
Views: Compositional Reasoning for Concurrent Programs

Thomas Dinsdale-Young
Imperial College

td202@doc.ic.ac.uk

Lars Birkedal
IT University of Copenhagen

birkedal@itu.dk

Philippa Gardner
Imperial College
pg@doc.ic.ac.uk

Matthew Parkinson
Microsoft Research

mattpark@microsoft.com

Hongseok Yang
University of Oxford

hongseok00@gmail.com

Abstract
Compositional abstractions underly many reasoning principles for
concurrent programs: the concurrent environment is abstracted in
order to reason about a thread in isolation; and these abstrac-
tions are composed to reason about a program consisting of many
threads. For instance, separation logic uses formulae that describe
part of the state, abstracting the rest; when two threads use disjoint
state, their specifications can be composed with the separating con-
junction. Type systems abstract the state to the types of variables;
threads may be composed when they agree on the types of shared
variables.

In this paper, we present the “Concurrent Views Framework”,
a metatheory of concurrent reasoning principles. The theory is pa-
rameterised by an abstraction of state with a notion of composi-
tion, which we call views. The metatheory is remarkably simple,
but highly applicable: the rely-guarantee method, concurrent sepa-
ration logic, concurrent abstract predicates, type systems for recur-
sive references and for unique pointers, and even an adaptation of
the Owicki-Gries method can all be seen as instances of the Con-
current Views Framework. Moreover, our metatheory proves each
of these systems is sound without requiring induction on the oper-
ational semantics.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Logics of programs

General Terms Theory, Verification

Keywords concurrency; axiomatic semantics; compositional rea-
soning

1. Introduction
This paper aims to find the core principles underlying compo-
sitional reasoning systems for (first-order) concurrent programs.
Compositional reasoning means that we consider each component
in isolation without having to know the precise concurrent, or se-
quential, context in which it will be placed. This is essential for rea-
soning about incomplete code or libraries: the context is not known.
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In a concurrent setting, compositional reasoning allows a thread to
be considered in isolation, rather than considering all possible in-
terleavings of a program.

Type systems and program logics are two common forms of
compositional reasoning. They strike a balance between invari-
ant properties that must be preserved during the execution of a
concurrent program, and operations that may be performed. Stan-
dard type systems and rely-guarantee methods [20] focus on pre-
serving global properties: for example, the typing of the memory.
Such approaches are good at handling sharing and interference,
but work less well with stateful behaviour. Contrastingly, separa-
tion logic [18, 27] focuses on local portions of the state, which
can be manipulated independently. This approach is good at han-
dling stateful behaviour, but works less well with sharing and in-
terference. There have been forays into the middle ground such as
linear types [1, 23, 29] and related capability systems [7], which
allow strong (type-changing) updates to memory, and SAGL [15],
RGSep [31], LRG [14] and deny-guarantee [9, 13], which combine
ideas from rely-guarantee and separation logic to enable reasoning
about fine-grained concurrency in the heap. These developments
have led to increasingly elaborate reasoning systems, each intro-
ducing new features to tackle specific applications of compositional
reasoning and ad-hoc metatheory to justify these features.

Given the diversity of these approaches, it is not clear that
they have significant common ground. Can the ad-hoc metatheory
of each be generalised to give a paradigm in which all can be
understood?

We argue that in fact the above reasoning systems employ
a common approach to compositionality. They provide thread-
specific abstractions of the state, which embody enough informa-
tion to prove properties about the behaviour of a thread whilst
allowing for the possible behaviours of other threads.

We introduce the “Concurrent Views Framework” (“Views
Framework” or “Views” for short), which captures this compo-
sitional reasoning by introducing the notion of views. Intuitively, a
thread’s view consists of abstract knowledge about the current state
of the machine and the thread’s rights to change the state of the
machine. The knowledge of a thread must be stable under the op-
erations of concurrent threads: no other thread may have rights to
invalidate the thread’s knowledge. Conversely, no thread can have
knowledge that another thread has the right to invalidate. Views are
compositional: knowledge and rights may be distributed between
threads and recombined.

To illustrate the Views Framework, first consider type systems
for an imperative concurrent language. In a simple type system, the
types of variables are invariant. Each thread’s view is provided by



a typing context, which embodies the knowledge that the values
of variables agree with their types, and the rights to change the
state such that this typing is preserved. When views are composed,
they must agree on the types of all variables they share. In a type
system that permits strong (i.e. type-changing) updates, threads
again have knowledge that variables agree with their types, but may
make updates that change the types of variables. Threads’ views
may be consistently composed only if they describe disjoint sets of
variables, which each thread can be seen to own. Note that, since
heap locations may be aliased by multiple variables, it is not in
general permissible to update their types. However, a type system
may include unique reference types, that confer ownership of heap
locations, and hence allow type-changing updates. In this paper, we
show how a simple type system (§2.2), a type system with strong
updates, recursive types and subtyping (§7.1), and a type system
with unique references (§7.2) can all be formalised in Views.

Now consider program logics for the same concurrent language.
With concurrent separation logic, the views are assertions that
describe the part of the state owned by a thread. These views
embody knowledge about the owned part of the state, and confer
the exclusive right to modify it. Views are composed with the
separating conjunction, which enforces disjoint ownership of the
state, so that no thread may alter state owned by another thread.
More elaborate logics, such as deny-guarantee [13] and concurrent
abstract predicates (CAP) [9], allow assertions to describe shared
state and ownership of specific capabilities to update the shared
state. Here, the stability of assertions is important: an assertion
about the shared state must be invariant under operations for which
other threads may have capabilities. In this paper, we represent a
wide range of example program logics in our Views Framework,
including several separation logics (§§3.1, 3.2, 7.4), the Owicki-
Gries [24] (§7.3) and rely-guarantee methods [20] (§4) and CAP
(§7.5). A fuller description of all our examples can be found in the
technical report [11], along with Coq formalisations of many of
them.

The Views Framework embodies the essential ingredients for
sound compositional reasoning. Given a set of views with a com-
position operator (denoted ∗), together with an axiomatisation for
the atomic commands, Views provides a generic program logic.
For soundness, we require a reification function from views to sets
of machine states and an axiom soundness property. The reifica-
tion function relates partial, abstract views to complete, concrete
machine states. Axiom soundness ensures that the axioms for the
atomic commands are sound with respect to the reification, in the
context of an arbitrary environment view. This embeds composi-
tionality in the meaning of ‘program C updates the view from p
to q’: for all environment views r, it must update p ∗ r to q ∗ r.
This approach has previously been used for extending sequential
separation logic for higher-order languages, where it is otherwise
difficult to characterise locality properties of commands, which are
sufficient for ensuring compositionality [2, 3]. We show that the in-
terpretation also provides a simpler and more general metatheory
for logics of concurrent programs, identifying simple properties
needed to prove soundness in contrast with the complex soundness
results in the literature.

The Views Framework provides a generalised frame rule. This
rule is essential for directly encoding the weakening rule from rely-
guarantee and rules for manipulating resource invariants in concur-
rent separation logic. The new rule allows a function to be applied
uniformly to the pre- and postcondition of a command. Without
this rule the encoding of concurrent separation logic, rely-guarantee
and Owicki-Gries method would require a far more complex rep-
resentation of the high-level reasoning with permissions, such as
deny-guarantee.

Given the wide range of examples that are instances of our
framework, we believe “Views” embodies the core principles un-
derlying compositional reasoning about concurrent programs.

Overview. In §2 we present our core contribution — the Concur-
rent Views Framework — defining the parameters and properties
necessary to instantiate our general program logic. As a pedagogi-
cal example, we show how a simple type system may be encoded in
Views. In §3, we show how separation algebras and interference can
be used to construct instances of the Views Framework, illustrating
these constructions with separation logic. In §4, we present a novel
generalisation of the frame rule for the Views Framework. This rule
makes it possible to encode contextual rules, which we illustrate by
the weakening rule of the rely-guarantee method. We present a gen-
eral combination rule in §5, which generalises the rules of disjunc-
tion and conjunction. We give a sufficient condition for its sound-
ness and consider the special cases of disjunction and conjunction.
We outline the general soundness proof for the framework in §6. In
§7, we show the versatility of Views through five further example
instances: recursive types, unique types, the Owicki-Gries method,
atomic concurrent separation logic, and concurrent abstract predi-
cates. Finally, we discuss related work in §8 and conclude in §9.

We have formalised all of the metatheory of the paper, as well
as many of the examples, in Coq (see [11]).

2. Concurrent Views Framework
In this section, we present the Concurrent Views Framework. In
§2.1, we present the programming language and its operational se-
mantics, which is parameterised by a notion of state and a set of
primitive atomic commands and their semantics as state transform-
ers. In §2.2, we provide a set of rules for compositional reasoning,
which is parameterised by an abstraction of the state equipped with
a composition operation — a views semigroup — and an axiomati-
sation of the atomic commands. In §2.3, we give a general sound-
ness result for the framework with respect to the operational seman-
tics, which is parameterised by a relationship between the abstract
views and the concrete states, and requires each axiom to satisfy
a soundness property with respect to the semantics of the corre-
sponding atomic command. To illustrate the Views Framework, we
interleave its definition with an example of how to instantiate it for
a simple type system for a heap update language.

