
Discovering Needed Reductions Using Type Theory
∗

Philippa Gardner †

University of Edinburgh

Abstract

The identification of the needed redexes in a term is an undecidable problem. We in-
troduce a (partially decidable) type assignment system, which distinguishes certain redexes
called the allowable redexes. For a well-typed term e, allowable redexes are needed redexes.
In addition, with principal typing, all the needed redexes of a normalisable term are allow-
able. Using these results, we can identify all the needed reductions of a principally typed
normalisable term. Possible applications of these results include strictness and sharing ana-
lysis for functional programming languages, and a reduction strategy for well-typed terms
which satisfies Lévy’s notion of optimal reduction.

1 Introduction

Barendregt et al. [2] show that the identification of the needed redexes in a λ-term is an un-
decidable problem. A redex r in λ-term e is needed if a residual of r is contracted in every
reduction of e to normal form. For example, in the term (λx.(λy.z)x)(Ie), the redexes (λy.z)x
and (λx.(λy.z)x)(Ie) are needed, whereas the redex (Ie) is not. We introduce a (partially
decidable) type assignment system, which is able to distinguish all the needed redexes of a nor-
malisable term. Possible applications of these results include strictness and sharing analysis for
functional programming languages, and a reduction strategy for well-typed terms which satisfies
Lévy’s notion of optimal reduction [15].

We use a type assignment system to identify needed redexes. Typically, a type assignment
system constructs typed λ-terms by checking that the application of terms makes sense with
respect to the typing information. Implicit in this construction is information regarding the
use of variables in the typed term. We use techniques from intersection types [4], adapted to
incorporate ideas about resource from linear and relevant logics [10] [7], to make this information
explicit by retaining tight control of variables as the terms are being constructed. In this paper
we concentrate on a type theory based on intersection types, in order to type as many terms as
we can. It should be possible, however, to adapt our ideas to other type assignment systems.

Entailments of our type system have shape Γ, x : T1 ∧ . . . ∧ Tn ⊢ e : T , where T1 ∧ . . .∧ Tn

denotes a multiset of types. A key property of our system is that, with principal typing,
the length of the multiset assigned to x identifies the number of times x is used in e: that
is, the number of free occurrences of x in the normal form of e when it exists. Our system,

∗This paper appeared in Theoretical Aspects of Computer Software, Sendai, Japan, 1994.
†This research was supported by a SERC Research Grant. Address: Department of Computer Science, Uni-

versity of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK. E-mail: pag@dcs.ed.ac.uk.
Fax: (+) 44-31-667-7206.

1

@

λ f

@

@
@

g @
f

f λ x

@

@

h x

x

λ x λ x

@

x

@

I e

@

I e

λ x

@

x @

eI

@

λ f

@

@
@

g @
f

f λ x

@

@

h x

x

λ x

λ x

@

I e

y y

x

@

Figure 1: The 2-dimensional and 3-dimensional graphs of the labelled term
(λf.g(f(λx.hxx))(f(λx.y)))(λx.x(Ie)).

which we call the labelled resource calculus, labels the application nodes and variables with
type information. Using the labelled application nodes, we are able to distinguish the allowable
redexes. We prove that allowable redexes are needed redexes, and, for normalisable terms
which have been principally typed, prove that all needed redexes are allowable. The problem of
identifying needed redexes has also been addressed by Barendregt et al. [2]. They distinguish
the so-called (generalised) spine redexes, and show that these form a proper subset of the set
of needed redexes. Since this approach does not identify all needed redexes, it is unlikely that
these results can be used for the applications we have in mind.

Needed reductions are those reductions which contract needed redexes. To capture all the
needed reductions, we have to keep track of which residuals of a needed redex are needed after
a reduction step. For example, consider the reduction

(λf.g(f(λx.hxx))(f(λx.y)))(λx.x(Ie))→ g((λx.x(Ie))(λx.hxx))((λx.x(Ie))(λx.y)).

The needed redex Ie in the original term has two residuals resulting from this reduction. The
residual Ie is needed, whereas Ie is not. Such information is retained using the type annotations
accompanying the variables. We define the notion of allowable reduction, which only contracts
allowable redexes. We prove that every allowable reduction is a needed reduction. In the
presence of principal typing, it also follows that the needed reductions of normalisable terms
are allowable.

We have stressed that the labelled resource calculus retains extra information regarding the
use of variables and arguments as the typing derivation proceeds. This extra information can
be expressed pictorally using what we call the 3-dimensional graphs of λ-terms. To explain this
concept, consider the standard graph of term (λf.g(f(λx.hxx))(f(λx.y)))(λx.x(Ie)) shown on
the left-hand side of figure 1. With principal tying, the corresponding labelled term gives rise to
the 3-dimensional graph on the right-hand side of figure 1. This 3-dimensional graph should be

2

viewed as a ‘mobile’, with the thick edges, or beams, at right-angles to the plane of the paper.
There is an obvious projection from the 3-dimensional graph to the 2-dimensional graph, which
is analogous to forgetting the typing information in labelled terms. The extra information in
the type annotations corresponds to the beam structure of the 3-dimensional graph. Intuit-
ively, the beam of length 2 provides the information that the bound variable f is used twice
in (λf.g(f(λx.hxx))(f(λx.y))). The dotted lines in the 3-dimensional graph cature the fact
that one residual of Ie is not used in the reduction of (λf.g(f(λx.hxx))(f(λx.y)))(λx.x(Ie))
given above. The notion of 3-dimensional graphs provides a useful picture for motivating the
definitions and results of this paper.

Summary of the Paper. In section 2 we give the concepts and terminology required to
make this paper self-contained. Section 3 introduces the type system for constructing well-
typed labelled terms, and defines allowable redexes. Substitution and β-reduction for labelled
terms are defined in section 4. The notion of allowable reduction is also introduced in this
section, and we show that allowable reductions are finite. Our main technical results are given
in section 5: specifically, we show that allowable reductions are needed reductions, and show
that, in the presence of principal typing, all the needed reductions of normalisable terms are
allowable. We finish in section 6 by indicating how these results can be applied to strictness
and sharing analysis, and to optimal reductions à la Lévy [15].

2 Preliminaries

In this section we introduce the concepts required to make the paper self-contained. Unless
otherwise stated, the details can be found in [1].

2.1 Definition The set Λ of untyped λ-terms is defined by the abstract grammar

Λ e ::= x | λx.e | e1e2,

with x ∈ V ar, where V ar is a countably infinite set of variables.

