
BEHAVIOURAL EQUIVALENCES
FOR DYNAMIC WEB DATA

Sergio Maffeis and Philippa Gardner
Department of Computing, Imperial College London, UK.
{maffeis,pg}@doc.ic.ac.uk

Abstract We study behavioural equivalences for dynamic web data in Xdπ, a model for
reasoning about behaviour found in (for example) dynamic web page program-
ming, applet interaction, and web-service orchestration. Xdπ is based on an
idealised model of semistructured data, and an extension of theπ-calculus with
locations and operations for interacting with data. The equivalences are non-
standard due to the integration of data and processes, and the presence of loca-
tions.

1 Introduction
Web data, such as XML, plays a fundamental rôle in the exchange of information

between globally distributed applications. Applications naturally fall into some sort of
mediator approach: systems are divided into peers, with mechanisms based on XML
for interaction between peers. The development of analysis techniques, languages and
tools for web data is by no means straightforward. In particular, although web services
allow for interaction between processes and data, direct interaction between processes
is not well-supported.

Peer-to-peer data management systems are decentralised distributed systems where
each component offers the same set of basic functionalities and acts both as a producer
and as a consumer of information. We model systems where each peer consists of an
XML data repository and a working space where processes are allowed to run. Our
processes can be regarded as agents with a simple set of functionalities; they com-
municate with each other, query and update the local repository, and migrate to other
peers to continue execution. A process definition can be included in a document as an
atomic piece of data, and can be selected for execution by other processes. These func-
tionalities are enough to express most of the dynamic behaviour found in web data,
such as web services, distributed (and replicated) documents [1], distributed query
patterns [19], hyperlinks, forms, and scripting.

The Xdπ-calculus [7] provides a formal description of such systems. It is based on
a network of locations (peers) containing a (semi-structured) data model, andπ-like
processes [17, 20, 10] for modelling process interaction, process migration, and inter-
action with data. The data model consists of unordered labelled trees, with embedded

processes for querying and updating data, and explicit pointers for referring to other
parts of the network: for example, a document with a hyperlink referring to another
site, and a light-weight trusted process for retrieving information associated with the
link.

A behavioural understanding of dynamic web data can serve as a starting point for
the use of formal techniques. Moreover, the combination of web services and scripted
processes provides the data engineer with many alternative patterns for exchanging
information on the web [2, 19], and equational reasoning becomes useful to show, for
example, that some complex data-exchange protocol conforms to its specification.

We study behavioural equivalences in Core Xdπ, which is a slight adaptation of
Xdπ, where both the data and the process component of a network are explicitly lo-
cated, and therefore easier to analyse independently. We identify two main notions of
contextual equivalence foropennetworks, based on the observation of the data struc-
ture at each location, or of the capabilities of process to access data. We derive the
corresponding process equivalences so that when two equivalent pieces of code are put
in the same position in a network, the resulting networks cannot be distinguished by an
observer. Process equivalences appear to be sensitive to the set of locations composing
the network. This feature, together with having scripted processes as values, requires
non trivial techniques for defining a labelled-bisimulation-based proof method. We
address interested readers to the full paper [15] for all the technical details.

Related Work. Our model is related to the Active XML approach to data integration
developed independently by Abiteboul et al. [2]. Several distributed query languages,
such as [19, 14, 4], extend traditional query languages with facilities for distribution
awareness. Our approach is closest to theubQL query language of [19], partly mo-
tivated by ideas from theπ-calculus [18]. Process calculi have also been used for
example to study security properties of web services [8], and to program XML-based
Home Area Networks devices [3].

In [7] we have defined a first notion of barbed equivalence, and we have sketched
a proof method based on higher-order bisimulation. In this paper we study in de-
tail behavioural equivalences, improving and extending significantly the previous re-
sults. Core Xdπ uses ideas from [5], and the contextual equivalences are based on
the reduction-closed framework of [12]. Our labelled transition system and bisimula-
tion exploit a translation technique from higher-order to first-order actions proposed
in [13], and based on [21]. Ours is the first attempt to study behavioural equivalences
of web-based (higher-order) data-sharing applications, and is characterised by its em-
phasis on dynamic data.

2 Core Xdπ

In Xdπ, a peer-to-peer network is represented as a set of locations (we regardlo-
cation andpeeras synonyms), each containing a data-tree and some processes. In
order to reason modularly on data and processes, we instead model a network in Core
Xdπ as a pair(D,P), whereD is a set of located trees, each one representing the data
component of a location, andP is a multiset of located-process, representing both the
services provided by each peer and the agents in execution on behalf of other peers.

(Trees) U ≡ U ′ =⇒ a[U] ≡ a[U ′]

(Values) v′ ≡ w′ ∧ ṽ ≡ w̃ =⇒ v′, ṽ ≡ w′, w̃ P ≡ Q =⇒ 2P ≡ 2Q

(Processes) (νc)(νc′)P ≡ (νc′)(νc)P (νc)0 ≡ 0

c 6∈ fn(P) =⇒ P | (νc)Q ≡ (νc)(P |Q)

V ≡ V ′ ∧ P ≡ Q =⇒ l·updatep(χ, V).P ≡ l·updatep(χ, V ′).Q

(Stores) ∀ l. D(l) ≡ B(l) =⇒ D ≡ B

(Networks) D ≡ B ∧ P ≡ Q =⇒ (D, P) ≡ (B, Q)

Table 1. Structural congruence for Core Xdπ is the least congruence satisfying alpha-
conversion, the commutative monoidal laws for(0, |) on trees and processes, and the axioms
reported above.

