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Abstract. We introduce verification based on separation logic to Gillian,
a multi-language platform for the development of symbolic analysis tools
which is parametric on the memory model of the target language. Our
work develops a methodology for constructing compositional memory
models for Gillian, leading to a unified presentation of the JavaScript and
C memory models. We verify the JavaScript and C implementations of the
AWS Encryption SDK message header deserialisation module, specifically
designing common abstractions used for both verification tasks, and find
two bugs in the JavaScript and three bugs in the C implementation.

1 Introduction

Separation logic (SL) [25,40] introduced compositional program verification us-
ing Hoare reasoning. Current analysis tools based on ideas from SL include:
the automatic tool Infer [8,9] used inside Facebook to find lightweight bugs in
Java/C/C++/Obj-C programs; the semi-automatic tool Verifast [26], which
provides full verification for fragments of C and Java; the semi-automatic tool
JaVerT [21], which provides bug-finding and verification for JavaScript (JS) pro-
grams; and the Viper architecture [36,35], which provides a verification backend
for multiple programming languages, including Java, Rust, and Python. Our goal
is to introduce verification based on SL to Gillian [19], a multi-language platform
for symbolic analysis, integrating bug-finding and verification in the spirit of
JaVerT and targeting many languages in the spirit of Viper.

Gillian currently supports three types of program analysis: symbolic test-
ing, verification and bi-abduction. In [19], the focus was on symbolic testing,
parametrised on complete concrete and symbolic memory models of the target
language (TL), and underpinned by a core symbolic execution engine with strong
mathematical foundations. Gillian analysis is done on GIL, an intermediate goto
language parametric on a set of memory actions, which describe the fundamental
ways in which TL programs interact with their memories. To instantiate Gillian
to a new TL, a tool developer must: (1) identify the set of the TL memory actions
and implement the TL memory models using these actions; and (2) provide a
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trusted compiler from the TL to GIL, which preserves the TL memory models and
the semantics. In [19], Gillian was instantiated to JS and C, and used to find bugs
in two real-world data-structure libraries, Buckets.js [43] and Collections-C [41].
Here, we introduce compositional memory models for Gillian, extend Gillian anal-
ysis with verification based on separation logic, adapt Gillian-JS and Gillian-C
to this compositional setting, and provide verified specifications of the JS and C
implementations of the deserialisation module of the AWS Encryption SDK.

The compositional Gillian memory models (§2) are given by the tool developer
for each TL instantiation. They are based on partial memories, and formulated us-
ing core predicates and the associated consumer and producer actions. Core
predicates describe fundamental units of TL memories: e.g., a property of a JS
object and a C block cell. Consumers and producers, respectively, frame off and
frame on the TL memory resource described by the core predicates. Partiality
and frame are familiar concepts from SL [25,40,11]. What is perhaps less familiar
is our emphasis on negative resource: i.e., the resource known to be absent from
the partial memory. For example, in JS, a new extensible object is known not to
contain any property; and, in C, a freed block is known not to be in memory and
a cell is known not to exist beyond the block bound. We introduce a methodology
for designing Gillian compositional memory models, and apply it to JS and C (§3),
resulting in a unexpected similarity between the two models. Our compositional
JS memory models follow those given in work on a JS program logic [24] and the
JaVerT tool [21], where negative resource was essential for frame preservation,
inspired by the use of negative resource to capture stability properties in the
CAP concurrent separation logic [14], now used in Iris [27]. Our compositional C
memory models are based on the complete CompCert memory model [31]. Despite
a large body of work on separation logic for C, we were unable to find a partial
C memory model that captures the negative resource in its entirety. The nearest
is probably the CH20 formalism [29], which handles freed locations but not block
bounds. Negative resource for freed locations has also been used in incorrectness
logic [39], and for block bounds in a program logic for WebAssembly [48].

We build Gillian verification on top of our compositional memory models.
In particular, using the core predicates, we design an assertion language for
writing function specifications in separation logic and, using the consumers and
producers, we build a fully parametric spatial entailment engine which enables
the use of function specifications in symbolic execution. Gillian also supports
user-defined predicates, which allow tool developers to identify the TL language
interface familiar to code developers, and code developers to describe and prove
properties about the particular data structures in their programs.

We extend Gillian-JS and Gillian-C to enable verification, introducing the JS
and C compositional memory models, and using the same trusted compilers as
in [19]. With these instantiations, we provide functionally-correct, verified specifi-
cations of the message header deserialisation module of the AWS Encryption SDK
JS and C implementations (§4, §5). This is stable, critical, industry-grade code
(~200loc for JS, ~950loc for C), which uses advanced language features to manipu-
late complex data structures. To verify this code, we create language-independent
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predicates to capture the message header, which we then connect without modifi-
cation to both JS and C memories, giving specifications for the module functions.
We also build a library of associated lemmas, used for the verification of both
implementations. The verification itself required a substantial improvement of
the reasoning capabilities of Gillian, especially when it came to handling arrays
of symbolic size. We discovered two bugs in the JS implementation: one a form
of prototype poisoning, predicted theoretically in our paper on JaVerT [21]; and
another that allowed third parties to potentially alter authenticated, non-secret
data. We have also discovered three bugs in the C implementation: one which
allowed some malformed headers to be parsed as correct; one over-allocation; and
one undefined behaviour. All of these bugs have been fixed.

2 Gillian Verification

We introduce Gillian verification based on separation logic (§2.2), extending the
GIL execution engine presented in [19] with compositional memory models (§2.1).

2.1 Compositional Memory Models

GIL is a simple goto intermediate language whose syntax is given below. It is
parametric on a set of TL memory actions, A 3 α, given per instantiation by
the tool developer. GIL values, v ∈ Val , contain numbers, strings, booleans,
uninterpreted symbols (used, e.g., to represent memory locations), simple types
(e.g., numbers, strings), function identifiers and lists of values. GIL expressions,
e ∈ Expr , contain values, program variables, and unary and binary operators (e.g.
addition, list concatenation); GIL symbolic expressions, ê ∈ Êxpr , are analogous
except that symbolic variables, x̂ ∈ X̂ , are used instead of program variables.

GIL Syntax

v ∈ Val , i, j, n ∈ N | s ∈ S | b ∈ B | ς ∈ U | τ ∈ T | f ∈ F | v ∈ List(Val)
e ∈ Expr , v | x ∈ X | 	e | e1 ⊕ e2 ê ∈ Êxpr , v | x̂ ∈ X̂ | 	ê | ê1 ⊕ ê2
c ∈ Cmd , x := e | ifgoto e i | x := e(e′) | x := α(e) | func ∈ Func , f(x){c}

x := uSym/iSym(e) | return e | fail e | vanish p ∈ Prog = P!(Func)

GIL commands, c ∈ Cmd , contain variable assignment, conditional goto,
function call, memory actions, allocation of uninterpreted/interpreted symbols,
function return, error termination and path cutting. A GIL function, f(x){c},
comprises an identifier f ∈ F , a formal parameter x3, and a body given by a list
of commands c. A GIL program is a set of GIL functions with unique identifiers.