The usual notions of α-conversion, free variables and substitution apply. We let → denote a
one-step β-reduction, and ✄ its reflexive and transitive closure. A term of the form e1e2 is an
application. We call e2 the argument of the application. A term r = (λx.r1)r2 is called a redex.
We sometimes write r : t → s to emphasise that (a particular occurrence of) r is the contracted
redex, and write r1, . . . , rn : e0 → e1 → . . . → en to denote the reduction sequence where ri is
the contracted redex in reduction step ei−1 → ei. Sometimes we make the application nodes
explicit, and write r = (λx.r1)@r2 instead. The application node given here is distinguished as
the leading application node of the redex. A term which does not contain a redexe is in normal

form. We say that e isa normalisable term if there is a reduction e ✄ NF (e), where NF (e)
denotes that normal form of e when it exists. We write NF (e) for the normal form of e when
it exists. A term is in head-normal form if it has shape λx1 . . .λxn. ye1 . . . em for variable y and
arbitrary terms e1, . . . , em. It is useful to distinguish the leftmost redex of a term. The leftmost

reduction sequence is the one in which each contracted redex is leftmost.

Let r be a redex in e, and let ρ : e ✄ f denote a particular reduction sequence. The redex r
can be copied, modified, eliminated or contracted during ρ. The set of redexes in f that descend
from r is called the residual set of r under ρ, and is denoted by res(r/ρ). One of the simplest
ways of defining res(r/ρ) is to uniquely mark all the application nodes in e. Then res(r/ρ) is

3

the set of all redexes in f whose leading application nodes have the same mark as the leading
application node for r.

We focus in this paper on needed redexes (see for example [2]).

2.2 Definition

1. Let r be a redex in e. Redex r is needed in e (or just ‘needed’ when the term e is apparent)
if every reduction sequence of e to normal form reduces some residual of r.

2. A reduction sequence r1, . . . , rn : e0 → e1 → . . . → en is a needed reduction if redex ri is
needed in ei−1 for each i ∈ {1, . . . , n}.

Thus, in the term (λu.(λx.y)u)(Ie), the redex Ie is not needed. In the introduction we showed
that, given a needed redex r, it is not necessarily the case that all the residuals of r are needed.
It is, however, always the case that at least one residual of a needed redex is needed.

2.3 Lemma Let e be normalisable, and let r be a needed redex in e. Suppose ρ : e ✄ f is a
reduction which does not reduce a residual of r. Then r has a needed residual in f .

This lemma is proved by Barendregt et al. [2], who also prove the following important results.

2.4 Theorem A leftmost reduction is always a needed reduction.

2.5 Theorem It is undecidable whether a given redex in a term is needed.

3 The Type Theory

In this section we introduce the type theory used to identify needed redexes. Our type theory
uses techniques from the intersection calculus ⊢∧ω [4], adapted to incorporate explicit informa-
tion about resource using ideas from linear and relevant logics [10] [7]. We choose to base this
paper on intersection types in order to type as many terms as we can; however, it should be
possible to apply our approach to other type assignment systems. The type theory is introduced
in two stages. First, we provide the core type theory, which we call the resource calculus. Then,
we adapt the type theory to incorporate type information in the λ-terms. This information is
used to distinguish the needed redexes.

3.1 Resource Calculus

Entailments in our resource calculus have the shape Γ, x : T1∧. . .∧Tn ⊢ e : T , where T1∧. . .∧Tn

can be viewed as a multiset of types. One intuition is that, with principal typing, the multiset
assigned to x captures the fact that x occurs free n times in the normal form of e when it exists.
The syntax of the resource calculus is defined using the following abstract grammars, where
V AR and V ar denote countably infinite sets of type variables and term variables respectively:

base types T ::= X | M ⊸ T
resource types M ::= ⊥ | T1 ∧ . . .∧ Tn, n ≥ 1
contexts Γ ::= 〈 〉 | {Γ, x : M}
terms e ::= x | λx.e | e1e2

4

where X ∈ V AR and x ∈ V ar. At this stage, the resource type T1 ∧ . . . ∧ Tn denotes a list
of base types. The idea that it can be viewed as a multiset arises from the typing rules given
in definition 3.1. We typically write Γ, x : M for the set {Γ, x : M}. We assume that ∧ takes
precedence over ⊸: that is, the type T1 ∧T2 ⊸ T3 is equivalent to (T1∧T2) ⊸ T3. Let dom(Γ)
denote the set of variables declared in context Γ. We combine contexts using list concatenation,
as follows:

x : T1 ∧ . . .∧ Tn ∈ conc(Γ,∆) if and only if x : T1 ∧ . . .∧ Ti ∈ Γ and x : Ti+1 ∧ . . .∧ Tn ∈ ∆,

where i ∈ {0, . . . , n}. We let conc(Γ1, . . . ,Γn) denote conc(conc(. . .(conc(Γ1,Γ2),Γ3), . . .),Γn).
This combination of contexts allows us the assign different types to different occurrences of a

variable x. For example, we shall see that term xx is well-typed in context x : (T1 ⊸ T2) ∧ T1.
The resource calculus can be viewed as a fragment of the intersection calculus ⊢∧ω [4], with

more control of the use of variables.

3.1 Definition The resource calculus is defined by the following rules:

axiom x : T ⊢ x : T

perm
Γ, x : T1 ∧ . . .∧ Tn ⊢ e : T π is a permutation of {1, . . . , n}

Γ, x : Tπ(1) ∧ . . .∧ Tπ(n) ⊢ e : T

λ1
Γ, x : M ⊢ e : T x 6∈ dom(Γ)

Γ ⊢ λx.e : M ⊸ T

λ2
Γ ⊢ e : T x 6∈ dom(Γ)

Γ ⊢ λx.e : ⊥ ⊸ T

app1
Γ ⊢ e : T1 ∧ . . .∧ Tn ⊸ T ∆i ⊢ f : Ti i ∈ {1, . . . , n}, n ≥ 1

conc(Γ,∆1, . . . ,∆n) ⊢ ef : T

app2
Γ ⊢ e : ⊥ ⊸ T

Γ ⊢ ef : T

The λ2- and APP-rules require some explanation. The AXIOM- and λ1-rule force the term
λx.y to have type ⊥ ⊸ T in context y : T . Using the APP2-rule, the type of λu.((λx.y)u) is
also ⊥ ⊸ T . Our intension is that the type ⊥ ⊸ T indicates the fact that the term λx.y is
expecting an argument which it does not use. For an arbitary typing, the type ⊥ ⊸ T does not
necessarily indicate this. For example, the term fx can be well-typed in the context f : ⊥ ⊸ T .
However, an intuitively more meaningful typing of this term is in the context f : T1 ⊸ T2, x : T1.
This intuition is captured by the notion of principal typing. Principal typing for the resource
calculus can be easily adapted from principal typing for intersection types, which has been
studied extensively in the literature [4] [5] [16] [17]. With principal typing, the type ⊥ ⊸ T
does indeed indicate that the argument is not used, as intended.

