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Abstract. The growing “mashup” phenomenon involves websites using
scripting languages alongside data to create complex applications that
integrate data and code from many sources. This leads to problems with
reliability, as either sources change unaware that they have a depen-
dency of a remote service, or clients of a service use resources that are
accidentally exposed, or the dynamic nature of the scripting languages
cause unexpected interactions. We show how resource reasoning can be
used to construct provably fault free mashup programs, where services
deliberately expose a subset of their data and code, and clients ensure
the integration of components is sound.

1 Introduction

The World Wide Web has evolved, from a collection of static pages serving
scientific data, into a huge ecosystem where the boundary between “web page”
and “software application” has become indistinct. Originally a textual markup
system, the technologies underlying the web have been steadily augmented to
a point where software developers can expect their users to have web browsers
with powerful embedded scripting languages running on computers connected
by persistent high speed Internet links. Whilst these technologies were mostly
introduced to provide a more interactive user experience for the classical web,
they are now used to develop complex software, hosted entirely within the web
browser. For example, whereas 10 years ago one would expect an e-mail user to
run special e-mail applications on their local computer, today many opt to visit
a web-based e-mail system which often delivers a user experience comparable or
superior to the locally installed software.

The complexity of building these applications is significant. Not only must
developers write their desired functionality, they must work with a technology
stack that was not originally designed to support such rich application develop-
ment. Analogous to the use of libraries in traditional development, web devel-
opers lacking the data, expertise or capacity to implement a complete feature
often turn to third party sources to provide it. The loosely bound nature of web
technologies allows these resource integrations to occur at runtime, mediated
by scripts running in the web browser. This technique is known as Client Side
Mashups (from now, just “mashups”), as many previously separate sources of
data and code have been “mashed together” to create a new whole.



One natural mashup example is the customisation of a geographical map with
additional features. Such a map requires a significant database of information
coupled with expertise in the rendering of map user interfaces. Many developers
wish to convey geographical data, such as the location of their business, but can-
not develop the mapping system themselves. They turn to map service providers
(such as Google or Microsoft), who provide data and code which can be easily
integrated into their project and extended with private customisations.

Programming techniques for mashups have evolved almost accidentally from
developmental trends within the web engineering community. As such, there is
no formal definition but there are common techniques and, inevitably, common
problems. The combination of highly structured data and programming lan-
guages with minimal safety properties leads to accidental dependencies, where a
client uses structure or code the service intended to keep as a private implemen-
tation detail (and hence breaks when a change is made). Additionally, issues of
combining rapidly changing code from disparate development teams often leads
to expectation mismatches, rendering the runtime code integration of a mashup
unreliable; we call this the fault free integration problem. In this paper, we show
how resource reasoning can be used to mitigate these problems, by allowing ser-
vices and clients to construct formal proofs of their fault freedom from a set of
component specifications.

Web Data and Programming Language We introduce an abstract data
structure which describes locally stored web data. It is XML-like data which has
been parsed by DOM 1, and thus can be viewed as an in-place memory store
manipulated by our web programs. In addition to this DOM data stored locally,
a web program may access data and code stored elsewhere on the web, identified
by a URI. In practice, this data is represented in text files: JavaScript scripts or
XML documents which may have embedded code in SCRIPT tags. We do not
specify an XML or JavaScript parser, instead working with a pre-parsed web,
an interface which may be provided by other layers in the software stack.

We introduce a “Reasonable Web” programming language consisting of a
fragment of DOM for manipulating our web data, a function system for sharing
named blocks of code in a dynamic fashion, and two commands for accessing
external data and code. In [GSWZ08b], Gardner, Smith et al. developed Feath-
erweight DOM2, which captured the essence of DOM. Here, we provide a prag-
matic fragment of DOM Core Level 1, which identifies the important commands
used by mashup programmers.

We aim for a simple language, but still one that engineers developing real web
applications would recognise. As such, we take some syntactic and semantic cues
from JavaScript (the de facto language for web scripting). Our function system
captures the highly dynamic nature of functions in procedural style JavaScript,
where functions exist in a shared global namespace and can be replaced at any
point in execution by an alternative (not necessarily related) implementation.

1 The Document Object Model, A W3C Standard introduced in [dom]
2 In [GSWZ08b,GSWZ08a], called Minimal DOM.



This unfortunate language feature can lead to problems in mashup situations,
which we begin to tame with our reasoning. Whereas browsers provide many
methods for the integration of remote data and code, we abstract all the con-
cepts into two general “web fetch” commands, which we model after the AJAX3

concept.
For an implementation of our language, see [?]. This implementation is writ-

ten in JavaScript, will run in most modern browsers, and can be hosted inside
standard web pages entirely transparently. This system has been used, both to
test the practical utility of our language choices as well as to develop non-trivial
applications which we analyse with our reasoning.

Resource Reasoning We provide a reasoning system for the development and
verification of mashups using our “Reasonable Web” programming language. In
particular, we use the resource reasoning introduced by O’Hearn [IO01], which is
based on an analysis of a program’s use of resource: for example, the heap when
using Separation Logic to reason about C programs [Rey02a], a tree structure
when using Context Logic to reason about tree update [CGZ05], and here we
adapt Gardner, Smith et al.’s resource reasoning for Featherweight DOM to
reason about our “Reasonable Web” programs.

We show how the local style of specifications provided by resource reasoning
allows us to describe both pure data, and code that acts on smaller segments
of that data. The ability to describe XML style data, and the analysis of code
footprints allows us to see precise effects of code and data on the larger environ-
ment, helping to ameliorate accidental dependencies. Our approach is designed
to facilitate component reasoning, such that the client need not consider any-
thing more than the published specifications of a service. Combining this with
extensions of earlier fault avoidance work, we develop solutions to the fault free
integration problem.

Example We demonstrate our technique via the development and verification
of a substantial example, geographical maps. As mentioned, due to the com-
plexity of implementation and difficulty of sourcing the data, they have become
a commonly used mashup which provides interesting interaction between the
service code providing the map, and the client who will augment the default
data with their domain specific knowledge. Our reasoning allows our service to
provide both structured map data and code that manipulates it, along with spec-
ifications. These specifications show the service is not exposing more than was
intended, and will be used by our client to prove it is fault free.

2 Web Data Structures

In order to reason about web programming, we introduce abstract data struc-
tures to represent the XML-like data that web programs manipulate. First we

3 Asynchronous JavaScript and XML, a technique allowing JavaScript code to fetch
XML (or indeed, other data) from remote sites



define a structure to represent DOM data in the local web browser. The root of
this structure is a grove g ∈ G, which is equivalent to the object heap in an object
oriented DOM implementation. A grove may contain the DOM representations
of various XML structure: elements ele ∈ ELE; attributes attr ∈ ATTR; doc-
uments doc ∈ DOC and text nodes txt ∈ TXT. We also have intermediate
structures: groves document-elements de ∈ DE; element-attributes ea ∈ EA;
element forests ef ∈ EF; attribute forests af ∈ AF; strings s ∈ S and characters
c ∈ C . For each of these structures, denoted d ∈ D we may write d:D to say
that d is of type D. This data structure is given in Figure 1.

groves g ::= <doc>G | <ele>G | <attr>G | <txt>G | ∅G | g⊕G g

documents doc ::= “#document”id [< ∅EA ]>null
null
9 [de]fidnull

document-element de ::= <ele>DE | ∅DE

elements ele ::= sid [< ea ]>aid
idref
1 [ef]fidnull where ‘#’ is not in s

element attributes ea ::= <attr>EA | ∅EA | ea⊗EA ea where the name of each attr is sibling-unique
element forests ef ::= <ele>EF | <txt>EF | ∅EF | ef⊗EF ef

attributes attr ::= <<sid 7→ [af]fid>>
idref where ‘#’ is not in s

attribute forests af ::= <txt>AF | ∅AF | af⊗AF af

text txt ::= “#text”id [< ∅EA ]>null
idref
3 [∅EF]fids

strings s ::= <c>S | ∅S | s⊗S s
characters c ::= ‘a’ | ‘b’ | ‘c’ . . .

where id,fid, idref,aid ∈ ID and id,fid,aid must be unique across the browser’s
grove. ⊗D is associative with unit ∅D; ⊕D is associative and commutative with

unit ∅D.

Fig. 1. Web Browser DOM Structure

Node structures are written in the form

nodenameid [< attributes ]>aid
owner
type [children]fidvalue

where nodename is the name of the node (which may be a special string such as
“#text”), attributes is the NamedNodeMap of this node’s attributes, children
is the NodeList of this node’s children and value is either the value of this node
if applicable, or null. The values id,aid,fid are ID values, which may be thought
of as heap locations in an object oriented DOM implementation. They identify
the node, the node’s attribute map (which may be null) and the node’s child list
respectively. If the node in question is a document then owner null. Otherwise
it is a reference to the ID of this node’s owner document. The type of this node
is given by type, represented in the DOM specification as an integer between
1 and 12. In this work we deal only with nodes of type element, attribute, text
node and document – types 1,2,3 and 9 respectively.

Attribute nodes behave sufficiently differently from all other DOM nodes that
we give them their own unique syntax: <<nameid 7→ [children]fid>>

owner
where



name, children, id,fid,owner are as before. Attributes do not have attributes
of their own, so there is no syntax for them. The type of an attribute is always
“2”, and so is not written. The value of an attribute is the concatenation of the
values of its children, and so must be calculated at run time.

As a notational convenience we will omit type annotations such as the S in
⊗S when it is clear from the context, and we will use the shorthand “xyz” to
refer to the string <‘x’>S ⊗<‘y’>S ⊗<‘z’>S.

For example, we can represent the XML:

<head>

<script>n = createElement(document, "body");</script>

<title>An Empty Web Page</title>

</head>

using the DOM structure:

<

“head”id1 [< ∅EA ]>aid1
doc
1 [

<“script”id2 [< ∅ ]>aid2
doc
1 [

<“#text”id4 [< ∅EA ]>null
doc
3 [∅]fid4“n = createDocument(document, “body”);”>

]fid2null>
⊗
<“title”id3 [< ∅ ]>aid3

doc
1 [

<“#text”id5 [< ∅EA ]>null
doc
3 [∅]fid5“An Empty Web Page”>

]fid3null>]fid1null

>G

Since this is DOM data, the code in the script node is not directly executable.
From the point of view of a DOM parser, it is just a string. We do allow the
dynamic execution of remote script code in our programming language, as dis-
cussed in Section 3. Indeed, this use case is one motivation for the next data
structure we introduce.

In addition to the DOM data stored locally, a web program may access data
and code stored elsewhere on the web, identified by a uri ∈ URI. We do not
specify how the XML or JavaScript is transfered and parsed. Instead we work
with a pre-parsed web, an interface which may be provided by other layers in the
software stack. This pre-parsed web structure is given in Figure 2. The parser is
a partial function π from the global set of URIs, URI, to web resources which
may contain data, program code, or both. Note in particular that ID values in
any parsed document must still be unique with respect to the browser’s grove.
We assume this property is maintained by the π function.

Note that we use ⊗ rather than ⊕ to preserve the order of the element at-
tributes in our model. The DOM specification deals with the preservation of
the order of attributes when it describes the structure that contains them – the
NamedNodeMap. The DOM specification says “NamedNodeMaps are not main-
tained in any particular order.”, but it also says “ Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal but . . . this
does not imply that the DOM specifies an order to these Nodes.” These sen-
tences are hard to reconcile, so our choice in this matter is guided by the text of
the pre-release draft of DOM Core Level 1, which said: “ DOM implementations



Parsed Resource resource ::= (data, code)
Parsed Data data ::= doc | ∅
Parsed Code code ::= C | ∅
Parser π : URI ⇀ resource

Where C is a syntactically valid program as per the grammar in section 3 and
doc ∈ DOC.