GIL execution is defined in terms of state models, which are parametric
on a value set, V ⊇ Val , and a set of memory actions, A. We distinguish
the Boolean value set, Π ⊂ V, and refer to π ∈ Π as a context. State mod-
els expose an interface consisting of state actions, A ] AS , where the actions
3 The implementation supports multiple parameters.
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Memory Action - Success
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)S

σ′.setVarx (v′) σ′′

p ` 〈σ, cs, i〉  〈σ′′, cs, i+1〉S

Memory Action - Error
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)r

r 6= S o = (if r = E then E else M)

p ` 〈σ, cs, i〉  〈σ′, cs, i〉o(v
′)

Fig. 1: GIL Execution Semantics: Memory Actions

AS = {setVarx}x∈X∪{setStore, getStore}∪{evale}e∈Expr∪{assume, uSym, iSym}
address store management, expression evaluation, branching, and allocation.

Definition 1 (State Model). A state model, S(V, A) , 〈|S|, ea〉, comprises: a
set of states σ = 〈µ, ρ, π〉 ∈ |S|, containing a memory µ, a variable store ρ, and
a (satisfiable) context π4; and an action execution function, ea : (A ] AS) →
|S| → V ⇀ P(|S| × V ×R), with the result r ∈ R = {S, E ,M} denoting success,
non-correctible error, or missing information error, pretty-printed σ.α(v) →
{(σi, vi)ri |i∈I} for all outcomes and σ.α(v)  (µi, σi)

ri for a specific outcome,
with countable I. The value set of concrete state models is the set of GIL values,
Val5; the value set of symbolic state models is the set of symbolic expressions, Êxpr .

Definition 2 (GIL Execution Semantics). Given a state model S, the GIL
execution semantics has judgements of the form:

p ` 〈σ, cs, i〉o  S 〈σ′, cs ′, j〉o
′

with: call stacks, cs ∈ CallS; command indexes, i, j ∈ N; and outcomes, o ∈ O.

The GIL execution semantics is standard for a goto language, except that it is
parametrised by the memory actions. Call stacks capture function-related control
flow, with cmd(p, cs, i) denoting the i-th command of the currently executing
function (cf. [33] for details). Outcomes, o ∈ O , S | N(v) | E(v) | M(v), indicate
how the execution is to proceed: S states that it can continue; N(v) states that it
terminated normally with return value v; and E(v) and M(v) state that it failed
with either a non-correctible or missing information error described by v. We
give the rules for memory action execution in Figure 1; all can be found in [33].

Compositional Memory Models. We move from whole-program memory
models [19] to compositional memory models by introducing memory core predi-
cates, γ ∈ Γ , which represent the fundamental units of the TL memory model
(e.g., a memory cell). Core predicates take two lists of parameters, in-parameters
(or ins), denoted vi, and out-parameters (or outs), denoted vo, such that from the
ins we can learn the outs. This concept is similar to predicate parameter modes

4 States also include allocators (cf. [33] for details), elided to limit clutter.
5 Note that the only satisfiable concrete context is true, meaning that concrete contexts
can be elided and concrete states can be viewed as memory-store pairs, 〈µ, ρ〉.
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of [37] and we use it to implement a parametric spatial entailment engine. An
example of a core predicate is the cell assertion, x 7→ v, which captures a cell in
memory at address x having value v. Its in-parameter is x, and its out-parameter
is v, because, if we know x, we can find v by looking it up in the memory.

With each core predicate γ ∈ Γ , we associate a consumer and a producer
memory action, denoted by consγ and prodγ respectively, to obtain the set of
predicate actions AΓ =

⋃
γ∈Γ {consγ ,prodγ}, whose meaning is discussed shortly.

Definition 3 (Compositional Memory Model). Given value set V and core
predicate set Γ , a compositional memory model, M(V, Γ ) , 〈|M |,Wf , eaΓ 〉,
comprises: (1) a partial commutative monoid (PCM)6, |M | = (|M |, •,0), where
0 denotes the (indivisible) empty memory; (2) a well-formedness relation, Wf ⊆
|M | ×Π, with Wfπ(µ) denoting that memory µ is well-formed in (satisfiable)
context π; and (3) a predicate action execution function, ea Γ : AΓ×|M |×V×Π ⇀
P(|M | × V ×Π ×R), pretty-printed µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
for all outcomes

and µ.α(v)π  (µi, vi)
ri
πi for a specific outcome, with countable I. The value set

of concrete memory models is the set of GIL values, Val ; the value set of symbolic
memory models is the set of symbolic expressions, Êxpr .

We discuss the most important properties that the components of compo-
sitional memory models must satisfy; a full list is available in [33]. The PCM
requirement is well-known from separation logic [40,11]. Well-formedness holds
only for satisfiable contexts, and describes the separation of symbolic resource and
any further TL-specific well-formedness criteria (cf. §3). It must be monotonic
with respect to context strengthening, compatible with the PCM composition,
and the empty memory must be well-formed in any satisfiable context. The action
execution function, µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
, denotes that, in a memory µ that

is well-formed in the context π, executing action α with parameter v yields a
countable number of branches characterised by the non-overlapping7, satisfiable
contexts πi, each of which implies π and makes the corresponding memory µi well-
formed, and all of which together cover π (i.e., π ⇒

∨
i∈I πi). This last property

means that memory actions do not drop paths, which is essential for verification.
The intuition behind consumers and producers is that consumers frame off

the core predicate resource (CPR), uniquely determined by the core predicate ins,
and the producers frame it on. The following properties capture this intuition.
First, we define the CPR of a core predicate γ〈vi · vo〉 as the memory resulting
from its production in 0, which must succeed in any satisfiable context:

π SAT =⇒ 0.prodγ(vi · vo)π  (γ〈vi · vo〉, true)Sπ ∧ γ〈vi · vo〉 6= 0.

overloading notation for the core predicate and its resource. Moreover, we require
that any successful production frames on the CPR:

µ.prodγ(vi · vo)π  (µ′, true)Sπ′ =⇒ µ′ = µ • γ〈vi · vo〉
6 A PCM, X = 〈X, •,0〉, comprises a carrier set X (overloaded for simplicity), a partial,
associative, and commutative composition operator •, and unit element 0.