The concatenation of contexts in the APP1-rule allows variables to be assigned more than
one type. A simple example to illustrate this is the derivation

x : T1 ⊸ T2 ⊢ x : T1 ⊸ T2 x : T1 ⊢ x : T1

x : (T1 ⊸ T2) ∧ T1 ⊢ xx : T2

5

Observe that the term xx is also well-typed in the contexts x : ⊥ ⊸ T and x : (T1 ∧ T2 ⊸

T3)∧T1∧T2. Principal typing ensures that the length of the resource type assigned to a variable
corresponds to the number of times that variable x occurs free in the normal form of a term
when it exists. We shall see that, in our analysis of needed redexes, arbitrary typing identifies
needed redexes, and for normalisable terms principal typing identifies all the needed redexes.

3.2 Lemma [Substitution]

1. Γ, x : T1 ∧ . . . ∧ Tn ⊢ e : T and ∆i ⊢ f : Ti, for n ≥ 1 and i ∈ {1, . . . , n}, imply
conc(Γ,∆1, . . . ,∆n) ⊢ e[f/x] : T ;

2. Γ ⊢ e : T , for x 6∈ dom(Γ), and f ∈ Λ[] imply Γ ⊢ e[f/x] : T .

3.3 Lemma Γ ⊢ e : T and e =β e′ imply Γ ⊢ e′ : T .

3.4 Corollary If e has a head-normal form then e can be well-typed in the resource calculus.

Proof It is easy to show that head-normal forms can be well-typed. The result follows from
lemma 3.3. ✷

3.2 Labelled Resource Calculus

The information regarding which redexes are needed redexes is implicit within the derivations
of the resource calculus. We adapt the calculus to give an explicit account of this information
by annotating the well-typed terms with type information. We annotate application nodes in
order to distinguish which redexes are allowable, and variables in order to control the type
information during β-reduction. In this section, we define the labelled resource calculus which
incorporates this type information. Our motivation centres on the annotation of the application
nodes; the motivation for the variable annotation is given in section 4.

First we introduce the set ΛL of labelled λ-terms defined by the following abstract grammars:

ΛL e ::= xU | λx.e | e1@V e2
List(T) U ::= T | [U1, . . . , Un] n ≥ 0
List(M) V ::= M | [V1, . . . , Vm] m ≥ 0

where T denotes a base type and M a resource type, and x ∈ V ar.

We motivate the well-typed labelled terms by appealing to the 3-dimensional graphs dis-
cussed in the introduction. We shall see that the labelled term1 (λx.gxx)@T1∧T2

(I@[T1,T2]y) is
well-typed in the labelled resource calculus. The corresponding 3-dimensional graph is given
in figure 2. The application node @T1∧T2

provides local information: it indicates that the 3-
dimensional graph of the argument I@[T1,T2]y begins with a beam of length two. Intuitively,
this local information indicates how many times the argument is used in the application. The
application node @[T1,T2] provides global information: it informs us that the 3-dimensional graph
of the subterm I@[T1,T2]y consists of two graphs connected by a beam of length two. The sub-
graphs are given by the terms I@T1

y and I@T2
y, where the application nodes provide the local

information that y is used once in each application I@Ti
y. Hence, variable y is used twice in

the overall term. This global information, given to us by annotations of the form [V1, . . . , Vm]

1For clarity when discussing examples, we only label the application nodes and variables of particular interest
to the point under discussion.

6

@

λ x

@

x@

g x

@

@

I y

I y

Figure 2: The 3-dimensional graph of (λx.gxx)@T1∧T2
(I@[T1,T2]y).

for m ≥ 0, provides us with essential information for preserving the type annotations during
β-reduction. This point is made clearer in section 4.

There is an obvious projection of the 3-dimensional graph of a labelled term onto its standard
2-dimensional counterpart, which discards the beam information. It is useful to define such a
concept for the labelled λ-terms themselves. We define the projection function proj : ΛL ⇀
Λ[], where Λ[] is defined by the abstract grammar e ::= x[] | λx.e | e1@[]e2. The function
proj : ΛL ⇀ Λ[] is defined inductively on the structure of labelled λ-terms as follows:

proj(xU) = x[]

proj(λx.e) = λx.proj(e)

proj(e1@V e2) = proj(e1)@[]proj(e2).

The application nodes annotated with resource types can be defined directly by the typing
in the resource calculus. In order to incorporate more complicated annotations of the form
[V1, . . . , Vn], we require the partial functions mergen : ΛL × . . .× ΛL

︸ ︷︷ ︸

n

⇀ ΛL for each n ≥ 1,

which essentially package up the subgraphs on a beam into one. In the example above, the
merge functions are used to create I@[T1,T2]y from I@T1

y and I@T2
y respectively. The partial

function mergen : ΛL × . . .× ΛL
︸ ︷︷ ︸

n

⇀ ΛL, for arbitrary n ≥ 1, is defined inductively on the

structure of labelled λ-terms as follows:

mergen(x
U1, . . . , xUn) = x[U1,...,Un]

mergen(λx.e1, . . . , λx.en) = λx.mergen(e1, . . . , en)

mergen(e1@V1
f1, . . . , en@Vn

fn) = mergen(e1, . . . , en)@[V1,...,Vn]mergen(f1, . . . , fn).

mergen(e1, . . . , en) is undefined when proj(ei) 6= proj(ej) for some i, j ∈ {1, . . . , n}.

We now define the labelled resource calculus by adapting the resource calculus of section 3.1
to incorporate labelled λ-terms.