Fig. 2. Data Structure Provided by Parser

should, when possible, preserve the ordering of objects in a NamedNodeMap in
case the author of the source document assigned some meaning to this ordering
that is not defined in the DOM, XML or HTML specifications.”

3 Language

We now introduce our “Reasonable Web” programming language. We view the
work as a web scripting language, in the vein of JavaScript. The language consists
of standard imperative features (expressions, conditionals, while loops, variable
assignment and statement sequencing), augmented with: DOM commands to
manipulate our tree structured heap; commands to work with non-local data
and code; and a function system allowing the encapsulation and export of code
fragments in a highly dynamic fashion. We give the grammar of our language
in figures 3, 4 and 5. In the grammar, we use the convention that lower case
strings refer to literals, whilst leading upper case letters name productions. We
make explicit our expectation of brackets in the syntax by quoting, and use
unmentioned rules for FName, Id, Str, Int, Bool and Val to refer to the set of
valid function names, identifier, string, integer, boolean and all variable names
respectively.

Expressions (Figure 3) have standard semantics. In line with practical lan-
guages, we provide a set of operations over booleans and so inherit the notation
that == is equality, and != is inequality. We distinguish four types of variable:
Our Str, Int and Bool types are standard, whilst IDs store heap identifiers or
null.

Within the language (Figure 4), we distinguish the set of statements allowed
in functions from those allowed outside, breaking the language into two natural
scopes. We refer to the outer scope as “global”, and the scope within a function as
“local”. Variables introduced at the global scope are bound everywhere, including
within functions. Function bodies may declare “local” variables with the var

command that are local to the body code, and fresh at each invocation. Note we
syntactically ensure functions are introduced only at global scope.



IdExpr ::= null | Id
StrExpr ::= null | empty | c | Str | StrExpr . StrExpr
IntExpr ::= n | Int | IntExpr + IntExpr | IntExpr - IntExpr
BoolExpr ::= false | true | Bool | BoolExpr == BoolExpr | IdExpr == IdExpr

| StrExpr == StrExpr | IntExpr == IntExpr | IntExpr > IntExpr
| IntExpr < IntExpr | IntExpr >= IntExpr | IntExpr <= IntExpr
| BoolExpr != BoolExpr | IntExpr != IntExpr | StrExpr != StrExpr
| IdExpr != IdExpr

Expression ::= IdExpr | StrExpr | IntExpr | BoolExpr

Fig. 3. Grammar for expressions

FStatement ::=
Id = IdExpr;

| Str = StrExpr;
| Int = IntExpr;
| Bool = BoolExpr;
| Val = FName ‘(’ Expression?

(, Expression)* ‘)’;
| if ‘(’ BoolExpr ‘)’ then { FStatement* }

else { FStatement* };
| while ‘(’ BoolExpr ‘)’ { FStatement* };
| skip;
| Command;

Local ::= var Name;
Return ::= return Expression;

Program ::=
FStatement

| function FName (Val1, ..., Valn)
{

Local*
FStatement*
Return

};
| Program ; Program

Fig. 4. Grammar for language features

Command ::=
Id = createElement(Id, Str)

| Id = createTextNode(Id, Str)
| Id = createAttribute(Id, Str)
| Str = getNodeName(Id)
| Str = getNodeValue(Id)
| Int = getNodeType(Id)
| Id = getParentNode(Id)
| Id = getChildNodes(Id)
| Id = getAttributes(Id)
| Id = getOwnerDocument(Id)
| Id = appendChild(Id, Id)
| Id = removeChild(Id, Id)
| Id = item(Id, Int)
| Id = setNamedItem(Id, Id)
| Id = removedNamedItem(Id, Str)
| str = substringData(Id, Int, Int)
| deleteData(Id, Int, Int)
| appendData(Id, Str)

Fig. 5. Grammar for commands



3.1 DOM Library

We provide a set of commands, acting as the interface to our tree structured
heap. It is designed to conform to a large subset of W3C DOM specification.
We model only the commands required to implement the essential elements of
standard mashup engineering practice, and so consider only the node types of
Document, Element, Text and Attr.

The standard DOM API gives a natural object interpretation of the tree
structure within both our heap and web. For simplicity of presentation, we adopt
a “flattened” view of the DOM APIs. Methods such as p.appendChild(c) be-
come commands of the form appendChild(p, c); likewise, object field access
n.value become setNodeValue(n) and getNodeValue(n). The full command
set is given in Figure 5.

As with previous work ([GSWZ08a],[GSWZ08b]), we formally and composi-
tionally specify a subset of the commands we wish to use, and can implement
remaining commands in terms of that subset. Note there are no destructive com-
mands in the language; even removing a node will merely place it at a new place
in the grove. We thus naturally consider the language garbage collected. We take
the view that documents originate from within the web, and so provide no spe-
cific commands for document creation. We consider the behaviours of our DOM
manipulating commands in small groups, and use realistic variable names to aid
presentation.

node = createElement(doc, nameStr)

node = createTextNode(doc, dataStr)

node = createAttribute(doc, nameStr)

These commands create new nodes within the document doc. They introduce
respectively, a new element with the given nameStr, a new text node with the
given dataStr, or a new attribute with the given nameStr, each recording the
result in node. They fault if doc does not identify a document node, or if create-
Element or createAttribute is given a nameStr containing the ‘#’ character.

str = getNodeName(node) val = getNodeValue(node)

int = getNodeType(node)

These commands obtain properties of nodes within the grove. They obtain
respectively, the name, value and type of the given node node, recording the
result in the appropriate variable. They fault if node does not identify a valid
node.

node = getParentNode(node) nodes = getChildNodes(node)

nodes = getAttributes(node) doc = getOwnerDocument(node)

These commands obtain nodes spatially related to node, assigning the result
to the appropriate variable. Respectively, they get the parent node (or null if
it has none), child node list, attribute set (or null if absent), and the owner



document (or null if node refers to a document node). They fault if node does
not identify a valid node.

node = appendChild(parentNode, newChildNode)

This command moves the tree newChildNode to the end of the child list
of parentNode. It faults if parentNode or newChildNode do not identify valid
nodes, or if newChildNode is an ancestor of parentNode. The command also
faults if appending the node would break the following tree structure invariants:
Document nodes may have at most one child, which must be an element; Text
nodes may have no children; Document nodes cannot be the children of any
node; Attribute nodes may have only text nodes as children.

node = removeChild(parentNode, childNode)

This command moves the node identified by childNode from the child list of
parentNode to the root of the grove. It faults if either parentNode or childNode
do not identify nodes, or if childNode is not in the child list of parentNode.

node = item(nodes, int)

The item command obtains the intth element from either the attributes or
forest represented by nodes. If there are fewer than int elements in the structure,
or if int < 0, it returns null. The command faults if nodes does not identify
either attributes or a forest.

node = setNamedItem(map, newNode)

node = removedNamedItem(map, nameStr)

These commands represent the NamedNodeMap interface of DOM. The first
adds the node given by newNode as the last entry in map, using the name of the
newNode node. If this replaces a given node already stored with that name, the
replaced node identifier is stored in node (otherwise, null is stored). The second
removes the item with the given nameStr, storing the removed node identifier in
node. They both fault if map does not refer to a valid map structure, if nameStr is
null, if newNode does not refer to a valid element or text node, or if one attempts
to use removedNamedItem on a nameStr that is not present in map.

str = substringData(node, offsetInt, countInt)

This command assigns to str the substring of the text node node starting
at character index offsetInt with length countInt. If offsetInt + countInt

exceeds the string length, all characters to the string end are returned. This
command faults if node does not identify a text node, offsetInt or countInt

are negative, or offset exceeds the string length.

deleteData(node, offsetInt, countInt)

This command is similar to substringData, but rather than returning the
indexed string, it removes it from the value of the node.



appendData(node, str)

The command appends the string str to the end of the string contained in
node, faulting if node does not identify a text node.

3.2 Web

The essence of a mashup is the acquisition of data and code from a third party
source, and the integration of the results into a new whole. Whereas HTML
and JavaScript provide several mechanisms to achieve this, we abstract into
two commands for interacting with these external resources. We are aiming to
capture the spirit of the AJAX concept, which provides JavaScript with the
ability to download content from a given URI. Whereas in JavaScript, the user
is then responsible for interpreting the result, we give only two possibilities with
our commands.

x = fetchDocument(uri)

Enters into the grove the document data parsed from the given uri, and
assigns the identifier of the added document node to x. Recall we assume that
all identifiers from the parser are fresh to our local environment. It faults if the
uri is not available in the parser.

runScript(uri)

This command runs the script code associated with the given uri within the
environment of the code that called it. As such, all global name and function
bindings that have been made are exposed to the remote script, and any alter-
ations or additions it makes will be visible after the execution. This command
will fault if either the given uri does not exist, or if the execution of the script
code associated with uri faults.

Our “web” is considered as a mapping of URIs to pre-parsed document data
and code. The notion that these sources are parsed removes issues of well-formed
data and transfer failure from both the code and data; all references to an existing
URL will certainly return well-formed code and data. It is valid to make repeated
calls to both commands on the same URI. The result will be many copies of the
same document, or repeated attempts at execution of the same script.

3.3 Functions

An important characteristic of a mashup service is that it provides not only
data, but also some “behaviour” associated with that data. For example, a web
based e-mail client doesn’t simply present the user with a single large document
containing all his e-mail. It provides the e-mail data, and also a way for the user
to navigate that data, reply to e-mails and so on.

Our language’s function mechanism not only provides a way for programmers
to partition their code into manageable chunks, but also a way for service authors



to export behaviour to a client service. For example, a web based e-mail client
might export a function “reply” which takes the ID of a node containing e-mail
data, and alters the local DOM to provide a reply dialog to the user.

To make it possible for functions to be exported in this manner, their be-
haviour is defined dynamically. The set of functions available to a program at a
given time is a property of the program state, not a static property of the pro-
gram. A program which refers to function names with no obvious lexical meaning
may nonetheless be entirely correct. For example, the function in question may
be introduced at run time from a remote source by a call to runScript.

Functions are entries in a function table FT, a partial function mapping
names to a tuple consisting of local variable names, formal parameter names and
an associated code block called the body. The function table may be updated
by the function introduction command function f(p1, ..., pm) {...} . If
a function of name f does not already exist in the function table, it will be
introduced. If it does already exist, it will be overwritten. Functions must return
a single value as the last statement of the body using the return statement
and may be mutually recursive.

To simplify this presentation, we assume that the sets of local variable names
and parameter names are disjoint from the set of global variable names and we
preclude assignment to parameters. This last restriction is no real constraint, as
users can always introduce a local variable and assign the parameter value to
that.

3.4 Operational semantics

The behaviour of the language is described formally by an operational semantics.
We use an evaluation relation  , relating tuples of form s,FT,g, C to either
terminal states s,FT,g or fault, where s is a store, g a grove, FT the function
table, and C is a program. A store is a partial function from variable names to
values, and we write JEKs for the evaluation of the expression E in store s. The
function table is a partial function from function names to triples of the form
(C,pm, l

n
). This triple represents function body code, parameter names and local

variable names. Groves are defined as in the data structure section. We often
write the list x1, ..., xr of distinct names as xr, and write {xr} for the set
of the list elements.

