
The Fusion Machine
(extended abstract)

Philippa Gardner1, Cosimo Laneve2, and Lucian Wischik2

1 Department of Computing, Imperial College, London
2 Department of Computer Science, University of Bologna

Abstract. We present a new model for the distributed implementation
of pi-like calculi, which permits strong correctness results that are simple
to prove. We describe the distributed channel machine – a distributed
version of a machine proposed by Cardelli. The distributed channel ma-
chine groups pi processes at their channels (or locations), in contrast with
the more common approach of incorporating additional location infor-
mation within pi processes. We go on to describe the fusion machine. It
uses a form of concurrent constraints called fusions – equations on chan-
nel names – to distribute fragments of these processes between remote
channels. This fragmentation avoids the movement of large continuations
between locations, and leads to a more efficient implementation model.

1 Introduction

The pi calculus and its variants have made a significant impact in research on
concurrency and distribution. However, we are aware of only two distributed
implementations of the pi calculus: Facile [8] which uses a hand-shake discipline
for communication, and an indirect encoding into the join calculus [5] which
is then implemented on Jocaml [4]. Other related implementations [20, 6] add
explicit location constructs to the pi calculus and use different mechanisms for
distributed interaction.

There are two reasons for why pi calculus interaction has not been used for
distributed interaction. First, synchronous rendezvous (as found in the pi cal-
culus) seemed awkward to implement. Second, a model of distribution has gen-
erally been assumed, in which processes are grouped together at locations and
use separate mechanisms for distributed versus local interaction. We propose a
different distribution model, the fusion machine, which avoids the difficulty in
synchronous rendezvous and leads to a simple connection between implementa-
tion and pi-like calculi.

In our distribution model, each channel exists at its own location (or is co-
located with other channels). Each atomic process waiting to rendezvous over
a channel is placed directly at that channel (location); thus, synchronous ren-
dezvous is local. After rendezvous, a process’ continuation is broken down into
atomic processes. These are sent on to their appropriate channels, and are then
ready to perform their own subsequent rendezvous. The task of breaking down

and sending is known as heating [2], and amounts to a directed implementation
of structural congruence. In some ways, our model can be regarded as a dis-
tributed version of the single-processor model first described by Cardelli [3] and
subsequently used in Pict [14, 17].

The fusion machine is distributed over channels, as outlined above. It also
uses explicit fusions [7], a form of concurrent constraints on channel names which
it implements with trees of forwarders between channels. These explicit fusions
enable atomic processes to be fragmented, so avoiding the movement of large
continuations between channels. The issue of fragmentation did not arise in the
single-processor channel machine used in Pict. In this machine, after a program is
involved in rendezvous, a pointer to its continuation is sent on to another channel
for subsequent rendezvous. In contrast, the (distributed) fusion machine would
require the entire continuation to be sent between channels. This explains why
fragmententation becomes relevant for a distributed implementation. We treat
fragmentation formally by showing that a calculus with limited continuations –
the explicit solos calculus – is as expressive as the full calculus with continuations.
This builds upon earlier results in [13, 10].

The differences between our model and that of Facile and Jocaml are as fol-
lows. Facile uses two classes of distributed entities: (co-)located processes which
execute, and channel-managers which mediate interaction. This forces it to use a
hand-shake discipline for rendezvous. Jocaml simplifies the model by combining
input processes with channel-managers. However, it uses a quite different form
of interaction, which does not relate that closely to pi calculus rendezvous. It
also forces a coarser granularity, in which every channel must be co-located with
at least one other. Like Jocaml, the fusion machine combines processes with
channel-managers. Unlike Jocaml, our machine has finer granularity and uses
the same form of interaction as the pi calculus.

To conclude the paper, we introduce a formal technique to argue about the
efficiency of our fusion machine in terms of the number of network messages
required to execute a program. As an example, we quantify the efficiency impact
of our encoding of continuations into the explicit solos calculus: it does no worse
than doubling the total message count.

The structure of the paper is as follows. Section 2 describes a distributed version
of the channel-machine, which is closely connected to the pi calculus. Section 3
presents the fusion machine, which is closer to the explicit fusion calculus and
solos calculus. Section 4 gives it a formal theory, and includes full abstraction
results. Section 5 adds a model of co-location to the machine, and uses this in a
proof of efficiency.

2 The Distributed Channel Machine

Cardelli described an abstract machine for synchronous rendezvous which runs
in a single thread of execution, in a shared address space. It contains channel-
managers, each of which contains pointers to programs; these programs are wait-
ing to rendezvous on the channel. It also contains a deployment bag of pointers

to programs ready to be executed. The mode of operation of the machine is to
move pointers between the channels and the deployment bag.