7 Note that this requirement makes concrete memory actions deterministic.
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and also that producers cannot return missing information errors, as they are
meant to succeed precisely when the CPR is missing. The consumers, on the
other hand, must succeed if and only if the CPR is present in memory:

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ π′ ` µ = µ′ • γ〈vi · vo〉

π ` µ = µ′ • γ〈vi · vo〉 ∧ Wfπ(µ) =⇒ µ.consγ(vi)π  (µ′, vo)
S
π

with the resulting context π′ having enough information to isolate the CPR8.
Interestingly, erroneous executions cannot be fully characterised in terms of
CPR presence or absence, because of TL-specific error cases: for example, in C,
attempting to either get or set the value of a block cell that is beyond the block
bound raises an out-of-bounds error (cf. §3). What we require instead is that
consumed CPR can always be re-produced, that producers fail in a memory in
which consumers succeed, and that producers succeed in a memory in which
consumers return a missing information error (and vice versa for the latter):

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ′.prodγ(vi · v′o)π′  (µ′′, true)Sπ′

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ.prodγ(vi · −)π  (µ, false)Eπ′

µ.consγ(vi)π  (µ, false)Mπ′ ⇐⇒ µ.prodγ(vi · vo)π  (µ • γ〈vi · vo〉, true)Sπ′

The properties given so far allow us, for example, to prove that well-formed
memories cannot contain duplicated CPR. The final property below requires that
non-missing executions of consumers and erroneous executions of producers must
be frame-preserving, with the former formulated as follows:

µ.consγ(vi)π  (µ′, vo)
r
π′ ∧ r 6=M ∧ (π′′ ⇒ π′) ∧ Wfπ′′(µ • µf )

=⇒ (µ • µf ).consγ(vi)π′′  (µ′ • µf , vo)rπ′′

where π′′ effectively maintains well-formedness constraints for µ, adds on further
ones required for µ • µf to be defined and also isolates the consumed CPR.
Note that neither missing executions of consumers nor successful executions of
producers can be frame preserving, as framing on the appropriate CPR could
result in success for the former, and a duplicated resource error for the latter.

Using the consumers and producers, we are able to derive getter and setter
actions, A , {getγ , setγ : γ ∈ Γ}, which perform frame-preserving CPR lookup
and mutation, as given below. We discuss getters and setters further in §3, in the
context of our JS and C instantiations.

Getter: Success
µ.consγ(vi)π  (µ′, vo)

S
π′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.getγ(vi)π  (µ′′, vo)
S
π′

Setter: Success
µ.consγ(vi)π  (µ′,−)Sπ′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.setγ(vi · vo)π  (µ′′, true)Sπ′

Getter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.getγ(vi)π  (µ, false)rπ′

Setter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.setγ(vi · vo)π  (µ, false)rπ′

8 The π ` . . . denotes reasoning under context π. In the concrete case, it can be ignored.
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Compositional State Models. Compositional memory models lift to compo-
sitional state models, in a similar way to the lifting of the complete memory
models illustrated in [19]; see [33] for details. Here, we focus on memory action
execution, which is lifted as follows to state action execution, given a memory
model M(V, Γ ) and α ∈ AΓ ]A:

ea(α, 〈µ, ρ, π〉, v) , {(〈µ′, ρ, π′〉, v′)r | µ.α(v)π  (µ′, v′)rπ′}.

Observe how the context of the state is passed to the memory execution function,
which may then strengthen it before passing it back to the resulting state. We
can show that the PCM and well-formedness relation on memories lift to a PCM
and well-formedness relation on states, and that state action execution maintains
properties analogous to those given for memory models.

2.2 GIL Verification

We give an overview of Gillian verification based on separation logic (SL); see [33]
for details. We describe GIL assertions, parameterised by the core predicates
of the TL, define assertion satisfiability in a novel, parametric way using the
core predicate producers, and provide a mechanism for using verified function
specifications in GIL execution. GIL Assertion Syntax

p, q ∈ A , emp | p ∗ q | γ〈êi · êo〉 | δ〈êi · êo〉
P,Q ∈ Asrt , {p ∧ π | p ∈ A, π ∈ Π}
pred ∈ Pred , pred δ〈x̂i · x̂o〉 := P1; ... ;Pn;

A compositional memory model
with core predicates Γ induces
an SL-assertion language given on
the right. GIL memory assertions,
p, q ∈ A, are formed using the
empty assertion, the separating conjunction, the core predicates, and user-defined
predicates, whose names come from a dedicated set, ∆ 3 δ. The empty assertion
and the separating conjunction are standard. Core predicate assertions are lifted
from memory core predicates. User-defined predicates, introduced by example in
§3 and §4, are used by tool developers to characterise the interface of the TL, and
by code developers to describe the data structures in their programs. They have
in- and out-parameters like core predicates, and can have multiple definitions,
separated by a semi-colon. Assertions, P,Q ∈ Asrt , extend memory assertions
with pure first-order assertions, π, conflated with Boolean symbolic expressions.

Satisfiability. To define assertion satisfiability, we lift memory consumers and
producers from core predicates to memory assertions, denoted by µ.consθ(p) and
µ.prodθ(p), and then to states and arbitrary assertions, denoted by σ.consθ(P )
and σ.prodθ(P ), using substitutions θ : X̂ 7→ V (extended to symbolic expres-
sions inductively, in the standard way) to map core predicate assertions, with
parameters given by symbolic expressions, to the core predicates of the memory
model, with parameters given by values. We highlight the successful base case
of the memory assertion consumers, where the returned context requires the
out-parameters of the assertion to match the ones found in memory:

µ.consγ(θ(êi))π  (µ′, v′o)
S
π′ π′′ = (π′ ∧ v′o = θ(êo))) π′′ SAT

µ.consθ(γ〈êi · êo〉)π  (µ′, true)Sπ′′
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and the successful consumption of an arbitrary assertion P = p ∧ π:

µ′.consθ(p)π′  (µ′′, true)Sπ′′ π′′ ` θ(π)
〈µ′, ρ, π′〉.consθ(p ∧ π)  (〈µ′′, ρ, π′′〉, true)S

Definition 4 (Satisfiability). The satisfiability relation, stating that memory
µ′ and context π′ satisfy assertion p ∧ π under substitution θ, is defined by:

µ′, π′, θ |= p ∧ π ⇐⇒ 0.prodθ(p)true  (µp, true)
S
πp ∧ π

′ ` (µ′ = µp ∧ πp ∧ θ(π))

and is lifted to states as: 〈µ′, ρ, π′〉, θ |= p ∧ π if and only if µ′, π′, θ |= p ∧ π.

In Definition 4, the production, when successful, creates the (unique) memory
µp that corresponds to the resource of the assertion p, with its (unique) well-
formedness constraints, πp. In the concrete case, as the only allowed context is true,
the formulation simplifies to the more intuitive 0.prodθ(p) → (µ′, true)S ∧ θ(π).

Specifications. Gillian function specifications have the form {x̂, P}f(x){Q}ê,
where f is the function identifier, x is the function parameter, x̂ is the symbolic
variable holding the value of x, P is the pre-condition, Q is the post-condition, and
ê is the return value of the function, with the following, well-known, constraints:

1. program variables do not appear in the pre- or the post-condition, and the
function parameter x is accessed using the symbolic variable x̂;

2. symbolic variables that appear in a pre-condition are implicitly universally
quantified, and can be re-used in the corresponding post-condition; and

3. symbolic variables that appear only in a post-condition are implicitly exis-
tentially quantified.