The full semantics are given in B. In defining the operational semantics
we found it convenient to make use of the context structure we define here
in Section 4. Here, we give only the notable semantics for the commands fetch-
Document and runScript, and the interesting rules from the function system.

π(JuriKs) = (#documentid [< ∅EA ]>null
null
9 [f]fidnull, code) ∧

g′ ≡ g⊕<#documentid [< ∅EA ]>null
null
9 [f]fidnull>G

s,FT,g, n := fetchDocument(uri) s[n � id],FT,g′

This states that the given uri expression, when evaluated in the current
store, identifies at least a parsed document structure. The new grove is given by



appending the document to the existing grove, and the store is updated so that
the variable n reflects the identifier of the new document.

π(JuriKs) = (data, code) ∧ code 6= ∅ ∧ s,FT,g, code s′,FT′,g′

s,FT,g, runScript(uri) s′,FT′,g′

As in fetchDocument, this shows we can parse the given uri into some data
we which we ignore, and some non-empty code. The code is executed in the same
environment as that used to call the runScript command, and may produce an
entirely new store, function table and grove. If the execution of the script faults,
the semantic is undefined (and the fault condition propagates by rules not given
here).

s,FT,g,
function f(p1, ..., pm) {
local l1; ... local ln; C }  s,FT[f � (C,pm, ln)],g

Function introduction simply updates the function table, mapping the new
function name to the code along with the parameter and local name vectors. If
an existing function in the function table takes that value, it is overwritten (even
if it has different parameter names or arity).

FT(f) = (C,pm, l
n
)

savedParami = s(pi) savedLocalj = s(lj)

[s|pi � JeiKs]\{ln},FT,g, C s′,FT′,g′

1 ≤ i ≤ m, 1 ≤ j ≤ n
s′′ = [s′|pi, lj � savedParami, savedLocalj , v � s′(ρ)]

s,FT,g, v := f(e1, . . . , en) s′′,FT′,g′

Function call requires that the requested function exists within the function
table. The parameter names and local variable names have their current values
stored, the parameter expressions are evaluated, and a new store is constructed
where the parameter names map to the results of the parameter expression
evaluation, and the names of the local variables are made undefined. The function
code is then executed, resulting in a new store, function table and grove. The
new store is updated to remap the local names to their original values, and to
assign the return value (stored in the reserved variable ρ).

4 Assertion Language

In order to reason about programmes written in the web programming language,
we define an assertion language, with which we can assert properties of the state
of the local browser, and the web it accesses. We base our work on the assertion
language of [GSWZ08b], itself derived from Context Logic.

With Context Logic, the fundamental idea is that, in order to provide re-
source reasoning about tree update, we must reason about both trees and the



interim contexts. Hence, central to our assertion language is the concept of a con-
text. As introduced in [CGZ05] and used to reason about DOM in [GSWZ08a]
and [GSWZ08b], a context may be viewed as a tree with a hole in it. If a tree
is placed into the hole, as long as there is no clash of identifiers, the result is
a larger, valid tree. In our assertion language, we will find contexts useful as a
way of splitting the DOM structure into disjoint parts which may be described
separately. For example, the portion of the DOM structure that a command
alters and the portion that is left unchanged. We give our context structure in
Figure 6, following the shape of our data structure (Figure 1).

As before, we omit type annotations such as the S in ⊗S when it is clear
from the context. Just as data structure elements were divided into type sets
G,DOC,DE,ELE,EA,EF,ATTR,AF,TXT,S and C, contexts are divided
into sets CG,CDOC,CDE,CELE,CEA,CEF,CATTR,CAF,CTXT,CS and
CC. In the case of contexts however, we wish our types to distinguish not only
between contexts of a given outer shape, but also contexts containing a partic-
ular sort of hole. A context type judgement then, looks like c:D1�D2, which
signifies a context containing a hole −D1

such that if a datum of type D1 is put
in that hole, the resulting datum is of type D2.

cg ::= <cdoc>G | <cele>G | <cattr>G | <ctxt>G | −G | cg⊕G g

cdoc ::= “#document”id [< ∅EA ]>null
null
9 [cde]fidnull | −DOC

cde ::= <cele>DE | −DE

cele ::= sid [< ea ]>aid
idref
1 [cef]fidnull | where ‘#’ 6∈ s

sid [< cea ]>aid
idref
1 [ef]fidnull | −ELE

cea ::= <cattr>EA | −EA | cea⊗EA ea | ea⊗EA cea where each attr name is sibling-unique
cef ::= <cele>EF | <ctxt>EF | −EF | cef⊗EF ef | ef⊗EF cef

cattr ::= <<sid 7→ [caf]fid>>
idref | −ATTR where ‘#’ 6∈ s

caf ::= <ctxt>AF | −AF | caf⊗AF af | af⊗AF caf

ctxt ::= “#text”id [< ∅EA ]>null
idref
3 [∅TF]fidcs | −TXT

cs ::= <cc>S | −S | cs⊗S s | s⊗S cs
cc ::= −C

where id,fid, idref,aid ∈ ID; id,fid,aid are unique ; ⊗D is associative and ⊕D is
associative and commutative with unit ∅D as before.

Fig. 6. Local DOM Contexts

To formalise putting a datum into a context hole to obtain a new datum, we
introduce a partial application function ap:((D1�D2)×D1) ⇀ D2 in Figure 7.
Note that the application function is only defined for arguments which would
result in a valid data structure, maintaining the uniqueness of all internal ids.
We use ap(cd,d1)↓ to mean “ap is defined for arguments cd,d1”.

4.1 Formulae of the logic

Context Logic consists of standard formulae constructed from the connectives of
first-order logic, variables, expressions tests and quantification over variables. In
addition, it has general structural formulae, and specific formulae applicable to



ap(−D1
,d1) , d1

ap(sid [< ea ]>aidn
irn
tp [con]fidnull,d1) , sid [< ea ]>aidn

irn
tp [ap(con,d1)]fidnull

ap(sid [< cea ]>aid
idref
1 [ef]fidnull,d1) , sid [< ap(cea,d1) ]>aid

idref
1 [ef]fidnull

ap(<con>D2
,d1) , <ap(con,d1)>D2

ap(con⊕ d2,d1) , ap(con,d1)⊕ d2

ap(con⊗ d2,d1) , ap(con,d1)⊗ d2

ap(d2 ⊗ con,d1) , d2 ⊗ ap(con,d1)

ap(<<sid 7→ [con]fid>>
idref,d1) , <<sid 7→ [ap(con,d1)]fid>>

idref

ap(#textid [< ∅EA ]>null
idref
3 [∅TF]fidcs,d1) , #textid [< ∅EA ]>null

idref
3 [∅TF]fidap(cs,d1)

where:
d1:D1, d2:D2, con:(D1�D3), ea:EA, ef:EF, f:D4 tp ∈ {1, 3, 9}, s ∈ S,

id,fid, idref, aid ∈ ID, aidn, irn ∈ ID ∪ {null}

Fig. 7. The Application Function

our specific data structure. The structural formulae are constructed from an ap-
plication connective for analysing context application, and its two corresponding
right adjoints.

1. the application formulae P ◦D1
P1 describes data of e.g. type D2, which can

be split into a context of type D1 → D2 satisfying P , and disjoint sub-data
of type D1 satisfying P1. The type information for the context hole cannot
be derived from the given data, and so is annotated on the connective.

2. one right adjoint, P ◦−D2 P2 describes data of e.g. type D1 which, whenever
it is successfully placed in a context of type D1 → D2 satisfying P , results
in data of type D2 satisfying P2. Again, the adjoint is annotated with type
information for the resulting data, which cannot be determined from the
hole type.

3. the right adjoint P1 −◦ P2 describes a context of e.g. type D1 → D2 which,
whenever data of type D1 satisfying P1 is successfully inserted into it, results
in data of type D2 satisfying P2. In this case, the type can be inferred from
the type of the given data.

In our assertion language, the formulae categories break down as follows.

P ::= P ⇒ P | falseD | falseD1�D2
Boolean formulae

P ◦D P | P ◦−D2
P | P −◦ P structural formulae

. . . (See Fig 8) . . . DOM-specific formulae
vare | ExpV = ExpV expression equality
Int=|f| length equality
∃var. P quantification
γ(f) function existence
ωD(uri) Web data existence
ωC(uri) Web code existence

where vare denotes a logical variable in Varenv, V∈{Id,S,Z,B}, var ∈ Varenv∪
Varstore, f:F, F ∈ {DE,EA,EF,AF,S}



P ::= . . . | −D | Pid [< P ]>aidn
irn

tp [P ]fidnull |
“#text”id [< ∅EA ]>null

idref

3 [∅TF]fidP | c |
P ⊗D P | P ⊕D P | ∅D | <P>D |
<<Pid 7→ [P ]fid>>

Fig. 8. DOM Specific Formulae

The type annotations on the formulae enable us to define a simple typing
relation P : A, where A is a data type D or a context type D1�D2, by induction
on the structure of formula P . The Boolean formulae and quantified formulae
inherit their types from the subformulae. The equalities satisfy arbitrary A, since
they are really outside the typing system as they test the store rather than the
data and context structures. We give the cases for the structural formulae and
for the DOM-specific formulae for text nodes, and element forests; the cases for
the other DOM-specific formulae are similar:

(P1 ◦D1
P2):D2 ⇔ P1:D1� D2 ∧ P2:D1

(P1 ◦−D2
P2):D1 ⇔ P1:D1�D 2 ∧ P2:D2

(P1 −◦ P2):D1�D2 ⇔ P1:D1 ∧ P2:D2

−TXT:TXT�TXT

#textid [< ∅EA ]>null
idref
3 [∅TF]fidP :TXT⇔ P :S

#textid [< ∅EA ]>null
idref
3 [∅TF]fidP :D�TXT⇔ P :D�S

(P1 ⊗EF P2):EF⇔ P1:EF ∧ P2: TEF
(P1 ⊗EF P2):D�EF⇔ (P1:D�EF ∧ P2:EF) ∨ (P1:EF ∧ P2:D�EF)

∅EF:EF
<P>EF:EF⇔ P :ELE ∨ P :TXT

<P>EF:D�EF⇔ P :D�ELE ∨ P :D�TXT

The formulae #textid [< ∅EA ]>null
idref
3 [∅TF]fidP and <P>EF have two typ-

ings, depending on whether they describe trees or tree contexts. P1 ⊗EF P2 also
has the two typings; notice that the context case has two options for typing
subformulae, depending on which one describes the forest context.

4.2 Satisfaction

The meaning of formulae written in our assertion language is given by a satis-
faction relation. Recall that our programming language uses identifier, string,
integer and boolean variables. For our resource reasoning (Section 5), we will
also require data and context variables. Our assertion language therefore uses a
logical environment e as well as the store s. The logical environment assigns val-
ues for data variables in VarD and context variables VarD1→D2

. However, there
are no contexts of some types – for example G�S. We therefore assume the
corresponding variable sets are empty. To avoid ambiguity with string variables
in the program store, the environment variable set of type S is also empty.



