
From Process Calculi to Process Frameworks

Philippa Gardner1

Abstract. We present two process frameworks: the action calculi of Mil-
ner, and the fusion systems of Gardner and Wischik. The action calculus
framework is based on process constructs arising from the π-calculus.
We give a non-standard presentation of the π-calculus, to emphasise the
similarities between the calculus and the framework. The fusion system
framework generalises a new process calculus called the πF -calculus. We
describe the πF -calculus, which is based on different process constructs
to those of the π-calculus, and show that the generalisation from the
calculus to the framework is simple. We compare the frameworks by
studying examples.

Introduction

Our aim in studying process frameworks is to integrate ways of reasoning about
related interactive behaviour. The purpose is not to provide a general, all-
encompassing system for describing interaction—that would miss the point that
there are many kinds of interactive behaviour worth exploring. Rather, the aim is
to study interaction based on some fixed underlying process structure. A process
framework consists of a structural congruence, which establishes the common
process constructs used in the framework, and a reaction relation which describes
the interactive behaviour of particular processes specified by a signature. The
higher-order term rewriting systems have a similar format; the structural con-
gruence describes the higher-order features given by the λ-terms with β-equality,
and a rewriting relation describes the reaction between terms generated from a
signature.

In this paper, we describe two process frameworks: the action calculi of
Milner [Mil96], and the fusion systems of Gardner and Wischik [GW99]. The
action calculus framework is based on process constructs arising from the π-
calculus. We give a non-standard presentation of the π-calculus, to emphasise
the similarities between the calculus and the framework. We also present the
fusion system framework which generalises a new process calculus, called the
πF -calculus [GW00], in much the same way as the action calculus framework
generalises the π-calculus. The πF -calculus is similar to the π-calculus in that
its interactive behaviour is based on input and output processes, and different in
that its underlying process structure is not the same. We describe the πF -calculus
and the fusion system framework, and illustrate that the generalisation from the
calculus to the framework is simple. We also compare the two frameworks by
studying specific examples.

1 Address: Computer Laboratory, University of Cambridge, New Museums Site, Pem-
broke Street, Cambridge, CB2 3QG. Email: pag20@cl.cam.ac.uk. The author ac-
knowledges support of an EPSRC Advanced Fellowship.

From the π-calculus to action calculi

We describe the transition from the π-calculus to the action calculus frame-
work. By adapting Milner’s presentation of the π-calculus in [Mil99], we show
that this transition is comparatively simple. Instead of the input and output
processes specific to the π-calculus, an action calculus consists of more flexible
control processes. The interactive behaviour of such control processes is given by
a reaction relation specific to the particular action calculus under consideration.
The other constructs of an action calculus are essentially the same as those of
our π-calculus, except that there is no restriction. Instead the π-process (νx)P
is interpreted by an action process new · (x)P , where the control process new

blocks the access to the name-abstraction. We explore two examples of action
calculi: the π action calculus corresponding to the π-calculus, and the λv action
calculus corresponding to a call-by-value λ-calculus. These examples illustrate
that the basic process constructs for action calculi are indeed natural. We also
refer to recent results of Leifer and Milner [LM00], who provide general bisimu-
lation congruences for (simple) reactive systems and aim to extend their results
to action calculi.

The πF -calculus

The πF -calculus is similar to the π-calculus in that it consists of input and
output processes that interact with each other. It is different from the π-calculus
in the way that these processes interact. In a π-reaction, the intuition is that
names are sent along a channel name to replace the abstracted names at the
other end. In contrast, the πF -calculus does not have abstraction. Instead, a πF -
reaction is directionless with names being fused together during reaction. This
fusion mechanism is described using a explicit fusion 〈z= y〉, which is a process
declaring that two names can be used interchangeably. A natural interpretation
is that names refer to addresses, with explicit fusions declaring that two names
refer to the same address.

The πF -calculus is similar in many respects to the fusion calculus of Parrow
and Victor [PV98], and the χ-calculus of Fu [Fu97]. The key difference is how the
name-fusions have effect. In the πF -calculus, fusions are explicitly recorded and
have effect though the structural congruence. This has the consequence that the
πF -reaction is a simple local reaction between input and output processes. In the
fusion calculus on the other hand, fusions occur implicitly within the reaction
relation. This outcome of this is a non-local reaction relation.

We provide a natural bisimulation congruence for the πF -calculus. We also
have simple embeddings for the π-calculus, the fusion calculus and a call-by-
value λ-calculus in the πF -calculus. Further details can be found in [GW00]. In
particular, we show that the fusion-embedding is fully abstract, in the sense that
hyper-equivalence for the fusion calculus corresponds to the bisimulation arising
from its embedding in the πF -calculus.

Fusion systems

The generalisation from the πF -calculus to the fusion system framework is sim-
ple. The basic process constructs and the definition of the structural congruence
are the same. As with action calculi, fusion systems have the flexibility to describe
other forms of interactive behaviour by adapting the input and output processes
of the πF -calculus to more general control processes. The interactive behaviour
of the control processes is again given by a reaction relation, which is specific
to the particular fusion system under consideration. We explore the πF fusion
system, which corresponds exactly to the πF -calculus, and the λv fusion system
which describes a call-by-value λ-calculus. The λv fusion system is a subsystem
of the πF fusion system. This simple relationship depends on the explicit fusions.
It means that the bisimulation congruences for the πF -system easily transfer to
the λv-system. We are currently exploring a link between a bisimulation con-
gruence for the λv-system and a corresponding behavioural congruence for the
call-by-value λ-calculus. It remains further work to provide general bisimulation
results for fusion systems. However, this is not our primary concern. First, we
would like to explore specific examples of fusion systems to illustrate the expres-
siveness of explicit fusions.

