
Imperial College London

Department of Computing

An Infrastructure for Tractable Verification of

JavaScript Programs

Daiva Naudžiūnienė

September 2017

Supervised by Prof Philippa Gardner

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

I herewith certify that all material in this dissertation which is not my own work has been properly

acknowledged.

Daiva Naudžiūnienė

3

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution-Non Commercial-No Derivatives licence. Researchers are free to copy, distribute or trans-

mit the thesis on the condition that they attribute it, that they do not use it for commercial purposes

and that they do not alter, transform or build upon it. For any reuse or distribution, researchers must

make clear to others the licence terms of this work.

5

Abstract

The highly dynamic nature of JavaScript, coupled with its intricate semantics, makes the understand-

ing and development of correct JavaScript code notoriously difficult. We believe that logic-based

verification has much to offer to JavaScript. In particular, separation logic has been successfully ap-

plied to verification tools for static languages. However, it has hardly been used to reason about

programs written in dynamic languages in general, and JavaScript in particular.

This thesis presents JaVerT, a semi-automatic JavaScript Verification Toolchain for tractable logic-

based verification of JavaScript programs. JaVerT verifies JavaScript programs annotated with func-

tion specifications in the form of pre- and postconditions, loop invariants, and annotations for the

folding and unfolding of user-defined predicates. We design natural JavaScript abstractions that allow

JavaScript developers wishing to verify JavaScript programs to not think about almost any internals

of the language.

The actual process of how JaVerT verifies the given annotated JavaScript program is not visible to

the JavaScript developer, and is achieved using our JSIL verification infrastructure. This infrastructure

includes: JSIL, a simple goto language, suitable for logic-based verification of JavaScript; JSIL Logic,

a sound separation logic for JSIL; and JSIL Verify, a semi-automatic verification tool, based on JSIL

Logic. The joining ingredient of JaVerT is a JavaScript frontend to our JSIL verification infrastructure,

tightly connecting programs and reasoning at the level of JavaScript to programs and reasoning at

the level of JSIL. This frontend includes a well-tested compiler from JavaScript code to JSIL code, a

translator from JavaScript Logic to JSIL Logic, and well-tested JSIL reference implementations and

verified axiomatic specifications of the JavaScript internal functions.

We demonstrate the feasibility of JaVerT to specify and verify simple data structure libraries,

illustrating our ideas using an implementation of a priority queue. Our given specifications ensure

prototype safety of library operations, in that they describe the conditions under which these operations

exhibit the desired behaviour.

7

‘Have no fear of perfection - you’ll never reach it.’

Salvador Daĺı

9

Contents

Abstract 7

1. Introduction 13

1.1. Contributions . 16

1.2. Thesis Outline . 17

1.3. Publications . 19

2. Background Theory 20

2.1. Static Program Analysis for JavaScript . 20

2.2. Operational Semantics . 22

2.3. Compilers and Intermediate Representations for JavaScript 24

2.4. Verification Tools Based on Separation Logic . 26

3. The JavaScript Language 29

3.1. JavaScript: ECMAScript 5 . 29

3.1.1. The Key Concepts of JavaScript . 30

3.1.2. The Core Language . 33

3.1.3. Built-in Libraries and the Initial Heap . 38

3.1.4. Why ES5 Strict? . 39

3.2. The Running Example . 40

3.3. The Memory Model of ES5 Strict . 44

3.4. A Formal Fragment of ES5 Strict . 45

3.4.1. Syntax of the ES5 Strict Fragment . 45

3.4.2. Pretty-Big-Step Semantics of the ES5 Strict Fragment 46

3.4.3. Following the ES5 Standard . 51

4. The JSIL Language 54

4.1. The JSIL Syntax . 54

4.2. The JSIL Semantics . 56

4.3. An Example of a JSIL Procedure . 59

5. The JS-2-JSIL Compiler 60

5.1. JS-2-JSIL: Compilation by Example . 61

5.2. JS-2-JSIL: Compiler Coverage . 65

5.3. JS-2-JSIL Validation: Testing . 67

5.4. JS-2-JSIL: Compiler Formalisation . 69

5.4.1. Compiling the Global Code . 70

11

5.4.2. Compiling Function Literals . 73

5.4.3. Compiling Expressions and Statements . 74

5.5. JS-2-JSIL Validation: Compiler Correctness . 80

6. JSIL Verification Infrastructure 81

6.1. JSIL Logic Assertions . 81

6.2. JSIL Logic . 83

6.3. Soundness of JSIL Logic . 85

6.4. JSIL Verify . 97

7. The JS-2-JSIL Environment 101

7.1. Capturing JavaScript prototype chains: the Pi predicate 102

7.2. Specifying Internal Functions . 104

8. JavaScript Verification 111

8.1. JS Logic . 111

8.2. JS-2-JSIL: Logic Translator . 113

8.3. Basic JS Logic Predicates . 117

8.4. Specification of the Running Example . 118

8.4.1. Client Code Misusing the Library . 119

8.4.2. Specification of the Priority Queue Library . 120

8.4.3. Verification of Client Code . 127

9. Conclusion 132

9.1. Summary of Thesis Achievements . 132

9.2. Open Problems . 134

Bibliography 134

A. Pretty-Big-Step Semantics of a Fragment of ES5 Strict 141

A.1. Notation . 141

A.2. Expressions and Statements . 142

A.3. Property Descriptors . 146

A.4. Internal Properties . 147

A.5. Auxiliary Internal Functions . 154

A.6. Operations on References . 156

A.7. Libraries . 157

B. Correctness Proof 159

B.1. The JS-2-JSIL Compiler . 159

B.2. Compiler Correctness . 165

B.2.1. Alternative JSIL semantics . 165

B.2.2. The Proof of the Compiler Correctness . 166

B.2.3. Helper Lemmas . 180

12

C. JSIL Logic 185

D. JS-2-JSIL Logic Translator 187

13

List of Figures

1.1. JaVerT: A JavaScript Verification Toolchain . 14

3.1. The JavaScript Language described by the ECMAScript 5 standard. 29

3.2. A JavaScript heap illustrating JavaScript objects and prototype-based inheritance. . 30

3.3. Variable binding in the JavaScript heap . 32

3.4. ES5 statements. 34

3.5. ES5 expressions. 35

3.6. ES5 internal functions. 37

3.7. The Built-in Libraries in ES5 . 38

3.8. Initial heap of the critical built-in objects . 39

3.9. Running Example - a priority queue implemented in JavaScript 40

3.10. JavaScript heap obtained from the execution of the running example 42

3.11. The Memory Model of ES5 Strict . 45

3.12. A Fragment of ES5 Strict . 46

3.13. Internal Concepts of the Semantics . 47

3.14. An assignment defined in English standard. 52

4.1. Syntax of the JSIL Language. 55

4.2. The JSIL memory model. 56

4.3. Semantics of JSIL Expressions: JeKρ = v . 57

4.4. Semantics of JSIL basic commands: JbcKh,ρ = (h′, ρ′, v) 57

4.5. Semantics of JSIL control flow commands: p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉 58

4.6. An example of a JSIL procedure and its control flow graph 59

5.1. The JS-2-JSIL Compiler . 60

5.2. Compilation by example: the assignment and the body of the nested function. 61

5.3. Compiling the JavaScript assignment expression to JSIL 63

5.4. Compiling property accessors and function literals to JSIL 64

5.5. JS-2-JSIL: compiler coverage . 65

5.6. JS-2-JSIL Validation by testing (left); Detailed testing results (right) 68

5.7. The structure of the JS-2-JSIL Compiler . 70

5.8. The function literals from the running example to be compiled 71

5.9. The compiled enqueue procedure . 72

5.10. The auxiliary compiler Ĉ, compiling JavaScript function literals to JSIL procedures . . 73

5.11. The structure of the compiler C . 74

5.12. A part of Scope Clarification Function ψ(m,x) for our running example 75

5.13. Compiling JavaScript Variables . 76

14

5.14. Compiling Constructor Calls . 77

5.15. Compiling Sequences . 78

5.16. Compilation of break and while . 79

5.17. Compilation of return . 79

6.1. JSIL Verification Infrastructure . 81

6.2. JSIL Logic Assertions, where v ∈ VJSIL (Figure 4.2) and x ∈ XJSIL (Figure 4.1) 82

6.3. Interpretation of logical expressions and satisfiability of JSIL Logic Assertions 83

6.4. Axiomatic Semantics of Basic Commands: {P}bc{Q} 84

6.5. Graphical Representation of the Logic Rules p,m, S,fl ` 〈P, j, i〉; 〈Q,n〉. 85

6.6. Symbolic Execution of Control Flow Commands: p,m, S,fl ` 〈P, j, i 〉; 〈Q,n 〉 86

6.7. Architecture of JSIL Verify . 97

6.8. Proof System for Frame Inference - Σ1 | Π ` Σ2 ∗ [?F] 99

6.9. Example Derivation of the Proof System for Frame Inference 99

7.1. Call graph for GetValue and PutValue . 105

7.2. An annotated JSIL implementation of GetProperty. 106

7.3. Call graph for ToString . 109

8.1. JS Logic Assertions, where ω ∈ VhJS (Figure 3.11). 112

8.2. Semantics of JS Logical Expressions and Assertions . 112

8.3. The JS-2-JSIL Logic Translator . 113

8.4. Translation from JS Logical Assertions to JSIL Logical Assertions. EnvJS, ELJS, ASJS
are logical environments, logical expressions, and assertions of JavaScript (Figure 8.1).

EnvJSIL, ELJSIL, ASJSIL are logical environments, logical expressions, and assertions of

JSIL (Figure 6.2). 114

8.5. Automatic Fold/Unfold Annotations . 117

8.6. A Reminder of the Running Example . 119

8.7. Example clients that misuse the priority queue library. 120

8.8. Running Example - annotated code of insertToQueue 123

B.1. Compilation of Expressions, Part 1 . 159

B.2. Compilation of Expressions, Part 2 . 160

B.3. Compilation of Expressions, Part 3 . 161

B.4. Compilation of Expressions, Part 4 . 162

B.5. Compilation of Statements, Part 1 . 163

B.6. Compilation of Statements, Part 2 . 164

B.7. JavaScript operational semantics proof tree of an assignment for the normal execution. 167

B.8. JavaScript operational semantics proof trees of an assignment for the error case. Part I 169

B.9. JavaScript operational semantics proof trees of an assignment for the error case. Part II 170

B.10.Translated code of a function call expression e0(e). 171

B.11.JavaScript operational semantics proof tree of a function call for the normal execution. 172

B.12.JavaScript operational semantics proof tree of a variable. 172

B.13.JavaScript operational semantics proof trees of a sequence for the normal execution. . 173

15

B.14.JavaScript operational semantics proof trees of a sequence with break 174

B.15.JavaScript operational semantics proof trees of a sequence with error 175

B.16.JavaScript operational semantics proof trees of a sequence with ret 176

B.17.JavaScript operational semantics proof tree of a full function body for the normal exe-

cution. 177

B.18.JavaScript operational semantics proof tree of a full function body for the error case. . 178

B.19.JavaScript operational semantics proof trees of a variable dereferencing when ψm(x) =

n > 0 and ψm(x) = 0 respectively, where d+ 1 is the length of the current scope chain L.183

B.20.JavaScript operational semantics proof tree of a variable dereferencing when ψm(x) = ⊥.183

16

1. Introduction

JavaScript is the de facto language for programming client-side web applications. It is developed

by the ECMAScript Committee and described by the international ECMAScript standard [1], with

which all major web browsers now comply. JavaScript started off as a scripting language for small

applications that manipulate the static content of web pages. Today, JavaScript has grown to be

one of the most widely used programming languages in the world. It has moved beyond client-side

applications and onto server-side platforms and small embedded devices. JavaScript developers have

a large number of frameworks and libraries at their disposal, and the applications that they build are

of considerable size. The highly dynamic nature of JavaScript, coupled with its intricate semantics,

makes the understanding and development of correct JavaScript code notoriously difficult.

This thesis presents logic-based verification of JavaScript programs, by pulling together a large

amount of work on operational semantics, compilers, and separation logic. Even though much of

this work was previously developed for static languages, the application to the dynamic and complex

language that is JavaScript has not been straightforward and brought about a number of significant

challenges. To specify JavaScript programs, the challenge (C1) is to design assertions that fully

capture the common heap structures of JavaScript, such as prototype chains for modelling inheritance

and the variable store emulated in the heap. Importantly, these assertions should abstract as much

as possible from the details of the heap structures they describe. To verify JavaScript programs, the

challenge is to handle the sheer complexity of the JavaScript semantics, due to: (C2) the behaviour of

JavaScript statements, which exhibit complicated control flow with several breaking mechanisms and

ways of returning values; (C3) the fundamental dynamic behaviour associated with extensible objects,

dynamic property accesses, and dynamic function calls; and (C4) the JavaScript internal functions,

which underpin the JavaScript statements and whose definitions in the ECMAScript standard are

operational, intricate, and intertwined.

Symbolic verification has recently become tractable for C and Java, with compositional techniques

that scale and properly engineered tools applied to real-world code: for example, Facebook’s Infer for

C, C++, Objective C, and Java [14], based on separation logic; Java Pathfinder, a model checking

tool for Java bytecode programs [71]; CBMC, a bounded model checker for C, currently being adapted

to Java at Amazon [42]; and WALA’s analysis for Java using the Rosette symbolic analyser [27]. Such

tools often use intermediate goto representations in order to unravel the control flow constructs of their

target language, thus simplifying their analyses. These representations can help us tackle our second

challenge (C2), however, they are not inherently suitable for dynamic languages such as JavaScript,

and fall short for our third challenge (C3).

We believe that separation logic has much to offer JavaScript as it provides a natural way to reason

modularly about the JavaScript heap. Previous work introduced a separation logic for a small fragment

of JavaScript [30] and showed that separation logic can be used to reason about the JavaScript variable

store emulated in the heap. This logic considers simplified JavaScript semantics. For instance, it does

17

ANNOTATED JS PROGRAMS

JS PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL PROGRAMS JSIL LOGIC
ANNOTATIONS

JS-2-JSIL
ENVIRONMENT

JSIL VERIFY

Tested against
ECMAScript
Test262 test suite Proven

correct

JSIL Logic
proven sound

JSIL reference
implementations
satisfy given specs

J
A

V
E

R
T:

 A
 J

AV
AS

CR
IP

T
VE

RI
FI

CA
TI

O
N
 T

O
O

LC
H

AI
N

ANNOTATED JSIL PROGRAMS

Yes / No

JS LOGIC
ANNOTATIONS

JS
IL

 V
ER

IF
IC

AT
IO

N
 IN

FR
AS

TR
U

CT
U

RE
JS

 F
RO

N
TE

N
D

CH3

CH4

CH5

CH6

CH7

CH8

Fragment proven
correct

JS
 A

N
N

O
TA

TI
O

N
S

Figure 1.1.: JaVerT: A JavaScript Verification Toolchain

not take into account getters and setters, descriptors, implicit coercions, or any of the intricate control

flow commands of the language. Even in such a simplified setting, this proposed logic is very complex

due to the (remaining) complexity of JavaScript. We did build a prototype tool, JuS [29], based on

the logic, and were able to semi-automatically reason about very simple programs that manipulate

the JavaScript variable store. Even though this work partly solves our first challenge (C1), it is not

feasible to extend the program logic of JavaScript to the full language. In particular, one would

have to re-develop a comprehensive logic with a great many number of ad hoc axioms, which would

be extremely difficult to prove sound, let alone automate. We believe that working directly with

JavaScript is too complex in the context of verification and we contend that the correct approach is to

first translate JavaScript programs to a simpler language and only then to apply automatic reasoning

techniques. With such an approach, we would move a substantial part of JavaScript complexity from

the logic to the translation.

To solve our four challenges (C1)-(C4), we introduce JaVerT, a semi-automatic JavaScript Verifica-

tion Toolchain based on separation logic. In particular, we consider a strict mode of the fifth version

of the standard (ES5), which we call ES5 Strict. The ECMAScript committee developed the strict

mode intentionally opting for a different semantics that exhibits better behavioural properties. Albeit

somewhat simpler than full ES5, ES5 Strict retains a high level of complexity.

The structure of JaVerT is given in Figure 1.1 and can be divided into three parts. The first part

of JaVerT addresses the specification of JavaScript programs, which solves our first challenge (C1).

To verify JavaScript programs, we first need to specify them, which we do by placing appropriate

annotations into the code. These annotations take the form of pre- and postconditions, loop invariants,

as well as instructions for folding and unfolding predicates, and are written in an assertion language

in the style of separation logic, which we call JS Logic. We show how to develop natural JavaScript

18

abstractions that make reasoning using JaVerT nearly as simple as reasoning about Java programs

using a semi-automatic verification tool such as VeriFast [36]; any additional complexity stems from the

behaviour of JavaScript programs, and not from our reasoning. A key idea is that JavaScript developers

wishing to verify JavaScript programs would only need to know how to use these abstractions and

would not need to think about any internals of the language. Given an annotated JavaScript program,

JaVerT indicates whether the JavaScript program satisfies its specification by yielding a yes/no output.

The actual process of how JaVerT verifies the given annotated JavaScript program is not visible to

the JavaScript developer.

The second part of JaVerT is our JSIL verification infrastructure. This infrastructure includes:

JSIL, a simple goto language that we have developed, and which is suitable for symbolic verification

of JavaScript; JSIL Logic, a sound separation logic for JSIL; and JSIL Verify, a semi-automatic

verification tool for JSIL, based on JSIL Logic. Given a JSIL program and its specification, written

using annotations in JSIL logic, JSIL Verify checks if the JSIL program satisfies its specification and

provides a yes/no answer. The annotated JSIL program can be both compiled from a given annotated

JavaScript program or written directly in JSIL. The JSIL verification infrastructure solves our third

challenge (C3), as JSIL retains the fundamental dynamic behaviour of JavaScript associated with

extensible objects, property accesses and function calls.

The final ingredient of JaVerT is a JavaScript frontend to our JSIL verification infrastructure,

tightly connecting programs and reasoning at the level of JavaScript to programs and reasoning at the

level of JSIL. This frontend includes the JS-2-JSIL compiler, a well-tested compiler from JavaScript

code to JSIL code; the JS-2-JSIL logic translator, a translator from JS Logic to JSIL Logic; and JS-

2-JSIL environment, well-tested JSIL reference implementations and verified axiomatic specifications

of the JavaScript internal functions. To verify an annotated JavaScript program, the program is first

compiled to a JSIL program using the JS-2-JSIL compiler and its annotations are translated to JSIL

annotations using the logic translator. The obtained annotated JSIL program, together with the JS-

2-JSIL environment, is then fed to JSIL Verify, which produces the final yes/no answer. Instead of

reasoning directly about code built from complex JavaScript statements, we use JS-2-JSIL to reason

about compiled JSIL code built from simple JSIL statements. This solves our second challenge (C2).

We solve our final, fourth challenge (C4) by providing the JS-2-JSIL environment.

An important part of our project has been the validation of JaVerT. We validate JSIL verification

infrastructure by proving our JSIL Logic sound with respect to our JSIL operational semantics. We

also validate all three parts of our JavaScript frontend. The JS-2-JSIL compiler is step-by-step faithful

to the ECMAScript standard and is systematically tested against the official ECMAScript test suite,

passing 100% of the appropriate tests. Moreover, we prove the JS-2-JSIL compiler correct for a

fragment of ES5 Strict. We validate the JS-2-JSIL logic translator by establishing a full correctness

result for the assertion languages, and a partial correctness result for the program logics, which depends

on the correctness of the full JS-2-JSIL compiler. Finally, the JSIL reference implementations of the

JS-2-JSIL environment are step-by-step faithful to the standard and are verified with respect to their

JSIL specifications using JSIL Verify.

19

1.1. Contributions

The main result of the thesis is JaVerT, the semi-automatic JavaScript Verification Toolchain for

tractable symbolic verification of JavaScript programs, based on separation logic. To achieve this, we

note these four contributions:

1. Natural JavaScript Abstractions, that describe common JavaScript heap structures, such as

prototype chains and the variable store emulated in the heap, without exposing internals of

JavaScript.

2. Validated JSIL Verification Infrastructure, which includes JSIL, a simple goto language, retaining

the fundamental dynamic behaviour of JavaScript associated with extensible objects, property

accesses and function calls; a sound program logic for JSIL that handles this dynamic behaviour;

and JSIL Verify, a semi-automatic JSIL verification tool based on JSIL logic. One limitation of

the JSIL logic is that it does not support higher-order reasoning.

3. Validated JavaScript Frontend, which includes

a) the JS-2-JSIL Compiler from JavaScript to our simple intermediate goto language JSIL.

We design the JS-2-JSIL compiler so that it closely follows ES5 Strict. We implement the

entire core language (except the indirect eval, which by default exits strict mode), as well

as the built-in libraries that are strongly intertwined with the core language. We substan-

tially test the JS-2-JSIL compiler using the official ECMAScript test suite. Moreover, we

prove that the JS-2-JSIL compiler is correct with respect to our operational semantics of

a representative fragment of ES5 Strict. We note that, currently, the JS-2-JSIL compiler

requires the entire program in order to compile it to JSIL.

b) the JS-2-JSIL Logic Translator from JS Logic to JSIL Logic. We validate the JS-2-JSIL

logic translator by establishing a full correctness result for the assertion languages, and a

partial correctness result for the program logics. The full correctness for the program logics

would require to prove the correctness of the JS-2-JSIL compiler for the full ES5 Strict.

c) the JS-2-JSIL Environment, containing reference implementations and axiomatic specifica-

tions for JavaScript internal functions. The specifications directly benefit JaVerT, since the

verification of JavaScript code only needs to use the specifications, not the underlying im-

plementations. The specifications of the JS-2-JSIL environment are validated by verifying

that they are satisfied by their well-tested corresponding JSIL reference implementations.

4. JavaScript Verification, achieved using JSIL verification infrastructure via JavaScript frontend.

JaVerT verifies functional correctness properties of JavaScript programs annotated with pre- and

postconditions, loop invariants, and instructions for folding and unfolding predicates. JaVerT

specifications are written using JS Logic, which features a number of natural JavaScript abstrac-

tions. As JaVerT is a semi-automatic verification tool, we believe its target should be critical

JavaScript code, such as JavaScript libraries describing frequently used data structures. For

such libraries, we give specifications that ensure prototype safety of library operations, in that

they describe the conditions under which these operations exhibit the desired behaviour.

20

1.2. Thesis Outline

We start with the background theory in §2, where we cover: literature on different flavours of program

analysis for JavaScript; provide a background theory on existing operational semantics for JavaScript;

discuss a rich landscape of existing intermediate representations for JavaScript; and discuss existing

verification tools based on separation logic for other programming languages.

In the main body of the thesis (§3 - §8), we describe the verification of JavaScript programs using

JaVerT, illustrating our reasoning with a JavaScript implementation of a priority queue. We conclude

in §9. What follows is a detailed outline of the main body of the thesis, also illustrated in Figure 1.1.

§3 The JavaScript Language. We describe the JavaScript language with its key concepts and

explain why we choose to work with ES5 Strict. Using small examples, we highlight difficult parts of

JavaScript, such as prototype-based inheritance, the lack of encapsulation in the presence of prototype

chains, the variable store emulated in the heap, the confusing this, tricky type conversions, dynamic

property accesses and dynamic function calls. We present a priority queue implementation as our

running example and describe the behaviour of ES5 Strict constructs in more detail. We use this

example to showcase the major challenges that need to be addressed before JavaScript programs can

be verified. We formally define the memory model of full ES5 Strict, and introduce a representative

fragment of ES5 Strict with its operational semantics, illustrating the complexity of the language.

Our operational semantics was inspired by the operational semantics of JSCert [9], the recent Coq

specification of the ES5 standard. We use the memory model to prove a full correctness result of the

translation from the JavaScript assertion language to the JSIL assertion language in §8. Moreover, we

use the operational semantics to prove the correctness of the formally defined part of the JS-2-JSIL

compiler in §5.

§4 The JSIL Language. Many tools based on symbolic analysis [4, 22, 36, 13, 14, 42, 27] tar-

get intermediate goto representations in order to fully dismantle the control flow constructs of their

target language, thus simplifying their analyses. These representations, however, are not suitable

for dynamic languages such as JavaScript, which require extensible objects, dynamic properties and

dynamic function calls.

For this reason, we have developed an intermediate goto language, JSIL, which we believe to be well-

suited for logic-based verification of JavaScript programs. JSIL has only a small number of commands

and a simple operational semantics with no corner cases or unexpected behaviours. We purposefully

design JSIL so that its memory model subsumes the memory model of JavaScript to be able easily

relate functional properties of JavaScript programs with their translated JSIL programs.

We describe an operational semantics of JSIL commands and provide an example of a JSIL proce-

dure. We use the JSIL operational semantics to prove the correctness of the JS-2-JSIL compiler in §5

and to prove the soundness of the JSIL logic in §6.

§5 The JS-2-JSIL Compiler. The JS-2-JSIL compiler from JavaScript to JSIL targets ES5 Strict.

It closely follows our operational semantics for ES5 Strict. As in JSCert, we follow the ECMAScript

standard step-by-step by using the pretty-big-step style of semantics [15]. This means that the struc-

ture of a compiled JSIL program directly reflects the description of the behaviour of the original

JavaScript program in the English standard.

We cover a large and fully representative fragment of ES5 Strict. In doing so, the memory model

21

is not simplified in any way. We implement the entire core of ES5 Strict which includes language

constructs, such as expressions, statements, and internal functions. The only exception is indirect

eval, which by default exits strict mode. JavaScript has a collection of built-in libraries. While most

built-in libraries provide additional functionality to the core of JavaScript, some of them are strongly

intertwined with the core language. We cover the built-in libraries intertwined with the core language.

We systematically test the JS-2-JSIL compiler against the new ECMAScript 6 Test262 test suite,

which organises tests by feature. This enables us to provide a more fine-grained analysis than was

previously possible. We identify 10469 tests relevant for ES5 Strict and 8797 tests relevant for the

JS-2-JSIL compiler coverage, of which we pass 100%.

We designed the JS-2-JSIL compiler so that that there is a simple correspondence between JavaScript

and JSIL heaps, and a step-by-step connection to the standard. This allows us to define a straightfor-

ward correctness condition for the JS-2-JSIL compiler. We give a correctness proof using our formal

ES5 Strict operational semantics of the fragment, defined in §3. The full result would require a

substantial mechanised proof development.

§6 JSIL Verification Infrastructure. We present JSIL verification based on separation logic. We

introduce the JSIL assertion language that we use to write specifications for JSIL programs. To verify

that a JSIL program satisfies its specification, we use our JSIL program logic. We prove JSIL logic to

be sound with respect to the operational semantics of JSIL, presented in §4.

JSIL Verify, a semi-automatic verification tool for JSIL, is based on JSIL logic. The frame inference

problem that JSIL Verify has to solve is more complex than those featured in tools, based on separation

logic, for static languages such as C and Java. Namely, as JSIL features dynamic property access, the

property of a cell assertion is an arbitrary logical expression and not a concrete string. This makes

symbolic evaluation of object management commands non-trivial.

To verify JSIL programs, we provide pre- and postconditions for functions, loop invariants and

fold/unfold directives for user-defined inductive predicates. Developers wishing to verify JavaScript

programs will not need to use JSIL Verify directly. We, however, use it to verify JSIL specifications

of JavaScript internal functions.

§7 The JS-2-JSIL Environment. The JS-2-JSIL environment includes specifications and JSIL

reference implementations of JavaScript internal functions. JavaScript internal functions describe

the fundamental inner workings of the language, such as prototype chain traversal (GetProperty), or

property definition (DefineOwnProperty) and deletion (DeleteProperty). They are not accessible by

the developer, but are called internally by all JavaScript commands. Their definitions in the standard

are complex, are given operationally, and are often intertwined, making it difficult for the user to fully

grasp the control flow and allowed behaviours.

To be able to verify JavaScript programs we need to provide JSIL axiomatic specifications of the

internal functions. In creating these specifications, we leverage on a number of JavaScript-specific

abstractions built on top of JSIL Logic, which make the specifications much more readable than the

operational definitions of the standard. The remaining complexity arises from the internal functions

themselves, not our reasoning.

Our JSIL reference implementations of the JS-2-JSIL environment closely follow ECMAScript stan-

dard and are substantially tested by the testing of the JS-2-JSIL compiler. Moreover, using JSIL Verify,

we prove that these implementations satisfy their axiomatic specifications. These proofs can be seen

22

both as further validation of the implementations of the environment as well as validation of the JSIL

axiomatic specifications themselves.

§8 JavaScript Verification. The verification workflow of JaVerT includes: compiling the annotated

JavaScript program to JSIL using the JS-2-JSIL compiler; translating JavaScript annotations using the

JS-2-JSIL logic translator to equivalent JSIL annotations; and automatically verifying the resulting

annotated JSIL program with JSIL Verify, making use of the verified JS-2-JSIL environment.

We formally introduce the JavaScript assertion language for writing JavaScript specifications and

formally define the JS-2-JSIL logic translator from JavaScript assertions to JSIL assertions. We vali-

date the JS-2-JSIL logic translator by establishing a full correctness result for the assertion languages,

and a partial correctness result for the program logics; the latter result is partial, because it depends

on the correctness of the JS-2-JSIL compiler, which we prove for a fragment of ES5 Strict.

To specify JavaScript programs, we design abstractions that capture its key heap structures, allowing

the user to write clear and succinct specifications with minimal knowledge of the JavaScript internals.

We demonstrate JaVerT by providing specifications for our JavaScript priority queue library. Our

library is written in object-oriented style, use prototype-based inheritance and function closures. This

example illustrates the importance of abstractions in specifying JavaScript programs.

Collaboration. Chapter §3 introduces the semantics of a fragment of ES5 Strict, which is an adapta-

tion of a collaborative work, JSCert, published in [9]. We drew inspiration from the JSCert mechanised

specification of JavaScript, which provides operational semantics for full ES5, adapting and streamlin-

ing the rules of JSCert to ES5 Strict. Chapters §4 - §8 are based on the collaboration with J. Fragoso

Santos, P. Gardner, P. Maksimović, and T. Wood. Specifically, Chapter §5 includes joint work with

J. Fragoso Santos and P. Maksimović on extending the JS-2-JSIL compiler to its current coverage of

ES5 Strict; in particular, for supporting property descriptors and the full implementations of internal

and built-in functions. These additions have also impacted the design of the JSIL language (§4).

Section §5.3 is based on the work done in collaboration with T. Wood, who created the testing and

filtering infrastructure. Chapter §6 includes ideas from the previous work done by P. Gardner and G.

Smith [30], such as abstract heaps and the assertions describing non-existent properties of an object.

JSIL verification infrastructure (§6) was designed and implemented in collaboration with J. Fragoso

Santos and P. Maksimović.

1.3. Publications

JuS: Squeezing the sense out of JavaScript programs. P. Gardner, D. Naudžiūnienė, G. Smith. Second

Annual Workshop on Tools for JavaScript Analysis, 2013.

A Trusted Mechanised JavaScript Specification. M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner,

S. Maffeis, D. Naudžiūnienė, A. Schmitt, G. Smith. POPL 2014.

Towards Logic-Based Verification of JavaScript Programs. J. Fragoso Santos, P. Gardner, P. Maksi-

mović, D. Naudžiūnienė. CADE 2017.

JaVerT: JavaScript Verification Toolchain. J. Fragoso Santos, P. Maksimović, D. Naudžiūnienė, T.

Wood, P. Gardner. POPL 2018.

23

2. Background Theory

This thesis pulls together a large amount of work on operational semantics, compilers, and separation

logic. Much of this was previously developed for static languages. The application of this work to the

dynamic and complex language that is JavaScript has not been straightforward.

There is a wide range of literature covering different flavours of static program analysis for JavaScript,

which we briefly cover (§2.1). However, we note that there is little work done for logic-based sym-

bolic analysis of JavaScript programs. Since our aim is to develop a logic-based verification tool

for JavaScript, we focus our discussion on operational semantics (§2.2), compilers and intermediate

representations for JavaScript (§2.3), as well as verification tools based on separation logic (§2.4).

2.1. Static Program Analysis for JavaScript

The existing literature covers a wide range of analysis techniques for JavaScript programs, including:

type systems [67, 2, 37, 17, 45, 24, 48, 26, 6, 56] and abstract interpretation [41, 37, 3, 51], among others.

In contrast, there has been comparatively little work on logic-based verification tools of JavaScript

programs.

Formal Type Systems for Fragments of JavaScript. There has been much research on type

safety for JavaScript dating back to the seminal work of Thiemann [67]. Thiemann [67] was the

first to propose a type system for a fragment of JavaScript (ECMAScript 3). The work provides a

type soundness proof with respect to an operational semantics, but it does not give a type inference

algorithm. Around the same time, Anderson et al. [2] designed a type inference algorithm for an

idealised version of JavaScript that allows objects to evolve. This work included a theorem that this

type inference algorithm is sound with respect to their type system.

Experimental Tools for Type Analysis. Jensen et al. [37] presented the first tool for type analysis

in real JavaScript (ECMAScript 3) code, called TAJS. TAJS is a flow- and context-sensitive analysis

based on abstract interpretation. It performs points-to analysis as part of the type analysis and is

fully automatic. Experiments were done on small and medium size JavaScript programs. One of the

main objectives for TAJS, as claimed by the authors, has been soundness. However, no theorems or

proofs are given in the paper.

Rich types systems, such as [17, 45] emerged, while sacrificing full automation. Chugh et al. present

dependent types for JavaScript in [17]. The work introduces a static type system, based on nested

refinements and alias types, for a large subset of JavaScript, called DJS. DJS is desugared to System !D

for type checking. The expressiveness of the type system is evaluated on small JavaScript benchmark

programs. The authors claim that System !D is sound, but no proof of soundness is given. The

correctness of the desugaring is not discussed either. In [45], the authors introduce a framework for

building type analyses for JavaScript, called TeJaS, as the authors claim that a single type system

24

cannot accommodate the broad variety of JavaScript features. The parameterisable type system

provides more flexibility in their evaluation, hence their benchmarks are larger compared to [17].

The authors claim that their Base Type system is sound. However, no soundness proof is provided.

Moreover, their goal is to support different type systems, including unsound ones.

Fully Fledged Type Analysis Tools in Industry. In industry, the best known examples are

Flow [24] from Facebook and TypeScript from Microsoft [48]. TypeScript and Flow have influenced

each other and their basic typing mechanisms are very similar. However, Flow has a more expressive

type system in general. As far as we are aware, there are almost no publications for Flow. Hence, we

concentrate our discussion on TypeScript. The TypeScript programming language [48] was proposed

as a flexible language that adds optional types to JavaScript language. TypeScript programs can be

trivially compiled to JavaScript programs. In fact, every JavaScript program is also a TypeScript

program. The main idea of this language is to harness the flexibility of real JavaScript, while at the

same time providing some of the advantages otherwise reserved for statically typed languages, such

as informative compiling errors and automatic code completion. Several type systems [6, 26, 56] have

been proposed for verifying different flavours of safety properties for TypeScript programs. Bierman

et al. [6] were the first to formalise a fragment of TypeScript with the goal of characterising both its

safe and unsafe parts, thereby establishing a basis for a principled study of deliberate unsoundness.

Almost simultaneously, Feldthaus et al. [26] formalised a safe fragment of TypeScript in order to

check the correction of TypeScript declaration files with respect to JavaScript library implementations.

Recently, Rastogi et al. [56] designed and implemented a new gradual type system for safely compiling

TypeScript to JavaScript. The soundness of the proposed type system is guaranteed by combining

strict static checks with residual runtime checks that are inlined into the compiled code. Finally, Vekris

et al. [70] study a refinement type system, which enable static verification of TypeScript programs.

Their system is able to specify not only refinements, but also value-dependent properties, such as the

safety of array accesses. The authors develop a flow-sensitive reasoning by translating input programs

to an equivalent intermediate SSA form and prove soundness of the type checking for the intermediate

form.

Fully Fledged Type Analysis Tools in Academia. In academia, JSAI [41], TAJS [3], and

SAFE [43, 16, 51] are the state-of-the-art type inference tools for JavaScript. They do not require

any annotations and are highly automated. However, they are whole-program analyses, and are not

suitable for verifying partial programs. These tools incorporate different techniques as part of their

analyses. Kashyap et al. describe a formally specified abstract interpreter for JavaScript (ECMAScript

3), called JSAI [41]. It combines pointer analysis, control flow analysis, and different data flow analyses

and caters for configurable context, path and heap sensitivities. The authors claim to have soundness

proof sketches for some of their analyses. Andersan et al. combine data flow analysis and pointer

analysis in their typing analysis tool, TAJS [3], whereas most of the previous tools were keeping them

separate. The analysis makes use of selective context and path sensitivity, constant propagation, and

branch pruning to obtain better precision. The authors do not provide a soundness proof for TAJS.

Park et al. present LSA, Loop-Sensitive Analysis, to improve scalability by providing better precision

in loops [51], which they implement in their tool SAFE. The authors formalise LSA using abstract

interpretation and prove its soundness in Coq.

A Practical Tool or a Sound Tool. Some of the above tools [3, 51, 44] attempt to analyse

25

JavaScript libraries, especially jQuery [38]. TAJS [3], SAFE [51], and TeJaS [44] can handle jQuery

at different levels. Most of these tools do not come with a proof of soundness and some are even

deliberately unsound. Madsen et al. argue that unsoundness is a way to go for a practical tool,

especially in the presence of library code [46]. Even though it is difficult to obtain soundness, there

exist practical tools that do include sound components. For example, the LSA mechanism of SAFE

was formally proven sound. Moreover, Bodin et al. [10] argue that it should be possible to develop

certified tools even for large scale projects, such as JSCert [9]. The methodology presented in [10]

investigates the development of certified abstract interpreters from operational semantics for a small

imperative language, but the authors plan to extend it to JSCert.

Logic-based Verification Tools for JavaScript. There is very little work on logic-based verifica-

tion tools for JavaScript. Indeed, we are only aware of HOO by Cox et al. [18] and KJS by Ştefănescu

et al. [19].

Using abstract interpretation and separation logic, Cox et al. [18] have shown how to specify property

iteration, focusing on a simplified version of the JavaScript for−in statement.

KJS [52] is a tested executable semantics of JavaScript in the K framework [58]. It comes with a

symbolic execution engine [19] and can thus be used for formal analysis and verification of JavaScript

programs, with specifications written in the reachability logic of K [59]. The authors have used

KJS to verify functional correctness properties of operations for manipulating data structures such

as binary search trees, AVL trees, and lists. These examples, however, do not address the majority

of critical JavaScript-specific features, including dynamic property access, prototype inheritance and

function closures. The authors argue that it is impractical: (1) to have a different semantics (for

example, separation logic) for the language and prove the correspondence; (2) to have an intermediate

verification language with a translator, as it usually contains errors and cannot be tested.

Our approach is entirely different. First, we argue that it is important to have abstractions for

specifying JavaScript programs. We create layers of abstractions, allowing the user to write specifica-

tions with only a minimal knowledge of the JavaScript internals. In contrary, as KJS has operational

semantics as a basis for verification, their examples contain no JavaScript-specific abstractions. A user

thus has to consider all of the internals of JavaScript in order to specify JavaScript code, making the

specification difficult and error-prone.

Second, we believe that having an intermediate language is an advantage. Our intermediate language

is executable and programs translated from JavaScript can be tested. We also prove that the fragment

of our compiler is correct. Moreover, to implement a different verification tool for KJS, one would

have to consider all of the operational rules of KJS. A small intermediate language simplifies the

implementation of the verification tool, as the underlying logic is usually much simpler.

2.2. Operational Semantics

JavaScript is defined by the international ECMAScript standard [1], with which all major web browsers

comply. Maffeis et al. [47] were the first to formalise the semantics of JavaScript, a large subset of

ECMAScript 3, developing a hand-written, small-step operational semantics. The goal of the formal

semantics was to cover the entire language and serve as a basis for formal proofs of real language

properties, which influenced the definition of further JavaScript formalisations.

26

For the next version of ECMAScript, ES5, more formalisations of operational semantics have been

proposed, including the semantics specialised for security analysis [33, 63], and more general mech-

anised semantics [9, 52], making the formal proofs more manageable. Hedin et al. [33] provide a

big-step operational semantics of ES5, instrumented with information flow checks for dynamic secu-

rity type checking. For ES5, the ECMAScript committee introduced a restricted variant, ES5 Strict,

that intentionally has slightly different semantics compared with the full language, and exhibits better

behavioural properties, such as lexical scoping and better error checking. Taly et al. [63] propose a

small-step semantics for a fragment of ES5 Strict suitable for security analysis that they call SESlight.

There is an issue of variable scope modelling in their formalisation. In particular, the semantics does

not propagate updates to variables that are not in the immediate scope of the function currently

executing. This occurs because environment records are not stored in the heap. Having general-

purpose analyses in mind, Bodin et al. developed JSCert [9], a Coq mechanised specification of the

ES5 standard. Park et al. developed KJS [52], a mechanised specification of JavaScript in the K
framework [58]. JSCert closely follows the ES5 standard and provides executable semantics for testing

against the ECMA conformance test suite. Since Bodin et al. separates the operational semantics,

JSCert, and the executable semantics, JSRef, the authors also provide the Coq proof, stating that

JSRef is correct with respect to JSCert. KJS relates to JSRef as it provides executable semantics for

testing.

We focus on ES5 Strict, as described in the ES5 English standard. The strict mode is not confined

to a particular chapter, but is described via notes throughout the standard. We draw inspiration from

the JSCert mechanised specification of JavaScript, which provides pretty-big-step [15] operational

semantics for the full ES5, by adapting the rules of JSCert to reflect ES5 Strict restrictions. In this

way, we maintain the same high level of correspondence between our operational semantics and the

English specification.

In the recent years, the ECMAScript committee has published new versions of the standard every

year. ECMAScript 6 (ES6), released in June 2015, is what the most of the browsers now support.1

ES6 is based on ES5, released in 2011, mostly extending the language with new features and with

some minor changes to the semantics.2 The latest version of the language is ECMAScript 7, released

in June 2016. We are not aware of the work that fully formalises the new versions of the standard.

Pretty-Big-Step Semantics. We justify our JS-2-JSIL compiler in part by proving a correctness

result with respect to our operational semantics of ES5 Strict fragment. As we provide pretty-big-step

operational semantics, we describe this style of semantics in more detail. We use forward references

to our formalisation of ES5 Strict fragment (§3.4.2).

The pretty-big-step operational semantics was developed by Charguéraud [15]. The key difference

between the traditional big-step semantics and the pretty-big-step semantics is that we can decompose

the evaluation of a single program construct using intermediate forms, which extend the grammar

of program statements and can be evaluated just like any other program. This style of semantics

allows us to more effectively match the modularity of the ES5 standard, which we illustrate using an

assignment e1 = e2 in §3.4.3. Notice that additionally to an assignment construct e1 = e2, we use

three intermediate forms o =1 e, w =2 o, and o =3 v, where e is a JavaScript expression; o is an

1https://kangax.github.io/compat-table/es6/
2One such change is that the length property of function objects is configurable in ES6 and non-configurable in ES5.

27

outcome of evaluation, including errors; w and v are an outcome value and a value, respectively.

ES5 use sentences of the form “Let R be the result of evaluating t” (see Figure 3.14). These sentences

relate a term directly to its result, just as a big-step judgement would do. Because we want to be

close to ES5, we cannot work with a small-step presentation, with rules of the form “To evaluate e1 =

e2, execute one step to reduce e1 into e′1, and then evaluate e′1 = e2.” If we attempt to use traditional

big-step semantics, we quickly find that we have to duplicate a significant amount of material across

several rules. For an assignment formalisation using big-step rules, we would need additional rules to

handle exceptional cases, since e1, e2, GetValue, and PutValue can all evaluate to an exception. The

problem is that the big-step semantics makes steps “too big” to correspond to ES5. As suggested by

our example, if we attempt to use a big-step presentation for ES5, our repetition of premises will lead

to an explosion in the size of our rule set. Whereas using pretty-big-step style, we are able to have a

single rule for propagating exceptions.

2.3. Compilers and Intermediate Representations for JavaScript

There exists a rich landscape of intermediate representations (IRs) for JavaScript. We can broadly

divide these IRs into two categories: (1) those for syntax-directed analyses, following the abstract

syntax tree of the program, such as λJS [32], S5 [55], and notJS [41]; and (2) those for analyses based

on the control flow graph of the program, such as JSIR [39], IRs of WALA [61] and TAJS [37, 3].

