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Abstract

We introduceexplicit fusionsof names. To ‘fuse’ two names is to declare that they
may be used interchangeably. An explicit fusion is one that can exist in parallel
with some other process, allowing us to ask for instance how a process might
behave in a context wherex = y. We present theπF -calculus, a simple process
calculus with explicit fusions. It is similar in many respects to the fusion calculus
but has a simple local reaction relation. We give embeddings of theπ-calculus and
the fusion calculus. We provide a bisimulation congruence for theπF -calculus and
compare it with hyper-equivalence in the fusion calculus.

1 Introduction

We introduceexplicit fusionsof names. To ‘fuse’ two names is to declare that they may
be used interchangeably. Anexplicit fusion is one that can exist in parallel with some
other process. For example, we can use the explicit fusion〈x=y〉 to ask how a process
might behave in a context where the addressesx andy are equal.

In this paper we focus on one particular application of explicit fusions. We intro-
duce theπF -calculus, which incorporates these fusions. It is similar to theπ-calculus
in that it has input and output processes which react together. It differs from theπ-
calculus in how they react. In aπ-reaction, names are sent by the output process to
replace abstracted names in the input process; this replacement is represented with a
substitution. In contrast aπF -reaction is directionless andfusesnames; this is recorded
with an explicit fusion.

TheπF -calculus is similar in many respects to the fusion calculus of Parrow and
Victor [10, 13], and to the chi-calculus of Fu [1]. These calculi also have a directionless
reaction which fuses names. The difference is in how the name-fusions have effect. In
the fusion calculus, fusions occur implicitly within the reaction relation and their effect
is immediate. In theπF -calculus, fusions are explicitly recorded and their effect may
be delayed. A consequence of this is thatπF -reaction is a simple local reaction between
input and output processes.

Explicit fusions can be used to analyse, in smaller steps, reactions that occur in
existing process calculi. We give embedding results for theπ-calculus and the fu-
sion calculus. These embeddings show that explicit fusions are expressive enough to
describe both name-substitution in theπ-reaction, and the fusions that occur in the
fusion reaction. We are currently exploring an embedding of theλ-calculus in theπF -
calculus [14]. Intriguingly, explicit fusions allow for an embedding which is purely

∗Computing Laboratory, University of Cambridge. Gardner is supported by an EPSRC Advanced Fel-
lowship, Wischik by an EPSRC Studentship.Philippa.Gardner@cl.cam.ac.uk, ljw1004@cam.ac.uk.

1

http://www.cl.cam.ac.uk/~ljw1004
mailto:Philippa.Gardner@cl.cam.ac.uk
mailto:ljw1004@cam.ac.uk


compositional, in contrast with the analogous embeddings in theπ-calculus and fusion
calculus.

We provide a bisimulation congruence for theπF -calculus, which is automatically
closed with respect to substitution. We compare it with hyper-equivalence in the fusion
calculus [10] and open bisimulation in theπ-calculus [12].

2 TheπF -calculus

To illustrate the key features of theπF -calculus, we contrast it to the fusion calculus.
Both calculi have symmetric input and output processes. They have no abstraction
operator. Instead, they interpret theπ-calculus abstraction(x)P with the concretion
(νx)〈x〉P . A πF -reaction is

z.〈x〉P | z.〈y〉Q |R ↘πF 〈x=y〉 |P |Q |R.

The reaction in this example is a local one between the input and output processes.
However the effect of the resulting fusion〈x=y〉 is global in scope:x andy can be
used interchangeably throughout the entire process, includingR. To limit the scope of
the fusion, we use restriction. For example, restrictingx in the above expression we
obtain

(νx)(〈x=y〉|P |Q|R) ≡ P{y/x} |Q{y/x} |R{y/x}.

Thus, using just explicit fusions and restriction, we can derive a name-substitution
operator which behaves like the standard capture-avoiding substitution.

The corresponding reaction in the fusion calculusrequiresthat eitherx or y be
restricted: for instance,

(νx)
(
z.〈x〉P | z.〈y〉Q |R) ↘fu P{y/x} |Q{y/x} |R{y/x}.

Thex andy are implicitly fused during the reaction. If we had restrictedy rather than
x, then the substitution would have been{x/y}. The full polyadic reaction rule, using
many~xs and~ys, is more complicated.

We assume an infinite set of names ranged over byu, . . . z, and write~z for a se-
quence of names and|~z| for its length.