2.1 Programming Language and Operational Semantics
We define the Views Framework on a simple programming lan-
guage that is built from standard composite commands, and param-
eterised by a set of atomic commands. This enables us to consider
many examples without having to change the metatheory.

Parameter A (Atomic Commands). Assume a set of (syntactic)
atomic commands Atom, ranged over by a.

Definition 1 (Language Syntax). The set of (syntactic) commands,
Comm, ranged over by C, is defined by the following grammar:

C ::= a
∣∣ skip ∣∣ C;C

∣∣ C + C
∣∣ C ‖ C ∣∣ C∗.

The operational semantics is parameterised by a model of ma-
chine states and an interpretation of the atomic commands as state
transformers.

Parameter B (Machine States). Assume a set of machine states S,
ranged over by s.

Parameter C (Interpretation of Atomic Commands). Assume a
function J−K : Atom → S → P(S) that associates each atomic
command with a non-deterministic state transformer. (Where nec-
essary, we lift non-deterministic state transformers to sets of states:
for S ∈ P(S), JaK(S) =

⋃
{JaK(s) | s ∈ S}.)



For machine state s, the set of states JaK(s) is the set of pos-
sible outcomes of running the atomic command a. If the set is
empty, then the command blocks. Here, we consider partial cor-
rectness, and so ignore executions that deadlock — that is, reach
a state (other than skip) in which every thread is blocked. If we
wish to guarantee against some exceptional behaviour, it should be
modelled with an exception state, rather than by blocking.

We define the operational semantics of the language using a
labelled transition system. Transitions are between commands, and
are labelled by atomic commands or id. id labels computation steps
in which the state is not changed.

Definition 2 (Transition Labels). The set of transition labels,
Label

def
= Atom ] {id}, extends the set of atomic commands with a

designated identity label, id. Labels are ranged over by α. J−K is

extended to Label by defining JidK def
= λs. {s}.

The labelled transition system splits the control-flow aspect of
execution, represented by the transitions between commands, and
the state-transforming aspect of execution, represented by the la-
belling of the transitions. This makes it easy to reinterpret programs
over a more abstract state-space, while preserving the control-flow
structure, which simplifies the soundness proof of our logic.

Definition 3 (Labelled Transition System and Operational Seman-
tics). The labelled transition relation− −−→ − : Comm×Label×
Comm is defined by the following rules:

C1
α−→C′1

C1;C2
α−→C′1;C2 skip;C2

id−→C2 C1 +C2
id−→Ci

i∈{1, 2}

C∗
id−→C;C∗ C∗

id−→ skip skip ‖C2
id−→C2 C1 ‖ skip

id−→C1

a
a−→ skip

C1
α−→C′1

C1 ‖C2
α−→C′1 ‖C2

C2
α−→C′2

C1 ‖C2
α−→C1 ‖C′2

The multi-step operational transition relation −,− →∗ −,− :
(Comm× S)× (Comm× S) is defined by the following rules:

C, s→∗ C, s
C1

α−→ C2 s2 ∈ JαK(s1) C2, s2 →∗ C3, s3

C1, s1 →∗ C3, s3

Heap Update Language
For our examples, we use a language with simple atomic prim-
itives for manipulating a heap. We therefore define instances of
Parameters A, B and C accordingly.
Definition 4 (Atomic Heap Commands) : Parameter A. As-
sume a set of variable names Var, ranged over by x and y ,
and a set of values Val, ranged over by v, of which a subset
Loc ⊆ Val represents heap addresses, ranged over by l. The syn-
tax of atomic heap commands, AtomH, is defined by the gram-
mar:

a ::= x := y
∣∣ [x ] := v

∣∣ [x ] := y
∣∣ x := [y ]

∣∣ x := ref y .

Definition 5 (Heap States) : Parameter B. Machine states are
partial functions from variables and locations to values. There is
also an exceptional faulting state, denoted  , which represents
the result of an invalid memory access. Formally,

SH
def
= ((Var ] Loc) ⇀fin Val) ] { }.

Definition 6 (Heap Command Interpretation) : Parameter C.
The interpretation of the atomic heap-update commands is given

by:

Jx := yK(s) def
= y ∈ dom(s) . {s[x 7→ s(y)]}

J[x ] := vK(s) def
= x , s(x) ∈ dom(s) . {s[s(x) 7→ v]}

J[x ] := yK(s) def
= x , y , s(x) ∈ dom(s) . {s[s(x) 7→ s(y)]}

Jx := [y ]K(s) def
= y , s(y) ∈ dom(s) . {s[x 7→ s(s(y))]}

Jx := ref yK(s) def
= y ∈dom(s) .

{s[x 7→ l, l 7→ s(y)] | l∈ Loc \ dom(s)}

where b . s = if b then s else  . Here we extend dom to SH by
taking dom( ) = ∅.

2.2 Views and Program Logic
Reasoning systems typically do not require the user to reason di-
rectly about the state; they provide an abstract representation of the
state that supports a particular form of reasoning. For example, in
a simple type system the state is abstracted by a type context, Γ,
which maps variables, x , to types, τ . A type represents a property
about the variable, e.g. that it is a pointer to a cell in the heap. In a
program logic like separation logic, the state is abstracted by asser-
tions, P,Q, that describe parts of the memory. Complex assertions
may be used to represent interesting structures, such as a lock x
with an invariant P : Lock(x, P ). Such assertions may not merely
describe the state, but also enforce a protocol that threads must obey
— for instance, only releasing a lock after establishing its invariant.
These abstract representations do not precisely describe the mem-
ory, just certain properties it satisfies. They also can contain addi-
tional information — about typing, ownership and protocols, for
instance — that is not present in the underlying state.

These abstractions form the key parameter of the framework:
the views. We have one basic requirement for views, which is that
they form a commutative semigroup.

Parameter D (View Commutative Semigroup). Assume a commu-
tative semigroup (View, ∗). The variables p, q, r are used to denote
elements of View.

If the semigroup has a unit, u, then we call it a view monoid,
written (View, ∗, u). The unit is not required for the theory, but
simplifies its use.

Intuitively, views are resources that embody knowledge about
the state and the protocol threads must obey, and rights to modify
the state in accordance with the implied protocol. The semigroup
operation ∗ (view composition) combines the knowledge and rights
of two views.

Since composition is used to combine the views of different
threads, it must ensure consistency between these views. For exam-
ple, to combine two typing contexts, they must agree on the type of
any variables they have in common. Since threads only maintain the
types in their view, if agreement was not enforced then one thread
might violate another’s expectations.

In separation logic, composition (separating conjunction) en-
forces that ownership is exclusive: no two views can simultane-
ously have ownership of a heap cell. In variants that allow asser-
tions about shared state, such as deny-guarantee, composition also
forces consistency between such assertions.

This consistency is typically implemented by a special incon-
sistent view that is the result of composing two views that are not
consistent. The inconsistent view is usually a (unique) zero element
of the semigroup: when composed with any other view, the result
is the inconsistent view.

We define a program logic for our programming language, in
which views provide the pre- and postconditions of the commands.



The program logic is parameterised by the set of axioms for atomic
commands.

Parameter E (Axiomatisation). Assume a set of axioms Axiom ⊆
View × Label× View.

Definition 7 (Entailment). The entailment relation � ⊆ View ×
View is defined by:

p � q
def⇐⇒ (p, id, q) ∈ Axiom.

Definition 8 (Program Logic). The program logic’s judgements
are of the form ` {p} C {q}, where p, q ∈ View provide the
precondition and postcondition of command C ∈ Comm. The
proof rules for these judgements are as follows:

(p, a, q) ∈ Axiom

` {p} a {q}
` {p} C {q}

` {p ∗ r} C {q ∗ r} ` {p} skip {p}

` {p} C1 {q} ` {p} C2 {q}
` {p} C1 + C2 {q}

` {p} C {p}
` {p} C∗ {p}

` {p} C1 {r} ` {r} C2 {q}
` {p} C1;C2 {q}

` {p1} C1 {q1} ` {p2} C2 {q2}
` {p1 ∗ p2} C1 ‖ C2 {q1 ∗ q2}

p � p′ ` {p′} C {q}
` {p} C {q}

` {p} C {q′} q′ � q

` {p} C {q}

The intended semantics of ` {p} C {q} is that if the program
C is run to termination from an initial state that is described by
the view p, then the resulting state will be described by the view
q. This is a partial correctness interpretation: the judgements say
nothing about non-terminating executions.

The proof rules are standard rules from disjoint concurrent
separation logic. They include the frame rule, which captures the
intuition that a program’s view can be extended with a composable
view, and the disjoint concurrency rule, which allows the views
of two threads to be composed. Note that, although in separation
logic the concurrency rule imposes disjointness, in Views it does
not; it just imposes composability. The last two rules are rules of
consequence: they allow the precondition to be strengthened or the
postcondition weakened with respect to the axiomatically-specified
relation �. If � is reflexive, these rules may be combined into a
single rule.