Acknowledgements The work on the πF -calculus and fusion systems is joint
with Lucian Wischik.

1 From the π-calculus to action calculi

In [Mil99], Milner presents the π-calculus using a structural congruence which
describes the underlying process structure, and a reaction relation which de-
scribes the interaction between input and output processes. In particular, he
builds processes using abstractions and concretions as interim constructs, and
generates the reaction relation by the axiom

x.P |x.Q ց P ·Q,

where the operator · is a derived operator expressing the application of a con-
cretion to an abstraction. In contrast, we treat all the constructs in the same
way. We consider the application operator as a primitive operator. Although
it can be derived in the π-calculus, it cannot be derived in the action calculus
framework. We regard abstractions as processes, but instead of the concretion
(νz)〈y〉P for example, we have the process (νz)(〈y〉 |P) where the process 〈y〉
is called a datum. The reason for focusing on datums rather than concretions is
that variables of the λ-calculus translate to datums in the corresponding action
calculus. The datums therefore seem more fundamental.

In order to define reaction precisely, we require the correct number of datums
and abstractions to match. This information is given by the arity of the process.
In general, the arity information can include quite complex typing information,
such as the sorting discipline for the π-calculus given in [Mil99]. In this paper

we keep the arity structure simple, and just use it to count abstractions and
datums.

There are two natural approaches for defining simple arities for π-processes.
One approach keeps the abstractions and datums separate, so that we can form
(x)P and 〈x〉 |P , but not (x)(〈x〉 |P). In this case, arities are integers with
the positive numbers counting the abstractions and the negative numbers the
datums. The resulting process algebra corresponds to the π-calculus presented
in Milner’s book [Mil99]. The second approach mixes abstractions and datums,
so that we have for example the process (x)(〈x〉 |P). Arities have the form (m,n)
for m,n,≥ 0, where m counts the abstractions and n the datums. We choose
this second approach here, since it gives a smooth link to the action calculus
framework. It remains further work however to fully justify the use of abstracted
datums for the π-calculus. They are justified in the action calculus framework.

Following our presentation of the π-calculus, the description of the action
calculus framework is comparatively simple. An action calculus essentially con-
sists of the same underlying process constructs as our π-calculus, except that it
does not have restriction. The definition of the structural congruence has to be
modified however to account for the more general behaviour of application in the
framework. Instead of input and output processes, an action calculus consists of
general control processes of the form K(P1, . . . , Pr) where the control K denotes
some sort of boundary (or firewall) containing the processes Pi. The interactive
behaviour of the control processes is described by a reaction relation.

For example, the input and output processes of the π-calculus correspond to
action processes of the form 〈x〉 · in(P) and 〈x〉 ·out(P) respectively. The controls
in and out are specific to the π action calculus, and provide a boundary inside
which reaction does not occur. Restriction is not primitive in the framework.
Instead the restriction (νx)P of the π-calculus is interpreted by new ·(x)P where
new is a control which blocks the access to the abstraction.

1.1 The π-calculus

Throughout this paper, we assume that we have an infinite set N of names
ranged over by u, . . . , z, and use the notation ~z to denote a sequence of names
and |~z | to denote the length of the sequence.

Definition 1
The set P ′

π of pre-processes of the π-calculus is defined by the grammar

P ::= nil Nil process
P |P Parallel composition
P · P Application
〈x〉 Datum
(x)P Abstraction
(νx)P Restriction
x.P Input Process
x.P Output process

The definitions of free and bound names are standard: the abstraction (x)P and
the restriction (νx)P bind x in P , and x is free in the processes 〈x〉, x.P and
x.P . We write fn(P) to denote the set of free names in P .

The application operator is used to apply the contents of input and output
processes during reaction:

x.P |x.Q ց P ·Q.

To define reaction properly, we require the correct number of datums in P and
abstractions in Q to match. This information is given by the arity of a pre-
process. We write P : (m,n) to declare that a pre-process has arity (m,n), where
m and n are natural numbers counting the abstractions and datums respectively.

Definition 2
The set Pπ of π-processes of arity (m,n) is defined inductively by the rules

nil : (0, 0) 〈x〉 : (0, 1)

P : (m,n) Q : (k, l)

P |Q : (m+ k, n+ l)

P : (m, k) Q : (k, n)

P ·Q : (m,n)

P : (m,n)

(x)P : (m+ 1, n)

P : (m,n)

(νx)P : (m,n)

P : (m, 0)

x.P : (0, 0)

P : (0,m)

x.P : (0, 0)

Definition 3
The structural congruence between π-processes of the same arity, written ≡, is
the smallest congruence satisfying the axioms given in figure 1, and which is
closed with respect to | , · , (x) , (νx) , x. and x. .

Notice the side-condition associated with the axiom for the commutativity of
parallel composition. It results in the order of abstractions and datums always
being preserved, as one would expect. The other rules are self-explanatory. The
application axioms are enough to show that application can be derived from the
other operators.