We extend GIL programs with function specifications, accessible via p.specs,
and the GIL execution semantics with rules for folding and unfolding user-defined
predicates, as well as with a rule for calling function specifications, the success
case of which is given below. Gillian verifies a specification {x̂, P}f(x){Q}ê if,
given the identity substitution θ̂ and a symbolic state σ̂ with store {x 7→ θ̂(x̂)}
such that σ̂, θ̂ |= P , the symbolic execution of f starting from σ̂ always terminates,
for all final symbolic states σ̂i there exists some θ̂i ≥ θ̂ such that σ̂i, θ̂i |= Q, and
the corresponding return value equals θ̂i(ê) under the context of σ̂i. We can prove
that if Gillian verifies a specification, then its standard SL interpretation holds.

Spec Call - Success
cmd(p, cs, i) = y := e(e′) with θ function call with substitution θ
σ.evale (−) f σ.evale′ (−) v′ get function id and parameter value
{x̂, P}f(x){Q}ê ∈ p.specs get one of the function specifications
θ′ = θ[x̂ 7→ v′] extend substitution with parameter value
σ.consθ′(P ) → {(σj , true)S |j∈J} consume pre-condition
j ∈ J select a branch
σj .prodθ′ (Q) (σ′

j , true)
S produce post-condition

σ′
j .setVary (θ

′(ê)) σ′ assign return value
p ` 〈σ, cs, i〉  〈σ′, cs, i+1〉
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Note that for this rule to succeed, the consumption of P must succeed. The rule
is slightly simplified for presentation. First, it assumes to have the substitution
upfront; in the implementation, we have a unification algorithm that, starting
from the function parameter and using the consumers, learns the substitution.
Second, it assumes that the post-condition does not introduce fresh symbolic
variables; these are handled using allocators and added to the substitution.

Remark. Due to space constraints, we have not been able to give the full tech-
nical details of Gillian verification. These are available in the Gillian technical
report [33], where we demonstrate that the overall GIL execution using composi-
tional memory models is frame-preserving (up to the usual renaming of allocated
memory locations) and prove a standard verification soundness result.

3 Compositional Memory Models: JavaScript and C

We present the compositional memory models of JS and C, giving the basic
actions and core predicates, and some of the user-defined predicates that capture
the intuitive interfaces of these languages. The key ideas behind compositional
JS memory models were introduced in the JaVerT project [21,20,22]; we transfer
them to Gillian. We introduce the compositional C memory models, building
on the concrete block-offset memory model of CompCert [31], simplifying the
presentation.9 In doing so, we highlight a striking similarity between the JS and
C models that is the result of our emphasis on negative resource.

The JS and C concrete compositional memory models are made up of
building blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocks that are assigned a unique location (or identifier) from a set
of uninterpreted symbols, L ⊂ U : for JS, the building blocks are the extensible
objects; for C, they are the blocks of linear memory of a given size. Each building
block is divided into at least one componentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponent. For JS, each object has three
components: a property table, h : S ⇀ Val , partially mapping property names
(strings) to values; a domain, d : P(S), discussed shortly; and metadata, m : Val ,
which keeps track of internal JS properties for that object [22]. For C, each block
has two components: the block contents k : N⇀ Val , partially mapping offsets
(natural numbers) to values; and a bound, n : N, discussed shortly. Finally, the
memory unitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunits are, intuitively, the parts of the memory components that cannot
be separated further: for JS, these are single object properties, domains, and
metadata; for C, these are single block cells and bounds. These memory units
directly correspond to the core predicates given in Definitions 6 and 7.

Compositional memory models must keep track of negative resource, which
can come from two sources: allocation and deallocation. For JS and C, the
negative information originating from allocation has infinite representation: in
JS, a freshly created object is known to not have any properties; in C, a freshly
allocated block of a given size in C is known not to have offsets beyond that size.
This infinite information is captured, for JS, by the object domain whose meaning
9 We assume that values have the same size in memory and omit permissions. Gillian-C
implements the full models, eliding the concurrency-related aspects of permissions.
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is that any property not in the domain is absent, and, for C, by the block bound
whose meaning is that any accesses beyond that bound result in a buffer overrun
error. The negative information originating from deallocation is easier to handle,
tracked by a dedicated uninterpreted symbol, ∅ ∈ U . In JS, deallocation is at the
unit level: only object properties are deleted. This is captured by extending the
co-domain of property tables with ∅: that is, h : S ⇀ Val∅. In C, deallocation is
at the building-block level: only entire blocks can be deleted. This is captured by
extending the co-domain of blocks with ∅, indicating that a block has been freed.

Due to compositionality, any building block, component or unit can be missingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissing.
In the theory, we capture this either implicitly, via absence from the domain of a
mapping (e.g., a missing object property for JS or a missing block cell for C), or
explicitly, using the symbol ⊥ (e.g. a missing domain, metadata, or bound).

Definition 5 (Compositional JS and CMemories). The PCMs of composi-
tional concrete JS and C memories, |MJS| and |MC|, are given by the sets

µ ∈ |MJS| : L⇀ ((S ⇀ Val∅)× P(S)⊥ × Val⊥),
µ ∈ |MC| : L⇀ ((N⇀ Val)× N⊥)∅,

composition defined as disjoint union, and empty memory ∅. The PCMs of
compositional symbolic JS and C memories, |M̂JS| and |M̂C|, are given by the sets

µ̂ ∈ |M̂JS| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥ × Êxpr⊥),
µ̂ ∈ |M̂C| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥)∅,

with composition defined as (syntactic) disjoint union, and empty memory ∅.

In the above definition, symbolic memory models are simple liftings of the
concrete ones. In the implementation, we employ heavy optimisation: for example,
in Gillian-C, we have developed a complex tree representation of symbolic blocks
inspired by [29], enabling tractable reasoning about arrays of symbolic size.