Trees. Our data model extends the unordered labelled rooted trees of [6], with leaves
which can either be scripted processes or pointers to data. We use the following con-
structs:edge labelsdenoted bya, b, c ∈ A, path expressionsdenoted byp, q ∈ E and
used to identify specific subtrees, andlocation namesof the form	, l, m ∈ L, where
the ‘self’ location	 refers to the enclosing location. The set of data trees, denotedT ,
is given by

T ::= 0 | T |T | a[T] | a[2P] | a[@l:p]

Tree0 denotes a rooted tree with no content. TreeT1 |T2 denotes the composition
of T1 andT2, which simply joins the roots. A tree of the forma[...] denotes a tree
with a single branch labelleda which can have three types of content: a subtreeT ; a
scripted process2P , which is a static process awaiting a command to run; apointer
@l:p, which denotes a pointer to a set of subtrees identified by path expressionp in the
tree at locationl. The structural congruence for trees states that trees are unordered,
and scripted processes are identified up to the structural congruence for processes (see
Table 1).

We regard a pathp as a function from trees to sets of nodes (up to structural con-
gruence):p(T) denotes the treeT where the nodes identified byp are selected. For
simplicity we do not show node identifiers explicitly, but we underline the selected
nodes. We describe paths using a subset of XPath [16], where “a” denotes a step
along an edge labelleda, “/” denotes path composition, “..” a step back, “//” any
node, and “.”, which can appear only in paths inside trees, denotes the path from the
root to the current node. For example, ina[a[S] | b[S′] | c[T ′]] we have underlined

the nodes selected by path//a.

Located Processes. Our processes are based on asynchronousπ2-processes [5]
extended with an operation for manipulating the tree structure (update) and one for
selecting a script for execution (run). Generic variables arex, y, z, channel names or
channel variables area, b, c, the meaning will be clear from the context, and values are

u, v, w ::= T | c | l | p | 2P

We use the notatioñz for vectors of variables, and̃v for vectors of values and variables.
IdentifiersU, V range over scripted processes, pointers and trees.Patternsχ, ξ have
the formχ ::= X | @x:y | 2X, whereX denotes a tree or process variable. The set of
processes, denoted byP, is given by

P, Q, R ::= 0 | P |P | l·b〈ṽ〉 | l·b(z̃).P | !l·b(z̃).P | (νc)P

| l·updatep(χ, V).P | l·runp

The processes in the first line of the grammar are constructs arising from theπ2-
calculus: theoutputprocessl·b〈ṽ〉 denotes a vector of values̃v waiting to be sent via
channelb at locationl, the input processl·b(z̃).P is waiting to receive values from
an output process via channelb at l, and the standardnil, composition, restrictionand
replicated input. Channel namesC are partitioned intopublic andsessionchannels,
denotedCp andCs respectively. Public channels denote those channels that are in-
tended to have the same meaning at each location, such as “finger”, and cannot be
restricted. Session channels are used for process interaction, and can be restricted.
We assume the usual notions offreeandboundnames (fn, bn) for session channels.
Scripted processes cannot have free session names. We assume a simple sorting disci-
pline on channels.

Commandl·runp activates the scripted processes selected by the path expression
p in the tree atl. Commandl·updatep(χ, V).P is used to interact with the data tree
at l. In an update,V may contain variables and must have the same sort asχ. The
variables free inχ are bound inV andP . The update command finds all the valuesVi

given by the pathp, and pattern-matches these values withχ to obtain the substitution
σi when it exists. For each successful pattern-matching, it replaces theVi with V σi

and evolves toPσi. Below we give some basic commands derived fromupdate:

l·copyp(X).P , l·updatep(X, X).P copy the tree atp and use it inP

l·cutp(X).P , l·updatep(X, 0).P cut the tree atp and use it inP

l·pastep〈T 〉.P , l·updatep(X, X |T).P
{

whereX is not free inT or P ,
paste treeT atp and evolve toP

Networks and Stores. A network is represented by a pair(D,P) where the first
component (thestore) is a finite partial function from location names to trees, and the
second component is a process. Interaction between processes and data is always local,
as will be shown by rules(Update) and (Run) in Table 2, and consequently we regard
the store asdistributed. We writedom(D) to denote the domain of storeD. We write
D1]D2 for the union of storesD1 andD2 with disjoint domains. The network(D,P)
is well-formed ifD andP contain no free variables, and all the scripted processes have
no free session names.

Our reduction semantics on networks will be closed with respect tonetwork con-
texts(CS , CP), wherestore contextsCS are defined byCS ::= − | CS]D andprocess
contextsCP are defined byCP ::= − | CP |P | (νc) CP . Given a network(D,P)
and a contextC = (CS , CP), we write C{(D,P)} for their composition: for ex-
ample, if CS = −] B, CP = (νc)− thenC{(D,P)} = (D] B, (νc)P). A
composition involving stores is defined only for stores with disjoint domains. We will
omit the subscripts from contexts when no ambiguity can arise.

Reduction Semantics. The reduction relation→, relying on an updating function
 p , describes processes interaction, the interaction between processes and data, and
(implicitly) the movement of processes across locations (Table 2).

