®E) locϵ−−−−→φ  

σ , h, t, C1

loct−−−−→φ  

σ , h, t, C1;C2
loct−−−−→φ  

σ , h, t, C1

loct−−−−→φ  

σ , h, t, C1 ∥ C2

loclt−−−−−→φ  

σ , h, t, C
loc ∗−−−→φ  

σ , h, t, ⟨C⟩ locϵ−−−−→φ  

σ , h, t, C2

loct−−−−→φ  

σ , h, t, C1 ∥ C2

locrt−−−−−→φ  

c ∈ PConf

c
env−−−−→φ  

Fig. 22. The small-step operational semantics, failure cases

That is: a trace is fair if, at any point in time, every thread that can take a step (and the environment)

will eventually be scheduled.

The open-world program semantics defines the behaviour of a command when run concurrently

with an arbitrary environment. This semantics interleaves steps from two “players”: the local thread

given by the loc relation; and its environment given by the env relation, respectively. It describes a

finite trace obtained by the interleaving of local and environment steps starting from command C
and running the program to completion, and arbitrary environmental steps.

Definition D.12 (OpenWorld Semantics). We call traces the infinite sequences of the form c0 π0 c1 π1 · · ·
where, for all i ∈ N, ci ∈ Conf ≜ (Store × Heap) ∪ { }, πi ∈ {loc, env}. We use τ for ranging over

infinite suffixes of traces and Trace for the set of all traces. For a trace τ = c0 π0 c1 π1 · · · , we
define τ (i) ≜ (ci ,πi ), and τ/i ≜ ci πi ci+1 πi+1 · · · . The function [ · ] : PTrace → Trace is defined by

[c0 π0 c1 π1 · · · ] ≜ c0 π0 c1 π1 · · · where

ci ≜

{
(σ ,h) if ci = (σ ,h, _, _)
 if ci =  

πi ≜

{
loc if πi ∈ Sched \ {env}
env if πi = env

The open-world program semantics function, J · Kφ : Cmd → ℘(Trace) is the function such that

JCKφ ≜
{
[c0τ ]

�� (c0τ ) ∈ PTraceφ , fv(C) ⊆ dom(σ0),c0 = (σ0, _, _,C),c0τ is fair

}
The notation JCK is syntactic sugar for JCK∅.

Definition D.13. A trace τ ∈ Trace is locally terminating, written lterm(τ ), if it contains finitely
many occurrences of loc.

Remark 1 (Design of semantics). Wemade some design choices in crafting this semantics, with the

motivation of making manipulation easier in the proofs. The first choice is to model environmental

steps explicitly. These steps drive the argument about progress in the presence of blocking, where

the local thread is not able to make progress in isolation but is relying on the environment actively

performing some state changes that would lead to local progress.
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The second choice we highlight is that the semantics of a program only contains infinite traces.

This might seem odd when the goal is proving termination. Traces that locally terminate simply

have an infinite tail of environment steps. To simulate a closed system one can select for the traces

where the environment steps preserve the heaps. More importantly, we strip the information about

threads and program state, which means that information about when the local thread terminated

(in the form of ✓ or endt ) has been erased. However, by construction, traces obtained from fair

program traces can only contain finitely many local steps if the program terminated, justifying our

definition of local termination.

Example D.14. The traces in J[x] B yK can be characterised as follows. They all start from

some configuration (σ ,h0) with x ,y ∈ dom(σ ). A (possibly zero) finite number of environment

steps follow; these steps preserve the store, but arbitrarily alter the heap, or they lead to a fault,

terminating the trace with an infinite tail of  env  env · · · steps. If no fault happened, a local

step is taken from some configuration (σ ,h) for an arbitrary h ∈ Heap. If σ (x) < dom(h) then
the local step leads to a fault, leading again to a  env  env · · · tail. Otherwise, it leads to the

configuration (σ ,h[σ (x) 7→ σ (y)]). After that there is an infinite number of environment steps,

which again preserve the store but arbitrarily mutate the heap, or lead to an infinite fault tail.

Remark 2 (Blocking primitives and strong fairness). The definition of traces, terminating traces

and fairness are made somewhat simpler by the fact that every primitive of our language is not

blocking, i.e. has at least one local successor in −→φ . For languages which have blocking primitives

(e.g. built-in locks/channels) traces may be locally terminating because a configuration (different

from ✓) may not have a local successor (i.e. it is not enabled) in any point in the future (e.g. if a

built-in lock remains locked forever, an acquire operation would not have local successors). With

blocking primitives, fairness also comes in two variants: strong and weak. Strong fairness requires

that if an operation is infinitely often enabled it is infinitely often executed. Strong and weak

fairness coincide for languages like ours where every primitive is enabled at all times.

Not considering blocking primitives does not make our setting less general: blocking primitives

can be implemented on top of non-blocking ones, both with weak and strong fairness assumptions

for termination, as illustrated by our spin and ticket lock examples. In other words, blocking

primitives can be given TaDA Live specifications and be treated uniformly by the logics.

E ASSERTION LANGUAGE

We use a set of logical variables, denoted LVar, which is always assumed to be disjoint from the set

of program variables, PVar.

Our logics is parametrised over a number of basic domains:

• An enumerable set of region types RType ∋ t. They are names that we will associate with

ghost state information.

• An enumerable set of region identifiers RId ∋ r .
• A set of abstract states AState ∋ a,a1, . . . . It may for example include sets and lists of

values. Elements of this set are used to abstractly represent the state of some object using a

mathematical structure.

• A set of guards Guard ∋ G, which will offer the support for guard algebras, defined later.

• A well-founded partial order (L, ⩽,⊤,⊥) of layers, which will be associated to special guards

called obligations. We will use the anti-reflexive restriction of the partial order: k1 < k2 ≜
k1 ⩽ k2 ∧ k2 ̸⩽ k1.

• A set of ordinals O.

The set of abstract values is AVal ≜ Val∪AState∪Guard∪RId∪L. The set of logical expressions
is Exp(PVar ⊎ LVar,AVal) and the set of logical Boolean expressions is BExp(PVar ⊎ LVar,AVal).
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We overload notation, writing E ∈ Exp(PVar ⊎ LVar,AVal) and B ∈ BExp(PVar ⊎ LVar,AVal).
The expression evaluation function maps expressions d to the corresponding elements of ATrack:

EJ♦Kς = ♦, EJ♢Kς = ♢, EJ(E1,E2)Kς = (EJE1Kς , EJE2Kς ).
A logical variable store, l ∈ LStore ≜ LVar → AVal, is a function from logical variables to abstract

values. The evaluation of logical expressions follows Definition D.5 with Vars = PVar ⊎ LVar and

Values = AVal. We will also use the set of levels Lvl ≜ N ranged over by λ.
TaDA Live assertions include ghost state built using guards which control the atomic update of

a shared region, obligations which control what one can expect to eventually happen to a shared

region, and atomicity tracking components which track the state of an open region that is in the

process of being atomically updated.

Definition E.1 (Guard Algebras). A guard algebra is a PCM (Grd, •, {0}) with Grd ⊆ Guard.

TaDA Live is parametrised by a function G( · ) mapping a region type t to a guard algebra G(t) =
(Gt, •t, {0t}). The t subscript is omitted from •t and 0t when its is clear from the context.

Definition E.2 (Obligation Algebras). TaDA Live is parametrised by a layered obligation structure:
that is, a pair (Oblig, lay) where Oblig ⊆ Guard and lay : Oblig → L. such that ∀O ∈ Oblig.⊥ <
lay(O) ⩽ ⊤. A obligation algebra is a cancellative

10
guard algebra (Obl, •, {0}) where Obl ⊆

Oblig and ∀O1,O2 ∈ Obl.O1 ⊑ O2 ⇒ lay(O1) ≥ lay(O2). The set AOb ⊆ Oblig is a subset of

obligations that we call atoms. We require, for each obligation algebra Obl that AOb ∩ Obl =

{O ∈ Obl | ∀O1,O2 ∈ Obl.O ⊑ O1 •O2 ⇒ O ⊑ O1 ∨O ⊑ O2}.
TaDA Live is parametrised by a function O( · ) mapping a region type t to an obligation algebra

O(t) = (Ot, •t, {0t}). The t subscript is omitted from •t and 0t when its clear from the context.

In practice, obligation algebras are often constructed from some basic set of atoms (e.g. k and

d of Fig. 4), to which we assign some layers, and then extend the layers to the compositions of

atoms by taking the minimum layer of the composed atoms (e.g since lay(k) < lay(d), we can set

lay(k • d) = lay(k)).

Definition E.3 (TaDA Live Assertions). The set of TaDA Live assertions, Assrt ∋ P ,Q, . . . , is defined
by the grammar:

P := B
| ∃x . P x ∈ LVar

| E ∈ X X ⊆ AVal

| ¬P
| P ∧Q
| emp

| E 7→ E
| P ∗Q
| P −∗ Q
| tλr (E) t ∈ RType, λ ∈ Lvl

| r Z⇒ d d := ♦ | ♢ | (E,E)
| ⌈E⌉r
| ⌊E⌋Lr
| ⌊E⌋Er
| emp

R
Ob

R ⊆ RId

| r Qm m ∈ L
10
cancellativity is a simplifying assumption; although it could be lifted, we found no evidence that non-cancellative obligation

algebras could be needed in proofs.
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where B ∈ BExp(PVar ⊎ LVar,AVal), E ∈ Exp(PVar ⊎ LVar,AVal), and r ∈ RId ∪ LVar.

The only binder is ∃. The function fv : Assrt → (PVar ⊎ LVar) returns the free variables of an
assertion and its definition is standard. We also define pv(P) ≜ fv(P)∩PVar and lv(P) ≜ fv(P)∩LVar.
Wewrite P(x1, . . . ,xn) to indicate that lv(P) ⊆ {x1, . . . ,xn}, and forv1, . . . ,vn ∈ AVal, P(v1, . . . ,vn)
for P[v1/x1, . . . , vn/xn ].

The interpretation of the separation logics construct over (local) heaps is standard. We adopt

here a classical interpretation of separation, where the elimination rule does not hold. The last

three cases in the definition of assertions are TaDA-specific. They are used to represent shared

abstract resources (tλr (E)), represent ghost local resources (⌈E⌉r ) and keep track of atomicity of

manipulation of abstract resources (r Z⇒ d).
The TaDA Live worlds provide the models of TaDA Live’s assertions. Worlds provide a local

model in that they reflect the state as seen from the perspective of a single thread. A world is

built from a local heap and a set of shared regions with guards, obligations and atomic tracking

components describing how the shared regions are atomically updated.

Definition E.4 (Atomicity tracking Algebras). The atomicity tracking algebra is a PCM defined by

ATrack ≜
(
(AState×AState) ⊎ {♦, ♢}, ·, Emp♦

)
, where the composition is ♦ · ♢ = ♦ = ♢ · ♦, ♢ · ♢ = ♢

and ∀a,b ∈ AState. (a,b) · (a,b) = (a,b) (undefined otherwise), and the set of unit elements is

Emp♦ ≜ (AState × AState) ⊎ {♢}.

Worlds are parametrised by a set of region identifiers R which, intuitively, are the regions which

the current operation is supposed to abstractly update exactly once.

Definition E.5 (Worlds). Let R ⊆ RId. A world,w ∈ WorldR , is a tuplew = (h, ρ ,γ, χ,θ , ξ) where
• h ∈ Heap is the local heap;

• ρ ∈ RMap ≜ RId⇀fin (RType × Lvl × AState) describes the shared regions;

• γ ∈ GMap ≜ RId⇀fin Guard describes the local guards;

• χ ∈ AMapR ≜ R → ATrack describes the local atomicity tracking components;

• θ ∈ OMap ≜ RId⇀fin Oblig describes the local obligations;

• ξ ∈ OMap ≜ RId⇀fin Oblig describes the environment obligations, known to be held locally

by the environment;

satisfying the following well-formedness constraints:

• dom(ρ) = dom(γ) = dom(θ) = dom(ξ) ⊇ R,
• ∀r ∈ RId. if ρ(r ) = (t, _, _) then γ(r ) ∈ Gt, θ(r ) ∈ Ot, ξ(r ) ∈ Ot,

• ∀r ∈ dom(θ). θ(r ) # ξ(r ).

A shared region with identity r , given by ρ(r ) = (t, λ,a), has type t, region identifier r and

abstract state a. For a worldw , we write hw and ρw and so on for the corresponding components

ofw . We also define rtyw (r ) ≜ t, lvlw (r ) ≜ λ, and astw (r ) ≜ a, if ρw (r ) = (t, λ,a).
We define the world algebras by first giving the composition for each of the world components.

Heap composition is disjoint union. Shared regions only compose if they are equal. For ρ ∈ RMap,

the compositions •ρ : GMap × GMap⇀ GMap and and ◦R : AMapR × AMapR ⇀ AMapR are:

γ1 •ρ γ1 ≜ λr ∈ dom(ρ).γ1(r ) •t γ2(r ) if ∀r ∈ dom(ρ). ρ(r ) = (t, _, _) ∧ γ1(r ) •t γ2(r ) , ⊥
χ1 ◦R χ2 ≜ λr ∈ dom(ρ). χ1(r ) · χ2(r ) if ∀r ∈ R. χ1(r ) · χ2(r ) , ⊥

and undefined otherwise. The composition •ρ on OMap is inherited from •ρ on GMap.