Well-formedness of concrete memories addresses the relationship between
positive and negative information, given for JS and C below:

Wf JS(µ) , ∀(h, d,−) ∈ codom(µ). d 6= ⊥ =⇒ dom(h) ⊆ d
Wf C(µ) , ∀(k, n) ∈ codom(µ). n 6= ⊥ =⇒ dom(k) ⊆ [0, n)

Well-formedness of symbolic memories additionally has to address separation
of locations and separation in any other mappings with symbolic expressions
in its domain (e.g. object properties for JS and offsets for C). We give the
well-formedness criterion for the symbolic C memory:

Ŵf C
π(µ̂) , π `

∧
l̂,l̂′∈dom(µ̂)

l̂ 6≡l̂′

l̂ 6= l̂′ ∧
∧

(k̂,−)∈codom(µ̂)

ô,ô′∈dom(k̂),ô 6≡ô′

ô 6= ô′ ∧
∧

(k̂,n̂)∈codom(µ̂)

ô∈dom(k̂),n̂6=⊥

ô < n̂

For our JS and C instantiations, the core predicates follow straightforwardly
from the units of their memory models.
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CConsCell - Found
µ(l) = (k, n) k(o) = v

k′ = k \ {o} µ′ = µ[l 7→ (k′, n)]

µ.consCell([l, o]) (µ′, v)S

SConsCell - Use After Free
µ̂(l̂′) = ∅ π′ = (l̂ = l̂′) (π ∧ π′) SAT

µ̂.consCell ([l̂, ô])π  (µ̂, false)Eπ∧π′

SConsCell - Found
µ̂(l̂′) = (k̂, n̂) k̂(ô′) = v̂

π′ = ([l̂, ô] = [l̂′, ô′]) (π ∧ π′) SAT
k̂′ = k̂ \ {ô′} µ̂′ = µ̂[l̂′ 7→ (k̂′, n̂)]

µ̂.consCell ([l̂, ô])π  (µ̂′, v̂)Sπ∧π′

SConsCell - Missing Cell
µ̂(l̂′) = (k̂, n̂)

πk = (l̂ = l̂′) ∧ ô /∈ dom(k̂)
πn = (n̂ = ⊥) ∨ (n̂ ≥ ô) (π ∧ πk ∧ πn) SAT
µ̂.consCell ([l̂, ô])π  (µ̂, false)Mπ∧πk∧πn

Fig. 2: Selected rules for the consCell consumer.

Definition 6 (JS Core Predicates). JS has three core predicates, γJS ∈ ΓJS:
– the object-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-property predicate, (l̂, p̂) 7→ v̂, which states that property p̂ of object
at location l̂ contains value v̂ (including ∅ denoting property absence);

– the domaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomain predicate, domain(l̂, d̂), which states that object at location l̂ has
no properties outside the finite set d̂;

– the metadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadata predicate, metadata(l̂, m̂), which states that object at location l̂
has metadata m̂.

Definition 7 (C Core Predicates). C has three core predicates, γC ∈ ΓC
10:

– the cell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicate, (l̂, ô) 7→ v̂, which states that the cell at offset ô in the block
at location l̂ contains value v̂ (which, this time, does not include ∅);

– the bounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicate, bound(l̂, n̂) , which states that any cell beyond offset n̂
in block at location l̂ is not there;

– the freed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicate, l̂ 7→ ∅, which states that block at location l̂ has been freed.

We illustrate the C predicate action execution functions, ea C and êa C, respec-
tively, with a selection of rules for the C cell-predicate consumer, consCell, given in
Figure 2. The remaining rules, as well as the rules for their JS counterparts, ea JS

and êa JS, can be found in the Gillian technical report [33]. With this information,
we can define the compositional concrete and symbolic JS and C memory models.

Definition 8 (JS Memory Models). The compositional concrete and symbolic
JS memory models are defined, respectively, as MJS(Val , ΓJS) = 〈|MJS|,Wf JS, ea JS〉
and M̂JS(Êxpr , ΓJS) = 〈|M̂JS|, Ŵf JS, êa JS〉.

Definition 9 (C Memory Models). The compositional concrete and symbolic
C memory models are defined, respectively, as MC(Val , ΓJS) = 〈|MC|,Wf C, ea C〉
and M̂C(Êxpr , ΓJS) = 〈|M̂C|, Ŵf C, êa C〉.
10 In full C and the Gillian-C implementation, memory values may be of different sizes,

and holes may exist between these values due to alignment restrictions. To address
this, the implemented cell assertion carries additional information related to, e.g.,
size and type, similarly to that of [4], and there also exists a hole core predicate.
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The getters and setters for JS and C are defined using the methodology
described in §2. In particular, the JS getters and setters are given by AJS =
{getProp, setProp, getDomain, setDomain, getMetadata, setMetadata}, and the sum-
mary of the execution of the symbolic getProp(l̂, p̂) getter is illustrated below:

Similarly, the C getters and setters are given by AC = {getCell, setCell, getBound,
setBound, getFreed, setFreed} and the summary of the execution of the symbolic
getCell(l̂, ô) getter is illustrated below:

The similarities in the two diagrams are evident, with the main difference being
that JS getters do not throw errors, whereas C getters do.

User-defined JS and C Predicates. Core predicates describe fundamental
units of the TL memory model. On top, user-defined predicates build layers
of abstraction to describe memory components and building blocks, standard
library interfaces, all the way to complex data structures for particular code
such as the AWS message header. Using Gillian notation, we present some of the
JS and C user-defined predicates; in this notation: ∗ and ∧ are conflated to ∗,
with automatic differentiation between spatial and pure assertions11; predicate
definitions are separated with a semi-colon; and logical variables are prefixed with
the # symbol and are implicitly existentially quantified in predicate definitions.

Gillian-JS inherits many user-defined predicates from JaVerT [21], including
simple ones for describing JS objects and their properties, as well as advanced
ones for specifying scoping, function closures and prototype chains. We focus
here on the new FrozenObject(o, proto, pvs) predicate, which describes a frozen
object12 o with prototype proto and property-value pairs pvs. We first define the
predicate FrozenObjectProps(o, pvs) to grab the resource of the object properties:

pred FrozenObjectProps(o, pvs) : pvs = [ ];
pvs = [#p, #v] :: #rpvs * DataPropConst(o, #p, #v) *
FrozenObjectProps(o, #rpvs);

where DataPropConst(o,#p,#v) states that the object o has a non-writable prop-
erty #p with value #v. We then add information about the object prototype and
its non-extensibility using the JSObject(o, proto, ext) predicate, and also state
that the object has no properties other than pvs using the domain core predicate:
11 From the separation logic literature, the pure assertions can be regarded as dotted.
12 A JS object is frozen if it cannot be extended and all its properties are non-writable.
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pred FrozenObject(o, proto, pvs) :
JSObject(o, proto, false) * FrozenObjectProps(o, pvs) *
FirstProj(pvs, #ps) * ListToSet(#ps, #pss) * domain(o, #pss)

where FirstProj(pvs,#ps) means that the list #ps is the first projection of the
list of pairs pvs, and ListToSet(#ps,#pss) means that the elements of the list
#ps form the set #pss.

Gillian-C, on the other hand, comes with user-defined predicates capturing,
for example, arrays and blocks in memory, as well as automatically-generated
predicates describing C structs, with support for nested structs. In particular, the
array(b, off, c) predicate describes a contiguous fragment of a block b, starting
from offset off, with contents described by the mathematical list c:

array(b, off, c) : c = [];
(b, off) -> #c * array(b, off+1, #d) * c = #c :: #d

and the block(b, c) predicate captures an entire C block with contents c:

block(b, c) : array(b, 0, c) * bound(b, |c|)

In the implementation, arrays also exist as core predicates. This allows us to
reason about arrays automatically in the symbolic memory (e.g., to split an array
into sub-arrays), supported by our tree representation of symbolic blocks, instead
of requiring manual application of lemmas.