(Com) ({l 7→ T}, l·c〈ṽ〉 | l·c(x̃).P) → ({l 7→ T}, P{ṽ/x̃})

(!Com) ({l 7→ T}, l·c〈ṽ〉 | !l·c(x̃).P) → ({l 7→ T}, !l·c(x̃).P |P{ṽ/x̃})

(Update)
p(T) p p,l,χ,V T ′, {σ1, · · · , σn}

({l 7→ T}, l·updatep(χ, V).P) → ({l 7→ T ′}, Pσ1 | · · · |Pσn)

(Run)
p(T) p p,l,2X,2XT, {{2P1/2X}, · · · , {2Pn/2X}}

({l 7→ T}, l·runp) → ({l 7→ T}, P1 | · · · |Pn)

(Reduction) The reduction relation on processes is the smallest relation closed
with respect to reduction contexts, structural congruence and the axioms above.

(Zero) 0 p Θ0, ∅ (Link) a[@m:q] p Θa[@m:q], ∅

(Script) a[2Q] p Θa[2Q], ∅ (Node)
T p ΘT ′, Σ

a[T] p Θa[T ′], Σ

(Par)
T p ΘT ′, Σ1 S p ΘS′, Σ2

T |S p ΘT ′ |S′, Σ1 ⊕ Σ2

(Up)
match(U, χ) = σ V σ p ΘV ′, Σ Θ = p, l, χ, V

a[U] p Θa[V ′], {σ{l/ 	, p/.}} ⊕ Σ

(Updating Function) Above,Σ is a multiset of substitutions, and⊕ is multiset union,
andΘ = p, l, χ, V are the parameters of anupdate or run command.

Table 2. Reduction axioms and updating function for Core Xdπ.

First we describe the reduction relation. Rules(Com) and (!Com) are basically the
standard communication rules for theπ-calculus, except that processes only commu-
nicate if they are at the same locationl, andl is in the store. Rule(Update) provides
interaction between processes and data. Given the commandl·updatep(χ, V).P and
the treeT at l in the store, the updating function p takesp(T) as an argument,
matches each identifierUi in p(T) with the patternχ to obtain the substitutionσi,
replaces eachUi with V σi in T , and returns the continuation processPiσi. Rule(Run)
is a special case of update, where the tree is not modified, and the scripted processes
2Pi identified byp(T) are activated in parallel to yield the continuationPi.

We now describe the updating function p , which is parameterised byp, l, χ, V ,
the arguments of anupdate or run command. The first five rules define simply a
traversal of the tree collecting the set of substitutionsΣ, whereas rule(Up) is responsi-
ble for the actual update. It applies to the identified nodes (underlined), matchingU
with χ, to obtain substitutionσ (in our case patterns are simple, and pattern-matching
is trivial, but the approach can be extended to more complicated patterns). Whenσ
exists, the process continues recursively updatingV σ, until some subtreeV ′ with a set
of substitutions denoted byΣ is returned. At this pointU is replaced withV ′, andΣ
is returned, together withσ{l/ 	, p/.} (where any references to the current location
	 and position “.” are substituted by the actual valuesl andp).

For example, considerT = c[a[T1] | a[T2] | b[S]] and T ′ = c[a[0] | a[0] | b[S]],
and acutc/a(X) command to remove the subtrees atc/a. We have

({l 7→ T}, l·cutc/a(X).P) → ({l 7→ T ′}, P{T1/X} |P{T2/X})

where the subtreesT1 andT2, identified byc/a, are removed from the store, and each
is passed to a copy ofP . As an example of commandrun and of the substitution of
local references, considerS = a[b[2	 ·a〈v〉] | b[2m·run./../c]]. We have

({l 7→ S}, runa/b) → ({l 7→ S}, l·a〈v〉 |m·runa/b/../c)

The storeS is unaffected by therun operation, which spawns the two processes iden-
tified by a/b, where the local path./../c is replaced bya/b/../c, and	 is replaced
by l. Note thatm·runa/b/../c is located atm, which is not in the domain of the store.
There is no reduction rule for such a process, which represents mobile code “lost” due
to network partitioning, or to an invalid network address. In fact, in our model it is not
possible for a process to create a new location. Processes represent either scripts or
web services, none of which could realistically create new peers, hence the domain of
a network is invariant under reduction. Nonetheless we consider open systems, since
we admit network composition. Our approach differs from the one of e.g. [9], where
process migration can have the effect of creating a new location. We will see in Sec-
tion 3 how our choice requires new techniques for studying behavioural equivalences.

We conclude the section with an example on web services, see [7] for other moti-
vating examples (other web services, XLink, e-forms). Consider, at locationm, a web
serviceget for downloading data which, given a path expressionp, returns a stream
of messages containing the subtrees denoted byp at m. The service is described by
processm·get =!m·get(x, y, z).m·copyx(Y).y·z〈Y 〉, where channelget inputs a path
x, a locationy, and a channelz, and returns its results aty on z. The corresponding
service invocation froml is

l·call(m, get, p) = (νc)(m·get〈p, l, c〉 | !l·c(Y).R),

whereR is some code handling each result. We will see in Section 4 that invok-
ing m·get with l·call(m, get, p) is equivalent to running (froml) the specification
l·spec = m·copyx(Y).R.