The composition of local and environment obligation maps compose in a subtle way inspired by

the subjective separation of [19]. To express this interaction, we define a composition on pairs of
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ς, w ⊨R emp ⇔ w ∈ EmpR
ς, w ⊨R B ⇔ BJBKς

ς, (h, ρ, γ, χ, θ, ξ ) ⊨R E1 7→ E2 ⇔ h = [EJE1Kς 7→ EJE2Kς ] ∧ (∅, ρ, γ, χ, θ, ξ ) ∈ EmpR
ς, w ⊨R ¬P ⇔ ς, w ⊨R P does not hold

ς, w ⊨R ∃x . P ⇔ ∃v ∈ AVal. ς [x 7→ v], w ⊨R P

ς, w ⊨R E ∈ X ⇔ EJEKς ∈ X

ς, w ⊨R P1 ∧ P2 ⇔ (ς, w ⊨R P1) ∧ (ς, w ⊨R P2)
ς, w1 ⊙ w2 ⊨R P1 ∗ P2 ⇔ (ς, w1 ⊨R P1) ∧ (ς, w2 ⊨R P2)

ς, w ⊨R P1 −∗ P2 ⇔ ∀w ′ ∈ WorldR . (ς, w ′ ⊨R P1) ∧w # w ′ ⇒ ς, w ·w ′ ⊨R P2

ς, w ⊨R tλr (E) ⇔ ρw (EJr Kς ) = (t, λ, EJEKς ) ∧w ∈ EmpR

ς, (h, ρ, γ[EJr Kς 7→ EJEKς ], χ, θ, ξ ) ⊨R ⌈E⌉r ⇔ (h, ρ, γ, χ, θ, ξ ) ∈ EmpR

ς, (h, ρ, γ, χ[EJr Kς 7→ v ], θ, ξ ) ⊨R r Z⇒ d ⇔ v = EJdKς ∧ (h, ρ, γ, χ, θ, ξ ) ∈ EmpR

ς, (_, ρ, _, _, θ, _) ⊨R emp
R
Ob

⇔ ∀r ∈ R . ρ (r ) = (t, _, _, _) ⇒ θ (r ) = 0

ς, w ⊨R r Qm ⇔ lay(θw (EJr Kς )) ≥ m

ς, (h, ρ, γ, χ, θ [EJr Kς 7→ EJEKς ], ξ ) ⊨R ⌊E⌋Lr ⇔ (h, ρ, γ, χ, θ, ξ ) ∈ EmpR

ς, w ⊨R ⌊E⌋Er ⇔ EJEKς ⊑ ξw (EJr Kς ) ∧w ∈ EmpR

Fig. 23. Definition of assertion satisfaction.

local/environment obligation maps. Given θ1,θ2, ξ1, ξ2 ∈ OMap, we define

(θ1, ξ1) ⊙ρ (θ2, ξ2) ≜
{
(θ1 •ρ θ2, ξ) if ξ1 = (θ2 •ρ ξ) ∧ ξ2 = (θ1 •ρ ξ) ∧ (θ1 •ρ θ2) , ⊥
⊥ otherwise

This definition allows the splitting of local obligations into two resources, each knowing which

obligations are held by the other.

Definition E.6 (World Algebras). The PCM of world algebras, (WorldR , ⊙, EmpR), is defined by

the set of worlds WorldR ,

– the subjective world composition, ⊙, given by:

(h1, ρ1,γ1, χ1,θ1, ξ1) ⊙ (h2, ρ2,γ2, χ2,θ2, ξ2) = (h1 ⊎ h2, ρ ,γ1 •ρ γ2, χ1 ◦R χ2,θ , ξ)

if h1 # h2, ρ = ρ1 = ρ2, γ1 •ρ γ2 , ⊥, χ1 ◦R χ2 , ⊥, and (θ1, ξ1) ⊙ρ (θ2, ξ2) = (θ , ξ), undefined
otherwise; and

– the set of unit elements given by:

EmpR ≜

{
(∅, ρ ,γ, χ,θ , ξ) ∈ WorldR

���� ∀r . ρ(r ) = (t, _, _) ⇒ γ(r ) = 0t ∧ θ(r ) = 0t,
∀r ∈ R. χ(r ) ∈ Emp♦

}
Notice that the units are worlds with arbirary shared regions, atomicity components from Emp♦,

and arbitrary environment obligations.

Definition E.7 (Satisfaction Relation). Let ς : (PVar ⊎ LVar)⇀ AVal. For a worldw ∈ WorldR and

an assertion P , the assertion satisfaction relation, ς ,w ⊨R P , is defined in Fig. 23.

We write ⊢R P if, for ∀ς : (PVar ⊎ LVar) ⇀ AVal,w ∈ WorldR . ς ,w ⊨R P , and write WJPKςR ≜
{w | ς ,w ⊨R P } for any assertion P .
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E.1 Trace Semantics for Specifications

The type of each region is associated with a region interference function which establishes which

updates to a shared region are allowed to the owner of which guards.

Definition E.8 (Region Interference). TaDA Live is parametrised by the region interference function,
T , which takes a region type t ∈ RType and returns a function Tt : Gt → ℘((AState×Ot)×(AState×
Ot)). Every function Tt is required to satisfy three properties:

• monotonicity in the guards: ∀G1,G2 ∈ Gt.G1 ⊑ G2 ⇒ Tt(G1) ⊆ Tt(G2);
• reflexivity: ((a, 0t), (a, 0t)) ∈ Tt(0t), for all a ∈ AState;

• closure under obligation frames: for all O1,O2,O ∈ Ot, if ((a1,O1), (a2,O2)) ∈ Tt(G) and
O1 # O and O2 # O , then ((a1,O1 •t O), (a2,O2 •t O)) ∈ Tt(G).

We write Tt(_) for
⋃

G ∈Gt Tt(G). For any R ⊆ (AState ×Oblig) × (AState ×Oblig) we write io(R) ≜
{(a,b) | ((a, _), (b, _)) ∈ R}.

In TaDA, we prove abstract atomicity using the MkAtom rule, which converts a Hoare triple to

an atomic triple, provided the Hoare triple bears evidence that, although many steps might have

been taken, the abstract state was changed by the command exactly once. The atomic triple may

be constraining the environment interference with a non-trivial pseudoquantifier, and we need

make this assumption on the environment available to the proof of the Hoare triple. For this reason,

TaDA Live judgments have a so-called atomicity context component A that records exactly the

atomicity and interference information of outer proof goals.

Definition E.9 (Atomicity Context). An atomicity context A is a finite partial function from RId to

tuples of the form (X ,k,X ′,R) where X ,X ′ ⊆ AState, k ∈ L, and R ⊆ (AState×Oblig) × (AState×
Oblig) is closed under obligation frames (as in Definition E.8).

Assuming A(r ) = (X ,k,X ′,R), we write safe(A, r ) ≜ X , good(A, r ) ≜ X ′
, live(A, r ) ≜ (X ,k,X ′)

whichwewriteX ↠k X ′
, and tr(A, r ) ≜ R. For every r ∈ dom(A), we require {x | (x , _) ∈ io(R)} ⊆

safe(A, r ). The set dom(A) declares the regions for which we are tracking atomicity: for r ∈
dom(A), the environment will only change the abstract state within safe(A, r ) and will obey the

liveness condition given by live(A, r ) that the environment will always eventually return a good

state in good(A, r ) ≜ X ′
; and the local thread will only change the abstract state at most once

according to the relation io(tr(A, r )).
A world describes the state of the current thread, both the local state owned by the thread (the

heap, guards, local obligations and atomity tracking components), the shared state (the regions)

and the environment obligations describing obligations owned locally by the environment. We

define the world rely relation which describes how the the world may change as a result of the

“well-behaved” interference of the environment characterised by the region interference relations,

the atomicity tracking components and the environment obligations.

Definition E.10 (World Rely). The world rely relation, RA ⊆ WorldA ×WorldA , is the smallest

reflexive and transitive relation satisfying the rules in Fig. 24.

Rule wr1 describes the case where the environment can update the abstract state of a region

according to the interference relation Tt. Notice that, for this rule, when χ(r ) ∈ {♦, ♢}, the envi-
ronment can only change the abstract state to something in safe(A, r ). When χ(r ) is undefined
or a pair of abstract states, then the environment does not have this restriction and can do any

update consistent with Tt. Also, notice how the environment obligations map ξ is affected by the

transition. Rule wr2 describes the case where the atomic update given by A has been delegated to

the environment (χ[r 7→ ♢]) in which case the current thread observes the abstract state change
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γ(r ) # G ((a1, O1), (a2, O2)) ∈ Tt(G) χ(r ) ∈ {♦, ♢} ⇒ a2 ∈ safe(A, r ) O2 # θ (r )
(h, ρ [r 7→ (t, λ, a1)], γ, χ, θ, ξ [r 7→ O1 ]) RA (h, ρ [r 7→ (t, λ, a2)], γ, χ, θ, ξ [r 7→ O2 ])

wr1

γ(r ) # G ((a1, O1), (a2, O2)) ∈ tr(A, r ) O2 # θ (r )
(h, ρ [r 7→ (t, λ, a1)], γ, χ[r 7→ ♢], θ, ξ [r 7→ O1 ]) RA (h, ρ [r 7→ (t, λ, a2)], γ, χ[r 7→ (a1, a2)], θ, ξ [r 7→ O2 ])

wr2

r < dom(ρ ) t ∈ RType λ ∈ N a ∈ AState O ∈ Ot

(h, ρ, γ, χ, θ, ξ ) RA (h, ρ [r 7→ (t, λ, a)], γ[r 7→ 0t ], χ, θ [r 7→ 0t ], ξ [r 7→ O ])
wr3

∀r ∈ dom(ξ ). ξ (r ) ⊑ ξ ′(r ) ∧ θ (r ) # ξ ′(r )
(h, ρ, γ, χ, θ, ξ ) RA (h, ρ, γ, χ, θ, ξ ′)

wr4

Fig. 24. World Rely rules

corresponding to the update. Rule wr3 allows the environment to create arbitrary new shared

regions. Note how this cannot assign non-trivial local obligations to the current thread. Rule wr4

formalises that ξ(r ) = O does not imply that the environment has exactly the obligation O , but at
least O .

We write ⊨A for ⊨
dom(A), and similarly for ⊢A ,WJPKςA ,WorldA and EmpA .

So far, we have introduced assertions, and worlds as their models. These structures express

information mostly over ghost state, that is, state that is purely logical and has no representation in

concrete executions. For example, the notion that there is some shared region is purely fictional,

as in the concrete machine there is no special way to mark a portion of the heap as shared. We

introduced interference protocols and the world rely, as a way to specify the expected well-behaved

transformations shared resources may be subjected to. Since well-behaved interference from the

environment can change the state of shared regions, a single world (describing a single state for

each region) cannot capture the logical state we may be in, when interleaved with environment

actions. Views are the sets of worlds that can explain the logical state we may be in after being

suspended for an arbitrary number of environment steps. Views represent information about the

logical state that cannot be invalidated by a well-behaved environment.

Definition E.11 (Views, Stability). A set of worlds p ⊆ WorldA is an A-view if it is closed under

RA : that is, ∀w ∈ p,w ′ ∈ WorldA .w RA w ′ ⇒ w ′ ∈ p. An assertion P is A-stable, written
A ⊨ P stable, if and only if, for all ς : (PVar ⊎ LVar)⇀ AVal,WJPKςA is a A-view.

We write ViewA for the set of all A-views and StableA for the set of all A-stable assertions.

Definition E.12 (View Algebra). The PCM of view algebras, (ViewA , ∗, empA), is generated by

the set ViewA , the composition p1 ∗ p2 ≜ {w1 ⊙w2 | w1 ∈ p1,w2 ∈ p2,w1 # w2} and the unit

empA ≜ {EmpA}.

Notice that the composition of views always gives rise to a view: in the case where there are no

compatible pairs of worlds exists in the views, the result is the empty view.

As we mentioned, worlds and views represent ghost information about state. Ultimately, however,

we want to use this information to express properties of concrete execution traces. To do so, we

need to formalise the link between the logical information in worlds and the concrete state of the

store/heap. The first component that contributes to this link is region interpretations, which specify

what is the (implementation dependent) shared resource’s content. For example, for a shared spin

lock, we want to specify that the abstract shared region spinλr (x , l) is implemented as a single cell

storing l at x , x 7→ l .
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Definition E.13 (Region Interpretation). TaDA Live is parametrised by a region interpretation
function ItJ · K : RId×Lvl×AState → View∅ for each t ∈ RType, such that, for every r ∈ RId, λ ∈ Lvl,

a ∈ AState, ∀w ∈ ItJr , λ,aK. ∀r ′ ∈ dom(θw ) \ {r }. θw (r ′) = 0. Its companion is the syntactic region
interpretation It = (r , l ,a, P) where r , l ,a ∈ LVar, fv(P) ⊆ {r , l ,a}, ∅ ⊨ P stable, and ⊢∅ P[λ/l ] ⇒
emp

RId\{r }
Ob

. We write I(tλE1 (E2)) for P[E1/r , λ/l , E2/a]. We require that ItJr , λ,aK =W∅JI(tλr (a))K;
in practice, we will define region interpretations by writing syntactic interpretations and using the

previous equation as a definition for the corresponding region interpretation functions.

It is important to understand that interpretations are not merely an indirect way of writing

assertions. In our spin lock example, the crucial difference between the two assertions spinλr (x , l)
and x 7→ l , is that the first is subjected to interference, while the latter expresses ownership of the

cell at x .
As in TaDA, the region intepretation is used to to ‘open’ a region: that is, import the region

interpretation as local state in order to do a single atomic update. The idea is to obtain intantaneously

the ownership of the content of the region for the atomic update, and to re-establish the region

interpretation for the updated abstract state, before immediately relinquishing ownership by

‘closing’ up the region. As in TaDA this opening and closing mechanism depends on the level

of the region, which is a device to avoid inconsistencies since interpretations can mention other

regions in a nested fashion. With a specification at level λ, the rules enable a region to be opened at

level λ′ < λ to obtain a resulting specification at level λ′. This means that, although region can be

shared, (⊢ tλ′r (a) ⇔ tλ
′

r (a) ∗ tλ
′

r (a)) they cannot be opened twice, thus avoiding the potential clashing

duplication of local state in the region interpretation.

The final component that expresses the link between the logical information and concrete state,

is the reification function. Intuitively, the reification ⌊w⌋λ of a worldw , opens all closed regions

(according to λ) and computes the heap consisting of the local heaplet, composed with the heaplet

of all the concrete contents of shared regions. Overall, a worldw is conceptually linked to a global

heap h in a step of a trace, if h = h1 ⊎ h2 and h1 is in the reification of w ; here h2 represents the
heaplet that is local to other threads.