Finally, we illustrate automatically generated struct-related predicates us-
ing the aws_byte_cursor structure given below, which contains two fields: an
unsigned integer len; and a nullable pointer to an array of 8-bit unsigned inte-
gers buf. This struct is used for traversing the AWS message header (cf. §4), and
is intended to capture an array in memory that starts at buf and has length len.

struct aws_byte_cursor { pred struct_aws_byte_cursor(cur, len, buf) :
size_t len; (cur == [#b, #o]) * ((#b, #o) -int64-> len) *
uint8_t *buf; ((#b, #o +p 8) -int64-> buf) *

} is_ptr_or_null(buf)

The generated predicate describes the struct’s layout in memory and gives basic
typing information: it states that an aws_byte_cursor, starting from the position
given by the pointer cur, occupies 16 bytes in memory (8 + 8, given by the type
annotation int64), with the first 8 bytes taken by len, and the second 8 bytes
(note the pointer addition +p) taken by buf, which is either a pointer or null.

4 AWS Encryption SDK Message Header Specification

The encrypted data handled by the AWS Encryption SDK is stored within a
structure called a message [3]. The message format has two versions of similar
complexity: we verify version 1; version 2 was introduced very recently. Messages
consist of a header, a body, and a footer. Here, we describe only the structure of
the header, as we are verifying header deserialisation.
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The AWS Encryption SDK message header is a sequence of bytes (buffer)
divided into sections, as illustrated below; above each section is its length in bytes.

Our approach is to abstract the header contents into a list and formulate pure
predicates that describe its structure in a language-independent way. This allows
us to then use the same abstractions as part of further, language-dependent,
abstractions for both JS and C. Our design of the abstractions was informed by
existing code annotations found in the implementations, which describe simple
first-order properties of the code and, in the case of C, can also link to the
CBMC [30] bounded model checker. However, these annotations are limited by
the expressivity of JS and C, particularly when it comes to reflecting on the
memory contents. Our predicates have no such limitations.

We narrow down our exposition to the encryption context, as it illustrates well
the language-independent and language-dependent aspects of our specification,
and is also the section in which we discovered bugs in both implementations.

Pure Specification of the Encryption Context. The encryption context
(EC) is a sequence of bytes that describes a set of key-value pairs. Its structure
is given in the diagram below.

The first two bytes represent the number of key-value pairs, denoted by KC,
and the rest describe the KC key-value pairs themselves. Keys and values are
represented by sequences of bytes and, as they are of variable length, are serialised
by first having two bytes that represent the length, followed by that many bytes
of the actual key or value; we refer to this pattern as a field, and to a sequence of
n fields as an n-element. Then, a key-value pair is serialised as a 2-field element,
and all of the key-value pairs form a sequence of KC 2-field elements.

We specify the EC by building layers of abstraction, from fields to elements to
element sequences to the EC, each of which can either be complete, incomplete
(partial, but with correct structure), or malformed (with incorrect structure).
In the implementation, these are specified separately and are joined together in
appropriate over-arching abstractions. Here, we focus on complete variants only.

The Field(buf, pos, fld, len) predicate states that the buffer (list of bytes) buf,
at index pos, holds a field with contents fld (list of bytes) and total length len:
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pred Field(buf, pos, fld, len) :
(0 <= pos) * (#rFL = sub(buf, pos, 2)) *
UInt16(#rFL, #fL) *
(fld = sub(buf, pos+2, #fL)) *
(len = 2+#fL) * (pos+len <= |buf|)

This predicate uses the GIL operator sub(l, s, n), which returns the sublist of list l
starting from index s and of length n, and also the UInt16(rn, n) predicate, which
states that n is a 16-bit big-endian interpretation of the raw 2-byte list rn. The
Element(buf, pos, fC, elem, len) predicate states that buffer buf at index pos holds
a sequence of fC fields, with contents elem (a list of the appropriate field contents)
and total length len. It is defined similarly to a standard linked-list predicate,
with the ‘link’ being the fact that the list members are contiguous in memory:

pred Element(buf, pos, fC, elem, len) :
(fC = 0) * (0 <= pos) * (pos <= |buf|) * (elem = [ ]) * (len = 0);
(0 < fC) * Field(buf, pos, #fld, #fL) * Element(buf, pos+#fL, fC-1, #rFs,
#rL) * (elem = #fld :: #rFs) * (len = #fL+#rL)

Next, analogously to Element, we define the Elements(buf, pos, eC, fC, elems, len)

predicate, which states that the buffer buf, at index pos, holds a sequence of
eC elements, each with fC fields, with contents elems (a list of the appropriate
element contents) and of total length len. Finally, the EncryptionContext(buf, KVs)
predicate states that the entire buffer buf is an EC with key-value pairs KVs, with
all keys being unique:

pred EncryptionContext(buf, KVs) : (buf = [ ]) * (KVs = [ ]);
(#rKC = sub(buf, 0, 2)) * UInt16(#rKC, #KC) * (0 < #KC) *
Elements(buf, 2, #KC, 2, KVs, #len) *
FirstProj(KVs, #Ks) * Unique(#Ks) * (2+#len = |buf|)

Next, we show how this pure specification of the EC contents can be connected
without modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modification to both the JS and C memories.

Encryption Context in JS. In JS, the EC is serialised as an ArrayBuffer,
which is a raw binary data buffer in memory, and accessed using a Uint8Array,
which is a view on top of that ArrayBuffer starting from a given offset and of a
given length, treating the raw data underneath as 8-bit unsigned integers. This
Uint8Array view is similar in function to the aws_byte_cursor C structure (cf. §3).
Abstracting ArrayBuffer contents to lists, we connect these data structures in JS
memory to our pure EC specification (cf. Figure 3, top and centre):

pred JSSerEC(o, EC, KVs) :
Uint8Array(o, #aBuf, #off, #len) * ArrayBuffer(#aBuf, #data) *
(EC = sub(#data, #off, #len)) * EncryptionContext(EC, KVs)

In JS, the EC is deserialised into a frozen JS object with prototype null,
whose properties represent the keys and hold the values. This is done by converting
the keys and the values to UTF-8 strings, and is specified as follows:

pred JSDeserEC(o, KVs) : toUtf8(KVs, #sKVs) * FrozenObject(o, null, #sKVs)

where toUtf8 converts the list KVs point-wise to strings, obtaining #sKVs.
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Fig. 3: Serialised Encryption Context: language-independent pure part (red;
middle) and language-specific resource (green; JS above, C below)

{ JSSerEC(eEC, #EC, #KVs) }
function decodeEncryptionContext(eEC)

{ PRE-CONDITION * JSDeserEC(ret, #KVs) }

Finally, the specification of the
decodeEncryptionContext function
states that the EC deserialisation
is performed correctly.

