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Abstract

We propose a new framework for representing logics, called LF+ and based on the Ed-

inburgh Logical Framework. The new framework allows us to give, apparently for the first

time, general definitions which capture how well a logic has been represented. These defin-

itions are possible since we are able to distinguish in a generic way that part of the LF+

entailment which corresponds to the underlying logic. This distinction does not seem to

be possible with other frameworks. Using our definitions, we show that, for example, nat-

ural deduction first-order logic can be well-represented in LF+, whereas linear and relevant

logics cannot. We also show that our syntactic definitions of representation have a simple

formulation as indexed isomorphisms, which both confirms that our approach is a natural

one and provides a link between type-theoretic and categorical approaches to frameworks.

1 Introduction

Much effort has been devoted to building systems for supporting the construction of formal

proofs in various logics: examples of such systems include HOL [Gor87], LEGO [LP92], Alf [ACN90]

and NuPrl [Con86]. Existing implementations for particular logics cannot easily be adapted to

other logics. It is therefore desirable to seek a framework for representing logics, which unifies

the structure common to a wide variety of logics. The aim of such a framework is to provide

insights into the important theoretical question of what a logic is, and to yield general rather

than logic-specific implementations of these logics.

Type theories have emerged as leading candidates for frameworks: examples include the

Edinburgh Logical Framework [HHP87] and Isabelle [Pau87]. When using type theories in this

way, the method of representation is necessarily informal, due to the variations in the styles of

presentations of the logics under consideration; in fact, some logics cannot be well-represented

because the meta-theory of the logic is incompatible with the meta-theory of the type theory.

It is therefore necessary to provide criteria which determine when a representation is correct.

We propose a new framework, called LF+ and based on the Edinburgh Logical Framework.

The new framework allows us to give, apparently for the first time, general definitions which

capture how well a logic has been represented. These definitions are possible since we are able

to distinguish, in a generic way, that part of the LF+ entailment relation which corresponds to

∗This paper is based on research from my thesis, called ‘Representing Logics in Type Theory’, published in

1992. A preliminary version appeared in ECS-LFCS-92-251; a shorter version appeared in the Fourth Interna-

tional Conference on Logic Programming and Automated Reasoning [Gar93].

1



the underlying logic. This distinction does not seem to be possible using other frameworks; in

section 2 we discuss this point for LF. Using our definitions, we show that, for example, natural

deduction first-order logic can be well-represented in LF+, whereas linear and relevant logics

cannot. These syntactic definitions of representation have a simple formulation as indexed

isomorphisms, which both confirms that our approach is a natural one, and provides a link

between type-theoretic and categorical approaches to frameworks.

There are many possible definitions of ‘correct’ representation, which depend on the amount

of structure we wish to preserve. In this paper, we concentrate on two definitions of repres-

entation: adequate representation, which defines when the consequence relation of a logic has

been well-represented by the LF+ entailment relation, and natural representation, which re-

quires in addition that derivations have been well-represented. Our adequacy definition bears

some relation to the notion of uniform encoding in LF defined in [HST89], which essentially

involves tagging the LF signatures to indicate the types of interest. Using LF+, we immediately

know the part of the entailment relation we require, and so this ‘extra-logical’ tagging is not

necessary. More reecently, Simpson has studied the semantic analysis of a related notion of

adequacy [Sim92] for the type theory underlying Isabelle [Pau87] and λ-Prolog [MN86].

Summary We introduce the new framework LF+ in section 2, and give examples to illustrate

representation in this framework. Section 3 contains the formal justification for LF+. We give

an axiomatic account of a logic, which has just enough structure to present logics as indexed

categories. Using this account, we define the notions of adequate and natural representation.

We also give examples to illustrate these definitions and prove that certain logics cannot be

well-represented in LF+. In section 4, we show that our syntactic definitions of representation

give rise to indexed isomorphisms.

2 The Logical Framework LF+

The framework LF+ is based on the Edinburgh Logical Framework (LF) of Harper, Honsell and

Plotkin [HHP87]. Influenced by various AUTOMATH languages [Bru80] and by Martin-Löf’s

work on the foundations of intuitionistic logic [Mar85], LF constitutes an important advance

in the study of logical frameworks. It is not possible, however, to provide general definitions of

‘correct’ representation using LF. These definitions are possible using LF+.

A logic is specified in LF by a signature declaring a finite set of constants that gives the

syntax, judgements and inference rules of the logic; LF together with this signature forms

the representing type theory. Each signature is accompanied by an adequacy theorem, which

provides some confirmation that the consequence relation and proof structure have been well-

represented. However, these adequacy theorems only apply to particular logics. They cannot

be stated more generally for a wide class of logics. This is because information is lost during

representation owing to the fact that a LF signature does not provide enough information to

reconstruct the underlying logic. For example, a LF signature does not distinguish those types

corresponding to the syntactic classes and those corresponding to judgements. It also does not

distinguish the extra types which have no correspondence in the underlying logic, and which

are often required as part of the machinery of the representation. It is therefore not possible to
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identify the part of the LF entailment relation which corresponds to the consequence relation of

the underlying logic without appealing to that particular logic. In LF+, we take advantage of

the distinctions between types given by the universes of Pure Type Systems [Bar92] to provide

a framework where such an identification is possible.

The type theory of LF+ is a variant of the LF type theory which allows for extra distinctions

between types. It has three universes, called Sort , Extra and Judge, in place of the single LF

universe Type. The intention is for the terms of the logic to be represented using Sort , the

judgements to be represented using Judge, and the universe Extra to contain the extra types

which have no immediate correspondence with the underlying logic. Using these distinctions,

we are indeed able to identify that part of the representing type theory which corresponds to the

underlying logic without reference to specific signatures, and so provide the general definitions

of correct representation we seek.

In this section, we present the type theory of LF+ using an extension of the Pure Type System

presentation to allow for βη-equality and signatures. The meta-theoretic results necessary to

make this extension rigorous can be found in [Geu92]. We give examples of representations in

LF+ to show the techniques required. These examples are also used to illustrate our definitions

of adequate and natural representation given in section 3.

2.1 Pure Type Systems with βη-equality and signatures

The distinction between terms required by LF+ exploits, and was partially inspired by, the

techniques of Beradi [Ber90] and Terlouw [Ter89] in extending Barendregt’s λ-cube to Pure

Type Systems (PTSs) [Bar92]. The framework LF+ is presented as a PTS with βη-equality,

adapted to distinguish between signatures and contexts. This adaptation is necessary to give a

precise representation of LF+, since the formation of signatures and contexts is different. This

difference is not surprising as signatures are used to specify logics, whereas one of the uses of

contexts is to represent assumptions. In [HHP87], LF is presented as a type theory with β-

equality. The stronger βη-equality allows for a smoother correspondence between the logic and

its representing type theory, since every well-typed term is convertible to a unique canonical

element, and also simplifies considerably the unification problem for LF [Pym92] and hence for

LF+. 1

2.1 Definition A specification of a PTSβη with signatures is a quadruple (U ,V,A,R) where

• U is a set, called the set of universes;

• V ⊆ U is the set of variable universes;

• A ⊆ U × U is the set of axioms;

• R ⊆ V × U × U is the set of rules.

The set of preterms T of a PTSβη with signatures given by the specification (U ,V,A,R)

is defined using countably infinite sets of variables Var and constants Const with the abstract

1The meta-theoretic results for βη-equality were open problems when the LF paper was written.
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syntax

A ::= u |x | a | Πx:A.B |λx:A.B |AB,

where u is a universe, x ∈ Var and a ∈ Const . It is useful to divide the sets Var and Const

into disjoint infinite subsets Var
v and Const

u for v ∈ V and u ∈ U . Arbitrary variables

and constants are denoted by x, y, z and a, b, c respectively. We let ✄β and ✄βη denote the

reflexive and transitive closure of the standard one-step β- and βη-reductions on preterms,

and let =β and =βη denote the corresponding equalities. A precontext Γ is a finite, possibly

empty, sequence of the form 〈x1:A1, . . . , xn:An〉 with xi ∈ Var for all i ∈ {1, . . . , n}. We write

dom(Γ) = {x1, . . . , xn}. We also use the analogous notions of presignature Σ and dom(Σ).

The simple method for declaring constants is based on the standard approach used, for

example, in the type theory defining LF [HHP87]. More motivation and different approaches

are discussed in [Gar92].