Definition E.14 (World and View Reification). Let λ ∈ Lvl and let closed(λ,w) ≜ {r ∈ RId | lvlw (r ) < λ}.
The region collapse function, ( · )↓λ : WorldA → WorldA , is defined by:

w↓λ ≜
{
w0 ⊙w1 ⊙ . . . ⊙wn

���� closed(λ,w0) = {r1, · · · , rn}, ρw0
(ri ) = (ti , λi ,ai ),wi ∈ Iti Jri , λi ,aiK,

∀i ≤ n.∀r ∈ dom(ξw0⊙...⊙wi ). ξw0⊙...⊙wi (r ) = 0

}
The function ⌊w⌋λ ≜ {h ∈ Heap | (h, _, _, _, _, _) ∈ w↓λ} is called theworld reification ofw at level λ.
For any view p ⊆ WorldA , the function Jp Kλ ≜

⋃
w ∈p ⌊w⌋λ is called view reification of p at level λ.

The reification only considers the collapsed worlds where no environment obligation can be

assumed in the environment. This is because we are collapsing to obtain the global (local plus

shared) concrete state, not one that we can hypothetise can be completed with a world from the

environment with the appropriate obligations.

Having established the link betweenworlds/views and concrete state, we canmove to establishing

a link between concrete steps in a trace, and their logical justification in terms of logical state. The

fundamental driver of this link is the notion of frame-preserving update, inspired by the frame-

preserving update from [15], which represents the essence of the Rely/Guarantee reasoning in

TaDA Live. The frame-preserving update looks at a specific concrete update from some h to h′
,

and checks whether the update can be logically described as an update from logical state p to

logical state q (both sets of worlds): this is the case when all the views that are compatible with

p are compatible with q. A local step in a concrete trace can be justified as going from p to q if
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all the frames of p that are valid views at the source of the update, are going to be valid at the

target of the update. Since the environment is expected to be representing the logical state with

a view, the local step will not invalidate the environment’s beliefs about the logical state of the

system (the guarantee implies the rely). Conversely, if the frame-preserving update corresponds to

a concrete step of the environment, no view we may be holding locally can be invalidated by it (the

environment satisfies the rely).

Definition E.15 (Frame-Preserving Update). Givenh1,h2 ∈ Heap,p1,p2 ⊆ WorldA and λ1, λ2 ∈ Lvl,

define

(h1,h2) ⊨A p1 : λ1 _∗ q2 : λ2 if and only if ∀f ∈ ViewA .h1 ∈ Jp1 ∗ f Kλ1 ⇒ h2 ∈ Jq2 ∗ f Kλ2 .

We write (h1,h2) ⊨λ;A p1 _∗ q2 for (h1,h2) ⊨A p1 : λ _∗ q2 : λ.

Concretely, the frame-preserving update definition lifts the world rely to a rely on steps as

follows. To see how this works, let us consider an example and define ⊨λ p _∗ q to mean ∀h ∈
Jp ∗ TrueK. ∃h′. (h,h′) ⊨λ p _∗ q, that is, ⊨λ p _∗ q holds when p to q can be used to justify some

concrete update.

Example E.16. Assume we have a region type t with abstract states a,b, c,d , a single guard

e (with e • e = ⊥) and interference protocol consisting of transitions e : (a, 0) ⇝ (b, 0) and
e : (b, 0) ⇝ (c, 0) . We want to show that (for λ < λ′) ⊨λ′ tλr (a) ∗ ⌈e⌉r _∗ tλr (c) ∗ ⌈e⌉r holds, but
⊨λ′ tλr (a) ∗ ⌈e⌉r _∗ tλr (d) ∗ ⌈e⌉r and ⊨λ′ tλr (a) _∗ tλr (b) do not. Consider any view f that is a frame

of tλr (a) ∗ ⌈e⌉r : f cannot hold ⌈e⌉r because e is not compatible with itself. As a consequence, since f
is view, it needs to be closed under world rely, which means that it is closed under the interference,

which can transform a into b and b into c . For f to be compatible with tλr (a), it needs to contain

some world associating a to r ; to be a view, f needs to contain some other world associating c to r ,
which makes it compatible with tλr (c) ∗ ⌈e⌉r . Therefore ⊨λ′ tλr (a) ∗ ⌈e⌉r _∗ tλr (c) ∗ ⌈e⌉r holds.

Now, the view f above is not required to contain any world associating d to r . Such an f is a

counterexample to ⊨λ′ tλr (a) ∗ ⌈e⌉r _∗ tλr (d) ∗ ⌈e⌉r holding.
Finally, consider tλr (a); we can construct a frame fa in which all worlds associate a to r and own

the guard e. Such set of worlds can be a view because owning e disables the transition from a to b.
However, fa would be compatible with tλr (a) but not with tλr (b), which means ⊨λ′ tλr (a) _∗ tλr (b)
does not hold.

Using this definition of frame-preserving update, we have been able to simplify drastically the

semantics of TaDA specifications. For TaDA Live, however, we need to introduce the stronger

notion of atomic frame-preserving update. To see the motivation behind the stronger condition,

consider the region interference relation e : (a, k)⇝ (b, 0) and e : (b, 0)⇝ (c, k). The update from
a to c via b is very different from a direct update from a to c . The intermediate step to b fulfils the

obligation k, which may be a crucial information for the progress argument. We therefore want to

enforce that if we are justifying a step as going from p to q, all the allowed transitions between

region states need to match a single transition in the interference protocol.

Definition E.17 (Atomic Frame-Preserving Update). Given h1,h2 ∈ Heap, p1,p2 ⊆ WorldA , and
λ1, λ2 ∈ Lvl, define (h1,h2) ⊨λ;A p1 : λ1 _ p2 : λ2 if and only if (h1,h2) ⊨λ;A p1 : λ1 _∗ p2 : λ2
holds and, for all t ∈ RType, r ∈ RId, λ′ ∈ Lvl,a1 ∈ AState,O1 ∈ Ot:

∀f ∈ ViewA .h1 ∈ J(p1∗ f )∩W1Kλ1 ⇒ ∃a2,O2. ((a1,O1), (a2,O2)) ∈ Tt∧h2 ∈ J(p2∗ f )∩W2Kλ2 (14)

whereWi ≜ {w ∈ WorldA | ρw (r ) = (t, λ′,ai ),θw (r ) = Oi }. Since most of the times we will consider

updates at constant level (i.e. λ1 = λ2) we write (h1,h2) ⊨λ;A p1 _ q2 for (h1,h2) ⊨A p1 : λ _ q2 : λ.
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Definition E.17 is in a form that is easier to manipulate for the proofs, but may seem ad-hoc

at first sight. There is an alternative definition which clarifies how this is a generalisation of the

concept of frame-preserving update. Define the one-step world rely relation, R1

A , to be the smallest

reflexive relation closed under the rules of Fig. 24, with the restriction that rules wr1 and wr2 can

be applied at most once per region identifier. Then, (h1,h2) ⊨λ;A p1 : λ1 _ p2 : λ2 if and only if

∀f ⊆ WorldA .h1 ∈ Jp1 ∗ f Kλ1 ⇒ h2 ∈ Jp2 ∗ R1

A(f )Kλ2
Intuitively, this says that if the environment has some resource f compatible with p, it should
expect that after a step, the resource f might be transformed into R1

A(f ). When f is a view, one

gets back Definition E.15, as views are precisely the resources that cannot be invalidated by any

number of updates of the environment.

We will use atomic frame-preserving updates to check safety of traces (according to some

specification) in Definition E.23.

Before moving to specifications, we briefly define view shift, a semantic generalisation of im-

plication, which is a prime example of application of frame-preserving update, used in our Cons

rule.

Definition E.18 (View Shift). Given p1,p2 ⊆ WorldA , the judgment A ⊨ p1 λ1⇛λ2 p2, holds if
∀h ∈ Heap. (h,h) ⊨A p1 : λ1 _ p2 : λ2. For two assertions P ,Q , the assertion P viewshifts to Q ,
written A ⊨ P λ1⇛λ2 Q , if and only if, ∀ς : (PVar ⊎ LVar) ⇀ AVal, A ⊨WJPKςA

λ1⇛λ2 WJQKςA .
Since it is very common to consider viewshifts at constant level (i.e. λ1 = λ2) we write λ;A ⊨ p⇛q
for A ⊨ p λ⇛λ q (and similarly for the lift to assertions).

View shifts are typically employed to “allocate” a new region by sharing some local resource (a

form of weakening). For example, assume I(tr (x ,v)) ≜ x 7→ v . we have that x 7→ v viewshifts to

∃r . tr (x ,v): the underlying reification does not change, and any frame of x 7→ v with non-empty

reification, must only have regions reifying to cells disjoint from x ; moreover, such frame will only

have finitely many regions allocated, so it is always possible to draw a fresh one from the infinite

set RId to satisfy the existential quantification over r .

With all these definitions in place, we can now proceed in formally defining TaDA Live specifi-

cations in their general form, and give them trace semantics.

In our examples and in the simplified rules of Fig. 6, we always only used triples of two forms:

m, λ,A ⊢ A

x ∈ X ↠k X ′.
〈
P(x)

〉
C

〈
Q(x)

〉
(15a)

m, λ,A ⊢
{
P
}
C

{
Q

}
(15b)

which we call pure atomic and Hoare, respectively. In the general case, a command may manipulate

some resources Ph non-atomically, and some other resources Pa(x) atomically, at the same time.

The specifications in their general form are therefore an hybrid of pure atomic and Hoare triples:

m; λ;A ⊨ A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 C 〈
Qh(x)

��Qa(x)
〉

Intuitively, the Hoare precondition Ph is a resource that is owned by the command and, as such,

cannot be invalidated by actions of the environment. The command is allowed to manipulate this

owned resource non-atomically, provided it satisfies the Hoare postcondition Qh upon termination.

The atomic precondition Pa(x) represents the resource that can be shared between the command

and the environment. The environment can update it, but only with the effect of going from Pa(x)
for some x ∈ X to Pa(x ′) for some x ′ ∈ X . The command is allowed to update it exactly once

from Pa(x) to perform its linearisation point, transforming it to a resource satisfying the atomic

postconditionQa(x). The atomic postcondition only needs to be true just after the linearisation point
as the environment is allowed to update it imediately afterwards. The pseudo-quantified variable x
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has two important uses: it represents the “surface” of allowed interference by the environment; it

is bound in the postcondition to the value of the parameter of the atomic precondition just before
the linearisation point.

The pure and Hoare triples in (15b) and (15a) are then special cases of the hybrid triple:

m; λ;A ⊢
〈
P
��
emp

〉
C

〈
Q

��
emp

〉
(16a)

∀®v0.m; λ;A ⊢ A

x ∈ X ↠k X ′.
〈
®v0 � ®v0

�� P ′(x)
〉
C ∃®v1.

〈
®v0 � ®v0 ∧ ®v1 � ®v1

��Q ′(x)
〉

(16b)

respectively, where ®v0 = pv(P(x)), ®v1 = pv(Q(x))\®v0, P ′(x) = P(x)[ ®v0/®v0 ] andQ ′(x) = Q(x)[ ®v0/®v0, ®v1/®v1 ]
(for technical reasons the atomic pre/post-conditions in the general triples cannot contain pro-

gram variables). We omit the pseudo-quantifier form an atomic triple (as above) when the pseudo-

quantified variable does not occurr in the triple, and thus could be trivially quantified as

A

x ∈ AVal↠⊥ AVal.

In Section 3 we also used the abbreviated form

A

x ∈ X when the liveness assumption is trivial,

i.e.

A

x ∈ X ↠k X .

Definition E.19 (Specification). The set of specifications, Spec ∋ S,S1,S2, · · · , have the form:
11

A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
m;λ;A (17)

where

• m ∈ L, λ ∈ Lvl and A ∈ ACtxt;

• x ,y ∈ LVar;

• X ′ ⊆ X ⊆ AVal and k ∈ L;

• Ph,Qh(v,v ′) ∈ StableA for all v ∈ X and v ′ ∈ AVal;

• Pa(v),Qa(v,v ′) ∈ Assrt for all v ∈ X and v ′ ∈ AVal, and pv(Pa) = pv(Qa) = ∅.

A function specification context provide the arguments of the function and the specification of

the function satisfied by the function body.

Definition E.20 (Function Specification Context). A function specification context, Φ, is a partial
function Φ ∈ FSpec ≜ FName⇀ (PVar∗, Spec).

Finally, we can define the semantics of a specification. Intuitively, a specification like (17) requires

the starting state to satisfy Ph ∗Pa(x), for some x ∈ X , and the environment to interfere by changing

x between values in X ; the liveness assumption requires that the environment should always

eventually set x to some value in X ′
during the interference phase. In return, the specification

guarantees that:

(1) The resources in Ph will be (non-atomically) modified and upon termination of the command,

will satisfy Qh.

(2) There is a single linearisation point going from Pa(x) to Qa(x ,y), for any x ∈ X and some y.
(3) The state at the end of the execution will satisfy Qh(x ,y).

In this sense, the resources in Pa should be understood as shared: the environment can use them to

change the value of x , and the local command will be able to use them atomically to perform its

linearisation point. Note thatQa(x ,y) is only guaranteed to hold immediately after the linearisation

point. The specifications mention two layers:m and k . Layerm represents a (strict) upper bound

on the layers that we may consider live when proving some command satisfies the specification.

Layer k decorates the liveness assumption; it will restrict the layers one can be depending on, when

using the liveness assumption in a proof. For example, it will not be possible to invoke the liveness

assumption while continuously holding an obligation of layer k ′ ⩽ k .

11
The ∃y is needed in the (uncommon) case when the linearisation point is non-deterministic and the Hoare postcondition

depends on this non-deterministic choice.
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We now define the formal semantics of specifications, as set of concrete traces that satisfy the

specification. To check if a concrete trace τ satisfies a specification, the semantics first collects all

the possible “logical” justifications of the trace in a set T. To justify a trace means to instrument each

step with views that show how the trace respects the (safety) logical constraints of the specification.

