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Symmetric action calculi

Lucian J. Wischik and Philippa Gardner, May 1999 ∗

There exist many different calculi for rescribing interactive and sequential
behaviour. The goal of action calculi [1] is to unify these calculi at a syn-
tactic and operation level. We introduce a symmetric variant which extends
the reach of action calculi to cover for example the Fusion calculus [2] and
Yoshida’s process graphs [3]. These symmetric action calculi conservatively
extend the reflexive action calculi [4] and have close links to category theory.

Background

Action calculi and their extensions [4] have constructs for names and name-
abstraction in common. The intention is that these naming constructs
should represent the naming constructs in other calculi. In addition, each
action calculus has a number of controls to express the features specific to a
particular calculus. For instance, the controls out and in are used to express
the output and input actions of the π-calculus [5]. Finally, the controls may
react together. The reaction between out and in corresponds to reaction in
the π-calculus.

Action calculi may be represented graphically (see Figure 1). They also
have an inductive algebraic definition as a strict monoidal category with the
addition of the naming constructs and controls.
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Figure 1: This action-calculus reaction corresponds to the π-calculus reaction
x.C|x.A ↘ A@C, where A and C are abstractions and concretions respectively.
With A and C not so constrained, the same reaction rule also describes reaction in
the πI -calculus [6] and the Fusion calculus.
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Symmetric action calculi

We introduce a novel form of action calculi, known as the symmetric ac-
tion calculi, which differ from conventional action calculi in their naming
constructs. In particular, the symmetric calculi have operators for names,
co-names and restriction (see Figure 2). Conventional action calculi mean-
while combine the last two into a single abstraction operator. In this respect,
the move from conventional action calculi to symmetric mirrors that from
the π-calculus to the Fusion calculus [2].
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Figure 2: (a) Restriction is a primitive operator in symmetric action calculi. Graph-
ically we indicate a restricted (local) name with a line through it. (b) Abstraction
is composed from two parts: a co-name, illustrated by the wire going into the name,
and then restriction. (c) Fusion. (In non-symmetric action calculi, restriction is
expressed more indirectly with a ‘new’ control; and fusions cannot be directly ex-
pressed.)

In the symmetric action calculi and in the Fusion calculus one can express
the fusion of two names and, more generally, equivalence relations over
names. In the Fusion calculus, these fusions have effect only as part of the
labelled transition system:

(x)(y=x.P ) → P{y/x}.
In the symmetric action calculi the fusions are terms in the calculus, giving
such equations as

Q | y=x = Q{y/x} | y=x = Q{x/y} | y=x.

This allows for small-step equational reasoning (see for example Figure 3).
As illustrated below with Yoshida’s process graphs and the reflexive action
calculi, fusions can give simpler rules for equality.
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Figure 3: Fusions in terms allow for small-step equational reasoning. Here we
illustrate the three small steps that make up alpha-conversion: (a) A new local
name y is introduced as an alias for x. (b) Because y = x, we are able to substitute
y for any occurence of x. (c) Finally, in a reverse of the first step, we remove the
now-unused local name x.
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Figure 4: The connection operator in Yoshida’s process graphs partitions the named
nodes and immediately renames them. In the graph illustrated, x and y have been
related and renamed z. Instead of trying to do all this in a single connection
operator, it is more convenient merely to fuse the names. Renaming can then be
left to the standard naming equations shown in Figure 3.

Process Graphs

Yoshida’s process graphs [3] extend Lafont’s interaction nets [7] to allow for
non-determinism. The operations and equational theory on these graphs
are intuitive but difficult to state formally. We express the graphs as sym-
metric action calculi. As illustrated in Figure 4, fusions allow for a simpler
statement of the equational theory.

Reflexive action calculi

The reflexion operator in Milner’s reflexive action calculi has an awkward
definition, illustrated in Figure 5. We note that the reflexion operator is
essentially a special case of fusion and can be defined more conveniently as
such: (1) Reflecting an output y to an input x results in a fusion x = y;
(2) Fusions are then handled using the straightforward small-step equalities
illustrated in Figure 3.

We have used this symmetric form of reflexion to prove that the sym-
metric action calculi conservatively extend the reflexive action calculi. The
key extension is the presence of fusions within terms. We are currently
considering other calculi with such fusions.
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Figure 5: These reflected graphs have very different normal forms in the reflex-
ive action calculi: the first uses an additional new control to describe the local
name x, and the second is expressed with a syntactic (non capture-avoiding) sub-
stitution {y/x}∗. In the symmetric action calculi both reflections can be expressed
uniformally—the first with the identity fusion x=x, and the second with the fu-
sion y=x.

3



Other work

It seems likely that fusions can be mimicked in action calculi with an addi-
tional control and its reactions (similar to Honda and Yoshida’s equator [8]).
However, this would not be in keeping with the original aim—to use the ac-
tion calculi naming constructs to represent those in other calculi.

Mirroring earlier work of Gardner [9] and Pavlovic [10], we have de-
veloped a name-free algebra for symmetric action calculi. The categorical
description of a simpler symmetric algebra, without controls, has already
been studied [11]. Our additional axioms for controls indicate their dinatu-
rality with respect to the naming structure. This suggests a firm categorical
underpinning for symmetric calculi and is a subject of further research.

A general bisimulation result for conventional action calculi remains elu-
sive. We hope however that, with names and co-names as barbs, a barbed
bisimulation result for the symmetric action calculi might prove easier.

References

[1] R. Milner. Calculi for interaction. Acta Informatica, 33(8), 1996.

[2] Parrow and Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. In LICS: IEEE Symposium, 1998.

[3] N. Yoshida. Graph notation for concurrent combinators. Lecture Notes
in Computer Science (LNCS), 907:393–412, May 1995.

[4] R. Milner. Action calculi V: Reflexive Action Calculi. MS., 1994.

[5] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Parts I + II. Information and Computation, 100(1):1–77, 1992.

[6] D. Sangiorgi. Pi-calculus, internal mobility and agent-passing calculi.
Theoretical Computer Science, 167(2), 1996.

[7] Yves Lafont. Interaction combinators. Information and Computation,
137(1):69–101, 1997.

[8] K. Honda and N. Yoshida. On reduction-based process semantics.
LNCS, 761, 1994.

[9] Philippa Gardner. A name-free account of action calculi. In Proceedings
MFPS ’95. Electronic Notes in Theoretical Computer Science 1, 1995.
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