Simple Type System
Consider a simple type system for our heap update language,
where variables and heap cells are typed from the set Type,
ranged over by τ , and defined by:

τ ::= val
∣∣ ref τ .

The type val indicates that a variable or heap cell contains some
unspecified value, while the type ref τ indicates that it contains
the address of a heap cell whose contents is typed as τ . A typing
context Γ : Var ⇀ Type is a partial function which assigns types
to variables.

Within the Views Framework, typing contexts are views.
Composition, ∪⊥, is the union of contexts (as relations), with
a special inconsistent typing context, ⊥, used to denote the com-
position of typing contexts that disagree on the type of some
variable.
Definition 9 (Simple Type Views) : Parameter D. The view
monoid for the simple type system is defined as:

((Var ⇀ Type) ] {⊥} ,∪⊥, ∅)
Judgements of the type system have the form Γ ` C. We

treat this as syntax for ` {Γ} C {Γ} in the Views Framework. It
remains to give axioms for the type system.

Definition 10 (Simple Type Axioms) : Parameter E. The ax-
ioms for the simple type system are defined schematically as:

x : τ, y : τ ` x := y x : ref val ` [x ] := v

x : τ, y : ref τ ` x := [y ] x : ref τ, y : τ ` x := ref y

x : ref τ, y : τ ` [x ] := y

The inference rules of the type system are as follows:

Γ ` skip

Γ ` C1 Γ ` C2 op ∈ {; ,+}
Γ ` C1 op C2

Γ1 ` C1 Γ2 ` C2

Γ1,Γ2 ` C1‖C2

Γ ` C
Γ ` C∗

Γ ` C
Γ,Γ′ ` C

Each of these rules is justified by the rules of the Views program
logic, where we interpret Γ1,Γ2 as Γ1∪⊥ Γ2. The most interest-
ing of these is the last, the weakening rule, which is an instance
of the frame rule, with the frame Γ′.

2.3 Reification and Soundness
In order to relate the program logic to the operational semantics,
it is necessary to define a relationship between the abstract views
and the concrete machine states. In a type system, this would be
given by a judgement Γ ` s asserting that state s is well-typed
with respect to the context Γ. In separation logic, it would be given
by a Kripke model, where the judgement s |= P asserts that
formula P holds in state s. In the Views Framework, we model
this relationship with a reification function.

Parameter F (Reification). Assume a reification function b−c :
View→ P(S) which maps views to sets of machine states.

Note that the reification function has very few restrictions. The
semigroup structure of views is not reflected at the level of machine
states: the notion of composition is purely an abstraction. The space
of machine states need not be covered completely by the reification;
this is useful for giving fault-avoiding interpretations to our proof
judgements. Furthermore, inconsistent views may be mapped to the
empty set of machine states.

Choosing an appropriate reification function is important. We
could, for instance, map all views to the empty set and claim
soundness of an arbitrary logic. However, judgements in the logic
would convey no information about the operational semantics, as
they would not describe the execution of a program from any initial
state at all. Consequently, soundness is always with respect to the
choice of reification function.

Soundness requires that the axioms concerning atomic com-
mands are satisfied by the operational interpretation of the com-
mands. We define an abstract notion of executing a small step of the
program. To be able to make the step from p to q with the action α,
we must ensure that the operational interpretation of the action sat-
isfies the specification, and moreover it also preserves any possible
environment view.

Definition 11 (Action Judgement). The action judgement is de-
fined as:

α  {p}{q} def⇐⇒
JαK (bpc) ⊆ bqc ∧ ∀r ∈ View. JαK (bp ∗ rc) ⊆ bq ∗ rc.

For a view monoid, this definition simplifies to:

α  {p}{q} ⇐⇒ ∀r ∈ View. JαK (bp ∗ rc) ⊆ bq ∗ rc. (1)

Semantic entailment is a special case of the action judgement,
for the label id.

Definition 12 (Semantic Entailment). p � q def⇐⇒ id  {p}{q} .



Programming Language
(A: Atomic Commands)

High-level program logic
(D: Views Semigroup, E: Axiomatisation)

Soundness
(F: Reification, G: Axiom Soundness)

Low-level operational semantics
(B: States, C: Atomic Semantics)

Figure 1. Overview of the Views Framework

For each axiom (p, α, q), the interpretation of α must update
view p to q while preserving any environment view. This is cap-
tured by the following property:

Property G (Axiom Soundness). For every (p, α, q) ∈ Axiom,

α  {p}{q} .

This property is both necessary and sufficient for the soundness
of the program logic. We state the soundness result here, and
provide more details in §6.

Theorem (Soundness). Assume that ` {p} C {q} is derivable
in the program logic. Then, for all s ∈ bpc and s′ ∈ S, if
(C, s)→∗ (skip, s′) then s′ ∈ bqc.

Simple Type System: Soundness
We reify typing contexts as the set of states which are well-
typed with respect to the context. Consequently, we must define
a notion of typing for states.
Definition 13 (State Typing). The state typing judgement Γ; Θ `
s, where Γ : Var ⇀ Type, s ∈ SH and Θ : Loc ⇀ Type ranges
over heap typing contexts, is defined as follows:

Γ; Θ ` s def⇐⇒ ∀x ∈ dom (Γ) .Θ ` s(x) : Γ(x)
∧ ∀l ∈ dom (Θ) .Θ ` s(l) : Θ(l)

where Θ ` v : τ
def⇐⇒ τ = val ∨ τ = ref (Θ(v)).

The state typing essentially ensures that every typed variable
and location has a value consistent with its type. Specifically,
this means that references must refer to addresses that have the
appropriate type. Note that it would not be possible to have
x and y referencing the same location in the typing context
x : ref val, y : ref ref val. This is necessary, since otherwise
an update to the location via x could invalidate the type of y .
Definition 14 (Simple Type Reification) : Parameter F. The
simple type reification, b−cTS : ViewMTS → P(SH), is defined
as follows:

bΓcTS
def
= {s ∈ SH | ∃Θ.Γ; Θ ` s} .

To establish soundness, we need only show Property G (Ax-
iom Soundness). This is straightforward; for further details, con-
sult [11]. Importantly, this works because we do not require lo-
cality at the low level of the semantics, only at the high level.
Thus, standard separation algebra approaches [6, 12] would not
work for this example.

2.4 Summary
The parameters of the Views Framework are summarised in Fig-
ure 1. The language (§2.1) is parameterised by a set of atomic
commands, and its semantics is determined by a notion of state
and the semantics of the atomic commands as state transformers.
The Views program logic (§2.2) is parameterised by a semigroup of

views and an axiomatisation of the atomic commands. The sound-
ness of the logic (§2.3) is with respect to a reification of views into
concrete states, and is established by proving the axiom soundness
property.

In the following sections, we consider numerous instances of
the Views Framework. In doing so, we elaborate the metatheory
with common constructions and additional proof rules.

Remark. The Views Framework is more general than existing ax-
iomatisations of separation logic [6], in that it does not restrict
views to be sets of (machine) states but allows them to be elements
in any semigroup. In fact, choosing this views semigroup and an ac-
companying reification function well is the most important step of
using our framework. A good choice of the views semigroup leads
to a program logic where a verifier works on the right level of ab-
straction of machine states. Also, it picks an appropriate scope for
the universal quantification in the axiom soundness property, and
gives an effective set of axioms for atomic commands. This influ-
ence of the views semigroup on axiom soundness corresponds to
selecting a notion of locality properties for commands, which was
usually done in a fixed manner in the work on separation logic.

3. Constructing Views
We can instantiate of the framework directly, but instantiations
often have common structure which can be used to simplify the
process. We present two general approaches to constructing views
as sets, whose elements themselves belong to a (partial) monoid.

3.1 Separation Algebras
Calcagno et al. [6] introduced the concept of separation algebras
to generalise separation logic. For many examples, we use a gen-
eralisation of separation algebras with multiple units [5, 12] (and
without the cancellativity requirement) to construct a view monoid.

Parameter H (Separation Algebra). A separation algebra (M,•,I)
is a partial, commutative monoid with multiple units. Namely, it is
a setM equipped with a partial operator • :M×M⇀M and
a unit set I ⊆M satisfying:

• Commutativity: m1 •m2 = m2 •m1 when either is defined;
• Associativity: m1 • (m2 •m3) = (m1 •m2) •m3 when either

is defined;
• Existence of Unit: for all m ∈ M there exists i ∈ I such that
i •m = m; and
• Minimality of Unit: for allm ∈M and i ∈ I , if i•m is defined

then i •m = m.

Definition 15 (Separation View Monoid) : Parameter D. Each
separation algebra (M, •, I) induces a separation view monoid

(P(M), ∗, I), where p1 ∗ p2
def
= {m1 •m2 |m1 ∈ p1,m2 ∈ p2}.

Separation algebras are typically constructed by adding instru-
mentation to machine states; this instrumentation determines how
states may be composed, typically by recording ownership or in-
variant properties. While previous work has required cancellativity,
we do not.

Remark. For Separation View Monoids, it is common to choose
entailment (�) to be subset inclusion (⊆).