To make it distributed, we instead assume a collection of located channel-
managers which run in parallel and which interact. Each channel-manager has
its own thread of execution, its own address space and its own deployment bag.
The mode of operation of a channel-manager is either to send some fragments
across the network to other channel-managers, or to execute other fragments
locally.

Assume a set of channel names ranged over by u, v, w, x, y, z. These might
be Internet Protocol numbers and port numbers. At each location there is a
channel-manager for exactly one channel name. We therefore identify locations,
channels and names. Each channel-manager is made from two parts: atoms (A)
which are waiting to rendezvous on the channel, and a deployment bag (D) of
terms ready to be executed. We picture it as follows:

u

A

D

name of this channel-manager

atoms

deployment bag

The atoms are a collection of output atoms outx.P and a separate collection of
input atoms in(x).P . In general they may be polyadic (communicating several
names); but in this section we stick to monadic (single names) atoms for sim-
plicity. The deployment bag is a multiset of terms – in this section, terms in the
pi calculus.

As an example, the following machine is one representation of the program
ux.P | u(y).Q | v x.R | v(y).S. Observe that each action ux.P is represented
either as an atom at location u, or in any location’s deployment bag.

u

outx.P
in(y).Q
v x.R

v

in(y).S

−
There are two kinds of transition for each channel-manager. First, two match-

ing atoms at the same location can react :
u

outx.P
in(y).Q;A

D

→

u

A

D;P ;Q{x/y}
(react)

(If a replicated input or output atom were involved in the reaction, then a copy
of it would be left behind.) Second, program fragments from the deployment bag
might be deployed. This is also called heating in the process calculus literature.

u

A

P |Q;D
⇀

u

A

D;P ;Q
(dep.par)

u

A

0;D
⇀

u

A

D

(dep.nil)

u

A

v x.P ;D

v

A′

D′
⇀

u

A

D

v

outx.P
A′

D′
(dep.out)

u

A

v(x).P ;D

v

A′

D′
⇀

u

A

D

v

in(x).P
A′

D′
(dep.in)

These heating transitions are all straightforward. They take a program fragment
from the deployment bag, and either break it down further or send it to the
correct place on the network. Cardelli’s non-distributed machine uses similar
rules with minor differences: it uses just a single deployment bag shared by all
channel-managers; and because it uses a shared address space, it merely moves
pointers rather than entire program fragments.

As for the restriction operator (z)P , it has three roles. First, it is a command
which creates a new, globally unique channel – a fresh name. Second, through
rules for alpha-renaming and scope extrusion, it indicates that an existing name
should be understood to be globally unique, even though it might be syntac-
tically written with a non-unique symbol. This second role is not relevant to
an implementation. Third, it indicates that an existing channel is private, so
that a separately-compiled program cannot refer to it by name. For example, it
might mean that a machine is not listed in the Internet’s Domain Name Service.
We will write (|z|) to indicate a channel z that is not listed. The deployment of
restrictions is as follows:

u

A

(z)P ;D
⇀

u

A

P{z′
/z};D

(|z′|)

−
−

z′ fresh (dep.new)

Theorem 1 (Full abstraction) Two programs are (strongly barbed) congru-
ent in the pi calculus if and only if they are (strongly barbed) congruent in the
distributed channel machine.

This straightforward theorem holds for both the single-processor channel ma-
chine and the distributed channel-machine, but as far as we know it has not
been given before in the literature. (Cardelli’s description of the channel ma-
chine anticipated the pi calculus by several years.) The proof is omitted, and
will be provided in the full paper. Sewell has given a weaker result for the ver-
sion of the machine used in Pict [15].

We remark that the full abstraction result for the join calculus is weaker
than Theorem 1. This is because the join calculus encodes each pi channel with
two join calculus channels that obey a particular protocol. Without a firewall,
an encoded program would be vulnerable to any context which violates the
protocol. Technically, the join calculus encoding is non-uniform as defined by
Palamidessi [11]. As for the channel machine, we encode a pi calculus term
P by deploying it in a dummy machine x[P]. Strictly speaking this is also a
non-uniform encoding – but we could make it uniform by adding a structural
rule x[P], x[Q] ≡ x[P ;Q]. Such a rule would be usual in a calculus, but is not
relevant in an implementation where different machines have different names by
construction. Therefore we do not use it.

Efficiency of Continuations

This distributed version of the channel machine suffers from an efficiency prob-
lem. Consider for example the program u .v .x .y | u.v.x.y.P . In the machine, the
continuation P would be transported first to u, then v, then x, then y. This is
undesirable if the continuation P is large.