The satisfaction relation e, s,FT,a |=A P is defined on environment e, vari-
able store s, function table FT, a datum or context a of type A, and formula P
of type A by induction on P . The type A is a data or context type D or D1�D2

and cd is a context of type D1�D2. Satisfaction for the Boolean formulae is
given in Fig 9, structural formulae in Fig 10, for our data structure formulae in
Fig 11, and the remainder in Fig 12.

e, s,FT, a |=A P ⇒ P ′ ⇐⇒ e, s,FT, a |=A P ⇒ e, s,FT, a |=A P
′

e, s,FT,d |=D falseD never
e, s,FT, cd |=D1�D2

falseD1�D2
textnever

Fig. 9. Satisfaction Relation for Boolean Formulae

e, s,FT,d2 |=D2
P1 ◦D1

P2 ⇐⇒ ∃cd:(D1�D2),d1:D1.d2 = ap(cd,d1)
∧ e, s,FT, cd |=D1�D2

P1 ∧ e, s,FT,d1 |=D1
P2

e, s,FT,d1 |=D1
P1 ◦−D2

P2 ⇐⇒ ∀cd:(D1�D2). (e, s,FT, cd |=D1�D2
P1 ∧

ap(cd,d1)↓)⇒ e, s,FT, ap(cd,d1) |=D2
P2

e, s,FT, cd2|=D1�D2
P1 −◦ P2 ⇐⇒ ∀d1:D1. e, s,FT,d1 |=D1

P1 ∧ ap(cd2,d1)↓
⇒ e, s,FT, ap(cd2,d1) |=D2

P2

Fig. 10. Satisfaction Relation for Structural Formulae

The standard classical connectives ‘true’, ∧, ∨, ¬, ∀ are all derivable. We
introduce notation for expressing ‘somewhere, potentially deep down’ ♦D1�D2P
and ‘everywhere’ �D1�D2P , where D1,D2 ∈ {T,F,G,S}. Similarly, we define
the related concept of ‘somewhere at this forest-level’ ♦⊗P : and ‘everywhere at
this forest-level’ �⊗P : We also introduce notation for saying ‘any node’ trueNode:

♦D1�D2P , trueD1�D2 ◦D1 P

♦⊗P , (trueD ⊗D −D ⊗D trueD) ◦D P
�D1�D2P , ¬♦D1�D2¬P
�⊗P , ¬♦⊗¬P
trueNode , trueELE ∨ trueDOC ∨ trueTXT ∨ trueATTR

5 Resource Reasoning

We now introduce our reasoning system, based upon the resource reasoning of
O’Hearn [IO01]. We seek to reason in a component wise fashion, so that service
authors can prove their code independently of clients, who themselves need no
access to the service code to ensure validity. We use the concept of documented
specifications to achieve this. Parties prove their work in the context of a set of



e, s,FT, cd |=D�D −D ⇐⇒ cd ≡ −D

e, s,FT,d |=D Pid [< P ′ ]>aidn
irn
tp [P ′′]fidnull ⇐⇒

∃s:S, ea:EA,d′′:D′′.

(d ≡ sJidKs [< ea ]>JaidnKs
JirnKs
JtpKs

[d′′]JfidKsnull) ∧
e, s,FT, s |=S P ∧ e, s,FT, ea |=EA P

′ ∧
e, s,FT,d′′ |=′′D P

′′

e, s,FT, cd |=D1�D2
Pid [< P ′ ]>aidn

irn
tp [P ′′]fidnull ⇐⇒

∃s:S, c:D1�EA,d”:D”.

(cd ≡ sJidKs [< c ]>JaidnKs
JirnKs
JtpKs

[d”]JfidKsnull) ∧
e, s,FT, s |=S P ∧ e, s,FT, c |=D1�EA P

′ ∧
e, s,FT,d” |=D” P

′′



∨


∃s:S, ea:EA, c:D1�D”.

(cd ≡ sJidKs [< ea ]>JaidnKs
JirnKs
JtpKs

[c]JfidKsnull) ∧
e, s,FT, s |=S P ∧ e, s,FT, ea |=EA P

′ ∧
e, s,FT, c |=D1�D” P

′′


e, s,FT,d |=D “#text”id [< ∅EA ]>null

idref
3 [∅TF]fidP ⇐⇒

∃s:S.

(d ≡ “#text”JidKs [< ∅EA ]>null
JidrefKs
3 [∅TF]JfidKss ∧

e, s,FT, s |=S P )

e, s,FT, cd |=D1�D2
“#text”JidKs [< ∅EA ]>null

JidrefKs
3 [∅TF]JfidKsP ⇐⇒

∃c:D1�S.

(cd ≡ “#text”JidKs [< ∅EA ]>null
JidrefKs
3 [∅TF]JfidKsc ∧

e, s,FT, c |=D1�S P )

e, s,FT, c |=C c′ ⇐⇒ c = c′

e, s,FT,d |=D P
′ ⊗D P

′′ ⇐⇒ ∃d′:D,d′′:D. (d ≡ d′ ⊗D d′′) ∧
e, s,FT,d′ |=D P

′ ∧ e, s,FT,d′′ |=D P
′′

e, s,FT, cd |=D1�D2
P ′ ⊗D2

P ′′ ⇐⇒ ∃cd′:(D1�D2),d:D2.
((cd ≡ cd′ ⊗D2

d) ∧ e, s,FT, cd′ |=D1�D2
P ′ ∧ e, s,FT,d |=D2

P ′′) ∨
((cd ≡ d⊗D2

cd′) ∧ e, s,FT,d |=D2
P ′ ∧ e, s,FT, cd′ |=D1�D2

P ′′)
e, s,FT,d |=D P

′ ⊕D P
′′ ⇐⇒ ∃d′:D,d′′:D. (d ≡ d′ ⊕D d′′) ∧

e, s,FT,d′ |=D P
′ ∧ e, s,FT,d′′ |=D P

′′

e, s,FT, cd |=D1�D2
P ′ ⊕D P

′′ ⇐⇒ ∃cd′:(D1�D2),d:D2.
(cd ≡ cd′ ⊕D d) ∧ e, s,FT, cd′ |=D1�D2

P ′ ∧ e, s,FT,d |=D2
P ′′

e, s,FT,d |=D ∅D ⇐⇒ d ≡ ∅D

e, s,FT,d |=D <P>D ⇐⇒ ∃d′:D′. (d ≡ <d′>D) ∧ e, s,FT,d′ |=D′ P
e, s,FT, cd |=D1�D2

<P>D2
⇐⇒ ∃cd′:(D1�D′2). (cd≡<cd′>D2

) ∧ e, s,FT, cd′ |=D1�D′2
P

e, s,FT, attr |=ATTR <<Pid 7→ [P ′]fid>>
idref ⇐⇒

∃s:S, af:AF. (attr≡<<sJidKs 7→ [af]JfidKs>>
JidrefKs )

∧ e, s,FT, s |=S P ∧ e, s,FT, af |=AF P
′

e, s,FT, cattr |=D1�ATTR <<Pid 7→ [P ′]fid>>
idref ⇐⇒

∃s:S, caf:D1�AF. (attr≡<<sJidKs 7→ [caf]JfidKs>>
JidrefKs )

∧ e, s,FT, s |=S P ∧ e, s,FT, caf |=D1�AF P
′

Fig. 11. Satisfaction Relation for Data Structure Specific Formulae

e, s,FT,d |=D vare ⇐⇒ d ≡ e(vare)
e, s,FT,d |=D ExpV = Exp′V ⇐⇒ JExpVKs = JExp′VKs
e, s,FT,d |=D Int = |f| ⇐⇒ JIntKs = len(e(f))
e, s,FT, a |=A ∃vare. P ⇐⇒ ∃d′. e[vare 7→ d′], s,FT, a |=A P
e, s,FT, a |=A ∃varV. P ⇐⇒ ∃v. e, s[varV 7→ v],FT, a |=A P

e, s,FT,d |=D γ(f) ⇐⇒ ∃c,pm, ln.FT(f) = (C,pm, l
n

)
e, s,FT,d |=D ωD(uri) ⇐⇒ ∃data, code. π(uri) = (data, code) ∧ data 6= ∅
e, s,FT,d |=D ωC(uri) ⇐⇒ ∃data, code. π(uri) = (data, code) ∧ code 6= ∅

where f:F, F ∈ {DE,EA,EF,AF, S}

Fig. 12. Satisfaction Relation for the Remaining Formulae



assumptions for the behaviour of other components, analogous to the engineering
concept of API documentation. If all parties provide these documented speci-
fications only when they have proven them correct, and if all the assumptions
meet, then soundness of the overall proof is assured.

A function specification is a tuple of the form

(f,P,Q,pm, l
n
)

Where f is from the set of function names, P,Q are formulae of our logic and
pm, l

n
are lists drawn from the set of valid variable names representing the set

of parameter names and local variables used. Each represents the documented
description of a given function, that will be published to consumers. We write
sets of function specifications as D. A set of function specifications is well formed
only if there is at most one entry for each f and (free(P) ∪ free(Q)) ∩ l

m
= ∅,

stating that no free names in the specification are within the local variables
(explained shortly in context of the function call rules).

Web resource specifications are tuples of the forms

(uriD,∅,Q) (uriC,P,Q)

The former represents for web data, the later web code, where uri ∈ URI and
P,Q are formulae of our logic. We use a reserved name this in the specifications
for web data, which will always refer to the document node being introduced.

These tuples represent published documentation for the descriptions of re-
mote data, and behaviour of remote code. We write sets of these asW, which are
well formed only if each uri occurs at most once with a given D or C annotation.
Note the precondition for web data introduction is vacuous; adding data to the
environment is always a valid operation.

Our reasoning system is based upon Hoare Logic. We use an implicit global
D and W, giving judgements of the form

{P}C{Q}

This states that given our assumed sets of demanded function specifications
D, and assumed web specifications W, the triple holds. We use a triple based
upon O’Hearn’s fault avoiding interpretation, stating that any code satisfying
a specification cannot reduce to a fault state and, if it does not diverge, will
leave a state satisfying the postcondition. This interpretation is identical to that
in [GSWZ08b]. We adopt the standard Hoare Logic rules for skip, assignment,
disjunction, conditionals, while, sequencing, implication and variable elimina-
tion. In addition, we use the Frame Rule.

{P}C{Q}
{K ◦D P}C{K ◦D Q}

(If C does not modify K’s free variables)

The frame rule allows a triple to be extended by an arbitrary frame, so long
as the variables mentioned in the frame are not modified by the code of the
triple. This rule is a key concept in resource reasoning, as it allows us to “frame



off” parts of the environment that are superfluous to the analysis in question.
The semantic of ◦ ensures that this removed environment remains untouched.

The notion of free variables in a formulae K is standard, as is the set of
variables modified by most of our commands. Of note is the set for function call,
where we define mods(v = f(e1, ..., en)) to be the set modified by the body
code of the function f.

Function Reasoning The function introduction rule performs both the sanity
check that the specification provided in the documentation is satisfied by the
function being introduced, as well as the act of asserting the runtime existence
via γ.

{P}FStatement; return Expr;{Q}
{∅G}

function f(p1, ..., pn)
{local l1; . . . ; local ln; FStatement; return Expr;}

{γ(f) ∧∅G}

(f,P,Q,pm, l
n

) ∈ D

Return statements simply assign to a reserved variable ρ.

{∅}return Expr{ρ = Expr}
The function call rule precondition is a simple check that the desired function
has been introduced, along with a check that the precondition of the function is
met. It is important that the parameter and local names, which are private to
the function body, do not alter the environment of the call site. Our choice that
global names must be disjoint from both parameter and local names prevents
clashes with global variables that may be used. We achieve locality of parameter
names with a substitution instance θ, replacing parameter names found in the
specification with the expressions passed in the call (the restriction on param-
eter assignment ensures this is meaningful). Our restriction that free program
variables found in function specifications cannot contain local variable names en-
sures that local names will not leak from the function. These last two restrictions
are reminiscent of Parkinson’s work in [Par05].

Let θ = {e1/p1, . . . , em/pm} be the substitution of all parameter names for
the call site passed expressions.