3.5 Definition The labelled resource calculus is defined by the following rules:

axiom x : T ⊢L xT : T

perm
Γ, x : T1 ∧ . . .∧ Tn ⊢L e : T π is a permutation of {1, . . . , n}

Γ, x : Tπ(1) ∧ . . .∧ Tπ(n) ⊢L e : T

7

λ1
Γ, x : M ⊢L e : T x 6∈ dom(Γ)

Γ ⊢L λx.e : M ⊸ T

λ2
Γ ⊢L e : T x 6∈ dom(Γ)

Γ ⊢L λx.e : ⊥ ⊸ T

app1
Γ ⊢L e : T1 ∧ . . .∧ Tn ⊸ T ∆i ⊢L fi : Ti proj(i) = proj(j), n≥ 1

conc(Γ,∆1, . . . ,∆n) ⊢L e@T1∧...∧Tn
mergen(f1, . . . , fn) : T

app2
Γ ⊢L e : ⊥ ⊸ T f ∈ Λ[]

Γ ⊢L e@⊥f : T

As observed in the previous section, an untyped term can have many corresponding labelled
terms. Principal typing distinguishes the unique ‘correct’ one. For example, the correct labelled
term of the term (λx.y)u is (λx.y)@⊥u. We have already remarked that (λx.gxx)(Ie) has the
correct labelled term (λx.gxx)@T1∧T2

(I@[T1,T2]e). The term (λx.x(Iy)(λy.y))(λp.λq.p) has the
correct labelled term

(λx.x@T (I@[T]y)@⊥(I))@T⊸⊥⊸T (λp.λq.p).

This last term is especially interesting as it is the example cited by Barendregt et al. [2] to
illustrate the fact that they cannot identify all needed redexes. In particular, they cannot show
that the redex (I@[T]y) is a needed redex. By contrast, we are able to show that the redex is
needed using the type annotations of its leading application node. To make this precise, we
require the flattening function | . | : List(M) → List(M), defined inductively on the structure
of List(M) as follows:

|L| = [L]

|[]| = []

|[V1, . . . , Vn]| = conc(|V1|, . . . , |Vn|),

where conc(|V1|, . . . , |Vn|) denotes the standard list concatenation of |V1|, . . . , |Vn|.
Using this flattening function, we define the allowable redexes of a well-typed term. In

theorem 5.6, we show that allowable redexes are needed redexes.

3.6 Definition An allowable redex of a well-typed labelled term t is a subterm of the form
(λx.r1)@V rr such that |V | 6= [].

Thus, the redex (I@[T]y) in the above example is an allowable, and hence a needed, redex.

There is an important connection between the declarations of variables in the contexts, and
the type annotations of the free occurrences of these variables in well-typed labelled terms. This
connection is fundamental to our notions of substitution and reduction given in section 4. First
we define the list of free labelled occurrences of x in labelled term e, denoted by lx(e), as follows:

lx(x
T) = [xT]

lx(x
[]) = []

lx(x
[U1,...,Un]) = conc(lx(x

U1), . . . , lx(x
Un))

8

lx(y
U) = []

lx(λx.t) = []

lx(λy.t) = lx(t)

lx(t1@V t2) = conc(lx(t1), lx(t2))

Given a well-typed term e in context Γ, there is a precise connection between lx(e) and the
declaration of x in Γ, as the following lemma states.

3.7 Lemma Γ, x : T1 ∧ . . .∧ Tn ⊢L e : T implies lx(e) = [xTπ(1), . . . , xTπ(n)] for some permutation
π of {1, . . . , n}.

4 Allowable β-reduction

In this section we define labelled substitution and labelled β-reduction. We define allowable
β-reduction as the restriction of labelled β-reduction to allowable redexes. In section 5, we show
that allowable redcutions are needed reductions.

We have already observed in the introduction that residuals of needed redexes are not
necessarily needed. We therefore have to be careful to ensure that β-reduction preserves the
typing information. This preservation of the typing information would not be possible if we
simply annotated the application nodes; we must also annotate the variables. The astute reader
will have noticed that the type information annotating the application nodes has been flattened.
For example, we have the well-typed labelled term

(λy.f(I@[T1]y
[[T1]])((λx.gxx)@[T2∧T3]y

[[T2,T3]]))@T1∧T2∧T3
e[T1,T2,T3].

We shall see that the reduction of the outermost redex replaces the first occurrence of y by e[[T1]],
and the second occurrence of y by e[[T2,T3]]. The information regarding the splitting of e[T1,T2,T3]

into e[[T1]] and e[[T2,T3]] is not given by the type annotations of e. Such information would result
in the contraction of a redex having a global effect on the type annotations of a term, which is
clearly an undesirable property when defining labelled substitution. For example, consider the
reduction

(λy.f(I@[T1]y
[[T1]])((λx.gxx)@[T2∧T3]y

[[T2,T3]]))@T1∧T2∧T3
e[T1,T2,T3] →

(λy.f(I@[T1]y
[[T1]])(gy[[T2]]y[[T3]]))@T1∧T2∧T3

e[T1,T2,T3],

where the inner redex (λx.gxx)@[T2∧T3]y
[[T2,T3]] has been reduced. If we now reduce the outermost

redex of this resulting term, we see that the three occurrences of variable y are replaced by e[[T1]],
e[[T2]] and e[[T3]]. Hence, the contraction of the inner redex has resulted in a different splitting
of e[T1,T2,T3]. This difference is accounted for in the type annotations of the occurrences of y.

4.1 Labelled Substitution

Consider a well-typed labelled redex of the form (λx.e)@T1∧...∧Tn
f . We know from lemma 3.7,

and by inspecting the rules of the labelled resource calculus, that f = mergen(f1, . . . , fn) and
lx(e) = [xTπ(1), . . . , xTπ(n)]. Our definition of labelled substitution replaces each xTπ(i) by the
appropriate fπ(i) for i ∈ {1, . . . , n}.

4.1 Definition Let e ∈ ΛL with lx(e) = [xT1, . . . , xTn]. Let f1, . . . , fn ∈ ΛL, such that
proj(fi) = f ∈ Λ[]. Define e[f1, . . . , fn, f/x

T1, . . . , xTn, x] by induction on the structure of e
as follows:

9

1. if e is xT1 then xT1 [f1, f/x
T1, x] = f1;

2. if e is x[] then x[][f/x] = f ;

3. if e is x[U1,...,Um] form ≥ 1 then x[U1,...,Um][f1, . . . , fn, f/x
T1, . . . , xTn, x] = mergem(g1, . . . , gm),

where each gi is x
Ui [fni−1+1, . . . , fni

, f/xTni−1+1 , . . . , xTni , x] for lx(x
Ui) = [xTni−1+1 , . . . , xTni],

and n0 = 0, nm = n, and i < j implies ni ≤ nj;

4. if e is yU then yU [f/x] = yU ;

5. if e is (λx.e) then (λx.e)[f/x] = λx.e;

6. if e is (λy.e) then (λy.e)[f1, . . . , fn, f/x1, . . . , xn, x] is
(λz.e[zS1 , . . . , zSm, z/, yS1, . . . , ySm, y][f1, . . . , fn, f/x1, . . . , xn, x]), where ly(e) = [yS1 , . . . , ySm]
and z 6∈ {x, y} ∪ fv(f) ∪ fv(e);

7. if e is (e1@V e2) then (e1@V e2)[f1, . . . , fn, f/x
T1, . . . , xTn, x] is

e1[f1, . . . , fi, f/x
T1, . . . , xTi, x]@V e2[fi+1, . . . , fn, f/x

Ti+1, . . . , xTn], where for i ∈ {0, . . . , n}
we have lx(e1) = [xT1, . . . , xTi] and lx(e2) = [xTi+1 , . . . , xTn].