3 Contextual Equivalences for Core Xdπ

In this section we study equivalences for networks and processes. In particular, we
define when two processes are equivalent in such a way that when they are put in the
same position in the network, the resulting networks are equivalent. In Section 4, we
introduce a proof method for showing process equivalence.

Network Equivalences. We base our network equivalences on the reduction-closed
framework of Honda and Yoshida [12]. The equivalences depend on the choice of
observables, and we have studied several cases.

In the setting of dynamic web data, a natural criterion to decide when two systems
are equivalent is to compare the structure of the data tree at each location without
looking directly at processes, which can be seen as working in the background, and
hence not directly observable. The analysis of processes is implicit in the reduction
closure property. Below we will definetree congruenceas the equivalence induced
by tree observations. In the full paper [15], we show that tree congruence coincides
with two other reduction congruences induced by different observables: one records
whether a located tree is empty, the other records located output capabilities.

Another natural choice for observables, motivated by security concerns, is to con-
sider the capabilities of a processes to access data. This notion of equivalence, defined
later on asbarbed congruence, proves to be more restrictive than tree congruence.

We begin with standard generic definitions, based on some observation relation
N ↓β which states that networkN exhibits the observableβ. We then study specific
observation relations.

Definition 1 The weak observation relationinduced by↓β , denoted by⇓β , is
defined byN ⇓β , ∃N ′. N → N ′ ∧N ′ ↓β. Thereduction congruence induced by
↓β , denoted by', is the largest symmetric relatioṅ' on networks such thatN'̇M
implies

- N andM have the same observables:N ↓β⇒ M ⇓β;

- '̇ is reduction-closed:N → N ′ ⇒ (∃M ′.M →∗ M ′ ∧ N ′'̇M ′);

- '̇ is closed under network contexts:∀C.C[N]'̇C[M].

We now define tree congruence. Comparing trees up to structural congruence
would be overly restrictive, since scripted processes can be semantically equivalent
without being structurally congruent. We consider a weaker notion of equivalence on
trees which does not look at scripts or pointers. These can be analysed indirectly by
suitable contexts.

Definition 2 We defineobservation congruence(≡t), as the structural congru-
ence of Table 1 with the additional axioms2P ≡t 2Q and@l:p ≡t @m:q.

As an example of observation congruence, considerT = a[b[2P] | b[T ′] | c[@l :p]]

andS = a[c[@m:q] | b[S′] | b[2Q]], with T ′ ≡t S′. We haveT ≡t S.

Definition 3 A tree observablehas the forml·T , wherel is a location name andT
is a tree. We define the observation relationN ↓l·T on networks and tree observables
by N ↓l·T, ∃C, S. N = C{({l 7→ S}, 0)} ∧ S ≡t T : that is, N contains a locationl
with an S tree-congruent toT . Tree congruence('t) is the reduction congruence
induced by tree observables.

For example, consider the networkalt(T, S) = ({l 7→ S}, (νc)(l·c〈T 〉 | swap)), and
the processswap = !l·c(X).l·update/(Y, X).l·update/(Z, Y).l·c〈Z〉, which records in
Y the tree atl, replaces it byX, and then does the inverse action. We have that
alt(T, S)'t alt(S, T) for anyT andS, since each process can mimic the other and
swap the trees, even if the two networks start with different stores. As an example of
non-equivalence, and of how scripts are analysed by contexts, consider the network
net(P) = ({l 7→ a[2P]}, 0) and processesP1 =	 ·cut/(X) andP2 =	 ·paste/〈b[0]〉.
We havenet(P1) 6'tnet(P2), sincetest = (−,− | l·runa) distinguishesnet(P1) from
net(P2): test{net(P1)} ⇓l·0 buttest{net(P2)} 6⇓l·0.

We now consider a different equivalence notion based on the observation ofbarbs
revealing where a process can potentially read or write in a located tree.

Definition 4 A barb has the forml·p, where l is a location name andp is a
path expression. We define the observation relationN ↓l·p on networks and barbs

by N ↓l·p, ∃C, T, χ, U, P. N ≡ C{({l 7→ T}, l·updatep(χ, U).P)}: that is,N contains
a location l with an updatep command. Barbed congruence('b) is the reduction
congruence induced by barbs.

For example, ifxch(T1, T2) = (νc)(l·c〈〉 | !l·c().l·updatep(X, T1).l·updatep(X, T2).l·c〈〉)
then we have({l 7→ S}, xch(T1, T2)) 'b ({l 7→ S}, xch(T2, T1)), for all T1, T2 andS.
In fact, the processes have the same barbs, and ifS contains a subtree atp, they can
simulate each other.

Notice that a barbl·p merely records the location and the path at which some
update command could take place, giving no information onhow the data could be
modified, and ignoringrun commands. Again, this information can be observed indi-
rectly using some context.

Theorem 5 Barbed congruence strictly implies tree congruence:'b('t.

The inclusion is strict: for allD, (D, 0)'t(D, l·copyp(x)), since the stores are equal
andl·copyp(x) has no effect, but(D, 0) 6'b (D, l·copyp(x)) sincel·copyp(x) ↓l·p. This
correspond to the intuition that barbed congruence is more operational than tree con-
gruence. Structural congruence for networks is included in'b, and therefore in't.