Encryption Context in C. In C, the EC is serialised as a block in memory,
and is traversed using an AWS byte cursor. Using the auto-generated predicate
given in §3, we define the aws_byte_cursor(cur, buf, c) predicate, stating that
cur points to a byte cursor which has access to an array starting from buf, and
holding contents c, making the length implicit:

pred aws_byte_cursor(cur, buf, c) :
struct_aws_byte_cursor(cur, #len, buf) * (buf = [#b, #off]) *
array(#b, #off, c) * (#len = |c|)

A serialised EC can then be described as a valid byte cursor whose contents
represent the EC key-value pairs (cf. Figure 3, centre and bottom):

pred CSerEC(cur, buf, EC, KVs) :
aws_byte_cursor(cur, buf, EC) * EncryptionContext(EC, KVs)

In C, the EC is deserialised into an AWS hash table, whose keys and values
directly correspond to the key/value pairs of the EC, specified as follows, eliding
the internal structure of the hash tables due to space constraints:

pred CDeserEC(ht, KVs) : valid_hash_table(ht, KVs)

The specification of the EC deserialisation function is more complex than for
JS. In particular, the byte cursor that originally pointed to the EC ends up shifted
to the end of the byte buffer, exposing the array underneath the CSerEC predicate.

{ empty_hash_table(ec) * CSerEC(cur, #buf, #EC, #KVs) }
int aws_cryptosdk_enc_ctx_deserialize(

struct aws_hash_table *ec, struct aws_byte_cursor *cur)
{ (ret = 0) * CDeserEC(ec, #KVs) * (#buf = [#b, #off]) *

array(#b, #off, #EC) * aws_byte_cursor(cur, #buf +p |#EC|, [ ]) }
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5 AWS Encryption SDK Message Header Verification

Using Gillian-JS and Gillian-C, together with the specifications given in §4, we
verify full functional correctness of the header deserialisation module of the AWS
Encryption SDK JS [2] (~200loc) and C [1] (~950loc) implementations. In par-
ticular, we verify that the deserialisation of a complete header is correct, and the
deserialisation of an incomplete or a malformed header raises an appropriate error.

Verification Effort and Performance. The JS verification took 3 person-
months and the C verification took 2 person-months, with the latter taking
less time because a large part of the infrastructure developed for JS could be
re-used. We substantially improved the first-order solver of Gillian to reason
automatically about complex operations on lists of symbolic length, first used in
the modelling of JS ArrayBuffers and then for C dynamic arrays. We created a
collection of language-independent predicates and lemmas about their inductive
properties (~1.2kloc) that cover the project-specific AWS header, but also re-
usable first-order concepts such as list element uniqueness, projections of lists
of pairs, conversion from bytes to numbers, and conversion from raw bytes to
strings. Similarly, we also had to create language-dependent abstractions and
associated lemmas for the JS and C manipulation of the AWS message header
(~1.2kloc). Finally, we had to: annotate the code with specifications and loop
invariants, with the latter often having more than twenty components; manually
apply lemmas to prove numerous complex entailments; and manually unfold
user-defined predicates at times (the folding is automated) (~1.1kloc).

On a machine with an Intel Core i7-4980HQ CPU 2.80 GHz, DDR3 RAM
16GB, and a 256GB solid-state hard-drive running macOS, the JS verification
takes approximately 45 seconds and the C verification takes approximately six
minutes. The C time is longer, in part due to the larger codebase, but mainly due
to the complexity of the implementation of the full C memory model, which is
able to reason about arrays of symbolic size. This requires frequent satisfiability
checks and (for the moment) branching on non-zero array size. These times could
both be improved with the implementation of basic merging techniques.

JS Verification: Bugs/Improvements. We discovered two bugs and improved
one function implementation to link better with the underlying data structure.

– In the decodeEncryptionContext function, the object representing the de-
serialised EC originally had prototype Object.prototype which, in this case,
due to the prototype inheritance of JavaScript, meant that if an EC key
coincided with a property of Object.prototype, an error would be thrown
incorrectly. This bug was predicted theoretically in [21], and has since been
found in several real-world libraries [42], including cash and jQuery.

– In the same function, in one of the branches the deserialised EC was returned
non-frozen, which constituted a potential vulnerability in that third parties
could alter non-secret, but authenticated data.

– The readElements(eC, fC, buf, pos) function, which reads eC elements with
fC fields from buffer buf at index pos into a JS array of arrays, was misaligned
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with the underlying data structures. Its parameters were non-intuitive (it
received eC ·fC, buf, and pos), and used complex array operations to re-form
the final return value. We re-implemented this function to construct the
returned array of arrays efficiently, simplifying specification and verification,
and our implementation was integrated into the codebase.

JS Verification: Caveats. Our JS verification is correct up to the following
caveats. First, as the AWS SDK JS implementation is written in TypeScript,
we elide types to obtain JS; this could be automated, potentially generating
predicates from the types. Next, some ES6 features, such as patterns in function
parameters, are not yet supported by Gillian-JS; these we rewrite to ES5 Strict,
preserving their meaning. Next, we use axiomatic specifications of the ArrayBuffer,
DataView, and UInt8Array ES6 built-in libraries, as well as of the Object.freeze
and Array.prototype.map built-in functions. These would ideally be accompanied
with implementations, tested against the official Test262 test suite [16] and verified
against their specifications. Finally, as Gillian does not support higher-order
reasoning, we axiomatise the toUtf8 function, passed into the deserialisation
module as a parameter, as an injective function from raw bytes to JS strings.

C Verification: Bugs. We discovered three bugs: one logical error; one undefined
behaviour; and one over-allocation.

– The deserialisation of the EC mishandled the case when there is not enough
data to read it entirely, continuing to read the EDK instead of reporting an
error. This allows some malformed headers to be parsed as well-formed.

– The function aws_byte_cursor_advance, when called with a NULL cursor
and a length of 0, resulted in NULL+ 0 being computed, which is undefined
behaviour, although not problematic for most compilers.

– The deserialised EC was stored using aws_string, which extends C strings
with certain metadata. It is implemented using a structure that includes a
flexible array member. We discovered that string creation over-allocated this
array by 8 bytes, because our (correct) predicate describing aws_strings
was not allowing the verification to go through.

C Verification: Caveats. Our C verification is correct up to the following
caveats. First, we do not use the aws_byte_cursor_advance_nospec function,
which advances the byte cursor, but also uses complex computation to protect
against the Spectre bug. We instead use aws_byte_cursor_advance, which has
equivalent behaviour, as our specifications are not expressive enough to capture
this distinction. Next, we axiomatise the functions of the AWS hash tables and
array list libraries, as their verification is of comparable complexity to the entire
deserialisation module. Finally, the AWS allocators of the C implementation,
which are passed into some of the functions, contain pointers to memory man-
agement functions; this is higher-order in nature. In the verification, we assume
those functions are malloc, calloc, and realloc.
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6 Related Work

The literature explores many techniques and tools for verifying JS [44,18,22,21]
and C [23,26,28,13,7]. We describe: multi-language verification architectures; JS
and C verification tools based on separation logic; C memory models related to
our models; and other analyses applied to the AWS Encryption SDK.