2.2 Definition The PTSβη with signatures specified by (U ,V,A,R) is defined by the following

proof system:

Axiom 〈 〉 ⊢〈 〉 u : v (u, v) ∈ A

Signature
〈 〉 ⊢Σ A : u

〈 〉 ⊢Σ,a:A a : A
u ∈ U , a ∈ Constu, a 6∈ dom(Σ)

〈 〉 ⊢Σ A : u 〈 〉 ⊢Σ B : C

〈 〉 ⊢Σ,a:A B : C
u ∈ U , a ∈ Constu, a 6∈ dom(Σ)

context
Γ ⊢Σ A : v

Γ, x : A ⊢Σ x : A
v ∈ V, x ∈ Varv, x 6∈ dom(Γ)

Γ ⊢Σ A : v Γ ⊢Σ B : C

Γ, x : A ⊢Σ B : C
v ∈ V, x ∈ Var

v, x 6∈ dom(Γ)

Π -rule
Γ ⊢Σ A : u Γ, x : A ⊢Σ B : v

Γ ⊢Σ Πx:A.B : w
(u, v,w) ∈ R

λ -rule
Γ ⊢Σ Πx:A.B : u Γ, x : A ⊢Σ M : B

Γ ⊢Σ λx:A.M : Πx:A.B
u ∈ U

App
Γ ⊢Σ M : Πx:A.B Γ ⊢Σ N : A

Γ ⊢Σ MN : B{N/x}

Conv
Γ ⊢Σ A : B Γ ⊢Σ C : u

Γ ⊢Σ A : C
B =βη C, u ∈ U
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Given Γ ⊢Σ A : B, we say that Σ is a signature, that Γ is a context and that A and B are terms.

We sometimes write Γ ⊢Σ A : B : C to denote Γ ⊢Σ A : B and Γ ⊢Σ B : C, and write Γ ⊢ζ
Σ A : B

to emphasise that the entailment Γ ⊢Σ A : B is valid in the PTS with specification ζ. Given

a specification ζ, the PTSβη with signature Σ, denoted by (ζ,Σ), is defined by restricting the

entailments of the PTSβη specified by ζ such that the entailments of interest are of the form

Γ ⊢ζ
Σ A : B. A PTSβη with signatures is normalising if every well-typed term in it reduces to

a βη-normal form. A PTSβη with signatures specified by (U ,V,A,R) is functional if A is a

partial function from U to U and R is a partial function from V ×U to U . (That is, if u : v and

u : w ∈ A then v ≡ w, and if (u, v,w) and (u, v,w′) ∈ R then w ≡ w′.) Geuvers shows that the

standard type theoretic results hold for functional, normalising PTSs with βη-equality [Geu92],

which extend Salvesen’s results for LF with βη-equality [Sal90]2. It is trivial to adapt these

results to PTSs with signatures. The results required for this paper are stated below for an

arbitrary functional, normalising PTSβη with signatures.

2.3 Lemma (Weakening) If Γ ⊢Σ A : B and Γ ⊆ ∆ for context ∆, then ∆ ⊢Σ A : B.

2.4 Lemma (Substitution) If Γ, x : A,∆ ⊢ΣB : C and Γ ⊢ΣM : A, then Γ,∆{M/x} ⊢Σ B{M/x} :

C{M/x}.

2.5 Lemma (Subject Reduction) If Γ ⊢Σ A : B and A ✄βη A
′, then Γ ⊢Σ A

′ : B.

2.6 Lemma (Church-Rosser for βη-equality) If Γ ⊢Σ A : B and A ✄βη C and A ✄βη D, then

there exists a preterm E such that C ✄βη E and D ✄βη E.

Recall that the Church-Rosser property for β-equality holds for the set of preterms. The cor-

responding result for βη-equality does not hold for the preterms.

2.7 Lemma (Congruence for βη-equality) If Γ ⊢Σ A : C and Γ ⊢Σ B : C and A =βη B, then

A ✄βη D and B ✄βη D for some term D.

2.2 The Type Theory LF+

LF+ uses three universes, called Sort , Extra and Judge, in place of the single LF universe Type,

which allows enough distinctions between LF+ terms to make the definitions of adequate and

natural representation feasible.

2.8 Definition The framework LF+ is the PTSβη with signatures given by the specification

(U ,V,A,R), where

U = {Sort ,Extra , Judge,Kind}

V = {Sort ,Extra , Judge}

A = {Sort : Kind ,Extra : Kind , Judge : Kind}

R = {(Sort ,Kind ,Kind ), (Extra ,Kind ,Kind)} ∪ {(Judge, Judge,Extra)}

∪{(s1, s2,Extra) : s1, s2 ∈ {Sort ,Extra}}

2Salvesen has also shown that the Church-Rosser property holds for a wide class of PTSs [Sal91].
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An LF+ term A is a kind if Γ ⊢LF+

Σ A : Kind for some context Γ and signature Σ. Similarly,

a term A is a sort or judgement if it inhabits the appropriate universe with respect to some

context and signature. If Γ ⊢LF
+

Σ A : Extra then A is called an extra type. We call variable x

a sort variable if x ∈ Var
Sort ; similarly we define a judgement variable as a variable inhabiting

VarJudge .

The idea of splitting the universe Type of LF into three motivates the choice of U , V and

A. Some justification of the set of rules R is required. An important point to note is that

the Π-abstraction of sorts, extra types and judgements all inhabit Extra . This is because

we view Π-abstraction as part of the machinery of the meta-theory, rather than as having a

direct correspondence in the object logic, since the aim is to capture a wide variety of logics.

In contrast, various predicative intuitionistic logics can be presented as type theories using the

propositions-as-types paradigm [CF58, Bru80, How80], by equating Π-abstraction with universal

quantification.

Alternatives to this choice of rules are discussed in [Gar92]. For example, it seems reasonable

to assume that the syntax of a logic does not depend on the derivations of the logic; for this

reason we have omitted the rules (Judge,Sort ,Extra) and (Judge,Extra ,Extra). A natural

example of a logic where formulae depend on proofs is a first-order logic with a choice operator:

that is, given a proof p of ∃x.φ(x) we obtain a term t dependent on p such that φ(t) is true.

Such a logic would include a syntactic class of proofs, and judgements linking proofs with

formulae. Our assumption does not therefore restrict such a logic. Also, notice that we include

(Sort ,Kind ,Kind) and (Extra ,Kind ,Kind ), but not (Judge,Kind ,Kind). As the examples

below illustrate, the first two rules are used to form judgements. We do not include the rule

(Judge,Kind ,Kind), since it would correspond in the logic to syntactic classes or judgements

depending on derivations.

2.3 Representation in LF+

We sketch three examples of representations in LF+: natural-deduction first-order logic [Pra65]

has a direct representation, higher-order logic [Chu40] has a representation which requires extra

constants to represent the syntax of the logic, and Hilbert-style S4 [Che80] has a representation

which requires extra constants to represent the consequence relation. These examples are also

used to illustrate our definitions of adequate and natural representation in the next section.

Further examples can be found in [Gar92], or adapted from the examples in [AHMP92].

2.9 Example We consider a fragment of natural-deduction first-order logic with arithmetic,

whose terms and formulae are given by abstract grammar

terms t ::= x | 0 | succ(t) | + (t)(t′)

formulae φ ::= (t= t′) |φ ⊃ ψ | ∀x.φ,

and we consider the rules:

(φ)
...

ψ

φ ⊃ ψ
⊃I

φ ⊃ ψ φ

ψ
⊃E

φ

∀x.φ
∀I∗

∀x.φ

φ{t/x}
∀E
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where * denotes that x does not occur free in the assumptions. This fragment is enough to

illustrate the ideas behind the LF+ representation of first-order logic.

The specification in LF+ of the above fragment of first-order logic with the theory of arith-

metic, denoted by ΣFol, contains the constants

ι : Sort

o : Extra ,

whose inhabitants correspond to the well-formed arithmetic terms and formulae respectively.

In general, inhabitants of Sort should correspond to syntactic classes containing variables. Syn-

tactic classes which do not contain variables should be represented by inhabitants of Extra .

This distinction between the syntactic classes is required to give a precise link between the

consequence relation of the logic and the corresponding LF+ entailment relation. For example,

the consequence relation of natural-deduction first-order logic does not contain formulae vari-

ables. This use of the universe Extra is, however, comparatively minor; more interesting uses

are illustrated by the higher-order logic and Hilbert-style S4 examples given below. We also

declare the constant

true : o→ Judge,

where LF+ terms of the form true(φ) for φ : o correspond to the judgement that formulae are

true in first-order logic. In the corresponding LF representation of first-order logic, it is not

possible to distinguish those LF terms corresponding to judgements and those corresponding to

syntactic classes without appealing to the particular LF constants used, since all these terms

inhabit the universe Type.

The rest of the specification follows the techniques used to represent first-order logic in LF

and is given below; for a detailed account of the techniques involved, see [HHP87] or [Gar92].

The terms and formulae are represented using the constants

0 : ι

succ : ι→ ι

+ : ι→ ι→ ι

= : ι→ ι→ o

⊃ : o→ o→ o

∀ : (ι→ o) → o.