Disjoint Concurrent Separation Logic
To illustrate the separation algebra, we present a simple separa-
tion logic for disjoint concurrency.
Definition 16 (DCSL Separation Algebra) : Parameter H. The
separation algebra for disjoint concurrent separation logic is
(MDCSL,], {∅}), whereMDCSL

def
= (Var ] Loc) ⇀fin Val, ] is

the union of partial functions with disjoint domains, and the unit,
∅, is the partial function with the empty domain.

Elements of MDCSL declare ownership of the variables and
heap addresses that belong to their domains, as well as defining
their values. Significantly, they do not declare information about
parts of the state which are not owned. Views p, q ∈ P(MDCSL)
are sets of these abstract states. Thus, p and q describe resources,
which hold information about part of the state.

Judgements of disjoint concurrent separation logic are, as in
the Views Framework, triples of the form ` {p} C {q}. The
view x ⇀⇁ v denotes the singleton set of the partial function
mapping variable x to value v, and x ⇀⇁ denotes the set of all
partial functions that map only variable x to a value. Similarly,
the views l 7→ v and l 7→ map heap address l to v or any value
respectively. The view ∃v. p(v) is the (infinite) join of p(v) for
all values of v.
Definition 17 (DCSL Axiomatisation) : Parameter E. The
axiomatisation for separation logic is given by the schemas:

{x ⇀⇁ ∗ y ⇀⇁ v} x := y {x ⇀⇁ v ∗ y ⇀⇁ v}
{x ⇀⇁ l ∗ l 7→ } [x ] := v {x ⇀⇁ l ∗ l 7→ v}

{x ⇀⇁ l ∗ l 7→ ∗ y ⇀⇁ v} [x ] := y {x ⇀⇁ l ∗ l 7→ v ∗ y ⇀⇁ v}
{y ⇀⇁ l ∗ l 7→ v ∗ x ⇀⇁ } x := [y ] {y ⇀⇁ l ∗ l 7→ v ∗ x ⇀⇁ v}
{x ⇀⇁ ∗ y ⇀⇁ v} x := ref y {∃l. x ⇀⇁ l ∗ l 7→ v ∗ y ⇀⇁ v}

For the soundness of a view model based on separation algebra,
we typically provide a reification function for elements of the
separation algebra. This is then lifted to give a reification for views.

Parameter I (Separation Algebra Reification). b−c :M→P(S).

Definition 18 : Parameter F. bpc =
⋃
m∈p bmc.

Given this construction of a view monoid and reification func-
tion, Property G has an equivalent formulation that is typically sim-
pler to check.

Property J (Axiom Soundness II). For every (p, α, q) ∈ Axiom,
and every m ∈M, JαKbp ∗ {m}c ⊆ bq ∗ {m}c.
Remark. The case where α = id will always hold if p � q implies
that p ⊆ q, justifying subset inclusion as a natural choice for the
entailment relation.

Disjoint Concurrent Separation Logic: Soundness
Since separation-logic views are sets of partial functions from
variables and locations to values, they can be seen as sets of heap
states. Thus, we can define a simple notion of reification.
Definition 19 (DCSL Reification) : Parameter I. The DCSL
reification, b−cDCSL :MDCSL → P(S), is defined as follows:

bscDCSL

def
= {s}.

Our axioms for atomic commands are sound in the sense of
Property J. Taking entailment to be ⊆ gives the standard rule of
consequence.

Note that the reification function does not cover the machine
state space: there is no view p with  ∈ bpc. This means that our
separation-logic triples do not permit memory faults to occur, in
accordance with the standard interpretation.

3.2 Separation Algebras with Interference
Views model partial, abstracted information about machine states
that is stable — immune to interference from other threads. In
logics with fine-grained permissions such as those used in deny-
guarantee (DG) [13] and concurrent abstract predicates (CAP) [9],
the elements of the separation algebra are not stable by construc-
tion, but an additional obligation is added to only mention stable
sets of elements. This can simply be seen as another way of con-
structing a view monoid from a separation algebra and an interfer-
ence relation.

Parameter K (Interference Relation). An interference relation
R ⊆ M ×M on a separation algebra (M, •, I) is a preorder
satisfying the properties:

• for all m1,m2,m,m
′ ∈M with m = m1 •m2 and m R m′,

there exist m′1,m
′
2 ∈ M with m1 R m′1, m2 R m′2 and

m′ = m′1 •m′2; and
• for all i ∈ I and m ∈M with i R m, m ∈ I .

Definition 20 (Stabilised View Monoid) : Parameter D. An in-
terference relationR on a separation algebra (M, •, I) generates
a stabilised view monoid (R(ViewM), ∗, I), where

R(ViewM) = {p ∈ P(M) | R(p) ⊆ p}

The notation R(p) means {m ∈M | ∃mp ∈ p.mp R m}. The
composition ∗ is as in Definition 15. That R(ViewM) is closed
under ∗ and includes I follows from the conditions in Parameter K.
Remark. Unlike in CAP [9] and DG [13], we do not need to provide
a guarantee relation to say what a thread can do. That is dealt with
by axiom soundness.

In this setting, Property G has an equivalent formulation that is
typically simpler to check.

Property L (Axiom Soundness III). For every (p, α, q) ∈ Axiom,
and every m ∈M then JαK(bp ∗ {m}c) ⊆ bq ∗ R({m})c.

Separation Logic with Ownership
We illustrate how interference can be used to construct views,
by showing how separation logic can be constructed this way.
Rather than using the separation algebra introduced in Sec-
tion 3.1, we construct a view monoid for disjoint concurrent
separation logic by instrumenting machine states (excluding  )
with an ownership mask, which provides explicit permissions for
stating which variables and addresses are “owned”.
Definition 21 (MSL Separation Algebra) : Parameter H. The
masked-separation-logic separation algebra is (MMSL, •MSL,
IMSL), where

MMSL
def
= (Var ] Loc) ⇀fin (Val× {0, 1}),

m1 •m2 = m
def⇐⇒

dom (m1) = dom (m2) = dom (m)
∧ ∀k ∈ dom (m) .m1(k)↓1 = m2(k)↓1 = m(k)↓1

∧m1(k)↓2 +m2(k)↓2 = m(k)↓2
and I def

= {m ∈MMSL | ∀k ∈ dom (m) .m(k)↓2 = 0} .

where ↓i accesses the i-th component of a tuple.
For each variable (or address), the first component of the

partial function represents its value, and the second component
indicates whether or not the variable (or location) is owned.
If a variable, or location, is undefined then it is not allocated.
Composition requires that the state components are the same as
that of the composite, and that their ownership masks sum to give
the mask of the composite. This ensures that each variable and



location is uniquely owned. This composition is well-defined,
associative and commutative.

If we constructed a view model based on this separation
algebra, the commands we could reason about would be very
limited: they could not alter the (machine) state. This is because
programs are required to preserve all frames, and therefore all
values. However, the intention is that only variables and locations
that are owned are preserved by other threads. Thus, instead of
preserving all frames, we wish only to preserve all stable frames
for a suitable notion of stability. This can be obtained by defining
an interference relation:
Definition 22 (MSL Interference Relation) : Parameter K.

m R m′
def⇐⇒

∀k ∈ dom (m) .m(k)↓2 > 0 =⇒ m′(k) = m(k)

This relation expresses that the environment can do anything
that does not alter the variables and locations owned by the
thread. It is not difficult to see that the interference relation
satisfies the decomposition property: any change that does not
alter the variables or locations owned by either thread does not
alter the variables or locations owned by each thread individually.

If we consider the view monoid induced by the separation al-
gebra under this interference relation, R(ViewMSL), we obtain
a notion of view that is specific about variables and locations
that are owned, but can say nothing at all about variables and lo-
cations that are not owned. Thus, threads are at liberty to mutate
variables and heap locations they own, and allocate locations that
are not owned by other threads, since these operations preserve
stable frames. (Note that composition plays an important role
here: it enforces that the environment cannot also own variables
and locations that belong to the thread.)

We define an operation ι : R(ViewMSL)→ ViewDCSL by:

ι(p)
def
=

{
m ∈MDCSL

∣∣∣∣ ∃m′ ∈ p.∀k, v.m(k) = v ⇐⇒ m′(k) = (v, 1)

}
This operation in fact defines an isomorphism between the two
view monoids, so we can really think of the separation logic
model as being constructed in this way.

This construction of separation logic parallels the approach
of implicit dynamic frames [28]. There, assertions about the state
and about ownership are decoupled. Assertions are required to be
self framing, a property which corresponds directly to stability.

Separation logic with fractional permissions [4] can be de-
fined by using fractions from the interval [0, 1] instead of a bit
mask. In §7.5, we discuss how the more complex permissions
model of CAP can also be expressed using separation algebras
with interference.

4. Generalised Frame Rule
When reasoning uses a context, it is common to have weakening
rules on that context, such as the weakening rule of the type system
in §2.2. In the views representation, weakening rules become rules
that perform the same manipulation on the pre- and postcondition
of the specification. In the simple type system, the weakening rule
corresponded to the frame rule. However, for certain examples the
frame rule is not powerful enough to represent the required context
manipulation directly. We therefore introduce a generalised version
of the frame rule.