Process Equivalences. We now analyse process behaviour, which is influenced by
the locations present in the network (network connectivity). Consider replacing the
definition of a service at locationl, which uses only local data, with an equivalent one
depending on data from another locationm. If we can assume thatm is always con-
nected, then the behaviour of the services is the same. On the other hand, if location
m should fail, the behaviour of the new one is affected. With network equivalences,
the “reliable” locations are those in the domain of the store. With process equiva-
lences, it is necessary to state explicitly the minimum set of reliable locations. For ex-
ample, consideroldS = l·cut/(X) andm·newS = (νc)(m·c〈/〉 |m·c(x).l·cutx(X)). The
two processes are equivalent ifm is reliable, otherwise they are not: in the context
({l 7→ T},−) the first process can deleteT , but the second one cannot move. As a
consequence, in order for two processes to be equivalent, they must be equivalent in
all possible network contexts, starting from a given domain.

Definition 6 Given a network equivalence' and a set of location namesΛ, we
define the induceddomain process equivalenceby∼Λ= {(P, Q)|∀D . Λ ⊆ dom(D) =⇒
(D, P) ' (D, Q)}. Domain tree equivalence, (∼t

Λ), is the domain process equivalence
induced by't, anddomain barbed equivalence(∼b

Λ), is the one induced by'b.

For example, for anyΛ, xch(T1, T2) ∼b
Λ xch(T2, T1). Similarly to the case for network

equivalences (Theorem 5), we have∼b
Λ(∼t

Λ, with the same counterexample.
In order to be able to replace a process sub-term by an equivalent one, we extend

process equivalences toopenterms (terms with free variables).

Definition 7 Full process contextsare defined by

C ::= − | C |P | (νc) C | l·a(x̃).C | !l·a(x̃).C | l·updatep(χ, V).C

Definition 8 A substitutionσ is a closing substitutionfor P iff Pσ is closed.
Given an equivalence∼ for closed processes, and two open processesP andQ, we
say thatP ∼ Q iff Pσ ∼ Qσ for all closing substitutionsσ.

Theorem 9 For all Λ, (i) if Λ ⊂ Λ′ then∼t
Λ⊂∼t

Λ′ and∼b
Λ⊂∼b

Λ′ ; (ii) ∼t
Λ and∼b

Λ

(both on open and closed processes) are congruences over full contexts.

As an example for the strict inclusion of (i), consider the processesoldS andm·newS
given above. We haveoldS ∼b

l,m m·newS but oldS 6∼b
l m·newS. In the full paper [15],

we show that process tree and barbed equivalences are in fact the largest congruences
compatible with the corresponding network equivalences.

Core Xdπ is an extension of the asynchronousπ-calculus, and accordingly the
asynchrony law– stating that the presence of a communication buffer cannot be ob-
served – holds also in our setting:!l·a(x).l·a〈x〉 ∼b

Λ 0. On the other hand, the law for
equatorsdoes not hold: letl·E(a, b) =!l·a(x).l·b〈x〉 | !l·b(x).l·a〈x〉, then

l·E(a, b) | l·c〈a〉 6∼b
Λ l·E(a, b) | l·c〈b〉,

since a context can readb from c at l, and use it at some fresh locationm where no
equator is defined. In the next section we will show how usingdistributed equatorsit
is possible regard different names interchangeably only on some designated locations.

4 A Proof Method for Process Equivalence
The process equivalence given in Definition 6, is hard to use in practice, because

it requires closure under all store and process contexts. In this section we provide a
coinductive equivalence which does not quantify over contexts.

The main difficulties involved in defining such an equivalence for Core Xdπ are
caused by having scripted processes among values, and by barbed equivalence being
sensitive to the presence of locations. We solve the first problem by translating mes-
sages containing scripts into ones where each script is replaced by a uniquely named
trigger (a placeholder), and placing in parallel somedefinitionsassociating each trig-
ger with the code of the scripted process. Using this approach it is possible to analyse
the interaction between scripts and their contexts. For a discussion of this technique
see [13, 21], where it is used on the higher-orderπ-calculus. We solve the second prob-
lem using an adaptation of the bisimulation approach to families of relations indexed
by sets of locations, which we calldomain-dependent bisimilarity. Communication is
asynchronous, hence we borrow techniques from the asynchronousπ-calculus.

Labelled Transition System. Let K, ranged over byi, j, k, be the set oftrigger
names, disjoint from the channel names inC. We introduce a construct〈k ⇐ 2P 〉,
called adefinition, which associates a scripted process to the trigger namek. There is
no reduction rule for definitions, which are analysed only in the labelled transition sys-
tem (lts). Parallel compositions of processes and definitions are calledconfigurations
K, L, and together with contextsC are given by

K, L ::= K |K | (νc)K | P | 〈k ⇐ 2P 〉 C ::= − | K |C | (νc)C

where the set of values appearing in processes are extended to contain also triggers
where scripts were allowed. We let underlined lettersu, v range overfirst-ordervalues

F (v) = (v′; A; k̃)

F (ṽ) = (ṽ′; A′; k̃′)

k̃ ∩ (k̃′ ∪ fn(v) ∪ fn(ṽ)) = ∅
k̃′ ∩ (k̃ ∪ fn(v) ∪ fn(ṽ)) = ∅

F (v, ṽ) = (v′, ṽ′; A |A′; k̃, k̃′)

F (U) = (U ′; A; k̃)