The rules given above are represented by the constants

⊃I : Πφ,ψ:o.(true(φ) → true(ψ)) → true(φ ⊃ ψ)

⊃E : Πφ,ψ:o.true(⊃(φ)(ψ)) → true(φ) → true(ψ)

∀I : ΠF :ι→ o.(Πx:ι.true(Fx)) → true(∀(λx:ι.Fx))

∀E : ΠF :ι→ o.Πt:ι.true(∀(F )) → true(Ft)

So, for example, the term ⊃ I(φ)(ψ)(λp:true(φ).q) inhabits LF+ judgement true(φ ⊃ ψ), for

φ : o, ψ : o and q : true(ψ), and corresponds to a proof that a formula with shape φ′ ⊃ ψ′ is

true in the underlying logic.
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2.10 Example The syntax of Church’s higher-order logic [Chu40] is based on simply-typed

λ-calculus:

domains α ::= ι | o |α ⇒ α

terms t ::= xα | (λxα.tβ)α⇒β | (tα⇒βsα)β| (∀(tα⇒o))o | (to ⊃ so)o.

The domains, viewed as syntactic classes, cannot be represented directly in LF+ as there are

infinitely many of them. In the signature specifying higher-order logic in LF+, denoted by ΣHol,

we declare the constants

dom : Extra

ι : dom

o : dom

⇒ : dom → dom → dom ,

which provide an obvious link between the domains and the terms in dom. We associate with

each inhabitant of dom a LF+ term, identified with the objects of that domain, given by the

constant

obj : dom → Sort .

For each α : dom , it is the term obj (α) which represents a domain of higher-order logic, rather

than α itself, since inhabitants of obj (α) correspond to the terms of the logic. Thus obj (α) is a

sort, and term α : dom is considered an extra term as the universes suggest. The inhabitants of

obj (α) are constructed in a similar fashion to the inhabitants of ι and o given in the previous

example. The full LF+ specification of higher-order logic can be found in [Gar92].

The above example demonstrates the technique of using the Extra universe to represent

extra constants. Notice that, in the representations of first-order and higher-order logic in

LF+, the term corresponding to the syntactic class of formulae is the extra term o in the first

representation, and sort obj (o) in the second. The former distinguishes between the first-order

terms and formulae, whereas the latter treats a formula as any other term expression. This

mirrors precisely the behaviour of formulae in first-order and higher-order logic.

2.11 Example [Hilbert-style S4] The representation of Hilbert-style S4 is an example where

extra constants are used to represent the consequence relation of the logic in LF+. The formulae

are given by the abstract grammar:

φ ::= X | φ ⊃ ψ | ✷φ,

where X denotes a formula variable, and we consider the rules:

A1 φ ⊃ (ψ ⊃ φ)

A2 (φ ⊃ (ψ ⊃ θ)) → ((φ ⊃ ψ) → (φ ⊃ θ))

A3 ✷φ ⊃ φ

A4 ✷(φ ⊃ ψ) ⊃ (✷φ ⊃ ✷ψ)
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A5 ✷φ ⊃ ✷✷φ

MP
φ φ ⊃ ψ

ψ

Nec
∗ φ

✷φ

where ∗ indicates the side-condition that φ is a theorem.

The difficulty of representing Hilbert-style S4 in LF+ (or LF) lies with the Nec-rule. This rule

cannot be represented directly by the standard method of declaring a constant nec inhabiting

Πφ:o.true(φ) → true(✷φ) since such a constant would force the inhabitation of true(✷φ) in any

context entailing true(φ). The solution [Avr91] centres on a logic, denoted by Lnew , with the

same syntax as S4 and judgements of the form φ true and φ valid for a formula φ, with the

intuition that φ valid in Lnew corresponds to φ being a theorem in Hilbert-style S4, and φ true

in Lnew corresponds to φ being true in Hilbert-style S4.

Using Avron’s approach, Hilbert-style S4 is represented in LF by first specifying Lnew in

LF and then, in the accompanying adequacy theorem, limiting the correspondence to those LF

terms representing truth judgements [AHMP92]. This example shows that in LF it is possible

for one signature to specify different logics, in this case Hilbert-style S4 and Lnew . Using

LF+, this phenomenon cannot occur if the consequence relations of both logics have been well-

represented. Thus, in particular, the specification of Hilbert-style S4 in LF+ is different from

the specification of Lnew . The difference occurs in the universes which the terms corresponding

to φ true and φ valid inhabit. For the LF+ representation of Hilbert-style S4, we declare the

constants true : o → Judge and valid : o → Extra , which indicate that the terms of the

form true(φ) correspond to the judgements of Hilbert-style S4 whilst the terms of the form

valid(φ) are extra terms given by the representation. (In the signature specifying Lnew in LF+,

the constants true and valid both inhabit o → Judge.) The specification of Hilbert-style S4,

denoted by ΣMod, is given in figure 1; a detailed explanation can be found in [Gar92].

3 Adequate and Natural Representation

In this section, we provide a formal justification for defining the new framework LF+. The

examples in section 2.3 illustrate how to identify in a general way that part of the LF+ en-

tailment relation which corresponds to the underlying logic. This identification can be used to

provide general definitions of correct representation. The definitions vary depending on how

much structure of the logic one wishes to capture. We focus on the notion of an adequate repres-

entation, which states when the consequence relation of the logic has been well-represented, and

natural representation, which gives some measure that the proof structure has been preserved

during representation. An immediate result is that if the consequence relation has been well-

represented, then the meta-theory of the consequence relation and the LF+ entailment relation

must be compatible: an obvious requirement, which could not be proved using LF.
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o : Sort

⊃ : o→ o→ o

✷ : o→ o

true : o→ Judge

valid : o→ Extra

C : Πφ:o.valid (φ) → true(φ)

A1 : Πφ,ψ:o.valid (φ ⊃ (ψ ⊃ φ))

A2 : Πφ,ψ, θ:o.valid ((φ ⊃ (ψ ⊃ θ)) → ((φ ⊃ ψ) → (φ ⊃ θ)))

A3 : Πφ:o.valid (✷φ ⊃ φ)

A4 : Πφ,ψ:o.valid (✷(φ ⊃ ψ) ⊃ (✷φ ⊃ ✷ψ))

A5 : Πφ:o.valid (✷φ ⊃ ✷✷φ)

MPV : Πφ,ψ:o.valid (φ) → valid(φ ⊃ ψ) → valid (ψ)

Nec : Πφ:o.valid (φ) → valid(✷φ)

MPT : Πφ,ψ:o.true(φ) → true(φ ⊃ ψ) → true(ψ)

Figure 1: The LF+ specification of Hilbert-style S4, denoted by ΣMod.

3.1 Logical preliminaries

In order to analyse representations of logics in LF+, we require some standard terminology

for the logics under consideration. This terminology is kept at an abstract level so that our

definitions of representation apply to a wide variety of logics presented with different syntactic

styles. For the purposes of this paper, logics consist of syntax, judgements and a consequence

relation. The syntax is based on a possibly infinite set of syntactic classes, with the subset S of

syntactic classes containing variables distinguished. The inhabitants of the syntactic classes are

called expressions, with those expressions inhabiting members of S called the term expressions.

The notions of free variables and simultaneous substitution must be defined at this abstract

level. First some notation is required. Let Tc denote the set of term expressions and Varc

denote the set of variables inhabiting syntactic class c ∈ S. We write T =
⋃

c∈S T
c. Let J

denote the set of judgements of the logic. We define a substitution function as a function

α :
⋃

c∈S Var
c → T ,

such that α is almost everywhere the identity and

1. x ∈ Var
c implies α(x) ∈ T c.

Using this function α, we define the notion of simultaneous substitution of α in a term or

judgement by the functions

subα : T → T and Subα : J → J,

with the following properties:
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2. t ∈ T c implies subα(t) ∈ T c;

3. x ∈
⋃

c∈S Var
c implies subα(x) = α(x);

4. subid = idT and Subid = idJ ;

5. subα ◦ subβ = subγ and Subα ◦ Subβ = Subγ , if γ(x) = subα(β(x)) for all x ∈
⋃

c∈S Var
c;

6. α = β implies subα = subβ and Subα = Subβ.

Notice that property 1 follows from properties 2 and 3. Let t{s1/x1, . . . sn/xn} (sometimes

denoted by t{~s/~x}) for t ∈ T denote the term expression subα(t), where α(xi) = si for i ∈

{1, . . . , n} and α(y) = y for y 6∈ {x1, . . . , xn}. Similarly, we let j{s1/x1, . . . sn/xn}, or j{~s/~x},

denote the judgement Subα(j).

We also define the free variable functions

fv : T → P(
⋃

c∈S Var
c) and Fv : J → P(

⋃
c∈S Var

c)

satisfying the properties:

7. fv(x) = {x} for x ∈
⋃

c∈S Var
c;

8. fv(subα(t)) =
⋃

x∈fv(t) fv(α(x)) and Fv(Subα(j)) =
⋃

x∈Fv(j) fv(α(x)) ;

9. α|fv (t) = β|fv(t) implies subα(t) = subβ(t), and α|Fv (j) = β|Fv(j) implies Subα(j) = Subβ(j),

where α|A for A ⊆
⋃

c∈S Var
c denotes the restriction of function α to domain A.