One property of the structural congruence is that every π-process is congruent
to a standard form. Standard forms are processes with the shape

(~x)(ν~z)(〈~y〉 |P),

where the ~xs and ~zs are distinct, the ~zs are contained in the ~ys, and P : (0, 0)
does not contain any applications. Standard forms are essentially unique in the
sense that, given two congruent standard forms

(~x1)(ν~z1)(〈~y1〉 |P1) ≡ (~x2)(ν~z2)(〈~y2〉 |P2),

Standard axioms for nil, | and (νx) :

P | nil ≡ P

P | nil ≡ P

(P |Q) |R ≡ P | (Q |R)

P |Q ≡ Q |P, P : (m, 0), Q : (0, n)

(νx)(νy)P ≡ (νy)(νx)P

(νx)(P |Q) ≡ (νx)P |Q, x 6∈ fn(Q)

(νx)(P |Q) ≡ P | (νx)Q, x 6∈ fn(P)

(νx)P ≡ (νy)P{y/x}, y 6∈ fn(P)

(νx)nil ≡ nil

Abstraction axioms:

(x)P ≡ (y)P{y/x}, y 6∈ fn(P)

(νx)(y)P ≡ (y)(νx)P, y 6≡ x

(x)(P |Q) ≡ (x)P |Q, x 6∈ fn(Q)

(x)(P |Q) ≡ P | (x)Q, x 6∈ fn(P), P : (0,m)

Application axioms:

(νx)(P ·Q) ≡ (νx)P ·Q, x 6∈ fn(Q)

(νx)(P ·Q) ≡ P · (νx)Q, x 6∈ fn(P)

(x)P ·Q ≡ (x)(P ·Q), x 6∈ fn(Q)

(〈y〉 |Q) · (x)P ≡ Q · P{y/x}

Q · P ≡ Q |P, Q : (m, 0), P : (0, n)

Fig. 1. The structural congruence between π-processes of the same arity, written ≡,
is the smallest equivalence relation satisfying these axioms and closed with respect to
contexts.

then |~x1| = |~x2| and |~z1| = |~z2|, the ~y1 and ~y2 are the same up to α-conversion of
the ~xs and ~zs, and P1 and P2 are structurally congruent again up to α-conversion.
Using the standard forms, application can be derived from the other operators.

The reaction relation between π-processes of the same arity, written ց, is
the smallest relation generated by

x.P |x.Q ց P ·Q,

where P and Q have arities (0,m) and (m, 0) respectively, and the relation is
closed with respect to | , · , (x) , (νx) and ≡ .

In [Mil99], Milner defines a labelled transition system and the corresponding
strong bisimulation for the π-calculus, using standard transitions with labels x,
x and τ . It is straightforward to adapt his definitions to our presentation.

1.2 Action Calculi

An action calculus is generated from the basic process operators of the π-calculus,
except restriction, plus control operators specific to the particular action calculus
under consideration. However, the definition of the structural congruence cannot
be simply lifted from the corresponding definition for the π-calculus. In the
π-calculus, application is only used to apply datums to abstractions. In the
framework, application is also used to apply control processes to other processes.
This additional use of application requires a more general description of its
properties. For example, the associativity of application can be derived in the
π-calculus, but must be declared explicitly in the framework.

The simplest way to define the structural congruence for the framework is to
adapt the basic constructs of the π-calculus to include the identity process idm
and the permutation process pm,n, where m and n are arities. These constructs
can be derived from the other operators: for example, we have id1 ≡ (x)〈x〉 and
p1,1 ≡ (x, y)〈y, x〉 where y 6≡ x. We choose to regard them as primitive, since
they play a fundamental role in the congruence definition.

An action calculus is specified by a set K of controls, plus a reaction relation
which describes the interaction between control processes. Each control K in K
has an associated arity ((m1, n1), . . . , (mr, nr)) → (k, l), which informs us that
a control process K(P1, . . . , Pr) has arity (k, l) such that Pi has arity (mi, ni).

Definition 4
The set P ′

AC
(K) of pre-processes of an action calculus specified by control set K

is defined by the grammar

P ::= idm Identity
pm,n Permutation
P |P Parallel composition
P · P Application
〈x〉 Datum
(x)P Abstraction
K(P1, . . . , Pr) Control process

The set PAC(K) of action processes of arity (m,n), specified by control set K, is
defined by the identity and permutation axioms

idm : (m,m) pm,n : (m+ n, n+m),

the appropriate rules in definition 2, and the control rule

Pi : (mi, ni) i ∈ {1, . . . , r}

K(P1, . . . , Pr) : (k, l)

where control K has arity ((m1, n1), . . . , (mr, nr)) → (k, l).

The axioms generating the structural congruence for the framework are a
modification of the axioms for the π-calculus given in figure 1 of section 1.1,
minus those referring to restriction. The best way to describe the axioms is to
focus on the categorical structure of processes. An action process P : (m,n) can
be viewed as a morphism in a category with domain m and codomain n. The idm
operator corresponds to the identity of the category, application to sequential
composition, parallel to tensor, and pm,n to permutation. The structural con-
gruence on action processes is defined in figure 2. It is generated by the axioms
of a strict symmetric monoidal category and two additional naming axioms.

The axioms of a strict symmetric monoidal category just state that the iden-
tity, parallel composition, application and permutation operators behave as we
would expect. A possibility helpful intuition is that the processes id0 and p0,0
correspond to the nil process and

idm ≡ (~x)〈~x〉, ~x distinct , |~x| = m > 0 (1)

pm,n ≡ (~x, ~y)〈~y, ~x〉, ~x, ~y distinct , |~x| = m, |~y| = n, m+ n > 0.

For example, the last axiom generalises the commutativity of parallel compo-
sition for the π-calculus. The first naming axiom is just a special case of the
application axiom for the π-calculus given in figure 1, which describes the appli-
cation of datums to abstractions. The second naming axiom is a generalisation
of the structural congruence given in (1) for the identity process. The appro-
priate π-axioms in figure 1 of section 1.1 are derivable from the axioms given
here. With the above interpretation of the identity and permutation processes,
the axioms of the framework are also derivable in the π-calculus.