SAFE [43], an analysis framework for JavaScript, provides IRs in both categories. The IRs in (1) are

normally well-suited for high-level analysis, such as type-checking/inference [32, 55], whereas those in

(2) are generally the target of separation-logic tools [4, 22, 36, 13, 14], and tools for tractable symbolic

evaluation [42, 12]. We believe that an IR for logic-based JavaScript verification should belong to the

latter category.

Our goals for JSIL were to: natively support the fundamental dynamic features of JavaScript,

namely extensible objects, dynamic property accesses, and dynamic function calls; have JSIL heaps

be identical to JavaScript heaps, to keep our correctness proofs simple; and keep JSIL minimal to

simplify JSIL logic. For control flow, JSIL has only conditional and unconditional goto statements.

Having gotos in an IR for JavaScript verification is sensible, for three reasons: first, verification tools,

based on separation logic, commonly have goto IRs; second, JavaScript has complex control flow

statements with many corner cases (for example, switch or try/catch/finally), which can be naturally

decompiled to gotos; third, JavaScript supports a restricted form of goto statements, via labelled

statements, breaks, and continues. We have only gotos because we have so far not encountered the

need for more structured loops: our invariants are always JavaScript assertions; and the JavaScript

internal functions implemented in JSIL use only simple loops.

When it comes to the IRs belonging to (2), JSIL is similar to JSIR [39], and the IRs of WALA [27]

and TAJS [37, 3]. The limitations of JSIR/WALA are substantial: neither of them comes with either

an associated compiler or reference implementations of JavaScript internal functions or a publication.

The absence of a compiler makes it impossible for us to discuss the precise nature of the differences

between JSIL and JSIR/WALA. On the syntactic level, there exist similarities between JSIL and JSIR:

both JSIL and JSIR have built-in support for SSA, and as functions in JSIR come annotated with

their respective control flow graphs and lexical scopes, JSIL functions come with associated identifiers

and a scope clarification function. However, there is no actual demonstration of how JSIR constructs

28

would be used to model JavaScript, and any further analysis would involve resorting to guesswork.

Moreover, our choices for JSIL come from us wanting to follow closely the standard; the reasons for

the choices for JSIR and WALA are not stated. TAJS includes a well-tested compiler, targeted for

ES3 (which is substantially different from ES5) but now extended with partial models of the ES5

standard library, the HTML DOM, and the browser API. Since TAJS was designed for type analysis

and abstract interpretation, the IR that it uses is slightly more high-level than those typically used

for logic-based symbolic verification. The IR of SAFE based on control flow is not documented.

We will now turn our attention to the IRs in (1), which we have considered using as an interim stage

during compilation. In [32], the authors introduce λJS , a lambda calculus extended with objects and

prototype-based inheritance that incorporates the essential features of the ECMAScript 3 standard

(with the exception of the eval function), that is compact and well-suited for formal reasoning. To

demonstrate this, the authors designed a type system for checking a simple confinement property

for λJS programs. Furthermore, they provide a desugaring function, through which they are able to

compile JavaScript programs into λJS . Both λJS and this desugaring function are automated, and

tested against the Mozilla JavaScript test suite. In [55], the authors introduced S5, an adaptation

and extension of λJS that captures the new features and semantics introduced by the ES5 standard,

including getters and setters, as well as the strict mode version of eval. S5 places its emphasis on

the core features of ES5 Strict, and is tested against the ES5 Test262 test suite. Kashyap et al. [41]

proposed notJS, an intermediate language for ES3 for which they design an abstract interpretation

analysis, JSAI. notJS keeps most of the control flow constructs of JavaScript, including simplified

versions of the for-in loop and the try-catch-finally statement. JSAI is designed to be provably sound

with respect to a specific concrete semantics for JavaScript, which has been extensively tested against

SpiderMonkey on their own made test suite.

λJS and notJS were not appropriate as their target is ES3, an older version of JavaScript. The best

candidate was S5 developed by Politz et al. [55], which targets the full ES5 standard. The compilation

from ES5 to S5 is informally described in the paper, and is validated through testing against the

ECMAScript test suite, achieving 70% success on all ES5 tests and 98% on tests designed specifically

to test unique features of ES5 Strict. However, the figure critical for us, which is the success rate of S5

on full ES5 Strict tests (those testing its unique features and the features common with ES5), was not

reported. This may have been due to the numerous errors in ES5 Test262 tests designed for testing

common features that render them unrunnable in strict mode. We overcame this issue by moving to

ES6 Test262. The only way for us to use S5 would have been to run it on our testing infrastructure

and then fix the unfamiliar code in light of failing tests. Also, to prove correctness of our assertion

translation and, ultimately, JaVerT, we would have to relate JS Logic and JSIL Logic via S5. This

would be a difficult task.

One of our main goals in the development of the JS-2-JSIL compiler was to be fully compliant

with ES5 Strict. Thus, a strong connection between the generated JSIL code and the standard was

imperative. Our design of the JS-2-JSIL compiler builds on the tradition of compilers that closely

follow the operational semantics of the source language, such as the ML Kit Compiler [8]. In that

spirit, the JS-2-JSIL compiler mimics ES5 Strict by inlining in the generated JSIL code the internal

steps performed by the ES5 Strict semantics, making them explicit.

29

2.4. Verification Tools Based on Separation Logic

Separation Logic. Hoare logic [35] was introduced to reason formally about the properties of

programs. A Hoare triple {P} c {Q} describes the behaviour of the program c, where P and Q are

assertions for representing the state of the program. A triple {P} c {Q} means that if a state satisfies

a precondition P , then, if the program c terminates, it does so in a state satisfying the postcondition

Q. Hoare logic provides axioms and inference rules for the constructs of the language to derive Hoare

triples. In Hoare logic, assertions describe the entire state of the program. This makes it difficult to

write program specifications, as we constantly need to describe not only the part of the state that the

program changes, but also the parts of the state that stay the same.

Separation logic [57, 50], an extension of Hoare logic, provides modular reasoning about programs

which manipulate heap structures. To achieve modularity, separation logic allows us to describe and

reason about only a part of a given heap by introducing the separating conjunction ∗. The formula

P ∗Q denotes a heap that can be split into two disjoint parts, where one part satisfies formula P and

the other satisfies Q. The precondition P in separation logic only needs to describe the parts of the

heap that are necessary for the execution of the program c. Then, using the frame rule, the state can

be extended with parts that have not changed.

Frame Rule

{P} c {Q} mod(c) ∩ fv(R) = ∅
{P ∗R} c {Q ∗R}

The frame rule states that if we can prove the specification {P} c {Q}, we can extend it with R,

which describes a part of the heap disjoint from P and Q and which does not mention variables

modified by c. Using the frame rule, we can analyse parts of the code independently and join the

results together. Modularity is the key to the success of separation logic, since it allows scalable

analysis of large codebases.

Separation Logic Tools for Static Programming Languages. Separation logic has been suc-

cessfully applied to verification tools for static languages. Initially, it was used for reasoning about

simple imperative while languages. Smallfoot [4] is the first verification tool based on separation logic.

It uses symbolic execution and introduces the frame inference technique. For reasoning about data

structures such as lists, Smallfoot provides built-in predicates. To verify programs, a user needs to

provide preconditions and postconditions for the functions, as well as loop invariants. Later, the tech-

niques introduced by Smallfoot were transferred to mainstream programming languages. To minimise

the burden of annotations, tools infer loop invariants automatically, hence requiring only specifica-

tions for functions. Such tools include jStar [22, 11] for Java and Space Invader [72] for C. jStar also

supports user-defined predicates. However, it requires of the user to provide logic and abstraction

rules for reasoning about such predicates. Abductor [13] is a fully automatic tool that infers not only

loop invariants, but also preconditions and postconditions. To achieve this, it uses the bi-abduction

technique. Infer [14] is a commercial tool based on bi-abduction and is used in Facebook for reasoning

about C, Java, Objective C, and C++. Other tools, instead of aiming at full automation, are support-

ing richer specifications. For example, Verifast [36, 54] allows users to define custom predicates and

specify functional properties for C and Java programs. However, it requires more annotations, such

30

as fold and unfold directives for inductive predicates on top of the specifications and loop invariants.

Verifast has been used to verify safety properties for industrial applications, such as Java Card3 applets

for smart cards, a Linux device driver, and an embedded Linux network management component.

We believe that separation logic is a good fit for JavaScript verification. However, the transposition

of the techniques developed for static languages to a highly complex dynamic language, such as

JavaScript, is challenging.

Separation Logic for JavaScript. Gardner et al. [30] have developed a separation logic for a tiny

fragment of ECMAScript 3, to reason about the variable store emulated in the JavaScript heap. To

adapt separation logic for reasoning about JavaScript programs, the authors introduce an assertion

to describe negative information about an existence of a property in an object, (l, p) 7→ �, and a new

connective sepish, t∗, to account for possible sharing. The assertion (l, p) 7→ � states that the object l

does not have the property p. We draw partial inspiration from this work: our property assertions are

similar. However, we do not use sepish, as it complicates automation. Sepish gives us more flexibility

in writing specifications, however, at the cost of the ability to prove properties. We will expand on

this throughout the thesis, showing how we are still able to write specifications without using sepish.

The logic presented in [30] supports a fragment of JavaScript with simplified semantics. For instance,

it does not consider attributes, implicit coercions or any of the intricate control flow commands of the

language. Even in such a simplified setting, this proposed logic is very complex due to the (remaining)

complexity of JavaScript. We did build a prototype tool, JuS [29], based on the logic, and were able to

semi-automatically reason about very simple programs that manipulate the JavaScript variable store.

An extension of this logic to the full language is intractable. For example, the behaviour of the

JavaScript assignment is described in the ECMAScript standard in terms of expression evaluation and

calls to the internal functions getValue and putValue. This effectively means that the assignment is

described by hundreds of possible pathways through the standard; each of these pathways would have

to be a proof rule of the logic, making automation essentially impossible. The same issues would give

rise to even greater complexity when applied to the complex control flow given by the switch and

try−catch−finally statements. Direct verification of JavaScript programs using separation logic is,

therefore, not feasible. We believe that working directly with JavaScript is too complex in the context

of verification and we contend that the correct approach is to first translate JavaScript programs to

JSIL and only then to apply automatic reasoning techniques. With such an approach, we move a

great part of JavaScript complexity from the logic and into the translation.

Targeting Existing Separation Logic Tools. Instead of developing JSIL and JSIL Verify, we

might have attempted to compile ES5 Strict to a language supported by an existing separation logic

tool [11, 36, 14]. The main problem is that these tools all target static languages that do not support

extensible objects, dynamic properties or dynamic binding of procedure calls. Hence, JavaScript

objects cannot be directly encoded using the built-in constructs of these languages. Consequently, at

the logical level, one would need to use custom abstractions to reason about JavaScript objects and

their associated operations, such as reading from the heap, writing to the heap or deleting a property

of an object.

The most closely related tool to ours is Verifast [36]. As in Verifast, we need to provide pre- and

postconditions, loops invariants, and fold/unfold statements for user-defined predicates. However,

3A Java platform for embedded devices.

31

Verifast does not allow us to provide a special rule for reasoning about dynamic properties. Instead,

we would need to provide abstract predicates, as explained above, to reason about such a fundamental

part of the language. In Verifast, a heap cell (E1, f) 7→ E2 only allows constant field names, but

not arbitrary expressions to represent fields. In order to describe a JavaScript heap cell we would

need to define an abstract predicate, such as Cell(E1,E2,E3). Verifast does not provide any means

for defining axioms about predicates. Therefore, when we talk about two disjoint cells at the same

location Cell(E1,E2,E3) and Cell(E1,E
′
2,E

′
3), we need to make sure that the fields E2 and E′2 are not

the same: Cell(E1,E2,E3) ∗ Cell(E1,E
′
2,E

′
3) ∗ E2 6= E′2. If we have three cells, we get Cell(E1,E2,E3) ∗

Cell(E1,E
′
2,E

′
3) ∗ Cell(E1,E

′′
2,E

′′
3) ∗ E2 6= E′2 ∗ E2 6= E′′2 ∗ E′2 6= E′′2. This encoding becomes quadratic

in the number of cells since we need to account for all possible inequalities.

coreStar [11] is a verification framework based on separation logic with its own intermediate lan-

guage coreStarIL and separation-logic theorem prover. We are not able to use coreStarIL because

it only supports static binding of function calls. We did use coreStar’s theorem prover to build the

prototype tool JuS [29] and the first version of JSIL Verify. The theorem prover provided by coreStar

is flexible enough to define our reasoning about extensible objects, dynamic properties and dynamic

functions. coreStar provides only an assertion for an empty heap, emp, and the separating conjunc-

tion, ∗. Everything else needs to be provided by a user in terms of abstract predicates and logic rules to

manipulate them. Having a list of logic rules, coreStar then performs proof search. As in the Verifast

case, we would define the predicate Cell(E1,E2,E3). However, in coreStar we are able to provide an

axiom (Cell(E1,E2,E3) ∗ Cell(E1,E
′
2,E

′
3) ∗ E2 = E′2) =⇒ false to avoid quadratic encoding. As our

experience shows, it is extremely difficult to provide logic rules without having any control of their

application, making the proof search untractable. Hence, we have opted out of using coreStar in the

latest version of JSIL Verify.

32

3. The JavaScript Language

We describe the key features of the JavaScript language focusing on the ECMAScript 5 (ES5) and

explain why we choose to work with the strict mode (ES5 Strict) of the language (§3.1). Using a priority

queue implementation as our running example, we describe behaviour of ES5 Strict constructs in more

detail (§3.2). Finally, we formally define the complete memory model of full ES5 Strict (§3.3), and

introduce operational semantics of a fragment of ES5 Strict (§3.4) that we use throughout the thesis.

3.1. JavaScript: ECMAScript 5

JavaScript is sometimes called the most misunderstood language in the world. There is a constant

debate on whether it is, in fact, an object-oriented language or a functional language. Some people

say that the language itself is simply badly designed. What is JavaScript?

JavaScript is defined by the international ECMAScript standard, with which all major web browsers

comply. The 5th edition of the ECMAScript standard (ES5) can broadly be divided into three parts

(Figure 3.1): the first part (chapters 1-7) introduces the syntax and details the parser; the second part

(chapters 8-14) addresses the core of JavaScript, including language constructs, such as expressions,

statements, and internal functions; the third part (chapter 15) describes a number of built-in libraries

that provide additional functionalities on top of the core language.

ES5

Core Language Built-in Libraries

Expressions Statements
Internal

functions

Syntax + Parser

Figure 3.1.: The JavaScript Language described by the ECMAScript 5 standard.

ES5 also introduces a strict mode of the language (ES5 Strict), a restricted variant of ES5 that

intentionally has slightly different semantics compared with the full language, and exhibits better

behavioural properties, such as lexical scoping and better error checking. Strict mode features are

mostly addressed via notes interspersed throughout the standard.

Developing and verifying a correct JavaScript parser is out of the scope of our project. Instead, we

use an off-the-shelf parser, Esprima [34], which is widely used and is standard-compliant.

33

3.1.1. The Key Concepts of JavaScript

JavaScript is an object-based language, by which we mean that an object is the main notion of the

language and most language features are described in terms of objects. For example, inheritance is

supported using prototype objects; functions are stored in the JavaScript heap as function objects,

which hold the code of the original function together with a representation of the scope in which the

function was defined; function scope consists of environment records, which are special objects, that

contain JavaScript variables as their properties.

In JavaScript, objects are stored in the JavaScript heap, an example of which is shown in Figure 3.2.

We give names to the objects in order to refer to them more easily, for example Object.prototype, n1,

and Node. Using this heap as an example, we next describe JavaScript objects in general, function

objects, and prototype-based inheritance.

pri

val

next

@proto

...

n2
pri

val

next

@proto

...

n3
pri

val

next

@proto

...

n1

prototype

@proto

@code

@scope

...

Node

Node.prototype

insertToQueue

@proto

...

Function.prototype

@proto

...

Object.prototype

@proto

...

prototype

@proto

@code

@scope

...

insertToQueue

Figure 3.2.: A JavaScript heap illustrating JavaScript objects and prototype-based inheritance.

Objects, Object Properties. A JavaScript object is a collection of properties. JavaScript objects

differ from C++ or Java objects in several defining ways. First of all, they are extensible, in that

properties can be added to/removed from an object after creation. Also, JavaScript objects have

two types of properties: named and internal. Named properties can be thought of as object fields

in the style of C++ or Java, except that they are associated with not only a value, but also with

a collection of attributes that describe the ways in which a property can be used. For example, the

writable attribute, which we denote by [W], describes whether or not the property is read-only. This

will be discussed in full detail in §3.2. Internal properties, in contrast, are hidden from the user and

are critical for the mechanisms underlying JavaScript, such as prototype-based inheritance. We use

the prefix @ to denote internal properties. In Figure 3.2, the object n1 has three named properties

"pri", "val", and "next" and one internal property @proto, whereas the object Node has one named

property "prototype" and three internal properties @proto, @code, and @scope.

Functions, Function Objects. JavaScript supports the functional programming style. Functions

in JavaScript are first-class citizens, which means that they can be passed as arguments to other

functions and also returned as outcomes of functions.

Additionally, JavaScript features nested functions. An inner function can use variables defined in

an outer function and, hence, needs to be able to access the variables from the outer function. In

fact, we can think of JavaScript functions as being closures, since they contain both their code and

34

the representation of scope in which the function was defined. Functions are stored in the JavaScript

heap as objects. Each function object has two specific internal properties: @code, storing the code of

the function; and @scope, storing the scope of the function, used for variable resolution. There are two

function objects in Figure 3.2, Node and insertToQueue (we use the green colour to denote function

objects). Consider the following JavaScript code snippet, which creates the function object Node:

1 var Node = function(pri, val) {

2 this.pri = pri; this.val = val; this.next = null;

3 }

The ES5 Standard states that the property @code stores the ECMAScript code of a function, how-

ever, it does not insist on any format. We give a unique identifier to every function and store this

identifier in the property @code, instead of storing the code itself. We will illustrate the property

@scope in the later section describing variable binding.

Prototype-based Inheritance. In JavaScript, object inheritance is prototype-based. It is tracked

through a dedicated internal property, which we denote by @proto. All JavaScript objects have the

internal property @proto. When a new JavaScript object is created, its property @proto is set to

an appropriate prototype object. Since new objects in JavaScript are created using functions as

constructors, JavaScript function objects also have a dedicated named property "prototype", storing

the prototype of objects created using that function. Figure 3.2 illustrates JavaScript’s prototype-

based inheritance. The object Node is a function object that can be invoked as a constructor using

the JavaScript expression new. It has a named property "prototype" that points to another object,

namely Node.prototype (we use blue arrows for named properties that hold objects). Node.prototype

is a prototype object for the newly created objects n1, n2, and n3 which is expressed by their internal

property @proto pointing to Node.prototype (we use red arrows to denote that one object is a prototype

object of another object). Objects n1, n2, and n3 have their own named properties "pri", "val", and

"next", and they also share a property "insertToQueue" from their prototype Node.prototype. They

also share all of the named properties of the prototype of the Node.prototype, which, in our example,

is Object.prototype. Object.prototype is a built-in object that serves as the default prototype object.

Object.prototype has the property @proto with value null, which terminates the prototype chain.

An object inherits all named properties from the objects in its prototype chain. When we look

for a property in an object, we traverse its prototype chain until we find the property in question.

For example, in order to determine the value of a property p of a given instance of Node, say n1,

we first check whether n1 has the property p, in which case the property lookup yields its value.

Otherwise, we check if p belongs to the properties of Node.prototype, and if it does not, we look for it

in Object.prototype. If it is not found there either, we declare it to be undefined.

All JavaScript objects have prototype chains. As seen in the example, even the function object Node

has a prototype, Function.prototype, which is another built-in object that is the default prototype

object for all JavaScript functions. Also, the prototype of Function.prototype is Object.prototype.

By having prototype-based inheritance, JavaScript is expressive enough to support a flavour of the

object-oriented programming style. Indeed, we can think of objects Node and Node.prototype being

almost equivalent to a class in Java or C++: Node plays a role of a constructor while Node.prototype

holds shared properties and methods. The difference is that the prototype inheritance of JavaScript

does not support full encapsulation. Even in the latest version of the standard, which features classes,

full encapsulation is still not supported. We elaborate on this point when discussing the running

35

example in §3.2.

Variable binding. Variables in JavaScript are properties of special objects, called environment

records. An environment record (ER) is an object created upon the invocation of a function that

maps the variables declared in the body of that function and its formal parameters to their respective

values. Variables are resolved with respect to a list of ER locations, called a scope chain, which each

function object stores in the property @scope. Let us illustrate variable binding with nested functions

by moving our Node function inside immediately-invoked function expression (function(){...})() and

adding another function f that uses Node as a constructor:

1 (function() {

2 var Node = function(pri, val) {

3 this.pri = pri; this.val = val; this.next = null;

4 }

5

6 var f = function(pri, val) {

7 var n = new Node(pri, val);

8 };

9

10 f(1, "last");

11 })();

prototype
@proto
@scope
@code
...

Node

Function.prototype

@proto
...

@proto
@scope
@code

...

Anonymous

f

@proto
@scope
@code

...

ER-Anonymous

Node
f

@proto
...

pri
val
n

@proto
...

ER-f

Object.prototype

@proto
...

global
@proto
...

prototype
@proto
@scope
@code
...

Node

Function.prototype

@proto
...

@proto
@scope
@code

...

Anonymous

f

@proto
@scope

@code

...
pri
val
n

@proto
...

ER-f

Object.prototype

@proto
...

global
@proto
...

o

Node
@proto
...

ER-Anonymous
Node
o
f

@proto
...

prototype
@proto
@scope
@code
...

o.Node

Figure 3.3.: Variable binding in the JavaScript heap

In the execution of the above code, three function objects will be created (Figure 3.3, left). The

@scope of the function object for the anonymous function will be [global] as it is defined in the

global code. The global object, global, is a special built-in object that holds all global variables and

is present before executing any JavaScript program. The @scope for functions Node and f will be

[global, ER−Anonymous] since both functions are created inside the anonymous function. ER−Anonymous
is an environment record (we show environment records in orange) created upon the invocation of

the anonymous function Anonymous and it has two properties, "Node" and "f", that point to the

36

corresponding function objects. When we call the function f, a new environment record ER−f is

created, which contains the properties "pri", "val", and "n", corresponding, respectively, to the two

formal parameters of the function and a local variable defined inside the function. The body of the

function f is executed in the scope [global, ER−Anonymous, ER−f], which is highlighted in Figure 3.3

(left). We can think of the scope chain objects together with their prototypes as an emulated variable

store. There are four variables in the body of the function f. When these variables are resolved,

variables n, pri, and val will be found in the last environment record, ER−f, while the variable Node

will be found in the second environment record, ER−Anonymous.

Variable dereferencing gets trickier in the presence of the with statement. Without the with state-

ment, the only object in the scope chain that can have a non-null prototype is the global object. The

with statement allows any object to be a part of the emulated variable store. Let us define the function

f inside a with statement.

1 (function() {

2 var Node = function(pri, val) {

3 this.pri = pri; this.val = val; this.next = null;

4 }

5

6 var o = {Node : function(){}};

7 with (o) {

8 var f = function(pri, val) {

9 var n = new Node(pri, val);

10 };

11 }

12

13 f(1, "last");

14 })();

The with (o){s} statement changes the current scope inside the execution of the statement s by

appending the object o to the current scope chain. The @scope for the function object f in this

case becomes [global, ER−Anonymous, o]. The function f is then executed in the scope [global, ER−
Anonymous, o, ER−f] (Figure 3.3, right) and the variable Node is resolved to the function object o.Node,

which contains an empty function expression.

The strict mode of the JavaScript language forbids the use of the with statement. Without the with

statement, only environment records and the global object can be a part of a scope chain of a function

object. This simplifies variable binding and ensures lexicographic scoping.

3.1.2. The Core Language

JavaScript programs are built from statements, which, in turn, are built from expressions. The

behaviour of statements and expressions is described using a variety of internal functions, not available

to the developer. In this section, we give a flavour of JavaScript statements, expressions and internal

functions, and describe some non-standard aspects of their behaviour.

JavaScript Statements. JavaScript statements (Figure 3.4) include variable definitions, conditional

statements (if then else, switch), a number of iteration statements (do−while, while, for, for−in),

various control flow statements (continue, break, return, labelled statements), exception handling

statements (throw, try−catch−finally), with statements, expression statements and blocks of state-

ments (or sequencing). In §3.4, we formally present a fragment of ES5 Strict, and the statements

included in this fragment are highlighted in green.

37

Core Language

Variable
definition

Statements

var x if then else

switch

Conditionals Iteration

do-while

while

for

for-in

Control flow

continue

break

return

with block

Exceptions

throw

try-catch-
finally

labelled
statement

expression
statement

Figure 3.4.: ES5 statements.

A difference with respect to other programming languages is that in JavaScript not only expressions,

but also statements, return values which makes the semantics more complicated. For example, se-

quencing is more complex comparing to other languages. Let us illustrate this with a simple example.

The result of evaluating a sequence var x; x = 3 is 3, while the result of evaluating var y is a special

value empty. We might expect that joining these two statements to var x; x = 3; var y would result in

empty as this was the result of the last statement. However, the composition evaluates to 3. JavaScript

has a special treatment of the empty value in sequences. If a statement evaluates to empty the result is

the last non-empty value of the previous statements. In ES5, the only way to observe a return value

of a statement is by using the function eval.

JavaScript Expressions. JavaScript expressions (Figure 3.5) include literals (null, undefined,

booleans, numbers, and strings), the this keyword, variables, array and object initialisers, function

expressions, function and constructor calls, property accessors, assignments, and various operators:

unary operators (delete, typeof, ...), the instanceof operator, equality operators (===, ==, ...),

binary additive operators (+, −), multiplicative operators (∗, /, %), relational operators (<, >, ...),

binary logical operators (&&, ...), and bitwise operators (<<, >>, ...). Similar to JavaScript state-

ments, the green colour represents the fragment formally presented in §3.4. Most of the expressions

behave as expected, but there still exists a number of peculiarities that need to be addressed.

JavaScript Expressions: the Confusing this. Similar to object-oriented languages, JavaScript

has the keyword this that is used to denote the current object in a constructor or a method. Recall

the code of the function Node:

1 var Node = function (pri, val) {

2 this.pri = pri; this.val = val; this.next = null;

3 }

To create a new node object, we use the JavaScript expression new Node(...). A new object, say n1,

is created and when the body of the function Node is executing, the this corresponds to the newly

created object n1. Also, when we call the method n1.insertToQueue(...), the this inside the body of

the function insertToQueue corresponds to the object n1.

The confusion comes from the fact that, differently from other object-oriented programming lan-

guages, in JavaScript a constructor or a method is also a function and it can be called in a standard

way, for example, Node(...) or f = n1.insertToQueue; f(). What happens to the this then? In the non-

strict mode of the language, the this will correspond to the global object. In the case of Node(...),

38

Core Language

Literals

Expressions

null this

x

Primary Functions

function
expression

e()

new e()

Properties

e1[e2]

Operators

e1 = e2

typeofundefined

booleans

numbers

strings

[e1,…,en]

{e1,…,en}

e.x

=== !== ==…

+ - * / %

instanceof

< > >= <=

Assignments

e1 += e2

delete

. . .

. . .

Figure 3.5.: ES5 expressions.

three new global variables, pri, val, and next will be created. This is not what we intended and

instead of getting an error because we forgot the new keyword, we end up creating global variables.

This is a common mistake in JavaScript programs. The strict mode of the language helps finding such

errors earlier on in the development. In strict mode, when a function is called in a standard way, the

this gets the value undefined instead of the global object. In the case of Node(...), this.pri throws an

error, since undefined is a primitive value, not an object, and therefore cannot have properties.

JavaScript Expressions: Implicit Type Conversion. JavaScript was designed with the idea of

delaying error reporting to the user for as long as possible. To that end, most of JavaScript operators

implicitly convert operands to the types that they expect, which makes the understanding of JavaScript

programs and the detection of bugs more difficult. For entertainment purposes, little JavaScript code

snippets that make use of this behaviour are often shown as puzzles. For example, when we add up

an empty string and an empty object ""+ {}, we might expect a type error. However, JavaScript

implicitly converts the empty object to the string "[object Object]", which becomes the result of

evaluating the whole addition expression. We might expect the same result when we switch operands,

{} + "". However, what we get is, in fact, 0. In this case, {} is actually treated as an empty block,

not an empty object. Hence, this code would not even be treated as an expression, but in fact as the

sequence of statements {}; + "", where + is a unary operator on numbers. Therefore, when evaluated,

the empty string is converted to the number 0, which is the outcome of the entire evaluation.

The JavaScript abstract equality or double-equal operator == also uses implicit type conversion.

For example, all these expressions evaluate to true: true == 1, false == "", undefined == null. It

is advisable to use strict equality === instead, which requires both operands to be of the same type

in order for the equality to hold.

JavaScript Expressions: Property Accessors. A familiar way of accessing a property p of an

object o in object-oriented languages such as Java is to use the dot notation o.p. In JavaScript, there

are two ways to access properties: member access e.x and computed access e1[e2]. ES5 standard states

that e.x is identical in its behaviour to e["x"]. When we use member access, we statically know the

name of the property x, whereas in computed access the name of property is dynamically evaluated

39

from the expression e2. This is what we mean by the phrase dynamic properties. A property can

only be a string, and if e2 evaluates to a value of another type, an implicit type conversion using the

internal ToString function occurs. Here are several examples that illustrate computed access:

1 var o = { prop: 0 };

2 var r1 = o["pr"+"op"]; // evaluates "pr"+"op" to "prop", then evaluates the property "prop" of object o,

3 // which has value 0

4

5 var o2 = { 1: 1 };

6 var r2 = o2[4 - 3]; // evaluates 4-3 to 1, implicitly converts the number 1 to the string "1",

7 // then evaluates the property "1" of object o2, which has value 1

8

9 var o3 = { toString: function(){return "prop"} };

10 var r3 = o[o3]; // evaluates o3 to an object, implicitly converts it to the string "prop",

11 // then evaluates the property "prop" of object o, which has value 0.

12

13 var o4 = {};

14 o4[o] = 2; // evaluates o to an object and implicitly converts it to the string "[object Object]"

15 var r4 = o4[o2]; // evaluates o2 to an object, implicitly converts it to the string "[object Object]",

16 // then evaluates the property "[object Object]" of object o4, which has value 2

The most confusing lines of the above example are the lines 9-15, where an object is used as a

property. In such a case, a given object is implicitly converted to a string by an internal JavaScript

function ToString. ToString takes one parameter v as input (either undefined, null, a boolean, a

string, a number, or an object), and returns the corresponding string: when v = undefined, it returns

"undefined"; when v = null it returns "null"; when v = true, it returns "true"; when v = false

it returns "false"; when v is a string, it returns v; and when v is a number, it returns its string

representation (for example, when v = 5, it returns "5"). The case in which v is an object is the most

complex. There, ToString calls another internal function, ToPrimitive, which converts an object to

a primitive value (either undefined, null, a boolean, a number, or a string) by calling yet another

internal function, DefaultValue. DefaultValue checks if the given object has a function toString in

its prototype chain and if it does, it calls the function and returns the result of that call, which is

then propagated back as the return value of the initial call to ToString. The object o3, defined in line

9, has the function toString. Hence, when the implicit conversion using ToString takes place in line

10, o3 is converted to a string "prop", resulting in r3 containing the value 0. In line 13, we create an

empty object o4 and set its property o in line 14 to hold value 2. The object o itself does not have the

function toString, but its prototype, Object.prototype, does by default. Object.prototype.toString

always returns the string "[object Object]" when a given argument is an object of class "Object".

Hence, the result of converting the object o to a string is "[object Object]". In line 15, we access

the property o2 from the object o3. The same implicit type conversion occurs, resulting in the same

property "[object Object]". Hence, the value of r4 is 2.

JavaScript Expressions: Functions. In an object-oriented language such as Java, we statically

know most of the times which function will be called given its name. One exception is the dynamic

dispatch, where methods are resolved dynamically from a constrained set of defined implementations.

In JavaScript, the relationship between the name and the actual function is much looser. Consider

the following example:

1 var y = function() {...};

2 var x = function() {return 1};

3 y();

4 var r1 = x();

We define two functions and assign them to variables x and y. For the moment, we do not know what

40

the body of function y does. We might expect that if we reach line 4 (that is, if function y does not

throw an exception), then we will call the function defined on line 2 and get value 1 for r1. However,

nothing is preventing us from reassigning the value of the variable x inside the body of the function

y, for example, var y = function(){x = function(){return 3}}; In such a case, the value assigned to r1

will be 3. Similarly, for built-in functions, we cannot be sure that, for instance, Object.defineProperty

is always the actual function intended by ES5. We can easily re-assign it to anything else, for example,

Object.defineProperty = 5.

This illustrates what we aim to capture by using the term dynamic function: we cannot assume to

know statically which function is being called. We need to look into the heap to obtain its code.

Internal Functions. JavaScript internal functions, shown in Figure 3.6, describe the fundamental

inner workings of the language, such as prototype chain traversal (GetProperty), property definition

(DefineOwnProperty) and property deletion (Delete), as well as type conversions implicitly invoked

by JavaScript operators (ToString, ToNumber, ToInteger, ToBoolean, ToPrimitive, ToObject, ...). They

also include internal functions on references, which are internal constructs of JavaScript specifica-

tion to represent resolved property bindings (GetValue, PutValue). JavaScript internal functions are

not accessible by the developer in ES51, but are called internally by all JavaScript expressions and

statements. Their definitions in the standard are complex, are given operationally, and are often

intertwined, making it difficult for the user to fully grasp the control flow and allowed behaviours.

To illustrate: GetValue calls Get, which calls GetProperty, which calls GetOwnProperty; PutValue calls

Put, which calls CanPut and DefineOwnProperty, which calls GetOwnProperty. Similar to JavaScript

statements and expressions, the green colour represents the fragment formally presented in §3.4. We

will discuss internal functions in more detail in §7.

Core Language

Internal
functions

GetProperty

GetValue

PutValue

Object

DefaultValue

Conversions

ToString

ToPrimitive

ToNumber

References

Get

GetOwnProperty

Put

CanPut

DefineOwnProperty

HasProperty

Delete

ToObject

ToInteger

ToBoolean

ToUint32,
ToInt32, ToUint16

CheckObjCoercible

IsCallable

SameValue

Figure 3.6.: ES5 internal functions.

1ES6 has the Reflect library, which effectively exposes the internal functions to the user.

41

3.1.3. Built-in Libraries and the Initial Heap

JavaScript has a collection of built-in libraries. While most of the built-in libraries provide additional

functionality to the core of JavaScript, some of them are strongly intertwined with the core language.

Figure 3.7 enumerates all the built-in libraries of ES5.

Built-in Libraries

Critical In-between Orthogonal

Global

Object

Function

Error

Array

Boolean

Number

String

Date

JSON

Math

RegExp

Figure 3.7.: The Built-in Libraries in ES5

The Global library, associated with the global object, Object, Function, and Error libraries are

intertwined with the core language. We already mentioned some of the built-in objects when we ex-

plained the key features of the language. For example, a unique global object holds all global variables,

Object.prototype is the default prototype object of newly created objects, while Function.prototype is

the default prototype object of function objects. Basic functionalities of Array, Boolean, Number, and

String libraries are used to define some of the core features, as well. For example, the type conversion

ToObject uses Boolean, Number, and String constructors to create objects when converting primitive

values booleans, numbers and strings to objects. In contrast, the Date, JSON, Math and RegExp libraries

are orthogonal to the core language. Similar to other JavaScript constructs, the green colour represents

the fragment formally presented in §3.4. We will discuss the libraries in more detail in §5.2.

The built-in libraries are implemented in terms of objects, called built-in objects. The built-in

objects are present before the execution of any JavaScript program, and together form what we call

the JavaScript initial heap.

In Figure 3.8, we illustrate the critical built-in objects and the relationships between them in the

JavaScript initial heap. Built-in objects, such as Object, Function, and Error are properties of the

global object. They are all functions, hence their prototype (@proto) is Function.prototype, and

they all have "prototype" properties that point to the Object.prototype, Function.prototype, and

Error.prototype objects, respectively. Other (non-critical) built-in objects are also properties of the

global object and have their respective "prototype" properties.

Built-in objects contain a number of functions associated to them. For example, Figure 3.8 shows

two such functions, Object.defineProperty and Object.prototype.toString, which are properties of

Object and Object.prototype, respectively. Object.defineProperty is a proper library function, in the

sense that the core language does not depend on it. Object.prototype.toString, on the other hand,

is used in the property accessor e1[e2] in the case if e2 is an object and does not have the toString

42

Figure 3.8.: Initial heap of the critical built-in objects

function anywhere else in its prototype chain.

3.1.4. Why ES5 Strict?

At the starting time of the project, ES5 was the current version of the standard, and the publication

date of ES6 was too close to the end of the project for it to be properly updated. For this reason, we

remain in the scope of ES5.

We have chosen to focus on ES5 Strict, a restricted variant of ES5 that intentionally has slightly

different semantics compared with the full language and exhibits better behavioural properties. ES5

Strict has lexicographic scoping, requires explicit declaration of all variables before instantiation, does

not allow assignment to certain key properties of the global and function objects, and makes error

reporting explicit.

To ensure lexicographic scoping, ES5 Strict forbids the use of the with statement. When we use a

variable in the strict mode, we statically know in which function it was defined. Without the with

statement, a variable cannot be a property of an arbitrary object anymore. The only exception is the

global object holding global variables.

In non-strict mode, when an error happens, it is silently ignored. However, some unexpected side

effects can change the global state or some operations that are supposed to change the state, behave

as no-op. This makes it more difficult to find the cause of a faulty program. The strict mode of the

language helps finding errors earlier on in the development by throwing an exception. We give some

examples below. Recall the Node function defined above, and consider the following:

1 var f1 = function(pri, val) { n = new Node(pri, val) }; // creates a global variable n in non-strict mode

2 // throws a ReferenceError in strict mode

3 var f2 = function(pri, val) { var n = Node(pri, val) }; // creates global variables pri, val and next

4 // in non-strict mode

5 // throws a TypeError in strict mode

6 Object.defineProperty(Node.prototype, "pri", { value: 0, writable: false });

7 var f3 = function(pri, val) { var n = new Node(pri, val) }; // creates a Node n without the property pri

8 // in non-strict mode

9 // throws a TypeError in strict mode

In non-strict mode, it is very easy to introduce global variables by forgetting to declare a variable

43

(variable n, line 1) or by calling a function as a standard function, hence, making this to point to

the global object (function Node, line 3). In strict mode, a ReferenceError is thrown if a variable is

used without declaring it first (line 1); and this holds the value undefined instead of the global object

when a function is called as a standard function, resulting in a TypeError being thrown when we try

to add a property to undefined (line 3). Assigning to a non-writable property of an object or to a

property that is non-writable in the prototype chain of an object (property pri, line 7), silently skips

the assignment operation in non-strict mode. In strict mode, a TypeError is thrown.

ES5 Strict was developed by the ECMAScript committee, and was recommended for use by the

committee itself as well as by professional developers [28], and is also widely used by major industrial

players: for example, Google’s V8 JavaScript engine [31], and Facebook’s React JavaScript library

[25].

We believe that ES5 Strict is the correct starting point, since our overall aim is to demonstrate the

feasibility of logic-based verification for JavaScript. Moreover, the work that we have done remains

relevant for ES6 and ES7. Moving from ES5 Strict to ES6 Strict or ES7 Strict does require the

addition of new language constructs, which constitutes a sizeable effort, but only very minor changes

to the current infrastructure, as ES6 is built on top of ES5, and ES7 on top of ES6.

3.2. The Running Example

We explain the fundamentals of JavaScript by appealing to the example given in Figure 3.9, which is

an implementation of a priority queue library in JavaScript, and the heap obtained from its execution,

shown in Figure 3.10. We use this example to illustrate the complexity of programming in JavaScript

and the behavioural properties that we wish to capture using JaVerT. In §8, we use JaVerT to specify

and verify all of the functions associated with the library.

Our priority queue library is given in lines 1-48, with a small client program given in lines 50-54. To

use the library, a client program constructs a new priority queue, identified by the variable q, by calling

1 /* @id Module */
2 var PriorityQueue = (function () {
3

4 /* @id Node */
5 var Node = function (pri, val) {
6 this.pri = pri; this.val = val; this.next = null;
7 }
8

9 /* @id insertToQueue */
10 Node.prototype.insertToQueue = function (q) {
11 if (q === null) {
12 return this
13 }
14

15 if (this.pri >= q.pri) {
16 this.next = q;
17 return this
18 }
19

20 var tmp = this.insertToQueue (q.next);
21 q.next = tmp;
22 return q
23 }
24

25 /* @id PriorityQueue */
26 var module = function () {
27 this._head = null;
28 };

29

30 /* @id enqueue */
31 module.prototype.enqueue = function(pri, val) {
32 var n = new Node(pri, val);
33 this._head = n.insertToQueue(this._head);
34 };
35

36 /* @id dequeue */
37 module.prototype.dequeue = function () {
38 if (this._head === null) {
39 throw new Error("Queue is empty");
40 }
41

42 var first = this._head;
43 this._head = this._head.next;
44 return {pri: first.pri, val: first.val};
45 };
46

47 return module;
48 })();
49

50 var q = new PriorityQueue();
51 q.enqueue(1, "last");
52 q.enqueue(3, "bar");
53 q.enqueue(2, "foo");
54 var r = q.dequeue();

Figure 3.9.: Running Example - a priority queue implemented in JavaScript

44

the PriorityQueue constructor (line 50). To manipulate the queue, enqueue and dequeue functions are

called (lines 51-54). The enqueue function inserts the given priority and value to the queue, while the

dequeue function retrieves the value with the highest priority. This is all the client program needs to

know in order to use the priority queue library.

The library implements a priority queue as an object with a property _head pointing to a singly-

linked list of node objects, with the nodes ordered in descending order of priority. When a new

priority queue is constructed (line 50), the PriorityQueue function (lines 25-28) (we annotate all

function literals with unique identifiers) initially sets _head to null of the new priority queue object.

Each node contains a priority (pri), a value (val), and the pointer to the next node in the queue

(next). The function insertToQueue (lines 9-23) inserts a node into an existing queue. This function

is stored in the node prototype object (Node.prototype), and is available to all node objects. It should

be used in the form n.insertToQueue(q), where q is the head of the queue into which we are inserting

and n is the node to be inserted. It returns the head of the new queue, obtained by correctly inserting

n into the queue starting with q. The enqueue function (lines 30-34), for example, q.enqueue(1, "last")

uses the Node function to construct a node object, n (line 32), with priority (pri equal to 1), value

(val equal to "last"), and a pointer to the next node (initially next equal to null) (line 6). It then

calls the function n.insertToQueue(this._head) which inserts n into an existing node list pointed by

this._head, returning the head of the new node list (line 33).

Note that the function insertToQueue could be implemented either using a recursive function or a

while loop. We chose to implement it using recursion. Doing so simplifies the specification of the

function, as we do not need to write down the loop invariant.

We would like to abstract the fact that our implementation of queue uses Node and instead present

a well-known queue interface to the user. In Java, it would be possible to define a Node constructor

and its associated functionalities to be private. In contrast, JavaScript does not provide a native way

of declaring private functions and the standard way to establish some form of encapsulation is by

using function closures: for example, the variable Node is declared in an immediately-invoked function

expression (lines 2-48). This makes it impossible for the clients of the library to see the Node function

and use it directly. However, they still can access and modify constructed nodes and Node.prototype

through the _head property of the queue, breaking encapsulation. Using the underscore prefix for

denoting private property names is a convention broadly used by JavaScript developers. Even though

it is possible for someone to abuse this interface, it does clarify the intention of keeping the properties

private. In §8, we give specifications of the queue library functions that ensure functionally correct

behaviour. To achieve this, we must reason about a number of JavaScript concepts, most importantly

prototype inheritance and scoping. In the remainder of this section, we describe these concepts, as

well as the initial JavaScript heap and some features of JavaScript objects.