The set T is then further analysed to check that every instrumented trace where the environment

satisfies the liveness assumptions is locally terminating.

Specification traces are traces instrumented with sets of worlds representing the logical justifica-

tion for each step. For each state in a trace, the instrumentation consists of a view ph representing
the local Hoare view, a set of worlds pa(x) parametric on a value, representing the atomic resource,

and a value v or ⟨v,v ′⟩ that either represents the current choice for x in pa(x), if before the lin-
earisation point, or records the linearisation point from v to v ′

that took place in some previous

step.

Definition E.21 (Specification Traces). Define AVal
′ ≜ AVal ⊎ {⟨v1,v2⟩ | v1,v2 ∈ AVal}, the set

of specification states to be SStateA ≜ ViewA × (AVal′ → ℘(WorldA)) × AVal
′
and the set of

specification configurations to be SConfA ≜ Store ×Heap × SStateA . The set of specification traces,
STraceA , is the set of infinite sequences of the form ĉ1 π1 ĉ2 π2 · · · where ĉi ∈ SConfA and

πi∈ {env, loc}.
Given a set of specification traces T ⊆ STrace, we write ĉ π T for the set {ĉ π τ̂ | τ̂ ∈ T}. We say

a trace τ ∈ Trace is terminal, written term(τ ), if it contains no local steps. We say a trace is locally
terminating, written lterm(τ ), if it contains finitely many local steps.

Definition E.22 (Trace Safety). Fix some S ∈ Spec of the form

S =
A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
m;λ;A (18)

For τ ∈ Trace, (ph,pa,v) ∈ SStateA , and T ⊆ STrace, the trace safety judgement is the relation
τ ⊨S ph,pa,v : T defined coinductively in Fig. 25.

12

Intuitively, the trace safety judgement walks down a concrete trace, checking its safety, and at the

same time accumulating the possible instrumentations of the trace in T which can later be checked

against liveness properties. The judgement τ ⊨S ph,pa,v : T assumes the initial configuration

(σ0,h0) of the trace τ satisfies h0 ∈ Jph ∗ pa(v) ∗ TrueKλ . Rule Stutter checks that any local step

other than the linearization point updates the local Hoare view (to some p ′
h
) in a frame-preserving

manner; this implies that, before the linearisation point, the abstract state v needs to be preserved

by such step. Rule LinPt checks that the linearisation point is frame-preserving and consistent with

the atomic postcondition Qa. Both rules Stutter and LinPt check that the Hoare postcondition is

satisfied if we are considering the last local step of the trace. Rule Env checks whether the current

environment step, assumed to happen before the linearization point, can be seen as a transition

changing the abstract state from v to v ′
in a way that does not disrupt any frame (including

ph). If that is the case, the rest of the trace is checked for safety. Rule Env’ performs the same

check but after the linearisation point. In both cases, if the environment step cannot be seen as

frame-preserving, then the trace is accepted since the environment did not respect the assumptions.

Similarly, Rule Env accepts the trace after a fault caused by the environment.

Building on trace safety, we can now define the semantics of a specification JSK as the set of traces
that are safe and that additionally satisfy the liveness constraints implied by the obligations and the

liveness assumptions of S. Conceptually, we want to require local termination if the environment

satisfies the layered liveness invariants represented by pseudo-quantifiers and obligations. To

12
By slight abuse of notation we write emp even though by the type AVal

′ → ℘(WorldA ) we should write λ_. EmpA ; here

τ ranges over subsequences of traces.
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(h1,h2) ⊨λ;A p
h
∗ pa(v)_ p′

h
∗ pa(v)

(σ2,h2) τ ⊨S p′h,pa,v : T term(τ ) ⇒ v = ⟨v1,v2⟩ ∧ p′
h
=WJQ

h
(v1,v2)Kσ2A

(σ1,h1) loc (σ2,h2) τ ⊨S ph,pa,v : ((σ1,h1,ph,pa,v) loc T)
Stutter

(h1,h2) ⊨λ;A p
h
∗ pa(v)_ q′

h
∗WJQa(v,v ′)KA

term(τ ) ⇒ q′
h
=WJQ

h
(v,v ′)Kσ2A (σ2,h2) τ ⊨S q′h, emp, ⟨v,v ′⟩ : T

(σ1,h1) loc (σ2,h2) τ ⊨S ph,pa,v : ((σ1,h1,ph,pa,v) loc T)
LinPt

T =
⋃{ (σ ,h1,ph,pa,v) env Tv ′ | v ′ ∈ X ,E(v ′) }

∀v ′ ∈ X . E(v ′) ⇒ (σ ,h2) τ ⊨S ph,pa,v ′
: Tv ′ v ∈ AVal

E(v ′) ≜
(∃pe,p′e.h1 ∈ Jp

h
∗ pa(v) ∗ peKλ ∧ (h1,h2) ⊨λ;A pa(v) ∗ pe _ pa(v ′) ∗ p′

e

)
(σ ,h1) env (σ ,h2) τ ⊨S ph,pa,v : T

Env

if ∃pe,p′e.h1 ∈ Jp
h
∗ peKλ ∧ (h1,h2) ⊨λ;A pe _ p′

e
then (σ ,h2) τ ⊨S ph, emp, ⟨v,v ′⟩ : T else T = ∅

(σ ,h1) env (σ ,h2) τ ⊨S ph, emp, ⟨v,v ′⟩ : ((σ1,h1,ph, emp, ⟨v,v ′⟩) env T)
Env’

(σ ,h) env  τ ⊨S ph,pa,v : ∅
Env 

Fig. 25. Safety Specification Semantics

understand the idea, consider the case of liveness invariants encoded by obligations. The idea is

to examine the traces instrumented with the logical state, and consider for each position which

obligations are held by the environment and which are held locally. Now suppose the environment

always eventually fulfills every obligation (i.e. for each obligation O there are infinitely many

positions whereO is not held by the environment). This environment is certainly good with respect

to the liveness assumptions. When is the environment allowed to keep an obligation O forever?

Only when we locally hold forever some obligation of layer strictly smaller than lay(O). This
intuition about obligations extends to liveness assumptions attached to pseudo-quantifications in

the triple and in the atomicity context. To harmonise pseudo-quantification and obligation-related

liveness assumptions, we collect all of them in a set of so-called pseudo-obligations, and unformly

impose the above conditions on liveness, as formalised by the goodenv predicate.

Definition E.23 (Specification Semantics). Fix S and its components as in (18). Such a specification

constrains the environment to maintain the liveness invariants implied by obligations, the liveness

assumptions in A and the one of the pseudo-quantifier. We collect them in the set of pseudo-
obligations

POb ≜ AOb ⊎ { (r , live(A, r )) | r ∈ dom(A) } ⊎ {X ↠k X ′ }.
We extend the layer function to lay : POb → L by setting lay(a) = k if a = (r ,X ↠k X ′) and
lay(X ↠k X ′) = k . Furthermore, define

POb<k ≜ {Ô ∈ POb | lay(Ô) < k} AOb<k ≜ {O ∈ AOb | lay(O) < k}

Given a ĉ ∈ SConfA , we want to define which are the possible worlds that represent the current

local and shared information about the configuration. We thus define the predicate ĉ � (wh,wa)
which holds, for ĉ = (σ ,h,ph,pa,v), ifwh ∈ ph ∧wa ∈ pa(v) ∧ ∃we.h ∈ ⌊wh ⊙wa ⊙we⌋λ .

We define two predicates envheld(Ô, ĉ), indicating when a pseudo-obligation Ô ∈ POb is con-

sidered to be held by the environment in configuration ĉ ∈ SConfA , and locheld(O, ĉ), indicating
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when an obligation O ∈ Oblig is considered to be held locally in configuration ĉ ∈ SConfA :

envheld(Ô, ĉ) ≜


∀wh,wa. ĉ � (wh,wa) ⇒ ∃r . ξwh⊙wa

(r ) ⊒ Ô if Ô ∈ AOb

∀wh,wa. ĉ � (wh,wa) ⇒ astwh⊙wa
(r ) < X2 if Ô = (r ,X1 ↠k X2)

v ∈ X1 \ X2 if ĉ = (_, _, _, _,v) ∧ Ô = (X1↠kX2)
locheld(O, ĉ) ≜ ∃wh,wa, r . ĉ � (wh,wa) ∧ θwh

(r ) ⊒ O

Finally, for layerm from the context of S, the goodenvm(τ̂ ) predicate checks whether the environ-
ment is satisfying the liveness assumptions of the specification:

goodenvm(τ̂ ) ≜ ∀Ô ∈ POb<m . if ∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ (j))
then ∀i ∈ N. ∃j ≥ i .¬ envheld(Ô, τ̂ (j))

Given S as in (18), let ph =WJPhKσ0A , ∀v ∈ AVal
′.pa(v) =WJv ∈ X ∧ Pa(v)KA . We define the

trace semantics JSK ⊆ Trace of S as the set:

JSK ≜

 (σ0,h0) τ

�������
∀v0 ∈ X . if h0 ∈ Jph ∗ pa(v0) ∗ TrueKλ

then ∃T. (σ0,h0) τ ⊨S ph,pa,v0 : T
∧ ∀τ̂ ∈ T. goodenvm(τ̂ ) ⇒ lterm(τ̂ )


The intuition behind Definition E.23 is as follows. Once it has been established that there is a way

to instrument the trace to justify why the local steps satisfy the safety constraints of S, we consider
the set of valid instrumentationsT. Each instrumentation should either be terminating, in which case

the trace is accepted, or, if it is non-terminating, we must check that the non-termination was due

to the environment not satisfying the liveness assumptions of S. The predicate goodenvm(τ̂ ) holds
for a specification trace τ̂ if the environment keeps every pseudo-obligation live. This condition

uses layers in a subtle way. The idea is that an environment is considered good, if it keeps any

pseudo-obligation with layer k live, provided no obligation of layer < k is constantly held by the
local thread. This effectively encodes the acyclicity of the layered termination argument. Each of

the threads t is allowed to keep an obligation constantly unfulfilled, as long as it can blame some

other thread t ′ by showing an obligation of strictly lower level that is kept constantly unfulfilled

by t ′. Since layers are well-founded there needs to be some thread that will not be justified in not

fulfilling some of its obligations.

Definition E.24 (Semantic Triple). The semantic judgment ⊨Φ C : S indicates that the command C,
under a functional context Φ, satisfies the specification S. Formally, define for some F ⊆ FName,

FF JΦK ≜
{
φ

��� dom(φ) = F ∧ ∀f ∈ F .Φ(f) = (®xf,Sf) ∧ φ(f) = (®xf,Cf) ∧ JCfKφ ⊆ JSfK
}
.

The semantic judgement is defined by ⊨Φ C : S ⇔ JCKφ ⊆ JSK for all φ ∈ F
fn(C)JΦK. Note that

when C has no free function names, the judgement ⊨Φ C : S simply means JCK ⊆ JSK.

F SOUNDNESS

In this section, we provide the details of the soundness of three rules: LiveC, Par, While, Frame,

LiveO and LiveA. These are the only proof rules in TaDA-Live that bring in non-trivial liveness

information. All other proof rules follow in the same way as for TaDA, with the liveness constraints

on the traces being identical between the antecedent and consequent of such rules or being trivial

in the case of command axioms. We will focus particularly on the liveness argument for these rules.
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F.1 Environment Liveness Judgement Semantics

First we define give semantics to the judgement defined in Fig. 7.

Definition F.1 (Environment Liveness Judgement Semantics). The semantic environmental liveness

judgement:

m; λ;A ⊨ L M−−↠ T

holds if for some arbitrary σ ∈ Store, for

t =WJT ∗ TrueKσA
l =WJL ∗ TrueKσA

l(α) =WJL ∗M(α) ∗ TrueKσA
and for arbitrary h,h′ ∈ JlKλ , if (h,h′) ⊨λ;A l _ l , then:

• λ;A ⊢ L ⇒ ∃α . L ∗M(α)
• ∀α ,α ′.h ∈ Jl(α)Kλ ∧ h′ ∈ Jl(α ′)Kλ ⇒ α ≥ α ′ ∨ h ∈ JtKλ .
• For arbitrary α ,α ′ ≤ α , there exists r ∈ RId and

Ô ∈ Oblig<k ⊎ { (r , live(A, r )) | r ∈ dom(A), lay(live(A, r )) < k }
such that for anyw ∈ l(α),w ′ ∈ l(α ′), if, h ∈ ⌊w⌋λ ∧ h′ ∈ ⌊w ′⌋λ , then the following hold:

– if Ô ∈ Oblig, ξw (r ) ⊒ Ô and ξw ′(r ) ̸⊒ Ô , then α > α ′
or h ∈ JtKλ .

– if Ô = (r ,X ↠k X ′), ρw (r ) < X ′
and ρw ′(r ) ∈ X ′

, then α > α ′
or h ∈ JtKλ .

Recall the definition of imprA (Definition B.1): the condition imprA(tλr ,L,L′,R,R′,T ) holds if
and only if, R′ , ∅ and for allw1,w2 ∈ WorldA , α1,α2, and (x1,x2) ∈ R:(

w1 ⊨A L(α1) ∗ tλr (x1) ∧w2 ⊨A L′(α2) ∗ tλr (x2)
)

⇒
(
(α2 ≤ α1 ∧ ((x1,x2) ∈ R′ ⇒ α2 < α1)) ∨w2 ⊨A T ∗ True

)
Lemma F.2. Ifm; λ;A ⊢ L M−−↠ T thenm; λ;A ⊨ L M−−↠ T .

Proof. Any derivation tree using the rules of Fig. 7 has the goal judgement as the root, as leaves

applications of rules LiveT to LiveA, and all internal nodes are applications are of rule ECase.

Thus, for any h ∈ Jl ∗ TrueKλ some of the leaves would apply, as they are restricted to some subset

of l and all of l is covered. The conditions of the semantic judgment then follow directly from the

side conditions of the leaf that applies. □

F.2 Soundness of LiveC

Theorem F.3. Let

S =

A

x ∈ X ↠k X ′.
〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
m;λ;A

S′ =

A

x ∈ X .
〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
m;λ;A

Ifm,k ⩾ n and
n; λ;A ⊨ ∃x ∈ X . Pa(x)

M−−↠ ∃x ′ ∈ X ′. Pa(x ′) (19)

then JSK ⊆ JS′K.