The reaction relation ց is a binary relation between action processes of the
same arity, which is closed with respect to | , · , (x) and ≡ . We specify
whether reaction may occur inside controls. Both examples studied in this section
prevent it.

We have a very different type of standard form result for action calculi, since
application plays such a prominent role. The standard forms are not special pro-
cesses, but rather have a completely different notation to processes. We therefore
call them molecular forms, to emphasise this difference and conform with the
literature [Mil96]. The molecular forms are generated by the grammars

Molecular forms P ::= (~x)[M, . . . ,M]〈~y〉, ~x distinct

Molecules M ::= 〈~u〉K(P1, . . . , Pr)(~v), ~v distinct

Axioms of a strict symmetric monoidal category:

P · idn ≡ P ≡ idm · P P | id0 ≡ P ≡ id0 | P
P · (Q ·R) ≡ (P ·Q) ·R (P |Q) |R ≡ P | (Q |R)

(P1 · P2) | (Q1 ·Q2) ≡ (P1 |Q1) · (P2 | Q2) idm | idn ≡ idm+n

pm,n · pn,m ≡ idm+n

pm+n,k ≡ (idm | pn,k) · (pm,k | idn)

pm,n · (P |Q) ≡ (Q |P) · pk,l , P : (m, l), Q : (n, k)

Naming axioms:

(〈y〉 | idm) · (x)P ≡ P{y/x}

(x)((〈x〉 | idm) · P) ≡ P, x 6∈ fn(P)

Fig. 2. The structural congruence between action processes of the same arity, written
≡, is the smallest equivalence relation satisfying these axioms and closed with respect
to contexts.

with r, |~u| and |~v| determined by the arity of control K. The ~x and ~y correspond
to the abstractions and datums in the standard forms for the π-calculus given
in section 1.1, where (|~x|, |~y|) is the arity of the molecular form. The ~u are free,
and the ~v are distinct and bind to the right. These ~v provide the mechanism for
recording the sequential dependency of control processes. The molecular forms
have a simple structural congruence, given by α-conversion of bound names and
the partial reordering of the molecules when there is no name clash.

The π action calculus The π action calculus is specified by the controls

out : ((0,m)) → (1, 0) in : ((m, 0)) → (1, 0) new : () → (0, 1)

The input and output processes correspond to the action processes of the form
〈x〉 · in(P) and 〈x〉 · out(P) respectively. Restriction is interpreted by action
processes of the form new · (x)P , where the new control blocks the access to the
abstraction. The reaction relation is generated by the rule

〈x〉 · out(P) | 〈x〉 · in(Q) ց P ·Q

where P and Q must have arities (m, 0) and (0, n) respectively and we specify
that reaction does not occur inside the controls.

The correspondence is not absolutely exact, since the π-axiom

(νx)nil ≡ nil

is not preserved by the translation. However, the translated processes are bisim-
ilar. Apart from this point, it is not difficult to show that the structural congru-
ence and the reaction relation are strongly preserved by the embedding [Mil96].
These results rely on the molecular forms described earlier.

The λv action calculus The λv action calculus interprets λ-terms as processes
of arity (0, 1). It is specified by the controls

lam : ((1, 1)) → (0, 1) ap : () → (2, 1).

For example, the λ-term λx.x corresponds to the action process lam((x)〈x〉),
which illustrates the use of abstracted datums. Again we do not permit reaction
inside a lam-control. The reaction relation is generated by the two rules

(lam(P) | id1) · ap ց P

(lam(P) | idm).(x)Q ց Q{lam(P)/〈x〉}.

The first axiom describes β-reduction, and the second describes the explicit
substitution of a lam-process for abstracted datums. In fact, there is a higher-
order extension of action calculi where the lam- and ap-controls are regarded as
primitive constructs. The details can be found in [Mil94a,HG97].

There is another extension of the action calculus framework [Mil94b], which
includes a reflexion (or feedback) operator

P : (m+ 1, n+ 1)

↑P : (m,n)

The reflexion operator does not have a direct analogy in the π-calculus. It does
have a direct analogy in the λ-calculus, in that the λv action calculus plus
reflexion corresponds to the cyclic λ-calculus of Ariola and Klop [Has97]. The
reflexion axioms correspond to adding a trace operator [JSV96] to the symmetric
monoidal category. We do not concentrate on the reflexive extension here, since
our aim is to illustrate the close connection between the π-calculus and the action
calculus framework. It is however of fundamental importance. In particular, the
recent bisimulation results of Leifer and Milner rely on this extension.

Leifer and Milner are currently exploring general bisimulation results for
(simple) reactive systems [LM00], and aim to extend their results to a class of
reflexive action calculi. Such results have also been studied by Sewell [Sew00].
The idea is to automatically generate a labelled transition system from an under-
lying reaction relation, and yield a corresponding bisimulation congruence. The

labelled transitions have the form P
C
−→ Q, with the intuition that C is a small

context necessary to complete a redex in P . Leifer and Milner have characterised
what it means for these small contexts to exist. Their challenge is to show that
they do indeed exist for specific reactive systems such as action calculi.

2 The πF -calculus

In this section, we describe the πF -calculus and define a natural bisimulation
congruence. The πF -calculus is similar in many respects to the fusion calculus
of Parrow and Victor [PV98], and the χ-calculus of Fu [Fu97], although we
did not invent the πF -calculus with these connections in mind. There is no

abstraction. Instead, the πF -calculus has symmetric input and output processes,
with a reaction relation which fuses the names together using explicit fusions.
An explicit fusion 〈z= y〉 is a process which declares that two names can be used
interchangeably.