Initial Heap. As we discussed in §3.1.3, before the execution of any JavaScript program, an ini-

tial heap is established. It contains the global object, which will hold all global variables, such as

PriorityQueue, q, and r from the running example. The initial heap also contains the constructors

and prototypes of all JavaScript built-in libraries, such as Object, Function, and Error. In the running

example, we use the constructor of the Error built-in object to construct a new error object and throw

an exception when trying to dequeue an empty queue (line 39).

Objects, Object Properties. Recall that JavaScript objects have two types of properties: in-

45

PriorityQueue: [V]:PriorityQueue, [W]:T, [E]:T, [C]:F

q: [V]:q, [W]:T, [E]:T, [C]:F

r: [V]:r, [W]:T, [E]:T, [C]:F

...

global

prototype: [V]:Node.prototype, ...

@proto: Function.prototype

@class: “Function”

@scope: [global, ER-Module]

@code: Node

...

Node

@proto: Function.prototype
@class: “Function”
@scope: [global]
@code: Module

...

Module

PriorityQueue

prototype: [V]:PriorityQueue.prototype, ...

@proto: Function.prototype

@class: “Function”

@scope: [global, ER-Module]

@code: PriorityQueue

...

Node: Node

module: PriorityQueue

@proto: null

...

ER-Module

pri: [V]:3, ...

val: [V]:”bar”, ...

@proto: Object.prototype

...

r

enqueue: [V]:enqueue, ...

dequeue: [V]:dequeue, ...

...

PriorityQueue.prototype
@proto: Function.prototype

@class: “Function”

@scope: [global, ER-Module]

@code: enqueue

...

enqueue

dequeue

@proto: Function.prototype

@class: “Function”

@scope: [global, ER-Module]

@code: dequeue

...

JavaScript
initial heap

pri: [V]:1, [W]:T, [E]:T, [C]:T

val: [V]:”last”,[W]:T, [E]:T, [C]:T

next: [V]:null, [W]:T, [E]:T, [C]:T

@proto: Node.prototype

@class: “Object”

@extensible: true

n1

pri: [V]:2, ...

val: [V]:”foo”, ...

next: [V]:n1, ...

@proto: Node.prototype

...

n3

insertToQueue: [V]:insertToQueue, ...

@proto: Object.prototype

...

Node.prototype

Priority
Queue

n2

pri: [V]:3, ...

val: [V]:”bar”, ...

next: [V]:n3, ...

@proto: Node.prototype

...

_head: [V]:n3, ...

@proto: PriorityQueue.prototype

...

q

insertToQueue

@proto: Function.prototype

@class: “Function”

@scope: [global, ER-Module]

@code: insertToQueue

...

pri: 1

val: ”last”

n: n1

@proto: null

...

ER-enqueue

Figure 3.10.: JavaScript heap obtained from the execution of the running example

ternal and named. Standard JavaScript objects have three internal properties: @proto, @class,

and @extensible. For example, as seen in Figure 3.10, object n1 is extensible, its prototype is

Node.prototype, and its class is "Object".

Named properties are not associated with values in the heap, but instead with property descriptors.

Property descriptors are quadruples of attributes, which describe the ways in which a property can be

accessed and/or modified. Depending on the attributes they contain, named properties can either be

46

data properties or accessor properties. Data properties contain the value, writable, enumerable, and

configurable attributes (denoted by [V], [W], [E], and [C]), whereas accessor properties contain get and set

attributes (denoted by [G] and [S]), as well as [E] and [C]. The attributes have the following semantics: [V]

holds the actual value of the property; [W] describes whether or not the value of the property can be

changed; [E] indicates whether or not the property will be included in a for-in enumeration; [C] allows or

disallows property deletion, together with any change to the other attributes (except for value, which it

does not affect) and any change in the type of the property (data to accessor and vice versa); [G] and [S]

play a role similar to getters and setters of Java and provide property encapsulation. Let us illustrate

how JavaScript uses descriptors. If a property of an object was created using a property accessor

(for example, this.pri = pri), it will be writable, enumerable, and configurable (for example, "pri",

"val", and "next" in the object n1). On the other hand, if a property was declared as a variable, it

will not be configurable (for example, PriorityQueue and q in the global object). That is, JavaScript

variables, once declared, cannot be deleted.

Prototype-based inheritance. All node objects constructed using new Node(...) share the same

prototype, which is the Node.prototype object. In order to determine the value of a property p of a

given instance of Node, say n1, one needs to traverse its prototype chain.

There is an interesting point to be made when it comes to the interaction of descriptors and

prototype-based inheritance. Suppose that we wished to set a default priority of 0 for all nodes

by assigning 0 to "pri" in the Node.prototype object as follows:

1 Object.defineProperty(Node.prototype, "pri", { value: 0, writable: false })

The above code creates a non-writable property "pri" with value 0 in Node.prototype. While this

may seem reasonable, as the default value of "pri" should not be updated, the JavaScript standard

forbids assignment to a property of an object if a non-writable property of the same name exists in

the prototype chain of that object. This means that any program executing new Node(...) will fail, as

the code of Node includes an assignment to the property "pri". We will see later how providing the

specification for the PriorityQueue library enforces us to consider all such corner cases.

Functions, Function objects. Functions are also stored in the JavaScript heap as objects. For

instance, the functions defined in the code are represented in the final heap by the objects labelled with

their respective identifiers: Module, Node, insertToQueue, PriorityQueue, enqueue, and dequeue. As we

have mentioned, each function object has three specific properties: @code, @scope, and "prototype".

All function objects from the running example store their corresponding unique identifiers in the

property @code. The function Module has its @scope equal to [global], while the remaining five functions

have their @scope equal to [global, ER−Module]. ER−Module is an environment record created for the

immediately-invoked function expression Module. Node.prototype is the prototype of all instances of

Node, such as n1, n2 and n3, whereas PriorityQueue.prototype is the prototype of all instances of

PriorityQueue, such as q. The rest of the functions also have "prototype" properties, but since we do

not use them as constructors, they are not relevant.

The running example also illustrates a couple of interesting points about functions in JavaScript.

First, a function can be returned as an outcome of another function. The function Module returns

module on line 47, which is, in fact, a function object defined on line 26 and corresponds to the

function object PriorityQueue in the heap. Second, JavaScript supports immediate invocation of

function expressions. The function Module is being called right away after its definition (line 48) and

47

is not being assigned to any of the variables. Hence, we cannot access the function object Module

anymore, as we can see from the JavaScript heap in Figure 3.10.

Variable Binding. The most interesting function to illustrate variable binding is the enqueue func-

tion, which is in a similar setting as the function f from the discussion on Variable Binding in

in §3.1.1. It uses four variables pri, val, n, and Node in its body. Variables pri and val are formal

parameters and n is a local variable, hence, they are stored in the new environment record ER−enqueue.

Figure 3.10 shows the ER−enqueue, created upon the invocation of the first call to the function enqueue

on line 51. However, Node is not a property of the ER−enqueue, so we have to look for it in the rest of

the scope chain associated with enqueue, which is [global, ER−Module], and we find it in ER−Module.

All other functions use only variables that are either their own formal parameters or local variables

and are, therefore, stored in the environment records newly created upon function invocation.

The this Keyword. In the running example, we use this in functions Node, PriorityQueue,

insertToQueue, enqueue, and dequeue. Its usage should not be confusing, since these functions are

either constructors or methods. The functions Node and PriorityQueue are constructors and are called

using the new expression, for example, new Node(...) on line 32 and new PriorityQueue() on line 50. The

keyword this in the body of these functions will correspond to the newly created objects, n1, n2, n3

(for Node) and q (for PriorityQueue). The other functions are called as methods o.m(...), in which case

the this keyword in their bodies correspond to the objects o (lines 20, 33, and 51-54).

3.3. The Memory Model of ES5 Strict

We formally define the memory model of full ES5 Strict. We use the memory model to prove a

full correctness result of the translation from the JavaScript assertion language to the JSIL assertion

language in §8.

We define JavaScript heaps in Figure 3.11. A JavaScript heap, h ∈ HJS, is a partial function

mapping pairs of object locations and property names to JS heap values. Object locations are taken

from a set of locations L. Property names are taken from a set of strings PJS. JS literals contain:

numbers, n; booleans, b; strings, t; and the special JavaScript values undefined and null. JS values

contain JS literals, λJS , and object locations, l. JS heap values, ω ∈ VhJS, contain: JS values, v ∈ VJS;
lists of JS values, v; and function identifiers, m.

Lists of JS values, v, are used to represent scope chains and descriptors. We represent a scope chain

as a list of locations of environment records. For the descriptors, recall that there exist two types of

descriptors: data and accessor. Data descriptors have four attributes: [V] holding JavaScript value, and

three boolean attributes, writable [W], enumerable [E], and configurable [C]. Accessor descriptors have

get [G] and set [S] attributes that hold either locations to a function objects or are undefined, together

with two boolean attributes, enumerable [E] and configurable [C]. We represent descriptors as five-

element lists; the first element describes the descriptor type and the remaining four represent values

of appropriate attributes; for example, ["d", "foo", true, false, true] is a writable, non-enumerable,

and configurable data descriptor with value "foo", while ["a", g, undefined, false, true] is a non-

enumerable, and configurable accessor descriptor which has a getter function at location g and which

setter is undefined. In the semantics we use a notation desc d to denote a property descriptor.

Function identifiers, m, are associated with syntactic functions in the JavaScript code and are used

48

to represent function bodies in the heap uniquely. This choice differs from the approach of [30], where

function bodies are also JS heap values. The ECMAScript standard does not prescribe how function

bodies should be represented and our choice closely connects JavaScript and JSIL heap models.

Locations : l ∈ L
Property Names : p ∈ PJS ⊂ Str

Numbers : n ∈ Num
Booleans : b ∈ Bool
Strings : t ∈ Str

JS literals : λJS ∈ LitJS , n | b | t | undefined | null

JS values : v ∈ VJS , λJS | l
JS heap values : ω ∈ VhJS , v | v | m

JS heaps : h ∈ HJS : L × PJS ⇀ VhJS

Figure 3.11.: The Memory Model of ES5 Strict

Objects can be viewed as sets of heap cells with the same location, but different property names.

We denote a heap cell by (l, p) 7→ ω, the union of two disjoint heaps by h1] h2, a heap lookup by

h(l, p), an update operation by h[(l, p) 7→ ω], a cell deallocation by h\(l, p) and the empty heap by

emp. We use l 7→ {p1 : ω1, . . . , pn : ωn} as shorthand for (l, p1) 7→ ω1] . . .] (l, pn) 7→ ωn. This

approach, in contrast to mapping locations to objects with all fields, reduces overhead and gives us

precise footprints when writing separation logic specifications.

3.4. A Formal Fragment of ES5 Strict

We formally define a fragment of ES5 Strict (§3.4.1) together with its pretty-big-step operational

semantics (§3.4.2). Later, we prove the correctness of the compiler for this fragment (§5.5). Using

the pretty-big-step rules for the assignment expression, we illustrate how we closely follow the ES5

English standard (§3.4.3).

3.4.1. Syntax of the ES5 Strict Fragment

Figure 3.12 defines the subset of ES5 Strict that we will be formally considering in this thesis.

JavaScript expressions include the this keyword, variables, literals, object initialisers, computed field

accesses, constructor calls, function calls, function literals annotated with function identifiers, unary

operators, binary operators and assignments. We consider two unary operators: the delete operator

and the typeof operator, and three binary operators: addition, strict equality and strict inequality.

JavaScript statements include sequence, variable declaration, the expression statement, the if-then-else

statement, the while loop, the break statement, the throw statement and the return statement.

The given fragment is representative of the full core language of ES5 Strict. Recall the discussion

about ES5 core language in Figures 3.4 and 3.5, where the statements and expressions included in our

fragment are highlighted in green. Even though we exclude some of the syntax, we do not simplify the

semantics of the chosen constructs. We leave out the with statement as it is forbidden in strict mode.

49

JS expressions : e ∈ EJS , this | x | λJS | { } | e[e] | new e(e) | e(e) | function (x){s}m |
	 e | e ⊕ e | e = e

JS Unary Operators : 	 , delete | typeof

JS Binary Operators : ⊕ , + | === | ! ==

JS statements : s ∈ SJS , s; s | varx | e | if(e) {s} else {s} | while(e) {s} |
break | throw e | return e

Figure 3.12.: A Fragment of ES5 Strict

The switch and try−catch−finally are too lengthy for handwritten formalisation, while for−in has

non-deterministic semantics. We choose one iteration statement while, as do−while and for are only

variations of it. From the expressions we leave out: array literals, as most of Array functionality is

a part of the Array library and we concentrate on the core language; member accesses, as they are

simplified version of computed accesses; compound assignments, since they can be desugared to simple

assignments and binary operators; and some of unary and binary operators, while including a sample

of them in the fragment. To consider the full language, it would only make sense to do a mechanised

specification in the spirit of JSCert.

3.4.2. Pretty-Big-Step Semantics of the ES5 Strict Fragment

We introduce the semantic relation for ES5 Strict and give pretty-big-step rules of a selection of

expressions, statements, and internal functions. The full operational semantics of our ES5 fragment is

given in Appendix A: notation and auxiliary functions in §A.1; JavaScript expressions and statements

in §A.2; the property descriptors in §A.3; the JavaScript internal functions in §A.4, §A.5, and §A.6;

and the JavaScript built-in libraries in §A.7.

References. Before we introduce the semantic relation for ES5 Strict, we need to define references.

References are internal constructs of JavaScript that appear, for example, as a result of evaluating

a left-hand side of an assignment, and represent resolved property bindings. A reference consists of

a base (normally an object location) and a property name (always a string), telling us where in the

heap we can find the property we are looking for. The base can hold the location of a standard object

(object reference, "o") or that of an environment record (variable reference, "v"). The global object is

the only object that can be part of both object and variable references. To obtain the associated value,

the reference needs to be dereferenced, which is performed by the GetValue internal function. In the

ES5 standard, dereferencing an object reference is different from dereferencing a variable reference.

For the former, one has to inspect the entire prototype chain of the object. For the latter, one only

has to inspect the object itself. We present the precise dereferencing algorithm shortly. We formalise

references as lists of three elements, containing the reference type ("o" or "v"), the base, and the

property name. For example, ["v", o, "p"] is a variable reference with the base o and the property

name "p". In the semantics we use a shorter notation o.vp for representing references.

ES5 Strict Semantic relation. We model the operational semantics of ES5 Strict in pretty-big-step

style. The judgement is of the form:

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, o〉

50

where: ℘ is a JavaScript program and m is a function identifier; L is the current scope chain and

vt ∈ VJS is the this value (most commonly it is a location); h is the initial heap and s the statement

(or the expression) to evaluate; h′ is the final heap and o the outcome of the evaluation. The outcome

(Figure 3.13) of an execution can be a normal outcome value w or it can be a returned value retw, an

outcome value after a break statement breakw, or an error errorw. An outcome value can be: a value

v ∈ VJS; a list of values v, that represents references and property descriptors; and the empty value.

The judgement reads:

If we execute the statement s in the heap h, with the scope chain L and the this value vt,

then we arrive at the heap h′, and the outcome of executing s is o.

Outcome values : w , v | v | empty

Outcomes : o ∈ O , w | retw | breakw | errorw

Figure 3.13.: Internal Concepts of the Semantics

Prototype-based Inheritance. GetProperty is the JavaScript internal function that traverses the

prototype chain. We define internal functions using pretty-big-step semantics in the same way as for

ES5 Strict expressions and statements. GetProperty traverses the prototype chain and returns the

property descriptor of the given property p first found in the prototype chain of the current this object

(lt), or undefined if absent. We denote the internal function GetProperty(p) by Igp(p).

GP-getOwn

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Igp(p, o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈hf , of 〉

GP-ownDef

` 〈h, Igp(, desc d)1〉 ⇓m 〈h, desc d〉

GP-ownUndef-protoNull

h(lt,@proto) = null

, , lt ` 〈h, Igp(, undefined)1〉 ⇓m 〈h, undefined〉

GP-ownUndef-protoNotNull

h(lt,@proto) = l′t ℘,L, l′t ` 〈h, Igp(p)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igp(p, undefined)1〉 ⇓m 〈hf , of 〉

Igp(p) calls the internal function GetOwnProperty(p)2, denoted by Igop(p), which returns the property

descriptor of the own property of the this object, or undefined if absent (rule Gp-getOwn). If the

property is found, the corresponding property descriptor is returned (rule Gp-ownDef). Otherwise,

the prototype of the object is inspected. If the prototype is null, undefined is returned (rule Gp-

ownUndef-protoNull). Otherwise, GetProperty is recursively called for the prototype object (rule

Gp-ownUndef-protoNotNull).

Function objects. When the function expression is evaluated (rule Function Literal), two new

objects are created in the heap, the prototype object, l′, and the function object itself, l:

Function Literal

hf = h] l′ 7→ {@proto : lop, @class : “Object”, @extensible : true}]
l 7→ {@proto : lfp,@class : “Function”,@extensible : true, “prototype” : l′,@scope : L,@code : m}
, L, ` 〈h, function (x){s}m〉 ⇓m 〈hf , l〉

2The semantics of GetOwnProperty is given in Appendix A.4.

51

Figure 3.10 shows the objects PriorityQueue, PriorityQueue.prototype, Node, and Node.prototype,

created on evaluation of function expressions of the running example in Figure 3.9, lines 5 and 26.

Variable binding. When trying to determine the value of a given variable x in the body of a given

function f, the semantics needs to inspect the entire scope chain of f. To capture this, the ES5

standard uses an auxiliary internal function GetIdentifierReference(x), which we denote by Iσ(x)

(rule Variable, below). The result of Iσ(x) is either a location of the environment record within

which the variable x is defined or undefined if x cannot be found anywhere in the scope chain. The

result of variable resolution is always a variable reference v.vx (rule Variable-ref).

Variable

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, id(x, o1)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, x〉 ⇓m 〈hf , of 〉

Variable-ref

` 〈h, id(x, v)〉 ⇓m 〈h, v.vx〉

Note that all scope chains begin with the global object. Hence, if we do not find a binding for x in

the rest of the scope, we traverse the prototype chain of the global object. If a variable x is found in

the environment record l, then this environment record l is returned (rule Gir-current). Otherwise,

Iσ(x) is evaluated in the rest of the scope chain (rule Gir-next). If x could not be found in the rest of

the scope chain, we check if it is defined in the prototype chain of the global object lg. To do that, we

use the internal function HasProperty(x), denoted by Ihp(x), which returns true iff the this object, in

our case the global object lg, has the specified property x in its prototype chain (rule Gir-hasProp).

If Ihp(x) returns true, the result of Iσ(x) is lg (rule Gir-global), otherwise the result is undefined

(rule Gir-undef).

Gir-current

(l, x) ∈ dom(h) l 6= lg

, L@ [l], ` 〈h, Iσ(x)〉 ⇓m 〈h, l〉

Gir-next

(l, x) /∈ dom(h) l 6= lg

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , o〉
℘,L@ [l], vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , o〉

Gir-hasProp

℘, [lg], lg ` 〈h, Ihp(x)〉 ⇓m 〈h, o1〉
℘, [lg], vt ` 〈h, Iσ(o1)1〉 ⇓m 〈hf , of 〉
℘, [lg], vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , of 〉

Gir-global

` 〈h, Iσ(true)1〉 ⇓m 〈h, lg〉
Gir-undef

` 〈h, Iσ(false)1〉 ⇓m 〈h, undefined〉

In our running example, all variables except for one are resolved in the environment record associated

with the function in which they were defined. Only the variable Node in the function enqueue (line

32) is not defined in the function enqueue, but instead in the function Module. In Figure 3.10, it is a

property of the object ER−Module.

Dereferencing. Evaluation of variables and property accesses results in a reference. GetValue(w),

denoted by Igv(w), is the JavaScript internal function that performs dereferencing to obtain the corre-

sponding value. It takes one parameter: the outcome value w to be dereferenced. If w is not a reference,

it is returned immediately (rule Gv-notReference3). If w is a reference whose base is undefined, a

3Note that v ∈ VJS, defined in Figure 3.11, cannot be a reference, hence, we do not add a restriction on v in the
Gv-notReference rule.

52

JavaScript reference error, represented by err(l, lrep), is thrown (rule Gv-unresolvable). err(l, lrep)

defines a newly created object l, whose prototype is ReferenceError.prototype, lrep. If w is a reference

with a primitive base (that is, whose base is not an object location), a special JavaScript internal Get

function, which we denote by Iig(p), is called (rule Gv-primitiveBase, more details on Iig(p) can be

found in Appendix A.6). Otherwise, w = l.ap and, in that case, GetValue returns the value associated

with the property p of object l. If w is a variable reference whose base is not the global object, this

value is obtained by directly inspecting the heap (rule Gv-variableReferenceNotLg). Otherwise,

GetValue uses the Get internal function, Ig(p) (Appendix A.4), to traverse the prototype chain and

obtain the appropriate value (rules Gv-noPrimitiveBase and Gv-variableReferenceLg).

Gv-notReference

` 〈h, Igv(v)〉 ⇓m 〈h, v〉

Gv-unresolvable

hf = h] err(l, lrep)

` 〈h, Igv(undefined.ap)〉 ⇓m 〈hf , error l〉

Gv-noPrimitiveBase

℘,L, l ` 〈h, Ig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(l.op)〉 ⇓m 〈hf , of 〉

Gv-primitiveBase

v /∈ L ℘,L, v ` 〈h, Iig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(v.op)〉 ⇓m 〈hf , of 〉

Gv-variableReferenceLg

℘,L, lg ` 〈h, Ig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(lg.vp)〉 ⇓m 〈hf , of 〉

Gv-variableReferenceNotLg

l 6= lg v = h(l, p)

` 〈h, Igv(l.vp)〉 ⇓m 〈h, v〉

GetValue is used very frequently in the semantics after evaluating an expression. For this reason,

we define the notation ℘,L, vt ` 〈h, e〉 ⇓γm 〈h′, o〉 to mean that we first evaluate an expression e (rule

GetValue) and then call GetValue (rule GetValue-ref) on the obtained reference:

GetValue

℘,L, vt ` 〈h, e〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, γ(o1)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e〉 ⇓γm 〈hf , of 〉

GetValue-ref

℘,L, vt ` 〈h, Igv(w)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, γ(w)〉 ⇓m 〈hf , of 〉

Function, Method and Constructor Calls. In JavaScript, functions can be called in three different

ways: as standard functions, as methods, and as constructors. Usually, a function is designed to

be called in one way only. In our running example, the function Module is called as a standard

function, the functions Node and PriorityQueue are called as constructors, and the remaining functions,

insertToQueue, enqueue and dequeue, are called as methods. Below, we give the pretty-big-step rules

for these three types of calls. Since function and method calls share the same syntactic structure, we

use the same set of rules to describe them.

Given a function or method call e(e), we first evaluate the function object e (rules Function Call,

Function Call - 1), and its arguments e (rule Function Call - 2). Instead of using ⇓γm, we first

evaluate e (rule Function Call) and then call GetValue (rule Function Call - 1) separately,

since we need both the reference w and its value v. To evaluate arguments, we use a helper notation

iterate{e}, which returns the list of values obtained by evaluating and dereferencing each expression in

e. The formal definition of iterate{e} is given in §A.5. If v is not callable, determined by the predicate

53

¬Pc(h, v)4, a TypeError occurs, where err(l, ltep) defines a newly created object l, whose prototype

is TypeError.prototype, ltep (rule Function Call - 3 (Fault)). Otherwise, we gather information

about the function to be called: we select the this value; obtain function identifier m′, its scope L,

and its formal parameters x; and if there are less arguments provided than the function expects, the

remaining values are set to undefined (rule Function Call - 3). The definition of the SelectThis(w)

function that is used in rule Function Call - 3 is:

SelectThis(w) =

{
l if w = l.ox

undefined otherwise

It captures the difference between function and method calls, and states that if we are given an object

reference (method call), the this value should be the base of that reference, l, and undefined otherwise

(function call).

Function Call

℘,L, vt ` 〈h, e〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1(e)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e(e)〉 ⇓m 〈hf , of 〉

Function Call - 1

℘,L, vt ` 〈h, Igv(w)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, (w, o1)(e)2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w(e)1〉 ⇓m 〈hf , of 〉

Function Call - 2

℘,L, vt ` 〈h, iterate{e}〉 ⇓m 〈h1, v〉
℘,L, vt ` 〈h1, (w, v)(v)3〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, (w, v)(e)2〉 ⇓m 〈hf , of 〉

Function Call - 3

Pc(h, v) vt = SelectThis(w)

m′ = h(v,@code) L = h(v,@scope)

℘(m′) = λx1, ...xn2 .s

∀1≤n≤n1
v′n = vn

∀n1<n≤n2
v′n = undefined

℘,L, vt ` 〈h,m′(x, v′)〉 ⇓m′ 〈hf , of 〉
℘, , ` 〈h, (w, v)(v1, ...vn1

)3〉 ⇓m 〈hf , of 〉

Function Call - 3 (Fault)

¬Pc(h, v) hf = h] err(l, ltep)

` 〈h, (w, v)(v)3〉 ⇓m 〈hf , error l〉

Call

℘(m) = λx.s ℘, L@ [ls], vt ` 〈h] envm(ls, x, v, s), s〉 ⇓m 〈hf , o〉
℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf ,FunRet(o)〉

In our running example, for method call q.enqueue(1, "last") on line 51, q.enqueue evaluates to

an object reference, hence this will be given the value q. The function call on line 48 evaluates the

function expression to an object location, and in that case the this value gets the value undefined.

What m(x, v) does is that it obtains function m body λx.s from the program ℘, and executes the

function body s in the scope L@ [ls], obtained by appending fresh location ls to the end of the scope

chain L (rule Call). The environment record contains the function arguments and local variables:

envm(ls, x, v, s) , (] ni=1(ls, xi) 7→ vi)] (]mi=1(ls, yi) 7→ undefined), where y1, ..., ym are local variables

of s. Finally, the result of function needs to be determined. If the evaluation of the body of the function

terminates with a return statement, that is, o = ret v, the result of function call is the value v. If

4The definition of Pc(h, v) is given in the Appendix §A.5

54

the function body throws an exception, that is, o = error v, the result of the function call is the same

error error v. In other cases, the result of the function call is undefined. This behaviour is captured

by the auxiliary function FunRet(o). In our running example, the functions Module, insertToQueue,

and dequeue have return statements and calls of them return either a value provided by the return

statement or an error if an exception is thrown. The function enqueue does not have a return statement,

hence the call to this function returns undefined or it might result in an exception.

Operational semantics of constructor calls is similar to that of the function and method calls. Given

a constructor call new e(e), we first evaluate the function object e (Constructor Call), and its

arguments e (Constructor Call - 1). If v is not callable, an error occurs (Constructor Call -

2 (Fault)). Otherwise, a new object lo is created with its internal property @proto set to the value

(l′) of the internal property "prototype" of the constructor object (Constructor Call - 2). In the

constructor case, we do not need to select the this value, as it will always hold the location of the

newly created object lo. SelectProto(v) makes sure that the prototype of the newly created object is

actually an object. If a property "prototype" of a constructor object does not hold an object, a newly

created object lo will have Object.prototype as its prototype. The result of constructor call usually is

the newly created object lo, except for two cases. First, if the body of the constructor throws an error,

that is, o = error v, then the result of the constructor is error v. Second, if the body of the constructor

returns an object, that is, o = ret lr, the result of the constructor call is the object lr, not the newly

created object lo. This behaviour is captured by ConsRet(o, lo). In our running example, both the

constructors Node and PriorityQueue do not have return statements in their bodies. Hence, the result

of calling each of them as a constructor will be the newly created object.

Constructor Call

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, new1 o1(e)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, new e(e)〉 ⇓m 〈hf , of 〉

Constructor Call - 1

℘,L, vt ` 〈h, iterate{e}〉 ⇓m 〈h1, v〉
℘,L, vt ` 〈h1, new2 v(v)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, new1 v(e)〉 ⇓m 〈hf , of 〉

Constructor Call - 2 (Fault)

¬Pc(h, v) hf = h] err(l, ltep)

` 〈h, new2 v(v)〉 ⇓m 〈hf , error l〉

Constructor Call - 2

Pc(h, l) v = h(l, ”prototype”) l′ = SelectProto(v)

h1 = h] lo 7→ {@proto : l′, @class : “Object”, @extensible : true}
m′ = h(l,@code) L = h(l,@scope)

℘(m′) = λx1, ...xn2
.s

∀1≤n≤n1v
′
n = vn

∀n1<n≤n2
v′n = undefined

℘,L, lo ` 〈h,m′(x, v′)〉 ⇓m′ 〈hf , o〉
℘, , ` 〈h, new2 l(v1, ...vn1

)〉 ⇓m 〈hf ,ConsRet(o, lo)〉

3.4.3. Following the ES5 Standard

Our operational semantics closely follows the ECMAScript 5 English standard and was inspired by the

operational semantics of JSCert [9], the recent Coq specification of the ES5 standard. As in JSCert,

we follow the ECMAScript standard step-by-step by using the pretty-big-step style of semantics [15].

Let us illustrate this close relationship with the English standard using the assignment expression,

whose evaluation, as described by the standard, is given in Figure 3.14.

1. In the first step, we evaluate the left-hand side expression of the assignment. This corresponds

to the rule Assignment - 1, shown below.

55

Figure 3.14.: An assignment defined in English standard.

2.-3. Next, we do the same for the right-hand side of the assignment. The obtained right-hand side

reference is dereferenced and we get the actual value to be assigned. The dereferencing is done

by the GetValue internal function (§8.7.1 of the ES5 standard). Since we use the special notation

⇓γm for an expression evaluation followed by dereferencing, we have only one rule for steps 2 and

3, Assignment - 2 and 3.

4. In ES5 Strict, the identifiers eval and arguments may not appear as the left-hand side of an

assignment (for example, eval = 42), and this step enforces this restriction. The corresponding

rule is Assignment - 4.

5. The actual assignment is performed by calling the internal PutValue function (§8.7.2 of the ES5

standard). The corresponding rule is Assignment - 5, where PutValue is denoted by Ipv(w1, v2).

6. In JavaScript, every expression and statement returns a value. Here we return a value of deref-

erenced right-hand side expression which corresponds to the rule Assignment - 6.

Assignment - 1

℘,L, vt ` 〈h, e1〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1 =1 e2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈hf , of 〉

Assignment - 2 and 3

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, w1 =2 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w1 =1 e2〉 ⇓m 〈hf , of 〉

Assignment - 4

p ∈ {eval, arguments}
hf = h] err(l′, lsep)

` 〈h, l.vp =2 v〉 ⇓m 〈hf , error l′〉

Assignment - 5

(w1 = v1 ∨ w1 = l.op ∨
(w1 = l.vp ∧ p 6∈ {eval, arguments}))
℘,L, vt ` 〈h, Ipv(w1, v2)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1 =3 v2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w1 =2 v2〉 ⇓m 〈hf , of 〉

Assignment - 6

` 〈h, =3 v〉 ⇓m 〈h, v〉

Summary. We described the JavaScript language and presented a priority queue implementation as

our running example. We formally defined the memory model of full ES5 Strict, and introduced a

representative fragment of ES5 Strict with its operational semantics, illustrating the complexity of

the language. In §5, we use the operational semantics of the fragment to prove the correctness of

56

the formally defined part of the JS-2-JSIL compiler. In §8, we use the memory model to prove a

full correctness result of the translation from the JavaScript assertion language to the JSIL assertion

language.

57

4. The JSIL Language

We introduce JSIL, our intermediate language for JavaScript verification. JSIL is a simple goto

language with top-level procedures and commands operating on object heaps. It is dynamic in the sense

that it supports extensible objects and dynamic evaluation of properties as well as procedure names.

Having gotos in an intermediate representation for JavaScript verification is sensible, for three reasons:

verification tools, based on separation logic, commonly have gotos; JavaScript has complex control flow

statements with many corner cases (for example, switch, try/catch/finally), which can be naturally

decompiled to gotos; JavaScript supports a restricted form of goto statements, via labelled statements,

breaks, and continues. With JSIL, we aim at: a minimal language that can capture the assorted control

flow commands of ES5 Strict; a language with heaps similar to ES5 Strict heaps, as we are aiming at

verifying properties of the heap; a target language for a translation that precisely follows the semantics

of ES5 Strict.

We define JSIL syntax (§4.1), semantics (§4.2), and give an example of a JSIL procedure (§4.3).

4.1. The JSIL Syntax

The syntax of JSIL is defined in Figure 4.1. Most syntactic constructs of JSIL either directly emulate

those of JavaScript or are required or useful for JavaScript verification. We believe, however, that

JSIL does stand as a low-level language of its own and that it can be reused for other types of analysis

on other programming languages.

JSIL primitive literals include, first of all, JavaScript primitive values: numbers n, booleans b, strings

t and the special values undefined and null . To capture the return values of JavaScript statements,

we also include the special value empty . In contrast to JavaScript, we explicitly include object literals

l and type literals τ . We use object literals to refer to JavaScript built-in objects, such as the global

object lg and Object.prototype lop. Type literals τ are needed to reason about the types of literals

(every literal has its corresponding type) and expressions. Finally, primitive literals include procedure

identifiers m.

JSIL literals include primitive literals and literal lists λp, as JavaScript descriptors, references, and

scope chains all share a structure that is naturally compiled to lists in JSIL. We also use the notation

[λp, ..., λp] for a literal list.

JSIL expressions include JSIL literals, JSIL variables x, and a variety of unary and binary operators.

The unary and binary operators contain the standard arithmetic (+, −, ∗, /, %), comparison (=,

<, <s (lexicographic comparison of strings)), boolean (not , and , or), list (head , tail , length , :: (list

append), @ (list concatenation), nth (n-th element of a list), ord (returns true when applied to a list of

lexicographically ordered strings)) and string (length s, @ s (string concatenation), nth s (n-th element

of a string)) operators. Additionally, due to JavaScript type coercions, we include the conversion

operators from numbers to strings and vice versa (toString and toNumber), as well as the typeOf

58

Numbers: n ∈ Num Booleans: b ∈ Bool Strings: t ∈ Str Locations: l ∈ L
Variables: x ∈ XJSIL Primitive Literals: λp , n | b | t | undefined | null | empty | l | τ | m

Types : τ ∈ Types , Num | Bool | Str | Undef | Null | Empty | Obj | Type | List

Literals : λ ∈ Lit , λp | λp
Expressions : e ∈ EJSIL , λ | x | 	 e | e ⊕ e

Unary operators : 	 , not | head | tail | length | length s |
toString | toNumber | typeOf | ord | ...

Binary operators : ⊕ , + | − | ∗ | / | % | = | < | <s |
and | or | :: | @ | nth | @ s | nth s | ...

Basic Commands : bc ∈ BCmd , skip | x := e | x := new () | x := [e, e] | [e, e] := e | delete (e, e) |
x := hasProperty (e, e) | x := getProperties (e)

Commands : c ∈ Cmd , bc | goto i | goto [e] i, j | x := e(e) with j |
x1, ..., xn := φ(x1; ...; xn)

Procedures : proc ∈ Proc , proc m(x){c}

Notation: λp, x, e, c, respectively, denote lists of primitive literals, variables, expressions, and com-
mands.

Figure 4.1.: Syntax of the JSIL Language.

operator, which returns the type of an expression. There is also a variety of bitwise and mathematical

operators needed to support all JavaScript operators; for more details, we refer the reader to [66].

The difference between JavaScript operators and JSIL operators is that JSIL operators only work

for operands of specific types (for example, the + operator of JSIL works for numbers only), while

JavaScript operators coerce expressions to specific types using implicit type conversion (for example,

the + operator of JavaScript has no issues with taking two operands of object type). The advantages

of having type-specific operators include simpler semantics of the operators, no side effects, and the

ability to use these operators in logical specifications.

JSIL basic commands provide the essential machinery for the management of extensible objects,

and do not affect control flow. They include the skip command, variable assignment, object creation,

as well as a number of dynamic operations on objects: property access, property assignment, property

deletion, membership check, and property collection. Out of these commands, only property collection

(getProperties) is non-standard. It obtains the names of all properties of a given object and it is

required for the compilation of the JavaScript for−in construct.

JSIL commands comprise basic commands and control flow commands. Commands related to

control flow include conditional and unconditional gotos, procedure calls with dynamic evaluation

of their names, and φ-node commands, used for reasoning. The two goto commands are standard:

goto i transfers control to the i-th command of the active procedure, and goto [e] i, j transfers control

to the i-th command if e evaluates to true, and to the j-th otherwise. The dynamic procedure call

x := e(e) with j first obtains the procedure name by evaluating the expression e, then the arguments by

evaluating the list of expressions e, then executes the procedure supplying these arguments, and finally

assigns its return value to x. If the procedure does not raise an error, the control is transferred to the

next command; otherwise, it is transferred to the j-th command. The dynamic nature of procedures

is inherited from the dynamic functions of JavaScript. Finally, the most complex command of the

59

language is the φ-node command x1, ..., xn := φ(x1
1, ..., x

m
1 ; ...; x1

n, ..., x
m
n). Intuitively, this command

can be interpreted as follows: there exist m paths via which this command can be reached during

the execution of the program; the value assigned to xj |nj=1 will be xij |nj=1 iff the i-th path was taken.

We include φ-nodes in JSIL to allow for direct support for Static-Single-Assignment (SSA), which is

well-known to simplify analysis and facilitates code optimisations [20]. In addition, φ-nodes allow us

to produce more streamlined compiled code. Our JS-2-JSIL compiler generates JSIL code directly in

SSA form.

A JSIL program p ∈ P is a set of top-level procedures proc m(x){c}, where m is the identifier of the

procedure, x is the list containing its formal parameters, and its body c is a command list, that is, a

numbered sequence of JSIL commands. We use pm and pm(i) to refer, respectively, to procedure m

of the program p and to the i-th command of that procedure. Every JSIL program contains a special

procedure main , corresponding to the entry point of the program. In contrast to JavaScript, JSIL

does not have nested procedures, for two main reasons. First, we aim at a simple, minimal language.

Second, we would like to reason about heap properties using separation logic, which is proven to work

well using interprocedural analysis.

JSIL procedures do not explicitly return. Instead, each procedure has two special command indexes,

which we denote by ret and err, that, when jumped to, respectively cause it to return normally or

return an error. Also, each procedure has two dedicated variables, xret and xerr. When a procedure

jumps to ret, it returns normally, with the return value xret; when it jumps to err, it returns an

error, with the error value xerr, which contains information about the error. Handling returns in this

way simplifies the control flow graphs of programs, where there are now only two possible exit points,

rather than multiple ones.

4.2. The JSIL Semantics

Figure 4.2 introduces the memory model of JSIL. All JSIL procedures are top-level, meaning that

each procedure is executed in its own dedicated variable store. A variable store, ρ ∈ Sto, is a mapping

from JSIL variables to JSIL values, and a JSIL heap, h ∈ HJSIL, is a mapping from locations and JSIL

properties to JSIL values. JSIL is designed so that its memory model subsumes the memory model of

JavaScript defined in §3.3.

Property names : p ∈ PJSIL ⊂ Str
Jsil values : v ∈ VJSIL , Lit (Figure 4.1)

Jsil stores : ρ ∈ Sto : XJSIL ⇀ VJSIL
Jsil heaps : h ∈ HJSIL : (L × PJSIL) ⇀ VJSIL

Figure 4.2.: The JSIL memory model.

JSIL expressions do not have side effects and do not depend on heap values. Given a JSIL expression

e and a store ρ, JeKρ denotes the value of e with respect to ρ. The semantics of JSIL expressions is

straightforward (Figure 4.3). The outcome of evaluating a JSIL expression is always a JSIL value.

The semantics of JSIL basic commands is described by a function J.K : BCmd × HJSIL × Sto ⇀
HJSIL × Sto × VJSIL and is given in Figure 4.4. Informally, the judgement JbcKh,ρ = (h′, ρ′, v) means

that the evaluation of bc in the heap h and store ρ results in the heap h′ and the store ρ′, with the

60

Literal

JλKρ , λ

Variable

JxKρ , ρ(x)

Unary Operator

J	 eKρ , 	(JeKρ)

Binary Operator

Je1 ⊕ e2Kρ , ⊕(Je1Kρ, Je2Kρ)

Figure 4.3.: Semantics of JSIL Expressions: JeKρ = v

outcome v. As basic commands do not affect control flow, this judgement does not need to include

the index of the command. The Skip and Assignment rules are standard. The Object Creation

rule ensures that when we create a new object, we bind it to a fresh location in the heap and set its

prototype to null. The Property Access and the Property Assignment rules read from and write

to a property of an object in the heap. The Property Deletion rule removes a property from an

object. The two Member Check rules determine whether or not an object has a given own property.

The GetProperties rule obtains the names of all properties of a given object. The semantic predicate

Ord holds for lists of lexicographically ordered strings.

Skip
Jskip Kh,ρ , (h, ρ, empty)

Assignment
JeKρ = v ρ′ = ρ[x 7→ v]

Jx := eKh,ρ , (h, ρ′, v)

Object Creation
h′ = h] (l,@proto) 7→ null ρ′ = ρ[x 7→ l] (l,−) /∈ dom(h)

Jx := new ()Kh,ρ , (h′, ρ′, l)

Property Access
h(Je1Kρ, Je2Kρ) = v ρ′ = ρ[x 7→ v]

Jx := [e1, e2]Kh,ρ , (h, ρ′, v)

Property Assignment
Je3Kρ = v h′ = h[(Je1Kρ, Je2Kρ) 7→ v]

J[e1, e2] := e3Kh,ρ , (h′, ρ, v)

Property Deletion
h = h′] (Je1Kρ, Je2Kρ) 7→ − Je2Kρ 6= @proto

Jdelete (e1, e2)Kh,ρ , (h′, ρ, true)

Member Check - True
(Je1Kρ, Je2Kρ) ∈ dom(h) ρ′ = ρ[x 7→ true]

Jx := hasProperty (e1, e2)Kh,ρ , (h, ρ′, true)

Member Check - False
(Je1Kρ, Je2Kρ) 6∈ dom(h) ρ′ = ρ[x 7→ false]

Jx := hasProperty (e1, e2)Kh,ρ , (h, ρ′, false)

GetProperties
JeKρ = l h = (h′] (l, p1) 7→ −] ...] (l, pn) 7→ −) (l,−) 6∈ dom(h′)

[p1, ..., pn] = v Ord([p1, ..., pn]) ρ′ = ρ[x 7→ v]

Jx := getProperties (e)Kh,ρ , (h, ρ′, v)

Figure 4.4.: Semantics of JSIL basic commands: JbcKh,ρ = (h′, ρ′, v)

The effects of control flow commands are captured in the semantics of JSIL programs, described

using the relation ⇓⊆ (HJSIL × Sto × N × N) × Str × (HJSIL × Sto × OJSIL) in Figure 4.5, where

outcomes of executing JSIL commands are either JSIL values, or an error carrying a JSIL value:

o ∈ OJSIL , nm〈v〉 | er〈v〉. Informally, the judgement p ` 〈h, ρ, j, i〉 ⇓m 〈h′, ρ′, o〉 means that the

evaluation of procedure m of program p, starting from its i-th command, to which we have arrived

from its j-th command, in the heap h and store ρ, generates the heap h′, the store ρ′, and results in the

outcome o. We need to know the index of the previous command for the φ-node command. The Basic

Command rule illustrates the treatment of basic commands and the fact that they do not disrupt the

control flow. In contrast, the three Goto-related rules intuitively describe the control flow jumps of

61

the unconditional and conditional goto statements. The rules Normal Return and Error Return

capture the previously described return behaviour of a procedure. We require that the commands

at the ret and err indexes are both skip . The two Procedure Call rules start by evaluating the

expression that denotes the identifier of the procedure to call and the expressions that denote the

arguments. If the number of supplied arguments is lower than the number of formal parameters of

the procedure, the remaining parameters are set to undefined, which is a behaviour inherited from

JavaScript. Then, the body of the procedure is evaluated in a new store. If the procedure returns

normally, the control is transferred to the next command (Procedure Call - Normal); otherwise, it

is transferred to the command with index j (Procedure Call - Error). Finally, the Phi-assignment

selects the variable xk, where i is the k-th predecessor of j. We say that i is the k-th predecessor of j

in the procedure m, written i
k7→m j, if it is the k-th element of the list containing all the predecessors

of j in chronological order of numbered sequence of JSIL commands. We give the definition of the

successor relation below.