{γ(f) ∧ θ(P)}v = f(e1, ..., em){γ(f) ∧ θ(Q)[v/ρ]} (f,P,Q,pm, l
n

) ∈ D

Web data and code reasoning The web data rule first ensures that the
requested URI is available, then uses the data description stored in the docu-
mentation to assert the existence of the imported data.

{ωD(uri)}n = fetchDocument(uri){ωD(uri) ∧Q[n/this]} (uriD,∅,Q) ∈ W



The rule for script execution is a simple check that the given URI refers to a
script, followed by propagation of the documented specification.

{ωC(uri) ∧P}runScript(uri){ωC(uri) ∧Q} (uriC,P,Q) ∈ W

DOM Reasoning The effects of our language commands on the environment
are captured by a series of axioms. In line with the local reasoning ethos, the
specifications speak only to the footprint of the command in as small a fashion
as we can render it. Typical use then requires the construction of a frame and
use of the frame rule to apply the axiom in a given proof. We present here a
subset of the axioms, choosing those that we use in our example, along with
some illustrative cases. Many of the additional cases are similar (see A).

{<“#document”doc [< ∅EA ]>null
null
9 [DE]fidnull>G ∧ x = y ∧ name 6= null ∧ ‘#′ 6∈ name}

x = createElement(doc, name){
<“#document”doc{y/x} [< ∅EA ]>null

null
9 [DE]fidnull>G ⊕

<namex [< ∅EA ]>aid’
doc

1 [∅EF]fid’null>G

}

The precondition requires that the given doc expression identifies a docu-
ment, with some document element captured in the logical variable DE. The
given name cannot be null, nor contain the # character. We capture the current
value of variable we will overwrite by assignment, which we use to ensure that
if the program used the value in identifying the document, the result still makes
sense. The postcondition shows that the document structure described in the
precondition is unchanged (as assured by the logical variable DE), but that the
DOM has been extended with a new element with the given name. The other
create command cases are similar.

{namen [< EA ]>aidn
irn

tp [F]fidval ∧ kids = y}
kids = getChildNodes(n)

{namen{y/kids} [< EA ]>aidn
irn

tp [F]fidval ∧ kids = fid}

{<<namen 7→ [af]fid>>
doc ∧ kids = y}

kids = getChildNodes(n)
{<<namen{y/kids} 7→ [af]fid>>

doc ∧ kids = fid}

getChildNodes is representative of all the get commands. We need a case
for both general elements, as well as attributes (due to their different notation).
Both require that the given node identifier n corresponds to a node of the correct
shape and both capture the properties of that node in logical variables. The post-
condition shows the node is unchanged, but the variable under assignment has
taken the identifier of the child forest.



{
(∅D1 −◦ (gc ◦D2 sparent [< EA ]>aid

idref

1 [F]fidnull))

◦D1 (name′newChild [< EA′ ]>aidn′
idref’

ettp [F′]fid′val
′)

}
n = appendChild(parent, newChild)

(gc ◦D2

sparent [< EA ]>aid
idref

1

[
f⊗
<name′newChild [< EA′ ]>aidn′

idref’

ettp [f′]fid′val
′>EF

]
fid

val)


where ettp ∈ {1, 3}

The precondition of appendChild uses the adjoint operator to ensure that
newChild cannot be an ancestor node of parent by splitting the data into a
context, and the child node. The context must satisfy the property that putting
the empty tree into the hole would leave a tree splittable into an arbitrary
context, and the parent node.

nameid [< EA ]>aidn
docn

tp [F1 ⊗
<name′id′ [< EA′ ]>aidn′

doc

tp′ [F
′]fid′val

′>D

⊗ F2]listval ∧ |F1| = int ∧ list = y


n = item(list, int)

nameid [< EA ]>aidn
docn

tp [F1 ⊗
<name′id′ [< EA′ ]>aidn′

doc

tp′ [F
′]fid′val

′>D

⊗ F2]list{y/n}val ∧ n = id′


{
nameid [< EA ]>aidn

docn

tp [F]listval ∧ (|F| ≤ int ∨ int < 0) ∧ list = y
}

n = item(list, int){
nameid [< EA ]>aidn

docn

tp [F]list{y/n}val ∧ n = null
}

The item command also requires two cases, one to handle the index being
beyond the ranges of the list, and one when it falls within range.

As with previous work ([GSWZ08b], [GSWZ08a]), the weakest preconditions
can be derived, showing that the reasoning system is complete for straight line
code.

6 Example

We now demonstrate our language and reasoning in the development of both a
mashup service, and a consuming client. The service is a mapping system for
a college campus. Our client mashup will be a student homepage, containing a
college map with annotations pointing out locations of particular importance to
the student in question.

The Map Service We define an XML data structure for communicating pure
map data, free of specific user interface presentation. A map is presented as a
hierarchy of areas, each having an associated name, pair of spatial coordinates



and image URI. Areas also have zero or more overlays, each consisting of text
data, with an optional associated image URI.

In our example, the root area represents the campus, with sub-areas for each
building, which in turn may contain sub areas, and so on. Map data will typically
be served without any overlays, which are then added by a mashup consumer
to convey their domain specific additions. We define this data structure using a
predicate (Fig 13) that fulfils the role typically taken by XML Schema or a DTD.
This has the advantage of both providing a concise schema for the document,
as well as the basis we need to reason about it. Note that the map predicate is
exact, so that additional non-map data cannot be incorporated into any data
that satisfies it.

map(id) , “map”id

[<

<<“title” 7→ “#text”id2 [< ∅EA ]>null
did
3 [∅TF]fid2 s1>>did⊗

<<“image” 7→ “#text”id3 [< ∅EA ]>null
did
3 [∅TF]fid3 s2>>did⊗

<<“width” 7→ “#text”id4 [< ∅EA ]>null
did
3 [∅TF]fid4 s3>>did⊗

<<“height” 7→ “#text”id5 [< ∅EA ]>null
did
3 [∅TF]fid5 s4>>did

]>aid
did
1

[area]fid null
∧ is int(s3) ∧ is int(s4)

area , �⊗<trueNode> =⇒


“area”id

[<

<<“name” 7→ “#text”id2 [< ∅EA ]>null
did
3 [∅TF]fid6 s1>>did⊗

<<“image” 7→ “#text”id3 [< ∅EA ]>null
did
3 [∅TF]fid7 s2>>did⊗

<<“width” 7→ “#text”id4 [< ∅EA ]>null
did
3 [∅TF]fid8 s3>>did⊗

<<“height” 7→ “#text”id5 [< ∅EA ]>null
did
3 [∅TF]fid9 s4>>did⊗

<<“offsetx” 7→ “#text”id6 [< ∅EA ]>null
did
3 [∅TF]fid10 s5>>did⊗

<<“offsety” 7→ “#text”id7 [< ∅EA ]>null
did
3 [∅TF]fid11 s6>>did

]>aid
did
1

[area]fid null
∧ is int(s3) ∧ is int(s4) ∧ is int(s5) ∧ is int(s6)


∨ overlay



overlay , “overlay”id
[< <<“image” 7→ “#text”id2 [< ∅EA ]>null

did
3 [∅TF]fid12 s>>did ]>aid

did
1[

“#text”cid [< ∅EA ]>null
did
3 [∅TF]fid13 s

]
fid’

null

Fig. 13. The map schema predicate

To aid consumers in the use of the map data, we provide two associated
functions. The first, addOverlay, adds a new overlay to a named area within
the map. Its specification gives detail about the structural changes to a given
map, without providing any information on how it is accomplished. The second
function, layout, is provided to convert the map data into an HTML presenta-
tion fit for display in a web browser. Both functions are specified in Figure 14.

Note that the post-condition of layout says only “true” of the data added to
the passed HTML element. Formally, a satisfying implementation could insert
any structure, containing any data. This allows great flexibility on the part of the
map service, as it can change the layout behaviour at any time knowing that no
proven client could depend on specific details. For example, it could upgrade a
simple pictorial representation of the map to a fully scrolling, zooming Google-
style map. However, it means the client must trust the service to satisfy an
informal specification quite separate from the formal one we reason about here.
The client must trust that the service will only use layout to add data which
has the same “meaning” as the semantic map data provided.




map(id) ∧

cg ◦

“area”id2
[<

ea ⊗ <<“name” 7→ “#text”id3 [< ∅EA ]>null
did
3 [∅TF]fid14 name>>did

⊗ ea′
]>aid

did
1

[f]fid null


∧ ¬(text = null)


addOverlay(id, name, text, image)

map(id)

∧ cg ◦


“area”id2 [< ea ⊗ <<“name” 7→ “#text”id3 [< ∅EA ]>null

did
3 [∅TF]fid15 name>>did ⊗ ea′ ]>aid

did
1

f ⊗“overlay”id
[< <<“image” 7→ “#text”iid [< ∅EA ]>null

did
3 [∅TF]fid16 s>>did ]>aid[

“#text”id’ [< ∅EA ]>null
did
3 [∅TF]fid17 text

]
fid

null



fid

null


∧ (s = image ∨ (image = null ∧ s = ∅S))




(∅ −◦ (cg ◦ (nodemapID [< ea ]>aid
did
1 [f]fidnull ∧map(mapID))))

◦
(cg’ ◦ nodehtmlID [< ea’ ]>aid’

did’
1 [f’]fid’null) ∧ γ(layoutOverlay)


layout(mapID, htmlID)

(∅ −◦ (cg ◦ (nodemapID [< ea ]>aid
did
1 [f]fidnull ∧map(mapID))))

◦
(cg’ ◦ nodehtmlID [< ea’ ]>aid’

did’
1 [f’ ⊗ “div”id” [< true ]>aid”

did’
1 [true]fid”null]fid’null) ∧ γ(layoutOverlay)



Fig. 14. Function specifications

D =

(addOverlay, PaddOverlay, QaddOverlay, (id, name, text, image), (doc, overlayNode, textNode))

(layout, Playout, Qlayout, (mapID, htmlID), (htmlDoc, mapWidth, mapHeight, children))

(layoutOverlay, P ′, Q′, (overlayNode, parentArea), (imgEle, docNode, overlayDiv))

W =
(http://www.example.net/mapService/icMap.xmlD,∅, icMap)
(http://www.example.net/mapService/mapService.htmlC,∅, γ(addOverlay) ∧ γ(layout) ∧ γ(layoutOverlay))

icMap ,

“#document”id1 [< ∅EA ]>null
null
9 [<“map”id2 [< ∅ ]>aid

id1
1 [true]fid2null ∧map(id2)>]fid1null

∧ ♦(“area” [< ea ⊗ <<“name” 7→ [#text[]“Huxley”]>> ⊗ ea′ ]> [true]) ∧
♦(“area” [< ea ⊗ <<“name” 7→ [#text[]“Sherfield”]>> ⊗ ea′ ]> [true]) ∧
♦(“area” [< ea ⊗ <<“name” 7→ [#text[]“Business School”]>> ⊗ ea′ ]> [true])

where PaddOverlay, QaddOverlay etc are shown in Figure 14, and P ′, Q′ are elided for brevity.

Fig. 15. Service documentation



The pre-condition of addOverlay shows an interesting behavioral leak in the
map service code. In the act of implementing addOverlay and layout, we choose
to use an auxiliary function layoutOverlay. This function is then exposed to
any consumer of the service, and appears in the precondition of addOverlay.
The unfortunate leak is essential in this type of function system, since we must
ensure both that it is present, and not accidentally replaced by an alternative
implementation.