F (Ũ) = (Ũ ′; A′; k̃′)

k̃ ∩ (k̃′ ∪ fn(U) ∪ fn(Ũ)) = ∅
k̃′ ∩ (k̃ ∪ fn(U) ∪ fn(Ũ)) = ∅

F (U, Ũ) = (U ′, Ũ ′; A |A′; k̃, k̃′)

F (c) = (c; 0; ()) F (k) = (k; 0; ())

F (l) = (l; 0; ()) F (p) = (p; 0; ())

F (@l :p) = (@l :p; 0; ()) F (0) = (0; 0; ())

F (2P) = (k; 〈k ⇐ 2P 〉; k)

F (T) = (T ′; A; k̃)

F (a[T]) = (a[T ′]; A; k̃)

F (T1) = (T ′
1; A1; k̃1)

F (T2) = (T ′
2; A2; k̃2)

k̃1 ∩ (k̃2 ∪ fn(T1) ∪ fn(T2)) = ∅
k̃2 ∩ (k̃1 ∪ fn(T1) ∪ fn(T2)) = ∅

F (T1 |T2) = (T ′
1 |T ′

2; A1 |A2; k̃1, k̃2)

Table 3. The relationF . The important rule is the axiom replacing scripted processes with
triggers and generating the corresponding definition. The inductive rules have additional condi-
tions to avoid clashes of trigger names.

(values not containing scripted processes), and we will omit the underlining when
there is no ambiguity.

Structural congruence is extended to configurations in the obvious way. A con-
figuration K is well-formed if its processes are well-formed, there is at most one
〈k ⇐ 2P 〉 for eachk, and processes in definitions do not contain triggers. When an
output or update transition takes place in the lts, we use a relationF to incorporate the
triggers.F relates the potentially higher-order valuesṽ with the triple(ũ;A; k̃) con-
sisting of the first order values̃u, obtained by replacing each scripted process2P in
ṽ with a unique triggerk, the configurationA consisting of a parallel composition of
definitions〈k ⇐ 2P 〉, and the unique triggers̃k. The actual relationF is defined as a
homomorphism on all terms, withF (2P) = (k; 〈k ⇐ 2P 〉; k) for scripts (see Table 3).

Transition labelsαl are indexed with the location at which actions take place, and
are defined by

αl ::= (c̃, k̃)l·c〈ṽ〉 | l·c(ṽ) | l·τ | (k̃)l·updatep(Ũ , (χ)Ṽ) | l·runp | l·k(p)

Labels for input and output are standard, first-order labels. Labell·τ denotes commu-
nication atl. The label for update contains a vectorŨ corresponding to the potential
results of pattern-matchingχ with values at pathp in some tree (the range ofΣ in the
updating function) and treats(χ)Ṽ as an abstraction on the pattern variables (which
are therefore subject to alpha-conversion). The vector(k̃) is used by the side condi-
tions of the lts to enforce freshness of triggers, and binds the triggersk̃. Label runp

just records arun at p, and labell·k(p) signals that the script defined byk is selected
for execution, with parametersl andp. Structural congruence extends to actions in the
obvious way.

(Com) l·c〈ṽ〉 | l·c(x̃).P
l·τ−−→ P{ṽ/x̃}

(Com!) l·c〈ṽ〉 | !l·c(x̃).P
l·τ−−→!l·c(x̃).P |P{ṽ/x̃}

(Update) l·updatep(χ, V).P
(k̃)l·updatep(Ũ,(χ)Ṽ

′
)

−−−−−−−−−−−−−−→ P{U1/χ} | · · · |P{Un/χ} | A

for anyŨ = {U1, . . . , Un} with k̃ fresh, andF (V1, . . . , Vn) = (Ṽ
′
; A; k̃),

where eachVi = V

(Out) l·c〈ṽ〉 (k̃)l·c〈ũ〉−−−−−−→ A whereF (ṽ) = (ũ; A; k̃) (In) 0
l·c(ṽ)−−−→ l·c〈ṽ〉

(Trigger) 〈k ⇐ 2P 〉 l·k(p)−−−−→ 〈k ⇐ 2P 〉 |P{l/ 	}{p/.} (Run) l·runp
l·runp−−−→ 0

(Res)
K

αl−→ K′

(νc)K
αl−→ (νc)K′

c 6∈n(αl) (Par)
K

αl−→ K′

K |L αl−→ K′ |L
bn(αl)∩fn(L)=∅

(Struct)
K ≡ L

αl−→ L′ ≡ K′

K
αl−→ K′

(Open)
K

(d̃,k̃)l·c〈ṽ〉−−−−−−−→ K′

(νb)K
(b,d̃,k̃)l·c〈ṽ〉−−−−−−−−→ K′

b6=c, b∈fn(ṽ)\d̃

Table 4. Labelled Transition System for Core Xdπ. The structural and communication rules
are standard. The(Out) rule uses relationF to replace scripts with triggers and produces a
parallel composition of the associated definitions. The(In) rule only allows first-order values,
and the(Update) rule can be regarded as a combination of input, output and communication.