Definition 4.1 (Successor relation). Given a JSIL program p ∈ P, and a procedure m in p, the

successor relation, 7→m⊆ N× N, is defined as follows:

7→m, {(i, i+1) | i 6∈ {ret, err} ∧ (pm(i) = bc ∨ pm(i) = x1, ..., xn := φ(x1; ...; xn)}
∪ {(i, j) | pm(i) = goto j} ∪ {(i, j), (i, k) | pm(i) = goto [e] j, k}
∪ {(i, k), (i, i+1) | pm(i) = x := e(e1, ..., en1) with k}
∪ {(ret, ret), (err, err)}

Basic Command
pm(i) = bc ∈ BCmd JbcKh,ρ = (h′, ρ′,−)
p ` 〈h′, ρ′, i, i+ 1〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′′, ρ′′, o〉

Goto
pm(i) = goto j p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′, ρ′, o〉

Cond. Goto - True
pm(i) = goto [e] j, k JeKρ = true
p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′, ρ′, o〉

Cond. Goto - False
pm(i) = goto [e] j, k JeKρ = false
p ` 〈h, ρ, i, k〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′, ρ′, o〉

Normal Return
` 〈h, ρ, , ret〉 ⇓m 〈h, ρ, nm〈ρ(xret)〉〉

Error Return
` 〈h, ρ, , err〉 ⇓m 〈h, ρ, er〈ρ(xerr)〉〉

Procedure Call - Normal
pm(i) = x := e(e1, ..., en1

) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2
){c}

∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, nm〈v〉〉

p ` 〈h′, ρ[x 7→ v], i, i+ 1〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′′, ρ′′, o〉

Procedure Call - Error
pm(i) = x := e(e1, ..., en1

) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2
){c}

∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, er〈v〉〉

p ` 〈h′, ρ[x 7→ v], i, j〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, , i〉 ⇓m 〈h′′, ρ′′, o〉

Phi-Assignment

pm(j) = x := x1, ..., xn := φ(x11, ..., x
r
1; ...; x1n, ..., x

r
n) i

k7→m j p ` 〈h, ρ[xt 7→ ρ(xkt)|nt=1], j, j + 1〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉

Figure 4.5.: Semantics of JSIL control flow commands: p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉

62

4.3. An Example of a JSIL Procedure

To get more familiar with the JSIL language, let us look at an example of a JSIL procedure. The

getProperty procedure, given in Figure 4.6, implements the JavaScript internal function, GetProperty,

which traverses the prototype chain of a given object and returns the property descriptor of the given

named property first found in the prototype chain, or undefined if absent. Together with the code of

the procedure, we also present its control flow graph. Instead of indexes, we use labels for the goto

commands, for better code readability.

1 proc getProperty (l, prop) {
2

3 own := "getOwnProperty" (l, prop) with perr;
4 goto [own = undefined] next pret;
5

6 next: proto := [l, "@proto"];
7 goto [proto = null] pret call;
8

9 call: chain := "getProperty" (proto, prop) with perr;
10

11 pret: xret := phi(own, own, chain);
12 ret: skip
13

14 perr: xerr := phi(own, chain);
15 err: skip
16 }

Figure 4.6.: An example of a JSIL procedure and its control flow graph

Given an object l and a property prop, we first check if the object l has its own property prop by

calling another internal function GetOwnProperty and saving its result to a local variable own (line 3).

If the property is not found (that is, own = undefined), we need to continue looking in the prototype

chain (label next), otherwise, we are finished: own holds the property descriptor and we jump to the

label pret, the return section of the code (line 4). In the next label, we inspect the prototype chain

by reading the internal property "@proto" of the object l and store the result in the local variable

proto (line 6). If the object l does not have a prototype (that is, proto = null), we are done: own

has the value undefined, which is the required value in the case of an absence of the property in the

prototype chain, and we go to the normal return section (line 7). Otherwise, getProperty is recursively

called for the prototype object proto and the result is stored in the local variable chain (line 9). In

the normal return section, we use phi to set the value of the return variable xret (line 11) and then

we return normally (line 12). Let us look at the control flow graph to explain what xret := phi(own,

own, chain) does. The label pret has three predecessors, numbered in chronological order according

to the code. Given our description of the code, we want xret to hold value of the variable own if we

come from the first or second predecessor and to hold value of the variable chain if we come from the

third predecessor. In the error section, we again use phi to set the value of the error variable xerr

accordingly (line 14) and then return an error (line 15). It is a common pattern for JSIL procedures

to have return (lines 11-12) and error (lines 14-15) sections. Labels ret and err are the final labels,

hence, commands at those labels are not executed. If we need to do preprocessing, for example, to set

the value of the return xret or the error variable xerr before exiting the procedure’s body, we create

additional labels pret and perr with phi-node commands to accommodate the desired behaviour.

63

5. The JS-2-JSIL Compiler

The JS-2-JSIL compiler from JavaScript to JSIL, outlined in Figure 5.1, targets ES5 Strict. It closely

follows the English standard, which means that the structure of a compiled JSIL program directly

reflects the description of the behaviour of the original JavaScript program. We illustrate the compi-

lation process from JavaScript to JSIL by translating an assignment from our running example (§5.1).

JS PROGRAMS

JS-2-JSIL
COMPILER

JSIL PROGRAMS

Tested against
ECMAScript
Test262 test suite

Fragment proven
correct

Figure 5.1.: The JS-2-JSIL Compiler

We cover a very large and fully representative fragment of ES5 Strict. In doing so, the memory

model is not simplified in any way. We implement the entire core language of ES5 Strict, together

with all of the built-in libraries that are strongly intertwined with the core language. We describe the

coverage of the JS-2-JSIL compiler in detail in §5.2.

We systematically test the JS-2-JSIL compiler against the new ECMAScript 6 Test262 test suite,

which organises tests by feature. This enables us to provide a more fine-grained analysis than was

previously possible. Given our substantial but incomplete coverage of ES5 Strict, our aim was to

provide an interactive testing framework to enable us to determine precisely which tests are relevant

and which are not, which pass and why they pass, and which fail and why they fail. We identify 10469

tests relevant for ES5 Strict and 8797 tests relevant for the coverage of the JS-2-JSIL compiler, of

which we pass 100%. We give the details of our testing in §5.3.

We designed the JS-2-JSIL compiler so that there is a simple correspondence between JavaScript and

JSIL heaps, and a step-by-step connection to the standard. This allows us to define a straightforward

correctness condition for the JS-2-JSIL compiler. We formalise the compiler (§5.4) for the fragment of

ES5 Strict defined in §3.4 and give a correctness proof (§5.5) using our formal ES5 Strict operational

semantics. The full result would require a substantial mechanised proof development.

64

5.1. JS-2-JSIL: Compilation by Example

We illustrate the compilation process from JavaScript to JSIL using an assignment from our running

example, namely

30 /* @id enqueue */

31 module.prototype.enqueue = function(pri, val) {

32 var n = new Node(pri, val);

33 this._head = n.insertToQueue(this._head);

34 };

from the function Module. With this example, we show the compilation of functions, variables, assign-

ments, property accessors, function expressions, as well as a number of JavaScript internal functions.

First, we explain how functions in JavaScript are translated to JSIL procedures. Next, we describe

how JavaScript variable binding is dealt with in JSIL. Then, we go step-by-step through the compila-

tion of the above assignment: the assignment itself, property accessors on the left-hand side and the

function expression on the right-hand side of the assignment.

Functions in JSIL. Given an ES5 Strict statement s, as well as translating the statement itself, the

JS-2-JSIL compiler also generates a JSIL procedure for each nested function literal in s. We can think

of the translation of the above assignment being done in two parts: a translation of the assignment

itself (Figure 5.2, left) and a translation of the function body (Figure 5.2, right).

1 /* @id = enqueue */
2 module.prototype.enqueue = function(pri, val) {}

1 /* @id = enqueue */
2 function(pri, val) { /* body of enqueue */ }

Figure 5.2.: Compilation by example: the assignment and the body of the nested function.

Having unique function identifiers allows us to separate function expression compilation from func-

tion body compilation. A new JSIL procedure is created corresponding to the nested function:

1 proc enqueue (x__s, x__this, pri, val) {

2 /* compiled function body */

3 }

where its first formal parameter x__s contains the scope in which the function was defined; its second

formal parameter corresponds to the value of the keyword this during the execution of the compiled

function body; and its remaining formal parameters match the formal parameters of the original

function.

When the body of enqueue is executed, the value of its formal parameter x__s is a two-element

list, [global, ER−Module], corresponding to the scope in which enqueue was defined. At the beginning

of the procedure, a new environment record ER−enqueue will be created and appended at the end of

the given x__s. The resulting scope chain [global, ER−Module, ER−enqueue] is stored in the dedicated

local variable x__scope to denote the current scope chain to be used for variable dereferencing. There,

ER−enqueue is the environment record created upon invocation of the function call (it is different for

each call to enqueue), whereas the remainder of the list [global, ER−Module] is the value of the @scope

property of the function object enqueue (it does not change across different calls to enqueue).

JavaScript Variable Binding in JSIL. We illustrate variable binding using the body of the enqueue

function. We give the translation of the entire body later, in §5.4, after we have formalised the JS-

2-JSIL compiler. Here, we explain the compilation of the variables used in the body. Recall the

pretty-big-step rules for variable binding:

65

Variable

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, id(x, o1)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, x〉 ⇓m 〈hf , of 〉

Variable-ref

` 〈h, id(x, v)〉 ⇓m 〈h, v.vx〉

When we need to determine the value of a given variable x in the body of a given function f, the

semantics needs to inspect the entire scope chain of f. However, ES5 Strict is syntactically scoped

and we can statically determine if a given variable is defined in a given scope chain and if so, in which

ER it is defined. This means that we do not need to translate scope inspection as a list traversal

Iσ(x). Instead, we first determine the function in which the variable is defined and obtain the index

of the corresponding ER in the current scope chain, which we do using a special scope clarification

function (explained in more detail in §5.4.3). The result of the variable binding is always a reference

v.vx, where v corresponds to the ER, or is undefined if the variable is not found anywhere in the scope

chain.

The enqueue function uses four variables: n, pri, val, and Node in its body. The local variable n,

and formal parameters pri and val are stored in the environment record created upon the invocation

of the function which is at the end of the current scope chain. Hence, the compiled code for the

variable n first reads the last element from x__scope (which is 2 for the scope of the enqueue), and

then computes the corresponding reference:

1 x_1 := nth (x__scope, 2);

2 x_2 := ["v", x_1, "n"];

We also know syntactically that Node is defined inside the function Module and that its environment

record is the second one in the scope chain. Therefore, the compiled code for the variable Node first

reads the second element from x__scope to obtain the correct ER, ER−Module, and then computes the

corresponding reference:

1 x_1 := nth (x__scope, 1);

2 x_2 := ["v", x_1, "Node"];

There is a caveat with the global object. Recall that if we do not find a binding for x anywhere else

in the current scope chain, we have to traverse the prototype chain of the global object. However,

we cannot statically know whether or not a variable is defined in the global object, since we can add

properties to the global object not only using variable declarations var x = v, but also using property

accessors this.x = v, where this corresponds to the global object in the global code. We discuss this

point more in the formalisation of the JS-2-JSIL compiler in §5.4.

Compiling the Assignment. We now go step-by-step through the compilation of the assign-

ment module.prototype.enqueue = /*@id = enqueue */function(pri, val){/*function body */}, which

is given in Figure 5.3. This statement has non-trivial behaviour and triggers a number of JavaScript

internal functions.

1. In the first step, we evaluate the left-hand side expression of the assignment (the property

accessor module.prototype.enqueue) and obtain the corresponding reference. The evaluation of

property accessors is described in §11.2.1 of the ES5 standard, and it is line-by-line reflected

in lines 1-14 of the JSIL code. We show the compilation of property accessors in more detail

in Figure 5.4, together with the explanation below. Note that the reference resulting from the

evaluation of a property accessor is always an object reference. In this case, this is the reference

66

Figure 5.3.: Compiling the JavaScript assignment expression to JSIL

["o", x_9, x_13] which, given the running example, is a reference of the property "enqueue" of

the object PriorityQueue.prototype created in the function Module.

2. Next, we do the same for the right-hand side of the assignment, the function literal with identifier

enqueue. The evaluation of function expression is described in §13 of the ES5 standard, and it

is reflected in line 15 of the JSIL code. We explain function object creation in more detail in

Figure 5.4. The result from the evaluation of a function expression is a newly created function

object. Given our running example, it corresponds to the function object enqueue.

3. The evaluated right-hand side expression might be a reference and it is dereferenced to get the

actual value to be assigned. The dereferencing is done by the GetValue internal function (§8.7.1 of

the ES5 standard). Here, "create_function_object" returns an object location, not a reference,

in which case, the same object location is the result of GetValue. As we provide reference

implementations of all internal functions, any call to an internal function gets translated to JSIL

as a procedure call to our corresponding reference implementation, in this case, i__getValue

(line 16). We elaborate further on GetValue in §7.2.

4. In ES5 Strict, the identifiers eval and arguments may not appear as the left-hand side of an as-

signment (e.g. eval = 42), and this step enforces this restriction. We do not inline the conditions

every time, but instead call a JSIL procedure i__checkAssignmentErrors (line 17), which takes

as a parameter a reference and throws a syntax error if the conditions are met.

5. The actual assignment is performed by calling the internal PutValue function (§8.7.2 of the ES5

standard), which is translated to JSIL directly, as a procedure call to our reference implementa-

tion (line 18). We delay the details of PutValue until §7.2.

6. In JavaScript, every expression and statement returns a value. In JSIL, the compiler, when

given an expression or a statement to compile, returns not only the list of corresponding JSIL

commands, but also the variable that stores the return value of that statement. In this particular

case, the compiler would return, in addition to the presented code, the variable x_16.

Compiling the Property Accessor. Next, we go step-by-step through the compilation of the

property accessor (module.prototype)["enqueue"]. Figure 5.4 shows the line-by-line correspondence to

the ES5 standard. Recall that the ES5 standard states that e.p is identical in its behaviour to e["p"].

67

Figure 5.4.: Compiling property accessors and function literals to JSIL

1. In the first step, we evaluate the member expression e of the property accessor (which is another

property accessor module.prototype) and obtain the corresponding reference.

Compiling the inner property accessor module["prototype"]. Note that steps in the ES5

Standard are line-by-line reflected in lines 1-8 of the JSIL code for the inner property accessor.

We do not go into more detail in the translation of inner property accessor, except that we

explain the translation of variable module. Here, we need to perform variable resolution and the

resulting reference will be a variable reference. For the JSIL translation, given how we emulate

JavaScript scope chains, we only need to understand within which ER module is defined. As

module is a local variable of the Module function (Figure 3.9), it will be in the last ER in the

current scope chain, ER−Module (line 1). The appropriate reference, ["v", x_1, "module"], is then

constructed in line 2. This code is automatically generated using the scope clarification function.

Coming back to the outer property accessor, a reference resulting from the evaluation of the

inner property accessor is an object reference ["o", x_3, x_7]. Given the running example, it

corresponds to the property "prototype" of the object PriorityQueue created in the function

Module.

2. Next, the obtained reference is dereferenced to get the actual value. The dereferencing is done

by the GetValue internal function. Given the running example, the obtained value is the object

PriorityQueue.prototype.

3. We evaluate Expression of the property accessor, "enqueue". It is a string literal, hence, it

evaluates to itself (line 10).

4. The obtained propertyNameReference might be a reference and it is dereferenced to get the

actual value. Again, the dereferencing is done by the GetValue internal function (line 11). Here,

"enqueue" is a string literal, not a reference, in which case, the same string literal is the result

of GetValue.

68

5. For the property accessor o[x] to be valid, we need to make sure that o is actually an object.

The internal function CheckObjectCoercible (§9.10 of the ES5 standard) throws an error if its

argument is a value that cannot be converted to an object. It is translated to JSIL directly, as

a procedure call to our reference implementation (line 12).

6. Another requirement for the property accessor o[x] is for x to be a string. The semantics does not

throw an exception otherwise, but performs implicit type conversion instead. Type conversion to

a string is performed by calling the internal ToString function (§9.8 of the ES5 standard), which

is translated to JSIL directly, as a procedure call to our reference implementation i__toString

(line 13). See §3.1.2 for a detailed description of ToString and more examples of it being used

in the context of property accessors, and §7.2 for more information on its specification.

7. In ES5 Strict all references are strict, hence, this step is not reflected in the JSIL code.

8. Finally, the result of evaluating property accessor, is the reference ["o", x_9, x_13] which we

already have seen in the assignment translation above.

Compiling the Function Expression. When a function expression is evaluated in JavaScript,

a new function object is created with corresponding formal parameters, function identifier and the

current scope chain. We call the JSIL procedure create_function_object (line 15), which takes as

parameters the current scope chain x__scope, the function identifier "enqueue" and a list of formal

parameters ["pri", "val"], and creates a new function object. The created function object corresponds

to the enqueue function object in Figure 3.10.

This example illustrates how close the JS-2-JSIL compiler is to the ES5 standard. Most of the lines

of the compiled JSIL code have a direct counterpart in the standard. Variable binding is the only

part where an observable difference is expected. This example also reveals part of the complexity

behind the JavaScript language. We have seen expression evaluations, syntactic checks, implicit type

conversions, and calls to different internal functions. What is not visible yet, and will be shown in §7.2,

is the hierarchy of internal functions behind GetValue and PutValue. This level of complexity is the

precise reason why JavaScript analysis is difficult.

5.2. JS-2-JSIL: Compiler Coverage

We cover a very large and fully representative fragment of ES5 Strict, as witnessed by our test suite

coverage, detailed in §5.3. In doing so, we do not simplify the memory model of JavaScript in any

way, and fully support descriptors and attributes, including getters and setters. The coverage of the

JS-2-JSIL compiler is illustrated in Figure 5.5.

As we have already mentioned, we do not target the correctness of the JavaScript parser, and view

that as a separate project. We implement the entire core language, except the indirect eval, which

by default exits strict mode, falling out of the scope of our project. As for the built-in libraries, we

have implemented in JSIL all of the parts that are strongly intertwined with the core language. These

include: the core of the Global library, associated with the global object; the remaining functionalities

target URI processing and number parsing, and are orthogonal; the entire Object library, which con-

tains functions for advanced object management, including object creation with a specified prototype

69

String

Math

Boolean

Array

ES5 Strict

Syntax + Parser Core Language Built-in Libraries

RegExp

JSON

NumberError

Function

Object

Global Date

Figure 5.5.: JS-2-JSIL: compiler coverage

(Object.create), property definition at the level of descriptors (Object.defineProperty), and extensibil-

ity management (Object.preventExtensions, Object.seal, Object.freeze); the entire Function library,

which provides methods for calling (Function.prototype.call), applying (Function.prototype.apply),

and binding (Function.prototype.bind) function objects, as well as the Function constructor, which

creates a function object from a given string that represents a JavaScript function body1; and the

entire Error library, which provides constructors for various JavaScript errors that can be thrown.

Without the implementation of these four libraries, running standard JavaScript code would not be

feasible. We also implement the entire Array library to show the feasibility of tackling comprehen-

sive JavaScript libraries, as well as the entire Math library. When it comes to the Boolean, Number,

and String libraries, we implement the basic functions used for testing features of the core language,

including the mandatory value properties (such as length for String), internal functions that differ

from the default ones presented in chapters 8-14 of the standard (GetOwnProperty of String), as well

as the toString and valueOf functions, which allow conversion to strings and primitive values. The

Date library is also used to test some of the core language features and we support some of its basic

functionality, including a part of its constructor, and the valueOf function. However, there is a part of

the basic functionality, such as toString function, which we do not yet support, since it requires date

parsing, which is implementation-dependent. We do not implement the RegExp and JSON libraries, as

they are fully orthogonal to the core language.

JSIL Bootstrap for JavaScript. Before we are able to run the compiled JSIL code of a JavaScript

program, we need to have the basic support infrastructure in place. This infrastructure includes

the setup of the JavaScript initial heap, as well as the implementations of all JavaScript internal

functions and the essential functionalities of the built-in libraries. Most of these features are not

directly accessible in JavaScript and as such cannot be translated using the compiler. They need to

be implemented directly in JSIL.

We implement the initial heap in full, including stubs for unimplemented functions. This setup

requires a fair amount of precision and takes approximately 750 lines of JSIL code. We implement

all internal functions (43 of them, approximately 1000 lines of JSIL code), line-by-line following the

English standard. We gave an implementation of one of such internal functions, namely getProperty,

in §4.3, Figure 4.6. Finally, our implementation of the built-in library functions takes approximately

1The Function constructor, much like indirect eval, may exit strict mode, which we do not support. The code
provided in the constructor is always executed in strict mode.

70

3500 lines of JSIL code, again following the standard. We refer to the JSIL implementations of the

initial heap, internal functions, and built-in libraries as the compiler runtime.

5.3. JS-2-JSIL Validation: Testing

We validate the correctness of the JS-2-JSIL compiler by extensive testing against the official EC-

MAScript Test262 test suite, achieving a 100% success rate on the 8797 pertinent tests. In addition,

we develop a modular and reusable continuous-integration testing infrastructure, greatly simplifying

the overall testing process.

ECMAScript Test262 Test Suite. ECMAScript Test262 is the official test suite for JavaScript

implementations. Currently, there are two available versions of the suite: an unmaintained version

for ES5; and an actively maintained version for the ES6 standard. ES5 Test262 has poor support for

ECMAScript implementations that enforce strict mode. Tests are inconsistently flagged with respect

to the mode in which they can be run, and a significant number of test cases that should be common to

both strict and non-strict modes of the language contain errors preventing them from being executed

correctly in strict mode. This renders any kind of systematic effort to target ES5 Strict tests infeasible.

All such errors have been fixed in the latest version of the tests for ES6. In addition, a considerable

effort has been made by the test suite maintainers to ensure that all tests are correctly flagged for

strict mode.

On the other hand, there do exist certain disadvantages in using a more recent version of the test

suite than the specification was designed for; some test cases will no longer be applicable, and their

results will need to be excluded. The ES6 version of the specification was published 6 years after

ES5, and during this time, the specification was comprehensively redrafted and gained numerous new

features. Luckily, the language committee took great care in minimising the number of backwards

incompatible changes between versions of the specification. As a result, a relatively small proportion

of the test cases needed to be altered by the test suite maintainers between the versions. It is possible

to identify these test cases and exclude them from the results. New features are easy to identify and

exclude due to the structure of the test suite.

On the whole, the strong negatives of a poorly maintained ES5 version of the test suite overshadow

the minor difficulties of having to track the incompatible changes and new features between versions

of the specification. We have thus opted to test the JS-2-JSIL compiler using the latest version of ES6

Test262. While this does mean that we need to do more filtering to arrive at the applicable tests (for

example, we have to exclude all of the tests targeting ES6 features), this is a small price to pay for

the overall increase in precision and correctness.

Addressing Incompleteness. The Test262 suite assumes a complete implementation of JavaScript

on which to run the tests. In many cases, a test for one language feature will make use of unrelated

language features, most often built-in libraries, to test its result. While it is clear that it is legitimate

to ignore test cases that directly test unimplemented features, several options are available when these

features (such as the library functions for Array sorting or String splitting) are used for the testing

of relevant constructs: one could either expand the implementation to cover the missing dependency;

filter out the test; or rewrite the test to avoid the unimplemented feature. We have opted for a

combination of the first two solutions, and have chosen not to rewrite any tests in the test suite.

71

ECMAScript ES6 Test Suite 21301

ES6 constructs/libraries 8489
Annexes/Internationalisation 888
Parsing 565
Non-strict tests 890

ES5 Strict Tests 10469

Tests for non-implemented features 1297

Compiler Coverage 9172

ES5/6 differences in semantics 345
Tests using non-implemented features 30

Applicable Tests 8797

Tests passed 8797
Tests failed 0

Figure 5.6.: JS-2-JSIL Validation by testing (left); Detailed testing results (right)

Testing Infrastructure. Due to the scale of the project and the size of the test suite, it was

imperative for us to automate as much of the process as possible. To this end, we have created a

continuous-integration testing infrastructure that, upon each commit to the repository of JS-2-JSIL,

runs the entire Test262 suite automatically. The individual test results for each run are logged to

a database, and these results are used as the basis for the test analysis and filtering. We have also

developed an accompanying GUI, which greatly simplifies our interaction with the database and allows

us to easily group tests by feature, by pass or fail, and by output/error messages. It also allows us

to efficiently understand the progress between test runs and pinpoint any regressions that might have

occurred. The infrastructure is highly modular and can be reused for a systematic testing of other

related projects, such as JSCert or S5.

Running Tests. We perform the actual testing as shown in Figure 5.6 (left). First, we compile to

JSIL the official harness of ES6 Test262. Then, for each test, we: compile the code of the test to JSIL;

execute, using our JSIL interpreter, the JSIL code obtained by concatenating the compiled harness,

the compiled test, and the compiler runtime; and if the execution terminated normally, we declare

that the test has passed. There is never a need to test the return value of the program, because the

Test262 tests perform the actual testing within the program and throw an error if any of the tested

conditions are not met.

Test Filtering and Testing Results. The breakdown of the testing results is presented in Figure 5.6

(right). The version of the ES6 Test262 test suite used in this study2 contains 21301 individual test

cases. We first filter out the test cases aimed at ES6 language constructs and libraries (8489 tests),

parsing (565 tests), specification annexes (describing language extensions for web browsers, 699 tests),

and the internationalisation API (189 tests), all of which fall out of the scope of this project. Next, we

exclude tests for ES5 non-strict features (890 tests). We note that these include all tests for indirect

eval and a number of tests for the Function constructor, which both allow the developer to use non-

strict code even when explicitly executing the code in strict mode. We obtain 10469 tests that target

ES5 Strict.

Next, to filter down to the tests that should reflect the coverage of the JS-2-JSIL compiler, we

2http://github.com/tc39/test262/tree/91d06f

72

remove 1297 tests for built-in library functions that have not been implemented, such as those in

the RegExp and JSON libraries. This leaves us with the total of 9172 tests that target the JS-2-JSIL

compiler.

Not all of these tests, however, are applicable. ES6, although being mostly backward compatible,

has introduced minor changes to the semantics of a few features with respect to ES5, and there are

345 tests that target such features. These changes include: the length property of Function objects

being configurable in ES6, but not configurable in ES5; the prototype of all native errors (for example,

TypeError, SyntaxError, and ReferenceError) being Error in ES6 and Function.prototype in ES5; a

slight change in the semantics of the iteration statements while and do−while in ES6, now returning

undefined instead of empty when the body of the while returns empty; Object.keys(o) throwing an

exception in ES5 if o is not an object, while in ES6 an exception is thrown only of o is null or

undefined.

Also, 30 tests were testing features covered by the compiler, but in doing so were using non-

implemented features. All of these tests, except for one, can be rewritten to still test the same

feature, but not use the non-implemented feature. For example, to test the typeof operator from

the core language, the RegExp library is used as a part of the test. Since we do not support RegExp,

the entire test fails, even though RegExp usage forms only a small part of the test. By removing the

RegExp usage from the test, we would pass it. Another example includes testing the built-in Object

constructor using the Date library. When called with one argument, which is an object, the Object

constructor does not create a new object but simply returns the provided argument. The test could

be easily rewritten using other libraries that we support, such as String or Number. However, there

is one test for the core language construct, namely, the addition operator, that uses the Date library

and that cannot be rewritten. An addition operator e1 + e2 calls the internal function ToPrimitive

on its operands. When ToPrimitive is called on an object, another internal function, DefaultValue, is

executed. DefaultValue takes an optional parameter hint on which its behaviour depends. If the hint

is not provided, DefaultValue behaves as if the hint was provided with the value "Number", except for

Date objects, where in the absence of the hint, the DefaultValue behaves as if the hint was provided

with the value "String". Since such specific behaviour of the addition operator can only be observed

using Date objects, we are not able to rewrite the test. As we have chosen not to rewrite any tests in

the test suite, we excluded these 30 tests from our final applicable tests.

In the end, we have the final 8797 tests relevant to our JS-2-JSIL compiler, of which we pass 100%.

This result gives us a strong guarantee of the correctness of the JS-2-JSIL compiler and constitutes a

solid foundation for our next step, the verification of compiled JSIL programs.

5.4. JS-2-JSIL: Compiler Formalisation

We formalise our translation from ES5 Strict to JSIL as a compilation function C : SJS → P, that

receives an ES5 Strict statement s ∈ SJS and produces a JSIL program p ∈ P. More concretely, given

an ES5 Strict statement s, the translation generates a JSIL procedure for each nested function literal

in s and a special procedure main for the top-level code in s. In order to simplify the formalisation, we

assume that every function literal and lambda abstraction is annotated with a unique identifier m. We

define the main compiler C using two auxiliary compilers: Ĉ, that, given a JavaScript function literal,

generates its corresponding JSIL procedure; and C, that is used for compiling arbitrary expressions

73

JS PROGRAMS AUTOMATIC SCOPE
INFORMATION

JS-2-JSIL COMPILER

C̅
GLOBAL CODE

FUNCTION LITERALS

Ĉ

STATEMENTS & EXPRESSIONS

C

JSIL PROGRAMS

Figure 5.7.: The structure of the JS-2-JSIL Compiler

and statements (Figure 5.7). Both Ĉ and C assume that the function literals that occur in the code

to compile have already been separately compiled.

We define the three compilers using OCaml-like notation, which we introduce first, together with

other auxiliary functions that we use in the definitions of the compilers. Next, we introduce the

compiler C for compiling the global code (§5.4.1). Using the assignment example from §5.1, we then

introduce the compiler Ĉ for compiling function literals (§5.4.2), and the compiler C for expressions

and statements (§5.4.3).

Notation. In the definition of the compilers, we use OCaml-like notation: lambdax.t for functions,

letx in t for local variables, match x with | t1 ⇒ t2 | t3 ⇒ t4... for pattern matching, and the

function map(f,X) for the application of the function f to each element of the set X.

We also use auxiliary functions to describe JavaScript and JSIL concepts. We denote by defs(s)

and funlits(s), respectively, the set of variables declared in the JavaScript statement s and the set of

function literals in the JavaScript statement s. We use the auxiliary function fresh() to generate new

JSIL variable names and new JSIL labels. We denote concatenation of JSIL command lists and JSIL

variable lists with the :: operator.

5.4.1. Compiling the Global Code

The main compiler

C , lambda s.map(Ĉ, funlits(s) ∪ { function (){s}main })

given the global code s, collects all nested function literals, funlits(s), and translates them using the

auxiliary compiler Ĉ. It also uses the same Ĉ for compiling the global code itself, which we can think

of as a function literal without any parameters, s as its body, and main as its identifier. Given our

running example (Figure 3.9), funlits(s) contains six function literals. Additionally, we have one more

function literal for the global code. All of these seven function literals are given in Figure 5.8. Note that

function literals do not contain the bodies of their nested functions. However, they do contain their

74

1 function () {
2 /* @id Node */
3 var Node = function (pri, val) {}
4

5 /* @id insertToQueue */
6 Node.prototype.insertToQueue = function (q) {}
7

8 /* @id PriorityQueue */
9 var module = function () {};

10

11 /* @id enqueue */
12 module.prototype.enqueue = function(pri, val) {};
13

14 /* @id dequeue */
15 module.prototype.dequeue = function () {};
16

17 return module;
18 } /* Module */

19 function (pri, val) {
20 this.pri = pri; this.val = val; this.next = null;
21 } /* Node */

22 function (q) {
23 if (q === null) {
24 return this
25 }
26

27 if (this.pri >= q.pri) {
28 this.next = q;
29 return this
30 }
31

32 var tmp = this.insertToQueue (q.next);
33 q.next = tmp;
34 return q
35 } /* insertToQueue */

36 function () {
37 this._head = null;
38 }; /* PriorityQueue */

39 function(pri, val) {
40 var n = new Node(pri, val);
41 this._head = n.insertToQueue(this._head);
42 } /* enqueue */

43 function () {
44 if (this._head === null) {
45 throw new Error("Queue is empty");
46 }
47

48 var first = this._head;
49 this._head = this._head.next;
50 return {pri: first.pri, val: first.val};
51 }; /* dequeue */

52 function() {
53 /* @id Module */
54 var PriorityQueue = (function () {})();
55

56 var q = new PriorityQueue();
57 q.enqueue(1, "last");
58 q.enqueue(3, "bar");
59 q.enqueue(2, "foo");
60 var r = q.dequeue();
61 } /* main */

Figure 5.8.: The function literals from the running example to be compiled

identifiers. We have already discussed this separation in §5.1 using an assignment from the function

Module, shown on lines 11-12 together with the function enqueue on lines 39-42 in Figure 5.8. We have

informally discussed the translation of the assignment itself and started discussing the translation of

the function enqueue. Next, we formally define the compilation of function literals using the enqueue

function which is compiled to the procedure given in Figure 5.9. Full understanding of the code of the

procedure is not required at this moment. We will be explaining most of its parts step-by-step in the

upcoming sections.

75

1 proc enqueue (x__s, x__this, pri, val) {
2 x__er := new();
3 x__scope = x__s @ [x_er];
4 [x__er, "n"] := undefined;
5 [x__er, "pri"] := pri;
6 [x__er, "val"] := val;
7 x_1 := nth (x__scope, 2); /* n */
8 x_2 := ["v", x_1, "n"];
9 x_3 := nth (x__scope, 1);

10 x_4 := ["v", x_3, "Node"];
11 x_4_v := "i__getValue"(x_4) with perr; /* Node */
12 x_5 := nth (x__scope, 2);
13 x_6 := ["v", x_5, "pri"];
14 x_6_v := "i__getValue"(x_6) with perr; /* pri */
15 x_7 := nth (x__scope, 2);
16 x_8 := ["v", x_7, "val"];
17 x_8_v := "i__getValue"(x_8) with perr; /* val */
18 goto [(not (typeOf(x_4_v) = object_type))] terr next_1; /* Error if Node is not an object */
19 terr: x_err := "TypeError"();
20 goto perr;
21 next_1: x_9 := hasProperty(x_4_v,"@code"); /* Error if Node cannot be called as constructor */
22 goto [x_9] next_2 terr;
23 next_2: x_10 := new();
24 x_11 := ["o", x_4_v, "prototype"];
25 x_11_v := "i__getValue"(x_11) with perr; /* Retrieving Node.prototype object */
26 goto [(typeOf(x_11_v) = object_type)] then_1 else_1;
27 else_1: x_12 := lobj_proto; /* if Node.prototype is not an object, Object.prototype will be used for @proto*/
28 then_1: x_13 := PHI(x_11_v, x_12);
29 x_14 := "create_default_object"(x_10, x_13); /* newly created object with appropriate @proto */
30 x_fid_1 := [x_4_v, "@code"]; /* reading the function identifier from function object */
31 x_fscope_1 := [x_4_v, "@scope"]; /* reading the scope from function object */
32 x_15 := x_fid_1(x_fscope_1, x_10, x_6_v, x_8_v) with perr; /* calling the function */
33 goto [(typeOf(x_15) = object_type)] then_2 else_2;
34 else_2: skip;
35 then_2: x_16 := PHI(x_15, x_10);
36 x_16_v := "i__getValue"(x_16) with perr
37 x_17 := "i__checkAssignmentErrors"(x_2) with perr;
38 x_18 := "i__putValue"(x_2, x_16_v) with perr; /* n = new Node(pri, val) */
39 x_r_1 := empty;
40 x_19 := x__this; /* this */
41 x_19_v := "i__getValue"(x_19) with perr;
42 x_20 := "i__checkObjectCoercible"(x_19_v) with perr;
43 x_21 := ["o", x_19_v, "_head"]; /* this._head */
44 x_22 := nth (x__scope, 2);
45 x_23 := ["v", x_22, "n"];
46 x_23_v := "i__getValue"(x_23) with perr;
47 x_24 := "i__checkObjectCoercible"(x_23_v) with perr;
48 x_25 := ["o", x_23_v, "insertToQueue"];
49 x_25_v := "i__getValue"(x_25) with perr; /*n.insertToQueue*/
50 x_26 := x__this;
51 x_26_v := "i__getValue"(x_26) with perr;
52 x_27 := "i__checkObjectCoercible"(x_26_v) with perr;
53 x_28 := ["o", x_26_v, "_head"];
54 x_28_v := "i__getValue"(x_28) with perr /* this._head */
55 goto [(not (typeOf(x_25_v) = object_type))] terr next_3; /* Error if insertToQueue is not an object */
56 next_3: x_29 := "i__isCallable"(x_25_v);
57 goto [x_29] next_4 terr; /* Error if insertToQueue cannot be called */
58 next_4: goto [((typeOf(x_25) = list_type) and (nth(x_25, 0) = "o"))] then_3 else_3;
59 then_3: x_this_1 := nth(x_25, 1);
60 goto phi_1;
61 else_3: x_this_2 := undefined;
62 phi_1: x_this_3 := PHI(x_this_1, x_this_2); /* Resolving this */
63 x_fid_2 := [x_25_v, "@code"];
64 x_fscope_2 := [x_25_v, "@scope"];
65 x_30 := x_fid_2(x_fscope_2, x_this_3, x_28_v) with perr;
66 goto [(x_30 = empty)] then_4 else_4;
67 then_4: x_31 := undefined;
68 else_4: x_32 := PHI(x_30, x_31);
69 x_32_v := "i__getValue"(x_32) with perr;
70 x_33 := "i__checkAssignmentErrors"(x_21) with perr;
71 x_34 := "i__putValue"(x_21, x_32_v) with perr; /* this._head = n.insertToQueue(this._head); */
72 goto [(x_32_v = empty)] then_5 else_5;
73 else_5: skip;
74 then_5: x_35 := PHI(x_r_1, x_32_v);
75 pret: xret := undefined;
76 ret: skip;
77 perr: xerr := PHI(x_4_v, x_6_v, x_8_v, x_err, x_11_v, x_15, x_16_v, x_17, x_18, x_19_v, x_20, x_23_v, x_24,

x_25_v, x_26_v, x_27, x_28_v, x_30, x_32_v, x_33, x_34);
78 err: skip;
79 }

Figure 5.9.: The compiled enqueue procedure

76

Ĉ ,
lambda function (xi|ni=1){s}m.
let (yi|ki=1) = defs(s);

x = fresh();
c, e, r, = Cm(s, x, ,);
xi = fresh()|n+1

i=1 ;
xer = fresh();
in procm(xsc, xthis, xi|ni=1){

xer := new ()
xscope := xsc@ [xer]
[xer, yi] := undefined |ki=1

[xer, xi] := xi|ni=1

c

xn+1 := undefined
pret : xret := φ(r :: xn+1)
ret : skip

perr : xerr := φ(e)
err : skip

}

1 proc enqueue (x__s, x__this, pri, val) {
2 x__er := new();
3 x__scope = x__s @ [x_er];
4 [x__er, "n"] := undefined;
5 [x__er, "pri"] := pri;
6 [x__er, "val"] := val;

c

75 pret: xret := undefined;
76 ret: skip;
77 perr: xerr := PHI(x_4_v, x_6_v, x_8_v, x_err,

x_11_v, x_15, x_16_v, x_17, x_18, x_19_v,
x_20, x_23_v, x_24, x_25_v, x_26_v, x_27,
x_28_v, x_30, x_32_v, x_33, x_34);

78 err: skip;
79 }

Figure 5.10.: The auxiliary compiler Ĉ, compiling JavaScript function literals to JSIL procedures

5.4.2. Compiling Function Literals

The compiler Ĉ (Figure 5.10, left) receives as input an ES5 Strict function literal and generates its

corresponding JSIL procedure. Each function literal function (x){s}m is compiled by Ĉ to a JSIL

procedure proc m(xsc, xthis, x){c}, whose name is the identifier of the compiled function and whose:

first formal parameter corresponds to its scope chain in which the function was defined; second formal

parameter corresponds to the value of the keyword this during the execution of the compiled function;

and its remaining formal parameters match the formal parameters of the original function. This is

illustrated in line 1 of the enqueue procedure in Figure 5.10, right. The function body s is compiled

using the auxiliary compiler C to a JSIL command list c. We discuss the compiler C shortly. Here,

we would like to mention that the compiler C returns not only the command list c, but also a list of

error variables, e, a list of return variables r (and a list of break variables, which is not used by Ĉ).
The compiler Ĉ produces additional JSIL commands before and after the command list c. Before the

command list c, we need to deal with local variables, defs(s) and the formal parameters xi|ni=1. They

all are properties of the newly created environment record xer. The current scope chain is constructed

by appending xer to the scope xsc in which the function was defined. All local variables are initialised

with undefined, while formal parameters are set to the corresponding values of the arguments (see lines

2-6 of the enqueue procedure in Figure 5.10, right). After the command list c, we finalise the procedure

body by creating the return and error sections. In the return section pret, we use a φ node to set the

value of the return variable xret. All possible return values are stored in the list of variables r. It

might be that a function body does not contain any return statements, in which case, the function

should return undefined. This behaviour is ensured by an additional JSIL local variable xn+1. In our

example, there are no return statements, hence the set r is empty and the return variable x is assigned

the value undefined (lines 75-76). Correspondingly, we deal with the error section, where the list e

holds all the possible error variables. See lines 77-78 of the enqueue procedure. We will see how the

list of break variables are used by the compiler C itself in the compilation of JavaScript statements.

77

Next, we present the compiler C.

5.4.3. Compiling Expressions and Statements

We separate the compiler C in two parts: one for compiling expressions and another one for compiling

statements. The expression compiler C takes three parameters: the unique identifier m of the function

in which the code to compile occurs; an ES5 Strict expression e; and a JSIL variable x. It outputs

a command list c corresponding to the compilation of e, where the return value of e is stored in x

after each terminating execution of c, together with a list of error variables, e. For simplicity, we

write Cm(e, x) instead of C(m, e, x). The compiler C branches on the type of the given expression

(Figure 5.11, left). The statement compiler C takes the unique identifier m of the function, an ES5

Strict statement s and, in addition to a JSIL variable x, it takes two more parameters required for the

compilation of break statements. The additional parameters are: another JSIL variable xpr, which

denotes a value of the previously executed statement, and a label br to denote the end of the loop

which is terminated by the break statement. The statement compiler C outputs the compiled list of

statements c, a list of errors variables e, as well as a list of return variables, r, which denotes the results

of return statements, and a list of break variables, b, which denotes the results of break statements.

The compiler C branches on the type of the given statement (Figure 5.11, right). Following the enqueue

example, we describe in detail how to compile variables, constructor call expressions, and sequence

statements. We also explain the compilation of break, while, and return statements to illustrate the

need for additional parameters xpr and br, and outputs r and b for the statement compiler. The full

definition of the compiler C is given in Appendix §B.

Cm , lambda e, x. Inputs:
an expression e
and a JSIL variable x

match e with Branching on
the type of expression

| λ⇒ Literal value
c, e

| this⇒ This
c, e

| x⇒ Variable
c, e

| . . .

Cm , lambda s, x, xpr, br. Inputs: a statement s, a JSIL variable x,
that denotes the result of the current
statement, a JSIL variable xpr, that
denotes the result of the previous statement,
and a label br for break statements

match s with Branching on the type of statement

| varx⇒ Variable Declaration
c, e, r, b

| e⇒ Expression Statement
c, e, r, b

| s1; s2 ⇒ Sequence Statement
c, e, r, b

| . . .

Figure 5.11.: The structure of the compiler C

The Variables. We have already talked about the compilation of variables in §5.1. Recall that there

we use the scope clarification function, which returns an index in the current scope chain from which

we can obtain the required ER. Let us now formally define the scope clarification function, by giving

the definition of the scope clarification function constructor Φ.

78

Definition 5.1 (Scope Clarification Construction Φi
m(s, ψ) = ψ′).