There have been two encodings of the pi calculus into a limited calculus
without nested continuations. These might solve the efficiency problem. The
first encoding, by Parrow [13], uses a sub-calculus of the pi calculus consisting
of trios so that, for instance, u(y).v y becomes t1(x̃).u(y).t 2x̃y | t2(x̃y).v y.t 3x̃y.
Here, triggers t1, t2, t3 guard each input and output command, and also transport
the entire environment to every continuation. An encoded term could then be
executed directly on the distributed channel machine.

The second encoding is based upon the fusion calculus of Parrow and Vic-
tor [12], a calculus in which the input command uỹ.P is not binding. The encod-
ing [10] uses the sub-calculus with only solos u x̃ and u x̃. It uses the reaction
relation

(z̃)(u x̃ | uỹ | R) → Rσ

where every equivalence class generated by x̃ = ỹ has exactly one element not
in z̃, and the substitution σ collapses each equivalence class to its one element.

A single-processor implementation of solos has been described [9]. However, it
seems difficult to make a distributed implementation. This is because its reaction
is not local: the channel-manager at u must look in the global environment to
find sufficient names (|z̃|) before it can allow reaction. Instead, we implement the
solos calculus with the explicit fusions [7]. This allows local reaction as follows:

u x̃ | u ỹ | R → x̃ ỹ | R.

The term x̃ ỹ is called an explicit fusion. It has delayed substitutive effect on the
rest of the term R. In this respect it is similar to explicit substitutions [1]. As
an example, in ux | v y | u v, the atom on u may be renamed to v. This yields
v x | v y | u v. In contrast to Parrow’s trios (which send the entire environment
to every continuation), explicit fusions amount to a shared environment.

In fact, we prefer to use terms u x̃.φ and u x̃.φ where φ is an explicit fusion
continuation – instead of the arbitrary continuations of the channel machine,
or the triple continuations of trios, or the empty continuations of the solos cal-
culus. Technically, these fusion continuations allow for an encoding of arbitrary
continuations that is uniform and a strong bisimulation congruence (Section 5).

3 Fusion Machine

In general, explicit fusions generate an equivalence relation on names such that
any related names may react together. However, in our distributed setting, differ-
ent names correspond to channel managers at different locations. If two (remote)
atoms are related by the equivalence relation, we must send them to a common
location in the network so they can react together. The decision as to where to
send them must be taken locally. The problem is to find a data structure and
an algorithm that allow such local decisions.

The data structure we use to represent each equivalence class is a directed
tree. Then each channel can send its atoms to its parent, and related atoms are
guaranteed to arrive eventually at a common ancestor. To store this tree, let
each channel-manager contain a fusion pointer to its parent:

u

F

A

D

name of this channel-manager

fusion-pointer

atoms

deployment bag

The rule for sending an atom to a parent is called migration. (We write m to
stand for either in or out).

u

v

mx.φ
A

D

v

F ′

A′

D′

⇀

u

v

A

D

v

F ′

mx.φ
A′

D′

(migrate)

To update the tree (i.e. to deploy a fusion term), we use a distributed version
of Tarjan’s union find algorithm [16]. This assumes a total order on names,
perhaps arising from their Internet Protocol number and port number. The
algorithm is implemented with just a single heating rule:

u

F

A

x y; D

x

z

A′

D′

⇀

u

F

A

D

x

y

A′

y z; D′

(dep.fu)

where x < y and, if x had no fusion pointer z originally, then we omit y z from
the result. This rule amounts to u sending to x the message “fuse yourself to

y”. To understand this rule, note that it preserves the invariant that the tree of
names respects the total order on names, with greater names closer to the root.
Therefore, each (dep.fu) transition takes a fusion progressively closer to the root,
and the algorithm necessarily terminates. The effect is a distributed, concurrent
algorithm for merging two trees.

Finally, we give the modified reaction rule which works with non-binding
input and output.

u

F

outx.φ
iny.ψ; A

D

→

u

F

A

x y;φ;ψ,D

(react)

The following worked example illustrates ux | u y | x | y →∗ x y.

u

−
inx
outy
−

x

−
out

−

y

−
in

−

react→

u

−
−
x y

x

−
out

−

y

−
in

−

dep.fu
⇀

u

−
−
−

x

y

out

−

y

−
in

−

migrate
⇀

u

−
−
−

x

y

−
−

y

−
out
in
−

react→

u

−
−
−

x

y

−
−

y

−
−
−

We ultimately imagine a hybrid machine which uses both continuations (as
in the previous section) and fusions (as in this section). It will use continuations
when the continuations are small enough to be efficient; at other times it will use
fusions. The two areas are largely unrelated. Therefore, for simplicity, our formal
treatment of the machine (next section) omits continuation (and replication).
A formal account of the full hybrid machine may be found in [18]. Also, the
efficiency results in Section 5 refer to the hybrid machine.