The pair of the map data and map code forms the entire map service. We
export the service specification as documentation, in Figure 15. Using only this
documentation, we can implement a client side mashup of the map service. Note
that we can see exactly the schema of the data and footprint of code we are
exposing from this documentation, so we cannot be surprised by clients taking
advantage of structure and behaviour it describes. We may choose to use a weaker
(yet still strong enough to prove fault freedom) specification, to hide some of this
detail.

The Map Client Our client acts as the consumer of both the map data and
service code described in the previous section. We produce a web page containing
the usual HTML, HEAD and BODY elements. Also in the page is a script
element containing the Reasonable Web code given in the derivation in Figure 16.
This code downloads the campus map from the service, and uses the provided
functions to add a number of overlays to the map before displaying it in the page.
The derivation in Figure 16 shows that, under the published specifications, the
client is fault free. Moreover, it will remain fault free under any changes the
service implementation undergoes whilst still satisfying the exported behaviour
specifications and data schema formulae.

Consider now a proposed upgrade to the map service, which expands the map
data to add an optional data node indicating disabled access to buildings. The
map data source no longer satisfies the schema predicate and the service authors
are thus aware they have made a potentially breaking change, and publishing
it may cause faults in clients using the service. They instead choose to include
overlay nodes in the data, indicating the same information. Whilst not originally
part of the informal specification, the formal validation allows this. Any proven
clients will continue to function in a fault free fashion.

The dynamic nature of the function system allows the mashup consumer to
provide its own reimplementation of any imported function. Normally a danger-
ous idea, note that as long as the reimplementation matches the specification
given by the service provider, the operation is sensible and indeed desirable. It
provides a safe method for behavioral customisation by clients; in our exam-
ple, they may wish to customise the HTML layout by overriding the layout

function. Any calls to service provided functions that may depend on the rein-
troduced name will still be sound, as they were proven with respect to the same
specification.



 ωD(“http://example.net/mapService/icMap.xml”) ∧
ωC(“http://example.net/mapService/mapService.html”) ∧

#documentthis[“html”[“head”[true]“body”[true]]]


{

ωD(“http://www.example.net/mapService/icMap.xml”) ∧
ωC(“http://www.example.net/mapService/mapService.html”)

}
mapdoc = fetchDocument(“../mapService/icMap.xml”);

ωD(“http://www.example.net/mapService/icMap.xml”) ∧
ωC(“http://www.example.net/mapService/mapService.html”) ∧

♦


#documentmapdoc[nodeid[true]] ∧map(id) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Huxley”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Sherfield”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Business School”]>>⊗ ea′ ]> [true])




runScript(“../mapService/mapService.html”);

ωD(“http://www.example.net/mapService/icMap.xml”) ∧
ωC(“http://www.example.net/mapService/mapService.html”) ∧

γ(layout) ∧ γ(addOverlay) ∧ γ(layoutOverlay) ∧

♦


#documentmapdoc[nodeid[f]] ∧map(id) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Huxley”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Sherfield”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Business School”]>>⊗ ea′ ]> [true])






γ(layout) ∧ γ(addOverlay) ∧ γ(layoutOverlay)
#documentthis[“html”[“head”[true]“body”[true]]]⊗

♦


#documentmapdoc[nodeid[f]] ∧map(id) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Huxley”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Sherfield”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Business School”]>>⊗ ea′ ]> [true])




map = getDocumentElement(mapdoc);

γ(layout) ∧ γ(addOverlay) ∧ γ(layoutOverlay)
#documentthis[“html”[“head”[true]“body”[true]]]⊗

♦


#document[nodemap[f]] ∧map(map) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Huxley”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Sherfield”]>>⊗ ea′ ]> [true]) ∧
♦(“area” [< ea⊗<<“name” 7→ [#text[]“Business School”]>>⊗ ea′ ]> [true])




addOverlay(map, “Huxley”, “wifi”, “wifi.png”);
addOverlay(map, “Sherfield”, “Cheap Food”, “hotdog.jpg”);
addOverlay(map, “Business School”, “Suits.”, “danger.jpg”); γ(layout) ∧ γ(addOverlay) ∧ γ(layoutOverlay)

#documentthis[“html”[“head”[true]“body”[true]]]⊗
♦(#document[nodemap[f]] ∧map(map))


kids = getChildNodes(this);
html = item(kids, 0);
kids = getChildNodes(html);
body = item(kids, 1); γ(layout) ∧ γ(addOverlay) ∧ γ(layoutOverlay)

#documentthis[“html”html[“head”[true]“body”body[true]]kids]⊗
♦(#document[nodemap[f]] ∧map(map))


layout(map, body);{

#documentthis[“html”html[“head”[true]“body”body[true]]kids]
}

Fig. 16. Proof Of The Client Mashup



7 Conclusions & Future Work

Using Context Logic, we have developed and demonstrated resource reasoning
for our Reasonable Web language. This means we can use our methods to prove
strong safety properties about non-trivial examples, as well as reveal the specific
code and data being exposed by services. We have made deliberate choices to
model some unfortunate language features present in practical web engineering,
and have shown how our reasoning can reduce problems they cause.

In the future, Smith [Smi] plans to provide a complete formalisation of DOM
Core Level 1, which we may adopt for the DOM aspects of our work. We also plan
to investigate extensions to DOM, either formal (in the later edition standards),
or pragmatic additions added by browsers.

Our implementation allows us to investigate further scenarios that can benefit
from our techniques. We plan to maintain the implementation as we evolve the,
to continuously test our reasoning concepts against engineering issues. We intend
to make enhancements to our language, merging in further features from real
web languages. Maffeis et al. [MMT08] have recently created an operational
semantics for JavaScript, detailing the nuances of the language; we hope to use
this work to guide our extensions.

We have shown that our work has practical benefits, and the realisation of
these will be aided by automated tools. Work on symbolic execution in Small-
foot [BCO05], and recent advances in JStar [DP08] have shown that such tools
can be developed for a decidable fragment of Separation Logic. We hope to de-
velop a similarly tractable subset of Context Logic on which software can be
based. An ambitious long term goal is the development of a system that can
take a service, derive a specification that the author can refine, and then val-
idate that the refinement is correct. The same tool can then be used to show
client usage of the service is correct. In the short term, we have observed from
writing examples that the code of typical services will have greater complexity
than the code of clients consuming them. Whereas the creation and verification
of service specifications may be complex, many client usages are simple calls
into provided behaviour, and querying of data. Creating a framework for client
authoring using our language, along with automation of these client proofs may
prove a more attainable short term goal.
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A Complete Command Axioms

To model the Document interface defined in the W3C DOM Standard, we give
our logic the following axioms.

{<“#document”doc [< ∅EA ]>null
null
9 [F]fidnull>G ∧ x = y}

x = createElement(doc, name){
<“#document”doc{y/x} [< ∅EA ]>null

null
9 [F]fidnull>G ⊕

<name{y/x}x [< ∅EA ]>aid’
doc{y/x}
1 [∅EF]fid’null>G

}

{<“#document”doc [< ∅EA ]>null
null
9 [F]fidnull>G ∧ x = y}

x = createTextNode(doc, data){
<“#document”doc{y/x} [< ∅EA ]>null

null
9 [F]fidnull>G ⊕

<“#text”x [< ∅EA ]>null
doc{y/x}
3 [∅TF]fid’data{y/x}>G

}

{<“#document”doc [< ∅EA ]>null
null
9 [F]fidnull>G ∧ x = y}

x = createAttribute(doc, name){
<“#document”doc{y/x} [< ∅EA ]>null

null
9 [F]fidnull>G ⊕

<<<name{y/x}x 7→ [∅AF]fid′>>
doc{y/x}
false >G

}
For the Node interface, we give.

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ nm = y}

nm = getNodeName(n)

{namen{y/nm} [< ea ]>aidn
irn
tp [f]fidval ∧ nm = name}

{<<namen 7→ [af]fid>>
doc ∧ nm = y}

nm = getNodeName(n)
{<<namen{y/nm} 7→ [af]fid>>

doc ∧ nm = name}

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ v = y}

v = getNodeValue(n)

{namen{y/v} [< ea ]>aidn
irn
tp [f]fidval ∧ v = val}

{“#text”n [< ea ]>aidn
doc
3 [f]fidval}

setNodeValue(n, s)

{namen [< ea ]>aidn
doc
tp [f]fids}

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ i = y}

i = getNodeType(n)

{namen{y/i} [< ea ]>aidn
irn
tp [f]fidval ∧ i = tp}

{<<namen 7→ [af]fid>>
doc ∧ i = y}

i = getNodeType(n)
{<<namen{y/i} 7→ [af]fid>>

doc ∧ i = 2}




nameid [< ea ]>aidn

irn
tp

f1 ⊗
<namen [< ea′ ]>aidn′

doc
tp′ [f

′]fid′val
′>D2

⊗ f2


fid

val

∧ p = y


p = getParentNode(n)

nameid [< ea ]>aidn
irn
tp

f1 ⊗
<namen{y/p} [< ea′ ]>aidn′

doc
tp′ [f

′]fid′val
′>D2

⊗ f2


fid

val

∧ p = id


{<namen [< ea ]>aidn

irn
tp [f]fidval>G ∧ p = y}

p = getParentNode(n)

{<namen{y/p} [< ea ]>aidn
irn
tp [f]fidval>G ∧ p = null}

{<<namen 7→ [af]fid>>
doc ∧ p = y}

p = getParentNode(n)
{<<namen{y/p} 7→ [af]fid>>

doc ∧ p = null}

{<<nameid 7→ [af1 ⊗<namen [< af ]>aidn
doc
tp [f]fidval>AF ⊗ af2]fid′>>

doc ∧ p = y}
p = getParentNode(n)

{<<nameid 7→ [af1 ⊗<namen{y/p} [< af ]>aidn
doc
tp [f]fidval>AF ⊗ af2]fid′>>

doc ∧ p = id}

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ kids = y}

kids = getChildNodes(n)

{namen{y/kids} [< ea ]>aidn
irn
tp [f]fidval ∧ kids = fid}

{<<namen 7→ [af]fid>>
doc ∧ kids = y}

kids = getChildNodes(n)
{<<namen{y/kids} 7→ [af]fid>>

doc ∧ kids = fid}

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ ats = y}

ats = getAttributes(n)

{namen{y/ats} [< ea ]>aidn
irn
tp [f]fidval ∧ ats = aidn}

{<<namen 7→ [af]fid>>
doc ∧ ats = y}

ats = getAttributes(n)
{<<namen{y/ats} 7→ [af]fid>>

doc ∧ ats = null}

{namen [< ea ]>aidn
irn
tp [f]fidval ∧ od = y}

od = getOwnerDocument(n)

{namen{y/od} [< ea ]>aidn
irn
tp [f]fidval ∧ od = irn}

{<<namen 7→ [af]fid>>
doc ∧ od = y}

od = getOwnerDocument(n)
{<<namen{y/od} 7→ [af]fid>>

doc ∧ od = doc}



{
(∅D1

−◦ (gc ◦D2
sparent [< ea ]>aid

idref
1 [f]fidnull))

◦D1
(name′newChild [< ea′ ]>aidn′

idref
ettp [f′]fid′val

′) ∧ n = y

}
n = appendChild(parent, newChild)

(gc ◦D2

sparent{y/n} [< ea ]>aid
idref
1

[
f⊗
<name′newChild{y/n} [< ea′ ]>aidn′

idref
ettp [f′]fid′val

′>EF

]
fid

val)

∧ n = newChild{y/n}


where ettp ∈ {1, 3}

{
(∅D1 −◦ (gc ◦D2 <<sparent 7→ [f]fid>>

idref))