Definition 2.1 The setPπF of processesof theπF -calculus is defined by the grammar

P ::= nil
∣
∣ P |P ∣

∣ (νx)P
∣
∣ 〈x〉

∣
∣ 〈x=y〉

∣
∣ x.P

∣
∣ x.P

We call the process〈x〉 a datum, and the process〈x=y〉 a fusion.

We say that a datum is at thetop-levelif it is not contained within an input or output
process. Thearity of a process is the number of top-level datums in it. We writeP : m
to declare thatP has aritym. More general arities are also possible, such as typing
information similar to the sorting discipline for theπ-calculus [8]. For simplicity, we
consider in this paper only that fragment of theπF -calculus without replication or
summation. Replication is considered elsewhere [14].

Datums are primitive processes, with the process〈~y〉 |P corresponding to the con-
ventional concretion〈~y〉P . The choice between datums and concretions does not affect
the results in this paper. Our choice to use datums is motivated in [2, 14], where we
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Standard axioms for| andnil :
P |nil ≡ P (P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P if P : 0

Standard scope axioms:
(νx)(P |Q) ≡ (νx)P |Q if x 6∈ fn(Q) (νx)(νy)P ≡ (νy)(νx)P
(νx)(P |Q) ≡ P |(νx)Q if x 6∈ fn(P )

Fusion axioms:

〈x=x〉 ≡ nil 〈x=y〉 | x.P ≡ 〈x=y〉 | y.P 〈x=y〉 | 〈x〉 ≡ 〈x=y〉 | 〈y〉
(νx)〈x=y〉 ≡ nil 〈x=y〉 | x.P ≡ 〈x=y〉 | y.P 〈x=y〉 | z.P ≡ 〈x=y〉 | z.(〈x=y〉|P )
〈x=y〉 ≡ 〈y=x〉 〈x=y〉 | 〈x=z〉 ≡ 〈x=y〉 | 〈y=z〉 〈x=y〉 | z.P ≡ 〈x=y〉 | z.(〈x=y〉|P )

Figure 1: The structural congruence betweenπF -process, written≡, is the smallest equivalence
relation satisfying these axioms and closed with respect to contexts

represent variables of theλ-calculus by datums to obtain a direct translation of the
λ-calculus into theπF -calculus.

The definitions offree and boundnames are standard. Therestriction operator
(νx)P bindsx; x is free in〈x〉, x.P , x.P and in fusions involvingx. We writefn(P )
to denote the set of free names inP . We use the following abbreviations:(ν~x)P def=
(νx1) . . . (νxn)P , 〈~x〉 def= 〈x〉1| . . . |〈x〉n and〈~x=~y〉 def= 〈x1=y1〉| . . . |〈xn=yn〉.

Definition 2.2 Thestructural congruencebetween processes, written≡, is the smallest
congruence satisfying the axioms given in Figure1, and closed with respect to the
contexts | , (νx) , x. andx. .

The side-condition on the commutativity of parallel composition allows for pro-
cesses of arity0 to be reordered, but not arbitrary processes. For instance,

x.P |x.Q ≡ x.Q |x.P but 〈x〉|〈y〉|P 6≡ 〈y〉|〈x〉|P.

This is essentially the same as in the conventionalπ-calculus, where processes can be
reordered but the names in the concretion〈xy〉P cannot.

The fusion axioms require further explanation. Our intuition is that〈x=y〉 is an
equivalence relation which declares that two names can be used interchangeably. The
fusion〈x=x〉 is congruent to the nil process. So too is(νx)〈x=y〉, since the bound name
x is unused. The final six fusion axioms describe small-step substitution, allowing us
to deduce〈x=y〉|P ≡ 〈x=y〉|P{y/x} andα-conversion. For example,

(νx)(x.nil)
≡ (νx)(νy)

(
〈x=y〉 | x.nil

)
create fresh bound namey as an alias forx

≡ (νx)(νy)
(
〈x=y〉 | y.nil

)
substitutey for x

≡ (νy)(y.nil) remove the now-unused bound namex

Honda investigates a simple process framework with equalities on names that are
probably the most like our fusion axioms [5]: the axioms are different but the spirit of
the equalities is similar. Honda and Yoshida have also introducedπ-processes called
equators[6]. In the asynchronousπ-calculus they simulate the effect of explicit fu-
sions; but they do not generalise to the synchronous case [7].
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With the structural congruence we can factor out the datums and fusions. In partic-
ular, everyπF -process is structurally congruent to one in thestandard form