It is to be expected that the definition of labelled substitution is notationally more complicated
than that of standard substitution, since we have to be careful to preserve the typing annota-
tions. The complication arises from having to treat variable occurrences separately, and from
having to unpack the lists annotating these variables. Treating variable occurrences separately
is routine. Unpacking the lists annotating the variables is not a problem, since the embedding
of the lists has the same structure as the embedding of the application nodes.

4.2 Lemma [Labelled Substitution]

1. Γ, x : T1 ∧ . . . ∧ Tn ⊢L e : T and ∆i ⊢L fi : Ti, where proj(fi) = f ∈ Λ[] for all
i ∈ {1, . . . , n}, imply conc(Γ,∆1, . . . ,∆n) ⊢L e[fπ(1), . . . , fπ(n), f/x

Tπ(1), . . . , xTπ(n), x] : T ,
where lx(e) = [xTπ(1), . . . , xTπ(n)].

2. Γ ⊢ e : T , where x 6∈ dom(Γ), and f ∈ Λ[] imply Γ ⊢ e[f/x] : T .

4.2 Labelled Reduction

In this section, we define labelled β-reduction and distinguish the allowable reduction steps. A
key issue regarding labelled reduction is to preserve the typing annotations of labelled terms
during reduction. To explain our intuition, we return to the 3-dimensional graph of the λ-term

(λf.g(f(λx.hxx))(f(λx.y)))@((T1∧T2⊸T3)⊸T3)∧((⊥⊸T4)⊸T4)(λx.x@[T1∧T2,⊥](I@[[T1,T2],[]]e))

shown in figure 3.

Consider what happens to the 3-dimensional graph when the outermost redex is contracted.
One branch (marked 1) of the beam is substituted for the first occurrence of variable f (marked
f1), and the other branch is substituted for the second occurrence. If the redex Ie is contracted
first, then all the branches corresponding to Ie are contracted at once, as the box around the
branches in figure 3 indicates. The mechanism for reducing the outer redex in the above example
is to unpack the argument to obtain the components λx.x@T1∧T2

(I@[T1,T2]e) and λx.x@⊥(I@[]e).
Then the first occurrence of f is replaced by the first component, and the second occurrence

10

@

λ f

@

@
@

@
f

f λ x

@

@

h x

x

λ x λ x

@

x

@

I e

@

I e

λ x

@

x

@

eI

g

1

2

1

2

y

Figure 3: The 3-dimensional graph of the labelled term
(λf.g(f(λx.hxx))(f(λx.y)))@((T1∧T2⊸T3)⊸T3)∧((⊥⊸T4)⊸T4)(λx.x@[T1∧T2,⊥](I@[[T1,T2],[]]e)).

of f by the second component. The mechanism for reducing I@[[T1,T2],[]]e is more complicated.
First we unpack the redex into its fundamental components I@T1

e, I@T2
e and I@[]e. Then we

reduce all these redexes to obtain eT1 , eT2 and e[]. Finally, we repack in the same way as we
unpacked to obtain e[[T1,T2],[]].

In order to define labelled β-reduction, we define the partial projection functions πni : ΛL ⇀
ΛL, which split a beam of length n into its components. These functions are defined, for n ≥ 1
and i ∈ {1, . . . , n}, by induction on the structure of labelled terms as follows:

πn
i (x

[U1,...,Un]) = xUi

πn
i (λx.e) = λx.πn

i (e)

πn
i (e1@[V1,...,Vn]e2) = πn

i (e1)@Vi
πn
i (e2).

πn
i is undefined in all other cases.

Our definition of labelled β-reduction →L is given for the so-called well-typed preterms.
Notice that β-reduction for arbitrary labelled terms would not make sense. For example, in the
labelled term (λx.fxx)@T1∧T2

y[T1,T2,T3] we have two free occurrences of x but three components
to y[T1,T2,T3]. Hence, the substitution of y for x in fxx is not defined. We are also not able to
restrict labelled β-reduction to well-typed terms, since the subterms of well-typed terms are not
necessarily well-typed. For example, in the example of figure 3 the subterm I@[[T1,T2],[]]e is not
well-typed.

4.3 Definition Let e be a labelled term. We define the notion of n-level preterm for n ≥ 0 by
induction on n:

1. e is a 0-level preterm if e is well-typed;

2. e is a n-level preterm for n ≥ 1 is e = mergen(e1, . . . , en) and each ei is a (n − 1)-level
preterm;

11

3. e is a n-level preterm for n ≥ 0 is e ∈ Λ[].

The labelled term e is a well-typed preterm if it is an n-level preterm for some n ≥ 0.

The above subterm I@[[T1,T2],[;]]e is a 3-level preterm, since it equalsmerge2(merge2(I@T1
e, I@T2

e), I[]e).
In fact, all subterms of well-typed preterms are also well-typed preterms. This result means
that defining labelled β-reduction for well-typed preterms is enough for us to reduce any redex
in w well-typed term.

4.4 Lemma Let e be a well-typed preterm and let f be a subterm of e. Then f is a well-typed
preterm.

The definition of labelled reduction consists of two parts. First we define the redex reduction

→r, which unpacks the redexes into their underlying components, reduces the components, and
then packs up the results. Using this redex reduction, we then define the labelled reduction →L

which extends the redex reduction to arbitrary terms.

4.5 Definition The redex reduction →r is a binary relation on well-typed preterms which is
defined by induction on the structure of the annotations of the leading application nodes of
redexes as follows:

(λx.e)@T1∧...∧Tn
f →r e[π

n
σ(1)(f), . . . , π

n
σ(n)(f), proj(f)/x

Tσ(1), . . . , xTσ(n), x]

where n ≥ 1 and lx(e) = [xTσ(1), . . . , xTσ(n)]2.