◦D1
(#textnewChild [< ∅EA ]>null

idref
3 [∅TF]fid′val

′) ∧ n = y

}
n = appendChild(parent, newChild)

(gc ◦D2

<<sparent{y/n} 7→
[
f⊗
<#textnewChild{y/n} [< ∅EA ]>null

idref
3 [∅TF]fid′val

′>AF

]
fid

>>idref)

∧ n = newChild{y/n}



{
(∅D1

−◦ (gc ◦G #documentparent [< ∅EA ]>null
null
9 [∅DE]fidnull))

◦D1
(s′newChild [< ea′ ]>aid′

parent
1 [f′]fid′null) ∧ n = y

}
n = appendChild(parent, newChild)

(gc ◦G
#documentparent{y/n} [< ∅EA ]>null

null
9

[
<s′newChild{y/n} [< ea′ ]>aid′

parent
1 [f′]fid′null>DE

]
fid

null)

∧ n = newChild{y/n}




(gc ◦D2

nameparent [< ea ]>aidn
idref
1 [f1 ⊗

<name′oldChild [< ea′ ]>aidn′
idref
tp′ [f′]fid′val

′>D3

⊗ f2]fidval)
∧ n = y


n = removeChild(parent, oldChild)

(gc ◦D2

nameparent{y/n} [< ea ]>aidn
idref
1 [f1 ⊗ f2]fidval)

⊕<name′oldChild{y/n} [< ea′ ]>aidn′
idref
tp′ [f′]fid′val

′>G

∧ n = oldChild{y/n}






(gc ◦D2

<<sparent 7→ [f1 ⊗
<name′oldChild [< ea′ ]>aidn′

doc
tp′ [f

′]fid′val
′>D3

⊗ f2]fid>>
doc)

∧ n = y


n = removeChild(parent, oldChild)

(gc ◦D2

<<sparent{y/n} 7→ [f1 ⊗ f2]fid>>
doc)

⊕<name′oldChild{y/n} [< ea′ ]>aidn′
doc
tp′ [f

′]fid′val
′>G

∧ n = oldChild{y/n}




(gc ◦D2

#documentparent [< ∅EA ]>null
null
9 [

<s′oldChild [< ea′ ]>aid′
parent
1 [f′]fid′null>DE

]fidval)
∧ n = y


n = removeChild(parent, oldChild)

(gc ◦D2

#documentparent{y/n} [< ∅EA ]>null
null
9 [∅DE]fidnull)

⊕<s′oldChild{y/n} [< ea′ ]>aid′
parent{y/n}
1 [f′]fid′null>G

∧ n = oldChild{y/n}


For the NodeList interface, we give.

nameid [< ea ]>aidn
docn
tp [f1 ⊗

<name′id′ [< ea′ ]>aidn′
doc
tp′ [f

′]fid′val
′>D3

⊗ f2]listval ∧ |f1| = int ∧ list = y


n = item(list, int)

nameid [< ea ]>aidn
docn
tp [f1 ⊗

<name′id′ [< ea′ ]>aidn′
doc
tp′ [f

′]fid′val
′>D3

⊗ f2]list{y/n}val ∧ n = id′


{
nameid [< ea ]>aidn

docn
tp [f]listval ∧ (|f| ≤ int ∨ int < 0) ∧ list = y

}
n = item(list, int){

nameid [< ea ]>aidn
docn
tp [f]list{y/n}val ∧ n = null

}

<<nameid 7→ [f1 ⊗
<name′id′ [< ea′ ]>aidn′

doc
tp′ [f

′]fid′val
′>D3

⊗ f2]list>>
doc ∧ |f1| = int ∧ list = y


n = item(list, int)

<<nameid 7→ [f1 ⊗
<name′id′ [< ea′ ]>aidn′

doc
tp′ [f

′]fid′val
′>D3

⊗ f2]list{y/n}>>
doc ∧ n = id′





{
<<nameid 7→ [f]list>>

doc ∧ (|f| ≤ int ∨ int < 0) ∧ list = y
}

n = item(list, int){
<<nameid 7→ [f]list{y/n}>>

doc ∧ n = null
}

For the NamedNodeMap interface, we give.
nameid [< ea1 ⊗
<<<name′id′ 7→ [f′]fid′>>

doc>EA

⊗ ea2 ]>map
docn

tp
[f]fidval ∧ |ea1| = int ∧ map = y


n = item(map, int)

nameid [< ea1 ⊗
<<<name′id′ 7→ [f′]fid′>>

doc>EA

⊗ ea2 ]>map{y/n}
docn

tp
[f]fidval ∧ n = id′


{
nameid [< ea ]>map

docn

tp
[f]fidval ∧ (|ea| ≤ int ∨ int < 0) ∧ map = y

}
n = item(map, int){

nameid [< ea ]>map{y/n}
docn

tp
[f]fidval ∧ n = null

}
{

(∅EA −◦ (gc ◦D2
nameid [< (ea ∧ ¬♦(<<name′id′′ 7→ [f′′]fid′′>>

doc)) ]>map
doc

tp
[f]fidval))

◦D1
<<<name′arg 7→ [f′]fid′>>

doc>D1
∧ map = y

}
n = setNamedItem(map, arg)

(gc ◦D2

nameid [< ea⊗<<<name′arg{y/n} 7→ [f′]fid′>>
doc>EA ]>map{y/n}

doc

tp
[f]fidval)

∧ n = null


{

(∅EA −◦ (gc ◦D2
nameid [< ea1 ⊗<<<name′id′′ 7→ [f′′]fid′′>>

doc>EA ⊗ ea2 ]>map
doc

tp
[f]fidval))

◦D1
<<<name′arg 7→ [f′]fid′>>

doc>D1
∧ map = y

}
n = setNamedItem(map, arg)

(gc ◦D2

nameid [< ea⊗1 <<<name
′
arg{y/n} 7→ [f′]fid′>>

doc>EA ⊗ ea2 ]>map{y/n}
doc

tp
[f]fidval)

⊕<<<name′id′′ 7→ [f′′]fid′′>>
doc>G ∧ n = id′′


{

(gc ◦D2

nameid [< ea1 ⊗<<<name′id′ 7→ [f′]fid′>>
doc>EA ⊗ ea2 ]>map

doc

tp
[f]fidval) ∧ map = y

}
n = removedNamedItem(map, name′)

(gc ◦D2

nameid [< ea1 ⊗ ea2 ]>map{y/n}
doc

tp
[f]fidval)

⊕<<<name′{y/n}id′ 7→ [f′]fid′>>
doc>G

∧ n = id′





For the Text Data interfaces, we give.

{
“#text”node [< ∅EA ]>null

idref
3 [∅TF]fids1 ⊗ s2 ⊗ s3 ∧ (Offset = ‖s1‖) ∧ (Count = ‖s2‖)

∧ str = y

}
str = substringData(node, Offset, Count)

{“#text”node{y/str} [< ∅EA ]>null
idref
3 [∅TF]fids1 ⊗ s2 ⊗ s3 ∧ (str = s2)}

{
“#text”node [< ∅EA ]>null

idref
3 [∅TF]fids1 ⊗ s2 ∧ (Offset = ‖s1‖) ∧ (Count > ‖s2‖)

∧ str = y

}
str = substringData(node, Offset, Count)

{“#text”node{y/str} [< ∅EA ]>null
idref
3 [∅TF]fids1 ⊗ s2 ∧ (str = s2)}

{“#text”node [< ∅EA ]>null
idref
3 [∅TF]fids ∧ (“#” 6∈ Arg)}

appendData(node, Arg)

{“#text”node [< ∅EA ]>null
idref
3 [∅TF]fids⊗ Arg}

{
“#text”node [< ∅EA ]>null

idref
3 [∅TF]fids1 ⊗ s2 ⊗ s3 ∧ (Offset = ‖s1‖) ∧ (Count = ‖s2‖)

}
deleteData(node, Offset, Count)

{“#text”node [< ∅EA ]>null
idref
3 [∅TF]fids1 ⊗ s3}

{“#text”node [< ∅EA ]>null
idref
3 [∅TF]fids1 ⊗ s2 ∧ (Offset = ‖s1‖) ∧ (Count > ‖s2‖)}
deleteData(node, Offset, Count)

{“#text”node [< ∅EA ]>null
idref
3 [∅TF]fids1}

B Operational Semantics

Let VarID, VarS, VarZ and VarB be the set of valid variable names for identifiers,
strings, integers and booleans respectively. Let the union of these sets be Var.
Let Funcs be the set of valid function names. Let the set of all syntactically
valid programs (given by the grammar above) be C. We also use the following
notational conventions.

1. g,g′:G (symbols such as g take type grove by default)
2. C ∈ C.
3. name ∈ S
4. val ∈ {null} ∪ S
5. tp ∈ {1, 3, 9}
6. s ∈ S
7. id,fid, idref,aid ∈ ID
8. aidn, idrefn ∈ ID ∪ {null}
9. cg:D1�G

10. ea:EA
11. f:D2



We give two partial functions, a store and a function table. The store is given
by.

s:(VarID ⇀ ID∪{null})×(VarS ⇀ S∪{null})×(VarZ ⇀ Z)×(VarB ⇀ B) (1)

We typeset variables like this, and values like this. To look up a variable x

in the srightharpoonupre s, write s(x).
The function table is given by

FT:Funcs ⇀ (C×Varp ×Varl) (2)

We interpret this as function names mapping to associated function code, a
set of formal parameter names, and a set of used local variables. We find the
set of local variable names from the initial zero or more local declarations that
begin a function body.

B.1 Core Language

Semantics for the standard imperative language features.

JIdKs = id

s,FT,g, id = Id [s|id � id],FT,g

JStrKs = s

s,FT,g, str = Str [s|str � s],FT,g

JIntKs = n

s,FT,g, int = Int [s|int � n],FT,g

JBoolKs = b

s,FT,g, bool = Bool [s|bool � b],FT,g

s,FT,g,C1  s′,FT′,g′

s,FT,g,C1; C2  s′,FT′,g′,C2

JBoolKs = true

s,FT,g, if (Bool) then {C1} else {C2} s,FT,g,C1

JBoolKs = false

s,FT,g, if (Bool) then {C1} else {C2} s,FT,g,C2

JBoolKs = true

s,FT,g, while (Bool){C} s,FT,g,C; while (Bool){C}

JBoolKs = false

s,FT,g, while (Bool){C} s,FT,g

s,FT,g, skip s,FT,g



Any unmentioned state

s,FT,g,C fault

Function introduction, return statement and call.

s,FT,g,
function f(p1, ..., pm) {
local l1; ... local ln; C }  s,FT[f � (C,pm, ln)],g

JEKs = e

s,FT,g, return E [s|ρ � e],FT,g

FT(f) = (C,pm, l
n
)

savedParami = s(pi) savedLocalj = s(lj)

[s|pi � JeiKs]\{ln},FT,g, C s′,FT′,g′

1 ≤ i ≤ m, 1 ≤ j ≤ n
s′′ = [s′|pi, lj � savedParami, savedLocalj , v � s′(ρ)]

s,FT,g, v := f(e1, . . . , en) s′′,FT′,g′

B.2 Document

From the “Document” interface, we define the commands:

g ≡ g′′ ⊕<“#document”JdocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<JnameKsid [< ∅EA ]>aid
JdocKs
1 [∅EF]fidnull>G