Φim(s, ψ) =



ψ if s = λJS ∨ s = this ∨ s = { } ∨ s ∈ XJS ∨ s = varx

Φim(e, ψ) if s = 	e ∨ s = e ∨ s = return e ∨ s = throw e

Φim(e2,Φ
i
m(e1, ψ)) if s = e1 ⊕ e2 ∨ s = (e1 = e2) ∨ s = e1[e2]

Φim(en,Φ
i
m(. . . ,Φim(e0, ψ))) if s = e0(e1, ..., en) ∨ s = new e0(e1, ..., en)

Φim(s2,Φ
i
m(s1, ψ)) if s = s1; s2

Φim(s2,Φ
i
m(s1,Φ

i
m(e, ψ))) if s = if(e) {s1} else {s2}

Φim(s,Φim(e, ψ)) if s = while(e) {s}

Φi+1
m′ (s′, ψ̂) if


s = function (x){s′}m′

ψ̂ = ψ

[
(m′, xk) 7→ i |xk∈x ∪ defs(s′)

(m′, yj) 7→ ψ(m, yj) |yj∈dom(ψ(m))\(x ∪ defs(s′))

]

The scope clarification function constructor Φi
m(s, ψ) takes four arguments: a function identifier m,

the depth of the function nesting i, a JavaScript statement s, and a constructed scope clarification

function so far, ψ. The result of the constructor is the extended scope clarification function ψ′. Given

the global code s, we construct the scope clarification function starting from an empty function:

Φ0(function (){s}main , ∅). To construct the scope clarification function, we traverse the given JavaScript

expression or statement. The interesting case is that of the function literal, whereas all other cases

simply recursively call the scope clarification constructor for expressions and statements they contain.

In the function literal case, function (x){s′}m′ , we update the already constructed ψ by saying that:

the parameters x and local variables defs(s′) of the function m′ are defined in the environment record

with the index i; the other variables accessible in the enclosed function m, dom(ψ(m))\(x ∪ defs(s′)),

are defined in the environment records whose indexes are the same as in the enclosed function m.

The result of the function literal case is the recursive call for the function m′, increased depth of the

nesting i+ 1, the body s′ and an updated scope clarification function ψ̂. Figure 5.12 shows a part of

the scope clarification function for the identifiers main, Module, and enqueue from our running example.

For simplicity, we write ψm(x) instead of ψ(m,x).

m x index

main

PriorityQueue 0
q 0
r 0

Module

Node 1
module 1
PriorityQueue 0
q 0
r 0

m x index

enqueue

pri 2
val 2
n 2
Node 1
module 1
PriorityQueue 0
q 0
r 0

Figure 5.12.: A part of Scope Clarification Function ψ(m,x) for our running example

Currently, our construction of the scope clarification function requires the entire program, but it

should be relatively easy to consider the library code and the client code separately. For the library

code, we would use the scope clarification function constructor in the same way, starting from an

empty function: Φ0(function (){s}main , ∅). For the client code, we would start from a function ψlib

that already contains some global variables: Φ0(function (){s}main , ψlib). In our running example, if

we were to split the library code (lines 1-48) and the client code (lines 50-54), ψlib would correspond to

79

Cm , lambda e, x.
match e with
| x⇒

let x′, xh, x
′
1, x
′
2 = fresh();

t, e, n = fresh(); in
match ψm(x) with
| i⇒

x′ := nth (xscope, i)
x := [”v”, x′, x],
[]
| ⊥ ⇒

xh := hasProperty(lg , x) with perr

goto [xh] t, e
t : x′1 := lg

goto n
e : x′2 := undefined
n : x′ := φ(x′1, x

′
2)

x := [”v”, x′, x],
[xh]

1 proc enqueue (x__s, x__this, pri, val) {
...

7 x_1 := nth (x__scope, 2); /* n */
8 x_2 := ["v", x_1, "n"];
9 x_3 := nth (x__scope, 1); /* Node */

10 x_4 := ["v", x_3, "Node"];
...

12 x_5 := nth (x__scope, 2); /* pri */
13 x_6 := ["v", x_5, "pri"];

...
15 x_7 := nth (x__scope, 2); /* val */
16 x_8 := ["v", x_7, "val"];

...
44 x_22 := nth (x__scope, 2); /* n */
45 x_23 := ["v", x_22, "n"];

...
79 }

Figure 5.13.: Compiling JavaScript Variables

the function defined only for (main, PriorityQueue) to hold value 0, that is, ψ(main, PriorityQueue)= 0.

This way, we could separately compile and verify the library and the client.

We note that ES5 itself does not natively support modules, but there exists a number of ways for

one to write modular JavaScript code: for example, by using script tags in DOM or the module system

provided by Node.js. Moreover, ES6 provides native support for modules. We would need to revisit

the construction of scope clarification function in order to support such module systems and achieve

a fully modular translation from JavaScript to JSIL.

We are now ready to formalise the compilation of variables, which is given in Figure 5.13 (left). If

the scope clarification function ψm(x) returns an index i, we construct the reference and we are done.

The list of error variables is empty. The right hand side of Figure 5.13 shows how variables used in

the function enqueue are compiled. In the case where the scope clarification function is undefined,

that is, ψm(x) returns ⊥, we need to check if the global object has the property x. This is done by

calling the internal function HasProperty, which traverses the prototype chain of the global object

and returns true if it has the property and false otherwise. If the global object has the required

property, a variable reference with the base lg is constructed, otherwise a variable reference with the

base undefined is constructed. Finally, we use φ to construct the appropriate SSA code. Note that the

list of error variables includes xh, to cover the case in which HasProperty throws an error, which is

then stored in the variable xh. Also note that if HasProperty throws an error, the control flow jumps

to the error section perr, created in the compilation of the function literals in Figure 5.10. Since our

fragment of ES5 Strict does not include try−catch−finally, every time an exception is thrown, the

control flow jumps to the error section. In the full compiler, we need to know more information about

the context when we compile expressions and statements. For example, if we are in the try block, we

need to jump to the catch block when an exception is being thrown.

Constructor Calls. Figure 5.14 (left) formalises constructor call compilation and gives the com-

pilation of new Node(pri, val) from the function enqueue (right). The compilation closely follows the

operational semantics. First, the expression e is compiled to a list of commands ce. In the example,

this corresponds to compiling the variable Node (lines 9-10), which we just discussed in the compila-

80

Cm , lambda e, x.match e with
| new e(e1, · · · , en)⇒

let xe, x′e, xi|ni=1, x
′
i|ni=1, xerr, xhp, xl, xr,

x′p, x
′′
p , xp, x

′
l, xm′ , xscp, x′ = fresh();

t1, t2, t3, e1, e2, e3, n = fresh();
ce, ee = Cm(e, xe);
ci, ei = Cm(ei, xi)|ni=1;
c′i = x′i := getValue(xi) with perr|ni=1;

in
ce
x′e := getValue(xe) with perr

{ci :: c′i}|ni=1
goto [typeOf (x′e) != Obj] t1, e1

t1 : xerr := typeError()
goto perr

e1 : xhp := hasProperty (x′e,@code)
goto [xhp] n, t1

n : xl := new ()
xr := [”o”, x′e, prototype]
x′p := getValue(xr) with perr

goto [typeOf (x′p) = Obj] t2, e2
e2 : x′′p := lop
t2 : xp := φ(x′p, x

′′
p)

x′l := defaultObj(xl, xp)
xm′ := [x′e,@code]
xscp := [x′e,@scope]
x′ := xm′ (xscp, xl, x

′
i|ni=1) with perr

goto [typeOf (x′) = Obj] t3, e3
e3 : skip
t3 : x := φ(x′, xl),
ee :: [x′e] :: (ei :: [x′i])|ni=1 :: [xerr, x′p, x

′]

1 proc enqueue (x__s, x__this, pri, val) {
...

9 x_3 := nth (x__scope, 1);
10 x_4 := ["v", x_3, "Node"];
11 x_4_v := "i__getValue"(x_4) with perr;
12 x_5 := nth (x__scope, 2);
13 x_6 := ["v", x_5, "pri"];
14 x_6_v := "i__getValue"(x_6) with perr;
15 x_7 := nth (x__scope, 2);
16 x_8 := ["v", x_7, "val"];
17 x_8_v := "i__getValue"(x_8) with perr;
18 goto [(not (typeOf(x_4_v) = object_type))] terr next_1;
19 terr: x_err := "TypeError"();
20 goto perr;
21 next_1: x_9 := hasProperty(x_4_v,"@code");
22 goto [x_9] next_2 terr;
23 next_2: x_10 := new();
24 x_11 := ["o", x_4_v, "prototype"];
25 x_11_v := "i__getValue"(x_11) with perr;
26 goto [(typeOf(x_11_v) = object_type)] then_1 else_1;
27 else_1: x_12 := lobj_proto;
28 then_1: x_13 := PHI(x_11_v, x_12);
29 x_14 := "create_default_object"(x_10, x_13);
30 x_fid_1 := [x_4_v, "@code"];
31 x_fscope_1 := [x_4_v, "@scope"];
32 x_15 := x_fid_1(x_fscope_1, x_10, x_6_v, x_8_v) with

perr;
33 goto [(typeOf(x_15) = object_type)] then_2 else_2;
34 else_2: skip;
35 then_2: x_16 := PHI(x_15, x_10);

...
79 }

Figure 5.14.: Compiling Constructor Calls

tion of JavaScript variables. Next, GetValue is used to obtain the function object x′e (line 11). Then,

we compile the arguments and obtain their values using GetValue. In our example, this corresponds

to lines 12-17 for arguments pri and val. A type error should occur if x′e is not an object or if it

does not have an internal property @code (lines 18-22). Otherwise, a new object xl is created (line

23). The prototype of the newly created object is set to the value of the property "prototype" of the

function object x′e, with an exception that if the property "prototype" does not contain an object,

Object.prototype is used instead (lines 24-29). Note the use of the φ node to ensure SSA in line 28.

To call the function, we first retrieve its unique identifier m′ from the internal property @code and

its scope, xscp, from @scope (lines 30-32). Finally, the newly created object xl is the result of the

compilation of the constructor call, unless the function returns an object x′, which then is the result

instead. This, again, is handled by a φ function (lines 33-35). We also need to collect all the possible

error variables from the compilations of subexpressions: ee :: [x′e] :: (ei :: [x′i])|ni=1 :: [xerr, x
′
p, x
′], which

in our example correspond to [x_4_v, x_6_v, x_8_v, x_err, x_11_v, x_15].

Sequences. To compile a sequence s1; s2 (Figure 5.15), we first compile s1, followed by the compila-

tion of s2. In our example, the compilation of the first statement var n = new Node(pri, val) compiles

to the command list in the lines 9-39, while the second statement this._head = n.insertToQueue(this

._head) compiles to lines 40-71. Recall the semantics of sequence, which states that if a statement

evaluates to empty, the result is the last non-empty value of the previous statements. This behaviour

is reflected in lines 72-74. Note that in the compilation of the statement s2 we provide the result vari-

able x1 of the compilation of statement s1 as a third argument. It denotes the result of the previous

statement and as we will see next is important for compilation of break statements.

81

Cm , lambda s, x, xpr, br.
match s with
| s1; s2 ⇒

let x1, x2 = fresh();
t, e = fresh();
c1, e1, r1, b1 = Cm(s1, x1, xpr, br);
c2, e2, r2, b2 = Cm(s2, x2, x1, br);
in

c1
c2
goto [x2 = empty] t, e

e : skip
t : x := φ(x1, x2),
e1 :: e2, r1 :: r2, b1 :: b2

1 proc enqueue (x__s, x__this, pri, val) {
...

9 x_3 := nth (x__scope, 1); /* Node */

c1

39 x_r_1 := empty;
40 x_19 := x__this; /* this */

c2

71 x_34 := "i__putValue"(x_21, x_32_v) with perr;
72 goto [(x_32_v = empty)] then_5 else_5;
73 else_5: skip;
74 then_5: x_35 := PHI(x_r_1, x_32_v);

...
79 }

Figure 5.15.: Compiling Sequences

Break, While, Return. We need the parameters xpr and br in the compiler C for the compilation of

the break statements. JavaScript break statements can be used only inside while loops, to terminate

their execution. Figure 5.16 shows the formalisation of the break and while statements. We do not

explain all the details of the compilation, as there are descriptions in the figure. However, we do

describe the main points. In the compilation of the break statement we need to jump to the end of

the while loop, which is given as the parameter br (Break Statement a. line 2). We provide the label

of the end of the loop, b (While Statement e., line 12), for the compilation of the body of the while

(While Statement d.). We also need to set the correct result value for the break statement, for which

the parameter xpr is used. Let us look at some examples of break.

1 eval("while(true){ break; }") // undefined

2 eval("x=3; while(true){ break; }") // 3

3 eval("while(true){ x=3; break; }") // 3

4 eval("i=0; while (i++ < 2) {if (i===1) { x=3; } else { break; }}") // 3

When break terminates the loop and there was no previous statement to evaluate, the result of the

statement is the special value empty, which is transformed to undefined by the eval command (line 1).

If, on the other hand, there was a previous statement to evaluate (line 2), the overall result will be

the result of that previous statement. Similarly, if there was previous statement in the body of the

while loop before the break happens, the overall result is the result of the previous statement (line 3).

Finally, the most complicated case is illustrated on line 4. There will be two iterations of the while

loop. The first iteration finishes with the result 3, while the second iteration breaks the loop with an

empty value. The overall expression is the result of the previous iteration of the while loop.

To capture the behaviour of remembering the value of the previous statement, we use the parameter

xpr. We have already seen in the compilation of the sequence statement how to correctly provide this

argument. Similarly, in the compilation of the while loop, we provide the result of the while loop,

which is stored in the variable x′′ until the loop has reached its end label. In the end label of the while

loop (b) (While Statement e., line 12) we use a φ node to set the result of the while statement, including

all possible break statements with their values, denoted by variables bs.

Note that the the compilation of the while loop consumes bs, that is, it returns an empty list of break

variables, since break statements can occur only in the while loops. In our fragment of ES5 Strict, we

do not consider breaking to labels, break l. In full ES5 Strict, break statements can have labels which

denote which enclosed while loop the break terminates. To account for such cases, while loops need

82

Cm , lambda s, x, xpr, br. Inputs: a statement s, a JSIL variable x, that denotes
the result of the current statement, a JSIL variable xpr,
that denotes the result of the previous statement,
and a label br for break statements

match s with Branching on the type of statement to compile

| break ⇒ Break Statement
a. Generated code:

x := xpr 1. The result is the provided previous value xpr
goto br, 2. Go to the provided break label
[], [], [x]

| while(e) {s} ⇒ While Statement
let xe, xs, x′e, x

′, x′′, x′′′, xb = fresh(); a. Fresh vars
t, e, n, h, b = fresh(); b. Fresh labels
ce, ee = Cm(e, xe); c. Compile e
cs, es, rs, bs = Cm(s, xs, x′′, b); d. Compile s
in e. Generated code:

x′ := empty 1. Result of while is empty in case no iterations occur
h : x′′ := φ(x′, x′′′) 2. Joining the branch of no iterations with

the branch iterating the while body
ce 3. Compilation of e
x′e := getValue(xe) with perr 4. Dereferencing of xe
xb := toBoolean(x′e) with perr 5. Converting the while condition to boolean
goto [xb] n, b 6. Branch on xb

n : cs 7. The while condition holds: compilation of s
goto [xs != empty] t, e 8. Branch on xs not being equal to empty

t : skip 9. xs is not equal to empty: the result is xs
e : x′′′ := φ(x′′, xs) 10. xs is empty: the result is the value of the previous iteration

goto h 11. Proceed to the next iteration
b : x := φ(x′′, bs), 12. The while condition does not hold: exit the loop
ee :: [x′e, xb] :: es, rs, []

Figure 5.16.: Compilation of break and while

to contain labels. To capture this, the full compiler takes not just one label br as a parameter, but a

list of label pairs, denoting the loop itself and the end of the loop, for all enclosing while loops.

To finish up, we describe the compilation of the return statement to illustrate how the return

variables r are being set (Figure 5.17). We compile the given expression, dereference it, and jump to

the return section pret. The output of the compilation includes the list of return variables [x]. Recall

the creation of the return section pret and the treatment of return variables r in the compilation of

function literals in Figure 5.10.

Phi-nodes. Note that, for our formally defined JavaScript fragment, in the formalisation of the

compiler C it is sufficient to use the φ-assignment for only one variable: x := φ(x). In the implemented

full compiler, however, we require the more general form of φ assignment for the translation of the

Cm , lambda s, x, xpr, br. Inputs: a statement s, a JSIL variable x, that denotes
the result of the current statement, a JSIL variable xpr,
that denotes the result of the previous statement,
and a label br for break statements

match s with Branching on the type of statement to compile

| return e⇒ Return Statement
let xe = fresh(); a. Fresh vars

ce, ee = Cm(e, xe); b. Compile e
in c. Generated code:

ce 1. Compilation of e
x := getValue(xe) with perr 2. Dereferencing of xe
goto pret, 3. Go to the return section
ee :: [x], [x], []

Figure 5.17.: Compilation of return

83

switch and for−in statements, where we have to keep track of two variables.

5.5. JS-2-JSIL Validation: Compiler Correctness

We say that a JS-2-JSIL compiler is correct if: “whenever a ES5 Strict program and its compilation

are evaluated in two heaps that are equal, the evaluation of the source program terminates if and only

if the evaluation of its compilation also terminates, in which case the final heaps and the computed

values are equal”.

Recall the ES5 Strict semantic relation ℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈h′, o〉 (defined in §3.4), where:

℘ is a JavaScript program and m is a function identifier; L is the current scope chain and vt is the

this value; h is the initial heap and m(x, v) states that it is the body of the function with identifier

m that we evaluate; and h′ is the final heap and o the outcome of the evaluation. Also recall the

JSIL judgement p ` 〈h, ρ, , 0〉 ⇓m 〈h′, ρ′,fl〈v〉〉 (defined in §4.2), which says that the evaluation of

procedure m of program p, starting from the beginning, in the heap h and store ρ, generates the heap

h′, the store ρ′, and results in the outcome fl〈v〉.
The Compiler Correctness Theorem 5.1 is stated below. It describes the compiler correctness at the

level of functions. That is, the behaviour the every function m in the program ℘ is equivalent to the

behaviour of its corresponding procedure m in JSIL. We relate formal parameters x and their values

v in JavaScript by adding them to the store ρ in JSIL. Moreover, the scope chain L and the this value

are stored in the JSIL variables xsc and xthis respectively. Finally, the output evaluating function body

in JavaScript can be either normal output with value v or an error output error v. This is related to

the JSIL outputs fl〈v〉, for flags nm and er, using the function outJS(fl , v).

Theorem 5.1 (Compiler Correctness). We say that a JS-2-JSIL compiler C is correct if compiled

programs preserve the behaviour of their original versions.

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , outJS(fl, v)〉 ⇐⇒ ∃ρf . C(℘) ` 〈h, ρ, , 0〉 ⇓m 〈hf , ρf ,fl〈v〉〉

where ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt] and outJS(fl, v) =

{
v, if fl = nm

error v, if fl = er

Proof. Given in Appendix §B.2.

84

6. JSIL Verification Infrastructure

We introduce JSIL verification infrastructure (Figure 6.1), which revolves around JSIL, presented in

§4. We write specifications of JSIL programs using the JSIL Logic assertions, introduced in §6.1. A

JSIL program, its specification, loop invariants and fold/unfold directives together form an annotated

JSIL program. To be able to verify that a JSIL program satisfies its specification, we design JSIL

Logic, a program logic for JSIL, introduced in §6.2. We prove JSIL Logic to be sound with respect

to the operational semantics of JSIL in §6.3. Finally, we give a high-level overview of JSIL Verify, a

semi-automatic verification tool for JSIL, based on JSIL Logic, in §6.4.

JSIL PROGRAMS JSIL LOGIC
ANNOTATIONS

JSIL VERIFY
JSIL Logic

proven sound

ANNOTATED JSIL PROGRAMS

Yes / No

JS
IL

 V
ER

IF
IC

AT
IO

N
 IN

FR
A
ST

R
U

C
T
U

R
E

Figure 6.1.: JSIL Verification Infrastructure

6.1. JSIL Logic Assertions

Since our aim is the mechanised verification of JavaScript programs, we take inspiration for the

JSIL Logic assertions from the assertion languages provided by tools based on separation logic for

other programming languages [4, 22, 72, 13, 11, 14], mostly by keeping the assertion language as

standard and as simple as possible. However, JSIL inherits the dynamic features of JavaScript,

namely extensible objects and dynamic property access, meaning that the corresponding assertion

language has to accommodate for these features and, therefore, be more expressive than those for

static languages.

To adapt separation logic for reasoning about JavaScript programs, Gardner et al. [30] introduce an

assertion to describe negative information about an existence of a property in an object, (l, p) 7→ �,

and a new connective sepish, t∗, to account for possible sharing. We draw partial inspiration from

this work: our property assertions are similar, however, we do not use sepish. Sepish gives us more

flexibility in writing specifications, however, at the cost of the ability to prove properties. In §8, we

illustrate the problem of using sepish in specifications and show that we are able to write specifications

without sepish.

JSIL Logic assertions are given in Figure 6.2. JSIL logical values, V ∈ VLJSIL, consist of JSIL values,

85

Logical Values : V ∈ VLJSIL , v | vset | �
Logical Expressions : E ∈ ELJSIL , V | x | X | 	 E | E⊕ E

JSIL Assertions : P ∈ ASJSIL , true | false | P ∧ P | ¬P | Classical
∃X.P | Quantification
E = E | E ≤ E | E < E | Equalities
emp | P ∗ P | Separation Logic
(E,E) 7→ E | JavaScript Cell

types(E : τ) | emptyProps(E | E) Predicates

Notation : E 6= E , ¬(E = E), E > E , ¬(E ≤ E), E ≥ E , ¬(E < E)

Figure 6.2.: JSIL Logic Assertions, where v ∈ VJSIL (Figure 4.2) and x ∈ XJSIL (Figure 4.1)

sets of JSIL values, and the special value �, read none, used to denote the absence of a property in an

object. This special value is inherited from the program logic for JavaScript presented in [30] and is

required as a direct consequence of the extensibility of JSIL objects. More precisely, since properties

of JSIL objects can be added and deleted arbitrarily, beside being able to express that a given object

has a given property, which is completely standard, we also have to be able to express that a given

object does not have a given property. JSIL logical expressions, E ∈ ELJSIL, contain: logical values, V;

JSIL program variables, x; JSIL logical variables, X; unary operators, 	; and binary operators, ⊕.

JSIL assertions include classical assertions as well as existential quantification over logical variables;

equalities and relations on logical expressions; separation logic assertions for describing JSIL heaps,

such as an empty heap and a composition of two disjoint heaps; a JavaScript heap cell assertion; and

built-in predicates, which include the pure predicate types, which describes types of expressions, and

a spatial predicate emptyProps, which denotes non-existent properties of an object. At the level of

assertions, the dynamic nature of JSIL is captured by the heap cell assertion (E,E) 7→ E, which is more

general than the one required for static languages in that the property name can also be an arbitrary

expression and not necessarily a literal string. Also, the emptyProps predicate, whose full meaning we

describe shortly, is introduced, similarly to the � logical value, due to JSIL having extensible objects.

We provide the semantics of JSIL Logic assertions using a satisfiability relation H, ρ, ε |= P . An

assertion may be satisfied by a triple (H, ρ, ε), consisting of an abstract heap H, a JSIL store ρ

(Figure 4.2), and a logical environment ε, mapping logical variables to logical values. Following the

definition given in [30], an abstract heap maps pairs of locations and property names to logical values.

Recall that logical values include the special value �, which we use to denote the absence of a given

property in an object. That is, we write (l, p) 7→ � to state that the object at location l has no

property named p. To define abstract heaps, we thus extend the range of JSIL heaps (Figure 4.2)

with the � value: H ∈ H�JSIL : L × PJSIL ⇀ VLJSIL.
The satisfiability relation for JSIL Logic assertions builds on the semantics of JSIL logical expres-

sions. A JSIL logical expression E is interpreted with respect to the store ρ and logical environment ε,

written JEKερ. Both the satisfiability relation and the interpretation of logical expressions are given

in Figure 6.3. Most of the assertions are interpreted in the standard way, and here we only discuss

those that are interesting. The assertion (E1,E2) 7→ E3 describes an object at the location denoted by

E1 with a property denoted by E2 mapped onto the value denoted by E3. The assertion types(E : τ)

86

provides typing information for JSIL expressions. We use the function TypeOf, which given a JSIL

expression, outputs its type. The assertion emptyProps(E1 | E2) describes an object denoted by E1

that has no properties other than possibly those included in the set denoted by E2.

JVKερ , V JxKερ , ρ(x) JXKερ , ε(X) J	 EKερ , 	(JEKερ) JE1⊕E2Kερ , ⊕(JE1Kερ, JE2Kερ)

H, ρ, ε |= true ⇔ always
H, ρ, ε |= false ⇔ never
H, ρ, ε |= P1 ∧ P2 ⇔ H, ρ, ε |= P1 ∧H, ρ, ε |= P2

H, ρ, ε |= ¬P ⇔ H, ρ, ε 6|= P
H, ρ, ε |= E1 = E2 ⇔ H = emp ∧ JE1Kερ = JE2Kερ
H, ρ, ε |= E1 ≤ E2 ⇔ H = emp ∧ JE1Kερ ≤ JE2Kερ
H, ρ, ε |= E1 < E2 ⇔ H = emp ∧ JE1Kερ < JE2Kερ
H, ρ, ε |= emp ⇔ H = emp
H, ρ, ε |= (E1,E2) 7→ E3 ⇔ H = (JE1Kερ, JE2Kερ) 7→ JE3Kερ
H, ρ, ε |= P1 ∗ P2 ⇔ ∃H1, H2. H = H1] H2 ∧ (H1, ρ, ε |= P1) ∧ (H2, ρ, ε |= P2)
H, ρ, ε |= ∃X.P ⇔ ∃V ∈ VLJSIL. H, ρ, ε[X 7→ V] |= P

H, ρ, ε |= types(E : τ) ⇔ H = emp ∧ (∀(E, τ) ∈ E : τ .TypeOf(JEKερ) = τ)

H, ρ, ε |= emptyProps(E1 | E2) ⇔ H =
⊎
p 6∈JE2Kερ

((JE1Kερ, p) 7→ �)

Figure 6.3.: Interpretation of logical expressions and satisfiability of JSIL Logic Assertions

6.2. JSIL Logic

We define JSIL Logic specifications and present JSIL Logic by providing axiomatic semantics for JSIL

basic commands and by defining symbolic execution for JSIL control flow commands.

JSIL Logic Specifications. A procedure specification, S ∈ Spec, is of the form {P}m(x) {Q}, where

m is the procedure identifier, x denotes a list of formal parameters of the procedure, and P and Q

are the pre- and postconditions of the procedure. Furthermore, each specification is associated with a

return mode fl ∈ {nm, er}, stating if the procedure returns in normal (nm) or in error (er) mode. We

say that a JSIL specification {P}m(x) {Q} is valid with respect to the return mode fl , if whenever

m is executed in a state satisfying P , then, if it terminates, it will do so in a state satisfying Q with

return mode fl .

Definition 6.1 (Validity of JSIL Logic Specifications). A JSIL Logic specification {P}m(x) {Q} for

return mode fl is valid with respect to a program p, written p, fl � {P}m(x) {Q}, if and only if, for all

logical contexts (H, ρ, ε), heaps hf , stores ρf , flags fl′, and JSIL values v, it holds that:

H, ρ, ε |= P ∧ p ` 〈bHc, ρ,−, 0〉 ⇓m 〈hf , ρf ,fl′〈v〉〉 =⇒
fl′ = fl ∧ ∃Hf . Hf , ρf , ε |= Q ∧ bHfc = hf

We use the notation bHc to denote the concrete heap obtained by restricting the abstract heap H

to the elements of its domain not mapped to �. b.c : H�JSIL → HJSIL transforms an abstract heap to

87

a concrete heap as follows:

bHc(l, x) , H(l, x) ⇐⇒ (l, x) ∈ dom(H) ∧ H(l, x) 6= �

.

We note the following limitation of our JSIL logic specifications: since the return mode fl is associ-

ated with the entire specification, we cannot capture some behaviours of non-deterministic programs.

For instance, we cannot capture that a procedure, for the same precondition, has two postconditions

with different return modes. To address this, we would need to associate a flag with each of the

postconditions, rather than with the entire specification, in the style of {P}m(x) {Q}nm{Q}er.

Axiomatic Semantics of Basic Commands. Our Hoare triples for JSIL basic commands (pre-

sented in §4 Figure 4.4) are of the form {P}bc{Q}, and have the following interpretation: “if the

basic command bc is executed in a state satisfying P , then, if it terminates, it will do so in a state

satisfying Q”. Importantly, we assume that JSIL programs are in SSA form, that is, each variable can

be assigned to only once. This takes away the need for standard substitutions in many of the axioms.

The axioms for basic commands are given in Figure 6.4. We use the notation E1
.
= E2 as shorthand

for E1 = E2 ∧ emp.

Skip
{emp} skip {emp}

Property Assignment
{(e1, e2) 7→ } [e1, e2] := e3 {(e1, e2) 7→ e3}

Var Assignment
{emp} x := e {x .

= e}

Object Creation
Q = (x,@proto) 7→ null ∗

emptyProps(x | {@proto })
{emp} x := new () {Q}

Property Access
P = (e1, e2) 7→ X ∗X 6 .= �

{P} x := [e1, e2] {P ∗ x .
= X}

Deletion
P = (e1, e2) 7→ X ∗X 6 .= � ∗ e2 6

.
= @proto

{P} delete (e1, e2) {(e1, e2) 7→ �}

Member Check - True
P = (e1, e2) 7→ X ∗X 6 .= �

{P} x := hasProperty (e1, e2) {P ∗ x .
= true}

Member Check - False
P = (e1, e2) 7→ �

{P} x := hasProperty (e1, e2) {P ∗ x .
= false}

Get Properties
P = (~ni=1(e,Xi) 7→ Yi) ∗ emptyProps(e | {Xi|ni=1 }) ∗ (~ni=1Yi 6

.
= �)

{P} x := getProperties (e) {P ∗ x .
= Xi|ni=1 ∗ (ord (x)

.
= true)}

Figure 6.4.: Axiomatic Semantics of Basic Commands: {P}bc{Q}

The Object Creation axiom states that the new object at x only contains the @proto property with

value null. It is important to have the resource of all other empty properties after the creation of

a new object. When we later add a new property p to the object x, we need to have the resource

(x, p) 7→ to perform property assignment. The Property Deletion axiom forbids the deletion of

@proto properties. The Get Properties axiom states that if the object bound to e only contains the

properties denoted by Xi|ni=1, then, after the execution of x := getProperties (e), x will be bound to a

list containing precisely Xi|ni=1 in an order described by the ord predicate. The remaining axioms are

straightforward.

Symbolic Execution for JSIL Control Flow Commands. Our goal is to use symbolic execution

to prove the specifications of JSIL procedures. As procedures may call other procedures, we group

specifications in specification environments, S : Str×F lag 7→ Spec, mapping procedure identifiers and

return modes onto specifications. To avoid clutter, we assume in the formalisation of the logic that

88

each procedure has a single specification for each return mode. Hence, if S(m,fl) = S ∈ Spec, then S

is the specification of m for the return mode fl . The generalisation to multiple pre- and postconditions

is straightforward. We use post(S) to denote the postcondition of specification S.

We define logic rules for relating the precondition of every command to its postcondition, which at

the same time is the precondition of the command that immediately follows its execution. The rules

have the form p,m, S,fl ` 〈P, j, i〉 ; 〈Q,n〉, where S is the specification environment, P and Q are

the pre- and postconditions of the i-th command of procedure m in program p, j is the index of the

command from which the symbolic execution reaches i, and n is the index of the command to which

symbolic execution goes next (Figure 6.5). We need to keep the previous command j for the symbolic

execution of the φ-node command. The rules are additionally annotated with the return mode fl ,

associated with the specification that is currently being verified.

pm(i)

{P}

pm(j)

{Q}

pm(n)

Figure 6.5.: Graphical Representation of the Logic Rules p,m, S,fl ` 〈P, j, i〉; 〈Q,n〉.

We now give the proof rules for symbolically executing control flow commands (Figure 6.6). As p,

m, S, and fl do not change during symbolic execution, we leave them implicit.

The Basic Command rule updates the state from P to Q according to its axiom, and transfers control

to the following command. The Goto rule jumps to the provided n-th command without changing

the state, while the Cond. Goto rules branch to explore both states, where e = true and e = false.

Similarly, the Procedure Call rules branch to consider the case where the procedure returns normally

and the case where the procedure throws an exception. The Procedure Call rules update the state

from P to Q, where {P}m′(x) {Q} is the specification of the procedure m′. The parameters which

are not provided in the call are bound to undefined. The φ-Assignment rule proceeds to the following

command after assigning the value corresponding to the k-th predecessor of the current command to

the variables xt|nt=1. Recall the operational semantics of φ-node command in §4, Figure 4.5. Frame

Rule, Consequence, and Existential Elimination rules are three standard program logic rules that

allow the state to be changed while remaining at the same node. The Normal Return rule first

checks if the symbolic execution is associated with a nm-mode specification, in which case it further

checks if the current symbolic state entails the postcondition of that specification. Note that the

Normal Return rule cannot be used during the symbolic execution of an er-mode specification,

because the first check would fail. The Error Return rule is analogous.

89

Basic Command
pm(i) = bc {P} bc {Q} i 6∈ {ret, err}
〈P, j, i 〉; 〈Q, i+ 1 〉

Goto
pm(i) = goto n

〈P, j, i 〉; 〈P, n 〉

Cond. Goto - True
pm(i) = goto [e] n1, n2

〈P, j, i 〉; 〈P ∗ e .
= true, n1 〉

Cond. Goto - False
pm(i) = goto [e] n1, n2

〈P, j, i 〉; 〈P ∗ e .
= false, n2 〉

φ-Assignment

pm(i) = x1, ..., xn := φ(x11, ..., x
r
1; ...; x1n, ..., x

r
n) j

k7→m i

〈P, j, i 〉; 〈P ∗ (~nt=1xt
.
= xkt), i+ 1 〉

Frame Rule
〈P, j, i 〉; 〈Q,n 〉 i 6∈ {ret, err}
〈P ∗R, j, i 〉; 〈Q ∗R,n 〉

Existential Elimination
〈P, j, i 〉; 〈Q,n 〉 i 6∈ {ret, err}
〈 ∃X. P, j, i 〉; 〈 ∃X. Q, n 〉

Consequence
〈P, j, i 〉; 〈Q,n 〉 P ′ ⇒ P Q⇒ Q′ i 6∈ {ret, err}
〈P ′, j, i 〉; 〈Q′, n 〉

Procedure Call - Normal
pm(i) = x := e0(e1, ..., en1) with k S(m′, nm) = {P}m′(x1, ..., xn2) {Q ∗ xret .

= e} en = undefined|n2
n=n1+1

〈 (P [ei/xi|n2
i=1] ∗ e0

.
= m′), j, i 〉; 〈 (Q[ei/xi|n2

i=1] ∗ e0
.
= m′ ∗ x .

= e[ei/xi|n2
i=1]), i+ 1 〉

Procedure Call - Error
pm(i) = x := e0(e1, ..., en1) with k S(m′, er) = {P}m′(x1, ..., xn2) {Q ∗ xerr .

= e} en = undefined|n2
n=n1+1

〈 (P [ei/xi|n2
i=1] ∗ e0

.
= m′), j, i 〉; 〈 (Q[ei/xi|n2

i=1] ∗ e0
.
= m′ ∗ x .

= e[ei/xi|n2
i=1]), k 〉

Normal Return
fl = nm Q⇒ post(S(m, nm))

〈Q, j, ret 〉; 〈Q, ret 〉

Error Return
fl = er Q⇒ post(S(m, er))

〈Q, j, err 〉; 〈Q, err 〉

j 7→m i denotes that j is an immediate predecessor of i.
j
k7→mi states that j is the k-th element of the list containing all the predecessors of i in chronological

order.

Figure 6.6.: Symbolic Execution of Control Flow Commands: p,m, S,fl ` 〈P, j, i 〉; 〈Q,n 〉

6.3. Soundness of JSIL Logic

In this section, we prove the soundness of JSIL Logic. Before we can formulate the soundness theorem,

we need to introduce the notion of proof candidates.

A proof candidate, pd∈D :Str×F lag×N⇀ P(ASJSIL ×N), maps each command in a procedure

to a set of possible preconditions, associating each such precondition with the index of the command

that led to it. For instance, if (P, j) ∈ pd(m,fl , i), then we have that, in the symbolic execution of m

with return mode fl , P is the precondition of the i-th command of m that resulted from the symbolic

execution of its j-th command. A proof candidate pd is well-formed if and only if: (1) the set of

preconditions of the first command of every procedure contains only the precondition of the procedure

itself; and (2) one can symbolically execute every command on all of its possible preconditions.

Definition 6.2 (Well-formed proof candidate). Given a program p ∈ P and a specification environment

S ∈ Str × F lag ⇀ Spec, a proof candidate pd ∈ D is well-formed with respect to p and S, written

p, S ` pd, if and only if, for all procedures m in p, and index i, the following hold:

1. ∀fl, P,Q. S(m,fl) = {P}m(x){Q} ⇐⇒ pd(m,fl, 0) = {(P, 0)}

2. ∀fl, P, j. (P, j) ∈ pd(m,fl, i) =⇒(
∀n. i 7→m n =⇒ ∃Q. (Q, i) ∈ pd(m,fl, n) ∧ p,m, S, fl ` 〈P, j, i 〉; 〈Q,n 〉

)

90

∨
(
i ∈ {ret, err} =⇒ p,m, S,fl ` 〈P, j, i 〉; 〈P, i 〉

)
We prove that JSIL symbolic execution rules are sound with respect to the JSIL operational se-

mantics, that is, we prove that if there is a well-formed proof candidate derivation with respect

to a program p and specification environment S, then all specifications in the co-domain of S are

valid (Theorem 6.1). To prove this theorem, we prove Frame Property and Soundness for Control

Flow Commands (Lemma 2), which uses the Frame Property and Soundness for Basic Commands

(Lemma 1).

Both Lemma 1 and Lemma 2 treat Frame Property and Soundness at the same time, in order to

avoid duplication, as these proofs are quite similar. On the other hand, this choice requires of us to

talk about two frames in the formulation of the lemmas.

Lemma 1 (Frame Property and Soundness for Basic Commands). For every basic command axiom

{P} bc {Q} it holds that:

∀H, ρ, ε. H, ρ, ε |= P ⇒
∀Ĥ1, Ĥ2, ĥf , (L(ĥf) \ L(bHc)) ∩ L(Ĥ1] Ĥ2) = ∅ ⇒
∀ρf , v. JbcKbH] Ĥ1] Ĥ2c,ρ = (ĥf , ρf , v)⇒
∃Hf . JbcKbH] Ĥ1c,ρ = (bHf] Ĥ1c, ρf , v) ∧ Hf , ρf , ε |= Q ∧ ĥf = bHf] Ĥ1] Ĥ2c.

We use the notation L(h) and L(H) to denote the set of locations present in either concrete or

abstract JSIL heaps. Observe the second condition of the lemma, which requires that no locations

created during the execution of the command are present in the abstract heaps constituting the frame.

This condition is not required for program logics for static languages, but for languages with extensible

objects, it is necessary, as we will shortly demonstrate.

Proof. For convenience, we name the hypotheses as follows:

• H1: H, ρ, ε |= P

• H2: (L(ĥf) \ L(bHc)) ∩ L(Ĥ1] Ĥ2) = ∅

• H3: JbcKbH] Ĥ1] Ĥ2c,ρ = (ĥf , ρf , v)

Our goal is to show that there exists a JSIL abstract heap Hf , such that:

• G1: JbcKbH] Ĥ1c,ρ = (bHf] Ĥ1c, ρf , v)

• G2: Hf , ρf , ε |= Q

• G3: ĥf = bHf] Ĥ1] Ĥ2c

We proceed by analysing all basic command axioms.

• [Skip] We have that bc = skip , P = emp and Q = emp. From the satisfiability of JSIL assertions

and H1, we obtain that H = emp. From H3 and the semantics of JSIL basic commands, we

obtain that ĥf = bĤ1] Ĥ2c, ρf = ρ, and v = empty. We choose Hf = emp as our witness. The

goals then become:

– G1: Jskip KbĤ1c,ρ = (bĤ1c, ρ, empty)

91

– G2: emp, ρ, ε |= emp

– G3: bĤ1] Ĥ2c = bemp] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses.

• [Property Assignment] We have that bc = [e1, e2] := e3, P = (e1, e2) 7→ and Q = (e1, e2) 7→
e3. From the satisfiability of JSIL assertions and H1, we obtain that H = (Je1Kρ, Je2Kρ) 7→ V,

for some value V, possibly �. From H3 and the semantics of JSIL basic commands, we obtain

that ĥf = b(Je1Kρ, Je2Kρ) 7→ Je3Kρ] Ĥ1] Ĥ2c, ρf = ρ, and v = Je3Kρ. We choose Hf =

(Je1Kρ, Je2Kρ) 7→ Je3Kρ as our witness. The goals then become:

– G1: J[e1, e2] := e3Kb(Je1Kρ,Je2Kρ)7→V] Ĥ1c,ρ = (b(Je1Kρ, Je2Kρ) 7→ Je3Kρ] Ĥ1c, ρ, Je3Kρ)

– G2: (Je1Kρ, Je2Kρ) 7→ Je3Kρ, ρ, ε |= (e1, e2) 7→ e3

– G3: b(Je1Kρ, Je2Kρ) 7→ Je3Kρ] Ĥ1] Ĥ2c = b(Je1Kρ, Je2Kρ) 7→ Je3Kρ] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses, noting that Je3Kρ 6= �.

• [Var Assignment] We have that bc = x := e, P = emp and Q = x
.
= e. From the satisfiability

of JSIL assertions and H1, we obtain that H = emp. From H3 and the semantics of JSIL

basic commands, we obtain that ĥf = bĤ1] Ĥ2c, ρf = ρ[x 7→ JeKρ], and v = JeKρ. We choose

Hf = emp as our witness. The goals then become:

– G1: Jx := eKbĤ1c,ρ = (bĤ1c, ρ[x 7→ JeKρ], JeKρ)

– G2: emp, ρ[x 7→ JeKρ], ε |= x
.
= e

– G3: bĤ1] Ĥ2c = bemp] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses, noting that x is not mentioned in e as

we only consider programs in SSA.

• [Object Creation] We have that bc = x := new (), P = emp and Q = (x,@proto) 7→
null ∗ emptyProps(x | {@proto }). From the satisfiability of JSIL assertions and H1, we ob-

tain that H = emp. From H3 and the semantics of JSIL basic commands, we obtain that

ĥf = (l,@proto) 7→ null] bĤ1] Ĥ2c, ρf = ρ[x 7→ l], and v = l, for a fresh location l. We

know that l /∈ dom(Ĥ1] Ĥ2) from H2. Here, if we didn’t have the hypothesis H2, then we

would allow Ĥ1] Ĥ2 to contain empty properties of the object l. However, in that case, since

Hf has to capture the entire object at location l in order for G2 to hold, Hf] Ĥ1] Ĥ2 would

not be well-defined. This is a consequence of having explicit negative information about object

properties. We choose Hf = (l,@proto) 7→ null]
(⊎

p 6=@proto(l, p) 7→ �
)

as our witness. Note

that then bHfc = (l,@proto) 7→ null. The goals become:

– G1: Jnew ()KbĤ1c,ρ = (b(l,@proto) 7→ null] H1c, ρ[x 7→ l], l)

– G2: Hf , ρ[x 7→ l], ε |= (x,@proto) 7→ null ∗ emptyProps(x | {@proto })

– G3: (l,@proto) 7→ null] bĤ1] Ĥ2c = bHf] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses, noting that l /∈ dom(Ĥ1] Ĥ2).

• [Property Deletion] We have that bc = delete (e1, e2), P = (e1, e2) 7→ X∗X 6 .= �∗e2 6
.
= @proto

and Q = (e1, e2) 7→ �. From the satisfiability of JSIL assertions and H1, we obtain that H =

92

(Je1Kρ, Je2Kρ) 7→ ε(X), where ε(X) 6= � and Je2Kρ 6= @proto. Note that bHc = H since ε(X) 6= �.

From H3 and the semantics of JSIL basic commands, we obtain that ĥf = bĤ1] Ĥ2c, ρf = ρ,

and v = true. We choose Hf = (Je1Kρ, Je2Kρ) 7→ � as our witness, noting that bHfc = emp. The

goals become:

– G1: JbcKb(Je1Kρ,Je2Kρ)7→ε(X)] Ĥ1c,ρ = (bĤ1c, ρ, true)

– G2: (Je1Kρ, Je2Kρ) 7→ �, ρ, ε |= (e1, e2) 7→ �

– G3: bĤ1] Ĥ2c = b(Je1Kρ, Je2Kρ) 7→ �] Ĥ1] Ĥ2c

and all follow directly from the definitions and hypotheses, noting that the disjoint union in G3

is well-defined due to H3.