(λx.e)@⊥f →r e[f/x]

(λx.e)@[]f →r e[f/x]

λx.πn
i (e)@Vi

πn
i (f) →r gi i ∈ {1, . . .n}, n ≥ 1

(λx.e)@[V1,...,Vn]f →r mergen(g1, . . . , gn)

4.6 Definition Labelled β-reduction →L is a binary relation on well-typed preterms defined
by induction on the structure of labelled terms as follows:

*
(λx.e)@V f →r g

(λx.e)@V f →L g

e →L e
′

λx.e →L λx.e′

e →L e′

e@V f →L e
′
@V f

e →L e′

f@V e →L f@V e
′

2We adopt the convension that if Ti = Tj for i < j then σ(i) < σ(j).

12

We let ✄L denote the reflexive, transitive closure of →L.

4.7 Lemma Labelled β-reduction is well-defined.

4.8 Lemma The relation ✄L on well-typed preterms satisfies the Church-Rosser property.

4.9 Lemma Γ ⊢L e : T and e =L e′ implies Γ ⊢L e′ : T .

The proofs of the above lemmas are technical but not difficult; details can be found in the full
paper [8]. We let r : e →L f denote the derivation of e →L f such that r is the contracted
redex3. Also let r1, . . . , rn : e0 →L e1 →L . . . →L en denote the finite reduction path such
that ri is the redex contracted in the reduction step ei−1 →L ei. Let ρ : e ✄L f denote an
arbitrary reduction path. The notions of residual sets, needed redexes and needed reductions
lift immediately from the definitions given for the untyped λ-calculus in section 2.

4.3 Allowable β-reduction

One of the main motivations for studying the labelled resource calculus is that it enables us to
define allowable β-reduction. Allowable reduction restricts labelled reduction to reducing only
allowable redexes.

4.10 Definition Allowable β-reduction is a binary relation on well-typed preterms, denoted
by →a, which is constructed using the same rules as those for →L, except that the rule ∗ is
restricted as follows:

(λx.e)@V f →r g |V | 6= []

(λx.e)@V f →a g

Again we let ✄a denote the reflexive, transitive closure of →a. Note that allowable β-reduction
does not satisfy the Church-Rosser property. For example, the term (λx.f@⊥x

[]@Tx
[T])@T (I@[T]z

[[T]])
reduces to the terms f@⊥(I@[]z

[])@T z
[T] and f@⊥z

[]@T z
[T], which are both in allowable normal

form.
The concluding part of this section establishes a close connection between the type annota-

tions of application nodes of well-typed preterms, and the length of an allowable reduction
to allowable normal form. A well-typed preterm e is in allowable normal form, denoted by
ANF (e), if there are no allowable redexes in e. In particular, we show that all allowable reduc-
tion paths to allowable normal form have the same length. We also use these results to show
that well-typed labelled terms have head-normal forms.

4.11 Definition Let e be a well-typed preterm. The length of the derivation
(λx.r1)@V r2 : e →a f , denoted by |(λx.r1)@V r2 : e →a f |, is the length of the list |V |.

We let l(|V |) denote the length of list |V |.

Given a reduction path r1 . . . rn : e0 →a e1 →a . . .→a en, we define

|r1 . . . rn : e0 →a e1 →a . . .→a en| =
n∑

i=1

|ri : ei−1 →a ei|.

We now define the notion of the number of labelled application nodes of a labelled term. Intuit-
ively, for well-typed preterms this number corresponds to the number of application nodes that
are annotated with types in the 3-dimensional graph of the term.

3The notion of contracted redex can be defined precisely since every derivation of e →L f contains precisely
one use of the ∗ rule.

13

4.12 Definition The number of labelled application nodes in labelled term e ∈ ΛL, denoted by
#(e), is defined inductively on the structure of e as follows:

#(xU) = 0

#(λx.e) = #(e)

#(e1@V e2) = #(e1) + #(e2) + l(|V |).

The following lemma states that, during substitution, the number of labelled application nodes
remains constant.

4.13 Lemma Let e ∈ ΛL with lx(e) = [xT1, . . . , xTn], and let f1, . . . , fn ∈ ΛL such that
proj(fi) = f ∈ Λ[] for all i ∈ {1, . . . , n}. Then

#(e[f1, . . . , fn, f/x
T1, . . . , xTn, x]) = #(e) +

n∑

i=1

#(fi).

We can now state a connection between the type annotations of application nodes, and the
length of an allowable reduction to allowable normal form.

4.14 Lemma Let r : e →a f . Then #(e) = |r : e →a f |+ #(f)

4.15 Corollary Let ρ : e ✄a ANF (e) and σ : e ✄a ANF (e) denote two reduction paths to
allowable normal form. Then |ρ : e ✄a ANF (e)| = |σ : e ✄a ANF (e)|.

4.16 Corollary All allowable reduction paths from well-typed preterm e have finite length.

From these results, it is possible to show that all well-typed terms have head-normal forms.

4.17 Lemma Γ ⊢L e : T implies e has a head-normal form.

Proof By corollary 4.16, we know that the length of an allowable reduction is finite. Hence,
there is a finite allowable reduction to the allowable normal form of e. By lemma 4.9, we know
that Γ ⊢L ANF (e) : T . By analysing the typing rules, we see that ANF (e) is in head-normal
form. ✷

5 Results

This section contains the main technical results of this paper. We show that all allowable
reductions are needed reductions. We also show that, for normalisable terms which have been
principally typed, needed reductions are allowable reductions.

A key property of an allowable reduction is that an allowable redex is either used in the
reduction, or its residual set for this reduction is non-empty and at least one of its elements is
allowable. Of course, this property does not hold for arbitrary labelled reductions: for example,
it does not hold for the labelled reduction (λx.y)@⊥(I@[]e) →L λx.y.

5.1 Lemma Let e be a well-typed preterm, and let r be an allowable redex in e. Let s : e →a f .
Then either s is r, or res(r/s) 6= ∅ and at least one of its elements is allowable.

14

Proof (Sketch) The proof is by induction on the structure of the derivation of s : e →a f .
The interesting case is

(λx.e)@T1∧...∧Tn
mergen(f1, . . . , fn) →a e[f1, . . . , fn, proj(f1)/x

T1 , . . . , xTn, x],

where redex r is an allowable redex in mergen(f1, . . . , fn). By definition of allowable redexes,
there is at least one corresponding allowable redex ri in fi. From the definition of substitution, it
can be shown that each fi is contained in e[f1, . . . , fn, f/x

T1, . . . , xTn, x]. (The details for defining
when a term is contained in another term are technical, but not difficult.) It is therefore possible
to prove that redex ri is contained in e[f1, . . . , fn, f/x

T1, . . . , xTn, x]. The details of this proof
can be found in the full paper [8]. ✷

5.2 Corollary Let r be an allowable redex in well-typed preterm e, and let ρ : e ✄a ANF (e).
Then a residual of redex r is used in ρ.