〈~u=~v〉 | (ν~x)(〈~y〉 |P ),

where the~xs are distinct and contained in the~ys, andP contains no datums or fusions
in its top level. We call〈~u=~v〉|(ν~x)(〈~y〉| ) the interfaceof the process. It is unique in
the sense that, given two congruent standard forms

〈~u1=~v1〉 | (ν~x1)(〈~y1〉|P1) ≡ 〈~u2=~v2〉 | (ν~x2)(〈~y2〉|P2),

the fusions〈~u1=~v1〉 and〈~u2=~v2〉 denote the same equivalence relation on names,|~x1| =
|~x2|, and the datums~y1, ~y2 are identical and the processesP1, P2 structurally congruent
up to the name-equivalence andα-conversion of the~xs. We writeE(P ) for the name-
equivalence. It can be inductively defined on the structure of processes, or more simply
characterised by(x, y) ∈ E(P ) iff P ≡ P |〈x=y〉.

We define a symmetricconnectionoperator@ between processes of the same arity,
which connects them through their interfaces. The effect of the connectionP@Q is
to fuse together the top-level names inP andQ. If P andQ have standard forms
〈~u1=~v1〉|(ν~x1)(〈~y1〉|P1) and〈~u2=~v2〉|(ν~x2)(〈~y2〉|P2) respectively, then

P@Q
def= 〈~u1~u2=~v1~v2〉 | (ν~x1~x2)(〈~y1=~y2〉|P1|P2),

renaming if necessary to avoid name clashes. Because interfaces are unique, the con-
nection operator is well-defined up to structural congruence.

Definition 2.3 The reaction relation between processes, written↘, is the smallest re-
lation closed with respect to| , (νx) and ≡ , which satisfies

z.P | z.Q ↘ P@Q.

3 Embedding theπ-calculus and the Fusion Calculus

TheπF -calculus naturally embeds theπ-calculus, theπI -calculus [11] and the fusion
calculus. For the embeddings we consider the fragment of the calculus without sum-
mation or replication. The interesting part in the translations concerns the abstractions
and concretions:

(~x)P ∗7−→ (ν~x)(〈~x〉|P ∗) Abstraction
(ν~x)〈~z〉P ∗7−→ (ν~x)(〈~z〉|P ∗) Concretion

For example, theπ-reactionz.(x)P | z.〈y〉Q ↘π P{y/x}|Q corresponds to theπF -
reaction

z.(νx)(〈x〉|P ∗) | z.(〈y〉|Q∗)
↘πF (νx)(〈x〉|P ∗) @ (〈y〉|Q∗)
≡ (νx)(〈x=y〉 |P ∗ |Q∗) renaming if necessary
≡ (νx)(〈x=y〉 |P ∗{y/x} |Q∗) substitutingy for x
≡ P ∗{y/x} |Q∗ removing unused boundx

There is a key difference between the (straightforward) embeddings of theπ- and
πI -calculi, and the embedding of the fusion calculus. For theπ-calculus, reaction of
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a πF -process in the image of( )∗ necessarily results in a process congruent to one
in the image. Even though the reaction temporarily results in a fusion〈x=y〉, one of
those fused names must have arisen from an abstraction(x)Q and so the fusion can be
factored away. The same is not true with the fusion calculus. For example,

z.(〈x〉|P ∗) | z.(〈y〉|Q∗) ↘πF 〈x=y〉 | P ∗ | Q∗.

The process on the left is in the image of the fusion calculus under( )∗, but the one on
the right has an unbounded explicit fusion and so is not. Essentially, because the fusion
calculus has unbound input and output processes and yet lacks explicit fusions, it can
only allow those reactions that satisfy certain restriction properties on names (given
at the end of this section). We do obtain an embedding result in the sense that, by
restrictingx or y we obtain aπF -reaction which corresponds to a valid fusion reaction.
This embedding result is as strong as can be expected: the fusion reaction requires that
a side-condition on restricted names be satisfied; theπF -reaction does not.