Proof. Take (σ0,h0)τ ∈ JSK. Let:
ph =WJPhKσ0A pa(v) =WJPa(v)Kσ0A m(α) =WJM(α)Kσ0A
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To show (σ0,h0)τ ∈ JS′K, assume for some v0 ∈ X , h0 ∈ Jph ∗ pa(v0) ∗ TrueKλ . Then, given this and

(σ0,h0)τ ∈ JSK, for some T ∈ P(STrace):
(σ0,h0) τ ⊨S ph,pa,v0 : T ∧ ∀τ̂ ∈ T. goodenvm(τ̂ ) ⇒ lterm(τ̂ )

Given that the definition of (σ0,h0) τ ⊨S ph,pa,v0 : T does not depent on the good states, X ′
, then

(σ0,h0) τ ⊨S′ ph,pa,v0 : T holds. To finish off, must show:

∀τ̂ ∈ STrace. goodenvS′(τ̂ ) ⇒ goodenvS(τ̂ )

As POb<mS′ (
↠
X S′,AS′) = POb<mS (

↠
X S,AS) ∪ {X ↠k X ′}, it is sufficient to show that for arbitrary

τ̂ ∈ STrace, assuming

goodenvS(τ̂ ) ∧ ∀O ∈ AOb<k . ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ (j))
then ∀i ∈ N. ∃j ≥ i .¬ envheld(X ↠k X ′, τ̂ (j)) holds.

If there exists some lin ∈ N such that τ̂ (lin) = (_, _, _, _, ⟨v,v ′⟩), then ∀j ≥ lin.¬ envheld(X ↠k
X ′, τ̂ (j)), which implies the goal. Otherwise, for i ∈ N, let τ̂ (i) = (σ i ,hi ,pi

h
,pi

a
,vi ).

From (19), λ;A ⊨ ∃x ∈ X . Pa(x) ⇒ ∃x ∈ X ,α . Pa(x) ∗M(α) holds, therefore, for any wh,wa ∈
ViewA such that (σ i ,hi ,pi

h
,pi

a
,vi ) � (wh,wa), then, for some α , (σ i ,hi ,pi

h
,m(α) ∗ pi

a
,vi ) � (wh,wa)

holds. By (19), there exists r ∈ RId and

Ô ∈ Oblig<k ⊎ { (r , live(A, r )) | r ∈ dom(A), lay(live(A, r )) < k }
such that:

• If Ô ∈ Oblig<k , then ξwh⊙wa
(r ) ⊒ Ô

• If Y ↠k ′ Y
′ ∈ { (r , live(A, r )) | r ∈ dom(A), lay(live(A, r )) < k }, then ρwh⊙wa

(r ) < Y ′
.

In either case, goodenvS(τ̂ ), guarantees that there is eventually an atomic step that discharges

this obligation and from (19), this will lower the metric to some α ′ < α . As ordinals are well

founded, for arbitrary i ∈ N, there exists j ≥ i , such that τ̂ (j) = (σ j ,hj ,w j
h
,w j

a
,v j ) withw j

h
•w j

a
∈ t

and therefore v j ∈ X ′
. This implies ¬ envheld(X ↠k X ′, τ̂ (j)) as required. □

F.3 Soundness of Par

Definition F.4 (Bowtie operator). The bowtie operator, ▷◁, which interleaves the subjective traces

of two commands executed in parallel into a command from their combined perspective:

(σ ,h) env τ ′
1
▷◁ (σ ,h) env τ ′

2
= (σ ,h) env (τ ′

1
▷◁ τ ′

2
)

(σ ,h) env τ ′
1
▷◁ (σ ,h) loc τ ′

2
= (σ ,h) loc (τ ′

1
▷◁ τ ′

2
)

(σ ,h) loc τ ′
1
▷◁ (σ ,h) env τ ′

2
= (σ ,h) loc (τ ′

1
▷◁ τ ′

2
)

All other cases are undefined.

Definition F.5 (Specification Bowtie operator). The specification bowtie operator,
s

▷◁, which inter-

leaves the subjective specification traces of two commands executed in parallel into a command

from their combined perspective:

(σ ,h,p1, emp, 1) env τ ′
1

s

▷◁ (σ ,h,p2, emp, 1) env τ ′
2
= (σ ,h,p1 ∗ p2, emp, 1) env (τ ′

1
▷◁ τ ′

2
)

(σ ,h,p1, emp, 1) env τ ′
1

s

▷◁ (σ ,h,p2, emp, 1) loc τ ′
2
= (σ ,h,p1 ∗ p2, emp, 1) loc (τ ′

1
▷◁ τ ′

2
)

(σ ,h,p1, emp, 1) loc τ ′
1

s

▷◁ (σ ,h,p2, emp, 1) env τ ′
2
= (σ ,h,p1 ∗ p2, emp, 1) loc (τ ′

1
▷◁ τ ′

2
)

All other cases are undefined.

Lemma F.6. For any φ ∈ FImpl:

∀τ ∈ JC1 | |C2Kφ . ∃τ1 ∈ JC1K,τ2 ∈ JC2K. τ = τ1 ▷◁ τ2
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Proof. Straightforward by induction on
_−→φ . □

Lemma F.7. For any trace (σ0,h0) τ (σ1,h1) τ ′ ∈ JCKφ , we have ∀x ∈ PVar \ mods(C). σ0(x) =
σ1(x).

Proof. Straightforward by induction on the length of the trace. □

For the rest of the section, we name the specifications involved in the Par rule as follows:

S1 =
{
P1

}
·
{
Q1

}
m1;λ;A S2 =

{
P2

}
·
{
Q2

}
m2;λ;A S =

{
P1 ∗ P2

}
·
{
Q1 ∗Q2

}
m;λ;A

Lemma F.8. For arbitrary (σ0,h0)τ , (σ0,h0)τ1, (σ0,h0)τ2 ∈ Trace, T1,T2 ∈ P(STrace), v1,v2 ∈
{1, ⟨1, 1⟩}, and, p ′

1
,p ′

2
∈ ViewA , then:

(σ0,h0)τ = (σ0,h0)τ1 ▷◁ (σ0,h0)τ2
(σ0,h0)τ1 ⊨S1 p ′1, emp,v1 : T1

(σ0,h0)τ2 ⊨S2 p ′2, emp,v2 : T2

h0 ∈ Jp ′1 ∗ p ′2 ∗ TrueKλ
term((σ0,h0)τ1) ⇒ p ′

1
=WJQ1KσA

term((σ0,h0)τ2) ⇒ p ′
2
=WJQ2KσA


⇒

∃T ∈ P(STrace),v ∈ {1, ⟨1, 1⟩}.
(σ ,h)τ ⊨S p ′1 ∗ p ′2, emp,v : T ∧
∀τ̂ ∈ T. ∃τ̂ 1 ∈ T1, τ̂ 2 ∈ T2. τ̂ = τ̂ 1 s

▷◁ τ̂ 2 ∧
(v1 = ⟨1, 1⟩ ∧v2 = ⟨1, 1⟩) ⇔ v = ⟨1, 1⟩

Proof. This lemma is proven by coinduction on the structure of (σ0,h0)τ .
The trace either starts with a local, or an environment step. We split on the two cases:

Case (σ ,h)τ = (σ ,h) env (σ ,h′)τ ′. Take (σ0,h0)τ1, (σ0,h0)τ2 ∈ Trace, T1,T2 ∈ P(STrace), v1,v2 ∈
{1, ⟨1, 1⟩}, and, p ′

1
,p ′

2
∈ ViewA arbitrary, and assume:

(σ0,h0)τ = (σ0,h0)τ1 ▷◁ (σ0,h0)τ2 (20)

(σ0,h0)τ1 ⊨S1 p ′1, emp,v1 : T1 (21)

(σ0,h0)τ2 ⊨S2 p ′2, emp,v2 : T2 (22)

h0 ∈ Jp ′1 ∗ p ′2 ∗ TrueKλ (23)

term((σ0,h0)τ1) ⇒ p ′
1
=WJQ1KσA (24)

term((σ0,h0)τ2) ⇒ p ′
2
=WJQ2KσA (25)

Given 20 and the definition of ▷◁:

(σ0,h0)τ1 = (σ0,h0) env (σ0,h′)τ ′
1

(σ0,h0)τ2 = (σ0,h0) env (σ0,h′)τ ′
2

(σ0,h′)τ ′ = (σ0,h′)τ ′
1
▷◁ (σ0,h′)τ ′

2

Now to prove the goal, consider the case v1 = ⟨1, 1⟩ and v2 = ⟨1, 1⟩. In this case, take

v = ⟨1, 1⟩, so Env’ must hold for the goal as well as 21 and 22. Note that this choice of v
immediately satisfies the third conjunct of the goal. To show Env’ holds for the goal, given

some pe,p
′
e
∈ ViewA , assume:

h0 ∈ Jp ′1 ∗ p ′2 ∗ peK ∧ (h0,h′) ⊨λ;A p ′
1
∗ p ′

2
∗ pe _ p ′

1
∗ p ′

2
∗ p ′

e

By substitution, this implies both:

∃pe,p ′e.h0 ∈ Jp ′1 ∗ peK ∧ (h,h′) ⊨λ;A p ′
1
∗ pe _ p ′

1
∗ p ′

e

∃pe,p ′e.h0 ∈ Jp ′2 ∗ peK ∧ (h,h′) ⊨λ;A p ′
2
∗ pe _ p ′

2
∗ p ′

e
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Given 21 and 22, these imply:

(σ0,h′)τ ′
1
⊨S1 p

′
1
, emp,v1 : T

′
1

(σ0,h′)τ2 ⊨S2 p ′2, emp,v2 : T
′
2

where:

T1 = (σ0,h0,p1, emp, ⟨1, 1⟩) env T′
1

T2 = (σ0,h0,p2, emp, ⟨1, 1⟩) env T′
2

Assumption (23) and (h0,h′) ⊨λ;A p ′
1
∗ p ′

2
∗ pe _ p ′

1
∗ p ′

2
∗ p ′

e
yield:

h′ ∈ Jp ′
1
∗ p ′

2
∗ TrueKλ (26)

Now, by using the inductive assumption, as 24 and 25 clearly imply the same assertions for

(σ0,h′)τ ′
1
and (σ0,h′)τ ′

2
respectively, for some T′ ∈ P(STrace):

(σ0,h′)τ ′ ⊨S p ′1 ∗ p ′2, emp,v : T′ (27)

∀τ̂ ∈ T′. ∃τ̂ 1 ∈ T′1, τ̂ 2 ∈ T′2. τ̂ = τ̂ 1 s

▷◁ τ̂ 2 (28)

From this first consequence:

(σ0,h)τ ⊨S p ′1 ∗ p ′2, emp,v : T

holds, where T = (σ0,h,p ′1 ∗ p ′2, emp,v) env T′. This is the first conjunct of the goal.
Finally, taking τ̂ ∈ T arbitrary, there exists τ̂ ′ ∈ T′ such that τ̂ = (σ0,h,p ′1 ∗ p ′2, emp,v) env
τ̂ ′
. From the second consequence of our inductive assumption, it follows that there exist

τ̂ ′
1
∈ T′

1
and τ̂ ′

2
∈ T′

2
such that τ̂ ′

= τ̂ ′
1

s

▷◁ τ̂ ′
2
. Then, from the definitions of T1 and T2,

(σ0,h0,p1, emp, ⟨1, 1⟩) env τ̂ ′
1
∈ T1 and (σ0,h0,p2, emp, ⟨1, 1⟩) env τ̂ ′

2
∈ T2 hold, and τ̂ =

(σ0,h0,p1, emp, ⟨1, 1⟩) env τ̂ ′
1

s

▷◁ (σ0,h0,p2, emp, ⟨1, 1⟩) env τ̂ ′
2
∈ T2 holds as required.

Other cases for v1, v2 follow similarly.