‘#’ 6∈ JnameKs
s,FT,g, x := createElement(doc, name) [s|x � id],FT,g′

g ≡ g′′ ⊕<“#document”JdocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<“#text”id [< ∅EA ]>null
JdocKs
3 [∅TF]fidJdataKs>G

s,FT,g, x := createTextNode(doc, data) [s|x � id],FT,g′

g ≡ g′′ ⊕<“#document”JdocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<<<JnameKsid 7→ [∅AF]fid>>
JdocKs>G

‘#’ 6∈ JnameKs
s,FT,g, x := createAttribute(doc, name) [s|x � id],FT,g′

B.3 Node

From the “Node” interface, we define the commands:

g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, nm := getNodeName(n) [s|nm � name],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, nm := getNodeName(n) [s|nm � name],FT,g



g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, nm := getNodeValue(n) [s|nm � val],FT,g

g ≡ ap(cg, “#text”JnKs [< ∅EA ]>null
idref
3 [∅TF]fids)

g′ ≡ ap(cg, “#text”JnKs [< ∅EA ]>null
idref
3 [∅TF]fidJsKs)

s,FT,g, setNodeValue(n, s) s,FT,g′

g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, i := getNodeType(n) [s|i � tp],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, i := getNodeType(n) [s|i � 2],FT,g

g ≡ ap(cg,nameid [< ea ]>aidn
idrefn
tp [f1 ⊗<name′

JnKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2 ⊗ f2]fidval)

s,FT,g, p := getParentNode(n) [s|p � id],FT,g

g ≡ g′ ⊕<nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval>G

s,FT,g, p := getParentNode(n) [s|p � null],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, p := getParentNode(n) [s|p � null],FT,g

g ≡ ap(cg, <<nameid 7→ [af1 ⊗<#textJnKs [< ∅EA ]>null
idref
3 [f′]fid′s

′>AF ⊗ af2]fid>>
idref)

s,FT,g, p := getParentNode(n) [s|p � id],FT,g

g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, kids := getChildNodes(n) [s|kids � fid],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, kids := getChildNodes(n) [s|kids � fid],FT,g

g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, ats := getAttributes(n) [s|ats � aidn],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, ats := getAttributes(n) [s|ats � null],FT,g

g ≡ ap(cg,nameJnKs [< ea ]>aidn
idrefn
tp [f]fidval)

s,FT,g, od := getOwnerDocument(n) [s|od � idrefn],FT,g

g ≡ ap(cg, <<nameJnKs 7→ [af]fid>>
idref)

s,FT,g, od := getOwnerDocument(n) [s|od � idref],FT,g

Now define the commands for structural maniuplation.



g ≡ ap(cg′, <nameJnewChildKs [< ea ]>aidn
idref
ndftp[f]fidval>D′1

)

ap(cg′,∅D′1
) ≡ ap(cg, s′JparentKs [< ea′ ]>aid′

idref
1 [ef′]fid′null)

g′ ≡ ap(cg, s′JparentKs [< ea′ ]>aid′
idref
1

[
ef′ ⊗
<nameJnewChildKs [< ea ]>aidn

idref
ndftp[f]fidval>D′2

]
fid′

val′)

s,FT,g, n := appendChild(parent, newChild); [s|n � JnewChildKs],FT,g′

g ≡ ap(cg′, <#textJnewChildKs [< ∅EA ]>null
idref
3 [∅TF]fids>D′1

)

ap(cg′,∅D′1
) ≡ ap(cg, <<name′

JparentKs 7→ [f′]fid′>>
idref)

g′ ≡ ap(cg, <<name′
JparentKs 7→

[
f′ ⊗
<#textJnewChildKs [< ∅EA ]>null

idref
3 [∅TF]fids>D′2

]
fid′

>>idref)

s,FT,g, n := appendChild(parent, newChild); [s|n � JnewChildKs],FT,g′

g ≡ ap(cg, <sJnewChildKs [< ea ]>aid
JparentKs
1 [f]fidnull>D′1

)

⊕<“#document”JparentKs [< ∅EA ]>null
null
9 [∅DE]fid′null>G

g′ ≡ ap(cg,∅D′1
)

⊕<“#document”JparentKs [< ∅EA ]>null
null
9

[
sJnewChildKs [< ea ]>aid

JparentKs
1 [f]fidval

]
fid′

null>G

s,FT,g, n := appendChild(parent, newChild); [s|n � JnewChildKs],FT,g′

g ≡ ap(cg,nameJparentKs [< ea ]>aidn
idref
tp

 f1 ⊗
<name′

JoldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗ f2


fid

val)

g′ ≡ ap(cg,nameJparentKs [< ea ]>aidn
idref
tp [f1 ⊗ f2]fidval)

⊕<name′
JoldChildKs [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>G

s,FT,g, n := removeChild(parent, oldChild); [s|n � JoldChildKs],FT,g′

g ≡ ap(cg, <<nameJparentKs 7→

 f1 ⊗
<name′

JoldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗ f2


fid

>>idref)

g′ ≡ ap(cg, <<nameJparentKs 7→ [f1 ⊗ f2]fid>>
idref)

⊕<name′
JoldChildKs [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>G

s,FT,g, n := removeChild(parent, oldChild); [s|n � JoldChildKs],FT,g′

g ≡ ap(cg, “#document”JparentKs [< ∅EA ]>null
null
9

[
<name′

JoldChildKs [< ea′ ]>aidn′
JparentKs
tp′ [f′]fid′val′>DNEL

]
fid

null)

g′ ≡ ap(cg, “#document”JparentKs [< ∅EA ]>null
null
9 [∅DF]fidnull)

⊕<name′
JoldChildKs [< ea′ ]>aidn′

JparentKs
tp′ [f′]fid′val′>G

s,FT,g, n := removeChild(parent, oldChild); [s|n � JoldChildKs],FT,g′



B.4 NodeList

We require a function, len, that will determine the length of a forest.

len(f1 ⊗ f2) , len(f1) + len(f2)

len(∅D1
) , 0

len(<nameid [< ea ]>aidn
irn
tp [f]fidval>D1

) , 1

len(<<<nameid 7→ [f]fid>>
idref>D1

) , 1

From the “NodeList” interface, we define the commands:

len(f1) = JintKs ∧

g ≡ ap

cg,nameid [< ea ]>aidn
idref
tp

 f1⊗
<name′

id′ [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗f2


JlistKs

val


s,FT,g, n := item(list, int) [s|n � id′],FT,g

(len(f) ≤ JintKs ∨ JintKs < 0) ∧
g ≡ ap(cg,nameid [< ea ]>aidn

idref
tp [f]JlistKsval)

s,FT,g, n := item(list, int) [s|n � null],FT,g

len(f1) = JintKs ∧

g ≡ ap(cg, <<nameid 7→

 f1⊗
<#textid′ [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>D2

⊗f2


JlistKs

>>idref)

s,FT,g, n := item(list, int) [s|n � id′],FT,g

(len(f) ≤ JintKs ∨ JintKs < 0) ∧
g ≡ ap(cg, <<nameid 7→ [f]JlistKs>>

idref)

s,FT,g, n := item(list, int) [s|n � null],FT,g

B.5 NamedNodeMap

len(ea1) = JintKs ∧
g ≡ ap(cg,nameid [< ea1 ⊗<<<name′

id′ 7→ [f ’]>>idref>EA ⊗ ea2 ]>JmapKs
idref

1
[f]fidnull)

s,FT,g, n := item(map, int) [s|n � id′],FT,g

(len(ea) ≤ JintKs ∨ JintKs < 0) ∧
g ≡ ap(cg,nameid [< ea ]>JmapKs

idref

1
[f]fidnull)

s,FT,g, n := item(map, int) [s|n � null],FT,g



Note that the data structure property that attribute names must be sibling-
unique prevents us from adding a new attribute with an old name using the
following command:

g ≡ ap(cg′, <<<nameJargKs 7→ [f]fid>>
idref>D′1

)

ap(cg′,∅EA) ≡ ap(cg,name′
id′ [< ea ]>JmapKs

idref

tp′ [f′]fid′val′)

g′ ≡ ap(cg,name′
id′ [< ea⊗<<<nameJargKs 7→ [f]fid>>

idref>EA ]>JmapKs
idref

tp′ [f]fid′val′)

s,FT,g, n := setNamedItem(map, arg) [s|n � null],FT,g′

g ≡ ap(cg′, <<<nameJargKs 7→ [f]fid>>
idref>D′1

) ∧
ap(cg′,∅EA) ≡ ap(cg,name′

id′ [< ea1 ⊗<<<nameid′′ 7→ [f′′]fid′′>>
idref>EA ⊗ ea2 ]>JmapKs

idref

tp′ [f′]fid′val′)

∧ g′ ≡ ap(cg,name′
id′ [< ea1 ⊗<<<nameJargKs 7→ [f]fid>>

idref>EA ⊗ ea2 ]>JmapKs
idref

tp′ [f′]fid′val′)

⊕<<<nameid′′ 7→ [f′′]fid′′>>
idref>G

s,FT,g, n := setNamedItem(map, arg) [s|n � id′′],FT,g′

g ≡ ap(cg, sid [< ea1 ⊗<<<JnameKsid′ 7→ [f]fid′>>
idref>EA ⊗ ea2 ]>JmapKs

idref

1
[f]fidnull)

g′ ≡ ap(cg, sid [< ea1 ⊗ ea2 ]>JmapKs
idref

1
[f]fidnull)⊕<<<JnameKsid′ 7→ [f]fid>>

idref>G

s,FT,g, n := removedNamedItem(map, name) [s|n � id′],FT,g′

B.6 Text Data

From the textual manipulation interfaces, we define the following commands:

len(s1) = JoffsetKs ∧ len(s2) = JcountKs ∧
g ≡ ap(cg,nameJnodeKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗ s2 ⊗ s3)

s,FT,g, str := substringData(node, offset, count) [s|str � s2],FT,g

len(s1) = JoffsetKs ∧ len(s2) < JcountKs ∧
g ≡ ap(cg,nameJnodeKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗ s2)

s,FT,g, str := substringData(node, offset, count) [s|str � s2],FT,g

len(s1) = JoffsetKs ∧ len(s2) = JcountKs ∧
g ≡ ap(cg,nameJnodeKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗ s2 ⊗ s3)

g′ ≡ ap(cg,nameJnodeKs [< ∅EA ]>null
idref
txtp [f]s1 ⊗ s3)

s,FT,g, deleteData(node, offset, count) s,FT,g′

len(s1) = JoffsetKs ∧ len(s2) < JcountKs ∧
g ≡ ap(cg,nameJnodeKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗ s2)

g′ ≡ ap(cg,nameJnodeKs [< ∅EA ]>null
idref
txtp [f]s1)

s,FT,g, deleteData(node, offset, count) s,FT,g′

g ≡ ap(cg,nameJnodeKs [< ∅EA ]>null
idref
txtp [f]s)

g′ ≡ ap(cg,nameJnodeKs [< ∅EA ]>null
idref
txtp [f]s⊗ JargKs)

s,FT,g, appendData(node, arg) s,FT,g′



B.7 Remote data and code

Finally, we introduce a commands to access data and code from the wider web.
These are not part of the DOM standard.

π(JuriKs) = (#documentid [< ∅EA ]>null
null
9 [f]fidnull, code) ∧

g′ ≡ g⊕<#documentid [< ∅EA ]>null
null
9 [f]fidnull>G

s,FT,g, n := fetchDocument(uri) s[n � id],FT,g′

π(JuriKs) = (data, code) ∧ code 6= ∅ ∧
s,FT,g, code s′,FT′,g′

s,FT,g, runScript(uri) s′,FT′,g′