4 Fusion Machine Theory

We now develop a formalism for the fusion machine. We use this to prove that
it is a fully abstract implementation of the explicit solos calculus (Table 1). For
simplicity, we consider the calculus without replication.

We assume a countably infinite set N of names with a total order, ranged
over by u,v,w,x,y,z. Let p range over {−} ∪ N , denoting pointers including the
absent pointer −. We use the abbreviation x̃ for tuples x1, · · · , xn, and x̃ ỹ for
x1 y1| . . . |xn yn. Let φ, ψ range over explicit fusions x̃ ỹ, and m over {out, in}.

Terms P , fusions φ, and contexts E in the explicit solos calculus are given by

P ::= 0
∣∣ φ

∣∣ u x̃.φ
∣∣ u x̃.φ

∣∣ (x)P
∣∣ P |P

φ ::= x̃ ỹ

E ::=
∣∣ (x)E

∣∣ P |E ∣∣ E|P
Structural congruence on terms ≡ is the smallest congruence satisfying the follow-
ing:

P |0 ≡ 0 P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R
x x ≡ 0 x y ≡ y x x y | y z ≡ x z | y z (x)(x y) ≡ 0

(x)(y)P ≡ (y)(x)P (x)(P |Q) ≡ (x)P | Q if x �∈ fn(Q)

x y | P ≡ x y | P{y/x}

Reaction relation is the smallest relation → satisfying the following, and which is
closed with respect to ≡ and contexts: u x̃.φ | u ỹ.ψ → x̃ ỹ | φ | ψ.

Observation P ↓ u is the smallest relation satisfying

u x̃.φ ↓ u P | Q ↓ u if P ↓ u
u x̃.φ ↓ u (x)P ↓ u if P ↓ u and u �= x

Q ↓ u if Q ≡ P ↓ u
The explicit fusion calculus is obtained by allowing arbitrary continuations and repli-
cation: !P ≡ P |!P with P ::= . . . | u x̃.P | u x̃.P | !P and E ::= . . . | u x̃.E | u x̃.E | !E.

Bisimulation is as usual. A relation S is a strong barbed bisimulation if whenever
P S Q then

– P ↓ u if and only if Q ↓ u
– if P → P ′ then Q → Q′ such that P ′ S Q′

– if Q → Q′ then P → P ′ such that P ′ S Q′

Barbed congruence P ∼ Q holds whenever, for all contexts E, E[P] ·∼ E[Q], where
·∼ is the largest bisimulation.

Table 1: The explicit solos calculus

Definition 2 (Fusion machine) Fusion machines M , bodies B, and terms P
are defined by the following grammar:

M ::= 0
∣∣ x[p:B]

∣∣ (|x|)[p:B]
∣∣ M,M (machines)

B ::= outx̃.φ
∣∣ inx̃.φ

∣∣ P
∣∣ B;B (bodies)

P ::= 0
∣∣ x y

∣∣ u x̃.φ
∣∣ u x̃.φ

∣∣ (x)P
∣∣ P |P (terms)

The basic channel-manager x[p:B] denotes a channel-manager at channel x con-
taining a fusion pointer to p and a body B. This body is an unordered collection
of atoms mx̃.φ and terms P ; it combines the atoms and deployment bag of the
previous section. The local channel-manager (|x|)[p:B] denotes a channel-manager
where the name x is not visible outside the machine. When not relevant, we omit
parentheses (|·|) to address generically channel managers which may be local or
global. We also omit the fusion-pointer x[B] to stand for a machine with some
unspecified fusion pointer. We write chanM to denote the set of names of all
channel-managers in the machine, and lchanM for the names of only the local
channel-managers. We write x[] for x[0]. In terms, the restriction operator (x)P
binds x in P ; x is free in a term if it occurs unbound. We write fnP to denote
the set of free names in P .

There are two well-formedness conditions on machines. First, recall from the
previous section that there is exactly one channel-manager per channel. In the
calculus, we say that a machine x1[B1], · · · , xn[Bn] is singly-defined when i
= j
implies xi
= xj (xi or xj may be local). Second, it does not make sense to
write a program that refers to a machine which does not exist. We say that a
machine is complete when it has no such ‘dangling pointers’. Formally, define
ptrM to be the smallest set containing all free names in all terms in the machine,
all non-nil fusion pointers, and all names occurring in any atom mx̃.φ. Then a
machine M is complete if ptrM ⊆ chanM . A machine is well-formed when it is
both singly-defined and complete. In the following, we consider only well-formed
machines. In particular, when we write x[P] it is shorthand for the (well-formed)
machine x[-:P], y1[], · · · yn[] where {y1, · · · , yn} = fn(P)\x. Here, x stands for
an arbitrary location where the user of the machine first deploys program P .