The key difference between the πF -calculus and the fusion calculus is how the
name-fusions have effect. In the πF -calculus, fusions are explicitly recorded and
have effect though the structural congruence. For example, a typical πF -reaction
is

x.〈z〉P |x.〈y〉Q |R ց 〈z= y〉 |P |Q |R.

The explicit fusion 〈z= y〉 declares that z and y can be used interchangeably
throughout the process. The reaction on the channel x is a local one between
the input and output processes. However, its effect is global in that the scope
of 〈z= y〉 affects process R. The scope of an explicit fusion is limited by the
restriction operator. In the fusion calculus on the other hand, fusions occur
implicitly within the reaction relation. For example, the fusion reaction

(νy)(x.〈z〉P |x.〈y〉Q |R) ց P{z/y} |Q{z/y} |R{z/y}

corresponds to the restriction (with respect to y) of the πF -reaction given above.
This fusion reaction is not a simple local reaction between input and output
processes. Instead, the redex is parametrized by R and requires y (or z) to be
restricted. The full definition, using many ~ys and ~zs, is in fact quite complicated.

Definition 5
The set P ′

πF
of pre-processes of the πF -calculus is defined by the grammar

P ::= nil Nil process
P |P Parallel composition
P@P Connection
〈x〉 Datum
〈x = y〉 Fusion
(νx)P Restriction
x.P Input Process
x.P Output process

The definitions of free and bound names are standard. The restriction operator
(νx)P binds x; otherwise x is free. The connection operator is used to connect
the contents of input and output processes during reaction:

x.P |x.Q ց P@Q.

We regard the connection operator as primitive. However, we shall see that it
can be derived from the other axioms. It can also be derived in the fusion system
framework, so our choice to include it is really not essential.

To define reaction properly, we require the correct number of datums in P
andQ to connect together. This information is given by the arity of a pre-process.
We write P : m to declare that a pre-process has arity m, where m is a natural
number used to count datums.

Definition 6
The set PπF

of processes of the πF -calculus with arity m is defined inductively
by the rules

nil : 0 〈x= y〉 : 0 〈x〉 : 1

P : m Q : n

P |Q : m+ n

P : m Q : m

P@Q : 0

P : m

(νx)P : m

P : m

x.P : 0

P : m

x.P : 0

Definition 7
The structural congruence between processes, written ≡, is the smallest congru-
ence satisfying the axioms given in figure 3, and which is closed with respect to
| , @ , (νx) , x. and x. .

The side-condition on the commutativity of parallel composition allows for
processes of arity 0 to be reordered, but not arbitrary processes. The connection
axioms are simple.

The fusion axioms are similar in spirit to the name-equalities introduced
by Honda in his work on a simple process framework [Hon00]. Our intuition
is that 〈x = y〉 is a symmetric relation which declares that two names can be
used interchangeably. The fusion 〈x= x〉 is congruent to the nil process. So too
is (νx)〈x= y〉, since the local name is unused. Notice that the standard axiom
(νx)nil ≡ nil is derivable from these two fusion axioms. The other six fusion
axioms describe small-step substitution, allowing us to deduce 〈x = y〉 |P ≡
〈x = y〉 |P{x/y} as well as α-conversion. For example,

(νx)(x.nil)
≡ (νx)(νy)(〈x= y〉 |x.nil) create fresh local name y as an alias for x
≡ (νx)(νy)(〈x= y〉 | y.nil) substitute y for x
≡ (νy)(y.nil) remove the now-unused local name x

Just as for the π-calculus, a property of the structural congruence is that
every πF -process is structurally congruent to a standard form. Standard forms
are processes with the shape

(ν~x)(〈~y〉 |P) | 〈~u=~v〉,

where the ~xs are distinct and contained in the ~ys, and P : 0 does not contain
connections or fusions. The standard form is essentially unique in the sense that,
given two congruent standard forms

(ν~x1)(〈~y1〉 |P1) | 〈~u1 =~v1〉 ≡ (ν~x2)(〈~y2〉 |P2) | 〈~u2 =~v2〉,

then |~x1| = |~x2|, the fusions 〈~u1 =~v1〉 and 〈~u2 =~v2〉 generate the same equiva-
lence relation on names, the ~y1 and ~y2 are the same up to α-conversion of the

Standard axioms for | , (νx) and nil:

P | nil ≡ P

(P |Q) |R ≡ P | (Q |R)

P |Q ≡ Q |P, P : 0

(νx)(νy)P ≡ (νy)(νx)P

(νx)(P |Q) ≡ (νx)P |Q, x 6∈ fn(Q)

(νx)(P |Q) ≡ P | (νx)Q, x 6∈ fn(P)

Connection axioms:

(νx)(P@Q) ≡ (νx)P@Q, x 6∈ fn(Q)

(νx)(P@Q) ≡ P@(νx)Q, x 6∈ fn(P)

(〈x〉 |P)@(〈y〉 |Q) ≡ 〈x= y〉 | (P@Q)

P@Q ≡ P |Q, P,Q : 0

Fusion axioms:

〈x= x〉 ≡ nil 〈x= y〉 | y.P ≡ 〈x= y〉 |x.P

〈x= y〉 ≡ 〈y=x〉 〈x= y〉 | y.P ≡ 〈x= y〉 |x.P

(νx)〈x= y〉 ≡ nil 〈x= y〉 | 〈y= z〉 ≡ 〈x= y〉 | 〈x= z〉

〈x= y〉 | 〈y〉 ≡ 〈x= y〉 | 〈x〉

〈x= y〉 | z.P ≡ 〈x= y〉 | z.(〈x= y〉 |P)

〈x= y〉 | z.P ≡ 〈x= y〉 | z.(〈x= y〉 |P)

Fig. 3. The structural congruence between πF -processes of the same arity, written ≡,
is the smallest equivalence relation satisfying these axioms and closed with respect to
contexts.