Embedding theπ-calculus

We define a translation( )∗ fromπ-processes toπF -processes. We also define a reverse
translation( )o and prove embedding results. (The embedding of theπI -calculus is
similar.) Following [8], the setPπ of π-processes is generated by the grammar

P ::= nil
∣
∣ P |P ∣

∣ (νx)P
∣
∣ z.A

∣
∣ z.C Processes

A ::= (~x)P Abstractions
C ::= (ν~x)〈~y〉P Concretions

where the~xs are distinct and, in the concretion, contained in the~ys. The structural
congruence on processes and the reaction relation are standard. In order to define the
reverse translation( )o, we identify theπ-imagein PπF :

P ::= nil
∣
∣ P |P ∣

∣ (νx)P
∣
∣ A Processes

A ::= z.(ν~x)(〈~x〉|P )
∣
∣ z.(ν~x)(〈~y〉|P ) Input / Output Processes

Definition 3.1 The translation( )∗ : Pπ → PπF is defined inductively by

(nil)∗ = nil (z.(~x)P )∗ = z.(ν~x)(〈~x〉|P ∗)
(P |Q)∗ = P ∗|Q∗ (z.(ν~x)〈~y〉P )∗ = z.(ν~x)(〈~y〉|P ∗)(

(νx)P
)∗ = (νx)P ∗

The translation( )o : π-image→ Pπ is the reverse of this.

Theorem 3.2 The translations( )∗ : Pπ → PπF and ( )o : π-image→ Pπ are mu-
tually inverse, preserve the structural congruence, and strongly preserve the reaction
relation:

P ∈ Pπ and P ↘π Q implies P ∗ ↘πF Q∗

P ∈ π-image and P ↘πF Q implies P o ↘π R and R∗ ≡πF Q
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Embedding the Fusion Calculus

The set of fusion processesPfu is generated by the grammar

P ::= nil
∣∣ P |P ∣∣ (νx)P

∣∣ z~x.P
∣∣ z~x.P.

Its structural congruence is standard, and its reaction relation is generated by the rule

(ν~u)(z~x.P | z~y.Q | R) ↘ Pσ |Qσ |Rσ,

where ran(σ), dom(σ) ⊆ {~x, ~y} and~u = dom(σ)\ran(σ) andσ(v) = σ(w) if and
only if (v, w) ∈ E(〈~x=~y〉). The side-conditions describe a natural concept. Consider
the equivalence relation generated from the equalities~x=~y. The side-conditions ensure
that, for each equivalence class, every element is mapped byσ to a single free witness.

The fusion-imageof the fusion calculus in theπF -calculus is similar to that of the
π-calculus, but with input and output processes given by

A ::= z.(〈~y〉|P )
∣
∣ z.(〈~y〉|P ) Input / Output Processes

Translations between the fusion calculus and the fusion-image are straightforward.

Theorem 3.3 The translations( )∗ : Pfu → PπF and( )o : PπF → Pfu are mutually
inverse and preserve structural congruence as in Theorem3.2. They also preserve
reaction in the sense that

P ∈ Pfu andP ↘fu Q implies P ∗ ↘πF Q∗

P ∈ fusion-image andP ↘πF Q implies ∃~u. (ν~u)P ↘fu R andR∗ ≡πF (ν~u)Q

As discussed, reaction of a process in the fusion-image does not necessarily result in a
process also in the fusion-image. Note that the restricted names~u are precisely those
needed to satisfy the side-conditions on reaction in the fusion calculus.

4 Bisimulation for the πF -calculus

We define a bisimulation relation for theπF -calculus using a labelled transition system
(LTS) in the standard way. The LTS consists of the usual CCS labelsx, x and τ ,
accompanied by a definition of bisimulation which incorporates fusions:

PSQ : 0 implies for allx, y, if 〈x=y〉|P α−→ P1 then〈x=y〉|Q α−→ Q1 andP1SQ1.

We call this bisimulation theopen bisimulation, by analogy with open bisimulation for
theπ-calculus.

In this definition of open bisimulation, labelled transitions are analysed with respect
to all possible fusion contexts| 〈x=y〉. In fact, we do not need to consider all such
contexts. Instead we introducefusion transitions, generated by the axiom

x.P | y.Q
?x=y−→ P@Q.