Case (σ ,h)τ = (σ ,h) loc (σ ,h′)τ ′. Here the variable store does not change as mods(C1 | |C2) = ∅,
due to lemma F.7 and the syntactic restriction on parallel commands, requiring both threads

to not modify the value of any variable. To prove the goal, take (σ0,h0)τ1, (σ0,h0)τ2 ∈ Trace,

T1,T2 ∈ P(STrace), v1,v2 ∈ {1, ⟨1, 1⟩}, and, p ′
1
,p ′

2
∈ ViewA arbitrary, and assume:

(σ0,h0)τ = (σ0,h0)τ1 ▷◁ (σ0,h0)τ2 (29)

(σ0,h0)τ1 ⊨S1 p ′1, emp,v1 : T1 (30)

(σ0,h0)τ2 ⊨S2 p ′2, emp,v2 : T2 (31)

h0 ∈ Jp ′1 ∗ p ′2 ∗ TrueKλ (32)

term((σ0,h0)τ1) ⇒ p ′
1
=WJQ1KσA (33)

term((σ0,h0)τ2) ⇒ p ′
2
=WJQ2KσA (34)

Given 29 and the definition of ▷◁, either:

(σ0,h0)τ1 = (σ0,h0) loc (σ0,h′)τ ′
1

(σ0,h0)τ2 = (σ0,h0) env (σ0,h′)τ ′
2
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or:

(σ0,h0)τ1 = (σ0,h0) env (σ0,h′)τ ′
1

(σ0,h0)τ2 = (σ0,h0) loc (σ0,h′)τ ′
2

and in both cases:

(σ0,h′)τ ′ = (σ0,h′)τ ′
1
▷◁ (σ0,h′)τ ′

2

Consider the first case, the second will follow symmetrically. Assume that the Stutter rule

holds for (σ ,h) loc (σ ,h′)τ1 ⊨S1 p ′1, emp,v1 : T1, then, for some p ′′
1
∈ ViewA :

(h0,h′) ⊨λ;A p ′
1
_ p ′′

1

(σ0,h′) τ ′
1
⊨S1 p

′′
1
, emp,v1 : T

′
1

term((σ0,h′)τ ′
1
) ⇒ v1 = ⟨1, 1⟩ ∧ p ′′

1
=WJQ1Kσ0A

where T1 = (σ0,h0,p1, emp,v1) loc T′1. Given 32 and (h0,h′) ⊨λ;A p ′
1
_ p ′′

1
, h′ ∈ Jp ′′

1
∗ p ′

2
∗

TrueKλ holds. Given (h0,h′) ⊨λ;A p ′
1
_ p ′′

1
, (h0,h′) ⊨λ;A p ′

1
∗ p2 _ p ′′

1
∗ p2, also holds. Using

this and Env or Env’:

(σ ,h′) τ ′
2
⊨S2 p

′
2
, emp,v2 : T

′
2

where T2 = (σ0,h0,p2, emp,v2) loc T′2. Now using the inductive assumption, as, once again,

33 and 34 clearly imply the same assertions for (σ0,h′)τ ′
1
and (σ0,h′)τ ′

2
respectively, for some

T′ ∈ P(STrace):
(σ0,h′)τ ′ ⊨S p ′′1 ∗ p ′

2
, emp,v : T′ ∧ (35)

∀τ̂ ∈ T′. ∃τ̂ 1 ∈ T′1, τ̂ 2 ∈ T′2. τ̂ = τ̂ 1 s

▷◁ τ̂ 2 ∧ (36)

(v1 = ⟨1, 1⟩ ∧v2 = ⟨1, 1⟩) ⇔ v = ⟨1, 1⟩ (37)

The second and third consequents imply the equivalent conjuncts of the goal with the same

method as in the env case and directly respectively. As we have shown (h,h′) ⊨λ;A p ′
1
∗p2 _

p ′′
1
∗ p2 holds, using the Stutter rule, to show that (σ0,h0)τ ⊨S p ′1 ∗ p ′2, emp,v : T holds,

where T = (σ0,h0,p ′1 ∗ p ′2, emp,v) loc T′, it suffices to show:

term((σ0,h′)τ ′) ⇒ v = ⟨1, 1⟩ ∧ p ′′
1
∗ p ′

2
=WJQ1 ∗Q2Kσ0A

Assuming term((σ0,h′)τ ′) holds, then term((σ0,h′)τ ′
1
) and term((σ0,h′)τ ′

2
) hold. From this it

follows that v1,v2 = ⟨1, 1⟩, so, due to 37, v = ⟨1, 1⟩.
Finally, due to term((σ0,h′)τ ′

1
) and term((σ0,h′)τ ′

2
), p ′′

1
=WJQ1Kσ0A and p ′

2
=WJQ2KσA hold

respectively, yielding p ′′
1
∗ p ′

2
=WJQ1 ∗Q2Kσ0A , as required.

The LinPt rule follows similarly.

□

Theorem F.9. Given

m1; λ;A ⊢Φ
{
P1

}
C1

{
Q1

}
(38)

m2; λ;A ⊢Φ
{
P2

}
C2

{
Q2

}
(39)

λ;A ⊢ Q1 Qm2 ⩽ m (40)

λ;A ⊢ Q2 Qm1 ⩽ m (41)

then:
m; λ;A ⊢Φ

{
P1 ∗ P2

}
C1 | |C2

{
Q1 ∗Q2

}
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Proof. Take φ ∈ F
fn(C)JΦK arbitrary, from 38 and 39, JC1Kφ ⊆ JS1K and JC2Kφ ⊆ JS2K hold.

Given an arbitrary (σ0,h0)τ ∈ JC1 | |C2Kφ , need to show (σ0,h0)τ ∈ JSK. Let

p1 =WJP1Kσ0A
p2 =WJP2Kσ0A

To reach the goal, assume h0 ∈ Jp1 ∗ p2 ∗ TrueKλ . Then h0 ∈ Jp1 ∗ TrueKλ and h0 ∈ Jp2 ∗ TrueKλ
hold. From F.6 and the definition of ▷◁, there exists (σ0,h0)τ1 ∈ JC1Kφ and (σ0,h0)τ2 ∈ JC2Kφ
such that (σ0,h0)τ = (σ0,h0)τ1 ▷◁ (σ0,h0)τ2. As JC1Kφ ⊆ JS1K and JC2Kφ ⊆ JS2K, (σ0,h0)τ1 ∈ JS1K
and (σ0,h0)τ2 ∈ JS2K hold. Now, as h0 ∈ Jp1 ∗ TrueKλ and h0 ∈ Jp2 ∗ TrueKλ , then for some

T1,T2 ∈ P(STrace):
(σ0,h0)τ1 ⊨S p1, emp, 1 : T1

(σ0,h0)τ2 ⊨S p2, emp, 1 : T2

and

∀τ̂ 1 ∈ T1. goodenvS(τ̂ 1) ⇒ lterm(τ̂ 1)
∀τ̂ 2 ∈ T2. goodenvS(τ̂ 2) ⇒ lterm(τ̂ 2)

As all commandsmust take at least one step,¬ term((σ0,h0)τ1) and¬ term((σ0,h0)τ2) hold, therefore:
term((σ0,h0)τ1) ⇒ p ′

1
=WJQ1KσA

term((σ0,h0)τ2) ⇒ p ′
2
=WJQ2KσA

hold. Now, using lemma F.8, there exists T ∈ P(STrace) such that:

(σ0,h0)τ ⊨S p1 ∗ p2, emp, 1 : T

and for any τ̂ ∈ T, there exist τ̂ 1 ∈ T1 and τ̂ 2 ∈ T2, such that τ̂ = τ̂ 1
s

▷◁ τ̂ 2. It now suffices to show

that ∀τ̂ ∈ T. goodenvS(τ̂ ) ⇒ lterm(τ̂ ). Take τ̂ ∈ T arbitrary and τ̂ 1 ∈ T1 and τ̂ 2 ∈ T2 such that

τ̂ = τ̂ 1
s

▷◁ τ̂ 2. From above:

goodenvS1
(τ̂ 1) ⇒ lterm(τ̂ 1)

goodenvS2
(τ̂ 2) ⇒ lterm(τ̂ 2)

holds. To reach the goal, split on lterm(τ̂ 1) and lterm(τ̂ 2).
lterm(τ̂ 1) ∧ lterm(τ̂ 2) : In this case, lterm(τ̂ ) holds, therefore goodenvS(τ̂ ) ⇒ lterm(τ̂ ) holds triv-

ially.

lterm(τ̂ 1) ∧ ¬ lterm(τ̂ 2) : From ¬ lterm(τ̂ 2), ¬ goodenvS2
(τ̂ 2) holds:

∃Ô ∈ POb<m2
(AS). (∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ 2(j))) ∧

(∃i ∈ N. ∀j ≥ i . envheld(Ô, τ̂ 2(j)))
As lterm(τ̂ 1), there exists some i1 ∈ N, an index after which the trace τ̂ 1 only performs

env steps, in particular, for any j ≥ i1, τ̂ 1(j) = (σ ,h,WJQ1KAσ , emp, ⟨1, 1⟩), therefore τ̂ (j) =
(σ ,h,WJQ1KAσ ∗ p ′

2
, emp, ⟨1, 1⟩), where τ̂ 2(j) = (σ ,h,p ′

2
, emp, ⟨1, 1⟩). Given λ;A ⊢ Q1 Qm2:

(∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ 2(j))) ⇒
(∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ (j)))

and similarly as Ô ∈ POb<m2
(AS):

(∃i ∈ N. ∀j ≥ i . envheld(Ô, τ̂ 2(j))) ⇒ (∃i ∈ N. ∀j ≥ i . envheld(Ô, τ̂ (j)))
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Asm2 ≤ m,Ô ∈ POb<m(AS). Finally, from this¬ goodenvS(τ̂ ) holds, implying goodenvS(τ̂ ) ⇒
lterm(τ̂ ).

¬ lterm(τ̂ 1) ∧ lterm(τ̂ 2) : Similarly to the previous case.

¬ lterm(τ̂ 1) ∧ ¬ lterm(τ̂ 2) : From this we can infer ¬ goodenvS1
(τ̂ 1) and ¬ goodenvS2

(τ̂ 2). Assume

goodenvS(τ̂ ) for a contradiction. From ¬ goodenvS1
(τ̂ 1), for some Ô ∈ POb<m1

(AS):

(∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ 1(j))) ∧ (∃i ∈ N. ∀j ≥ i . envheld(Ô, τ̂ 1(j)))

From this and goodenvS(τ̂ ), there is some i ∈ N such that:

∀j ≥ i . locheld(Ô, τ̂ 2(j))

From ¬ goodenvS2
(τ̂ 2), for some Ô

′ ∈ POb<m2
(AS):

(∀O ∈ AOb<lay(Ô ′). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ 2(j))) ∧ (∃i ∈ N. ∀j ≥ i . envheld(Ô ′
, τ̂ 2(j)))

For ∀j ≥ i . locheld(Ô, τ̂ 2(j)) and ∀O ∈ AOb<lay(Ô ′). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ 2(j)) to
hold, it must be the case that lay(Ô) > lay(Ô ′). This argument can be repeated ad-infinitum,

by the well-foundedness of layers, a contradiction ensues, therefore ¬ goodenvS(τ̂ ) holds.
This implies goodenvS(τ̂ ) ⇒ lterm(τ̂ ).

From these cases, we deduce that ∀τ̂ ∈ T. goodenvS(τ̂ ) ⇒ lterm(τ̂ ).
From this, we can infer (σ0,h0)τ ∈ JSK and consequently, JC1 | |C2Kφ ⊆ JSK, as required.

□

F.4 Soundness of While

Definition F.10 (Concrete trace sequence operator).

τ = τ1#τ2 ⇔
(¬ lterm(τ ) ∧ τ = τ1) ∨( ∃σ ∈ Store,h ∈ Heap,τ ′

1
loc (σ ,h)τ ′′

1
, (σ ,h)τ ′

2
∈ Trace.

τ1 = τ
′
1
loc (σ ,h)τ ′′

1
∧ τ2 = (σ ,h)τ ′

2
∧ term((σ ,h)τ ′′

1
) ∧ τ = τ ′

1
loc (σ ,h) loc (σ ,h)τ ′

2

)
A similarly defined overloading of this operator exists for specification traces, τ̂ 1 # τ̂ 2 and the

obvious lifting to sets T1 # T2.

Lemma F.11. For arbitrary φ, (σ0,h0)τ ∈ Jwhile(B){C}Kφ , either ¬BJBKσ0 , or there exists
(σ0,h0)τ ′ ∈ JCKφ and τ ′′ ∈ Jwhile(B){C}Kφ , such that (σ0,h0)τ = (σ0,h0)loc(σ0,h0)τ ′ # τ ′′.

Proof. Straightforward by induction on
_−→φ . □

Lemma F.12. Given an arbitrary specification

S =

A

x ∈ X ↠ X ′.
〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
λ;A

for an arbitrary trace (σ0,h0)τ ∈ Trace, let

ph =WJPhKσ0A pa(v) =WJPa(v)Kσ0A
If for some v ∈ X and T ∈ P(STrace), h0 ∈ Jph ∗ pa(v) ∗ TrueK and (σ0,h0)τ ⊨S ph,pa,v : T, then:

∀τ̂ ∈ T. ∀i ∈ N. term(τ̂ /i ) ⇒
∃h ∈ Heap,σ ∈ Store,
ph ∈ ViewA ,v ∈ X ,v ′ ∈ AVal.

τ̂ (i) = (σ ,h,ph, emp, ⟨v,v ′⟩) ∧
ph =WJQh(v,v ′)KσA ∧ h ∈ JphKλ

Proof. Straightforward by induction on the specification semantics rules. □
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Let

S′(β ,b) =
{
P(β) ∗ (b .⇒ T (β)) ∧ B

}
·
{∃γ . P(γ ) ∧ γ ≤ β ∗ (b .⇒ γ < β)

}
m;λ;A

S(β0) =
{
P(β0) ∗ L

}
·
{∃β . P(β) ∗ L ∧ ¬B ∧ β0 ≥ β

}
m;λ;A

Lemma F.13. Take φ and β0 arbitrary and take (σ0,h0)τ ∈ Jwhile(B){C}Kφ such that BJBKσ0 .
Let

p ′(β ,b) =WJP(β) ∗ (b .⇒ T )Kσ0A
l =WJLKσ0A

Clearly, ∀β .p ′(β , True) ⊆ p ′(β , False). As BJBKσ0 , by lemma F.11, there exists (σ0,h0)τ ′ ∈ JCKφ
and (σ1,h1)τ ′′ ∈ Jwhile(B){C}Kφ , such that (σ0,h0)τ = (σ0,h0)τ ′ # (σ1,h1)τ ′′. If, for arbitrary
β ′ ≤ β ≤ β0 and T′,T′′ ∈ P(STrace), there exists b ∈ Bool, such that:

h0 ∈ Jp ′(β ,b) ∗ lKλ
(σ0,h0)τ ′ ⊨S′(β,b) p ′(β ,b), emp, 1 : T′

(σ1,h1)τ ′′ ⊨S(β ′) p
′(β ′, False) ∗ l , emp, 1 : T′′

b ⇔ h0 ∈ Jp ′(β, True) ∗ lKλ
then:

(σ0,h0)τ ⊨S(β,False) p ′(β ′, False) ∗ l , emp, 1 : T′ # T′′

and one of the following hold:

lterm((σ0,h0)τ )

∀τ̂ ∈ T′ # T′′.¬ goodenvS(τ̂ )

∀τ̂ ∈ T′ # T′′. ∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1)

Proof. This lemma is proven by coinduction on the structure of (σ0,h0)τ . First, assume:

h0 ∈ Jp ′(β ,b) ∗ lKλ (42)

(σ0,h0)τ ′ ⊨S′(β,b) p ′(β,b), emp, 1 : T′ (43)