Notice that property 6 follows from property 9.

We focus on an abstract definition of consequence relation of a logic, with the intention

that it is formed using the proof system of the logic. Unlike the usual definition of consequence

relation (see for example [Avr91]), our definition depends on the free variables of the judgements

under consideration. This refinement of the consequence relation is necessary, since we aim to

link the consequence relation of a logic with its corresponding LF+ entailment relation, and

variables must be declared explicitly in type theory.

3.1 Definition The consequence relation of a logic is a ternary relation written in the form

Γ ⊢{~x} j, where j is a judgement, Γ is a multiset of judgements and {~x} is a set of distinct

variables of the logic with Fv(j) ∪ Fv(Γ) ⊆ {~x}, and which satisfies

1. (reflexivity) j ⊢{~x} j if Fv(j) = {~x};

2. (variable weakening) Γ ⊢{~x} j and y 6∈ {~x} implies Γ ⊢{~x,y} j;

3. (substitution) Γ ⊢{~x,~y} j implies Γ{~t/~y} ⊢
{~x}∪fv (~t )

j{~t/~y} , where if Γ is the multiset

{j1, . . . , jm} then Γ{~t/~y} denotes the multiset {j1{~t/~y}, . . . , jm{~t/~y}}, and if {~t/~y} de-

notes {t1/y1, . . . , tn/yn} then fv(~t ) denotes
⋃n

i=1 fv(ti);

4. (cut) Γ ⊢{~x} j and ∆, j ⊢{~x} k imply Γ ∪∆ ⊢{~x} k.

A consequence relation satisfying weakening is a consequence relation which also satisfies
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5. (weakening) Γ ⊢{~x} j and Fv(k) ⊆ {~x} imply Γ ∪ {k} ⊢{~x} j.

A consequence relation satisfying contraction is a consequence relation which also satisfies

6. (contraction) Γ, j, j ⊢{~x} k implies Γ, j ⊢{~x} k.

This abstract notion of a logic gives us enough structure to present logics as strict indexed

categories (definition 4.4).

3.2 Type theoretic preliminaries: the βη-long normal forms

Our analysis of representations of logics in LF+ is given up to βη-equivalence. In particular,

we concentrate on LF+ terms in βη-long normal form with respect to the appropriate signature

and context, which are canonical elements for the equivalence classes under βη-equality. The

intuition is that the terms in βη-long normal form with respect to some signature and context

are fully applied. For example, in the LF+ representation of first-order logic specified by ΣFol

(example 2.9), we associate the formula ∀x.(y = x) with the LF+ term ∀(λx′ : ι.(= (y′)(x′)))

in context y′ : ι, rather than the β-normal form ∀(= (y′)). The constant =: ι → ι → o is

fully applied in the first term, but not in the second. Our characterisation of terms in βη-

long normal form depends on the notion of β-normal form of a term and the arity of the

universes, constants and variables with respect to the appropriate signature and context. This

characterisation corresponds to the definition of canonical normal form for LF [HHP87].

3.2 Definition Let ζ be an arbitrary functional, normalising PTSβη with signatures. A pre-

term A is in β-normal form if it contains no subterms of the form

(λx : A1.A2)B. Let A ✄β B such that B is in β-normal form. Then B is the canonical

β-normal form of A.

3.3 Definition Let Γ ⊢LF
+

Σ A : B.

1. The arity of universe u in A with respect to (Σ; Γ) is 0.

2. The arity of free variable or constant @ in A with respect to (Σ; Γ) is the number of Πs

in the prefix of C′, where @ : C is declared in Σ or Γ, and C′ is the canonical β-normal

form of C.

3. The arity of bound variable x in A with respect to (Σ; Γ) is the number of Πs in the

prefix of C′, where C is the type accompanying the binding occurrence of x and C′ is the

canonical β-normal form of C.

3.4 Definition

1. Let Γ ⊢LF+

Σ A : B. The term A is in βη-long normal form with respect to (Σ; Γ) if it has

shape

λx1 : A1 . . . λxn : An.Πy1 : B1 . . .Πym : Bm.@M1 . . .Mk

where n,m, k ≥ 0, the term @ is a universe, constant or variable of arity k with respect

to (Σ; Γ), and

12



(a) each Ai for i ∈ {1, . . . , n} is in βη-long normal form with respect to

(Σ; Γ, x1:A1, . . . , xi−1:Ai−1);

(b) each Bj for j ∈ {1, . . . ,m} is in βη-long normal form with respect to

(Σ; Γ, x1:A1, . . . , xn:An, y1:B1, . . . , yj−1:Bj−1);

(c) each Mr for r ∈ {1, . . . , k} is in βη-long normal form with respect to

(Σ; Γ, x1:A1, . . . , xn:An, y1:B1, . . . , ym:Bm).

2. Let Γ ⊢LF+

Σ A : B. A term A′ is a βη-long normal form of A with respect to (Σ; Γ) if

Γ ⊢Σ A
′ : B, the term A′ is in βη-long normal form with respect to (Σ; Γ) and A =βη A

′.

3. Let Γ ⊢LF+

Σ A:B such that Γ is 〈x1:A1, . . . , xn:An〉. The context Γ is in βη-long normal

form with respect to Σ if each Ai for i ∈ {1, . . . , n} is in βη-long normal form with respect

to (Σ; 〈x1:A1, . . . , xi−1:Ai−1〉).

The key property of βη-long normal forms is that they provide canonical terms for the

equivalence classes under βη-equality. The proof of this property is non-trivial, and can be

adapted from results in [DHW93] and [Gar93a].

3.5 Theorem Let Γ ⊢LF+

Σ A : B. The βη-long normal form of A with respect to (Σ; Γ) exists

and is unique.

3.3 Adequate Representations

We now give the definition of adequate representation, which characterises when the consequence

relation of a logic has been well-represented in LF+. Our definition provides a precise corres-

pondence between the consequence relation of the logic, and that part of the LF+ entailment

relation given by the sorts and judgements. This correspondence identifies variables of the

represented logic with sort variables, preserves substitution, and gives a sound and complete

interpretation of the consequence relation in the entailment relation. The definition is given in

two parts. First, we define an encoding which gives the correspondence from the logic to the

type theory. We then define an adequate encoding, which gives the correspondence the other

way. These definitions are given using LF+ terms in βη-long normal form.

First some notation is required. Recall that, for an arbitrary logic, we distinguish the set S

of syntactic classes containing variables. The variables are partitioned by the syntactic classes

in S. For example, in higher-order logic we have variables xι and yo in the syntactic classes ι and

o respectively. The sort variables of LF+, however, are not partitioned; the sorts they inhabit

are determined by the contexts in which they are declared. For example, in the representation

of higher-order logic in LF+ given in example 2.10, we have the freedom to declare the contexts

x : obj (ι) and x : obj (o) for sort variable x ∈ Var
Sort . We obtain a precise link between variables

of the logic and sort variables by introducing a countably infinite set of variables of the logic,

denoted by VarLog , which is not partitioned by the syntactic classes. We then write xc to
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declare that x ∈ VarLog inhabits syntactic class c, and let T (~x) and J(~x) denote the sets of

term expressions and judgements with free variables in {~x}, where ~x = 〈xc11 , . . . , x
cn
n 〉 and the

xi are distinct variables in Var
Log . Our slightly non-standard approach allows us the freedom

to declare a variable in any syntactic class in S, just as we can declare a LF+ sort variable to

inhabit any sort3.

3.6 Definition Let Log be an arbitrary logic specified in LF+ by ΣLog . An encoding [[ ]] of

Log in (LF+, ΣLog) consists of a function

[[ ]]S : S → T ,

and families of functions

[[ ]]T~x : T (~x) → T and [[ ]]J~x : J(~x) → T ,

indexed by finite sequences of distinct variables ~x = 〈xc11 , . . . , x
cn
n 〉, such that

1. c ∈ S implies 〈 〉 ⊢ΣLog
[[c]]S : Sort , where [[c]]S is in βη-long normal form with respect to

(ΣLog ; 〈 〉);

2. [[xi]]
T
~x = x′

i for i ∈ {1, . . . , n}, where we distinguish a bijection ( )′ : VarLog → VarSort ;

3. for each term expression t from syntactic class c and judgement j, both with free variables

contained in {xc11 , . . . , x
cn
n }, we have

Γ~x ⊢ΣLog
[[t]]T~x : [[c]]S ;

Γ~x ⊢ΣLog
[[j]]J~x : Judge,

where Γ~x is 〈x′
1 : [[c1]]

S, . . . , x′
n : [[cn]]

S〉, and [[t]]T~x and [[j]]J~x are in βη-long normal form with

respect to (ΣLog ; Γ~x);

4. the functions [[ ]]T~x : T (~x) → T and [[ ]]J~x : J(~x) → J are compositional: that is, for term

expressions t ∈ T (~y) and s1, . . . , sr ∈ T (~x), and judgement j ∈ J(~y),

[[t{~s/~y}}]]T~x = [[t]]T~y {[[s1]]
T
~x /y

′
1, . . . , [[sn]]

T
~x /y

′
n}

[[j{~s/~y}]]J~x = [[j]]J~y{[[s1]]
T
~x /y

′
1, . . . , [[sn]]

T
~x /y

′
n}

5. the interpretation is sound: that is, for sequence 〈j1, . . . , jm〉 of judgements of the logic,

{j1, . . . , jm} ⊢{~x} j implies Γ~x, p1 : [[j1]]
J
~x , . . . , pm : [[jm]]

J
~x ⊢ΣLog

: [[j]]J~x ,

where Γ~x is defined in part 3, the p1, . . . , pm are distinct variables in Var
Judge and : [[j]]J~x

denotes the inhabitation of LF+ term [[j]]J~x .