We explain now the rules for the lts; the formal definition is given in Table 4.
Labelled transitions are defined for well-formed configurations. We have standard
contextual and communication rules in the asynchronous style of [11], with the side
conditions adapted to avoid clashes of trigger names. The rule for input and output are

(In) 0
l·c(ṽ)−−−→ l·c〈ṽ〉 (Out) l·c〈ṽ〉 (k̃)l·c〈ũ〉−−−−−→ A

whereF (ṽ) = (ũ; A; k̃). Any scripted process inv is replaced by a trigger iñu, andA is
the parallel composition of all the definitions associated withk̃. In an input transition,
values must necessarily be first-order. The rule for updates is

(Update) l·updatep(χ, V).P
(k̃)l·updatep(Ũ,(χ)Ṽ

′
)

−−−−−−−−−−−−−−→ R | A

for any first-order vector̃U = {U1, · · · , Un}, F (V1, . . . , Vn) = (Ṽ
′
; A; k̃) where each

Vi = V , k̃ is fresh, andR = P{U1/χ} | · · · |P{Un/χ}. These conditions are deter-
mined by viewingŨ as (first-order) parameters received in input, andṼ as parameters
of a subsequent output. We conclude with the rules for running a script and analysing
its definition:

(Run) l·runp
l·runp−−−→ 0 (Trigger) 〈k ⇐ 2P 〉 l·k(p)−−−−→ 〈k ⇐ 2P 〉 |P{l/ 	}{p/.}

The first rule simply records the location and path from which we run a script; the
second one effectively executes a copy of a script, initialised withl andp.

Domain Bisimilarity . We introduce our bisimulation equivalence. The intuition is
that when two processes are running in a domainΛ, we need to check that, if a process
makes an actionαl with l ∈ Λ, then the other one can mimic it, possibly relying on the

existence of other locations inΛ. If l 6∈ Λ we need not worry about matching actions.
But since the domain can be extended by composing networks, we need to make sure
that actions not inΛ are also matched, this time in a different relation parameterised
by Λ ∪ {l}.

We use the notationK
τ−→Λ K ′ if K

l·τ−−→ K ′ for somel ∈ Λ, and
αl−→→Λ ,

τ∗

−→Λ

◦ αl−→ ◦ τ∗

−→Λ if l ∈ Λ, αl 6= l·τ , and
τ−→→Λ ,

τ∗

−→Λ. The functionbn(−) extends to
triggers in the obvious way. We say that an actionαl is relevant to a configurationK,
abbreviated byrel(αl,K), if bn(αl) ∩ fn(K) = ∅.

Definition 10 A family of symmetric relations on configurations (indexed with
sets of locations)̇≈ = {≈̇Λ|Λ ⊆ L} is adomain bisimulationif K≈̇ΛL andK

αl−→ K ′

implies:

1. if l ∈ Λ with rel(αl, L) thenL
α′

l−−→→Λ L′ whereα′
l ≡ αl andK ′≈̇ΛL′;

2. if l 6∈ Λ thenK≈̇Λ∪{l}L.

Domain bisimilarity (≈) is the pointwise largest domain bisimulation. Two open pro-
cessesP,Q areΛ-bisimilar iff for all closing substitutionsσ, Pσ ≈Λ Qσ.

In the long version [15], we show that domain bisimilarity is defined as the largest fix-
point of a monotonic operator on families of relations. Showing thatK ≈Λ L consists
of exhibiting a domain bisimulatioṅ≈ = {≈̇∆|Λ ⊆ ∆ ⊆ L} such thatK≈̇ΛL. It is less
burdensome than it may seem: the family is monotonic, and therefore starting from
the pairs in≈̇Λ, we can build eacḣ≈∆∪{l} from ≈̇∆ adding only the pairs where the
first component makes a move atl.

Theorem 11 For all Λ, (i) if Λ ⊂ Λ′ then≈Λ⊂≈Λ′ ; (ii) ≈Λ is a congruence on
configurations, and the restriction of≈Λ to processes is a congruence on processes.

This theorem corresponds to Theorem 9, but point (ii) here is much harder to prove
since the definition of≈Λ does not require closure under contexts. The congruence
property of≈Λ plays a fundamental role in the theorem below, justifying the use of
domain bisimilarity as a proof method for our process equivalences.

Theorem 12 Process bisimilarity is a sound approximation of process barbed
congruence: for allΛ, if P ≈Λ Q thenP ∼b

Λ Q.

The converse implication does not hold, as can be seen fromxch(T, S) ∼b
Λ xch(S, T)

and point (1) below. We leave to future work the study of complete characterisations
of the contextual equivalences, which we believe could be based on a notion of weak
bisimulation able to abstract away (partly) from update actions.

Examples. We start with an example of the proof method. We call the process
dE(l·a, m·b) = !l·a(x̃).m·b〈x̃〉 | !m·b(x̃).l·a〈x̃〉 a distributed equator. It has the effect of
making the use of channela at l undistinguishable from the use of channelm at b,
a key property to define optimisations for web services. LetE1 = dE(l·a, m·b) | l·a〈ṽ〉
andE2 = dE(l·a, m·b) |m·b〈ṽ〉. We show thatE1 ≈{l,m} E2. We need to give a do-
main bisimulationR = {R∆}{l,m}⊆∆ such thatR{l,m} contains the two processes. In

this case, it suffices to take the family whereR∆ = {(E1, E2), (E2, E1)} ∪ I for all ∆,
whereI is the identity relation. In fact, ifE1

αl−→ E′
1 thenE2

m·τ−−−→ αl−→ E′
1, and similarly

for m. The case forαn with n 6∈ {l, m} is analogous.
Using domain bisimilarity, we can also prove the following results referring to

examples discussed in Section 2 and Section 3:
1. for anyΛ, if S 6≡t T thenxch(T, S) 6≈Λ xch(S, T);

2. oldS ≈Λ m·newS iff m ∈ Λ;

3. for anyΛ, !l·a(x̃).l·a〈x̃〉 ≈Λ 0 andl·E(a, b) | l·c〈a〉 6≈Λ l·E(a, b) | l·c〈b〉;

4. (ν get)(m·get | l·call(m, get, p)) ≈Λ (ν get)(m·get | l·spec) iff m ∈ Λ.