(σ1,h1)τ ′′ ⊨S(β ′) p
′(β ′, False) ∗ l , emp, 1 : T′′ (44)

b ⇔ h0 ∈ Jp ′(β , True) ∗ lKλ (45)

Using 42, 43 and 44, we can derive:

(σ0,h0)τ ⊨S(β,False) p ′(β ′, False) ∗ l , emp, 1 : T′ # T′′

Now, split on lterm((σ0,h0)τ ). If lterm((σ0,h0)τ ), then the goal holds, otherwise, split again on

lterm((σ0,h0)τ ′). If lterm((σ0,h0)τ ′), then T′ #T′′ = T′, so from 43, ∀τ̂ ∈ T′ #T′′. goodenvS(β )(τ̂ ) ⇒
lterm(τ̂ ), therefore the goal holds. Otherwise, ¬ lterm((σ1,h1)τ ′′). To not terminate, the while loop

must iterate at least one more time, as (σ1,h1)τ ′′ is a fair trace, therefore BJBKσ1 holds. We can

then use lemma F.11 and our coinductive assumption to obtain:

h1 ∈ Jp ′(β,b) ∗ lKλ
and one of:

∀τ̂ ∈ T′′.¬ goodenvS(β ′)(τ̂ )

∀τ̂ ∈ T′′. ∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1)



90 E. D’Osualdo, A. Farzan, P. Gardner, J. Sutherland

holds. In the first case ∀τ̂ ∈ T′ # T′′. goodenvS(β )(τ̂ ) ⇒ lterm(τ̂ ), so the goal holds as required and

in the second, from h1 ∈ Jp ′(β,b) ∗ lKλ :
∀τ̂ ∈ T′ # T′′. ∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1)

This implies the goal, as required. □

Theorem F.14. Given

∀β ≤ β0. ∀b ∈ {0, 1}.m; λ;A ⊨
{
P(β) ∗ (b .⇒ T ) ∧ B

}
C

{∃γ . P(γ ) ∧ γ ≤ β ∗ (b .⇒ γ < β)
}

(46)

∀β ≤ β0.m(β); λ;A ⊨ L M−−↠ T (47)

∀α .A ⊨ ∃α ′. L ∗M(α ′) ∧ α ′ ≤ α stable (48)

A ⊨ L stable (49)

∀β ≤ β0. ⊢A P(β) Qm(β) ⩾ m (50)

pv(T ,L,M) ∩mod(C) = ∅ (51)

then:
m; λ;A ⊨

{
P(β0) ∗ L

}
while(B){C}

{∃β . P(β) ∗ L ∧ ¬B ∧ β0 ≥ β
}

Proof. Takeφ ∈ F
fn(C)JΦK arbitrary. Take (σ0,h0)τ ∈ Jwhile(B){C}Kφ , need to show (σ0,h0)τ ∈

JS(β0)K. Let
p ′(β ,b) =WJP(β) ∗ (b .⇒ T )Kσ0A

l =WJLKσ0A
To reach the goal, assume h0 ∈ Jp ′(β0, False) ∗ lKλ . By lemma F.13, in the case that BJBKσ0 , and our

assumptions, there exists T:

(σ0,h0)τ ⊨S WJP(β0) ∗ LKσ0A , emp, 1 : T

and one of the following hold:

lterm((σ0,h0)τ )

∀τ̂ ∈ T.¬ goodenvS(τ̂ )

∀τ̂ ∈ T. ∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β , False), emp, 1)
In the first case, ∀τ̂ ∈ T. lterm(τ̂ ), therefore, ∀τ̂ ∈ T. goodenvS(β0)(τ̂ ) ⇒ lterm(τ̂ ), as required. In
the second, ∀τ̂ ∈ T. goodenvS(β0)(τ̂ ) ⇒ lterm(τ̂ ) clearly also holds. Finally, we consider the third

case. Take τ̂ ∈ T arbitrary and asume goodenvS(β0)(τ̂ ). Now, for a contradiction, assume ¬ lterm(τ̂ ).
In this case, due to 47, with an argument similar to that in the soundness of LiveC, at every point,

every τ̂ ∈ T eventually reaches a state satisfyingT . This must eventually be stable due to the metric

stabily decreasing due to assumption 48, holding till the next iteration, at which point, the loop

variant decreases due to 46 with b = True. In this case, by well-foundness of ordinals, the while

loop must eventually terminate if goodenv(τ̂ ) holds, as required. □

F.5 Soundness of Frame

Definition F.15 (τ̂ -unframerh,ra ).

τ̂ -unframerh,ra ((σ ,h,ph,pa,v) : τ̂ ) ≜


(σ ,h,ph ∗ rh,pa ∗ rh,v) : τ̂ -unframerh,ra (τ̂ ) v ∈ AVal

(σ ,h,ph ∗ rh, emp,v) : τ̂ -unframerh,ra (τ̂ )
v = ⟨_, _⟩ ∧

∀v ∈ AVal.pa(v) = emp
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Let

S =

A

x ∈
↠
X .

〈
Ph

�� Pa(x)〉 · ∃y.〈Qh(x ,y)
��Qa(x ,y)

〉
m;λ;A

S′ =

A

x ∈
↠
X .

〈
Ph ∗ Rh

�� Pa(x) ∗ Ra(x)
〉
· ∃y.〈Qh(x ,y) ∗ Rh

��Qa(x ,y) ∗ Ra(x)
〉
m;λ;A

Lemma F.16. For arbitrary λ ∈ Lvl, A and atomicity context, h0,h1 ∈ Heap, p,q ∈ P(WorldA)
and r ∈ ViewA :

(h0,h1) ⊨λ;A p _ q ⇒ (h0,h1) ⊨λ;A p ∗ r _ q ∗ r

Proof. Assume (h0,h1) ⊨λ;A p _ q, which is equivalent:

∀f ∈ ViewA .h0 ∈ Jp ∗ f K⇒ h1 ∈ Jq ∗ f K
∀f ∈ ViewA .h ∈ J(p ∗ f ) ∩W1Kλ ⇒ ∃a2,O2. ((a1,O1), (a2,O2)) ∈ Tt ∧ h′ ∈ J(q ∗ f ) ∩W2Kλ

for all t ∈ RType, r ∈ RId, λ′ ∈ Lvl,a1 ∈ AState,O1 ∈ Ot, where

Wi ≜ {w ∈ WorldA | ρw (r ) = (t, λ′,ai ),θw (r ) = Oi }. Both of the assertions apply substituting

f = r ∗ f ′ for arbitrary f’, from which h0− > h1 | = p ∗ r− > q ∗ r follows. □

Lemma F.17. For arbitrary λ ∈ Lvl,A and atomicity context, h0,h1 ∈ Heap and p,q ∈ P(WorldA):

h0 ∈ Jp ∗ TrueK ∧ (h0,h1) ⊨λ;A p _ q ⇒ h1 ∈ Jq ∗ TrueK

Proof. To start off, assume:

h0 ∈ Jp ∗ TrueK
(h0,h1) ⊨λ;A p _ q

Clearly, this second assumption entails (h0,h1) ⊨λ;A p _∗ q, which is equivalent to:

∀f ∈ ViewA .h0 ∈ Jp ∗ f K⇒ h1 ∈ Jq ∗ f K

Chosing f to be True and applying the first assumption yields h1 ∈ Jq ∗ TrueK as required. □

Lemma F.18. For arbitrary (σ0,h0)τ ∈ Trace, ph , rh ∈ ViewA , v,v ′ ∈ AVal
′ and T ∈ P(STrace),

then

h0 ∈ Jph ∗ rh ∗ TrueK ∧ (σ0,h0) τ ⊨S ph, emp, ⟨v,v ′⟩ : T⇒
(σ0,h0) τ ⊨S′ ph ∗ rh, emp, ⟨v,v ′⟩ : τ̂ -unframerh,ra (T)

holds.

Proof. Taking (σ0,h0)τ ∈ Trace, ph , rh ∈ ViewA , v,v ′ ∈ AVal
′
and T ∈ P(STrace) arbitrary, to

start off, assume:

h0 ∈ Jph ∗ rh ∗ TrueK (52)

(σ0,h0) τ ⊨S ph, emp, ⟨v,v ′⟩ : T (53)

The proof proceeds by coinduction on the structure of τ . Only three rules can apply from the

trace safety judgement: Stutter, Env’ and Env .
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— Case Stutter. In this case, (σ0,h0)τ = (σ0,h0) loc (σ1,h1)τ ′ and T = (σ0,h0,ph, emp, ⟨v,v ′⟩) loc
T′. From 53, the following hold:

(h0,h1) ⊨λ;A ph _ p ′
h

(54)

(σ1,h1) τ ′ ⊨S p ′h, emp, ⟨v,v ′⟩ : T′ (55)

term(τ ′) ⇒ p ′
h
=WJQh(v,v ′)Kσ1A (56)

Given that rh ∈ ViewA , using lemma F.16, (54) implies (h0,h1) ⊨λ;A ph ∗ rh _ p ′
h
∗ rh, this

in turn implies h1 ∈ Jp ′
h
∗ rh ∗ TrueK, using lemma F.16. Using the inductive assumption, (55)

implies (σ1,h1) τ ′ ⊨S′ p ′
h
∗ rh, emp, ⟨v,v ′⟩ : τ̂ -unframerh,ra (T′). Finally, assuming term(τ ′), p ′

h
=

WJQh(v,v ′)Kσ1A holds, therefore p ′
h
∗rh =WJQh(v,v ′)Kσ1A ∗WJRhKσ1A =WJQh(v,v ′)∗RhKσ1A holds,

as required.

— Case Env’. In this case, (σ0,h0)τ = (σ0,h0) env (σ1,h1)τ ′ and T = (σ0,h0,ph, emp, ⟨v,v ′⟩) env T′.
From 53, the following hold:

if ∃pe,p ′e.h0 ∈ Jph∗peKλ∧(h0,h1) ⊨λ;A pe _ p ′
e
then (σ1,h1) τ ⊨S ph, emp, ⟨v,v ′⟩ : T′ else T′ = ∅

To reach the goal, assume for some p
e
,p ′

e
∈ ViewA , that

h0 ∈ Jph ∗ rh ∗ peKλ
(h0,h1) ⊨λ;A p

e
_ p ′

e

From these assumptions, we can infer that h1 ∈ Jph ∗ rh ∗ TrueK, using lemmas F.16 and F.17.

Setting pe = rh ∗ pe and p ′e = rh ∗ p
′
e
:

h0 ∈ Jph ∗ peKλ
and as rh ∈ ViewA :

(h0,h1) ⊨λ;A pe _ p ′
e

holds. Given these results and the assumptions, (σ1,h1) τ ⊨S ph, emp, ⟨v,v ′⟩ : T′ holds, yielding
(σ1,h1) τ ⊨S′ ph ∗ rh, emp, ⟨v,v ′⟩ : τ̂ -unframerh,ra (T′) by coinductive assumption.

— Case Env . This case is trivially true.

□

Lemma F.19. For arbitrary (σ0,h0)τ ∈ Trace, ph , rh ∈ ViewA , pa, ra ∈ AVal → ViewA , v0 ∈ AVal

and T ∈ P(STrace), then

h0 ∈ Jph ∗ rh ∗ pa(v0) ∗ ra(v0) ∗ TrueK ∧ (σ0,h0) τ ⊨S ph,pa,v0 : T⇒
(σ0,h0) τ ⊨S′ ph ∗ rh,pa ∗ ra,v0 : τ̂ -unframerh,ra (T)

holds.

Proof. Taking (σ0,h0)τ ∈ Trace, ph , rh ∈ ViewA , pa, ra ∈ AVal → ViewA , v0 ∈ AVal
′
and

T ∈ P(STrace) arbitrary, too start off, assume:

h0 ∈ Jph ∗ rh ∗ pa(v0) ∗ ra(v0) ∗ TrueK (57)

(σ0,h0) τ ⊨S ph,pa,v0 : T (58)

The proof proceeds by coinduction on the structure of τ . Only four rules can apply from the

trace safety judgement: Stutter, LinPt, Env and Env .
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— Case Stutter. In this case, (σ0,h0)τ = (σ0,h0) loc (σ1,h1)τ ′ and T = (σ0,h0,ph,pa,v) loc T′.
From 58, the following hold:

(h0,h1) ⊨λ;A ph ∗ pa(v) _ p ′
h
∗ pa(v) (59)

(σ1,h1) τ ′ ⊨S p ′h,pa,v : T′ (60)

¬ term(τ ′) (61)

Given that rh, ra(v0) ∈ ViewA , using lemma F.16, (59) implies (h0,h1) ⊨λ;A ph∗rh∗pa(v)∗ra(v) _
p ′
h
∗ rh ∗ pa(v) ∗ ra(v), this in turn implies h1 ∈ Jp ′

h
∗ rh ∗ pa(v) ∗ ra(v) ∗ TrueK using lemma F.17.

Using the inductive assumption, (60) implies (σ1,h1) τ ′ ⊨S′ p ′
h
∗ rh,pa ∗ ra,v : τ̂ -unframerh,ra (T′).

Finally, given that ¬ term(τ ′) holds, term(τ ′) ⇒ p ′
h
∗ rh =WJQh(v,v ′) ∗ RhKσ1A holds as required.

— Case LinPt. In this case, (σ0,h0)τ = (σ0,h0) loc (σ1,h1)τ ′ and T = (σ0,h0,ph,pa,v) loc T′. From
58, the following hold:

(h0,h1) ⊨λ;A ph ∗ pa(v) _ q′
h
∗WJQa(v,v ′)KA (62)

(σ1,h1) τ ′ ⊨S q′h, emp, ⟨v,v ′⟩ : T′ (63)

term(τ ′) ⇒ q′
h
=WJQh(v,v ′)Kσ2A (64)

Given that rh, ra(v0) ∈ ViewA , using lemma F.16, (62) implies (h0,h1) ⊨λ;A ph ∗ rh ∗ pa(v) ∗
ra(v) _ q′

h
∗ rh ∗ WJQa(v,v ′)KA ∗ ra(v), this in turn implies h1 ∈ Jq′

h
∗ rh ∗ WJQa(v,v ′)KA ∗

ra(v) ∗ TrueK using lemma F.17. Using lemma F.18, (63) implies (σ1,h1) τ ′ ⊨S′ q′
h
∗ rh, emp, ⟨v,v ′⟩ :

τ̂ -unframerh,ra (T′). Finally, assuming term(τ ′), q′
h
=WJQh(v,v ′)Kσ2A holds, therefore term(τ ′) ⇒

q′
h
∗ rh =WJQh(v,v ′) ∗ RhKσ1A holds as required.