The label?x=y declares that the process can react in the presence of an explicit fusion
〈x=y〉. Fusion transitions allow us to define bisimulation without having to quantify
over fusion contexts. However, the label also declares additional information about the

structure of the process. IfP
?x=y−→ Q, then we infer thatP must contain input and
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x.P
x−→ P x.P

x−→ P

x.P | y.Q
?x=y−→ P@Q x.P | x.Q

τ−→ P@Q

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′

Q|P α−→ Q|P ′
P

α−→ P ′, x 6∈ α

(νx)P
α−→ (νx)Q

P ′ ≡ P
α−→ Q ≡ Q′

P ′ α−→ Q′

Figure 2:Quotientedlabelled transition system. We do not distinguish between?x=y and?y=x.
The final rule closes the LTS with respect to the structural congruence

output processes on unbounded channelsx andy. In order to define a bisimulation
relation which equals the open bisimulation, we remove this additional information:

PSQ:0 andP
?x=y−→ implies eitherQ

?x=y−→ Q1 or Q
τ−→ Q1, and〈x=y〉|P1S〈x=y〉|Q1

The resulting bisimulation equals open bisimulation. A consequence of adding fusion
transitions is that we can use standard techniques to prove congruence.

We give two labelled transition systems for theπF -calculus: aquotiented LTSin
which we explicitly close the labelled transitions with respect to the structural congru-
ence, and astructured LTSin which the labelled transitions are defined according to
the structure of processes. These LTSs are equivalent; the quotiented LTS is simpler to
understand, and the structured LTS is easier to use. We define corresponding bisimu-
lation relations and prove that they are the same. Finally we use the structured LTS to
prove that bisimulation is a congruence.

The Quotiented LTS

The quotiented LTS is given in Figure2. Notice that the structural congruence rule
allows fusions to affect the labels on transitions: for example, the process〈x=y〉|x.P

can undergo the transition
y−→ as well as

x−→, because it is structurally congruent to
〈x=y〉 | y.P . We have defined transitions for arbitrary processes instead of just pro-
cesses of arity 0. This requires two rules for parallel composition, since parallel com-
position does not commute in the presence of datums.

Proposition 4.1 P ↘ Q iff P
τ−→ Q.

We now define the bisimulation relation. Our basic intuition is that two processes
are bisimilar if and only if they have the same interface and, in all contexts of the form
@〈~y〉, if one process can do a labelled transition then so can the other. In fact we do

not need to consider all such contexts. Instead it is enough to factor out the top-level
datums and analyse the labelled transitions for just the processes of arity 0.

Definition 4.2 (Fusion bisimulation) A symmetric relationS is a fusion bisimulation
iff wheneverPSQ then

1. P, Q : m > 0 impliesP andQ have standard forms〈~u=~v〉|(ν~x)(〈~y〉|P1) and
〈~u=~v〉|(ν~x)(〈~y〉|Q1) respectively and〈~u=~v〉|P1 S 〈~u=~v〉|Q1;

2. P, Q : 0 implies they have standard forms〈~u=~v〉|P1 and〈~u=~v〉|Q1, and
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x.P
x−→s P x.P

x−→s P
P

α1−→s Q α1 =E(P ) α2

P
α2−→s Q

∗

P
x−→s P ′ Q

y−→s Q′

P |Q ?x=y−→ s P ′@Q′

P
x−→s P ′ Q

y−→s Q′

P |Q ?x=y−→ s P ′@Q′

P
?x=x−→ s Q

P
τ−→s Q

P
α−→s P ′

P |Q α−→s P ′|Q
P

α−→s P ′

Q|P α−→s Q|P ′
P

α−→s Q, x 6∈ α

(νx)P
α−→s (νx)Q

* We write α =E(P ) β if α, β are identical up toE(P )

Figure 3:Structuredlabelled transition system. This LTS does not include a rule involving the
structural congruence. Recall thatE(P ) is the equivalence relation on names generated byP .
A simple characterisation is given by(x, y) ∈ E(P ) if and only if P ≡ P |〈x=y〉

(a) if P
α−→ P ′ whereα is x, x or τ , thenQ

α−→ Q′ andP ′SQ′

(b) if P
?x=y−→P ′ then eitherQ

?x=y−→ Q′ or Q
τ−→ Q′, and〈x=y〉|P ′S〈x=y〉|Q′;

3. similarly forQ.

Two processesP andQ arefusion bisimilar, writtenP ∼ Q, if and only if there exists
a fusion bisimulation between them. The relation∼ is the largest fusion bisimulation.

Another bisimulation worth exploring is the standard strong bisimulation, which
requires that fusion transitions match exactly. This bisimulation is a congruence and
contained in the fusion bisimulation. We do not know whether the containment is
strict. This question relates to an open problem for theπ-calculus without replication
or summation, of whether strong bisimulation is closed with respect to substitution.