3An alternative approach is to work with equivalences up to renaming of variables. This approach is technically

more difficult, and so we choose not to use it.
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We shall sometimes omit the superscripts on [[ ]]S, [[ ]]T~x and [[ ]]J~x , when the domain is apparent.

Notice that the encoding definition depends on certain properties of the logics under consid-

eration. We assume the syntactic classes do not depend on variables. We also assume that the

term expressions and the judgements do not contain information regarding derivations. In the

above definition the soundness condition is only concerned with inhabitation of LF+ terms, since

the standard consequence relation of the logic contains no information regarding the structure

of derivations. In our definition of natural representation (definition 3.12), the inhabitants of

LF+ judgements correspond to derivations.

An adequate encoding provides an exact correspondence between the consequence relation

of a logic and part of the entailment relation of the relating type theory. In order to provide

the correspondence from the representing type theory to the underlying logic, we identify the

following sets of LF+ terms:

sort
βη
Γ = {A such that Γ ⊢Σ A : Sort and A is in βη-long normal form wrt. (Σ; Γ)};

texp
βη
Γ = {M such that Γ ⊢Σ M : A : Sort , M is in βη-long normal form wrt. (Σ; Γ)};

judge
βη
Γ = {J such that Γ ⊢Σ J : Judge and J is in βη-long normal form wrt. (Σ; Γ)}.

Given encoding [[.]] and using the sets of LF+ terms distinguished above, we are now able to

be more precise with the ranges of the function [[ ]]S, and the functions [[ ]]T~x and [[ ]]J~x . Let Γ~x

denote the contexts of sorts 〈x′1 : [[c1]]
S, . . . , x′

n : [[cn]]
S〉. We write [[ ]]T~x : T (~x) → texp

βη
Γ~x

and

[[ ]]J~x : J(~x) → judge
βη
Γ~x

to denote the functions extensionally equal to [[ ]]T~x and [[ ]]J~x , but with

the more precise ranges. These are well-defined by condition 2 in definition 3.6. We also write

[[ ]] : S → sort
βη

〈 〉 . These functions play a central role in the definition of an adequate encoding,

which we now give.

3.7 Definition An encoding [[.]] of Log in (LF+, ΣLog) is adequate when

1. [[ ]] : S → sort
βη

〈 〉 is a bijection;

2. for each finite sequence ~x = 〈xc11 , . . . , x
cn
n 〉 of variables, the functions [[ ]]~x : T (~x) → texp

βη
Γ~x

and [[ ]]~x : J(~x) → judge
βη
Γ~x

are bijections;

3. the interpretation is complete; that is, for sequences ~x = 〈xc11 , . . . , x
cn
n 〉 and 〈j1, . . . , jm〉 of

variables and judgements of the logic respectively,

Γ~x, p1 : [[j1]]~x, . . . , pm : [[jm]]~x ⊢ΣLog
: [[j]]~x implies {j1, . . . , jm} ⊢{~x} j,

where the p1, . . . , pm are distinct variables in VarJudge and : [[j]]~x denotes the inhabitation

of LF+ term [[j]]~x.

We say that the logic Log is adequately represented in LF+ by signature ΣLog if there is an

adequate encoding of Log in (LF+, ΣLog ).

The representations of first-order logic, higher-order logic and Hilbert-style S4 sketched in

section 3.1 are all adequate. Ideally, the correspondence between a logic and its representation in

a framework should be immediately apparent, although it is not clear that this goal is compatible

with the aim of representing a wide variety of logics. With LF+, the correspondence between a

well-represented logic and the representing type theory is usually obvious, although some work

must be done to show that the conditions stipulated in definitions 3.6 and 3.7 are satisfied.
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3.8 Theorem The signature ΣFol provides an adequate representation of first-order logic in

LF+.

Proof We give the encoding [[ ]] of first-order logic in (LF+, ΣFol). The technical details

required to show that [[ ]] is an adequate encoding are straightforward (see [Gar92] for details).

The function [[ ]] : S → sort
βη

〈 〉 is:

[[term]] = ι.

For each sequence ~x = 〈x1, . . . , xn〉 of variables of first-order logic (we omit the superscripts

as there is only one syntactic class containing variables), the function [[ ]]~x : T (~x) → texp
βη
Γ~x

is

defined inductively on the structure of t ∈ T (~x) as follows:

[[x]]~x = x′, x ∈ {~x}

[[0]]~x = 0

[[succ(t)]]~x = succ([[t]]~x)

[[t+ s]]~x = +([[t]]~x)([[s]]~x)

where ( )′ : VarLog → Var
Sort is a bijection and Γ~x is 〈x′

1 : ι, . . . , x
′
n : ι〉.

Similarly, for each sequence of variables ~x = 〈x1, . . . , xn〉, the function [[ ]]~x : J(~x) → judge
βη
Γ~x

is given by [[φ]]~x = true(〈〈φ〉〉~x) for formula φ, where 〈〈 〉〉~x : F (~x) → oβηΓ~x
, with F (~x) denoting the

set of formulae with free variables in {~x}, is defined inductively as follows:

〈〈t = s〉〉~x = =([[t]]~x)([[s]]~x)

〈〈φ ⊃ ψ〉〉~x = ⊃(〈〈φ〉〉~x)(〈〈ψ〉〉~x)

〈〈∀y.φ〉〉~x = ∀(λy′:ι.〈〈φ〉〉~x,y)

✷

The representations of higher-order logic and Hilbert-style S4 sketched in section 2.3 are also

adequate. We state the result without proof; the details can be found in [Gar92].

3.9 Theorem The signatures ΣHol and ΣMod provide adequate representations of higher-order

logic and Hilbert-style S4 respectively.

It is intuitively clear that, for a logic to be well-represented in a framework, the meta-theory

of the logic and the framework must be compatible. We are at last able to capture this intuition,

as the following theorem states.

3.10 Theorem Logics which are adequately represented in LF+ have consequence relations

which satisfy weakening and contraction.

Proof Let [[.]] be an adequate encoding of Log in (LF+, ΣLog ). We show that the cut property

holds for Log. The other properties in definition 3.1 hold in a similar fashion. Assume that the

relations {j1, . . . , jm} ⊢Log
{~x} j and {j, k1, . . . , kr} ⊢Log

{~x} k hold. Then we have

Γ~x, p1 : [[j1]]~x, . . . , pm : [[jm]]~x ⊢ΣLog
π : [[j]]~x and ;
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Γ~x, q : [[j]]~x, q1 : [[k1]]~x, . . . , qr : [[kr]]~x ⊢ΣLog
π′ : [[k]]~x,

where Γ~x is the context 〈x′1 : [[c1]], . . . , x
′
n : [[cn]]〉, and without loss of generality we assume that

{p1, . . . , pm} ∩ {q1, . . . , qr} = ∅. It is a straightforward matter to show, using the substitution

lemma, that

Γ~x, p1 : [[j1]]~x, . . . , pm : [[jm]]~x, q1 : [[k1]]~x, . . . , qr : [[kr]]~x ⊢ΣLog
π′{π/q} : [[k]]~x.

Since [[.]] is an adequate encoding, we have {j1, . . . , jm, k1, . . . , kr} ⊢Log
{~x} k. Hence, Log satisfies

the cut property of definition 3.1. ✷An immediate corollary is that there are no adequate LF+

representations of the standard consequence relations of linear [Gir87] and relevance [Dun84]

logics of the form φ1, . . . , φm ⊢{~x} φ, where the φ1, . . . , φm, φ are formulae and {~x} is a set of

variables denoting formulae. In recent work, Miller, Plotkin and Pym have been investigating a

type theory for representing logics [MPP92], which incorporates ideas from linear logic to adapt

the standard notion of context so that these consequence relations can be well-represented.