~x1s and ~x2s, and up to the name-equivalence generated by fusions, and P1 and
P2 are structurally congruent up to α-conversion and the name-equivalence. We
write E(P) for the smallest equivalence relation on names generated by P . This
equivalence relation can be inductively defined on the structure of processes; a
simple characterisation is given by (x, y) ∈ E(P) if and only if P ≡ P | 〈x= y〉.

Using the standard forms, it is possible to express the connection operator
as a derived operator.

Definition 8
The reaction relation between πF -processes of the same arity , written ց, is the
smallest relation generated by

x.P |x.Q ց P@Q,

where P and Q have arity m and the reaction is closed with respect to | , @ ,
(νx) and ≡ .

2.1 Bisimulation Congruence

A natural choice of labelled transition system (LTS) for the πF -calculus consists
of the usual CCS-style transitions using labels x, x and τ , accompanied by a
definition of bisimulation which incorporates fusions: PSQ : 0 implies

for all x and y, if P | 〈x= y〉
α

−→ P1 then Q | 〈x= y〉
α

−→ Q1 and P1SQ1.

We call this bisimulation the open bisimulation, by analogy with the open bisim-
ulation of the π-calculus.

In the definition of open bisimulation, labelled transitions are analysed with
respect to the fusion contexts | 〈x= y〉. In fact, we do not need to consider all
such contexts. Instead, we introduce the fusion transitions, generated by the
axiom

x.P | y.Q
?x=y
−→ P@Q.

A fusion transition with label ?x= y declares the presence of input and out-
put processes with channel names x and y, although we do not know which
name goes with which process. The resulting bisimulation definition is simpler,
in that it is enough to analyse the fusion transitions rather than consider all
fusion contexts. However, these fusion transitions do seem to provide additional
information about the structure of processes. In order to define a bisimulation
relation which equals the open bisimulation, we remove this information in the
analysis of the labelled transitions: PSQ : 0 implies

if P
?x=y
−→ P1 then either Q

?x=y
−→ Q1 or Q

τ
−→ Q1, and P1 | 〈x= y〉S Q1 | 〈x= y〉.

A consequence of adding fusion transitions is that we can use standard techniques
to show that the resulting bisimulation relation is a congruence, and does indeed
equal the open bisimulation.

In [GW00], we also study the more standard definition of bisimulation, which
requires that fusion transitions match exactly. We know it yields a congruence
which is contained in the open bisimulation. At the moment, we do not know
whether the containment is strict. This question relates to an open problem for
the π-calculus without replication and summation 2, of whether strong bisimu-
lation is closed with respect to substitution.

The fusion LTS is given in figure 4. The labelled transitions follow the style
of transition given in [Mil99], although our transitions are defined for arbitrary
processes instead of processes of arity 0. This choice is not essential, since the
bisimulation definition only refers to labelled transitions for processes of arity 0.
The only additional complexity is that we have two rules for parallel composition,
since this operator is only commutative for processes of arity 0. Notice that the
structural congruence rule allows fusions to affect the labels: for example, the

process 〈x= y〉 |x.P can undergo the transition
y

−→ as well as
x

−→, because it
is structurally congruent to 〈x= y〉 | y.P . Also notice that we do not have an
explicit structural rule for the connection operator. Indeed, it is not possible to
write such a rule, since the arity information would cause problems.

x.P
x

−→ P x.P
x

−→ P

x.P | y.Q
?x=y
−→ P@Q x.P |x.Q

τ
−→ P@Q

P
α

−→ P1

P |Q
α

−→ P1 |Q

Q
α

−→ Q1

P |Q
α

−→ P |Q1

P
α

−→ Q, x 6∈ α

(νx)P
α

−→ (νx)Q

P ≡ P1
α

−→ Q1 ≡ Q

P
α

−→ Q

Fig. 4. The labelled transition system for arbitrary πF -processes. We do not distinguish
between the labels ?x= y and ?y= x.

Proposition 9
P ց Q if and only if P

τ
−→ Q.

The basic intuition regarding our definition of bisimulation is that two pro-
cesses are bisimilar if and only if their standard forms have the same outer
structure and, in all contexts of the form @〈~y〉, if one process can do a labelled
transition then so must the other to yield bisimilar processes. In fact, we do not
need to consider all such contexts. Instead, it is enough to remove the top-level
datums from the standard forms, and analyse the labelled transitions for the
resulting processes.

2 Personal communication with Davide Sangiorgi.

Definition 10 (Fusion Bisimulation)
A symmetric relation S is a fusion bisimulation if and only if PSQ implies

1. P andQ have standard forms (ν~x)(〈~y〉 |P1) | 〈~u=~v〉 and (ν~x)(〈~y〉 |Q1) | 〈~u=~v〉
respectively;

2a. if P1 | 〈~u=~v〉
α

−→ P ′

1 where α is x, x or τ then Q1 | 〈~u=~v〉
α

−→ Q′

1 and
P ′

1SQ
′

1;

2b. if P1 | 〈~u=~v〉
?x=y
−→ P ′

1 then either Q1 | 〈~u=~v〉
?x=y
−→ Q′

1 or Q1 | 〈~u=~v〉
τ

−→ Q′

1

and P ′

1 | 〈x= y〉S Q′

1 | 〈x= y〉;

3. similarly for Q.