Rely-Guarantee
We motivate the need for generalized frame rules by consider-
ing the rely-guarantee method [20]. Rely-guarantee judgements
take the formR,G ` {P} C {Q}. Here, P andQ are assertions

(interpreted as sets of states). R and G are relations on states —
rely and guarantee relations — that describe how the environ-
ment and the program C respectively are allowed to update the
state. The assertions P and Q are required to be stable under R.

The atomic step rule takes the following form:

JaK�P ⊆ G JaK(P ) ⊆ Q
R,G ` {P} a {Q} (2)

where A�P
def
= {(s, s′) ∈ A | s ∈ P}. The first condition

ensures that G describes the possible behaviours of the program.
The rely-guarantee method is epitomised by the following

rule for parallel composition:

G1 ⊆ R2 R1, G1 ` {P1} C1 {Q1}
G2 ⊆ R1 R2, G2 ` {P2} C2 {Q2}

R1 ∩R2, G1 ∪G2 ` {P1 ∩ P2} C1‖C2 {Q1 ∩Q2}
This rule requires that the behaviours of each thread, abstracted
by G1 and G2, are contained in the interference expected by
the other thread, represented by R2 and R1. The context of
the composition relies on the environment doing no more than
both threads expect, while the guarantee must account for the
behaviours of each thread.

The above rules suggest encoding rely-guarantee into the
Views Framework with views consisting of triples (P,R,G) of
assertions and rely and guarantee relations, where P is stable un-
derR. Composition would then follow the parallel rule, resulting
in the special inconsistent view⊥ when the relies and guarantees
do not meet the side-conditions.
Definition 23 (RG View Monoid) : Parameter D. The set
ViewRG of rely-guarantee views is defined as:{

(P,R,G) ∈ P(S)×P(S2)×P(S2)
∣∣ R(P ) ⊆ P

}
] {⊥} .

Composition is defined as:

(P1, R1, G1) ∗ (P2, R2, G2) = (P1∩P2, R1∩R2, G1∪G2)

provided G1⊆R2 and G2⊆R1;

with all other cases resulting in ⊥. The unit is (S,S2, ∅).
We encode the rules by placing the rely and guarantee both

into the pre- and postcondition.

R,G ` {P} C {Q} def⇐⇒ ` {(P,R,G)} C {(Q,R,G)} .

For all rely-guarantee judgements we assume the pre- and post-
condition are stable with respect to the rely, and thus (P,R,G)
and (Q,R,G) are both valid views. Using this encoding, the
structural rules (including parallel) follow trivially from the rules
of the Views program logic, and the atomic rule (2) can be
considered to define a set of atomic axioms (Parameter E).

Views are reified to the set of states satisfying their assertions.
Definition 24 (RG Reification) : Parameter F.

b(P,R,G)c = P b⊥c = ∅.
Lemma 1 (RG Axiom Soundness) : Property G. If JaK�P ⊆
G and JaK(P ) ⊆ Q then a  {(P,R,G)}{(Q,R,G)}.

Proof. We must show that, for every (P1, R1, G1) ∈ ViewRG,

JaKb(P,R,G) ∗ (P1, R1, G1)c ⊆ b(Q,R,G) ∗ (P1, R1, G1)c.
We can assume composition is defined as the undefined case is
trivial, and as reification ignores the rely-guarantee components,
we can simplify this to:

(G ⊆ R1 ∧ G1 ⊆ R ∧ R(P ) ⊆ P ∧ R1(P1) ⊆ P1)

=⇒ JaK(P ∩ P1) ⊆ Q ∩ P1.



Showing that the result is in Q follows directly from the second
premise, and that it is in P1 from the first premise using routine
relational reasoning.

While we have established the soundness of most of the rules,
we have not yet considered rely-guarantee’s weakening rule:

R1 ⊆ R2 G2 ⊆ G1 R2, G2 ` {P} C {Q}
R1, G1 ` {P} C {Q}

This rule simply increases the restrictions on the environment: it
may do less (R1 ⊆ R2) but must tolerate more (G2 ⊆ G1).

If we try to encode the context weakening rule using the
frame rule induced by the composition above, we require:

R1 ⊆ R2 ∧ G2 ⊆ G1
?

=⇒
∃R3, G3. (P,R1, G1) = (P,R2, G2) ∗ (P,R3, G3).

However, this does not hold when R2 * G1. We could use a
more elaborate structure to represent the pair of relations such
as the deny-guarantee structure [13], which can then be encoded
into our framework. However, this loses the original elegance
of rely-guarantee, and does not capture the intuition behind it.
Instead, we provide a new generalisation of the frame rule that
can capture this reasoning directly.

We introduce a generalised frame rule, which applies a func-
tion to the pre- and postconditions of a specification. The rule is
parameterised by a function f : View→ View:

` {p} C {q}
` {f(p)} C {f(q)}

By choosing particular functions, f , we can encode a range of
reasoning rules, in particular the standard frame rule: for the frame
r, pick the function

f∗r
def
= λp. p ∗ r.

Now, for the rule to be sound we must prove the following
property for the f function and the action judgement used in axiom
soundness.

Property M (f -step Preservation).

∀α, p, q. α  {p}{q} =⇒ α  {f(p)}{f(q)} .

This property is sufficient for the soundness of the generalised
frame rule. The proof of soundness is essentially the same as for
the frame rule, and has been checked in Coq [11].
Remark. The generalised frame rule is analogous to the frame
rule of context logic [5], where contexts are applied by a non-
commutative operation to the pre- and postconditions. One could
construct a context algebra by taking views as the data and the
functions satisfying Property M as the contexts, and thus see the
generalised frame rule as an instance of the context logic rule. Con-
versely, one could view the application of a context as a function
satisfying Property M, and hence see the context logic frame rule
as an instance of the generalised frame rule.

Rely-Guarantee: Weakening
Returning to our motivating example, we can now show how
to encode rely-guarantee weakening rule using the generalised
frame rule. The weakening rule can be restated in an equivalent
form as:

R,G ` {P} C {Q}
R ∩R′, G ∪G′ ` {P} C {Q}

Thus we justify this instance of the rule using the generalised
frame rule choosing f to be the function that restricts the rely by

R′, and extends the guarantee by G′:

f(R′,G′)
def
= λ⊥(P,R,G). (P,R ∩R′, G ∪G′)

where (λ⊥x. f(x)) v is f(v) if v is not ⊥, and is ⊥ otherwise.
Thus we are required to show the following.

Lemma 2 (f(R′,G′)-step Preservation) : Property M.

α  {(P1, R1, G1)}{(P2, R2, G2)} =⇒
α  {(P1, R1 ∩R′, G1 ∪G′)}{(P2, R2 ∩R′, G2 ∪G′)}.

This holds because the changes to the rely and guarantee only
serve to further restrict the set of environment views that we must
consider in the action judgement, and the assumption ensures
R1 ⊆ R2 and G1 ⊇ G2.

5. Combination Rule
The views proof system we have presented so far has omitted two
common rules: disjunction and conjunction. One key reason for this
is that such rules are not applicable to every instantiation of the
framework. For example, the simple type system of §2.2 does not
naturally support a disjunction or conjunction rule.

Both of these rules may be expressed as special cases of a gen-
eral rule for combining multiple specifications of a single program.
This general rule is parameterised by a notion of view combination
(such as disjunction or conjunction), which maps indexed families
of views into single views. By choosing the index set, I , we can
define combination operations at different cardinalities.

Parameter N (View I-Combination). Assume a function
⊕

I :
(I → View)→ View.

The combination rule is as follows:
∀i ∈ I.` {pi} C {qi}

`
{⊕

i∈I pi
}
C
{⊕

i∈I qi
}

This rule is justified sound by the following property:

Property O (Primitive Combination). For all α ∈ Label,

(∀i ∈ I. α  {pi}{qi}) =⇒ α 
{⊕

i∈I pi
}{⊕

i∈I qi
}

.

Remark. This combination rule generalises the generalised frame
rule from the previous section, which is simply a unary instance of
the combination rule.

Disjunction. In the case of disjunction, there is often a natural
operator

∨
that has the following properties:

Property P (Join Distributivity). p ∗
∨
i∈I qi =

∨
i∈I(p ∗ qi).

Property Q (Join Morphism).
⌊∨

i∈I pi
⌋

=
⋃
i∈I bpic.

Together, these two properties imply Property O.
Separation Algebras

When views are constructed from a separation algebra, as in
§3.1, the views themselves are sets, and so it is natural to con-
sider set union (

⋃
) as a notion of disjunction. By the definition

of a separation view monoid (Definition 15), it follows that
⋃

satisfies the join distributivity property (Property P). The join
morphism property (Property Q) likewise follows directly from
the element-wise definition of reification (Definition 18). Conse-
quently, the obvious rule of disjunction is sound for logics built
from separation algebras in this way, such as separation logic.

For a stabilised view monoid (Definition 20), note that the in-
terference relation preserves unions (since it is applied element-
wise). From this, it follows that

⋃
again satisfies the required

properties to provide a rule of disjunction.