3.4 Natural Representations

Our definition of natural representation extends the notion of adequate representation to re-

quire, in addition, a correspondence between derivations in the logic and LF+ terms inhabiting

judgements. This extension gives some indication that the proof system of a logic can be mim-

icked by its representation in LF+, and provides a full generalisation to arbitrary logics of the

adequacy theorems accompanying the LF representations in [HHP87] for particular logics.

Following [HHP87], our definition of natural representation focuses on the notion of a con-

sequence relation of proofs. This notion is defined by extending the syntax of the logic to

incorporate a set of proof expressions, which includes an infinite set of proof variables. The

definitions of simultaneous substitution and free variables for proof expressions can be given

in a similar fashion to the definitions in section 3.1 for term expressions and judgements. The

consequence relation of proofs identifies the valid proof expressions, with the intuition that valid

proof expressions correspond to derivations in the logic. In order to define natural represent-

ations, it is enough for us to give an abstract characterisation of the consequence relation of

proofs. Our intention is for the consequence relation of proofs to be constructed by adapting

the proof system of the logic to identify those proof expressions that are valid. For example, as-

sociated with the ⊃E-rule of first-order logic are proof expressions of the form ⊃E(φ)(ψ)(p)(q),

such that ⊃E(φ)(ψ)(p)(q) is valid whenever p denotes a valid proof expression for φ ⊃ ψ, and

q denotes a valid proof expression for φ.

A consequence relation of proofs is a ternary relation written in the form Γ ⊢{~x} π : j, where

Γ is a set of proof assumptions of the form {p1:j1, . . . , pm:jm} for m ≥ 0 such that the pi are

distinct proof variables, the j1, . . . , jm and j are judgements whose free variables are contained

in the distinct set of variables {~x}, and π is a proof expression with free variables in {~x} and free

proof variables in {p1, . . . , pm}. We say that such a proof expression π is valid for judgement j

under Γ. The consequence relation of proofs must satisfy:

1. (reflexivity) p : j ⊢{~x} p : j if Fv(j) ⊆ {~x};
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2. (variable weakening) Γ ⊢{~x} p : j and y 6∈ {~x} imply Γ ⊢{~x,y} p : j;

3. (substitution of term expressions) Γ ⊢{~x,~y} p : j implies Γ{~t /~y} ⊢
{~x}∪fv (~t )

p{~t/~y} : j{~t /~y},

where Γ{~t/~y} is {p1 : j1{~t/~y}, . . . , pm : jm{~t/~y}}, and fv(~t ) =
⋃n

i=1 fv(ti) if {~t/~y} denotes

{t1/y1, . . . , tn/yn};

4. (substitution of proof expressions) Γ ⊢{~x} π : j and ∆ ∪ {p : j} ⊢{~x} σ : k imply (with

appropriate renaming to avoid conflicting proof variables) Γ ∪∆ ⊢{~x} σ{π/p} : k.

A consequence relation of proofs which satisfies weakening is a consequence relation of proofs

which also satisfies

5. (weakening) Γ ⊢{~x} p : j and Fv(k) ⊆ {~x} and q 6∈ dom(Γ) implies Γ ∪ {q : k} ⊢{~x} p : j.

A consequence relation of proofs which satisfies contraction is a consequence relation of proofs

which also satisfies

6. (contraction) Γ ∪ {p1 : j, p2 : j} ⊢{~x} π : k implies Γ ∪ {q : j} ⊢{~x} π{q/p1, q/p2} : j if q 6∈

dom(Γ) .

Just as in the definition of adequate encoding, we first define the notion of strong encoding,

which extends the definition of encoding (definition 3.6), and then define when a strong encoding

is natural. First, we fix some notation. Let VarProof denote the countably infinite set of proof

variables of the logic, and let P (~x,Γ) denote the set of proof expressions with free variables in

the sequence of variables ~x, and free proof variables in the sequence of proof assumptions Γ.

3.11 Definition Let Log be a logic specified in LF+ by ΣLog . A strong encoding [[[ ]]] of Log in

(LF+, ΣLog ) consists of an encoding [[ ]], together with a family of functions [[ ]]P~x;∆ : P (~x,∆) →

T , indexed by finite sequences of distinct variables ~x = 〈xc11 , . . . , x
cn
n 〉 and proof assumptions

∆ = 〈p1:j1, . . . , pm:jm〉, and such that:

1. [[p]]P~x;∆ = h(p), where we distinguish a bijection h : VarProof → V arJudge ;

2. the [[ ]]P~x;∆ are compositional; that is, for proof expressions π ∈ P (~y,Θ) and

σ1, . . . , σm ∈ P (~x,∆), and term expressions t1, . . . , tn ∈ T (~x), we have

[[π{~t /~y, ~σ/~p}]]P~x;∆

= [[π]]P~y;Θ{[[t1]]~x/y
′
1, . . . , [[tn]]~x/y

′
n, [[σ1]]

P
~x;∆/h(p1), . . . , [[σm]]

P
~x;∆/h(pm)}

3. the interpretation is sound: that is, for ∆ = {p1:j1, . . . , pm:jm},

∆ ⊢Log π : j implies Γ~x,Γ∆ ⊢LF+

ΣLog
[[π]]P~x;∆ : [[j]]~x,

where the context Γ~x is 〈x′
1 : [[c1]], . . . , x

′
n : [[cn]]〉, and the precontext Γ∆ is

〈h(p1) : [[j1]]~x, . . . h(pm) : [[jm]]~x〉;
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Again, we sometimes omit the superscript on [[ ]]P~x;∆ when the domain is apparent.

Before we give the definition of natural representation, we require some notation. The

definition uses the set of LF+ terms

proof
βη
Γ = {p such that Γ ⊢Σ p : J : Judge and p is in βη-long normal form wrt. (Σ; Γ)}.

For sequences of variables ~x and proof assumptions ∆, let V P (~x,∆) denote the subset of P (~x,∆)

consisting of valid proof expressions. In (LF+, ΣLog ), the valid proof expressions correspond to

inhabitants of judgements; the proof expressions as a whole are not represented. We therefore

restrict [[ ]]P~x;∆ to the valid proof expressions, and define the function [[ ]]P~x;∆ : V P (~x,∆) →

proof
βη
Γ~x,Γ∆

as the function extensionally equal to [[ ]]P~x;∆, but restricted to the domain V P (~x,∆)

and given with the more precise range.

3.12 Definition A strong encoding [[[ ]]] of Log in (LF+, ΣLog ) is natural if

1. the encoding [[.]] of Log in (LF+, ΣLog ) is an adequate encoding;

2. for finite sequences of variables ~x and proof assumptions ∆, the function [[ ]]~x;∆ : V P (~x,∆) →

proof
βη
Γ~x,Γ∆

is a bijection;

3. the interpretation is complete: for finite sequences of variables ~x = 〈xc11 , . . . , x
cn
n 〉 and proof

assumptions ∆ = 〈p1:j1, . . . , pm:jm〉, we have

Γ~x,Γ∆ ⊢ΣLog
[[p]]~x;∆ : [[j]]~x implies ∆ ⊢Log

{~x} p : j.

We say that the logic is naturally represented in LF+ if there is a natural encoding of Log in

(LF+, ΣLog ).

The adequate representations of first-order logic and higher-order logic sketched in sec-

tion 2.3 are also natural. To prove this, one must define a language of proof expressions for the

logics and provide proof systems for deriving valid proof expressions, with the property that

the valid proof expressions correspond to derivations in the logics. We state the theorem; the

details can be found in [Gar92].

3.13 Theorem The signatures ΣFol and ΣHol sketched in section 2.3 provide natural repres-

entations of first-order logic and higher-order logic respectively in LF+.

3.14 Example In [Gar92], we show that the LF+ representation of Hilbert-style S4 discussed

in example 2.11 is adequate, but not natural. The intuition behind this (without resorting to

the technical detail of proof expressions) is that the number of constants in ΣMod which specify

the proof system of Hilbert-style S4 is more than the number of rules in the proof system. By

the compositional property of definition 3.11, this means that the functions from valid proof

expressions to inhabitants in βη-long normal form of judgements cannot be bijections.

Just as in the case of adequate representations, the meta-theory associated with proofs in a

logic represented naturally in LF+ must be compatible with the meta-theory for the framework.
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3.15 Theorem Logics whose LF+ representations are natural must have consequence relations

of proofs which satisfy weakening and contraction.

Proof The proof follows in a similar fashion to that of theorem 3.10. ✷

3.16 Example Natural-deduction S4 [Pra65] does not have a natural representation in LF+

since, although its consequence relation satisfies weakening and contraction, its derivations do

not define a consequence relation of proofs. The problem occurs with the Nec-rule

φ

✷φ
all the assumptions must be boxed

which results in derivations that cannot be composed. This is illustrated (without resorting to

the technical detail of proof expressions) using the derivations:

✷φ

✷✷φ
Nec

φ ⊃ ✷φ φ

✷φ
MP

Substituting the second derivation for the premise of the first, we obtain

φ ⊃ ✷φ φ

✷φ
Nec

✷✷φ
?

which is not a derivation since the last line is not an instance of the Nec-rule.