• [Property Access] We have that bc = x := [e1, e2], P = (e1, e2) 7→ X ∗ X 6 .= � and Q =

(e1, e2) 7→ X ∗X 6 .= � ∗ x .
= X. From the satisfiability of JSIL assertions and H1, we obtain that

H = (Je1Kρ, Je2Kρ) 7→ ε(X), where ε(X) 6= � . Note that bHc = H since ε(X) 6= �. From H3 and

the semantics of JSIL basic commands, we obtain that ĥf = bH] Ĥ1] Ĥ2c, ρf = ρ[x 7→ ε(X)],

and v = ε(X). We choose Hf = H = (Je1Kρ, Je2Kρ) 7→ ε(X) as our witness. The goals then

become:

– G1: Jx := [e1, e2]Kb(Je1Kρ,Je2Kρ)7→ε(X)] Ĥ1c,ρ = (b(Je1Kρ, Je2Kρ) 7→ ε(X)] Ĥ1c, ρ[x 7→ ε(X)], ε(X))

– G2: (Je1Kρ, Je2Kρ) 7→ ε(X), ρ[x 7→ ε(X)], ε |= (e1, e2) 7→ X ∗X 6 .= � ∗ x .
= X

– G3: bH] Ĥ1] Ĥ2c = bH] Ĥ1] Ĥ2c.

and all hold directly from the definitions and hypotheses, noting that ε(X) 6= �.

• [Member Check - True] We have that bc = x := hasProperty (e1, e2), P = (e1, e2) 7→ X∗X 6 .= �

and Q = (e1, e2) 7→ X ∗X 6 .= � ∗ x .
= true. From the satisfiability of JSIL assertions and H1, we

obtain that H = (Je1Kρ, Je2Kρ) 7→ ε(X), where ε(X) 6= � . Note that bHc = H since ε(X) 6= �.

From H3 and the semantics of JSIL basic commands, we obtain that ĥf = bH] Ĥ1] Ĥ2c,
ρf = ρ[x 7→ true], and v = true. We choose Hf = H = (Je1Kρ, Je2Kρ) 7→ ε(X) as our witness. The

goals then become:

– G1: Jx := hasProperty (e1, e2)Kb(Je1Kρ,Je2Kρ)7→ε(X)] Ĥ1c,ρ =

(b(Je1Kρ, Je2Kρ) 7→ ε(X)] Ĥ1c, ρ[x 7→ true], true)

– G2: (Je1Kρ, Je2Kρ) 7→ ε(X), ρ[x 7→ true], ε |= (e1, e2) 7→ X ∗X 6 .= � ∗ x .
= true

– G3: bH] Ĥ1] Ĥ2c = bH] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses, noting that ε(X) 6= �.

• [Member Check - False] We have that bc = x := hasProperty (e1, e2), P = (e1, e2) 7→ � and

Q = (e1, e2) 7→ � ∗ x .
= false. From the satisfiability of JSIL assertions and H1, we obtain that

H = (Je1Kρ, Je2Kρ) 7→ �. Note that bHc = emp. From H3 and the semantics of JSIL basic

commands, we obtain that ĥf = bH] Ĥ1] Ĥ2c, ρf = ρ[x 7→ false], and v = false, noting

that Ĥ1] Ĥ2 cannot contain the cell (Je1Kρ, Je2Kρ), since the disjoint union H] Ĥ1] Ĥ2 is

well-defined. We choose Hf = H = (Je1Kρ, Je2Kρ) 7→ � as our witness. The goals then become:

– G1: Jx := hasProperty (e1, e2)KbĤ1c,ρ = (bĤ1c, ρ[x 7→ false], false)

93

– G2: (Je1Kρ, Je2Kρ) 7→ �, ρ[x 7→ false], ε |= (e1, e2) 7→ � ∗ x .
= false

– G3: bH] Ĥ1] Ĥ2c = bH] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses, noting that Ĥ1 cannot contain the cell

(Je1Kρ, Je2Kρ).

• [Get Properties] We have that bc = x := getProperties (e),

P = (~ni=1(e,Xi) 7→ Yi) ∗ emptyProps(e | {Xi|ni=1 }) ∗ (~ni=1Yi 6
.
= �)

and Q = P ∗ x .
= Xi|ni=1 ∗ ord (x)

.
= true. From the satisfiability of JSIL assertions and H1, we

obtain that

H =

 ⊎
p 6∈ {ε(Xi)|ni=1}

(JeKρ, p) 7→ �

] (n⊎
i=1

(JeKρ, ε(Xi)) 7→ ε(Yi)

)

where ε(Yi) 6= �|ni=1. Therefore, we conclude that:

bHc =

(
n⊎
i=1

(JeKρ, ε(Xi)) 7→ ε(Yi)

)
.

From H3, the semantics of JSIL basic commands, we obtain that ĥf = bH] Ĥ1] Ĥ2c, ρf =

ρ[x 7→ ε(Xi|ni=1)], and v = ε(Xi|ni=1), where Ord(ε(Xi|ni=1)). Note that due to the construction of

H and the disjoint unionH] Ĥ1] Ĥ2 being well defined, all the fields of the object corresponding

to e are captured by H. We choose Hf = H as our witness. The goals become:

– G1: Jx := getProperties (e)KbH] Ĥ1c,ρ = (bH] Ĥ1c, ρ[x 7→ ε(Xi|ni=1)], ε(Xi|ni=1))

– G2: H, ρ[x 7→ ε(Xi|ni=1)], ε |= P ∗ x .
= Xi|ni=1 ∗ ord (x)

.
= true

– G3: bH] Ĥ1] Ĥ2c = bH] Ĥ1] Ĥ2c

and all hold directly from the definitions and hypotheses.

Lemma 2 (Frame Property and Soundness for Control Flow Commands). For any derivation pd ∈ D,

program p ∈ P, specification environment S ∈ Str × F lag ⇀ Spec, return mode flag fl, abstract heaps

H, Ĥ1, Ĥ2, store ρ ∈ Sto, logical environment ε, procedure identifier m, and command labels i and k

such that:

• H1: p, S ` pd

• H2: (P, k) ∈ pd(m,fl, i)

• H3: H, ρ, ε |= P

• H4: p ` 〈bH] Ĥ1] Ĥ2c, ρ, k, i〉 ⇓m 〈hf , ρf , o〉

• H5: (L(hf) \ L(bHc)) ∩ L(Ĥ1] Ĥ2) = ∅

it follows that there is an abstract heap Hf and a value v such that:

94

• G1: o = fl〈v〉

• G2: p ` 〈bH] Ĥ1c, ρ, k, i〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉

• G3: Hf , ρf , ε |= post(S(m,fl))

• G4: hf = bHf] Ĥ1] Ĥ2c

Proof. By induction on the derivation of H4, using case analysis on the rule applied to obtain H4.

[Basic Command] It follows that pm(i) = bc for a given basic command bc. We conclude, using H4

and the semantics of JSIL, that there is a heap h′, a store ρ′, and value v′, such that:

JbcKbH] Ĥ1] Ĥ2c,ρ = (h′, ρ′, v′) (I1) p ` 〈h′, ρ′, i, i+1〉 ⇓m 〈hf , ρf , o〉 (I2)

Using H1 and H2, we conclude that there is an assertion Q such that: (Q, i) ∈ pd(m,fl , i + 1)

(I3), and 〈P, k, i 〉 ; 〈Q, i+ 1 〉 (I4). In order to re-establish the premises of the lemma, so we can

apply the induction hypothesis to I2, we need to show that there is an abstract heap H ′ such that:

H ′, ρ′, ε |= Q and bH ′] Ĥ1] Ĥ2c = h′. We prove that such an abstract heap exists by induction on the

derivation of 〈P, k, i 〉; 〈Q, i+ 1 〉. More concretely, we have to prove that, given JbcKbH] Ĥ1] Ĥ2c,ρ =

(h′, ρ′, v′), H, ρ, ε |= P , and 〈P, k, i 〉 ; 〈Q, i+ 1 〉, there must exist an abstract heap H ′ such that

bH ′] Ĥ1] Ĥ2c = h′ (goal 1), H ′, ρ′, ε |= Q (goal 2), and JbcKbH] Ĥ1c,ρ = (bH ′] Ĥ1c, ρ′, v′) (goal 3).

In the following, we proceed by case analysis on the last rule applied to obtain 〈P, k, i 〉; 〈Q, i+ 1 〉.

• [Basic Command] We conclude that: {P} bc {Q} (C1.1). Applying the Frame Property and

Soundness for Basic Commands (Lemma 1) to H3, H5, and I1, we conclude that there is

an abstract heap H ′ such that JbcKbH] Ĥ1c,ρ = (bH ′] Ĥ1c, ρ′, v′), H ′, ρ′, ε |= Q, and h′ =

bH ′] Ĥ1] Ĥ2c (goals 1-3).

• [Frame Rule] We conclude that there are three assertions P ′, Q′, and R, such that: P = P ′ ∗R
(C2.1), Q = Q′ ∗ R (C2.2), and 〈P ′, k, i 〉 ; 〈Q′, i+ 1 〉 (C2.3). From H3 and C2.1,

it follows that there are two abstract heaps H ′p and Hr such that H = H ′p] Hr (C2.4),

H ′p, ρ, ε |= P ′ (C2.5), and Hr, ρ, ε |= R (C2.6). From I1 and C2.4, we conclude that:

JbcKb(H′p]Hr)] Ĥ1] Ĥ2c,ρ = (h′, ρ′, v′) (C2.7). Using the associativity of] , we get from C2.7,

that JbcKbH′p] (Hr] Ĥ1)] Ĥ2c,ρ = (h′, ρ′, v′) (C2.8). Applying the inner induction hypothesis to

C2.8, C2.5, and C2.3, we conclude that there is an abstract heap H ′q such that: bH ′q]
(Hr] Ĥ1)] Ĥ2c = h′ (C2.9), H ′q, ρ

′, ε |= Q′ (C2.10), and JbcKbH′p] (Hr] Ĥ1)c,ρ = (bH ′q]
(Hr] Ĥ1)c, ρ′, v′) (C2.11). We now claim that H ′q] Hr is our witness, having to show that

b(H ′q] Hr)] Ĥ1] Ĥ2c = h′, H ′q] Hr, ρ
′, ε |= Q, and JbcKbH] Ĥ1c,ρ = (b(H ′q] Hr)] Ĥ1c, ρ′, v′).

Given the associativity of] , we conclude, from C2.9, that b(H ′q] Hr)] Ĥ1] Ĥ2c = h′ (goal

1) and, from C2.11, that JbcKb(H′p]Hr)] Ĥ1c,ρ = (b(H ′q] Hr)] Ĥ1c, ρ′, v′) (goal 3). From C2.2,

C2.6, and C2.10, it follows that H ′q] Hr, ρ
′, ε |= Q (goal 2). Notice that Hr, ρ, ε |= R, and

that R does not talk about the variable modified by the command pm(i) because of SSA, hence,

Hr, ρ
′, ε |= R.

95

• [Consequence] We conclude that there are two assertions P ′ and Q′, such that: P ⇒ P ′ (C3.1),

Q′ ⇒ Q (C3.2), and 〈P ′, k, i 〉 ; 〈Q′, i+ 1 〉 (C3.3). From H3 and C3.1, we conclude that

H, ρ, ε |= P ′ (C3.4). Applying the inner induction hypothesis to I1, C3.4, and C3.3, it follows

that there is an abstract heap H ′ such that: bH ′] Ĥ1] Ĥ2c = h′ (goal 1), H ′, ρ′, ε |= Q′

(C3.5), and JbcKbH] Ĥ1c,ρ = (bH ′] Ĥ1c, ρ′, v′) (goal 3). From C3.2 and C3.5, we conclude

that H ′, ρ′, ε |= Q (goal 2).

• [Elimination] We conclude that there are two assertions P ′ and Q′, such that: P = ∃X. P ′

(C3.1), Q = ∃X. Q′ (C3.2), and 〈P ′, k, i 〉; 〈Q′, i+ 1 〉 (C3.3). From H3 and C3.1, it follows

that there is a value V such that H, ρ, ε[X 7→ V] |= P ′ (C3.4). Applying the inner induction

hypothesis to I1, C3.4, and C3.3, we conclude that there is an abstract heap H ′ such that:

bH ′] Ĥ1] Ĥ2c = h′ (goal 1), H ′, ρ′, ε[X 7→ V] |= Q′ (C3.5), and JbcKbH] Ĥ1c,ρ = (bH ′]
Ĥ1c, ρ′, v′) (goal 3). From C3.2 and C3.5, we conclude that H ′, ρ′, ε |= Q (goal 2).

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, i 〉 ;
〈Q, i+ 1 〉 because pm(i) is a basic command. Hence, we do not have to analyse those cases.

We have established that there is an abstract heap H ′ such that bH ′] Ĥ1] Ĥ2c = h′ (I5), H ′, ρ′, ε |= Q

(I6), and JbcKbH] Ĥ1c,ρ = (bH ′] Ĥ1c, ρ′, v′) (I7). Applying the induction hypothesis to H1, I3,

I6, and I2, we have that there is an abstract heap Hf and value v such that: o = fl〈v〉 (G1),

p ` 〈bH ′] Ĥ1c, ρ′, i, i + 1〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (I8), Hf , ρf , ε |= post(S(m,fl)) (G3), and hf =

bHf] Ĥ1] Ĥ2c (G4). Recalling that pm(i) = bc, it follows from I7 and I8 that p ` 〈bH]
Ĥ1c, ρ, k, i〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (G2).

[Goto] It follows that pm(i) = goto j for a given command index j. We conclude, using H4 and the

semantics of JSIL, that:

p ` 〈bH] Ĥ1] Ĥ2c, ρ, i, j〉 ⇓m 〈hf , ρf , o〉 (I1)

Using H1 and H2, we conclude that there is an assertion Q such that: (Q, i) ∈ pd(m,fl , j) (I2) and

〈P, k, i 〉 ; 〈Q, j 〉 (I3). In order to re-establish the premises of the lemma, so we can apply the

induction hypothesis to I1, we need to show that H, ρ, ε |= Q. Like in the previous case, we proceed

by induction on the derivation of 〈P, k, i 〉 ; 〈Q, j 〉. More concretely, given that H, ρ, ε |= P and

〈P, k, i 〉; 〈Q, j 〉, we need to show that H, ρ, ε |= Q (goal).

• [Goto] We conclude that: 〈P, k, i 〉; 〈P, j 〉 (C1.1), from which it follows that Q = P (C1.2).

From C1.2 and H3, it follows that H, ρ, ε |= Q (goal).

• [Frame Rule] We conclude that there are three assertions P ′, Q′, and R, such that: P = P ′ ∗R
(C2.1), Q = Q′ ∗ R (C2.2), and 〈P ′, k, i 〉 ; 〈Q′, j 〉 (C2.3). From H3 and C2.1 it follows

that there are two abstract heaps H ′p and Hr such that H = H ′p] Hr (C2.4), H ′p, ρ, ε |= P ′

(C2.5), and Hr, ρ, ε |= R (C2.6). Applying the inner induction hypothesis to C2.5 and C2.3,

we conclude that H ′p, ρ, ε |= Q′ (C2.7). From C2.4, C2.6, and C2.7, it follows that H, ρ, ε |= Q

(goal).

96

• [Consequence] We conclude that there are two assertions P ′ and Q′, such that: P ⇒ P ′

(C3.1), Q′ ⇒ Q (C3.2), and 〈P ′, k, i 〉 ; 〈Q′, j 〉 (C3.3). From H3 and C3.1, we conclude

that H, ρ, ε |= P ′ (C3.4). Applying the inner induction hypothesis to C3.4, and C3.3, it follows

that H, ρ, ε |= Q′ (C3.5). From C3.2 and C3.5, we have that H, ρ, ε |= Q (goal).

• [Elimination] We conclude that there are two assertions P ′ and Q′, such that: P = ∃X. P ′

(C3.1), Q = ∃X. Q′ (C3.2), and 〈P ′, k, i 〉; 〈Q′, j 〉 (C3.3). From H3 and C3.1, it follows that

there is a value V such thatH, ρ, ε[X 7→ V] |= P ′ (C3.4). Applying the inner induction hypothesis

to C3.4 and C3.3, we conclude that H, ρ, ε[X 7→ V] |= Q′ (C3.5). From C3.2 and C3.5, we

conclude that H, ρ, ε |= Q (goal).

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, i 〉; 〈Q, j 〉
because pm(i) = goto j.

Having established that H, ρ, ε |= Q (I4), we can apply the induction hypothesis to H1, I2, I4,

and I1 to conclude that there is an abstract heap Hf and JSIL value v such that: o = fl〈v〉 (G1),

p ` 〈bH] Ĥ1c, ρ, i, j〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (I5), Hf , ρf , ε |= post(S(m,fl)) (G3), and hf = bHf]
Ĥ1] Ĥ2c (G4). Recalling that pm(i) = goto j, it follows from I5 that p ` 〈bH] Ĥ1c, ρ, k, i〉 ⇓m
〈bHf] Ĥ1c, ρf , o〉 (G2).

[Conditional Goto - True] It follows that pm(i) = goto [e] j1, j2 for two command indexes j1 and

j2 and a JSIL expression e. We conclude, using H4 and the semantics of JSIL, that:

JeKρ = true (I1) p ` 〈bH] Ĥ1] Ĥ2c, ρ, i, j1〉 ⇓m 〈hf , ρf , o〉 (I2)

Using H1 and H2, we conclude that there is an assertion Q such that: (Q, i) ∈ pd(m,fl , j1) (I3), and

〈P, k, i 〉 ; 〈Q, j1 〉 (I4) . In order to re-establish the premises of the lemma, so we can apply the

induction hypothesis to I2, we need to show that H, ρ, ε |= Q. As in the previous case, we proceed

by induction on the derivation of 〈P, k, i 〉 ; 〈Q, j1 〉. More concretely, given that H, ρ, ε |= P and

〈P, k, i 〉; 〈Q, j1 〉, we need to show that H, ρ, ε |= Q (goal).

• [Conditional Goto - True] We conclude that: 〈P, k, i 〉; 〈P ∧ e = true, j1 〉. Noting that e

does not contain any logical variables, we conclude that: JeKρ = JeKερ (C1.1). From I1 and C1.1,

it follows that JeKερ = true (C1.2). From H3 and C1.2, we conclude that H, ρ, ε |= (P ∧ e = true)

(goal).

• [Frame Rule, Consequence, Elimination] These cases exactly coincide with the corresponding

ones in the proof of [Goto].

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, i 〉; 〈Q, j1 〉
because pm(i) = goto [e] j1, j2.

Having established that H, ρ, ε |= Q (I5), we can apply the induction hypothesis to H1, I3, I5,

and I2 to conclude that there is an abstract heap Hf and JSIL value v such that: o = fl〈v〉 (G1),

p ` 〈bH] Ĥ1c, ρ, i, j1〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (I6), Hf , ρf , ε |= post(S(m,fl)) (G3), and hf =

97

bHf] Ĥ1] Ĥ2c (G4). Recalling that pm(i) = goto [e] j1, j2, it follows from I1 and I6 that p `
〈bH] Ĥ1c, ρ, k, i〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (G2).

[Procedure Call - Normal] It follows that pm(i) = x := e(e1, ..., en1) with j for a given JSIL variable

x, JSIL expressions e, e1, ..., en1 , and index j. We conclude, using H4 and the semantics of JSIL,

that:

JeKρ = m′ (I1) p(m′) = proc m′(y1, ..., yn2){c} (I2) ∀1≤n≤n1vn = JenKρ (I3)

∀n1<n≤n2
vn = undefined (I4) p ` 〈bH] Ĥ1] Ĥ2c, ∅[yi 7→ vi|n2

i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, nm〈v′〉〉 (I5)

p ` 〈h′, ρ[x 7→ v′], i, i+ 1〉 ⇓m 〈hf , ρf , o〉 (I6)

Using H1 and H2, we conclude that there is an assertion Q such that: (Q, i) ∈ pd(m,fl , i + 1)

(I7) and 〈P, k, i 〉 ; 〈Q, i+ 1 〉 (I8). In order to re-establish the premises of the lemma, so we can

apply the induction hypothesis to I6, we need to show that there is an abstract heap H ′ such that:

H ′, ρ[x 7→ v′], ε |= Q, and bH ′] Ĥ1] Ĥ2c = h′. We prove that such an abstract heap exists by

induction on the derivation of 〈P, k, i 〉 ; 〈Q, i+ 1 〉. More concretely, we have to prove that, given

p ` 〈bH] Ĥ1] Ĥ2c, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, nm〈v′〉〉, H, ρ, ε |= P , and 〈P, k, i 〉; 〈Q, i+ 1 〉,

there must exist an abstract heap H ′ such that bH ′] Ĥ1] Ĥ2c = h′ (goal 1), H ′, ρ[x 7→ v′], ε |= Q

(goal 2), and p ` 〈bH] Ĥ1c, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈bH ′] Ĥ1c, ρ′, nm〈v′〉〉 (goal 3). In the following,

we proceed by case analysis on the last rule applied to obtain 〈P, k, i 〉; 〈Q, i+ 1 〉.

• [Procedure Call - Normal] We conclude that there are two assertions P ′ and Q′ such that P =

P ′[ei/xi|n3
i=1]∗e .

= m′′ (C1.1), Q = Q′[ei/xi|n3
i=1]∗e .

= m′′ ∗x .
= e′[ei/xi|n3

i=1] (C1.2), S(m′′, nm) =

{P ′}m′′(x1, ..., xn3) {Q′∗xret .
= e′} (C1.3), where en = undefined |n3

n=n1+1. From H3 and C1.1,

it follows that JeKερ = m′′ (C1.4). Noting that JeKρ = JeKερ, we conclude, from I1 and C1.4,

that m′ = m′′ (C1.5), n2 = n3 (C1.6), and (x1, ..., xn3) = (y1, ..., yn2) (C1.7). For convenience,

we use C1.5-C1.7 to rewrite C1.1-C1.3 as follows: P = P ′[ei/yi|n2
i=1] ∗ e .

= m′ (C1.8), Q =

Q′[ei/yi|n2
i=1]∗e .

= m′ ∗x .
= e′[ei/yi|n2

i=1] (C1.9), S(m′, nm) = {P ′}m′(y1, ..., yn2) {Q′ ∗xret .
= e′}

(C1.10), where en = undefined |n2
n=n1+1.

Noting that all the specs in S are well-formed, we conclude, from C1.10, that vars(P ′)∪vars(Q′)∪
vars(e′) ⊆ {y1, ..., yn2} (C1.11). Applying the Substitution Lemma for Assertions (Lemma 20) to

H3, C1.11, and C1.8, we conclude that H, ∅[yi 7→ JeiKερ|
n2
i=1], ε |= P ′ (C1.12). For 1 ≤ i ≤ n1, it

holds that JeiKερ = JeiKρ (C1.13), because ei does not contain logical variables. For n1 < i ≤ n2,

it holds that JeiKερ = undefined (C1.14), because ei = undefined. From I3, I4, C1.13, and

C1.14, it follows that ∅[yi 7→ vi|n2
i=1] = ∅[yi 7→ JeiKερ|

n2
i=1] (C1.15). From C1.12 and C1.15,

we have that H, ∅[yi 7→ vi|n2
i=1], ε |= P ′ (C1.16). From H1 and C1.10, we conclude that

(P ′, 0) ∈ pd(m′, nm, 0) (C1.17). We can now apply the outer induction hypothesis to H1,

C1.17, C1.16, and I5, obtaining that there is a heap H ′: p ` 〈bH] Ĥ1c, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′

〈bH ′] Ĥ1c, ρ′, nm〈v′〉〉 (goal 3), H ′, ρ′, ε |= post(S(m′, nm)) (C1.18), and h′ = bH ′] Ĥ1] Ĥ2c
(goal 1). From C1.10 and C1.18, it follows that H ′, ρ′, ε |= Q′ ∗ xret

.
= e′ (C1.19). Since

we only consider programs in SSA, we conclude, from goal 3 , that ρ′ ≥ ∅[yi 7→ vi|n2
i=1] (C1.20).

From C1.11, C1.15, C1.19, and C1.20, we have that H ′, ∅[yi 7→ JeiKερ|
n2
i=1], ε |= Q′ (C1.21).

Applying the Substitution Lemma for Assertions (Lemma 20) to C1.11 and C1.21, we conclude

that H ′, ρ, ε |= Q′[ei/yi|n2
i=1] (C1.22). Applying Lemma 21 to I5, it follows that ρ′(xret) = v′,

98

from which we have, using C1.19, that Je′Kερ′ = v′ (C1.23). From C1.11, C1.15, C1.20,

and C1.23, we have that Je′Kε∅[yi 7→JeiKερ|
n2
i=1]

= v′ (C1.24). Applying the Substitution Lemma

for Logical Expressions (Lemma 19) to C1.24, we conclude that Je′[ei/yi|n2
i=1]Kερ = v′ (C1.25).

Since we only consider programs in SSA, we know that x 6∈
⋃n2
i=1 vars(ei), from which it follows

that x 6∈ vars(Q′[ei/yi|n2
i=1]) ∪ vars(e′[ei/yi|n2

i=1]) (C1.26). Combining C1.22, C1.25, C1.26,

and I1 we get that H ′, ρ[x 7→ v′], ε |= Q′[ei/yi|n2
i=1] ∗ e .

= m′ ∗ x .
= e′[ei/yi|n2

i=1] (goal 2).

• [Frame Rule, Consequence, Elimination] These cases exactly coincide with the corresponding

ones in the proof of [Basic Command].

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, i 〉 ;
〈Q, i+ 1 〉 because pm(i) = x := e(e1, ..., en1) with j.

We have established that there is an abstract heap H ′ such that bH ′] Ĥ1] Ĥ2c = h′ (I9), H ′, ρ[x 7→
v′], ε |= Q (I10), and p ` 〈bH] Ĥ1c, ∅[yi 7→ vi|n2

i=1], 0, 0〉 ⇓m′ 〈bH ′] Ĥ1c, ρ′, nm〈v′〉〉 (I11). Applying

the induction hypothesis to H1, I7, I10, and I6, we conclude that there is an abstract heap Hf and

JSIL value v such that: o = fl〈v〉 (G1), p ` 〈bH ′] Ĥ1c, ρ[x 7→ v′], i, i + 1〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉
(I12), Hf , ρf , ε |= post(S(m,fl)) (G3), hf = bHf] Ĥ1] Ĥ2c (G4). Recalling that pm(i) = x :=

e(e1, ..., en1) with j, it follows from I1-I4, I11, and I12 that p ` 〈bH] Ĥ1c, ρ, k, i〉 ⇓m 〈bHf]
Ĥ1c, ρf , o〉 (G2).

[Phi-Assignment] It follows that pm(i) = x1, ..., xn := φ(x1
1, ..., x

r
1; ...; x1

n, ..., x
r
n) for some JSIL variables

xt|nt=1, xut |nt=1|ru=1. We conclude, using H4 and the semantics of JSIL, that:

j
k7→m i (I1) p ` 〈bH] Ĥ1] Ĥ2c, ρ[xt 7→ ρ(xkt)|nt=1], i, i+ 1〉 ⇓m 〈hf , ρf , o〉 (I2)

for a given index k. Using H1 and H2, we conclude that there is an assertion Q such that: (Q, i) ∈
pd(m,fl , i+1) (I3) and 〈P, j, i 〉; 〈Q, i+ 1 〉 (I4). In order to re-establish the premises of the lemma,

so we can apply the induction hypothesis to I2, we need to show that H, ρ[xt 7→ ρ(xkt)|nt=1], ε |=
Q. As in the previous cases, we proceed by induction on the derivation of 〈P, j, i 〉 ; 〈Q, i+ 1 〉.
More concretely, given that H, ρ, ε |= P and 〈P, j, i 〉 ; 〈Q, i+ 1 〉, we need to show that H, ρ[xt 7→
ρ(xkt)|nt=1], ε |= Q (goal). In the following, we proceed by case analysis on the last rule applied to

obtain 〈P, j, i 〉; 〈Q, i+ 1 〉.

• [Phi-Assignment] We conclude thatQ = P ∗(~nt=1xt
.
= xkt) (C1.1). Because we assume programs

are in SSA form, we conclude that xt 6∈ vars(P)|nt=1 (C1.2). From H3 and C1.2, we have that

H, ρ[xt 7→ ρ(xkt)|nt=1], ε |= P (C1.3). Using the satisfiability of JSIL assertions, we get that

H, ρ[xt 7→ ρ(xkt)|nt=1], ε |= ~nt=1xt
.
= xkt (C1.4). Combining C1.3 and C1.4, we conclude that

H, ρ[xt 7→ ρ(xkt)|nt=1], ε |= Q (goal).

• [Frame Rule, Consequence, Elimination] These cases exactly coincide with the corresponding

ones in the proof of [Goto].

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, j, i 〉 ;
〈Q, i+ 1 〉 because pm(i) = x1, ..., xn := φ(x1; ...; xn).

99

Having established H, ρ[xt 7→ ρ(xkt)|nt=1], ε |= Q (I5), we can apply the induction hypothesis to H1,

I3, I5, and I2, concluding that there is an abstract heap Hf and a JSIL value v such that: o = fl〈v〉
(G1), p ` 〈bH] Ĥ1c, ρ[xt 7→ ρ(xkt)|nt=1], i, i+ 1〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (I6), Hf , ρf , ε |= post(S(m,fl))

(G3), hf = bHf] Ĥ1] Ĥ2c (G4). Recalling that pm(i) = x1, ..., xn := φ(x1
1, ..., x

r
1; ...; x1

n, ..., x
r
n), it

follows from I1 and I6 that p ` 〈bH] Ĥ1c, ρ, j, i〉 ⇓m 〈bHf] Ĥ1c, ρf , o〉 (G2).

[Normal Return] It follows that i = ret (I1), hf = bH] Ĥ1] Ĥ2c (I2), ρf = ρ (I3), and

o = nm〈ρ(xret)〉 (I4). Using H1 and H2, we conclude that there is an assertion Q such that

〈P, k, i 〉 ; 〈Q, i 〉 (I5). From I1 and I5, it follows that fl = nm (I6). In the following, we use

H as our witness for Hf and ρ(xret) as our witness for v. Hence, we now need to prove that

H, ρ, ε |= post(S(m, nm)). We proceed by induction on the derivation of 〈P, k, ret 〉 ; 〈Q, ret 〉.
More concretely, given that H, ρ, ε |= P and 〈P, k, ret 〉 ; 〈Q, ret 〉, we need to show that H, ρ, ε |=
post(S(m, nm)). In the following, we proceed by case analysis on the last rule applied to obtain

〈P, k, ret 〉; 〈Q, ret 〉.

• [Normal Return] We conclude that P = Q and Q ⇒ post(S(m, nm)) (C1.1). From H3 and

C1.1, we conclude that H, ρ, ε |= post(S(m, nm)).

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, ret 〉 ;
〈Q, ret 〉 because ret has no successor but itself.

Having proven that Hf , ρf , ε |= post(S(m, nm)) (G3), we proceed to the remaining goals. We obtain

G1 directly from I4 and I6, while we obtain G4 directly from I2. Using the semantics of JSIL and

I1, we get that: p ` 〈bH] Ĥ1c, ρ, k, i〉 ⇓m 〈bH] Ĥ1c, ρ, nm〈ρ(xret)〉〉 (I7). From I3, I4, and I7, we

obtain G2.

[Error Return] It follows that i = err (I1), hf = bH] Ĥ1] Ĥ2c (I2), ρf = ρ (I3), and o =

er〈ρ(xerr)〉 (I4). Using H1 and H2, we conclude that there is an assertion Q such that 〈P, k, i 〉 ;
〈Q, i 〉 (I5). From I1 and I5, it follows that fl = er (I6). In the following, we use H as our witness

for Hf and ρ(xerr) as our witness for v. Hence, we now need to prove that H, ρ, ε |= post(S(m, er)).

We proceed by induction on the derivation of 〈P, k, err 〉 ; 〈Q, err 〉. More concretely, given that

H, ρ, ε |= P and〈P, k, err 〉 ; 〈Q, err 〉, we need to show that H, ρ, ε |= post(S(m, er)). In the

following, we proceed by case analysis on the last rule applied to obtain 〈P, k, err 〉; 〈Q, err 〉.

• [Error Return] We conclude that P = Q and Q⇒ post(S(m, er)) (C1.1). From H3 and C1.1,

we conclude that H, ρ, ε |= post(S(m, er)).

• [All Other Cases] No other rule may have been applied in the derivation of 〈P, k, err 〉 ;
〈Q, err 〉 because err has no successor but itself.

Having proven that Hf , ρf , ε |= post(S(m, er)) (G3), we proceed to the remaining goals. We obtain

G1 directly from I4 and I6, while we obtain G4 directly from I2. Using the semantics of JSIL and

I1, we get that: p ` 〈bH] Ĥ1c, ρ, k, i〉 ⇓m 〈bH] Ĥ1c, ρ, er〈ρ(xerr)〉〉 (I7). From I3, I4, and I7, we

obtain G2.

100

Theorem 6.1 (Soundness of Symbolic Execution for JSIL). For all JSIL programs p and specification

environments S, if there exists a proof candidate pd ∈ D such that p, S ` pd, then:

∀m,fl, P,Q, x . S(m,fl) = {P}m(x){Q} =⇒ p,fl � {P}m(x){Q}

Proof. We have to prove that for every procedure identifier m, return modes fl , fl ′, JSIL abstract

heap H, concrete heap hf , stores ρ and ρf , environment ε, and JSIL value v such that S(m,fl) =

{P}m(x) {Q} (I1), H, ρ, ε |= P (I2), and p ` 〈bHc, ρ,−, 0〉 ⇓m 〈hf , ρf ,fl ′〈v〉〉 (I3), it holds that there

is an abstract heap Hf such that bHfc = hf (G1), Hf , ρf , ε |= Q (G2), and fl = fl ′ (G3). From

p, S ` pd and I1, we conclude that pd(m,fl , 0) = {(P, 0)} (I4). We can now apply the Frame Property

and Soundness for Control Flow Commands (Lemma 2) to p, S ` pd, I4, I2, and I3, by choosing

Ĥ1 = Ĥ2 = emp, concluding that there exists an abstract heap Hf such that G1-G3 hold.

6.4. JSIL Verify

Figure 6.7.: Architecture of
JSIL Verify

We give an overview of JSIL Verify, a semi-automatic verifica-

tion tool for JSIL. The high-level architecture of JSIL Verify is

presented in Figure 6.7. Given a JSIL program annotated with

the specifications of its procedures, and the specifications of the

JavaScript internal functions, JSIL Verify checks whether or not

the program procedures satisfy their specifications. JSIL Verify

consists of: a symbolic execution engine that symbolically executes

JSIL commands according to the proof rules of JSIL Logic (§6.2);

and an entailment engine for resolving frame inference and entail-

ment questions, which is supported by the Z3 SMT solver [21].

We describe the symbolic execution engine and the entailment

engine, and explain how we use JavaScript internal functions during

symbolic execution. We also discuss how JSIL Verify evolved over

time.

Symbolic Execution Engine. The symbolic execution engine

of JSIL Verify symbolically executes JSIL commands according to

the proof rules of JSIL Logic (§6.2). During symbolic execution,

we encounter frame inference and entailment questions that need

to be resolved. We start with a given precondition P of a procedure m, and follow its control flow

graph. Whenever a basic command bc or a procedure call to a procedure m′ is encountered, we take its

precondition P ′, solve the frame inference question P ` P ′ ∗ [?F], and continue to the next command

in the state Q′ ∗ ?F , where Q′ is the postcondition of bc or m′. When we reach the final labels of the

procedure m, we check if the final symbolic state Qf entails the postcondition Q of the procedure m,

by solving the entailment Qf ` Q ∗ true.

To give a flavour of the symbolic execution, let us symbolically execute [x__er, "n"] := undefined

from the enqueue procedure (Figure 5.9, line 4). Before executing this command, the symbolic state

101

is P ∗ xer
.
= ler ∗ emptyProps(ler | [@proto]) 1. To apply the small axiom {(xer, “n”) 7→ }

[x__er, "n"] := undefined {(xer, “n”) 7→ undefined}, we need to solve the frame inference problem

P ∗ xer
.
= ler ∗ emptyProps(ler | [@proto]) ` (xer, “n”) 7→ ∗ [?F]. In this case, we get that

the frame is P ∗ xer
.
= ler ∗ emptyProps(ler | [@proto, “n”]), which we explain in more detail

shortly. The symbolic state after executing the command is (xer, “n”) 7→ undefined ∗ P ∗ xer
.
=

ler ∗ emptyProps(ler | [@proto, “n”]).

Entailment Engine: Frame Inference. The frame inference problem that JSIL Verify has to solve

is more complex than those featured in equivalent tools for static languages, such as C and Java.

Namely, as JSIL features dynamic property access, the property of a cell assertion is an arbitrary

logical expression and not a concrete string. This makes symbolic evaluation of object management

commands non-trivial. Consider, for instance, the property assignment [e1, e2] := e3. To symbolically

execute this command in a symbolic state P , JSIL Verify must solve the following instance of the

frame inference problem P ` (e1, e2) 7→ ∗ [?F], where ?F denotes the resources to be framed off. In

this case, solving the frame inference problem involves: traversing all the cell assertions (E1,E2) 7→ in

P , checking for each one whether P ` ei
.
= Ei |i=1,2; and traversing all the empty property assertions

emptyProps(E1 | E2) in P , checking for each one whether P ` e1
.
= E1 and P ` e2

˙6∈ E2.

For the first version of JSIL Verify, we resorted to using the coreStar [11] theorem prover for solving

frame inference and entailment questions. To achieve that, we translated JSIL assertions to coreStar

assertions, by defining corresponding built-in predicates and logic rules for them in coreStar. We have

demonstrated that it is possible to define logic rules for built-in predicates, such as (E1,E2) 7→ E3

or emptyProps(E1 | E2). To evaluate JSIL Verify, we verified small JavaScript examples that use

prototype-based inheritance and a number of examples from Test262 test suite. However, as our

experience showed, it was extremely difficult to provide logic rules without having any control of their

application, making the proof search untractable. Moreover, the specifications of these examples were

exposing the internal details of JavaScript. Even though it would be possible to implement built-

in JavaScript abstractions, the coreStar approach would not scale for user defined predicates, as it

would be difficult to automatically generate logic rules given a predicate definition. Also, it would

not be reasonable to ask of the user to define predicates in terms of logic rules, as that would require

knowledge of the internals of coreStar.

As the project evolved, we stepped away from coreStar and implemented our own entailment engine

for resolving frame inference and entailment questions. As in [5], given the frame inference problem

P ` Q ∗ [?F], we first decompose P and Q into pairs of the form (Σ,Π), denoting respectively their

spatial and pure parts. Hence, we are left with (Σp,Πp) ` (Σq,Πq) ∗ [?F], which can be further

decomposed into: (1) (Σp,Πp) ` (Σq,True) ∗ [?F] and the pure entailment (2) Πp ` Πq. In Figure 6.8,

we present a proof system for solving (1), which we rewrite as Σp | Πp ` Σq ∗ [?F]. This proof

system makes use of a pure entailment oracle to check entailments between pure assertions of the form

Π1 ` Π2. In the implementation, this oracle is a function that encodes the pure entailment to be

checked into Z3 and then asks of Z3 to actually check it. The main idea behind the proof system is to

remove matching spatial parts from both sides of the entailment (rules Cell, EmptyProps - None

Cell, EmptyProps - EmptyProps) until the right hand side is empty (rule Emp). What is left on

the left hand side is moved to the frame (rule Frame).

1We will give the specification of enqueue in §8.4. Here, we treat it as a black box: P .

102

Cell
Π ` Ei = E′i |i=1,2,3 Σ1 | Π ` Σ2 ∗ [?F]

Σ1 ∗ (E1,E2) 7→ E3 | Π ` Σ2 ∗ (E′1,E
′
2) 7→ E′3 ∗ [?F]

Frame
Σ1 | Π ` Σ2 ∗ [?F]

Σ1 ∗ Σ | Π ` Σ2 ∗ [?F ∗ Σ]

EmptyProps - None Cell
Π ` E1 = E′1 Π ` E′2 6∈ E2 Σ1 ∗ emptyProps(E1 | E2 ∪ {E′2 }) | Π ` Σ2 ∗ [?F]

Σ1 ∗ emptyProps(E1 | E2) | Π ` Σ2 ∗ (E′1,E
′
2) 7→ � ∗ [?F]

Emp
emp | Π ` emp ∗ [emp]

EmptyProps - EmptyProps
Π ` E0 = E′0 Π ` E\{Ei |ki=1} = E′ Σ1 | Π ` Σ2 ∗ [?F]

Σ1 ∗ �1≤i≤k(E0,Ei) 7→ � ∗ emptyProps(E0 | E) | Π ` Σ2 ∗ emptyProps(E′0 | E′) ∗ [?F]

Figure 6.8.: Proof System for Frame Inference - Σ1 | Π ` Σ2 ∗ [?F]

Π ∧ xer = ler ` “n” 6∈ [@proto]

emp | Π ` emp ∗ [emp] Emp

ΣF | Π ` emp ∗ [ΣF]
Frame

emptyProps(ler | [@proto]) | Πp ∧ xer = ler ` (xer, “n”) 7→ � ∗ [ΣF]
EF - None

emptyProps(ler | [@proto]) ∗ Σp | Πp ∧ xer = ler ` (xer, “n”) 7→ � ∗ [ΣF ∗ Σp]
Frame

ΣF = emptyProps(ler | [@proto, “n”])

Figure 6.9.: Example Derivation of the Proof System for Frame Inference

To illustrate the use of this proof system, we demonstrate the derivation of P ∗ xer
.
= ler ∗

emptyProps(ler | [@proto]) ` (xer, “n”) 7→ ∗ [?F] in Figure 6.9, where P = (Σp,Πp). The computed

frame ?F coincides with the spatial part of the original symbolic state except that the property n is

removed from the infinite footprint of the emptyProps assertion.

Entailment Engine: Pure Entailment. JSIL Verify discharges pure entailments of the form

Π1 ` Π2 to the Z3 SMT solver [21]. To this end, it encodes JSIL Logic pure assertions as Z3 formulae.

Z3 gives native support for arithmetic, bit-vectors, arrays, and uninterpreted functions. It additionally

supports the definition of new algebraic data-types. We encoded JSIL Logic values as a Z3 algebraic

data type taking advantage of Z3 native types when possible, and specified the operations for the

JSIL value types not natively supported using uninterpreted functions. For instance, Z3 does not have

native support for list reasoning; therefore, we had to encode lists and list theory axioms manually.

On the other hand, we were able to leverage on Z3 native set support and reasoning.

JavaScript Internal Functions. Initially, we did not have JSIL reference implementations of

JavaScript internal functions. Instead of calling a JavaScript internal function from generated JSIL

code, as we demonstrated in §5.1, we inlined the body of the JavaScript internal function. This was

not feasible as a long-term solution because of a blow-up in the size and readability of generated JSIL

code.

To solve the problem of the blow-up, we provide JSIL reference implementations for JavaScript in-

ternal functions and use procedure calls in the general JSIL code. To use our JSIL Logic rules for pro-

cedure calls during symbolic execution, we provide JSIL specifications for reference implementations

of JavaScript internal functions. One aspect of future work could be to investigate how verification

time would be impacted if, instead of using the specifications of JavaScript internal functions, we were

to symbolically execute their bodies upon some/all procedure calls.

JavaScript internal functions were an important use case and source of validation for JSIL Verify

itself. Using JSIL Verify, we prove that reference implementations of JavaScript internal functions

103

satisfy their axiomatic specifications. These functions consistently exercise the dynamic behaviour

that underpins JSIL Verify, and we found the obtained verification time (186 specifications that we

currently have for the internal functions are verified in under six seconds) encouraging. More details

about JavaScript internal functions, their specifications, and their applications are given in the next

chapter (§7).

Summary. We presented the JSIL verification infrastructure, which, given an annotated JSIL program,

checks whether or not the program procedures satisfy their specifications. In the following chapter,

we illustrate the specification and verification of the JSIL implementations of the JavaScript internal

functions and show how these specifications are used in the verification of compiled JavaScript code.