Definition 3 (Structural congruence) The structural congruence for ma-
chines and atoms ≡ is the least congruence and equivalence satisfying

1. Machines and bodies are chemical solutions [2] with 0 as unit
M,0 ≡ M M1,M2 ≡ M2,M1 M1, (M2,M3) ≡ (M1,M2),M3

B;0 ≡ B B1;B2 ≡ B2;B1 B1; (B2;B3) ≡ (B1;B2);B3
2. Fusion laws

x x ≡ 0 x y ≡ y x

The fusion laws are a syntactic convenience, allowing us to write a fusion x y
without explicitly stating that x and y are distinct names in a particular order.
To the same end, we also let x - stand for 0. There is no need to incorporate
the calculus congruence P ≡ Q into the machine congruence: the congruence is
already implemented by the machine heating transitions.

We remark that the machine has a minimal structural congruence, for ease
of implementation: the rule B1;B2 ≡ B2;B1 models the fact that the implemen-
tation uses a non-ordered data structure, and so the rule takes no extra work to
implement; and M1,M2 ≡ M2,M1 models the fact that machines on the Inter-
net are not ordered. The usual rule x[B1], x[B2] ≡ x[B1;B2], on the other hand,
would not motivated by an implementation: therefore we do not use it.

It is easy to show that all rules in the structural congruence preserve well-
formedness.

Definition 4 (Transitions) The reduction transition → and the heating tran-
sition ⇀ are the smallest relations satisfying the rules below, and closed with
respect to structural congruence. Each rule addresses generically both free and
local channel-managers.

u[outx̃.φ; inỹ.ψ;B] → u[x̃ ỹ;φ;ψ;B] (react)

u[v: mx̃.φ;B1], v[B2] ⇀ u[v:B1], v[mx̃.φ;B2] (migrate)
u[x y;B1], x[p:B2] ⇀ u[B1], x[y: y p;B2], if x < y (dep.fu)
u[vx̃.φ;B1], v[B2] ⇀ u[B1], v[inx̃.φ;B2] (dep.in)
u[v x̃.φ;B1], v[B2] ⇀ u[B1], v[outx̃.φ;B2] (dep.out)

u[(x)P | B] ⇀ u[P{x′
/x};B], (|x′|)[-:], x′ fresh (dep.new)

u[P |Q;B] ⇀ u[P ;Q;B] (dep.par)
u[0;B] ⇀ u[B] (dep.nil)

u[p:u y;B] ⇀ u[y: y p;B], if u < y (dep.fu′)
u[ux̃.φ;B] ⇀ u[inx̃.φ;B] (dep.in′)
u[u x̃.φ;B] ⇀ u[outx̃.φ;B] (dep.out′)

For every transition rule above, we close it under contexts:

M → M ′, chanM ′ ∩ chanN = ∅
M,N → M ′, N

M ⇀ M ′, chanM ′ ∩ chanN = ∅
M,N ⇀ M ′, N

It is easy to show that all transition rules preserve well-formedness. In respect
of this, note that (dep.new) generates a fresh name so as to preserve single-
definition, and the context closure rule forces this name to be globally fresh.

Bisimulation

We now define barbed bisimulation on machines.

Definition 5 (Observation) The internal observation M ↓ u is the smallest
relation closed with respect to structural congruence and satisfying

u[mx̃.φ;B] ↓ u
u[v:B],M ↓ u if M ↓ v
M1,M2 ↓ u if M1 ↓ u or M2 ↓ u

The external observation M ⇓ u holds if M ⇀∗ M ′ such that M ′ ↓ u and
u
∈ lchanM ′.

This is standard apart from the middle rule. To understand it, consider the
example u[v:], v[outx]. This corresponds to the calculus term u v | v x, which has
an observation on u because of the explicit fusion. So too we wish the machine
to have an observation on u. As for the reverse case, of u[v: outx], v[] being
observable on v, this is observable after a single heating transition.

The symbol ⇓ is generally used for weak observation, which is blind to internal
reactions. Note however that our external observation ⇓ is strong with respect to
reactions, but weak with respect to heating. Similarly, we write ⇒ for ⇀∗→⇀∗.