Conjunction. It is possible to give properties analogous to Prop-
erties P and Q, relating a conjunction

∧
with

⋂
. Such properties

are sufficient to establish Property O, however, it is not often that
an instantiation of Views is equipped with a

∧
operator with these

properties. For instance, in separation logic, ∗ does not distribute
over conjunction. In cases, such as separation logic, where a con-
junction rule is sound, Property O can typically used to directly
justify it.

It is less common for instantiations to have a conjunction rule
than a disjunction rule. One explanation for this is that views typ-
ically add instrumentation that is not present in the concrete state
(such as type information). This information can evolve indepen-
dently of the concrete state, leading to different specifications for
the same program that make incompatible changes to the instru-
mentation, which cannot be combined with a conjunction rule.

Disjoint Concurrent Separation Logic
For disjoint concurrent separation logic, consider the binary con-
junction operation given by set intersection, ∩. We can prove
that this gives a sound rule of conjunction by establishing Prop-
erty O, using two useful facts. Firstly, for views constructed from
separation algebras, the action judgement need only account for
singleton environment views:

α  {p}{q} ⇐⇒ ∀m. JαK (bp ∗ {m}c) ⊆ bq ∗ {m}c.
(This fact justifies the sufficiency of axiom soundness II (Prop-
erty J).) Secondly, singleton views are precise:

(p1 ∩ p2) ∗ {m} = (p1 ∗ {m}) ∩ (p2 ∗ {m}).

(Note that this is not a general property of separation algebras,
but can be established for separation logic.)

Suppose that α  {p1}{q1} and α  {p2}{q2}. Using the
above facts, and Definition I, we can establish that

JαK (b(p1 ∩ p2) ∗ {m}c)
⊆ JαK (bp1 ∗ {m}c) ∩ JαK (bp2 ∗ {m}c)
⊆ b(q1 ∗ {m})c ∩ b(q2 ∗ {m})c
= b(q1 ∩ q2) ∗ {m}c.

This is sufficient for Property O to hold for binary intersection.
This argument extends to infinitary intersection. Notably,

however, it does not apply to the nullary case, which would give
` {>} C {>} for every program C (where > =MDCSL). This
would be unsound, since  /∈ b>c, yet there are programs which
may fault when run from an arbitrary initial state.

6. Soundness
In this section, we sketch the soundness of the framework. The
following results have been machine checked with Coq, and the
proof scripts are available [11].

There are two key properties of the action judgement. The first
is that it is closed under the composition of a view, and the second
that it is closed under the semantic entailment order (Definition 12).

Lemma 3 (Basic Locality). For all p, q, r ∈ View, α ∈ Label, if
α  {p}{q} then α  {p ∗ r}{q ∗ r}.
Lemma 4 (Basic �-closure). For all p, p′, q, q′ ∈ View, α ∈
Label, if p � p′, α  {p′}{q′} and q′ � q then α  {p}{q}.

To prove the soundness, we use a semantic judgment that en-
sures every step of the machine correctly preserves the context us-
ing the action judgment. The semantic judgement is defined coin-
ductively: it is a greatest fixed point.

Definition 25 (Semantic Judgement). For command C ∈ Comm
and views p, q ∈ View, the semantic judgement  {p} C {q} is

defined to be the maximal relation such that  {p} C {q} holds if
and only if the following two conditions are satisfied:

1. for all α ∈ Label, C′ ∈ Comm, if C α−→ C′, then there exists
p′ ∈ View such that α  {p}{p′} and  {p′} C′ {q};

2. if C = skip then p � q.

We can understand the semantic judgment,  {p} C {q}, as
creating a trace of views for each possible interleaving of the
commands in C, where each trace starts in p, and if it is a finite
trace, then it ends in q. That is, if α1α2 . . . αn is a finite trace
of C, then there exists a sequence p1 . . . pn+1, such that p = p1,
pn+1 � q and αi  {pi}{pi+1}. If α1α2 . . . is an infinite trace
of C, then there exists a sequence p1p2 . . ., such that p = p1 and
αi  {pi}{pi+1}.

For each of the proof rules there is a corresponding lemma
establishing that it holds for the semantic judgement. We present
two particularly interesting ones here.

Lemma 5 (Soundness of Frame). If  {p} C {q} then

 {p ∗ r} C {q ∗ r} .

Proof. By coinduction. The case C = skip is trivial. Assume
that  {p} C {q} and C

α−→ C′. By these assumptions, there
exists p′ such that α  {p}{p′} and  {p′} C′ {q}. It suffices
to show that α  {p ∗ r}{p′ ∗ r} and  {p′ ∗ r} C′ {q ∗ r}. The
first follows from Lemma 3 and the second from the coinductive
hypothesis.

Remark. The soundness of the generalised frame rule and the
combination rule are proved by a similar argument to the frame
rule. For the combination rule, we require the axiom of choice for
the indexing set; this allows us to select a “next” view (p′ in the
above proof) for each index.

Lemma 6 (Soundness of Parallel). If  {p1} C1 {q1} and 
{p2} C2 {q2} then  {p1 ∗ p2} C1 ‖ C2 {q1 ∗ q2}.

Proof. By coinduction. Assume that C1 ‖ C2
α−→ C′. Either one

thread takes a step or one thread has finished executing.
If the latter, C′ = Ci, Cj = skip and α = id, where {i, j} =

{1, 2}. It must be that pj � qj , so id  {pi ∗ pj}{pi ∗ qj} by
definition of �. Furthermore,  {pi ∗ qj} Ci {qi ∗ qj} follows
from Lemmas 5.

If the former, assume that C′ = C′1 ‖ C2 and C1
α−→ C′1. (The

case where C2 reduces is similar.) By assumption, there exists p′1
such that α  {p1}{p′1} and  {p′1} C1 {q1}. It suffices to show
that α  {p1 ∗ p2}{p′1 ∗ p2} and  {p′1 ∗ p2} C′1 ‖ C2 {q1 ∗ q2}.
The first follows from Lemma 3 and the second from the coinduc-
tive hypothesis.

By similar lemmas for the other proof rules, we establish that
the proof judgement of the logic implies the semantic judgement.

Lemma 7. If ` {p} C {q} is derivable in the program logic, then
 {p} C {q}.

To establish soundness, we link the semantic judgement to the
multi-step operational semantics.

Lemma 8. If  {p} C {q}, then for all s ∈ bpc and s′ ∈ S, if
(C, s)→∗ (skip, s′) then s′ ∈ bqc.

This lemma follows from the definitions. Soundness now fol-
lows immediately from the preceding two lemmas.

Theorem (Soundness). Assume that ` {p} C {q} is derivable
in the program logic. Then, for all s ∈ bpc and s′ ∈ S, if
(C, s)→∗ (skip, s′) then s′ ∈ bqc.



7. Further Examples
We provide five additional instantiations to illustrate the flexibil-
ity of our metatheory: recursive types, unique types, Owicki-Gries
method, separation logic with resource invariants, and Concurrent
Abstract Predicates. The recursive types example demonstrates that
Views captures more realistic types. It also illustrates how the rule
of consequence can be used for subtyping. The connection between
strong update type systems and separation logic has been an open
problem for around ten years; the unique types example makes ten-
tative steps towards connecting them using the Views Framework.
The Owicki-Gries example illustrates that even underlying tradi-
tionally non-compositional reasoning is a compositional core. The
penultimate example shows how resource invariants can be added
to the views formulation of separation logic by using the gener-
alised frame rule. The final example, CAP, illustrates that the meta-
theory scales to recent complex logics.

7.1 Recursive Types
In this example, we give a type system for references to pairs and
recursive types, which allows us to represent simple lists and trees.
The syntax of types is

τ ::= val
∣∣ null ∣∣ ref τ τ ∣∣ τ?

∣∣ µX. τ ∣∣ X
The type null represents the type inhabited just by the value 0. The
reference type, ref τ1 τ2, is a pointer to a pair of locations with
types τ1 and τ2 respectively. The nullable type τ? allows null, as
well as values of type τ . Note that ref cannot be a null pointer
Finally, the fixed-point operator and type variables make it possible
to represent recursive data types. For example, we can define lists
as:

list τ
def
= µX. (ref τ X)?

As with the simple type system, views consist of type contexts
and the inconsistent context. Unlike in that example, however, we
compose typing contexts with disjoint union. This allows us to con-
sider variables as uniquely owned by threads, rather than shared,
and consequently reason about strong (type-changing) updates of
variables.
Definition 26 (Recursive Type View Monoid) : Parameter D.
The view monoid for recursive types is ((Var ⇀ Type)⊥,]⊥, ∅).

We extend the heap-update language introduced in §2.1 to work
with pairs instead of single heap cells. We assume that values are
integers, and locations are positive integers. x := ref y z allocates
a pair of consecutive locations in the heap, initialising them with
values y and z . The first and second components of a pair x may
be accessed independently by x .fst and x .snd. To encode case
splitting on a pointer being null we use two commands: ?x=0,
which blocks if x is not null, and performs the identity action
otherwise; and ?x 6=0 which blocks if x is null, and performs the
identity action otherwise. These allow us to encode choice as

ifNull x thenC1 elseC2
def
= (?x=0;C1) + (?x 6=0;C2)

Since we wish to allow type-changing updates, commands are
specified with both a pre- and a post-type context: Γ1 ` C a Γ2.
In the Views Framework, we naturally interpret this as syntax for
` {Γ1} C {Γ2}.