104

7. The JS-2-JSIL Environment

JavaScript internal functions are used to describe the concepts of the language, including proto-

type chain traversal, object management, and type conversions. They are called extensively by all

JavaScript commands. Therefore, in order to reason about JavaScript code, we have to first be able to

reason efficiently about the internal functions. However, their definitions in the standard are complex,

are given operationally, and are often intertwined, making it difficult for the user to fully grasp the

control flow and allowed behaviours.

As we provide reference implementations of all internal functions, any call to an internal function gets

translated to JSIL as a procedure call to our corresponding reference implementation, which we demon-

strated in §5. For example, the compiled JavaScript function enqueue in Figure 5.9, features a number

of the internal functions being called in the JSIL code: GetValue, PutValue, CheckObjectCoercible,

and IsCallable.

We provide functionally correct axiomatic specifications of the internal functions. In creating these

specifications, we leverage on a number of JavaScript-specific abstractions built on top of JSIL Logic,

which make the specifications much more readable than the operational definitions of the standard.

The remaining complexity arises from the internal functions themselves, not our reasoning. We give

JSIL reference implementations of the internal functions, substantially tested by the testing of the

JS-2-JSIL compiler. Using JSIL Verify, we prove that these implementations satisfy their axiomatic

specifications. These proofs can be seen both as further validation of the implementations of the

internal functions as well as validation of the JSIL axiomatic specifications themselves, as the imple-

mentations closely follow the standard and are well tested.

We believe that our JSIL axiomatic specifications of the internal functions are an important contri-

bution. They directly benefit JaVerT, since the verification of JavaScript code only needs to use the

specifications, not the underlying implementations. We envisage that these specifications will be useful

beyond JaVerT. For example, starting from our axiomatic specifications, we could create executable

specifications of the internal functions, that could then be used for different types of symbolic analysis

for JavaScript. They would also provide a mechanism for restricting the semantics of JavaScript in a

principled way. If, for instance, we would like to perform an analysis that wishes to abstract a semantic

feature of JavaScript, say type coercion, we would generate executable specifications of the internal

functions without taking into account the axiomatic specifications that describe type coercion. This

would be much more robust than altering the code of the internal functions manually.

Having stated the benefits, we also need to state one limitation of our JSIL specifications. Currently,

JSIL logic does not support higher-order reasoning, so we cannot specify properties associated with

getters and setters, or functions passed as function parameters. At this stage, this limitation is not

an obstacle, as the JavaScript code we are targeting involves simple manipulation of familiar data

structures such as a priority queue. However, as we progress and approach real-world code, we will

need to adapt our work to provide a higher-order logic and verification tool for JSIL, inspired by the

105

work on higher-order separation logics [60, 7, 62, 36] and the verification tool VeriFast [36] which is

based on one such logic.

We illustrate our specifications of JavaScript internal functions using GetValue and PutValue, two

internal functions that deal with references. But first, we present our Pi predicate, an abstraction to

precisely capture the prototype chains of JavaScript, and without which the specifications of internal

functions would be impossible.

7.1. Capturing JavaScript prototype chains: the Pi predicate

For our Pi predicate, we take inspiration from the prototype-chain predicate of Gardner et al. [30].

Their predicate is much simpler as it describes prototype chains of standard objects with simple

values, whereas ours describes prototype chains for property descriptors and accounts for the sub-

tle combination of standard objects and string objects, capturing the full prototype inheritance of

JavaScript.

To design the Pi predicate correctly, we need to understand the resources required for a property

lookup l[p] in the setting of prototype inheritance. Even though we do not consider higher-order logic,

there is no reason to limit ourselves to only data descriptors when it comes to the Pi predicate. The Pi

predicate basically describes the axiomatic semantics of the JavaScript internal function GetProperty,

the implementation of which we already have seen in §4.3. GetProperty calls another internal function,

GetOwnProperty, which determines if the given object has the given property. If the property p is defined

in the object l and is associated with a descriptor d, then the descriptor d is the result of GetProperty.

Otherwise, the prototype chain of the object l is recursively inspected. First, let us consider only

standard JavaScript objects.

For the first attempt at defining the prototype-chain predicate, Pi1, we recognise that its parameters

have to include: the object l, the property p, and the result of the lookup v. Next, we need to capture

the actual prototype chain. For this, we need a list ls containing locations of the objects in the chain

up to and including the one in which the property is found (or all of them if it is not found):

Pi1(l, p, undefined, [l]) , (l, p) 7→ � ∗ (l,@proto) 7→ null

Pi1(l, p, d, [l]) , (l, p) 7→ d ∗ d ˙6= �

Pi1(l, p, d, l :: lp :: ls) , (l, p) 7→ � ∗ (l,@proto) 7→ lp ∗ lp ˙6= null ∗ Pi1(lp, p, d, lp :: ls)

The first base case reads as follows: the lookup of a property p of the object l yields the undefined

value, the property is not defined in the object itself, and the object is the last one in its prototype

chain. The second base case states: the lookup of a property p of the object l yields the descriptor

d, the property is defined in the object itself, and its associated value is the descriptor d. Finally, the

recursive case reads: the lookup of a property p in the object l yields the value d, the property is not

defined in the object itself, the prototype of the object is lp, and the lookup of p in the rest of the

prototype chain yields the data descriptor d.

Such a definition is not sufficient, since the GetOwnProperty function is different for String objects,

and the Pi predicate needs to account for that. For a lookup l[p], if the object l is a String object, we

would similarly start by looking for the property p. However, if p is not found in the object l, before

106

inspecting its prototype, an additional check is done. This additional check converts p to a number

which represents an index i. If the index i is a valid index for a primitive value pv associated with the

String object l, then the ith character of the pv is the result of GetOwnProperty. For example, consider

a string object l with a primitive value “foo”, that is, (l,@primval) 7→ “foo” and two properties “bar”

and “9”, that is, (l, “bar”) 7→ v1 and (l, “9”) 7→ v2. Then, the result of GetOwnProperty for the object

l: for the property “bar” would be v1; for the property “9” would be v2; for the property “1” would

be “o”; and for the properties “test” and “3” would be undefined. Interestingly, the properties that

correspond to valid indexes of a String object do not exist in the heap and cannot be changed. If

we tried to add a property “0” to the object l, the JavaScript internal function DefineOwnProperty

would throw an exception, because GetOwnProperty of “0” would return the data descriptor with the

attribute writable being false.

To account for such behaviour, we define a cell abstraction for String objects as follows:

stringIndex(s, p, i) , p
.
= toString (i) ∗ 0 ≤̇ i ∗ i <̇ length s(s)

(l, p) 7→s
pv � , ∃ i. (l, p) 7→ � ∗ (l,@primval) 7→ pv ∗

i
.
= toString (toNumber (p)) ∗ ¬stringIndex(pv, p, i)

(l, p) 7→s
pv d , ∃ i, v. (l, p) 7→ � ∗ (l,@primval) 7→ pv ∗

d
.
= [“d”, v, false, true, false] ∗ v .

= nth s(pv, i) ∗
i
.
= toString (toNumber (p)) ∗ stringIndex(pv, p, i)

(l, p) 7→s
pv d , ∃ i. (l, p) 7→ d ∗ d ˙6= � ∗ (l,@primval) 7→ pv ∗

i
.
= toString (toNumber (p)) ∗ ¬stringIndex(pv, p, i)

First, we define what it means for a property p to be a valid string index i for a string s, denoted by

stringIndex(s, p, i). Given a string s, a property p, which is a string, and an index i, which is a number,

stringIndex(s, p, i) is a valid string index if the index i, corresponding to the property p successfully

converted to an integer, is greater or equal than zero and is smaller than the length of the string s.

Next, the abstraction (l, p) 7→s
pv d, given an object l, a property p, a primitive value pv of the object

l, and d, which can be either a descriptor or �, describes that either: the object l neither contains the

property p in the heap, nor p is a valid string index for the primitive value of the object; the object l

does not contain the property p in the heap, but the property p is a valid string index for the primitive

value of the object and the descriptor d is associated with its i-th character; or the object l contains

the property p associated with the descriptor d and p is not a valid string index for the primitive value

of the object.

To account for String objects, we require two additional parameters for our Pi predicate: the list

vscls of values of the @class internal property, to be able to distinguish between String object and all

other objects; and the list vspv of values of the @primval internal property, for all objects in the list

ls, to be able to use primitive value in the cell abstraction for String objects. The precise abstraction

needed in order to reason about JavaScript prototype chains is Pi(l, p, v, ls, vscls, vspv). We show the

full definition of Pi below. First, we show the base cases and the recursive case for the objects that

are not String objects, followed by the cases for the String objects:

107

Pi(l, p, undefined, [l], [cls],) , (l,@class) 7→ cls ∗ cls ˙6= “String” ∗
(l, p) 7→ � ∗ (l,@proto) 7→ null

Pi(l, p, d, [l], [cls],) , (l,@class) 7→ cls ∗ cls ˙6= “String” ∗
(l, p) 7→ d ∗ d ˙6= �

Pi(l, p, d, l :: lp :: ls, cls :: vscls, :: vspv) , (l,@class) 7→ cls ∗ cls ˙6= “String” ∗ (l, p) 7→ � ∗
(l,@proto) 7→ lp ∗ lp ˙6= null ∗ Pi(lp, p, d, lp :: ls, vscls, vspv)

Pi(l, p, undefined, [l], [cls], [pv]) , (l,@class) 7→ cls ∗ cls .
= “String” ∗

(l, p) 7→s
pv � ∗ (l,@proto) 7→ null

Pi(l, p, d, [l], [cls], [pv]) , (l,@class) 7→ cls ∗ cls .
= “String” ∗

(l, p) 7→s
pv d ∗ d ˙6= �

Pi(l, p, d, l :: lp :: ls, cls :: vscls, pv :: vspv) , (l,@class) 7→ cls ∗ cls .
= “String” ∗ (l, p) 7→s

pv � ∗
(l,@proto) 7→ lp ∗ lp ˙6= null ∗ Pi(lp, p, d, lp :: ls, vscls, vspv)

The first three cases correspond directly to the cases of the Pi1 predicate with the additional infor-

mation of describing that the object l is not a String object. The remaining cases for String objects

use the abstraction 7→s
pv instead of 7→, and are otherwise analogous to the cases for standard objects.

Recall our running example (Figure 3.9) and the heap obtain from its execution (Figure 3.10).

When we add the first element to the queue, q.enqueue(1, "last"), a new node object n1 is created (see

Figure 3.10). Its prototype chain contains n1, Node.prototype, and Object.prototype. We illustrate

the Pi predicate using the object n1 and the property lookups n1.pri, yielding the data descriptor

(1, true, true, true) and n1.foo, yielding undefined. The Pi predicate for the former lookup, using the

second base case is:

Pi(n1, “pri”, [“d”, 1, true, true, true], [n1], [“Object”],).

The Pi predicate for the latter lookup, on the other hand, requires two unfoldings of the recursive

case and the first base case:

Pi(n1, “foo”, undefined, [n1, Node.prototoype, Object.prototype],

[“Object”, “Object”, “Object”],).

7.2. Specifying Internal Functions

The definitions of the JavaScript internal functions in the ECMAScript standard are complex and often

intertwined, making it difficult to fully grasp the control flow and allowed behaviours. To illustrate:

GetValue calls Get, which calls GetProperty, which calls GetOwnProperty; PutValue calls Put, which

calls CanPut and DefineOwnProperty, which calls GetOwnProperty. The precise call graph of GetValue

and PutValue is given in Figure 7.1. Specifying such dependencies axiomatically involves the joining

of the specifications of all nested functions at the top level, which is highly non-trivial and results

in numerous branchings. The resulting specifications, however, are much more readable than the

operational definitions of the standard.

108

PutValue(v, w)

Put(l, p, w)

CanPut(l, p)

GetValue(v)

Get(l, p)

DefineOwnProperty(l, p, d)

GetProperty(l, p)

GetOwnProperty(l, p)

Figure 7.1.: Call graph for GetValue and PutValue

We illustrate how specifications of internal functions GetValue and PutValue are constructed, using

the specifications of the internal functions they depend on. We present one specification for GetValue,

two specifications for PutValue, and a number of specifications for the underlying internal functions.

The GetOwnProperty internal function. In the previous section, we introduced all the ingredients

required to specify GetOwnProperty. The specification of the GetOwnProperty, given below, contains two

cases for Non−String objects: either the property p is not defined in the object l, yielding undefined

as the result of the function; or the property p of the object l contains the data descriptor d, which is

the result of the function (for readability, we write Pre instead of repeating the entire precondition).{
(l, p) 7→ � ∗ (l,@class) 7→ cls ∗ cls ˙6= “String”

}
GetOwnProperty(l, p){
Pre ∗ ret

.
= undefined

}
{

(l, p) 7→ d ∗ d ˙6= � ∗ (l,@class) 7→ cls ∗ cls ˙6= “String”
}

GetOwnProperty(l, p){
Pre ∗ ret

.
= d

}
Similarly, there are two more cases for GetOwnProperty considering String objects, and using the

abstraction (l, p) 7→s
pv d instead of (l, p) 7→ d.

The GetProperty internal function. The Pi predicate describes prototype chains in JavaScript, while

the internal JavaScript function GetProperty implements the traversal of prototype chains. Hence, the

specification of GetProperty simply uses the Pi predicate:{
Pi(l, p, v, ls, vscls, vspv)

}
GetProperty(l, p){
Pre ∗ ret

.
= v

}
In the precondition, we have that the result of looking for the property p in the prototype chain of

109

the object l yields a value v. The postcondition states that GetProperty does not affect any resources

and returns v.

Recall the reference implementation of GetProperty given in §4.3. To verify that the reference

implementation satisfies the given specification, we need to guide JSIL Verify by providing fold/unfold

annotations for the inductive predicate Pi. In Figure 7.2 we show the annotated body of GetProperty.

We unfold Pi in line 3 before calling GetOwnProperty, since it requires the resource of a single cell. We

fold Pi in line 11 to obtain the postcondition of GetProperty.

1 proc getProperty (l, prop) {
2

3 [* unfold Pi (l, prop, _v, _ls, _vscls, _vspn) *]
4 own := "getOwnProperty" (l, prop) with perr;
5 goto [own = undefined] next pret;
6

7 next: proto := [l, "@proto"];
8 goto [proto = null] pret call;
9

10 call: chain := "getProperty" (proto, prop) with perr;
11

12 [* fold Pi (l, prop, _v, _ls, _vscls, _vspn) *]
13 pret: xret := phi(own, own, chain);
14 ret: skip
15

16 perr: xerr := phi(own, chain);
17 err: skip
18 }

Figure 7.2.: An annotated JSIL implementation of GetProperty.

The Get internal function. The Get(l, p) internal function calls GetOwnProperty to traverse the

prototype chain and retrieve associated value which can be undefined, a data descriptor, or an accessor

descriptor. If the result of GetOwnProperty is undefined, so is the result of Get. If the result of

GetOwnProperty is a data descriptor, then the value of an attribute [V] is the result of Get. Otherwise, the

result of GetOwnProperty is an accessor descriptor, in which case the getter associated with the accessor

descriptor is being called. Here, we show the specification of Get when the result of GetProperty is a

data descriptor: {
Pi(l, p, d, ls, vscls, vspv) ∗ DescVal(d,w)

}
Get(l, p){

Pre ∗ ret
.
= w

}
In the precondition, we have that p is defined in the prototype chain of l and that the corresponding

data descriptor d has value w. We use the abstraction DescVal(d,w) , d
.
= [“d”, w, , ,] to denote

a data descriptor d which has the value w of the attribute [V]. The postcondition states that, in this

case, Get does not affect any resources and returns w. Notice how the precondition of Get is being

built by using the precondition of GetProperty, which is highlighted in a different colour.

The GetValue internal function. GetValue(v) is the JavaScript internal function that performs

dereferencing. It takes one parameter: the value v to be dereferenced. If v is not a reference, it

is returned immediately. If v is a reference with the base undefined, a JavaScript reference error is

thrown. If v is a reference with the base being a primitive value, such as string, number or boolean,

then the base is converted to an object and a special internal function Get is called. Otherwise,

v = ["o"/"v", l, p] and, in that case, GetValue returns the value associated with the property p of

110

object l. If v is a variable reference whose base is not the global object, this value is obtained

by directly inspecting the heap. Otherwise, GetValue uses the Get internal function to traverse the

prototype chain and obtain the appropriate value. Here, we show the specification of GetValue for the

case in which v is an object reference and the corresponding property is defined as a data descriptor.{
v
.
= [“o”, l, p] ∗ Pi(l, p, d, ls, vscls, vspv) ∗ DescVal(d,w)

}
GetValue(v){
Pre ∗ ret

.
= w

}
In the precondition, we require an object reference v. Building on top of the precondition of Get, we

have that p is defined in the prototype chain of l and that the corresponding data descriptor d has

value w. The postcondition states that GetValue does not affect any resources and returns w.

The DefineOwnProperty internal function. Given an object at location l, a property p, and a

descriptor d, DefineOwnProperty(l, p, d) performs the actual heap update. It is one of the most com-

plicated JavaScript internal functions as it needs to perform various validations before updating the

heap. For example, if the object l is not extensible and does not contain the property p, the heap

update is not allowed. Also, if the property p is already defined in the object l, and contains a

descriptor dold with the configurable attribute being false, it is not allowed to update the property

with a descriptor which would change the value of the configurable attribute to true. As a result of

all such validations, DefineOwnProperty has over fifteen specifications. Moreover, Array objects have

a different behaviour, since the length property needs to be updated every time an update happens

to an index property of an Array object. Here, we give just one specification of DefineOwnProperty for

objects that are not Array or String objects, where the object l is extensible and does not contain

the property p, and the descriptor d is a data descriptor:

{
(l,@class) 7→ cls ∗ cls ˙6= “String” ∗ cls ˙6= “Array” ∗

(l,@extensible) 7→ true ∗ (l, p) 7→ � ∗ DataDescriptor(d)

}
DefineOwnProperty(l, p, d){

(l,@class) 7→ cls ∗ cls ˙6= “String” ∗ cls ˙6= “Array” ∗
(l,@extensible) 7→ true ∗ (l, p) 7→ d ∗ DataDescriptor(d) ∗ ret

.
= true

}

Given that the object l is not a String nor an Array object, is extensible, and does not contain

the property p, the heap update is successful provided that d is a data descriptor. We use the

abstraction DataDescriptor(d) , d
.
= [“d”, , , ,] to denote a data descriptor d. The result of the

DefineOwnProperty is true, as required by the standard. DefineOwnProperty calls GetOwnProperty and

we highlighted the precondition of GetOwnProperty for this specification.

The CanPut internal function. CanPut(l, p) tells us if assigning to the property p of object l is

allowed, which mostly depends on the extensibility of objects or the value of the writable attribute.

We present two cases of CanPut:

{
Pi(l, p, undefined, ls, vscls, vspv) ∗ (l,@extensible) 7→ b

}
CanPut(l, p){
Pre ∗ ret

.
= b

}

111

{
Pi(l, p, d, l :: lp :: ls, vscls, vspv) ∗ (l,@extensible) 7→ true ∗ DescW(d, b)

}
CanPut(l, p){
Pre ∗ ret

.
= b

}
The first specification of CanPut states that if the property p is not defined in the prototype of

the object l, then the result of CanPut is the value of the "@extensible" property of l. The second

specification describes a case where the property p is defined in the prototype chain of the object l,

but not the object itself, containing a data descriptor d, and the object l is extensible. The result in

such a case is the writable attribute of the descriptor d. We use the abstraction DescW(d, b) , d
.
=

[“d”, , b, ,] to denote a data descriptor d which has the value b of the attribute [W]. The highlighted

part of the preconditions in both cases corresponds to the precondition of GetProperty.

The Put internal function. Given an object l, a property p, and a value w, the Put internal

function assigns the value w to the property p of the object l. In order to do that it relies on CanPut,

GetOwnProperty, GetProperty, and DefineOwnProperty. Here, we present two specifications of Put, both

relevant to the running example. We first describe the case in which we try to assign a value to a

property of an object that has not been previously defined in the prototype chain of that object. As

this case involves adding a new property to an object, we will succeed only if the object is extensible.{
Pi(l, p, undefined, l :: lp :: ls, cls :: vscls, pv :: vspv) ∗ cls ˙6= “Array” ∗ (l,@extensible) 7→ true

}
Put(l, p, v)

cls ˙6= “Array” ∗ (l,@extensible) 7→ true ∗
Pi(l, p, [“d”, v, true, true, true], [l], [cls], [pv]) ∗ (l,@proto) 7→ lp ∗

Pi(lp, p, undefined, lp :: ls, vscls, vspv) ∗ ret
.
= empty


The precondition states that the property p of object l is not defined in the prototype chain of l, and

that l is extensible. This is the precondition of the first specification of CanPut given above. We also

require l not to be an Array object, which comes from the specification of DefineOwnProperty. As the

DefineOwnProperty internal function for JavaScript arrays differs from that for standard objects, Put

for arrays has a different specification. The postcondition illustrates the subtlety of the Pi predicate.

First, all assertions from the precondition except the Pi still hold. The return value is stated to be

the empty value, as required by the standard. As for the Pi, by adding the property p to l, we break

the prototype chain of the precondition into two: a single-element chain containing only l, where the

property is now defined with the appropriate descriptor, and the rest of the original chain, in which

the property is still undefined. This separation leaves a hanging resource (l,@proto) 7→ lp, hidden in

the original Pi but now stated explicitly.

We next give the specification of Put for the error case described in §3.2, when we are attempting

to assign a value to a property of an object that is not yet defined in the object itself, but it is defined

in its prototype chain and there it is not writable:

{ Pi(l, p, d, l :: lp :: ls, vscls, vspv) ∗ DescW(d, false) ∗ (l,@extensible) 7→ true }

Put(l, p, w)

{ Pre ∗ isTypeError(err) }

In the precondition, we have that p is present in the prototype chain of l, not in l itself, and we have

that the associated data descriptor d is not writable. We also require of the object to be extensible.

112

This is precisely the precondition of the second specification of CanPut given above. The postcondition

states that we have not affected any of the previously existing resources, and that we are throwing a

JavaScript TypeError.

The PutValue internal function. We conclude by giving two specifications for PutValue(w, v), which

is, in a sense, the dual of GetValue(v). It takes two parameters: values w and v. The value w is expected

to be a reference whose base is not undefined or a primitive value, and an error is thrown otherwise.

When w = ["o"/"v", l, p] is a reference, the Put internal function is called.

Below, we present two specifications of PutValue. Both specifications consider the case where w is an

object reference. The first specification describes the case in which we assign a value to a property of

an extensible object that has not been previously defined in the prototype chain of that object. The

second specification describes an error case, when we are attempting to assign a value to a property of

an object that is not yet defined in the object itself, but it is defined in its prototype chain and there

it is not writable. Both specifications are direct consequence of calling the Put internal function, the

specifications of which are given above.{
w
.
= [“o”, l, p] ∗

Pi(l, p, undefined, l :: lp :: ls, cls :: vscls, pv :: vspv) ∗ cls ˙6= “Array” ∗ (l,@extensible) 7→ true

}
PutValue(w, v)

w
.
= [“o”, l, p] ∗ cls ˙6= “Array” ∗ (l,@extensible) 7→ true ∗

Pi(l, p, [“d”, v, true, true, true], [l], [cls], [pv]) ∗ (l,@proto) 7→ lp ∗
Pi(lp, p, undefined, lp :: ls, vscls, vspv) ∗ ret

.
= empty


{

w
.
= [“o”, l, p] ∗

Pi(l, p, d, l :: lp :: ls, vscls, vspv) ∗ DescW(d, false) ∗ (l,@extensible) 7→ true

}
PutValue(w, v)

{ Pre ∗ isTypeError(err) }

Higher-Order Internal Functions. Since JSIL logic does not yet support higher-order reasoning,

we cannot specify internal functions that use higher order. In such a case, we symbolically execute the

body of an internal function, instead of using its specification. An example of an internal function that

has higher-order cases is the ToString function (see §3.1.2), whose call graph is shown in Figure 7.3.

ToString(l)

ToPrimitive(l, h)

DefaultValue(l, h)

Get(l, p)

Figure 7.3.: Call graph for ToString

113

When ToString is given an object l, it calls another internal function, ToPrimitive, passing as

parameters the object l and a hint "String". ToPrimitive then calls the DefaultValue internal function

with the same parameters. DefaultValue, when given the hint "String", first checks if the given object

l has the function toString in its prototype chain, using the internal function Get. If it does, the result

of DefaultValue is the result of calling that toString function, as long as that result is a primitive

value. Otherwise, if a given object l has the function valueOf in its prototype chain, the result of

DefaultValue is the result of calling that valueOf function, as long as that result is a primitive value.

If none of the previous holds, a type error is thrown. DefaultValue is a higher-order function in the

sense that its result depends on other functions that are not known in advance. Therefore, we are not

able to specify it. By extension, we are not able to specify the cases of the ToString internal function

in which it is called on an object.

Summary. We provide reference implementations of all JavaScript internal functions. These imple-

mentations are substantially tested via our testing of the JS-2-JSIL compiler against Test262, discussed

in §5.3. We give axiomatic specifications for all JavaScript internal functions and annotate their refer-

ence implementations with fold/unfold directives, as demonstrated in Figure 7.2. Here, we illustrated

our specifications of JavaScript internal functions using GetValue and PutValue, as well as a number

of other internal functions that their implementations depend on. In total, we have 186 specifications.

These specifications are non-trivial and the underlying code makes extensive use of the dynamic fea-

tures of JSIL, as the internal functions are written in a general way in the standard. Using JSIL Verify,

we verify that our JSIL implementations of JavaScript internal functions satisfy their axiomatic speci-

fications. These results can be interpreted in two ways: they provide validation of the JSIL axiomatic

specifications, as the implementations closely follow the standard and are well tested; and, at the same

time, they provide further validation of the implementations of the internal functions. JSIL Verify

verifies all 186 specifications of the JavaScript internal functions in 5.1 seconds.1

1For verification, we use a machine with an Intel Core i7-4980HQ CPU 2.80 GHz and DDR3 RAM 16GB.

114

8. JavaScript Verification

Given a program whose functions are annotated with specifications in the form of pre- and post-

conditions written in JS Logic, JaVerT verifies whether or not the code of each function satisfies its

specification. To specify JavaScript programs, we need to provide assertions that fully capture the key

heap structures of JavaScript, such as property descriptors, prototype chains for modelling inheritance,

the variable store emulated in the heap using scope chains, and function closures. We first introduce

JS Logic assertions and specifications (§8.1). As JavaScript heaps are identical to JSIL heaps, JS

assertions has many similarities to JSIL assertions. Next, we provide a translation from JS Logic to

JSIL Logic, and prove correct the translation of assertions and specifications (§8.2), allowing us to lift

JSIL verification to JavaScript verification. We would like the user of JaVerT to be able to specify

JavaScript programs clearly and concisely, with only minimal knowledge of JavaScript internals. To

that end, we build a number of predicates on top of JS Logic that capture the common JavaScript

heap structures (§8.3). We illustrate how to use these predicates by specifying the priority queue

library given in the running example (§8.4). For such libraries, we want to give specifications that

ensure prototype safety of library operations, in that they describe the conditions under which these

operations exhibit the desired behaviour.

JaVerT is available online at [65], where the user can verify the running example of the thesis as

well as other simple JavaScript programs.

8.1. JS Logic

We present JS Logic, the JavaScript assertion language that targets full ES5 Strict heaps, and formally

introduce JavaScript specifications.

JS Logic Assertions. JS Logic assertions are mostly standard and are given in Figure 8.1. The

difference with respect to [30] is that we do not use the sepish connective, introduced to describe

overlapping.

JS logical values, V ∈ VLJS, contain: JS heap values, ω; sets of JavaScript heap values, ωset; and

the special value �. JS logical values is a subset of JSIL logic values. JS logical expressions, E ∈ ELJS,
include JSIL logical expressions and have two additional special logical expressions, this and sc,

referring respectively to the current scope chain and the current this object. We note that program

variables x only include the formal parameters of the functions. Finally, as ES5 Strict heaps are by

design a proper subset of JSIL heaps, we have that JS Logic assertions, P,Q ∈ ASJS, coincide with

JSIL Logic assertions.

In Figure 8.2, we give the satisfiability relation for JavaScript assertions. The satisfiability relation

for JS assertions has the form: H, ρ, L, vt, ε |= P , where: H is an abstract JS heap; ρ is a JS variable

store; L is the current scope chain; vt is the binding of the this value; and ε is a logical environment

(a mapping from logical variables to logical values).

115

Logical Values : V ∈ VLJS , ω | ωset | �
Logical Expressions : E ∈ ELJS , V | x | X | 	 E | E⊕ E | this | sc

JS Assertions : P ∈ ASJS , true | false | P ∧ P | ¬P | Classical
∃X.P | Quantification
E = E | E ≤ E | E < E | Equalities
emp | P ∗ P | Separation Logic
(E,E) 7→ E | JavaScript Cell

types(E : τ) | emptyProps(E | E) Predicates

Notation : E 6= E , ¬(E = E),E > E , ¬(E ≤ E),E ≥ E , ¬(E < E)

Figure 8.1.: JS Logic Assertions, where ω ∈ VhJS (Figure 3.11).

Logical Expressions:

JVKερ,vt,L , V

JxKερ,vt,L , ρ(x)

JXKερ,vt,L , ε(X)

J	 EKερ,vt,L , 	(JEKερ,vt,L)

JE1 ⊕ E2Kερ,vt,L , ⊕(JE1Kερ,vt,L, JE2Kερ,vt,L)

JthisKερ,vt,L , vt
JscKερ,vt,L , L

Assertions:
H, ρ, L, vt, ε |= true ⇔ always
H, ρ, L, vt, ε |= false ⇔ never
H, ρ, L, vt, ε |= P1 ∧ P2 ⇔ H, ρ, L, vt, ε |= P1 ∧H, ρ, L, vt, ε |= P2

H, ρ, L, vt, ε |= ¬P ⇔ H, ρ, L, vt, ε 6|= P
H, ρ, L, vt, ε |= E1 = E2 ⇔ H = emp ∧ JE1Kερ,vt,L = JE2Kερ,vt,L
H, ρ, L, vt, ε |= E1 ≤ E2 ⇔ H = emp ∧ JE1Kερ,vt,L ≤ JE2Kερ,vt,L
H, ρ, L, vt, ε |= E1 < E2 ⇔ H = emp ∧ JE1Kερ,vt,L < JE2Kερ,vt,L
H, ρ, L, vt, ε |= emp ⇔ H = emp
H, ρ, L, vt, ε |= (E1,E2) 7→ E3 ⇔ H = (JE1Kερ,vt,L, JE2Kερ,vt,L) 7→ JE3Kερ,vt,L
H, ρ, L, vt, ε |= P1 ∗ P2 ⇔ ∃H1, H2. H = H1] H2 ∧

(H1, ρ, L, vt, ε |= P1) ∧ (H2, ρ, L, vt, ε |= P2)
H, ρ, L, vt, ε |= ∃X.P ⇔ ∃V ∈ VLJS. H, ρ, L, vt, ε[X 7→ V] |= P

H, ρ, L, vt, ε |= types(E : τ) ⇔ H = emp ∧ ∀(E, τ) ∈ E : τ .TypeOf(JEKερ,vt,L) = τ

H, ρ, L, vt, ε |= emptyProps(E1 | E2) ⇔ H =
⊎
p 6∈{JE2Kερ,vt,L}

((JE1Kερ,vt,L, p) 7→ �)

Figure 8.2.: Semantics of JS Logical Expressions and Assertions

JS Specifications. JaVerT specifications have the form {P}m(x) {Q}, where P and Q are the pre-

and postconditions of the function with identifier m, and x its list of formal parameters. We think

of global code as a function with identifier main. Each specification is associated with a return mode

fl ∈ {nm, er}, indicating if the function returns normally or with an error. If it returns normally,

then its return value can be accessed via a dedicated variable xret, and xerr otherwise. Intuitively,

a specification {P}m(x) {Q} for mode fl is valid for a given JavaScript program ℘, if ℘ contains a

function with identifier m and “whenever m is executed in a state satisfying P , then, if it terminates,

it does so in a state satisfying Q, with return mode fl”.

116

Definition 8.1 (Validity of JS Logic Specifications). A JS Logic specification {P}m(x) {Q} for return

mode fl is valid w.r.t. a JavaScript program ℘, written ℘,fl � {P}m(x) {Q}, if and only if, for all

logical contexts (H,L, vt, ρ, ε), heaps hf , flags fl′, and JS values v, where ρ(x) = v, it holds that:

H, ρ, L, vt, ε |= P ∧ ℘,L, vt ` 〈bHc,m(x, v)〉 ⇓m 〈hf , outJS(fl
′, v)〉 =⇒

fl = fl′ ∧ ∃Hf . Hf , ρ, L, vt, ε |= Q ∧ bHfc = hf

Recall that we use the notation bHc to denote the concrete heap obtained by restricting the abstract

heap H to the elements of its domain not mapped to �.

8.2. JS-2-JSIL: Logic Translator

JaVerT verifies programs annotated with JS Logic annotations. The JSIL Logic Translator translates

these annotations to equivalent annotations in JSIL Logic, and then integrates them into the compiled

JSIL code. It also automatically inserts additional fold/unfold annotations for the Pi predicate, as

they are required by some of the internal functions.

We provide a translation from JS Logic assertions to JSIL logic assertions, and prove that trans-

lation correct (Figure 8.3). Given a correct compiler from ES5 Strict to JSIL, we prove JS-2-JSIL

Logic correspondence, stating that a JavaScript specification is valid if and only if its translated JSIL

specification is valid. This allows us to lift JSIL verification to JavaScript verification.

JS-2-JSIL
LOGIC TRANSLATOR

JSIL LOGIC
ANNOTATIONS

Proven
correct

JS LOGIC
ANNOTATIONS

Figure 8.3.: The JS-2-JSIL Logic Translator

JS-2-JSIL Translation of Assertions. There is a strong correspondence between JavaScript and

JSIL at the level of the logics. JSIL logical values subsumes JS logical values. JSIL logical expressions

coincide with JS logical expressions, except that they do not contain the special logical values sc and

this. Finally, as ES5 Strict heaps are by design a proper subset of JSIL heaps, we have that JSIL Logic

assertions coincide with JS Logic assertions.

Translating JS Logic assertions to JSIL Logic assertions amounts to replacing the occurrences of

the sc and this special logical values of JS Logic with the variables xsc and xthis of JSIL logic, which

hold their associated values at the JSIL level. The translation of a JS Logic assertion P to a JSIL

Logic assertion is denoted by Ta(P). In Figure 8.4, we give the complete translation from JS Logic

assertions to JSIL Logic assertions.

117

Logical Environments : Tε : EnvJS ⇀ EnvJSIL
Tε(ε) , {(X, Tv(V)) | (X,V) ∈ ε}

Logical Expressions : Te : ELJS ⇀ ELJSIL
Te(V) , V

Te(x) , x

Te(X) , X

Te(E) , 	Te(E)

Te(E1 ⊕ E2) , Te(E1)⊕ Te(E2)

Te(this) , xthis

Te(sc) , xsc

Assertions : Ta : ASJS ⇀ ASJSIL
Ta(true) , true

Ta(false) , false

Ta(¬P) , ¬Ta(P)

Ta(P1 ∧ P2) , Ta(P1) ∧ Ta(P2)

Ta(∃X.P) , ∃X.Ta(P)

Ta(E1 = E2) , Ta(E1) = Ta(E2)

Ta(E1 ≤ E2) , Ta(E1) ≤ Ta(E2)

Ta(E1 < E2) , Ta(E1) < Ta(E2)

Ta(emp) , emp

Ta(P1 ∗ P2) , Ta(P1) ∗ Ta(P2)

Ta((E1, E2) 7→ E3) , (Te(E1), Te(E2)) 7→ Te(E3)

Ta(emptyProps(E1 | E2)) , emptyProps(Te(E1) | Te(E2))

Figure 8.4.: Translation from JS Logical Assertions to JSIL Logical Assertions. EnvJS, ELJS, ASJS
are logical environments, logical expressions, and assertions of JavaScript (Figure 8.1).
EnvJSIL, ELJSIL, ASJSIL are logical environments, logical expressions, and assertions of
JSIL (Figure 6.2).

118

Given how close the semantics of JS and JSIL assertions are, it immediately follows that:

Theorem 8.1 (Assertion translation correctness). For any assertion P , abstract heap H, variable

store ρ, logical environment ε, value vt, and scope chain L, it holds that:

H, ρ, L, vt, ε |= P ⇐⇒ H, ρ[xsc 7→ L, xthis 7→ vt], ε |= Ta(P)

.

Proof. Given in Appendix D.

JS-2-JSIL Logic Correspondence. To be able to state the correspondence theorem, we lift the

translation of assertions to specifications: T ({P}m(x) {Q}) = {Ta(P)}m(xsc, xthis, x) {Ta(Q)}. The-

orem 8.2 states that under the assumption of a correct compiler, a JavaScript specification is valid if

and only if its translated JSIL specification is valid.

Theorem 8.2 (JS-2-JSIL Logic correspondence). Given a correct JS-2-JSIL compiler, C (Theo-

rem 5.1), for any JavaScript program ℘, return mode fl, and JS specification {P}m(x) {Q}, it holds

that:

℘,fl � {P}m(x) {Q} ⇐⇒ C(℘),fl � T ({P}m(x) {Q})

Proof. [=⇒] Assuming that {P}m(x) {Q} is valid for the given return mode fl , we need to prove

that {Ta(P)}m(xsc, xthis, x) {Ta(Q)} is also valid. To this end, we need to show that for every JSIL

logical context H, ρ, ε such that H, ρ, ε |= Ta(P) and C(℘) ` 〈bHc, ρ,−, 0〉 ⇓m 〈hf , ρf ,fl ′〈v〉〉, for some

hf , ρf , v, v, ρ
′, where ρ′ = ∅[xi 7→ vi|ni=1], ρ = ρ′[xsc 7→ L, xthis 7→ vt], it holds that fl ′ = fl and there

exists an abstract heap Hf such that bHfc = hf and Hf , ρf , ε |= Ta(Q). That is, we assume:

• ℘,fl � {P}m(x) {Q} (H1)

• H, ρ, ε |= Ta(P) (H2)

• C(℘) ` 〈bHc, ρ,−, 0〉 ⇓m 〈hf , ρf ,fl ′〈v〉〉, for some hf , ρf , v (H3)

Our goal is to show that there is an abstract heap Hf such that:

• fl = fl ′ (G1)

• Hf , ρf , ε |= Ta(Q) (G2)

• bHfc = hf (G3)

1. From H2, we conclude, using Theorem 8.1, H, ρ′, L, vt, ε |= P (I1).

2. From H3, we conclude, using Theorem 5.1 (compiler correctness), that ℘,L, vt ` 〈bHc,m(x, v)〉 ⇓m
〈hf , outJS(fl

′, v)〉 (I2).

3. From H1 (recall Definition 8.1), I1, I2, we conclude, that fl = fl ′ (G1) and there exists an

abstract heap Ĥf such that Ĥf , ρ
′, L, vt, ε |= Q (I3) and bĤfc = hf (I4).

4. We take Hf = Ĥf (I5).

119

5. From I3 and I5, we conclude, using Theorem 8.1, Hf , ρ, ε |= Ta(Q). Noting that ρf ≥ ρ, it

follows that Hf , ρf , ε |= Ta(Q) (G2).

6. From I4 and I5 we get bHfc = hf (G3).

[⇐=] Assuming that {Ta(P)}m(xsc, xthis, x) {Ta(Q)} is valid for the given return mode fl , we need to

prove that {P}m(x) {Q} is also valid. To this end, we need to show that for every JS logical context

H, ρ′, L, vt, ε such that H, ρ′, L, vt, ε |= P and ℘,L, vt ` 〈bHc,m(x, v)〉 ⇓m 〈hf , outJS(fl
′, v)〉, for some

hf , v, v, where ρ′ = ∅[xi 7→ vi|ni=1], it holds that fl ′ = fl and there exists an abstract heap Hf such

that bHfc = hf and Hf , ρ
′, L, vt, ε |= Q. That is, we assume:

• C(℘),fl � {Ta(P)}m(xsc, xthis, x) {Ta(Q)} (H1)

• H, ρ′, L, vt, ε |= P (H2)

• ℘,L, vt ` 〈bHc,m(x, v)〉 ⇓m 〈hf , outJS(fl
′, v)〉, for some hf , v, v (H3)

Our goal is to show that there is an abstract heap Hf such that:

• fl = fl ′ (G1)

• Hf , ρ
′, L, vt, ε |= Q (G2)

• bHfc = hf (G3)

1. From H2, we conclude, using Theorem 8.1, H, ρ, ε |= Ta(P), where ρ = ρ′[xsc 7→ L, xthis 7→ vt]

(I1).

2. From H3, we conclude, using Theorem 5.1 (compiler correctness), that there exists ρf , such that

C(℘) ` 〈bHc, ρ,−, 0〉 ⇓m 〈hf , ρf ,fl ′〈v〉〉 (I2).

3. From H1 (recall Definition 6.1), I1, I2, we conclude, that fl = fl ′ (G1) and there exists an

abstract heap Ĥf such that Ĥf , ρf , ε |= Ta(Q) (I3) and bĤfc = hf (I4).

4. We take Hf = Ĥf (I5).

5. From I3 and I5, we conclude, using Theorem 8.1, Hf , ρ
′
f , L, vt, ε |= Q, where ρf = ρ′f [xsc 7→

L, xthis 7→ vt]. Noting that ρf ≥ ρ > ρ′, and the fact that JS assertions can only mention the

formal parameters of the functions, it follows that Hf , ρ
′, L, vt, ε |= Q (G2).

6. From I4 and I5 we get bHfc = hf (G3).

Lifting JSIL Verification to JavaScript Verification. An immediate consequence of all of the

obtained theoretical results is that we can lift JSIL verification back to JavaScript verification. Let

us expand on what that means. To verify a JavaScript program ℘, we need to show the validity of

its specifications for all functions m: ℘,fl � {P}m(x) {Q}. To do that, we: compile ℘ to a JSIL

program C(℘) using the JS-2-JSIL compiler (§5); and translate its specifications {P}m(x) {Q} using

the JS-2-JSIL logic translator to obtain a specification environment S, where each specification has

120

been translated to the form T ({P}m(x) {Q}). Next, we move to JSIL-land. In §6, we presented

JSIL verification. Given the JSIL program C(℘) and the specification environment S, we construct

a well-formed proof candidate C(℘), S ` pd. From the soundness of JSIL logic (Theorem 6.1), we

get that for all specifications in the specification environment: C(℘),fl � T ({P}m(x) {Q}). Finally,

we can go back to JavaScript using the JS-2-JSIL logic correspondence (Theorem 8.2), obtaining the

desired ℘,fl � {P}m(x) {Q}.

Additional Annotations for JavaScript Internal Functions. Compiled JSIL code contains

procedure calls to the reference implementations of JavaScript internal functions. As we have seen in

§7.2, some of the internal functions, for example, GetValue and PutValue, use the Pi predicate in their

specifications. During symbolic execution of the JSIL code, the Pi predicate needs to be folded for the

precondition to hold. To account for this, JS-2-JSIL automatically inserts annotations for folding the

appropriate Pi prior to such calls and for unfolding it afterwards. This is illustrated in Figure 8.5 for

one PutValue call in the compiled JSIL code of the enqueue in Figure 5.9. This way, we ensure that

prototype chains are always unfolded and, therefore, we do not require the sepish connective of [30].

[*fold Pi (x_21, x_32_v, _, _, _)*]

71 x_34 := "i__putValue"(x_21, x_32_v) with perr; /* this._head = n.insertToQueue(this._head); */

[*unfold Pi *]

Figure 8.5.: Automatic Fold/Unfold Annotations

8.3. Basic JS Logic Predicates

We start by introducing the basic predicates for describing JavaScript object properties, function

objects, and the JS initial heap. These predicates constitute the building blocks of our specifications

and will be used in the specification of the running example in the following sections.

Objects and Object Properties. Standard JavaScript objects always have the three internal

properties, @proto, @class, and @extensible, which respectively denote the prototype of the object,

the class of the object, and whether the object can be extended with new properties. When JavaScript

developers create and manipulate objects, they normally care only about their prototypes, and do not

think of the internal properties @class and @extensible. Hence, JaVerT has a built-in predicate

JSObject(o, p) which states that object o has prototype p, and its internal properties @class and

@extensible have their default values, "Object" and true. JaVerT also provides a general version for

objects, the JSObjectGen(o, p, c, e) predicate, which allows the user to specify the values of @class and

@extensible as c and e.