Definition 6 (Bisimulation) A (strong) barbed bisimulation S between ma-
chines is a relation such that if M S N then

1. M ⇓ u if and only if N ⇓ u
2. M ⇒ M ′ implies there exists N ′ such that N ⇒ N ′ and M ′ S N ′

3. N ⇒ N ′ implies there exists M ′ such that M ⇒ M ′ and M ′ S N ′

Let ·∼, called barbed bisimilarity, be the largest barbed bisimulation.

Theorem 7 (Correctness)

1. For programs P and Q in the explicit solos calculus, P ·∼ Q if and only if
x[P] ·∼ x[Q].

2. There is a translation (·)∗ from the pi calculus into the explicit solos calculus
such that, for programs P and Q in the pi calculus without replication, P ·∼ Q
if and only if x[P ∗] ·∼ x[Q∗].

Proof sketch. Consider the translation calcM from machines to terms in the
explicit solos calculus, defined by calcM = (lchanM)[[M]] where

[[0]] = 0 [[0]]u = 0

[[u[-:B]]] = [[B]]u [[outx̃.φ]]u = u x̃.φ

[[u[v:B]]] = u v | [[B]]u [[inx̃.φ]]u = u x̃.φ

[[M1,M2]] = [[M1]] | [[M2]] [[P]]u = P

[[B1;B2]]u = [[B1]]u | [[B2]]u

It is straightforward to show that machine heating transitions imply structural
congruence in the calculus, and that machine barbs and reactions imply barbs
and reactions in the calculus.

The proof of the reverse direction is more difficult. Given calcM ↓ u, then
there is also a machine M ′ in which all the deployable terms in M have been
deployed such that calcM ′ ↓ u. We now consider the fusion pointers in M ′. Let
us write u� v if there is a sequence of fusion pointers from u to v. Note that all
transitions preserve the following properties of this relation: it is anti-reflexive,
anti-symmetric and transitive, it respects the order on names (x � y implies

x < y) and it is confluent (x� y and x� z implies y � z or z � y or y = z).
We are therefore justified in talking about a tree of fusion pointers. With this
tree it is easy to prove that if calcM ′ ↓ u, then also M ′ ↓ u. It is a similar matter
to show that the machine preserves calculus reactions.

Therefore, the translation calc preserves observation and reaction, and so
calcM ·∼ calcN if and only if M ·∼ N . The first part of the theorem is just a
special case of this, since calcx[P] ≡ P .

As for the pi calculus result, we refer to Corollary 66 and Proposition 101
of [18]. Together these provide a translation from the pi calculus into the explicit
solos calculus which preserves strong barbed bisimulation. �

We now consider behavioural congruence. In this paper, our goal is that the
fusion machine should provide an operational semantics for calculus programs:
i.e. we wish to study how programs behave when placed in a machine. To this
end, we define contexts Em for the machine where holes are filled with terms.

Definition 8 (Contexts) Machine contexts Em are given by

Em ::= x[p:Eb]
∣∣ (|x|)[p:Eb]

∣∣ Em,M
∣∣ M,Em

Eb ::=
∣∣ B;Eb

∣∣ Eb;B

When we write Em[P], we implicitly assume it to be well-formed. The machine
equivalence is defined as follows:

Definition 9 (Equivalence) Two terms are judged equivalent by the machine,
P ∼m Q, if and only if for every context Em, Em[P] ·∼ Em[Q].

Theorem 10 (Full abstraction) For terms P and Q in the explicit solos cal-
culus, P ∼ Q if and only if P ∼m Q.

Proof sketch. In the forward direction, we extend the translation calc to contexts
in the obvious way. Then, given a machine context Em, we can construct a
calculus context E = calcEm such that, for every P , calc(Em[P]) ≡ E[P].

The reverse direction is not so straightforward. Consider for example the
context E = ux | (x) . This has no direct equivalent in the machine: it is
impossible in the machine for x to be a local channel-manager whose scope
includes a hole, and also at the same time a free name. Instead, given a context
E which can discriminate between P and Q, we will construct another context
E′ = ux′ | (x) which also discriminates them, and which has no clash of names;
therefore it can be represented in the machine.