Remark Our approach for studying naturality is based on that found in [HHP87]. An

alternative approach is to investigate a consequence relation of sequents of the form

seq1, . . . , seqn ⊢ seq ,

where seqi for i ∈ {1, . . . , n} and seq have the form j1, . . . , jn ⇒~x j for judgements j1, . . . , jn, j,

which may contain schematic variables. Similar consequence relations have also been studied by

Aczel [Acz92]. The advantage of this approach is that it captures the notion of the existence of

a derivation without adapting the logic to incorporate proof expressions. The characterisation

of this consequence relation in LF+ is left for future research.

4 Adequate and natural representations give rise to indexed

isomorphisms

We have argued that the syntactic definition of adequate representation defines when the con-

sequence relation of a logic has been well-represented in the representing type theory. Our

arguments are reinforced in this section by showing that our syntactic definition has a direct
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categorical formulation as an indexed isomorphism. It is known that the mathematical structure

common to the logics under consideration can be captured by the structure of strict indexed

categories [PS78] (or split fibrations [Ben85]), whose base categories are given by term expres-

sions and whose fibres are given by consequence relations. By utilising the fact that we are

able to identify in a general way that part of the LF+ entailment relation which corresponds

to the underlying logic, we define indexed categories for the representing type theories, whose

base categories are defined using sorts, and whose fibres are defined using LF+ judgements. En-

codings then give rise to indexed functors, such that adequate encodings correspond to indexed

isomorphisms. This result both confirms that our approach is a natural one, and provides a

link between type-theoretic and categorical approaches to frameworks. The analogous result

for natural representations follows in a similar fashion: see [Gar92].

4.1 Logics and their representing type theories as indexed categories

In this section we provide the methodology for presenting logics and their representing type

theories as (strict) indexed categories. For our purposes, we choose to concentrate on indexed

categories rather than fibrations, since it is more natural to present a logic by considering first

the syntax, which provides the indexing, and then the consequence relation. First, we require

some definitions regarding indexed categories. A clear exposition of fibrations and indexed

categories can be found, for example, in [BW90].

4.1 Definition Let C be a category. A strict indexed category is a functor F : Cop → Cat

where Cat is the category of small categories. The category C is the base category and, for

c ∈ obj (C), the fibre over c is the category F (c).

All the indexed categories discussed in this section are strict, so whenever we refer to an indexed

category we assume it is strict.

4.2 Definition Let F : Aop → Cat and G : Bop → Cat be indexed categories. An indexed

functor from F to G is a pair (σbase , σ) consisting of a functor σbase : A → B (called the base

functor) and a natural transformation σ : F → G ◦ σopbase .

4.3 Definition An indexed isomorphism is an indexed functor, whose base functor is an iso-

morphism, and whose natural transformation is a natural isomorphism.

Our presentation of logics as indexed categories is based on the categorical presentation of

various particular logics, initiated by Lawvere [Law70] but generalised to a wide class of logics.

It concentrates on the abstract view of logics as consequence relations given in section 3.1.

4.4 Definition Let Log denote an arbitrary logic, whose consequence relation satisfies weak-

ening and contraction. The indexed category given by Log is denoted by L : Aop → Cat and

defined as follows. The base category A is given by:

objects: finite sequences of the form 〈xc11 , . . . , x
cn
n 〉, where the xi are distinct variables in

Var
Log ;
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morphisms: finite tuples of term expressions (t1, . . . , tn) : ~x→ ~y = 〈yc11 , . . . , y
cn
n 〉 such that, for

each i ∈ {1, . . . , n}, the ti and yi inhabit the same syntactic class and fv(ti) ⊆ {~x};

composition: if (t1, . . . , tn) : ~x → ~y = 〈y1, . . . , yn〉 and (s1, . . . , sm) : ~y → ~z then (s1, . . . , sm) ◦

(t1, . . . , tn) is (s1{~t/~y}, . . . , sm{~t/~y}) : ~x→ ~z;

identity: (x1, . . . , xn) : ~x→ ~x = 〈xc11 , . . . , x
cn
n 〉.

For each ~x = 〈xc11 , . . . , x
cn
n 〉 in obj (A), the fibre L(~x) is given by:

objects: finite sequences of judgements with free variables in {~x};

morphisms: 〈j1, . . . , jm〉→〈k1, . . . , kp〉 whenever {j1, . . . , jm} ⊢Log
{~x} ki for i ∈ {1, . . . , p}.

For morphism (t1, . . . , tn) : ~y → ~x = 〈xc11 , . . . , x
cn
n 〉 in A, the functor L((t1, . . . , tn)

op : ~x → ~y) =

(~t )∗ : L(~x) → L(~y) is defined as follows:

(~t )∗(〈j1, . . . , jm〉) = 〈j1{~t/~x}, . . . , jm{~t/~x}〉;

(~t )∗(〈j1, . . . , jm〉 → 〈k1, . . . , kp〉) = 〈j1{~t/~x}, . . . , jm{~t/~x}〉 → 〈k1{~t/~x}, . . . , kp{~t/~x}〉.

This definition is shown to be valid using the properties of simultaneous substitution and the

consequence relation given in section 3.1.

We do not use the standard categorical approach for presenting type theories. Our present-

ation is motivated by the use of the type theory as a framework for representing logics, and

utilises the fact that we are able to determine in a general way that part of the type theory

which corresponds to the underlying logic.

4.5 Definition Let (LF+, ΣLog) be the type theory representing a logic. The indexed category

given by (LF+, ΣLog ) and denoted by E : Bop → Cat is defined as follows. The base category

is given by:

objects: contexts of sorts in βη-long normal form;

morphisms: finite tuples of LF+ terms (t1, . . . , tn) : ΓS → ∆S = 〈x1:A1, . . . , xn:An〉, such

that ΓS ⊢ΣLog
ti : Ai{t1, . . . , ti−1/x1, . . . , xi−1} for i ∈ {1, . . . , n}, and each ti is

in βη-long normal form with respect to (ΣLog ; ΓS);

composition: for morphisms (t1, . . . , tn) : ΓS → ∆S = 〈x1:A1, . . . , xn:An〉 and (s1, . . . , sm) :

∆S → ΘS, their composite (s1, . . . , sm) ◦ (t1, . . . , tn) is (s1{~t/~x}, . . . , sm{~t/~x}) :

ΓS → ΘS;

identity: (x1, . . . , xn) : ∆S → ∆S = 〈x1:A1, . . . , xn:An〉.

For each ΓS ∈ obj (B), the fibre E(ΓS) is the preorder category given by:

objects: finite sequences of judgements 〈J1, . . . , Jm〉 with Ji ∈ judge
βη
ΓS

for i ∈ {1, . . . ,m};
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morphisms: 〈J1, . . . , Jm〉 → 〈K1, . . . ,Kr〉 whenever ΓS, p1:J1, . . . , pm:Jm ⊢ΣLog
: Kj for

j ∈ {1, . . . , r}, where : Kj denotes the inhabitation of judgement Kj.

For each morphism (t1, . . . , tn) : ∆S → ΓS = 〈x1:A1, . . . , xn:An〉 inB, the functor E : ((t1, . . . , tn)
op :

ΓS → ∆S) = (~t )∗ : E(ΓS) → E(∆S) is given by:

(~t )∗(〈J1, . . . , Jm〉) = 〈J1{~t/~x}, . . . , Jm{~t/~x}〉;

(~t )∗(〈J1, . . . , Jm〉→〈K1, . . . ,Kr〉) = 〈J1{~t/~x}, . . . , Jm{~t/~x}〉→〈K1{~t/~x}, . . . ,Kr{~t/~x}〉

The fact that this definition is valid follows from the meta-theoretic results of LF+.

4.2 Adequate representations give indexed isomorphisms

We are now in a position to show the main result of this section, namely that the syntactic

definition of encodings gives rise to indexed functors, with the property that the encodings are

adequate if and only if the functors are isomorphisms.

4.6 Definition Assume that Log is an arbitrary logic, whose consequence relation satisfies

weakening and contraction. Let [[ ]] be an encoding of Log in (LF+, ΣLog ), and let the indexed

categories determined by Log and (LF+, ΣLog) be L : Aop → Cat and E : Bop → Cat respect-

ively. The indexed functor determined by [[.]] and denoted by (ebase , e) : L → E consists of the

base functor ebase : A→ B and natural transformation e : L → E ◦ ebase , where

ebase(〈x
c1
1 , . . . , x

cn
n 〉) = 〈x′1 : [[σ1]], . . . , x

′
n : [[σn]]〉;

ebase((t1, . . . , tn) : ~x→ ~y) = ([[t1]]~x, . . . , [[tn]]~x) : ebase(~x) → ebase(~y),

and, for each ~x ∈ obj (A),

e~x(〈j1, . . . , jn〉) = 〈[[j1]]~x, . . . , [[jn]]~x〉;

e~x(〈j1, . . . , jn〉 → 〈k1, . . . , km〉) = 〈[[j1]]~x, . . . , [[jn]]~x〉→〈[[k1]]~x, . . . , [[km]]~x〉.