— case Env. In this case, (σ0,h0)τ = (σ0,h0) env (σ1,h1)τ ′ andT =
⋃{

(σ ,h1,ph,pa,v) env T′v ′
�� v ′ ∈ X ,E(v ′)

}
.

From 58, the following holds:

∀v ′ ∈ X . E(v ′) ⇒ (σ ,h2) τ ⊨S ph,pa,v ′
: Tv ′

Taking v ′ ∈ X arbitrary and, assuming E(v ′) given some pe,pe
′
, for the goal specification:

h1 ∈ Jph ∗ rh ∗ pa(v) ∗ ra(v) ∗ peKλ
(h1,h2) ⊨λ;A pa(v) ∗ ra(v) ∗ pe _ pa(v ′) ∗ ra(v ′) ∗ pe ′

, it suffices to show that (σ1,h1) τ ′ ⊨S′ ph ∗ rh,pa ∗ ra,v ′
: Tv ′ holds. This follows from lemma F.16

and the substitution:

pe = pe ∗ rh ∗ ra(v)
p ′
e
= pe

′ ∗ rh ∗ ra(v ′)

yielding:

h1 ∈ Jph ∗ pa(v) ∗ peKλ
(h1,h2) ⊨λ;A pa(v) ∗ pe _ pa(v ′) ∗ p ′

e

as required.
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— Case Env . This case is trivially true. □

Theorem F.20 (Soundness of Frame). If

⊢A Rh ∗ Ra(x) Qm (65)

A ⊨ Rh stable (66)

∀x ∈ X .A ⊨ Ra(x) stable (67)

fv(Rh,Ra(x)) ∩mod(C) = ∅ (68)

then:
JSK ⊆ JS′K

Proof. To start off, as A ⊨ Rh stable, clearly Ph ∗ Rh ∈ StableA and therefore, S′ ∈ Spec.

Take (σ0,h0)τ ∈ JSK arbitratry, sufficient to show (σ0,h0)τ ∈ JS′K.
Let

ph =WJPhKσ0A
rh =WJRhKσ0A

pa(v) =WJPa(v)KA
ra(v) =WJRa(v)KA

To show (σ0,h0)τ ∈ JS′K, for some arbitraryv0 ∈ X , assume h0 ∈ Jph ∗rh ∗pa(v0) ∗ra(v0) ∗TrueKλ .
Then, clearly h0 ∈ Jph ∗ pa(v0) ∗ TrueKλ . Then, as (σ0,h0)τ ∈ JSK, for some T ⊆ STrace:

(σ0,h0) τ ⊨S ph,pa,v0 : T (69)

∀τ̂ ∈ T. goodenvm(τ̂ ) ⇒ lterm(τ̂ ) (70)

From F.19 and (69), (σ0,h0) τ ⊨S ph ∗ rh,pa ∗ ra,v0 : τ̂ -unframerh,ra (T). To reach the goal now, it

suffices to show that for some arbitrary τ̂ ′ ∈ τ̂ -unframerh,ra (T):
goodenvm(τ̂

′) ⇒ lterm(τ̂ ′)
To reach this goal, assume ¬ lterm(τ̂ ′). Clearly, from the definition of τ̂ -unframerh,ra , this implies

¬ lterm(τ̂ ), so from (70), ¬ goodenvm(τ̂ ), which is equivalent to:

∀O ∈ AOb<lay(Ô ). ∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̂ (j)) (71)

∃i ∈ N. ∀j ≥ i . envheld(Ô, τ̂ (j)) (72)

for some Ô ∈ POb<m .

To reach the goal, it is sufficient to show that the same holds for τ̂ ′
. To show (71) holds for τ̂ ′

,

takeO ∈ AOb<lay(Ô ) and i ∈ N arbitrary. Using (71), there is some j ≥ i such that ¬ locheld(O, τ̂ (j)),
which implies:

∀wh,wa, r .¬(τ̂ (j) � (wh,wa)) ∨ θwh
(r ) ̸⊒ O

Let τ̂ (j) = (σj ,hj ,p j
h
,p j

a
,vj ), clearly, if for some arbitrarywh,wa and r , τ̂

′(j) � (wh,wa), then there

exists somew ′
h
andwr ′

h
such that:

wh = w
′
h
⊙wr ′

h

w ′
h
∈ p j

h

wr ′
h
∈ rh



TaDA Live 95

and τ̂ (j) � (w ′
h
,w ′

a
), therefore, from above, θw ′

h

(r ) ̸⊒ O . Assume θwh
(r ) ⊒ O for a contradiction. As

O is an atom, θwr ′
h

(r ) ⊒ O holds, which in turn implies that lay(O) ≥ lay(θwr ′
h

(r )). As lay(O) <
lay(Ô) < m, this forms a contradiction with (65), therefore θwh

(r ) ⊒ O holds, which is sufficient to

show ¬ locheld(O, τ̂ ′(j)), as required.
To show (72) for τ̂ ′

, given (72) for some i ∈ N, taking j ≥ i arbitrary, envheld(Ô, τ̂ (j)) holds. This
breaks down into three cases depending on Ô :

— O ∈ Oblig. In this case, envheld(Ô, τ̂ (j)) is equivalent to:
∀wh,wa. τ̂ (j) � (wh,wa) ⇒ ∃r . ξwh⊙wa

(r ) ⊒ Ô

Let τ̂ (j) = (σj ,hj ,p j
h
,p j

a
,vj ), to show envheld(Ô, τ̂ ′(j)), take wh ,wa such that τ̂ ′(j) � (wh,wa). As

above, we can split these intow ′
h
,wr ′

h
,w ′

a
andwr ′

a
such that:

wh = w
′
h
⊙wr ′

h
wa = w

′
a
⊙wr ′

a

w ′
h
∈ p j

h
wr ′

h
∈ rh w ′

a
∈ p j

a
(vj ) wr ′

a
∈ ra(vj )

From envheld(Ô, τ̂ (j)), ξw ′
h
⊙w ′

a
(r ) ⊒ Ô holds. From the definition of ⊙ρ , ξw ′

h
⊙wr ′

h
⊙w ′

a
⊙wr ′

a
(r ) •

θwr ′
h

(r ) • θwr ′
a
(r ) = ξw ′

h
⊙w ′

a
(r ). Assuming ξw ′

h
⊙wr ′

h
⊙w ′

a
⊙wr ′

a
(r ) ⊒ Ô for a contradiction, as Ô is an

atom, θwr ′
h

(r ) • θwr ′
a
(r ) ⊒ Ô , which forms a contradiction with (65). This is sufficient to show

envheld(Ô, τ̂ ′(j)), as required.

— O = (r ,X1 ↠k X2), O = X1 ↠k X2. These cases are trivial as the frame extension does not

change the state of regions or the value of the pseudo-quantified variabled.

From this, (72) and (71) for τ̂ ′
. Therefore ¬ goodenvm(τ̂

′) holds, as required. From this we infer

that:

∀τ̂ ′ ∈ τ̂ -unframerh,ra (T). goodenvm(τ̂
′) ⇒ lterm(τ̂ ′)

This suffices to prove (σ0,h0)τ ∈ JS′K, as required.
□

G COMPARISONWITH LILI

LiLi went a long way in understanding how to specify and verify blocking operations. Although we

share most of our goals with LiLi, our approach to specification/verification of progress is radically

different, leading to a more compositional verification system.

G.1 Specifications

LiLi is based on proving refinements, so specifications are themselves programs. To specify an

abstractly atomic blocking operation with an atomic specification, LiLi introduces a primitive-

blocking specification construct: await(B){C} executes C atomically if scheduled in a state where

B is true. As both fair- and spin-lock acquisition are specified using await(l = 0){l := 1} the
specifications include a flag to indicate whether the await should be considered starvation-free

(SF) or only deadlock-free (DF). LiLi describes only how to verify an implementation against these

specifications; client reasoning is not handled. The contextual refinement result, however, allows

using the specifications of a module A to prove correctness of a module B built on top of A. The

methodology consists of taking the verified specifications of A’s operations, which are in the form

await(B){C}
SF/DF, and transforming them into non-atomic programs using so-called “wrappers”.

Then, the transformed specifications are inlined in B in place of the calls to A’s operations, before

proving B correct. For example, a fair lock (await(l = 0){l := 1}SF) will be transformed into a
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program with a global queue of thread identifiers, and locking would correspond to two separate

events: the request of the lock by enqueuing of the current thread id in the queue, and the lock

acquisition once the current thread is the head of the queue. The verification of a fair-lock client

will not see much simplification from the inlining of the wrapped specifications. In general, for

both SF and DF operations, the wrappers will generate more than one event and will contain ghost

state. In other words: LiLi’s specifications are not truly atomic.

More deeply, the SF and DF properties are not represented in the specifications as logical facts

that can be used directly in the logic, but implicitly represented in the dynamic behaviour of

the wrappers. This leads, in the verification, to duplication in the proofs: for SF for example, the

implementation would need to prove starvation freedom, only for the client to reprove progress of

the wrapper to translate the behaviour back to logical facts in the assertions.

We believe that representing blocking with environment liveness assumptions (through↠) and

bounded impedence assumptions (though ordinals) is the key to solving this issue. TaDA Live does

not distinguish between client and library verification: it does both uniformly in a single system,

demonstrating the generality and usefulness of its specifications.

Moreover, injecting a primitive blocking await command just to give the specifications of ab-

stractly blocking code, raises a number of ackward issues. For example, to interpret the specifications

it is necessary to specify whether they are to be interpreted under weakly- or strongly- fair sched-

uling, a difference that is immaterial for the underlying code. Another example is the fact that an

implementation satisfying await(B){C} is required not to terminate in a context where B is forever

false. It is not clear why a specification should require non termination, since the client cannot
observe it. Instead, our specifications only require termination under the stated assumptions, thus

accepting code that terminates under weaker assumptions, as formalised by the LiveW rule.

G.2 Verification

LiLi does not directly handle client reasoning within the logics, only verification of an implementa-

tion against its specification. Even using the refinement result to verify a client in LiLi using the

specifications the imported module would only work if the client is itself another module. The

proof system does not include a parallel rule.

Our environment liveness condition was informed by LiLi’s definite progress condition. In LiLi,

progress rely/guarantee is expressed through definite actions of the form P ⇝ Q , intuitively
requiring that when the system is in a state satisfying P , eventually a state satisfying Q will be

reached. Definite actions are similar in spirit to our obligations, but differ in two crucial aspects:

locality of ghost state; and the abstraction of the environment.

— Locality of ghost state: in LiLi, cycles in the argument are avoided by having P in a definite action

unambiguously assign the responsibility of fulfilling the action to some thread. This is done by

assigning unique thread ids and keeping a global ghost state (updated through ghost code) that

records a virtual queue of threads ordered by dependency. To be able to assign responsibility this

way, one is forced to manipulate in the proof ghost state that relates all the active threads at the

same time.

Our PCM-based obligations allows the proof to represent dependencies between threads as

locally as possible: the layered obligations relate only threads that are directly causally related.

— Abstraction of the environment: Typically, proofs require a number of inter-dependent definite

actions. As LiLi does not have a layering structure, one cannot describe each action separately, and

then describe their dependences. Instead, one needs to lump them together in a chain of definite

actions precisely describing all possible interactions between these actions. This approach makes

the proofs scale poorly as the number of inter-dependent actions increases.
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For example, consider a resource protected by two fair locks:

op(x) {

x1B [x+1]; x2B [x+2];

lock(x1);

lock(x2);

[x]B 1;

unlock(x2);

unlock(x1);

}

LiLi’s definite action for a thread t would say “if x1 is owned by t and x2 is not owned nor
requested by t , then eventually either x1 will be released or x2 will be requested; if x2 is owned by
t then it will be released”. 13 This approach makes the proofs scale poorly in the number of locks,

because reasoning about locking x1 requires considering how to measure progress when it will be

released as a result of locking and unlocking x2. Namely, to prove lock(x1) terminates one shows

that: when x1 is requested, we are enqueued in its queue, with n threads ahead of us. Then, each of

these threads t ′ can choose to either release x1, or to acquire x2. In the former case there’s progress,

in the latter we need to consider the numberm of threads ahead of t ′ in the queue for acquiring x2.
Each time x2 we see progress because t ′ sees progress toward acquiring x2, which brings it closer

to releasing x1. Once t ′ acquired x2 it can only release it after a finite amount of time, and then it

cannot try to acquire it again (this needs to be enforced with some additional ghost state recording

the number of times each thread tries to acquire x2 so we can bound this measure by 1). All in all,

we have a measure of progress (n,m) where n,m ∈ N ∪ {ω} for n the threads ahead of us in the

queue for x1 andm the threads in front of the current holder of x1 in the queue for x2.m must be

ω once x1 to allow a decrease to some finite numberm′
when the threads joins the x2 queue.

Our layered obligations solve this problem elegantly: each lock xi is associated with an obligation

ri to release it and the two obligations are declared dependent using the layers: lay(r1) > lay(r2).
In the reasoning for locking x1, it is sufficient to use the assumption of liveness of the obligation of

x1 only; the environment is free to implement its fulfilment by relying on liveness of any obligation

of lower layer (i.e. the one associated with x2).
This also circumvents the issue of keeping track of the number of times x2 can be acquired/re-

leased while holding x1 because we know that any thread holding r1 needs to show it fulfills it

in finite time, so, regardless of how many times, it will only be able to acquire/release x2 finitely
many times.

13
Note that even to state this liveness invariant one needs to distinguish two separate events for each lock operation, the

request and the acquisition of the lock.
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