Technically, we will define a translation [[·]]ỹ from calculus contexts E to
triples (σ, z̃, R). This translation pushes out the bindings that surround the hole
in E. In order to accomplish this structurally, we keep all the binders in z̃
(suitably renamed to avoid clashes), and collect the necessary renamings of free
names in σ. The intention is that for any terms P and Q, then E[P] ·∼ E[Q] if
and only if (z̃)(R|P) ·∼ (z̃)(R|Q), where [[E]]ỹ = (σ, z̃, R) and ỹ contains all the

names occurring in E, P , and Q. The translation is defined as follows:

[[]]ỹ = (∅, ∅,0)

[[E|S]]ỹ = (σ, z̃, Sσ|R) where [[E]]ỹ = (σ, z̃, R)

[[(x)E]]ỹ =

{
(σ[x �→ x′], z̃x, R) if x
∈ z̃

(σ[x �→ x′], (z̃, σ(x)), R) if x ∈ z̃

}
where [[E]]ỹ = (σ, z̃, R)
and x′
∈ {ỹ, z̃, ranσ}

We can prove that the contexts E and (z̃)(R|) are equivalent up to renaming by
σ. Since σ is by definition injective, the contexts have the same discriminating
power. Hence, so does the machine context Em = (|z1|)[], . . . (|zn|)[], x[R;]. �

Unsurprisingly, full abstraction does not also hold for the pi calculus: it is
known that pi calculus congruence is not closed with respect to substitution,
whereas explicit fusion contexts always allow substitution.

5 Co-location

We now refine the abstract machine with (co-)locations, to allow practical rea-
soning about efficiency. When two machines are running at the same physical
location, and share an address space, we draw their diagrams as physically ad-
jacent:

u

F

A

D

v

F ′

A′

D′

Some optimisations are possible in this case. First, it is possible to migrate or
deploy an arbitrarily large number of terms to an adjacent machine, in constant
time and without requiring any inter-location messages. Second, we can use
just a single thread to handle both channels. In the degenerate case, where all
machine’s channels are at the same location and handled by just a single thread,
the machine is essentially the same as Cardelli’s single-processor machine.

Co-location might be programmed with a located restriction command in the
calculus, written (x@y)P , to indicate that the new channel x should be created
physically adjacent to y. The deployment transition is

u

F

A

(x@y)P ;D

y

F ′

A′

D′

⇀

u

F

A

P{x′
/x};D

(|x′|)
−
−
−

y

F ′

A′

D′

(dep.new.at)

(To implement this efficiently, without sending any inter-location messages, we
assume that u is able to generate the fresh channel name x′ locally – even though
that x′ will reside outwith u. We could implement this by letting each channel
name incorporate a Globally Unique Identifier.)

Note that bound input, as found in the distributed version of the channel
machine, allows new names to be created at a location chosen at runtime. For
instance, in(x).(y@x)P will create the name y at the location of whichever name
substitutes x. By contrast, a fusion machine without bound input has no way to
chose locations at runtime. Therefore, bound input should be retained.

Co-location Used in Encoding Continuations

As discussed in Section 3, we ultimately imagine a machine which uses both con-
tinuations and fusions, and which uses them to implement the full pi calculus
and explicit fusion calculus with nested continuations. To avoid the cost of re-
peatedly transporting continuations, an optimising compiler can encode a term
with nested continuations into one without. This section describes our encoding
and discusses its efficiency.

Two different encodings have been given previously [13, 10]. The distinguish-
ing features of ours are that it is a strong congruence rather than just preserving
weak congruence, it is uniform, and it uses co-location for increased efficiency.
As an example, we encode the term u.(v | v) as

(v′@v, v′′@v)(u.(v v′ v′′) | v′ | v′′).

Note that the commands v′ and v′′ will necessarily remain idle until after u has
reacted. Then, since v′ and v′′ are co-located with v, it will take no inter-location
messages to migrate them to v.

Technically, we will relate terms P to triples of the form (x̃, φ, P ′). This triple
should be understood as the term (x̃)(φ|P ′) in which P ′ contains no nested
actions or unguarded explicit fusions, and the located restrictions x̃ are alpha-
renamable.

Definition 11 The function flat · from terms in the explicit fusion calculus to
terms in the explicit solos calculus is as follows. It makes use of an auxiliary
translation [[·]] from terms in the explicit fusion calculus to triples (x̃, φ, P ′),
where x̃ ranges over located restrictions and normal restrictions.

[[0]] = (∅, ∅, 0)
[[x y]] = (∅, x y, 0)

[[(z)P]] = (z x̃, φ, P ′) where [[P]]=(x̃, φ, P ′) and z
∈ x̃

[[u z̃.P]] =
(
u′@u, u u′, (x̃)(u′z̃.φ | P ′)

)
where [[P]]=(x̃, φ, P ′), x̃ ∩ z̃=∅, u′ fresh

[[u z̃.P]] =
(
u′@u, u u′, (x̃)(u′z̃.φ | P ′)

)
where [[P]]=(x̃, φ, P ′), x̃ ∩ z̃=∅, u′ fresh

[[P | Q]] = (x̃ ỹ, φ|ψ, P ′|Q′) where [[P]]=(x̃, φ, P ′), [[Q]]=(ỹ, ψ,Q′)
and x̃ ∩ ({ỹ} ∪ fn(ψ|Q′)) = ∅
and ỹ ∩ ({x̃} ∪ fn(φ|P ′)) = ∅

flatP = (x̃)(φ | P ′) where [[P]]=(x̃, φ, P ′)

Theorem 12 For any term P in the explicit fusion calculus, P ∼ flatP .