Two processes P and Q are fusion bisimilar, written P ∼f Q, if and only if there
exists a fusion bisimulation S between them. The relation∼f is the largest fusion
bisimulation. We call it the fusion bisimulation, when the meaning is apparent.

This definition of fusion bisimulation is related to Sangiorgi’s efficient character-
isation of open bisimulation for the π-calculus with matching [San93].

The fusion transitions enable us to use standard techniques for proving that
the fusion bisimulation is a congruence. We remove the structural congruence
rule, and define an alternative LTS based on the structure of processes. This
alternative LTS is given in figure 5. The non-standard rules are the fusion rules.
The first two play a similar role to the τ -rules for the π-calculus. The other two
express the effect of explicit fusions on labels and the generation of τ -transitions
from simple fusion transitions. Notice that we have no rules for the connection
operator. The connection between the fusion LTS and the alternative LTS is
therefore only valid up to structural congruence.

Using the alternative LTS, we are able to define a bisimulation relation,
prove that it is a congruence and show that it equals the fusion bisimulation.
The details are given in [GW00]. With this congruence result, it is not difficult
to show that fusion bisimulation equals open bisimulation.

3 Fusion systems

The fusion system framework consists of the same basic process constructs as the
πF -calculus. It generalises the input and output processes to more general control
processes. For action calculi, control processes have the form K(P1, . . . , Pr). It
is possible to use the same approach for fusion systems. Instead, we choose to
focus on control processes of the form ~x.K(P1, . . . , Pr), where the control K is
a boundary containing the processes Pi and the names ~x provide the interface
to the control. With this choice of control process, the connection operator can
be derived from the other operators.

A fusion calculus is specified by a set K of controls, and a reaction relation
describing the interaction between controls. Each control K in K has an asso-
ciated arity (m1, . . . ,mr) → k. The arity tells us how to construct a control
process ~x.K(P1, . . . , Pr), where the mi specify the arities of the Pi and |~x| = k.

x.P
x

−→ P x.P
x

−→ P

P
x

−→ P1 Q
y

−→ Q1

P |Q
?x=y
−→ P1@Q1

P
x

−→ P1 Q
y

−→ Q1

P |Q
?x=y
−→ P1@Q1

P
α

−→ Q (x, y) ∈ E(P)

P
α[y/x]
−→ Q

P
?x=x
−→ Q

P
τ

−→ Q

P
α

−→ P1

P |Q
α

−→ P1 |Q

Q
α

−→ Q1

P |Q
α

−→ P |Q1

P
α

−→ Q, x 6∈ α

(νx)P
α

−→ (νx)Q

Fig. 5. The alternative LTS for arbitrary processes. The judgement α[y/x] denotes
the simple substitution of one y for one x, generated by: x[y/x] = y; x[y/x] = y;
(?x= z)[y/x] = ?y= z, and α[y/x] = α when x 6∈ α. Recall that E(P) is the smallest
equivalence relation on names generated by P .

Definition 11
The set P ′

F
(K) of pre-processes of a fusion system specified by control set K is

defined by the grammar

P ::= nil Nil process
P |P Parallel composition
P@P Connection
〈x〉 Datum
〈x= y〉 Fusion
(νx)P Restriction
~x.K(P1, . . . , Pr) Control process

The set PF(K) of fusion processes with arity m is defined by the rules in defini-
tion 6, with the input and output rules generalised to the control rule

Pi : mi i ∈ {1, . . . , r}

~x.K(P1, . . . , Pr) : 0

where control K has arity (m1, . . . ,mr) → k and |~x| = k.

The definitions of free and bound names are standard. The definition of the
structural congruence between fusion processes is the same as that given for the
πF -calculus in figure 3, except that it is closed with respect to arbitrary control
processes. The standard forms are defined in the same way as those for the πF -
calculus given in section 2. We can therefore derive the connection operator from

the other operators. The reaction relation ց is a binary relation between fusion
processes of the same arity, which is closed with respect to | , @ , (νx) and
≡ . We are able to specify whether the reaction relation is closed with respect

to the controls.

The π fusion system We define the π fusion system, which is just a reformu-
lation of the πF -calculus. It is specified by the controls

in : (m) → 1 out : (m) → 1

where the πF -processes x.P and x.P correspond to the control processes of the
form x.in(P) and x.out(P) respectively. The reaction relation is generated by
the rule

x.in(P) |x.out(Q) ց P@Q,

where P and Q have the same arity and reaction does not occur inside the
controls. Since the correspondence with the πF -calculus is exact, the bisimulation
results described in section 2.1 easily transfer to the πF fusion system.

We summarise the embedding results of the π-calculus and the fusion calculus
in the πF fusion system. These results follow immediately from the analogous
embeddings in the πF -calculus [GW00]. The translations of the π-calculus and
the fusion calculus into πF fusion system are characterised by the input and
output cases described above, plus the abstraction and concretion cases:

[[(~x)P]] = (ν~x)(〈~x〉 | [[P]]) Abstraction
[[(ν~x)〈~z〉P]] = (ν~x)(〈~z〉 | [[P]]) Concretion

There is a key difference between the embedding of the π-calculus and the em-
bedding of the fusion calculus. For the π-embedding, reaction of a process in the
image of [[]] necessary results in a process congruent to one in the image. The
same is not true with the embedding of the fusion calculus, since for example

x.in(〈z〉 | [[P]]) |x.out(〈y〉 | [[Q]]) ց 〈z= y〉 | [[P]] | [[Q]],

which does not have a corresponding reaction in the fusion calculus. The process
on the left is in the image of the fusion calculus under [[]], but the one on the
right has an unbound explicit fusion and so is not congruent to anything in the
image. We do obtain an embedding result, in that by restricting y (or z) we
obtain the πF fusion reaction

(νy)(x.in(〈z〉 | [[P]]) |x.out(〈y〉 | [[Q]])) ց (νy)(〈z= y〉 | [[P]] | [[Q]])

≡ [[P]]{z/y} | [[Q]]{z/y},

which does indeed correspond to a fusion reaction. The full translations and
embedding results are given for the πF -calculus in [GW00].