Multi-Language Verification Architectures. The multi-language verifica-
tion architectures closest to Gillian are coreStar [6] and Viper [36,35]. Both of
these architectures were designed to serve as verification back-ends for TLs and
both have at their core a simple intermediate representation with a dedicated
symbolic execution engine13. However, they work with the TL in different ways.

In coreStar, TL core assertions are modelled as abstract predicates and
memory actions as function calls. The function specifications play the role of
our consumer and producer actions. The user also has to provide logical axioms,
describing properties of the abstract predicates. The Gillian equivalent of these
axioms are the implementations of the memory actions using consumers and
producers, which can be optimised, but require understanding of the inner
workings of Gillian. Like Gillian, coreStar’s symbolic execution engine is
parametric on the underlying logical theory and can thus be used to reason
about any memory model representable using abstract predicates. It is, however,
unclear how efficiently this can be done. coreStar has been used inside the tool
jStar [15], which has verified implementations of several Java design patterns
but was not pushed to more complex Java code. In [21], the authors observed
that coreStar was not able to handle tractably even simple JS programs.

Unlike Gillian and coreStar, Viper [35,36] comes with a fixed interme-
diate language, also called Viper. The user encodes their memory model and
corresponding core assertions into the memory model and assertion language of
Viper. A key advantage of Viper lies in its expressive permission model, which
includes fractional, recursive, and abstract read permissions, as well as in its
support for custom mathematical domains, which enable users to extend Viper
with their own first-order theories, tailored to the data structures at hand. Viper
has mechanisms similar to our consumer and producer actions, called inhale and
exhale. Viper can reason about both sequential and concurrent programs, and
has been used to verify programs written in Java, Go, Rust, and Python, but
not JS and C. In fact, it is not clear to us how difficult it would be to use Viper
to reason about JS objects and the linear memory of C, as neither can be simply
expressed using the static objects natively provided by Viper.

Semi-automatic JS and C Verification Tools. There are very few ver-
ification tools for JS based on separation logic. For example, JaVerT [21]
has been used to verify simple sequential data-structure algorithms. Its succes-
sor, JaVerT 2.0 [22], provides whole-program symbolic testing, verification
and bi-abductive reasoning [10], unified by a core symbolic execution engine.

13 Viper includes both a symbolic execution engine and a verification condition generator
based on Boogie [5] for its intermediate language.
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JaVerT 2.0 verification is more efficient than JaVerT verification, but has
still only been applied to simple data-structure algorithms. Gillian [19] builds on
JaVerT 2.0, taking the highly non-trivial step of designing the intermediate
language, correctness results, and implementation to be parametric on the TL
memory models. Despite this generalisation, Gillian substantially outperforms
JaVerT 2.0, both for symbolic testing [19] and for verification.

Verifast [26] and the tool in [7] are prominent examples of semi-automatic
tools that provide functionally-correct verification of C programs using separation-
logic specifications. These tools work with C fragments and simplified memory
models. While the tool in [7] has not been applied to real-world code, Verifast
has been used to verify, e.g., an implementation of a Policy Enforcement Point
(PEP) for Network Admission Control scenarios [38]. One difference between
these tools and Gillian is that Gillian specifications can express negative resource,
allowing us to differentiate missing resource errors from use-after-free errors.
However, Verifast, unlike Gillian, supports reasoning about concurrent programs.
There is also much work on using theorem provers to verify both sequential
and concurrent C code using separation logic: see, for example, the DeepSpec
project [45] and the Iris project [47], which we do not describe here.

Related Formal C Memory Models. Our compositional C memory models
were inspired by CompCert [32] and the CH20 formalisation of Krebbers [29].
In particular, our concrete C model is adapted from the complete model of
CompCert, which supports reasoning about programs that access in-memory
data representations. This feature is used by the AWS deserialisation algorithm,
which reads the buffer contents at the byte-granularity.

We present our compositional symbolic C memory model in this paper as a
simple lifting of the concrete one. Our implementation is more complex, however,
representing blocks as trees holding symbolic values and combining the concepts
of memory trees and abstract values from the concrete memory model of the
CH2O formalisation. Although not mentioned in [29], CH2O does keep track of
some negative resource in that it maintains freed locations, but not block bounds.

Analysis of the AWS Encryption SDK. Amazon has recently directed con-
siderable effort towards the formal analyses of their codebase, with a number of
tools incorporated into their CI pipeline. For example, the main cryptographic
algorithms of the AWS Encryption SDK have certified implementations in the
specification language Cryptol [17], underpinned by SAW [12]. These implemen-
tations, however, have not yet been proven equivalent to the corresponding C
implementation. In addition, the C implementation of the AWS Encryption SDK
includes a symbolic test suite run using CBMC [30]. This implementation makes
heavy use of the aws-c-common data-structure library, which is annotated with
first-order assertions checked by CBMC. CBMC is a mature, industrial-strength
tool, likely to outperform and have broader coverage than the symbolic test-
ing of Gillian-C, with substantially fewer annotations than Gillian verification.
However, as CBMC is a bounded model checker, it provides weaker correctness
guarantees and is not compositional. Its expressivity is also somewhat constrained
by the expressivity of the C runtime. For example, it does not allow reasoning
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about the size of allocated memory. Gillian specifications have this expressivity,
as highlighted by the discovered over-allocation bug. The subtle logical bug
found by Gillian also demonstrates the importance of being able to express full,
functionally-correct specifications. We believe there has been no previous analysis
of the JS implementation of AWS Encryption SDK.

7 Conclusions

We have introduced compositional verification to the Gillian platform. Our work
includes a methodology for designing compositional TL memory models, distin-
guishing negative resource from missing resource and using the JS and C memory
models as demonstrator examples. It also includes a novel, parametric approach
to assertion interpretation, independent of the TL, enabling compositional use
of function specifications in verification. We have been able to push the Gillian
verification to self-contained, critical, real-world AWS JS and C code. The bugs
and suggestions for code improvements that arose during this verification process
have all been accepted by the developers and incorporated into the codebase. To
our knowledge, this is the first time that industry-grade JS code has been fully
verified and the first time that, in one verification platform, the same abstractions
were used to verify industry code from languages as different as JS and C. The
artifact accompanying this paper can be found at [34], and the entire Gillian
development at [46]. In future, we will publish correctness results for Gillian
verification [33], as part of an in-depth theoretical study of program correctness
and incorrectness for symbolic testing, verification and bi-abductive reasoning
being developed in Gillian.
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