We now show that the leftmost allowable reduction is a needed reduction, using the result of
Barendregt et al. [2] that the leftmost reduction is a needed reduction. As one might expect, the
leftmost allowable reduction is the reduction where the leftmost allowable redex is contracted at
each stage. To prove that this reduction is a needed reduction, we require the following lemma
which provides conditions under which redexes needed in subterms are also needed in the whole
term.

5.3 Lemma

1. Redex r is needed in well-typed preterm λx.e if r is needed in e.

2. Redex r is needed in well-typed preterm x@V1
e1@V2

. . .@Vn
en if r is needed in ei for some

i ∈ {1, . . . , n}.

3. Redex r is needed in well-typed pretermmergen(e1, . . . , en) if there exists an i ∈ {1, . . . , n}
such that πn

i (r) is needed in ei.

5.4 Lemma The leftmost allowable redex of well-typed preterm e is a needed redex in e.

Proof Assume that e is an n-level preterm for n ≥ 0. The proof follows by induction on
n. The interesting case is when n = 0 and e is well-typed. For this case, preceed by in-
duction on the structure of e. The interesting case is when e is an application. If e is
(λx.e0)@M1

e1@M2
. . .@Mn

en, then by inspecting the typing rules we see that M1 must have
shape T1 ∧ . . .∧ Tm or ⊥. Hence, the leftmost allowable redex in this case is the leftmost redex.
By theorem 2.4, the leftmost redex is a needed redex. If e is x@M1

e1@M2
. . .@Mn

en, then we
know that ei for some i ∈ {1, . . . , n} contains the leftmost allowable redex r of e. Again we
know that Mi is T1 ∧ . . .∧ Tm or ⊥. The latter case cannot hold as ei contains allowable redex
r. Hence πm

j (ei) is well-typed for each j ∈ {1, . . .m}. We know that rj = πm
j (r) is an allowable

redex for some j. By the induction hypothesis, we know that rj is needed in πm
j (ei). Using

lemma 5.3, we know that r is needed in ei, and that r is needed in x@M1
e1@M2

. . .@Mn
en. ✷

5.5 Corollary The leftmost allowable reduction is a needed reduction.

Now we can prove our first main theorem, which says that allowable reductions are needed
reductions.

15

5.6 Theorem Let r be an allowable redex in well-typed preterm e. Then r is a needed redex.

Proof Consider the leftmost allowable reduction ρ : e ✄a ANF (e). By corollary 5.5, the
leftmost allowable reduction is a needed reduction. By corollary 5.2, redex r is used in ρ.
Hence, redex r is needed. ✷

5.7 Corollary Let ρ : e ✄a f denote an allowable reduction. Then ρ : e ✄a f is a needed
reduction.

We have already mentioned that, for an arbitrary typing of a term, we have not captured
all the needed redexes. A simple example that illustrates this point is the term (λx.x)(Ie),
one of whose labelled terms is (λx.x)@⊥(I@[]e). In this labelled term, the redex I@[]e is not
allowable, but it is needed. The ‘correct’ labelled term is (λx.x)@T (I@[T]e), which is obtained
by principal typing. For our purposes, it is enough to define principal typing for normalisable
terms in the labelled resource calculus, via a definition of principal typing for their normal
forms. With this definition, we prove that if a normalisable term is principally typed then every
needed reduction from e is an allowable reduction. A more direct definition of principal typing
is given in [8], based on the notion of principal typing for the intersection calculus ⊢∧ω , which
has been studied extensively in the literature [4] [5] [16] [17].

5.8 Definition Let e be a labelled term in normal form. The entailment Γ ⊢L e : T is
principally typed in the labelled resource calculus if:

1. e is xX and (Γ, T) = ({x : X}, X), where X is a type variable;

2. e is λx.e′ and Γ′ ⊢L e′ : T ′ is principally typed, and either

(a) x 6∈ dom(Γ′) and (Γ, T) = (Γ′,⊥ ⊸ T ′); or

(b) x : M ∈ Γ′ and (Γ, T) = (Γ′ − {x : M},M ⊸ T ′);

3. e is x@T1
merge1(e1)@T2

. . .@Tn
merge1(en) for n ≥ 1, and each Γi ⊢L ei : Ti is principally

typed, and (Γ, T) = (conc({x : T1 ⊸ . . . ⊸ Tn ⊸ X}, conc(Γ1, . . . ,Γn)), X), where X is
a new type variable.

For normalisable term e, we say that Γ ⊢L e : T is principally typed if Γ ⊢L NF (e) : T is
principally typed.

Recall that allowable reduction does not satisfy the Church-Rosser property. A key property
of principal typing is that, if Γ ⊢L e : T is principally typed in the labelled resource calculus for
normalisable term e, then every allowable normal form of e equals the normal form.

5.9 Lemma Let Γ ⊢L e : T be principally typed such that e is a normalisable term. Then
e = NF (e).

Proof Since allowable normal forms are in head-normal form, we know that e has shape
λx1 . . .λxn.x

T@M1
e1 . . .@Mm

em. We prove by induction on the structure of e that e = NF (e).
By the Church-Rosser property for labelled reduction and by inspecting the definition of ✄L,
we know that NF (e) = λx1 . . . λxn.x

T@M1
e′1 . . .@Mm

e′m and ei ✄L e′i for each i. We also know
that Γ ⊢L NF (e) : T is principally typed. By definition 5.8, we know that each Mi is a type,
each e′i = merge1(f

′

i) and Γi ⊢L f ′

i : Mi is principally typed for some context Γi. It is easy to
see that ei ✄L merge1(f

′

i) implies ei = merge1(fi) and fi ✄L f ′

i . By definition 5.8, it follows
that Γi ⊢L fi : Mi is principally typed. Since fi is in allowable normal form, we know by the
induction hypothesis that fi = f ′

i for each i, and hence that e = NF (e). ✷

16

5.10 Corollary Let Γ ⊢L e : T be principally typed such that e is a normalisable term. Then
the leftmost allowable reduction is the leftmost reduction.

5.11 Theorem Let Γ ⊢L e : T be principally typed such that e is a normalisable term. Then
every needed reduction beginning with e is an allowable reduction.