We conclude with an example on replication of web services. Consider the two
servicess1 ands2, meant to be interchangeable, defined as

s1 =!m·b(x̃, y, z).(n·a〈x̃, y, z〉 ⊕m S) s2 =!n·a(x̃, y, z).(m·b〈x̃, y, z〉 ⊕n S)

whereP ⊕l Q = (νc)(l·c〈〉 | l·c().P | l·c().Q). Both offer the same serviceS, but an
internal choice determines whether the service will be provided locally, or delegated
to the other location. It does not matter if we paste in the data a service call tos1 or
one tos2, as justified by the equation

s1 | s2 | l·pastep〈sc[2l·call(m, b, ṽ)]〉 ≈{m,n} s1 | s2 | l·pastep〈sc[2l·call(n, a, ṽ)]〉

5 Conclusions
We have compared alternative notions of behavioural equivalences for Core Xdπ

networks, and we have derived corresponding notions of process equivalence which
are useful to reason about web-related examples. We have defined a sound proof
technique for these equivalences based on the notion ofdomain bisimilarity. Our work
illustrates that a behavioural understanding of dynamic web data can be grounded on
the existing techniques associated with process calculi, although the adaptation is by
no means straightforward.

Acknowledgments. We thank Alex Ahern, Martin Berger, Cristiano Calcagno,
Jonathan Hayman, Andrew Phillips, Iain Phillips, Maria Grazia Vigliotti, Nobuko
Yoshida and Uri Zarfaty for useful comments and suggestions.

References
[1] Serge Abiteboul, Angela Bonifati, Grégory Cobena, Ioana Manolescu, and Tova Milo.

Dynamic XML documents with distribution and replication. InProceedings of SIG-
MOD’03, 2003.

[2] Abiteboul, S. et al. Active XML primer. INRIA, GEMO Report number 275.

[3] G. Bierman and P. Sewell. Iota: a concurrent XML scripting language with application to
Home Area Networks. University of Cambridge Technical Report 557, jan 2003.

[4] Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald Kossmann, Alexander
Kreutz, Stefan Seltzsam, and Konrad Stocker. Objectglobe: Ubiquitous query process-
ing on the internet. To appear in the VLDB Journal: Special Issue on E-Services, 2002.

[5] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic synchronisation
in π-calculus.Nordic Journal of Computing, 10(2):70–98, 2003.

[6] Luca Cardelli and Giorgio Ghelli. A query language based on the ambient logic. In
Proceedings of ESOP’01, volume 2028 ofLNCS, pages 1–22. Springer, 2001.

[7] Philippa Gardner and Sergio Maffeis. Modeling dynamic Web data. In Georg Lausen and
Dan Suciu, editors,Proc. of DBPL’03. LNCS, September 2003.

[8] Andrew Gordon and Riccardo Pucella. Validating a web service security abstraction by
typing. InProceedings of the 2002 ACM Workshop on XML Security, pages 18–29, 2002.

[9] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In
Proceedings of HLCL ’98, volume 16.3 ofENTCS, pages 3–17. Elsevier, 1998.

[10] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proceedings of ECOOP, volume 512 ofLNCS, pages 133–147, Berlin, Heidelberg, New
York, Tokyo, 1991. Springer-Verlag.

[11] K. Honda and M. Tokoro. On asynchronous communication semantics.LNCS, 612:21–
51, 1992.

[12] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.Theoretical
Computer Science, 151(2):437–486, 1995.

[13] Alan Jeffrey and Julian Rathke. Contextual equivalence for higher-order pi-calculus re-
visited. Computer Science Report 04/2002, University of Sussex, 2002.

[14] Alfons Kemper and Christian Wiesner. Hyperqueries: Dynamic distributed query pro-
cessing on the internet. InProceedings of VLDB’01, pages 551–560, 2001.

[15] Sergio Maffeis and Philippa Gardner. Behavioural equivalences for dynamic web data.
Draft available ashttp://www.doc.ic.ac.uk/∼maffeis/corexdpilong.pdf.
Forthcoming Imperial College London Technical Report, 2004.

[16] World Wide Web Consortium. XML Path Language (XPath) Version 1.0. available at
http://w3.org/TR/xpath.

[17] R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.Information
and Computation, 100(1):1–40,41–77, September 1992.

[18] Arnaud Sahuguet, Benjamin Pierce, and Val Tannen. Distributed Query Optimization:
Can Mobile Agents Help? Unpublished draft.

[19] Arnaud Sahuguet and Val Tannen. Resource Sharing Through Query Process Migration.
University of Pennsylvania Technical Report MS-CIS-01-10, 2001.

[20] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[21] D. Sangirogi. Expressing mobility in process algebras: First-order and higher-order
paradigms. PhD thesis, University of Edinburgh, 1992.