The indexed functor determined by encoding [[.]] is well-defined by the properties of the encoding.

Not all indexed functors give rise to encodings. For example, there is no guarantee that

an indexed functor preserves the ordering or length of tuples. We believe that a more detailed

analysis of the structure of these indexed categories (in particular, the categorical interpretation

of sequences and contexts) will yield a two-way correspondence. This analysis is beyond the

scope of this paper. We are, however, able to deduce that the indexed functor determined by

an encoding is an indexed isomorphism if and only if the encoding is adequate. This strong

correspondence is feasible since we are dealing with a particular indexed functor given by the

encoding, which preserves the ordering and length of tuples as the following lemma states.

4.7 Lemma Assume that Log is an arbitrary logic, whose consequence relation satisfies weak-

ening and contraction. Let [[.]] be an encoding of Log in (LF+, ΣLog ) such that the indexed

categories determined by Log and (LF+, ΣLog ) are L : Aop → Cat and E : Bop → Cat respect-

ively. Let the indexed functor (ebase , e) : L → E determined by the encoding be an indexed

isomorphism with inverse (fbase , f) : E → L.
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1. Given
fbase((~s , t, ~u ) : ΓS → ∆S) = (~s ′, t′, ~u ′) : fbase(ΓS) → fbase(∆S);

fbase((~v, t, ~w) : Γ
′
S → ∆′

S) = (~v ′, t′′, ~w ′) : fbase(Γ
′
S) → fbase(∆

′
S),

where (~s , t, ~u) and (~v, t, ~w) denote two arbitrary morphisms in B containing LF+ term t,

we have

(a) the lengths of ΓS and fbase(ΓS), and of ∆S and fbase(∆S) are the same;

(b) the lengths of ~s and ~s′, and of ~u and ~u ′ are the same;

(c) t′ = t′′.

2. For each ΓS ∈ obj (B), given

fΓS
(〈~J,K, ~L〉) = 〈~J ′,K ′, ~L′〉;

fΓS
(〈 ~M,K, ~N 〉) = 〈 ~M ′,K ′′, ~N ′〉,

where 〈~J,K, ~L〉 and 〈 ~M,K, ~N 〉 denote two arbitrary objects of E(ΓS) containing K ∈

judge
βη
ΓS
, we have:

(a) the lengths of ~J and ~J ′, and of ~L and ~L′ are the same;

(b) K′ = K ′′.

Proof (Sketch) By the definition of (ebase , e) we know that the functor ebase and, for all ~x ∈

obj (A), the functors e~x preserve the order and length of sequences and tuples. This yields

parts 1a, 1b and 2a. Parts 1c and 2b follow from that fact that (fbase , f) is inverse to (ebase , e).

✷

We are now in a position to show the main result of this section, namely that adequate

encodings correspond to indexed isomorphisms.

4.8 Theorem Assume that Log is an arbitrary logic, whose consequence relation satisfies weak-

ening and contraction. Let [[.]] be an encoding of Log in (LF+, ΣLog ), and let (ebase , e) : L → E

be the indexed functor determined by [[.]], where L : Aop → Cat and E : Bop → Cat. Then [[.]]

is adequate if and only if (ebase , e) is an indexed isomorphism.

Proof (Sketch) First, assume that [[.]] is an adequate encoding. Let f : VarSort → Var
Log

denote the inverse of ( )′ : VarLog → Var
Sort , and consider the function [[ ]] : sortβη〈 〉 → S, and

functions [[ ]]ΓS
: texpβη

ΓS
→ T (~xΓS

) and [[ ]]ΓS
: judgeβη

ΓS
→ J(~xΓS

), for each context of sorts ΓS in

βη-long normal form, which are inverse to [[ ]]S, and to [[ ]]T~xΓS

and [[ ]]J~xΓS

respectively, where if ΓS

is 〈x1:A1, . . . , xn:An〉 then ~xΓS
is the sequence 〈f(x1)

[[A1]], . . . , f(xn)
[[An]]〉. We use these functions

to define an indexed functor (fbase , f) : E → L which is the inverse indexed functor of (ebase , e).

The base functor fbase is given as follows:

fbase(〈x1:A1, . . . , xn:An〉) = 〈f(x1)
[[A1]], . . . , f(xn)

[[An]]〉,

fbase((t1, . . . , tm) : ΓS → ∆S) = ([[t1]]ΓS
, . . . , [[tm]]ΓS

) : fbase(ΓS) → fbase(∆S),
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and, for each context of sorts ΓS in βη-long normal form, the natural transformation f : E →

L ◦ fbase is defined, for each ΓS ∈ obj (B), by

fΓS
(〈J1, . . . , Jm〉) = 〈[[J1]]ΓS

, . . . , [[Jm]]ΓS
〉;

fΓS
(〈J1, . . . , Jm〉 → 〈K1, . . . ,Kp〉) = 〈[[J1]]ΓS

, . . . , [[Jm]]ΓS
〉 → 〈[[K1]]ΓS

, . . . , [[Kp]]ΓS
〉.

That (fbase , f) provides an indexed functor from E to L follows from the conditions satisfied

by [[ ]], [[ ]]ΓS
and [[ ]]ΓS

for ΓS ∈ obj (B). The proof that the indexed functor (fbase , f) is inverse

to (ebase , e) is technical, but not difficult, and uses the fact that, for each ~x ∈ obj (A), the

functions [[ ]], [[ ]]Γ~x
and [[ ]]Γ~x

are inverse to [[ ]]S, [[ ]]T~x and [[ ]]J~x respectively. The details can be

found in [Gar92].

Now assume that (ebase , e) is an indexed isomorphism. We show that encoding [[.]] is ad-

equate. Let (fbase , f) : E → L be the inverse indexed functor of (ebase , e). Define [[ ]] : sortβη〈 〉 → S

and, for each ΓS ∈ obj (B), the functions [[ ]]ΓS
: texpβη

ΓS
→ T and [[ ]]ΓS

: judgeβηΓS
→ J as follows:

1. [[A]] = c for each A ∈ sort
βη

〈 〉 , where fbase(〈x : A〉) = 〈yc〉;

2. [[t]]ΓS
= t′ for each t ∈ sort

βη
ΓS
, where fbase((x1, . . . , xn, t) : ΓS → ΓS, x : A) = (y1, . . . , yn, t

′) :

fbase(ΓS) → fbase(ΓS, x : A);

3. [[j]]ΓS
= j′ for each j ∈ judge

βη
ΓS
, where fΓS

(〈j〉) = 〈j′〉.

It is technical, but not difficult, to show that the functions [[ ]], [[ ]]ΓS
and [[ ]]ΓS

, for each ΓS ∈

obj (B), are well-defined and are inverse to the functions [[ ]]S, [[ ]]T~xΓS

and [[ ]]J~xΓS

respectively,

where if ΓS is 〈x1:A1, . . . , xn:An〉, then ~xΓS
is 〈f(x1)

[[A1]], . . . , f(xn)
[[An]]〉. This result, plus the

completeness condition in definition 3.7, are proved using lemma 4.7. Again, the details can be

found in [Gar92]. ✷

The analogous result to theorem 4.8 for natural representations, see [Gar92], follows in a similar

fashion by adapting the indexed categories determined by the logic and its representing type

theory to give an explicit account of the derivations of the logic and the terms inhabiting LF+

judgements, and then showing that natural representations give rise to indexed isomorphisms.

5 Concluding Remarks

We have advocated the need for general definitions to describe how well a logic has been rep-

resented in a logical framework. Based on ideas from [HHP87], the new framework LF+ is

introduced in order to provide such definitions. Two definitions are given: adequate repres-

entation, which defines when the consequence relation of a logic has been well-represented in

the LF+ entailment relation, and natural representation, which provides some measure that the

derivations of the logic have been well-represented. Our arguments are reinforced by showing

that these syntactic definitions have a simple formulation as indexed isomorphisms.

Other definitions of ‘correct’ representation should be explored. For example, our approach

for studying naturality is based on that found in [HHP87]. An alternative approach is to in-

vestigate the representation of a consequence relation of sequents, which may contain schematic
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variables. Similar consequence relations have also been studied by Aczel [Acz92]. One advant-

age of this consequence relation is that it captures the notion of the existence of derivations

without adapting the logic. This approach should also lead to weaker notions of naturality.

The investigation of this consequence relation and its representation in LF+ is left for future

research.
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