In order to introduce nullable types, and to fold and unfold
recursive types, we introduce a notion of subtyping. The subtyping
relation, ≺, is defined as the least pre-order satisfying:

τ ≺ τ? null ≺ τ?
µX. τ ≺ τ [µX. τ/X] τ [µX. τ/X] ≺ µX. τ

Definition 27 (Context Subtyping). Subtyping is lifted to contexts
in the obvious way:

Γ1 ≺ Γ2
def⇐⇒ ∀x : τ2 ∈ Γ2.∃x : τ1 ∈ Γ1.τ1 ≺ τ2.

Definition 28 (Recursive Type Axiomatisation) : Parameter E.
The typing rules for atomic commands include the following:

x : τ? ` ?x=0 a x : null x : τ? ` ?x 6=0 a x : τ

x : ref τ1 τ2, y : τ1 ` x .fst := y a x : ref τ1 τ2, y : τ1

x : ref τ1 τ2, y : ` y := x .fst a x : ref τ1 τ2, y : τ1

x : , y : τ1, z : τ2 ` x := ref y z a x : ref τ1 τ2, y : τ1, z : τ2

Typing rules for the snd component are analogous to those for fst.
We give the axioms for entailment as

Γ1 � Γ2
def⇐⇒ Γ1 ≺ Γ2

The challenging aspect of this instantiation is giving the reifica-
tion, which requires us to define a notion of being well-typed. We
define a relation Θ ` v : τ that expresses that a value v has type τ
in a heap typing Θ, that maps locations to types. Note that values
range over integers.

Θ ` v : val Θ ` 0 : τ? Θ ` 0 : null

Θ ` v : τ [µX.τ/X]

Θ ` v : µX.τ
Θ ` v : τ
Θ ` v : τ? Θ ` v : ref Θ(v) Θ(v + 1)

We can then define reification as the set of states that are well
typed with respect to a view. That is, those states for which there is
a heap typing such that the value of each variable and heap location
is correctly typed by the view and the heap typing.
Definition 29 (Recursive Type Reification) : Parameter F.

s ∈ bΓcµ
def⇐⇒ ∃Θ. ∀x ∈ dom(Γ ∪Θ).Θ ` s(x) : (Γ ∪Θ)(x)

To show the type system is sound we simply show axiom sound-
ness (Property G) for the axioms and subtyping relation.

7.2 Unique Types
The previous example used an atomic allocate and instantiate in-
struction, x := ref y z. But this is not realistic as this would be
done in many operations. In this example we extend the types from
the previous section to allow us to separate allocation from instan-
tiation. We give a new high-level syntax to types, that allows us to
represent a unique reference at the top-level:

t ::= τ | uref τ τ

We change Γ to map to these extended types.
We can then give rules for the atomic commands to allocate and

update a unique reference

x : ` x := ref a x : uref val val

x : uref τ2, y : τ1 ` x.fst := y a x : uref τ1 τ2, y : τ1

These rules allow us to alter the type of something in the heap. This
is sound as we are currently the only thread to have access to the
location.

We use the subtyping relation to cast away the uniqueness by
adding the following to the subtype relation:

uref τ1 τ2 ≺ ref τ1 τ2



We define a function that forgets the uniqueness information, so
that we can reuse the previous definitions:

TΓU def
= λx. if Γx = uref τ1 τ2 then ref τ1 τ2 else Γx

Our notion of a memory satisfying a type context is the same as
before with an additional constraint that each unique reference
can be removed from the memory and the memory is well-typed
without it in the smaller context.

s ∈ bΓcuµ
def
= s ∈ bTΓUcµ ∧
∀x : uref ∈ Γ. s�s(x),s(x+1) ∈ bTΓ�xUcµ

where f�x
def
= λy. if x 6=y then f y else ⊥. Note this does not mean

that the location of a unique reference cannot occur in another
stack or heap location, but it cannot occur as something potentially
considered as a reference. Technically,

x : uref τ1 τ2, y : ` y := x a x : uref τ1 τ2, y : val

is a sound axiom in this model. We require this kind of property of
our model as we only distinguish between integers and references
at the type level. The concrete model does not separate them. Thus,
it is possible for the allocator to use a location for which the integer
is currently in use, but this does not matter. If it is being treated as
a location, then it would already be allocated and thus the allocator
would not double allocate it.

The axioms and subtyping satisfy the required properties (Prop-
erty G).

7.3 Owicki-Gries Method
We present a version of the Owicki-Gries method [24] that can be
encoded trivially into the Views Framework. However, we omit the
auxiliary variable rule, and leave this to future work.

Normally, the Owicki-Gries method has a non-compositional
check on parallel composition: each command used by one thread,
when restricted to its precondition, preserves all the assertions used
in the proof of other thread. We explicitly account for the assertions
used in a proof, and the commands and preconditions as contexts
to our judgements. Specifically,

P,A ` {P} C {Q}

means that executing C in a state satisfying P , if it terminates, then
the state will satisfy Q, and the proof only uses assertions in P,1

and its atomic commands are described by A. Thus the rule for an
atomic command is

P ∈ P Q ∈ P (P, a) ∈ A JaK(P ) ⊆ Q
P,A ` {P} a {Q} (3)

The parallel rule is

P1,A1 ` {P1} C1 {Q1} ∀P ∈ P2, (P ′, a) ∈ A1. JaK(P∧P ′) ⊆ P
P2,A2 ` {P2} C2 {Q2} ∀P ∈ P1, (P ′, a) ∈ A2. JaK(P∧P ′) ⊆ P

P1 ∪ P2,A1 ∪ A2 ` {P1∧P2} C1‖C2 {Q1∧Q2}

The two side-conditions (right premises) are the standard “non-
compositional” interference freedom checks. Again, as with rely-
guarantee, this parallel rule induces a composition operation that
we can use to build a view model.

1 The precise definition actually requires that the proof only uses assertions
that are intersections of some elements of P. Otherwise, we would require
the parallel rule to additionally require its pre- and postconditions to be in
P. This requirement is only evident in the soundness proof, and does not
alter the reasoning provided by the Owicki Gries method that we present.

Definition 30 (Owicki-Gries View Monoid) : Parameter D. The
Owicki-Gries view monoid (ViewOG, ∗, (∅, ∅,S)) is defined by

ViewOG
def
=
{

(P,A, P )
∣∣∣ ∃P′ ⊆ P. P =

⋂
P′
}
] {⊥}

with composition given by

(P1,A1, P1) ∗ (P2,A2, P2)
def
= (P1 ∪ P2,A1 ∪ A2, P1 ∩ P2)

provided ∀P ∈ P1, (P
′, a) ∈ A2. JaK(P ∧ P ′) ⊆ P

∀P ∈ P2, (P
′, a) ∈ A1. JaK(P ∧ P ′) ⊆ P

and otherwise defined to be ⊥.
The proof rules follow from the Views Framework using the ob-

vious encoding. The atomic rule (3) determines the atomic axioms
(Parameter E). We can provide a weakening rule, that allows the
context to be enlarged, as a simple application of the generalised
frame rule.

For soundness, we define reification (Parameter F) as simply
taking the assertion component of a view (and ∅ in the case of ⊥).
Axiom soundness (Property G) follows from the premises of (3)
by the consistency requirement of composition. Step preservation
(Property M) for weakening follows trivially from axiom sound-
ness, given that the atomic rule (3) is closed under enlarging the
context.

7.4 Atomic CSL
We consider a concurrent separation logic with a single resource
invariant that must be preserved by each atomic command [25].
This logic has a simple rule for atomic commands:

`DCSL {I ∗ P} a {I ∗Q}
I ` {P} a {Q}

If the atomic command meets the specification in standard sepa-
ration logic (§3.1) with the invariant, I , added to both the pre- and
postcondition, then it meets the specification in this logic. We inter-
pret this in the Views Framework by defining views to be pairs of
shared invariants and local assertions. Composition on these views
requires invariants to agree.
Definition 31 (Atomic CSL View Semigroup) : Parameter D.
The atomic CSL view semigroup is

((ViewDCSL × ViewDCSL) ] {⊥}, ∗ACSL)

where (I1, P1) ∗ACSL (I2, P2) is defined to be (I1, P1 ∗DCSL P2) if
I1 = I2, and ⊥ otherwise.

We encode the judgement I ` {P} C {Q} as

` {(I, P )} C {(I,Q)} .

There are two rules for manipulating the context (the resource
invariant). The first is a frame rule for the resource invariant, and
the second allows local state to be added to the resource invariant:

I ` {P} C {Q}
I ∗ I ′ ` {P} C {Q}

I ∗ I ′ ` {P} C {Q}
I ` {P ∗ I ′} C {Q ∗ I ′}

These rules can be interpreted as instances of the generalised frame
rule. For the invariant frame rule, the following function is suitable:

fh(I ′)
def
= λ⊥(I, P ). (I ∗ I ′, P ).