Proof Let n : e ✄L f denote a needed reduction. By induction on the length of n, it is enough
to show that the redex r contracted in the first step of n is an allowable redex. Redex r is
needed by assumption, and hence it is used in the leftmost reduction path of e to NF (e). By
lemma 5.10, the leftmost reduction and the leftmost allowable reduction are the same. Hence
redex r is an allowable redex. ✷

6 Conclusions and Future Work

We have advocated the technique of extracting extra information during type assignment to
retain tight control of the use of variables. In particular, we have shown that techniques from
intersection calculi, adapted using ideas about resource from linear and relevant logics, can
be used to create the labelled resource calculus which achieves this tight control of variables.
Using the labelled resource calculus, we have shown how to distinguish allowable redexes. We
have proved that allowable redexes are needed redexes. Moreover, in the presence of principal
typing for normalisable terms, all needed redexes are allowable. We believe that it should be
possible to adapt these ideas to other type assignment systems. An important issue is to provide
a principal typing algorithm for the labelled resource calculus by adapting the algorithm for
intersection types [16] [17], and to investigate the complexity of such an algorithm.

We close by mentioning two potential applications of these results. The first is to strictness
and sharing analysis of functional programming languages, and centres on the non-trivial notion
of arguments being used [3]. Consider the term λf.λx.f(f(x)) which can be principally typed
in the resource calculus to obtain an entailment of the form 〈 〉 ⊢ λf.λx.f(f(x)) : (T2 ⊸

T3) ∧ (T1 ⊸ T2) ⊸ T1 ⊸ T3. The typing of this term indicates that variable f is used twice,
as one would expect. The typing also indicates that any argument will be used in a non-trivial
way. It does not, however, provide complete information regarding the use of an argument,
since that information changes depending on the argument under consideration. For example
with the application (λf.λx.f(f(x)))(KI), the argument KI is used once, as is apparent when
the term is reduced to normal form. This information can, in fact, be obtained from the typing
since, when λf.λx.f(f(x)) is applied to KI , the principal typing of the function is forced to
have shape (⊥ ⊸ T3) ⊸ ⊥ ⊸ T3. The notion of an argument being used is defined in [3] using
a variant of Klop [13] labelling, and a similar notion of use is defined in [3]. Initial investigations
suggest that the number of times an argument a is used in term f(a), where f has principal
type M ⊸ T , corresponds to the length of M .

The second application is to searching for an optimal strategy for reducing λ-terms. Lévy
defines optimal reductions to be the so-called “complete call-by-need reductions” [15]. Intuit-
ively, complete reductions are reductions which involve the maximum amount of sharing. Lévy
points out that the standard sharing mechanisms for graph reduction coupled with the left-
most reduction strategy (which ensures that the reduction is needed) does not always yield an
optimal reduction. Lamping [14], and Gonthier, Abadi and Lévy [11] [12] translate λ-graphs
to graphs which essentially capture Lévy’s account of sharing. Using the leftmost reduction
strategy for their graphs, they obtain an optimal reduction strategy, though this approach is

17

extremely complex. We have shown how to identify precisely the needed reductions, and are
therefore not restricted to the leftmost reduction strategy. An interesting challenge is to seek
an optimal reduction strategy by combining our identification of needed reductions with the
standard sharing mechanisms for graph reduction. Of course, our approach would only apply to
principally typed terms, whereas the approach of Lamping, and of Gonthier, Lévy and Abadi
applies to all λ-terms. In many applications, however, working with principally typed terms
would not be a significant restriction.

Acknowledgements

My thanks go to Benjamin Pierce for many interesting discussions during the initial stages of
this work, and for bringing to my attention the suggestion of Mariangiola Dezani-Ciancaglini
of applying these ideas to intersection types. I would also like to thank John Reynolds for his
help and encouragement. In particular, he suggested the notion of 3-dimensional graphs to aid
in the motivation of the labelled resource calculus.

References

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, North-Holland,
1984.

[2] H.P. Barendregt, J.R. Kennaway, J.W. Klop and M.R. Sleep. Needed Reduction and
Spine Strategies for the Lambda Calculus, Information and Computation, Vol. 75, pp
191–231, 1987.

[3] C. Baker-Finch. Relevance and Contraction: A Logical Basis for Strictness and Sharing

Analysis, Information Sciences Technical Report, University of Canberra, 1993.

[4] F. Cardone and M. Coppo. Two Extensions of Curry’s Type Inference System, Logic
and Computer Science, ed. P. Odifreddi, pp 19-75, 1990.

[5] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal Type Schemes and
Lambda Calculus Semantics, in [18], 1980.

[6] A.J.T.Davie. An Introduction to Functional Programming Systems using Haskell,
Cambridge University Press, 1992.

[7] J.M. Dunn. Relevant Logic and Entailment, Handbook of Philosophical Logic, eds.
D. Gabbay and F. Guenthner, Vol. 3, pp 117–224, 1984.

[8] P.A. Gardner. Discovering Needed Reductions Using Type Theory, full paper, in pre-
paration, 1993.

[9] P.A. Gardner. Strictness and Sharing Analysis using Type Theory, in preparation,
1993.

[10] J.Y. Girard. Linear Logic, Theoretical Computer Science, Vol. 50, pp 1-102, 1987.

[11] G. Gonthier, M. Abadi and J-J. Lévy. The Geometry of Optimal Lambda Reduction,
Ninteenth Annual ACM Symposium of Principles of Programming Languages, pp 15-
26, 1992.

18

[12] G. Gonthier, M. Abadi and J-J. Lévy. Linear Logic Without Boxes, Logic in Computer

Science, 1992.

[13] J.W. Klop. Term Rewriting Systems, Handbook of Logic in Computer Science, Vol. 2,
pp 1–116, 1992.

[14] J. Lamping. An Algorithm for Optimal Lambda Calculus Reduction, Seventeenth An-

nual ACM Symposium on Principals of Programming Languages, pp 16–30, 1990

[15] J-J. Lévy. Optimal Reductions in the lambda calculus, in [18], pp 159–192, 1980.

[16] S. Ronchi della Rocca. Principal Type Scheme and Unification for Intersection Type
Discipline, Theoretical Computer Science, Vol. 59, pp 181–209, 1988.

[17] S. Ronchi della Rocca and B. Venneri. Principal Type Schemes for an Extended Type
Theory, Theoretical Computer Science, Vol. 29, pp 151–209, 1984.

[18] J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays in Combinatory Logic,

Lambda Calculus and Formalism, Academic Press, 1980.

[19] D.A. Turner. Miranda–a Non-strict Language with polymorphic types, Functional Pro-
gramming Languages and Computer Architecture, Springer LNCS 201, pp 1–16, 1985.

19