This encoding is only defined on terms without replication. However, the en-
coding is a congruence even within replicated contexts. For instance, !u x̃.P ∼
!u x̃.(flatP). Therefore, an optimising compiler can locally encode any part of a
program, without needing to encode it all. The proof is substantial; it may be
found in [18]. Other encodings of replication are also possible, in the style of [13]
or [9].

Theorem 13 If x[P] takes n inter-location messages to evolve to M ′ in the
fusion machine with continuations, then x[flatP] needs to take no more than 2n
inter-location messages in the machine without continuations to evolve to N ′,
such that M ′ ·∼ N ′.

Proof sketch. First, annotate the machine transitions from Definition 4 with 0 or
1 to indicate their cost. For instance, migration u[v: outx], v[] ⇀0 u[v:], v[outx]
takes no messages if u and v are co-located, and one message ⇀1 otherwise.
Then, define a costed simulation relation where P S Q implies that transitions
P →i P ′ or P ⇀i P ′ can be matched by transitions in Q of cost no greater
than 2i. Construct S= {(M,N)} where for each term P contained in a channel-
manager in M , then N contains flatP in any channel-manager. Then S is a
costed simulation. �

6 Conclusions

We have introduced the fusion machine, a distributed channel-based machine for
implementing several pi-like calculi such as the synchronous and asynchronous pi
calculi, the explicit fusion calculus and the explicit solos calculus. Our objective
was to make an easily-implementable machine that corresponds closely to such
pi-like calculi. This conjectured ease of implementation appears to be born out
in a prototype implementation by Wischik [19] and in projects by students at
the University of Bologna. With respect to the close correspondence with pi-
like calculi, we have proved abstraction results which are stronger than those
obtained for other implementations. On the contrary, the fusion calculus [12] and
the solos calculus [10] are awkward to implement in the fusion machine, even
though they are closely related to the explicit fusion calculus. This is because
they only allow reaction after a global search for restricted names.

We are currently working on a full distributed implementation for the fusion
machine, and on a fusion-based language incorporating transactions and failures.
We also plan to use some structure richer than just co-location, perhaps to model
firewalls or other ambient-like boundaries. We would also like to mention the
Xspresso project at Microsoft Redmond – a project to develop a pi-like language
with explicit fusions, and a corresponding distributed machine. The machine is
similar to the fusion machine presented in this paper, although it implements
fusions with an alternative to forwarder-trees – the hope is to make them more
scalable, and robust in the presence of failure.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991.

2. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

3. L. Cardelli. An implementation model of rendezvous communication. In Seminar
on Concurrency, LNCS 197:449–457, 1984.

4. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22–29. IEEE, Computer Society Press.

5. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In POPL’96, pages 372–385. ACM Press.

6. C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implemen-
tation of mobile ambients. In IFIP TCS 2000, LNCS 1872:348–364.

7. P. Gardner and L. Wischik. Explicit fusions. In MFCS 2000, LNCS 1893:373–382.
8. A. Giacalone, P. Mishra, and S. Prasad. FACILE: A symmetric integration of

concurrent and functional programming. International Journal of Parallel Pro-
gramming, 18(2):121–160, 1989.

9. C. Laneve, J. Parrow, and B. Victor. Solo diagrams. In TACS 2001,
LNCS 2215:127–144.

10. C. Laneve and B. Victor. Solos in concert. In ICALP’99, LNCS 1644:513–523.
11. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-

chronous pi-calculus. In POPL’97, pages 256–265. ACM Press.
12. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in

mobile processes. In LICS’98, pages 176–185. IEEE, Computer Society Press.
13. J. Parrow. Trios in concert. In Proof, Language and Interaction: Essays in Honour

of Robin Milner, pages 621–637. MIT Press, 2000.
14. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

15. P. Sewell. On implementations and semantics of a concurrent programming lan-
guage. In CONCUR’97, LNCS 1243:391–405.

16. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

17. D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1996.

18. L. Wischik. Explicit Fusions: Theory and Implementation. PhD thesis, Computer
Laboratory, University of Cambridge, 2001.

19. L. Wischik. Fusion machine prototype. http:// www.wischik.com/ lu/ research/
fusion-machine.

20. P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mobile
Computation. PhD thesis, Computer Laboratory, University of Cambridge, 2000.