For the local invariant rule, a more complicated function is neces-
sary:

fs(I, I
′)

def
= λ⊥(I1, P ). if I1 = I ∗ I ′ then (I, P ∗ I ′) else ⊥.

The function ensures that the resource invariant in the premise is
I ∗ I ′, if not then the function maps to the inconsistent view, thus
making the rule and the property vacuous.



For soundness, we define the reification to take the composition
of the invariant and local-state assertion in the sense of DCSL.
Definition 32 (Atomic CSL Reification) : Parameter F.

b(I, P )c def
= I ∗DCSL P b⊥c def

= ∅
This is the only example we present in the paper that does not

have a unit. However, the model does have a zero, ⊥, and satisfies

∀x.∃u. x ∗ u = x ∧ ∀y. y ∗ u = y ∨ y ∗ u = ⊥.

This property is sufficient to show the simplification of α 
{p}{q} given in (1), provided b⊥c = ∅.

Axiom soundness (Property G) can easily be established given
the soundness of DCSL. The context rules require us to prove
Property M. For the first, we can appeal to the frame rule of
DCSL, with the frame I ′. For the second, the function fs(I, I ′)
either renders the judgement trivial or preserves the reification, so
Property M holds.
Remark. If we wish to establish the conjunction rule for this logic,
we can do so if the resource invariant is precise2, given that assume
DCSL has a conjunction rule. We must show (for the binary case)

α  {(I, P1)}{(I,Q1)} ∧ α  {(I, P2)}{(I,Q2)}
=⇒ α  {(I, P1 ∧ P2)}{(I,Q1 ∧Q2)} .

Using the DCSL rule of conjunction, we know

α DCSL {(I ∗ P1) ∧ (I ∗ P2)}{(I ∗Q1) ∧ (I ∗Q2)} .

Using the DCSL rule of consequence, we know

α DCSL {I ∗ (P1 ∧ P2)}{(I ∗Q1) ∧ (I ∗Q2)} .

And, moreover, if I is precise, then this implies

α DCSL {I ∗ (P1 ∧ P2)}{I ∗ (Q1 ∧Q2)} .

This establishes primitive combination (Property O), which is suf-
ficient for the conjunction rule to be sound.

7.5 Concurrent Abstract Predicates
Concurrent Abstract Predicates (CAP) [9] extends separation logic
with shared regions that can be mutated by multiple threads through
atomic operations. Each shared region is associated with some
interference environment which stipulates how it may be mutated,
by defining a collection of actions. Threads can mutate the shared
state only by performing actions for which they have a capability
resource, which may be exclusive or non-exclusive. An example of
a CAP assertion is the following:

∃r. [LOCK]rπ ∗
(
x 7→ 0 ∗ [UNLOCK]r1

)
∨ x 7→ 1

r

I(r)
(4)

This assertion represents a shared mutex in the heap at address x.
The boxed part of the assertion describes the shared region: either
the mutex is available (x has value 0) or it is locked (x has value 1).
If it is available, the exclusive capability [UNLOCK]r1 belongs to the
region. The thread itself has a non-exclusive capability [LOCK]rπ ,
which will permit it to lock the mutex. The actions corresponding
to the capabilities are defined by the interference environment I(r):

I(r)
def
=

 LOCK : x 7→ 0 ∗ [UNLOCK]r1  x 7→ 1,
UNLOCK : x 7→ 1 x 7→ 0 ∗ [UNLOCK]r1


The interference environment stipulates that a thread holding a
LOCK capability may (atomically) update x from 0 to 1 in the
shared region, simultaneously removing the capability [UNLOCK]r1;
a thread holding an UNLOCK capability may update x from 1 to 0
while returning [UNLOCK]r1 to the shared region. By locking the

2 I is precise, iff ∀p, q. (I ∗ p) ∧ (I ∗ q) =⇒ I ∗ (p ∧ q).

mutex, a thread acquires the exclusive capability to unlock it. This
guarantees that only one thread can have locked the mutex at a
time, and only that thread can unlock it. Having locked the mutex
(through an atomic compare-and-swap operation), a thread’s view
may be described by the following assertion:

∃r. [UNLOCK]r1 ∗ [LOCK]rπ ∗ x 7→ 1
r

I(r)
(5)

Whereas in (4) the thread does not know whether the mutex is
locked or not, in (5) it knows that it is locked. It can only make such
an assertion because it holds the exclusive capability [UNLOCK]r1;
without that, the assertion would not be stable. (In separation logic,
capabilities are always directly associated with the information they
pertain to, as in l 7→ 7, whereas in CAP they can be separated.)

In the rest of this section, we informally describe the parameters
for the Views Framework. We do not give their formal details, and
direct the reader to Dinsdale-Young’s thesis [8] and our technical
report [11] for the full definition and explanation.

CAP assertions are modelled by sets of states instrumented with
ownership, capabilities and region information. Each instrumented
state consists of three components. The first is the thread-local
state, which consists of capability resources as well as separation-
logic-style heap resources. The second is a mapping that associates
region identifiers with their states. The third is an interference en-
vironment that associates the action identifiers used in capabilities
with their interpretations as actions. Instrumented states form a sep-
aration algebra (Parameter H): composition of instrumented states
is defined as requiring equality between the second and third com-
ponents, while combining the resources in the first component. For
the formal definition, see [8, §8.3.1].

To use CAP, we must work with stable assertions — views
— in order to account for possible interactions between threads.
These stable assertions are defined by closure under an interference
relation (Parameter K), which allows the environment to update
regions in any way for which it can have a suitable capability.
The interference relation is constructed as the transitive closure
of three relations, which model region update (in accordance with
actions the environment may have capability to perform), region
construction and region destruction. See [8, p319, Definition 8.14]
for the formal definition and [8, p337, Lemma 112] for the proof of
the decomposition property.

Reification (Parameter I) for CAP is given by combining the
heap components of the local and shared states, dropping the ca-
pabilities and interference environment. The atomic rule of CAP
effectively establishes axiom soundness (Property L) by means of
a guarantee relation that obliges atomic operations to preserve sta-
ble frames [8, p345, Lemma 125; p338, Lemma 114].
Remark. In our MSL example, interference was not essential.
Since the interference relations were equivalences, views were sets
of equivalence classes, and it was easy to define canonical repre-
sentations of these classes. CAP, on the other hand, is difficult to
model without considering interference explicitly. One reason for
this might be that interference is directional, and not simply an
equivalence. Consequently, expressing entailments as inclusions
between closed sets is likely to be the simplest way of construct-
ing a suitable view model. Another reason is that it is convenient
to construct views from assertions that are not themselves stable,
hence it is convenient to have a model in which we can represent
both stable and unstable assertions.

8. Related Work
Our composition operator provides a logical notion of separation,
which, as we have demonstrated by examples, need not be realized
by physical separation in the concrete machine. This idea of fic-
tional separation has been used in recent work on separation logics



for concurrent languages [9, 13, 15, 31]. Similar ideas are also use-
ful in a purely sequential setting to enable modular reasoning about
abstract data structures implemented using physical sharing, but for
which a logical notion of separation can be defined [10, 19, 21, 22].

The soundness of Pottier’s capability system [26] is based on
an axiom that is similar to our definition of interference relation,
and the soundness proof of concurrent abstract predicates [9] also
uses an equivalent lemma. Our framework does not have an ex-
plicit notion of guarantee, so many of the other properties required
in both Pottier’s work and concurrent abstract predicates are not
required. Feng’s LRG [14] also provides conditions such that the
stable predicates can be composed. The condition requires fences
to delimit the scope of interference, which we do not require.

9. Conclusions
We have introduced “Views” as a general framework in which a
wide variety of compositional reasoning approaches can be con-
structed, understood and proved sound. We find it surprising and
revealing that diverse approaches such as separation logic, rely-
guarantee, the Owicki-Gries method and type systems can be un-
derstood in an elegant, unifying setting. While the power of the
Views Framework is in the variety of systems that it encapsulates,
its virtue is in providing a common semantic footing for them: each
of the approaches we have studied can be proved sound by appeal
to the general soundness result of Views, without recourse to in-
duction over the operational semantics.

We have shown how Views captures a broad selection of exist-
ing reasoning systems. Of course, the true test is whether Views
can be used to develop new and interesting systems. We are al-
ready finding this to be the case. Concurrent abstract predicates has
been extended with higher-order features, using Views extended
with step-indexing to prove soundness [30]. The Views Framework
has been extended to reason about C] with interesting permission
annotations to ensure isolation between threads [17]. Views are
also helping in the development of sound logics for local reason-
ing about intrinsically structured data, such as file systems [16]; in
this setting, decomposing data into fragments that record how they
are connected is central, and is elegantly justified by the semantic
entailment of Views.

In 2002, Reynolds noted the close relationship between sepa-
ration logic and type systems and wondered “whether the divid-
ing line between types and assertions can be erased” [27]. We
have shown that, at least in the first-order case, types and asser-
tions are simply different kinds of view. Ultimately, we have identi-
fied core principles underlying compositional reasoning about con-
current programs, and formalised them in a unifying framework:
Views.
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