The λv fusion system We define the λv fusion system, which corresponds to a
call-by-value λ-calculus. It is also possible to define fusion systems for the usual
untyped λ-calculus, and the simply-typed versions by adding more structure to
the arities. These fusion systems require the ability to replicate processes, which
we have not used before. We are currently checking that our bisimulation results
in section 2.1 hold in the presence of replication. We do not envisage difficulties.

The λv fusion system is specified by the controls

lam : (2) → 1 ap : () → 3.

The idea is that the untyped λ-terms correspond to processes of arity 1. A lam-
process of the form u.lam(P) ‘locates’ the function at u, with the extra arity
for the process P corresponding to the abstraction of the λ-term. An ap-control
uvw.ap ‘locates’ its function at u, its argument at v and its result at w. The
reaction relation is generated by

u.lam(P) |uvw.ap ց P@〈vw〉.

and reaction does not occur inside the lam-control. The translation from lambda
terms to fusion processes is defined inductively by

[[x]] 7−→ 〈x〉

[[λx.t]] 7−→ (νu)(〈u〉 | !u.lam((νx)(〈x〉 | [[t]]))) u 6∈ fn([[λx.t]])

[[st]] 7−→ (νuvw)(〈w〉 | [[s]]@〈u〉 | [[t]]@〈v〉 |uvw.ap) u, v, w 6∈ fn([[st]])

The replication in the translation of the lambda abstraction is used to generate
copies of lambda processes via the structural congruence.

The results for the call-by-value λ-calculus are not as straightforward as
the results for the πF -example. To illustrate this, consider the lambda reaction
(λx.x)y ց y which corresponds to the fusion system reaction

(νuw)(〈w〉 | !u.lam((νx)〈xx〉) |uyw.ap) ց 〈y〉 | (νu)(!u.((νx)〈xx〉)).

After reaction, the process (νu)(!u.lam((νx)〈xx〉)) is redundant. This redun-
dancy is expressed by a bisimulation congruence, with process (νu)(!u.lam((νx)〈xx〉))
bisimilar to nil. Bisimulation is thus required to relate the reaction relation of
the λ-calculus with reaction in the λv fusion system.

Bisimulation for the λv fusion system is easy. It follows directly from bisim-
ulation for the πF fusion system. This is because the λv fusion system can be
regarded as a simple subsystem of the πF fusion system, using the translation

[[u.lam(P)]] 7→ u.in([[P]])

[[uvw.ap]] 7→ u.out(〈vw〉)

which trivially preserves the reaction relation. It is future work to show whether
the resulting congruence corresponds to a known behavioural congruence for the
call-by-value λ-calculus.

It also remains future work to study general bisimulation congruences for
fusion systems. One option is to try to generalise the bisimulation results for
the πF and λv fusion systems. Another option is to adapt the techniques of
Leifer and Milner, in their work on general bisimulation congruences for reactive
systems [LM00]. However, this is not our primary concern. We would first like
to explore specific examples of fusion systems to illustrate the expressive power
of explicit fusions.

References

[Fu97] Y. Fu. A proof-theoretical approach to communication. ICALP, LNCS 1256,
Springer-Verlag, 1997.

[GW99] P.A. Gardner and L. Wischik. A process framework based on the πF -calculus.
EXPRESS, Elsevier Science Publishers, 1999.

[GW00] P.A. Gardner and L. Wischik. Explicit fusions. MFCS, 2000. To appear.
[Has97] M. Hasegawa. Models of Sharing Graphs (A Categorical Semantics of Let and

Letrec). PhD thesis, ECS-LFCS-97-360, University of Edinburgh, 1997.
[HG97] M. Hasegawa and P. Gardner. Higher order action calculi and the computa-

tional λ-calculus. Theoretical Aspects of Computer Software, Sendai, 1997.
[Hon00] K. Honda. Elementary structures in process theory (1): sets with renaming.

Mathematical Structures in Computer Science, 2000. To appear.
[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical

Proceedings of the Cambridge Philosophical Society, 119(3), 1996.
[LM00] Jamey Leifer and Robin Milner. Deriving bisimulation congruences for reactive

systems. CONCUR, 2000. To appear.
[Mil94a] R. Milner. Higher order action calculi. Computer Science Logic, LNCS 832,

Springer-Verlag, 1994.
[Mil94b] R. Milner. Reflexive action calculi. Unpublished manuscript, 1994.
[Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.
[Mil99] R. Milner. Communicating and mobile systems: the pi calculus. CUP, 1999.
[PV98] J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry

in mobile processes. LICS, Computer Society Press, 1998.
[San93] D. Sangiorgi. A theory of bisimulation for the pi-calculus. CONCUR, Springer-

Verlag, 1993.
[Sew00] Peter Sewell. From rewrite rules to bisimulation congruences. Theoretical

Computer Science, 2000. To appear.