The Structured LTS

Our goal is to show that the fusion bisimulation in Definition4.2 is a congruence.
However, although the quotiented LTS of Figure2 is simple due to the presence of
the structural congruence rule, the same rule is a problem for proofs. We therefore
introduce astructuredLTS, in which the structural congruence rule is replaced. This
structured LTS is ultimately used in Theorem4.3to prove that bisimulation is a congru-
ence. The power of the structured LTS is that we can analyse the transitionP

α−→s Q
by looking at the structure ofP and the labelα.

The structured LTS is given in Figure3. Note the first fusion rule. It allows us to
deduce for example that〈x=y〉 |x.P can undergo the transition

y−→s as well as
x−→s.

We write∼s for the bisimulation generated by the structured LTS, defined in the
same way as for the quotiented LTS in Definition4.2.

Theorem 4.3

1. P ∼s Q impliesC[P ] ∼s C[Q].

2. ∼ = ∼s

From Theorem4.3we deduce the main result of this section: that the fusion bisim-
ulation∼ for the quotiented LTS is a congruence.
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Towards Full Abstraction for the Fusion Calculus

We believe that hyper-equivalence for the fusion calculus [10] corresponds to open
bisimulation for its embedding in theπF -calculus. The following examples illustrate
labelled transitions in the fusion calculus on the left, and the corresponding transitions
theπF -calculus on the right:

ux.P
ux−→fu P u.(〈x〉|P ∗) u−→πF 〈x〉|P ∗

(νx)ux.P
(x)ux−→fu P (νx)u.(〈x〉|P ∗) u−→πF (νx)(〈x〉|P ∗)

ux.P | uy.Q
x=y−→fu P |Q u.(〈x〉|P ∗) | u.(〈y〉|Q∗) τ−→πF 〈x=y〉 |P ∗ |Q∗

First consider the transitions for the fusion calculus. The labelsux and(νx)ux are
standard. The labelx=y states that a fusion has occurred as a consequence of a reac-
tion. Notice that it is not the same as the label?x=y in theπF -calculus, which states
that an external fusion must be present for reaction to occur. Now compare the transi-
tions of the fusion calculus with those of theπF -calculus. The additional information
conveyed by a fusion calculus label, is conveyed in theπF -calculus by the interface of
the resulting process.

Victor and Parrow show that hyper-equivalence does not correspond to open bisim-
ulation for theπ-calculus [10]. The same result holds for theπF -calculus with replica-
tion. The difference is illustrated by the process(νx)(u.(〈xy〉|P )). In theπ-calculus
the namesx andy can never be substituted for equal names. In theπF -calculus they
can, using the context|u.(〈zz〉).

5 Conclusions

Several calculi with name-fusions have recently been proposed. These include the
fusion calculus [10], the related chi calculus [1] and theπI -calculus [11]. In all these
calculi the fusions occurimplicitly in the reaction relation. With theπF -calculus we
have introducedexplicit fusions. Explicit fusions are processes which can exist in
parallel with other processes. They are at least as expressive as implicit fusions. The
effect of explicit fusions is described by the structural congruence, not by the reaction
relation. The simplicity of theπF -calculus follows directly from its use of explicit
fusions.

We have given embedding results for theπ-calculus and the fusion calculus in the
πF -calculus. The embedding for the fusion calculus is weaker than that for theπ-
calculus. This is to be expected. TheπF -reaction is a local reaction between input
and output processes, whose result contains explicit fusions. In contrast, reaction in
the fusion calculus has the side-condition that certain names be restricted. The effect
of this is to permit only those reactions which do not result in explicit fusions. This is
why explicit fusions are not used (or needed) in the fusion calculus.

We have presented a bisimulation congruence for theπF -calculus. We believe that
hyper-equivalence for the fusion calculus is the same as the bisimulation arising from
its embedding in theπF -calculus.

Ongoing Research

Our work on explicit fusions originally arose from a study of process frameworks. We
have developed a framework based on the structural congruence studied here [4, 2]. It
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is related to the action calculus framework of Milner [9, 3]. Explicit fusions allow us to
work in a process algebra style, rather than the categorical style used for action calculi.

We are currently exploring an embedding of theλ-calculus in theπF -calculus. Ex-
plicit fusions allow for a translation that is purely compositional, unlike the analogous
translations into theπ-calculus and fusion calculus. It remains further work to relate
behavioural congruence for theλ-calculus with the bisimulation arising from its em-
bedding in theπF -calculus.
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