JSObjectGen(o, p, c, e) , (o,@proto) 7→ p ∗ (o,@class) 7→ c ∗ (o,@extensible) 7→ e

JSObject(o, p) , JSObjectGen(o, p, “Object”, true)

JaVerT also has built-in predicates for describing named object properties. Named properties are

associated with descriptors. Most of the time, JavaScript developers do not need to think in terms

of descriptors. Usually, it is enough to think about data properties as having values and accessor

properties as having setters and getters. Hence, JaVerT provides the DataProp(o, p, v) predicate

121

which states that the property p of object o holds a data descriptor with value v and all other

attributes set to true. Similarly, the AccessorProp(o, p, g, s) predicate states that the property p of

object o holds an accessor descriptor with getter g, setter s and all other attributes set to true. If a

user needs to reason about other attributes of the descriptors, JaVerT has more general predicates:

DataPropGen(o, p, v, w, e, c) allows the user to specify the values of the remaining attributes, writable,

enumerable and configurable; AccessorPropGen(o, p, g, s, e, c) allows the user to specify the values of

the remaining attributes, enumerable and configurable.

DataPropGen(o, p, v, w, e, c) , (o, p) 7→ [“d”, v, w, e, c]

DataProp(o, p, v) , DataPropGen(o, p, v, true, true, true)

AccessorPropGen(o, p, g, s, e, c) , (o, p) 7→ [“a”, g, s, e, c]

AccessorProp(o, p, g, s) , AccessorPropGen(o, p, g, s, true, true)

Function Objects. When we define a JavaScript function, a new extensible function object is

created: its prototype is the built-in Function.prototype object, denoted by lfp; and its class is

"Function". The function object also stores its unique identifier and the scope in which it was defined.

When we reason about a function object, it is enough to know its unique identifier and its scope.

JaVerT offers the FunctionObject(o,m, sc) predicate, which describes the function object o, whose

internal properties @code and @scope have values given by the function identifier, m, and the scope

chain, sc, respectively. All other properties are the default ones.

FunctionObject(o,m, sc) , JSObjectGen(o, lfp, “Function”, true) ∗ (o,@code) 7→ m ∗ (o,@scope) 7→ sc

We have to expose the scope parameter sc, if we need to reason about variables defined in enclosing

functions. However, the user never needs to explicitly describe the scope chain, and it is always enough

for them to use a logical variable. We will see how it is used in the following section.

JS Initial Heap. JaVerT provides predicates that describe the built-in library objects. These

predicates come in two flavours: frozen, where changes to the target object are not allowed; and open,

where changes are allowed. For instance, ObjProtoF() and ObjProto() describe the frozen and open

Object.prototype, respectively.

8.4. Specification of the Running Example

JavaScript developers rely on prototype-based inheritance to emulate the standard class-based in-

heritance mechanism of static OO languages when implementing JavaScript libraries. However, as

JavaScript objects are extensible, it is possible to break the functionality of such libraries by adding

properties either to the constructed objects or to their prototype chains. This makes the specifications

of these libraries challenging as they not only need to capture the resources that must be present in

the heap, but also the resources that must not be present in the heap if the library code is to run

as intended. Moreover, JavaScript does not provide full encapsulation, forcing developers to use ad

122

1 /* @id Module */
2 var PriorityQueue = (function () {
3

4 /* @id Node */
5 var Node = function (pri, val) {
6 this.pri = pri; this.val = val; this.next = null;
7 }
8

9 /* @id insertToQueue */
10 Node.prototype.insertToQueue = function (q) {
11 if (q === null) {
12 return this
13 }
14

15 if (this.pri >= q.pri) {
16 this.next = q;
17 return this
18 }
19

20 var tmp = this.insertToQueue (q.next);
21 q.next = tmp;
22 return q
23 }
24

25 /* @id PriorityQueue */
26 var module = function () {
27 this._head = null;
28 };

29

30 /* @id enqueue */
31 module.prototype.enqueue = function(pri, val) {
32 var n = new Node(pri, val);
33 this._head = n.insertToQueue(this._head);
34 };
35

36 /* @id dequeue */
37 module.prototype.dequeue = function () {
38 if (this._head === null) {
39 throw new Error("Queue is empty");
40 }
41

42 var first = this._head;
43 this._head = this._head.next;
44 return {pri: first.pri, val: first.val};
45 };
46

47 return module;
48 })();
49

50 var q = new PriorityQueue();
51 q.enqueue(1, "last");
52 q.enqueue(3, "bar");
53 q.enqueue(2, "foo");
54 var r = q.dequeue();

Figure 8.6.: A Reminder of the Running Example

hoc features, such as the underscore prefix, to denote properties that are intended to be private. We

would like the specifications to ensure that private properties are not used outside library code.

We highlight a general methodology for specifying that JavaScript libraries behave as intended.

We discuss two important aspects of specifying JavaScript libraries: capturing prototype safety and

enforcing encapsulation. In this section, we first show some examples of how a user can misuse the

library. Next, we provide the specification of the Priority Queue Library that ensures that the library

behaves as intended. Finally, we show that the given specification does not allow us to verify client

code that misuses the library.

8.4.1. Client Code Misusing the Library

In order to guarantee that the Priority Queue library (Figure 8.6) works as intended, we must make

sure that: (1) every time one calls enqueue or dequeue on a priority queue object, one reaches the

appropriate functions defined within its prototype; (2) one can always successfully call enqueue or

dequeue on a priority queue object: enqueue inserts an element in the queue in the right place, while

dequeue retrieves the element with the highest priority or throws an error if the queue is empty; (3)

one can always successfully construct a priority queue using the PriorityQueue constructor; and (4)

one can always retrieve the value of a highest priority previously inserted into a priority queue. In

Figure 8.7, we show how a user can misuse the library, effectively breaking (1)-(4). To break (1), one

simply has to override enqueue or dequeue on the constructed priority queue object (Client 1). To

break (2), it suffices to assign an arbitrary non-writable value to "pri" in Node.prototype (Client 2).

By doing that, a call to enqueue will fail, as a construction of a new node to insert into the queue

will fail (recall the discussion in §3.2). To break (3), one can define a property "_head" containing

an arbitrary non-writable value in Object.prototype (Client 3). Notice that one does not need to

modify the library itself to break it, it is enough to modify the initial heap. To break (4), one can

modify the property "_head" of a priority queue object, which is expected to be private (Client 4).

After assigning null to "_head" (line 5), all previously inserted value-priority pairs disappear from the

123

priority queue.

client 1:

1 var q = new PriorityQueue();
2 q.dequeue = function() {};
3 q.enqueue(1, "foo");
4 var r = q.dequeue();

client 2:

1 var q = new PriorityQueue();
2 q.enqueue(3, "bar");
3 var np = Object.getPrototypeOf(q._head);
4 var desc = { value: 0, writable: false };
5 Object.defineProperty(np, "pri", desc);
6 q.enqueue(1, "foo");

client 3:

1 var op = Object.prototype;
2 var desc = { value: null, writable: false };
3 Object.defineProperty(op, "_head", desc);
4 var q = new PriorityQueue();

client 4:

1 var q = new PriorityQueue();
2 q.enqueue(1, "last");
3 q.enqueue(3, "bar");
4 q.enqueue(2, "foo");
5 q._head = null;
6 var r = q.dequeue();

Figure 8.7.: Example clients that misuse the priority queue library.

In general, we want to ensure that all prototype chains are consistent with correct library behaviour.

We can express this in the specification of a given library by stating which resources must not be present

for its code to run correctly. In particular, constructed objects cannot redefine properties that are to

be found in their prototypes; and prototypes cannot define as non-writable those properties that are

to be present in their instances. We refer to these two criteria as prototype safety. Clients 1-3 do

not respect prototype safety of the library.

Commonly, a library has a private state, which is expected not to be accessed and manipulated by

client programs. Since JavaScript does not provide full encapsulation, it is difficult for a library code

to be agnostic to clients modifying library’s internal state. Client 4 does not respect the internal

state of the library.

Next, we specify the priority queue library and discuss what it means to capture prototype safety

and enforce encapsulation.

8.4.2. Specification of the Priority Queue Library

On top of providing basic JS Logic predicates, JaVerT also allows us to define our own predicates and

use them to reason about more complex JavaScript structures. Here, we illustrate how to use JaVerT

by specifying the functions from the Priority Queue library.

The Node Predicate. Our first aim is to specify the Node(pri, val) function. In order to do this, we

need to create the appropriate abstraction for nodes, that is, to state, using the assertion language of

JaVerT, what it means to be a node:

Node(n, pri, val, next, nproto) , DataProp(n, “pri”, pri) ∗ 0 <̇ pri ∗
DataProp(n, “val”, val) ∗ DataProp(n, “next”, next) ∗
JSObject(n, nproto) ∗ (n, “insertToQueue”) 7→ � ∗
types(pri : Num , val : Str , nproto : Obj)

A node n is an object which has three data properties: "pri", "val", and "next", with values pri, val,

and next. The value pri has to be a number, greater than zero, as it represents the priority, whereas,

for this example, we chose the value val to be a string. JavaScript prototype-based inheritance

also requires to state that the node n is a JavaScript object whose prototype is nproto, which is

an object; and the node n does not contain property named "insertToQeueue". We need to make

124

sure that "insertToQeueue" does not exist in the node itself, as we want the node objects to inherit

"insertToQeueue" from their prototype. This is an example of a prototype safety property.

Notice how the usage of JS Logic built-in predicates DataProp(o, p, v) and JSObject(o, p) makes the

definition of nodes simple and concise.

The NodeProto predicate. The NodeProto predicate describes what it means for an object np

to be a valid node prototype. First, it needs to capture all of the properties of the node prototype

object, such as the insertToQueue function shown in the example. The node prototype object also

needs to satisfy the prototype safety property stating that it cannot contain non-writable "pri", "val",

or "next" properties. We choose to go with a stronger specification, where these properties are not

allowed at all:

NodeProto(np) , ∃ li, sci. DataProp(np, “insertToQueue”, li) ∗ FunctionObject(insertToQueue, li, sci) ∗
JSObject(np, lop) ∗ (np, “pri”) 7→ � ∗ (np, “val”) 7→ � ∗ (np, “next”) 7→ �

This predicate states that a node prototype np: has a property "insertToQueue" bound to the

location li of the function object representing in memory the function labelled with the identifier

insertToQueue; has prototype Object.prototype (lop denotes the location of the built-in

Object.prototype object); and does not have the properties "pri", "val", and "next".

There is one more detail that needs to be expanded on, and it has to do with the interplay between

separation logic and the prototype inheritance of JavaScript. As Node.prototype is shared between

all node objects, we cannot simply inline the definition of NodeProto in the definition of the Node

predicate. Were we to do that, we could no longer write a satisfiable assertion describing two distinct

nodes using the standard separating conjunction. One possible solution would be to use the overlapping

conjunction t∗. We will discuss shortly, in the specification of insertToQueue, the complications of

describing two nodes using t∗.

Specification of the Node function. The Node function is to be used as the constructor of node

objects, that is, var n = new Node(pri, val). A constructor in JavaScript is simply a function. Note

that functions can be called as normal functions, as methods, and as constructors. Hence, if we intend

to use a function as a constructor, but not as a normal function, we can state this in our specification.

This would not allow us to prove programs that use our constructor function as a normal function,

as the given precondition would not hold. To ensure that the function Node is not used as a normal

function, we state that at the beginning of every valid execution of Node, the keyword this is bound

to a new object whose prototype is the Node.prototype object. The function Node then extends the

this object with the properties "pri", "val", and "next", setting their values to pri, val, and null.

The specification of Node is:

125


0 <̇ pri ∗ types(pri : Num , val : Str) ∗ (this, “pri”) 7→ � ∗ (this, “val”) 7→ � ∗ (this, “next”) 7→ � ∗

JSObject(this, nproto) ∗ NodeProto(nproto) ∗ (this, “insertToQueue”) 7→ � ∗
(lop, “pri”) 7→ � ∗ (lop, “val”) 7→ � ∗ (lop, “next”) 7→ �


Node(pri, val){

Node(this, pri, val, null, nproto) ∗ NodeProto(nproto) ∗
(lop, “pri”) 7→ � ∗ (lop, “val”) 7→ � ∗ (lop, “next”) 7→ �

}

The precondition of Node states: restrictions on its parameters, that is, the priority pri is greater

than zero and is of number type, whereas the node value val is of string type; restrictions on the

function being used as a constructor, that is, the keyword this must be initially bound to an object

that does not have the properties "pri", "val", and "next" and has prototype nproto, which is a

valid node prototype; a prototype safety property, stating that the this object does not have the

property "insertToQueue"; and the prototype safety requirements for Object.prototype, stating that

Object.prototype does not have properties "pri", "val", and "next".

The postcondition states that after the execution of the body of Node: the keyword this is bound

to a Node object with priority pri, value val, no next node, and prototype nproto; nproto is still a

valid node prototype; and we still have the prototype safety requirements for Object.prototype.

The NodeList Predicate. Now, let us turn to the definition of the NodeList predicate:

NodeList(null, nproto, 0, 0) , emp

NodeList(nl, nproto, primax, len) , ∃ pri, val, next, lenrest. 0 <̇ primax ∗
Node(nl, primax, val, next, nproto) ∗ pri ≤̇ primax ∗
NodeList(next, nproto, pri, lenrest) ∗ len

.
= lenrest + 1 ∗

types(nl, nproto : Obj , pri, primax, len, lenrest : Num)

A node list NodeList(nl, nproto, primax, len) is a null-terminated list of length len of Node objects

singly linked via their "next" properties. All of the nodes in the node list share the same prototype

nproto and have priority not greater than primax. Given our choice of the underlying data structure,

the NodeList predicate needs to be recursive. In the base case, we have an empty node list, meaning

that nl has to equal null, the priority and the length are equal to zero. In the recursive case, the node

list starts with a node that has priority primax, value val, and points to the next node in the queue

next. The tail of the node list is also a node list, starting with the node next and maximum priority

pri, which has to be not greater than primax.

Note that we are not able to inline the definition of NodeProto in the definition of Node and use ∗
in the the recursive case of the definition of NodeList. We could use t∗, which allows partial separation

between heaps:

H, ρ, L, vt, ε |= P1 t∗ P2 ⇔
∃H1, H2, H3. H = H1] H2] H3 ∧ (H1] H3, ρ, L, vt, ε |= P1) ∧ (H2] H3, ρ, L, vt, ε |= P2).

t∗ would allow us to account for the sharing of Node.prototype. However, by using t∗, we would

lose information that only Node.prototype is shared between the two nodes. We discuss the impact of

126

losing information after giving the specification for insertToQueue.

Specification of insertToQueue. Next, we show the specification of Node.prototype.insertToQueue.

The function insertToQueue is used for inserting a new node object into a list of node objects. For

example, q = n.insertToQueue(q) adds the node n to the queue whose head is q and returns the head

of the extended priority queue which is then assigned to q. The formal specification of insertToQueue

is given below:

{
NodeList(q, nproto, priq, len) ∗ Node(this, prin, val, null, nproto) ∗ NodeProto(nproto) ∗

types(priq, prin : Num)

}
insertToQueue(q){

NodeList(ret, nproto,max(priq, prin), len+ 1) ∗ NodeProto(nproto) ∗ types(ret : Obj)
}

The precondition states that q is bound to the head of a node list with max priority priq, whose node

elements all have the valid node prototype nproto. It also states that the keyword this is bound to a

node object with priority prin, value val, no next element, and prototype nproto. The postcondition

states that insertToQueue returns the head of a node list with max priority max(priq, prin) (the

keyword ret refers to the return value in the postcondition), that all node elements of this node list

have the (still valid) node prototype nproto.

Even though JaVerT supports user-defined predicates, it does not reason automatically about user-

defined recursive predicates, which means that programs need to be annotated with special logical

commands that tell JaVerT when to fold or unfold a given user-defined predicate. Let us now consider

the annotated code of insertToQueue (Figure 8.8).

1 Node.prototype.insertToQueue = function (q) {
2

3 /** @unfold NodeList(q, #nproto, #pri_q, #len) */
4 if (q === null) {
5 /** @fold NodeList(this, #nproto, #pri_n, #len+1) */
6 return this
7 }
8

9 if (this.pri >= q.pri) {
10 this.next = q;
11 /** @fold NodeList(this, #nproto, #pri_n, #len+1) */
12 return this
13 }
14

15 var tmp = this.insertToQueue (q.next);
16 q.next = tmp;
17 /** @fold NodeList(q, #nproto, #pri_q, #len+1) */
18 return q
19 }

Figure 8.8.: Running Example - annotated code of insertToQueue

Because the program starts by branching on the value of q, we first have to unfold the NodeList

predicate in the precondition. Then, there are three possible cases:

1. If q is null, we simply have to fold the node bound to this as a node list and return it;

2. If the priority of the node bound to this is greater than or equal to the priority of the first node

of q, we have to set the property "next" of this to q, fold the node list now bound to this, and

return it;

127

3. If the priority of the node bound to this is less than the priority of the first node of q, we have

to call insertToQueue recursively on the rest of the node list to obtain a new head. The head of

the node list remains equal to q, since the new node was inserted in the middle of the node list.

Hence, we fold the node list bound to q.

The specification of insertToQueue explicitly mentions NodeProto. If we were to inline the defini-

tion of NodeProto in the definition of Node, the precondition of insertToQueue would look like this:

NodeList(q, ...) t∗ Node(this, ...). We would encounter a problem in line 10 (Figure 8.8) when proving

the body of insertToQueue. In line 10, we attempt to assign to this.next, where Node(this, ...) has the

required resource for the heap update. However, we do not know if this update would not have an

effect to NodeList(q, ...) as t∗ loses the information of what is separate and what is shared.

The Queue Predicate. In order to specify the PriorityQueue function, we need to create the

abstraction for a queue:

Queue(q, qproto, nproto, pri, len) , ∃ head. DataProp(q, “ head”, head) ∗
NodeList(head, nproto, pri, len) ∗
JSObject(q, qproto) ∗
(q, “enqueue”) 7→ � ∗ (q, “dequeue”) 7→ � ∗
types(pri, len : Num , qproto : Obj)

A queue q has a data property "_head" holding a value head, which corresponds to the head node

in a node list with the maximum priority pri and the length len. The queue’s prototype is qproto

which is described shortly. To satisfy prototype safety, a queue should not have properties "enqueue"

and "dequeue", as these properties will be inherited from qproto. The values pri and len have to be

numbers, while qproto must be an object. Observe here that we do not expose head as a parameter

of the Queue predicate; this will be relevant once we have reached the topic of encapsulation.

The QueueProto predicate. Just as NodeProto describes a valid node prototype, the QueueProto

predicate describes what it means for an object to be a valid queue prototype. First, a valid queue

prototype needs to capture all of the properties of the queue prototype object, such as the enqueue and

dequeue functions. Second, a valid queue prototype cannot contain a non-writable "_head" property,

where we choose, analogously to the NodeProto case, a stronger specification of not allowing the

property at all. Finally, we would like to abstract our queue module over the implementation details

of using nodes. Hence, we include the function object Node and its prototype in the QueueProto

predicate:

QueueProto(qp, nproto, sce) , ∃ le, ld, n. DataProp(qp, “enqueue”, le) ∗ FunctionObject(enqueue, le, sce) ∗
DataProp(qp, “dequeue”, ld) ∗ FunctionObject(dequeue, ld,) ∗
JSObject(qp, lop) ∗ (qp, “ head”) 7→ � ∗
FunctionObject(Node, n,) ∗ DataProp(n, “prototype”, nproto) ∗
NodeProto(nproto) ∗ Scope(Node : n, sce, enqueue)

This predicate states that a queue prototype qp: has properties "enqueue" and "dequeue" bound

to the locations le and ld of the function objects representing in memory the functions labelled with

the identifiers enqueue and dequeue, respectively; has Object.prototype as its prototype; does not have

128

the property "_head", to capture prototype safety; contains the function object n, representing the

function with the identifier Node, with its property "prototype", which is a valid node prototype. We

also need to state that the variable Node is accessible inside enqueue. To describe that, we use the JS

built-in predicate Scope.

JS Logic Predicate: Scope. To capture variable scoping, we introduce the Scope predicate. The

Scope(x : v, scf ,m) predicate states that the variable x has value v in the scope chain denoted by scf
of the function literal with identifier m:

Scope(x : v, scf ,m) , (nth (scf , n), x) 7→ v, where n = ψ(m,x)

In the general case, this predicate corresponds to the JS Logic assertion (nth (scf , n), x) 7→ v , where

nth is the binary list indexing operator and n = ψ(m,x). For instance, the predicate

Scope(Node : n, sce, enqueue) unfolds to (nth (sce, 1), “Node”) 7→ n as ψ(enqueue,Node) = 1. We

can also use Scope(x : v) as syntactic sugar for Scope(x : v, sc,m), where sc is the special logical

expression denoting the current scope chain and m is the identifier of the current function.

Specification of the PriorityQueue function. The PriorityQueue function is to be used as a

constructor of queue objects, that is, var q = new PriorityQueue(). Therefore, at the beginning of

every valid execution of PriorityQueue, the keyword this is bound to a new object whose prototype is

the PriorityQueue.prototype object. The function PriorityQueue then extends the this object with

the property "_head" setting its initial value to be null. The specification of PriorityQueue is:

{
JSObject(this, qproto) ∗ (this, “ head”) 7→ � ∗ (this, “enqueue”) 7→ � ∗ (this, “dequeue”) 7→ � ∗

QueueProto(qproto, nproto, sce) ∗ ObjProtoF()

}
PriorityQueue(){

Queue(this, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF()
}

The precondition of PriorityQueue states that: the keyword this must be initially bound to a

JavaScript object whose prototype is qproto; the this object must not have properties "_head",

"enqueue", and "dequeue", to capture prototype safety; and qproto is a valid queue prototype. The

postcondition states that, after the execution of the body of PriorityQueue: the keyword this is bound

to an empty Queue; and qproto is still a valid queue prototype. The prototype safety requirements of

the library extend to Object.prototype. This resource is captured by the built-in ObjProtoF() pred-

icate, describing the frozen Object.prototype object, presented in §8.3. Here, the user can instead

choose not to use the frozen version of the predicate. In that case, they would have to manually

specify the prototype safety requirements, as we have done for Node function.

Specification of enqueue. Next, we show the specification of PriorityQueue.prototype.enqueue.

The function enqueue is used for creating a new node and inserting it to the queue. For example,

q.enqueue(1, "last") creates a new node with the priority 1 and the value "last" and inserts it to the

queue q. The specification of enqueue is given below:

129

{
0 <̇ pri ∗ Queue(this, qproto, nproto, priq, len) ∗ QueueProto(qproto, nproto, sce) ∗

OChains(enqueue : sce) ∗ types(pri : Num , val : Str) ∗ ObjProtoF()

}
enqueue(pri, val){

Queue(this, qproto, nproto,max(priq, pri), len+ 1) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF()
}

The precondition states that the keyword this is bound to the queue with max priority priq and

length len, whose prototype is a valid queue prototype qproto. It also states that pri is a number,

greater that zero, while val is a string. The postcondition states that after executing enqueue, the

queue bound by this has the max priority max(priq, pri), contains one more element and whose

prototype is the (still valid) queue prototype qproto. Similarly to the PriorityQueue specification,

we use ObjProtoF() to capture prototype safety for Object.prototype. Additionally, we need to make

sure that the variable Node is found in the current scope of the function enqueue. We could try to

capture this with the assertion Scope(Node : n), but this is duplicated resource already existing in

QueueProto(qproto, nproto, sce). We need a predicate that captures the scope chain overlap between

two functions.

JS Logic Predicate: OChains. To capture the scope chain overlap between two functions, we

introduce the OChains predicate:

OChains(f : scf , g : scg) , �0≤i<n(nth (scf , i) = nth (scg, i)), where n = ψo(f, g)

The overlapping scope function, ψo : Str × Str ⇀ N, takes two function identifiers and returns the

length of the overlap of their scope chains. We can also use OChains(f : scf) as syntactic sugar for

OChains(f : scf ,m : sc), where sc is the special logical expression denoting the current scope chain

and m is the identifier of the current function.

Specification of dequeue. Next, we show the specification of PriorityQueue.prototype.dequeue. The

function dequeue is used for removing the element with the highest priority from the queue. If the

queue q is empty, q.dequeue() throws an exception, otherwise it returns an element from the queue q

with the highest priority represented as an object with two properties, "pri" and "val".

The formal specification of the exceptional case of dequeue is given below:

{ Queue(this, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() }

dequeue(){
Queue(this, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗

ErrorWithMsg(err, “Queue is empty”) ∗ ObjProtoF()

}

The precondition states that the keyword this is bound to an empty queue. The postcondition states

that the queue is still empty and the result (represented by the special variable err) of executing the

function dequeue is an error object with a message "Queue is empty".

The formal specification of the normal case of dequeue is:

130

{ Queue(this, qproto, nproto, pri, len) ∗ QueueProto(qproto, nproto, sce) ∗ 0 <̇ len ∗ ObjProtoF() }

dequeue(){
Queue(this, qproto, nproto, prir, lenr) ∗ QueueProto(qproto, nproto, sce) ∗ len

.
= lenr + 1 ∗

prir ≤̇ pri ∗ JSObject(ret, lop) ∗ DataProp(ret, “pri”, pri) ∗ DataProp(ret, “val”, val) ∗ ObjProtoF()

}

The precondition states that the keyword this is bound to a queue, which is not empty and whose

prototype is a valid queue prototype. The postcondition states that: the queue has one less elements

and its priority is not greater than pri; and the result of the dequeue is a JavaScript object with two

named properties "pri" and "val". The named property "pri" contains the value pri, which was the

maximum priority of the given queue in the precondition.

Specification of Module. Finally, we show the specification of Module. The function Module is used

for implementing the priority queue functionality, using immediately invoked function expression. The

formal specification of Module is given below:{
ObjProtoF()

}
Module(){

FunctionObject(PriorityQueue, ret,) ∗ DataProp(ret, “prototype”, qproto) ∗
QueueProto(qproto, nproto,) ∗ ObjProtoF()

}

The precondition requires a frozen Object.prototype object. The postcondition states that the result

of Module, is a function object with the identifier PriorityQueue, which named property "prototype" is

a valid queue prototype. By choosing the QueueProto abstraction we are able to have such a succinct

specification for the Module function.

The specifications of the priority queue library show that it is possible to successfully abstract over

JavaScript internals, allowing both the library developer and the client developer to write specifications

that are as free as possible from JavaScript-specific clutter. Next we demonstrate the verification of

the correct client code and explain why the clients, that misuse the library, cannot be verified.

8.4.3. Verification of Client Code

We discuss two important aspects of specifying JavaScript libraries: capturing prototype safety and

enforcing encapsulation. Given the specifications of the priority queue library, we demonstrate the

verification of the valid client program from our running example. Also, we show that it is not

possible to verify client code (Client 1 - Client 3, Figure 8.7) if it compromises prototype safety.

The situation for encapsulation is more subtle. There are ways of breaking encapsulation that we

could choose to allow. The client could, for instance, add more functionalities to Queue.prototype or

add more properties to queue objects, and this would not break the existing functionalities. However,

there are ways of breaking encapsulation that we should certainly disallow, as Client 4 demonstrates.

We discuss a solution for ensuring that such client code cannot be verified.

Valid Client Code: Running Example. We show a proof sketch below1. Recall the postcondition

of the Module function, which creates our new priority queue library: it is highlighted in the starting

1Note that in JaVerT we symbolically execute JSIL programs compiled from JavaScript programs. For illustration
purposes, in the verification of example client programs we give JavaScript code.

131

symbolic state below. We first create an empty queue with maximum priority 0. Next we create three

nodes, obtaining a queue with three nodes and maximum priority 3. Then, we dequeue the head of the

queue (which we can do, as we know that the queue has 3 nodes), obtaining a queue with 2 nodes and

existentially quantified priority pri not greater than 3. Moreover, in the end, the variable r is bound

to an object with two properties: "pri", with value 3; and "val", with value val which is existentially

quantified.

{
Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗

QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗ Scope(r : undefined) ∗ Scope(q : undefined)

}
var q = new PriorityQueue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined)


q.enqueue(1, "last"); q.enqueue(3, "bar"); q.enqueue(2, "foo");

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 3, 3) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined)


var r = q.dequeue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, pri, 2) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

pri ≤̇ 3 ∗ Scope(r : r) ∗ JSObject(r, lop) ∗ DataProp(r, “pri”, 3) ∗ DataProp(r, “val”, val)


Misusing the Library: Client 1. The client code overrides dequeue on the constructed priority

queue object. This code requires a resource (q, “dequeue”) 7→ � from inside Queue(q, qproto, nproto, 0, 0)

predicate and updates that resource to DataProp(q, “dequeue”, lf), where lf is a location of a newly

created function object. After this point we cannot fold back Queue(q, ...) predicate anymore, since by

definition it requires (q, “dequeue”) 7→ �, and hence we cannot apply the specification of the enqueue

function to continue.

{
Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗

QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗ Scope(r : undefined) ∗ Scope(q : undefined)

}
var q = new PriorityQueue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined)


q.dequeue = function(){};

{ ... ∗ DataProp(q, “dequeue”, lf) ∗ ... }

q.enqueue(1, "foo");

×

132

Misusing the Library: Client 2. The client code assigns a non-writable value 0 to the property

"pri" of Node.prototype. This code requires a resource (nproto, “pri”) 7→ � from NodeProto(nproto)

predicate, which is a part of QueueProto(qproto, nproto, sce) predicate. After the assignment, the

symbolic state contains DataPropGen(nproto, “pri”, 0, false, true, true). Similarly as in Client 1 case,

we cannot fold NodeProto(nproto) and QueueProto(qproto, ...) predicates anymore, since by definition

NodeProto(nproto) requires (nproto, “pri”) 7→ �. Consequently, we cannot apply the specification of

the enqueue function to continue.


Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗

DataProp(pq, “prototype”, qproto) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗
Scope(q : undefined) ∗ Scope(np : undefined) ∗ Scope(desc : undefined)


var q = new PriorityQueue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(np : undefined) ∗ Scope(desc : undefined)


q.enqueue(3, "bar");

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 3, 1) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(np : undefined) ∗ Scope(desc : undefined)


var np = Object.getPrototypeOf(q._head);

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 3, 1) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(np : nproto) ∗ Scope(desc : undefined)


var desc = { value: 0, writable: false }; Object.defineProperty(np, "pri", desc);

{ ... ∗ DataPropGen(nproto, “pri”, 0, false, true, true) ∗ ... }

q.enqueue(1, "foo");

×

Misusing the Library: Client 3. The client code defines a property "_head" containing a non-

writable value null of Object.prototype. In this case, differently than Client 1 and Client 2,

the code does not modify the library itself. However, since the symbolic state contains a frozen

Object.prototype, required by the priority queue library, an the update of Object.prototype is not

allowed.

133


Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗

DataProp(pq, “prototype”, qproto) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗
Scope(q : undefined) ∗ Scope(op : undefined) ∗ Scope(desc : undefined)


var op = Object.prototype;

var desc = { value: null, writable: false };
Object.defineProperty(op, "_head", desc);

×

Misusing the Library: Client 4. We demonstrated that it is not possible to verify a specification

of client code if it compromises prototype safety. Client 4 does not compromise prototype safety,

and we can symbolically execute the code using our library specification. However, we end up with a

symbolic state that does not imply the postcondition expected by the client code.

{
Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗

QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗ Scope(r : undefined) ∗ Scope(q : undefined)

}
var q = new PriorityQueue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined)


q.enqueue(1, "last"); q.enqueue(3, "bar"); q.enqueue(2, "foo");

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 3, 3) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined)


q._head = null;

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗

Scope(r : undefined) ∗ NodeList(old, nproto, 3, 3)


var r = q.dequeue();

Scope(PriorityQueue : pq) ∗ FunctionObject(PriorityQueue, pq,) ∗ DataProp(pq, “prototype”, qproto) ∗
Scope(q : q) ∗ Queue(q, qproto, nproto, 0, 0) ∗ QueueProto(qproto, nproto, sce) ∗ ObjProtoF() ∗
∗ Scope(r : undefined) ∗ NodeList(old, nproto, 3, 3) ∗ ErrorWithMsg(err, “Queue is empty”)


Assigning null to the q._head empties the queue. Even though the assignment does not break the

library, however, it exploits the private state of the library. Instead of having a queue of two elements

after var r = q.dequeue(), the client code throws an exception, as the queue is empty.

One way to ensure full encapsulation would be to keep the Queue predicate partially opaque to the

client code. We cannot have the whole predicate Queue opaque, as the client still needs to be able to

call the functions from the library. For example, we can define the Queue predicate using QueuePrivate

as follows:

134

Queue(q, qproto, nproto, pri, len) , QueuePrivate(q, nproto, pri, len) ∗
JSObject(q, qproto) ∗
(q, “enqueue”) 7→ � ∗ (q, “dequeue”) 7→ � ∗
types(pri, len : Num , qproto : Obj)

QueuePrivate(q, nproto, pri, len) , ∃ head. DataProp(q, “ head”, head) ∗
NodeList(head, nproto, pri, len)

The predicate QueuePrivate is fully opaque to the client. By keeping library predicates partially

opaque, we can make sure that client code cannot exploit the private state of the library. Verification

of the assignment q._head = null would not work as the required resource for it is hidden inside the

private part of the queue predicate. Abstract predicates introduced by Parkinson et al. [53] can be

applied to implement partially opaque predicates. However, they are not supported by JaVerT at the

moment.

Summary. We have demonstrated JaVerT using our running example. We showed how to develop

natural JavaScript abstractions, such as Node and Queue, that make reasoning using JaVerT nearly

as simple as reasoning about Java programs using a semi-automatic verification tool. Using such

abstractions, we provided specifications that ensure prototype safety. The verification workflow of

JaVerT includes compiling the annotated JavaScript (§3) program to a JSIL (§4) program using the

JS-2-JSIL compiler (§5); translating JavaScript annotations using the JS-2-JSIL logic translator to

equivalent JSIL annotations; and automatically verifying the resulting annotated JSIL program by

JSIL Verify (§6), making use of the verified JS-2-JSIL environment (§7).

135

9. Conclusion

9.1. Summary of Thesis Achievements

JaVerT. We believe that JaVerT constitutes an important step towards scalable verification of real-

world JavaScript programs. It successfully tackles a number of challenges that are critical for tractable

reasoning about JavaScript. JaVerT provides the JavaScript Assertion Language, which includes key

abstractions to allow the user to capture fundamental JavaScript concepts without exposing the inter-

nal features of the language. JaVerT contains the complexity of reasoning about JavaScript programs

by providing a JavaScript Frontend JS-2-JSIL to the JSIL verification infrastructure. We demon-

strated how a priority queue library can be specified to ensure prototype safety and explained how

JaVerT uses JSIL verification infrastructure through the JavaScript Frontend to verify that JavaScript

programs satisfy their specifications.

JavaScript Assertion Language. Our first challenge (C1) was to design assertions that capture

common heap structures of JavaScript. We provide key abstractions that allow the user to capture

fundamental JavaScript concepts: Scope and OChains to reason about full variable scoping and Pi

to capture the prototype inheritance of JavaScript. Pi and OChains are carefully designed to resolve

the tension between the overlapping of prototype and scope chains and the heap separation inherent

to separation logic. We specified a priority queue library, written in a typical OO-style. We have

demonstrated that a user can write JavaScript specifications with a minimal knowledge of JavaScript

internals. We have illustrated how to specify the library to ensure prototype safety and verify its

clients that do not compromise prototype safety. We also discussed a possible way to treat the lack

of encapsulation in JavaScript using opaque predicates.

JSIL Verification Infrastructure. JavaScript verification requires a dedicated low-level control-

flow-based intermediate representation. We have developed a simple JavaScript intermediate repre-

sentation for our verification toolchain, called JSIL. It comprises only the most basic control flow

commands (unconditional and conditional gotos), the object management commands needed to sup-

port extensible objects and dynamic property accesses, and top-level procedures. Our third verification

challenge (C3) was to handle the dynamic behaviour associated with extensible object, dynamic prop-

erty accesses and dynamic function calls, which introduce an additional level of complexity compared

with the static features in the IRs underlying the familiar separation-logic tools. We have developed

a sound program logic for JSIL, which is the basis for JSIL Verify, the first verification tool based on

separation logic to natively support these fundamental dynamic features of JavaScript.

The JS-2-JSIL Compiler. Our second challenge (C2) was to support JavaScript statements with

all of their complicated control flows. We have presented the JS-2-JSIL compiler from JavaScript to

JSIL. We designed the JS-2-JSIL compiler so that the compiled code, and oftentimes the compiler

itself, follows the ECMAScript standard line-by-line. This semantics-driven compilation is feasible,

136

because the ECMAScript standard is given operationally, in an almost pseudo-code format. Given

the complexity of JavaScript, this approach, albeit quite informal in nature, can give some confidence

to compiler correctness. Ultimately, however, it is not formal enough to be sufficient on its own.

We gave a pen-and-paper correctness proof for a representative fragment of the language. It required

formalising the semantics and memory model of JavaScript, formalising the semantics and memory

model of JSIL, and proving that the semantics of the JavaScript and compiled JSIL code match.

We have given thought to providing a Coq proof of correctness, leveraging on our previous JSCert

mechanised specification of JavaScript [9]. However, the process of formalising JSIL and JS-2-JSIL,

and then proving the correctness was beyond our manpower.

We believe that testing is an indispensable part of establishing compiler correctness for JavaScript.

Regardless of how precise proof of correctness may be, there still is plenty of room for discrepancies to

arise: for example, the implementation of the compiler might inadvertently deviate from its formalisa-

tion; or the formalised JavaScript semantics might deviate from the standard. We have substantially

tested the JS-2-JSIL compiler using the ECMAScript Test262 [23].

We note that the construction of scope clarification function currently requires the entire program.

To achieve a more modular translation from JavaScript to JSIL, we would need to revisit the con-

struction of the scope clarification function. This will be required for supporting the module system

of the language, which is not addressed explicitly in the ES5 standard but is part of the ES6 standard.

The JS-2-JSIL Logic Translator. We have presented the JS-2-JSIL logic translator from JS

Logic to JSIL Logic to make use of the JSIL verification infrastructure. To validate the JS-2-JSIL

logic translator, we needed to formally connect JavaScript verification with JSIL verification. To

achieve that, a fundamental decision was to make the JavaScript and JSIL memory models identical

to each other as possible. To be able to formally lift JSIL verification to JavaScript verification,

we gave a strong correspondence between JavaScript and JSIL assertions, relating the semantics of

JavaScript triples with the semantics of the JSIL triples, and used the soundness result for the JSIL

proof rules from the JSIL verification infrastructure. We validated the JS-2-JSIL logic translator by

establishing a full correctness result for the assertion languages, and a partial correctness result for

the triples. Relating the semantics of JavaScript triples with the semantics of the JSIL triples requires

the correctness of the JS-2-JSIL compiler, which we established for a fragment of the language.

The JS-2-JSIL Environment. We have introduced reference implementations and axiomatic spec-

ifications for JavaScript internal functions to solve our fourth challenge (C4). There were two options

on how to use reference implementations in verification: inlining and axiomatic specification.

Inlining the bodies of the internal functions was not a viable option. Given the sheer number of calls

to the internal functions and their intertwined nature, the size of the compiled code would quickly

spiral out of control. We would also entirely lose the visual correspondence between the compiled code

and the standard.

Without inlining, on the other hand, the calls to internal functions are featured in the compiled

code as procedure calls to their JSIL implementations. In that sense, the compiled code reflects the

English standard. In such a situation, we provide axiomatic specifications to the internal functions.

During verification, the only check that has to be made is that the current symbolic state entails a

precondition of the specification.

Creating axiomatic specifications does not come without its challenges. The definitions of the

137

internal functions are often intertwined, making it difficult to fully grasp the control flow and allowed

behaviours. Specifying such dependencies axiomatically involved the joining of the specifications of

all nested function calls at the top level, which resulted in numerous branchings.

The JSIL reference implementations of JavaScript internal functions and built-in libraries are step-

by-step faithful to the standard, tested together with JS-2-JSIL compiler using Test262, and verified

with respect to their axiomatic specifications using the JSIL verification infrastructure.

9.2. Open Problems

Higher-order reasoning. One of the main challenges related to JavaScript verification is reasoning

about higher-order functions of arbitrary complexity. JavaScript has full support for higher-order

functions, meaning that a function can take another function as an argument, or that a function can

return another function as a result. This behaviour is not easily captured, particularly in a program

logic setting, but is often used in practice and verification of JavaScript programs should ultimately

be able to tackle it. One possible direction would be to extend JSIL Logic with higher-order reasoning

by encoding JSIL Logic in Iris [40], to reason about JavaScript getters/setters and arbitrary functions

passed as parameters.

Bi-abduction. We believe that the semi-automatic JaVerT toolchain has a role to play in the

development of functionally correct specifications of critical libraries. However, writing specifications

for non-critical JavaScript code is infeasible. For verifying properties of large JavaScript codebases,

an automated tool based on bi-abduction [13] is necessary.

Other Symbolic Execution Tools. We believe that the JSIL language together with the JS-2-JSIL

compiler can be used by different static analysis tools, such as Infer [14], CBMC [42], Viper [49], and

Rosette [69, 68], to develop a static analysis tool for JavaScript. It is much simpler to develop a JSIL

frontend compared to a JavaScript frontend.

We have started building a prototype JSIL frontend to CBMC [64], with the aim of finding cross-site

scripting vulnerabilities. Also, a JSIL frontend is being developed to Rosette [69, 68], where the aim

is to use the symbolic execution of Rosette to obtain a bug-finding tool for JavaScript.

ECMAScript 6. Moving JaVerT to ES6 Strict would essentially require extending the current JS-2-

JSIL compiler with new ES6 language constructs. The existing specifications of the internal functions

would remain the same and our predicate abstractions would be directly relevant.

It would also be possible to move to ES6. This would require modelling scope lookup using an

inductive predicate for capturing the footprint of a dynamic scope chain traversal, similarly to [30].

138

Bibliography

[1] ECMA 262. ECMAScript Language Specification. Technical report, ECMA.

[2] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Proceedings of the towards type

inference for JavaScript. In 19th European Conference Object-Oriented Programming, Lecture

Notes in Computer Science, pages 428–452. Springer, 2005.

[3] Esben Andreasen and Anders Møller. Determinacy in static analysis for jquery. In OOPSLA,

2014.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion checking with

separation logic. In FMCO, 2005.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation logic. In APLAS,

2005.

[6] Gavin M. Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding TypeScript. In Proceed-

ings of the 28th European Conference on Object-Oriented Programming (ECOOP’14), Lecture

Notes in Computer Science, pages 257–281. Springer, 2014.

[7] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps

in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in

Computer Science, 8(4), 2012.

[8] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ml kit, version 1. Technical

report, Technical Report 93/14 DIKU, 1993.

[9] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva

Naudziuniene, Alan Schmitt, and Gareth Smith. A Trusted Mechanised JavaScript Specification.

In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’14, pages 87–100. ACM Press, 2014.

[10] Martin Bodin, Thomas Jensen, and Alan Schmitt. Certified abstract interpretation with pretty-

big-step semantics. In Proceedings of the 2015 Conference on Certified Programs and Proofs,

pages 29–40. ACM, 2015.

[11] Matko Botinčan, Dino Distefano, Mike Dodds, Radu Griore, Daiva Naudžiūnienė, and Matthew J.

Parkinson. coreStar: The core of jstar. In Boogie, 2011.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic gen-

eration of high-coverage tests for complex systems programs. In Richard Draves and Robbert

139

van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and Implementa-

tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages 209–224.

USENIX Association, 2008.

[13] C. Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional shape analysis

by means of bi-abduction. In POPL, 2009.

[14] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino

Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving fast

with software verification. In NASA Formal Methods, pages 3–11. Springer, 2015.

[15] Arthur Charguéraud. Pretty-big-step semantics. In Programming Languages and Systems, volume

7792 of Lecture Notes in Computer Science, pages 41–60. Springer Berlin Heidelberg, 2013.

[16] Junhee Cho and Sukyoung Ryu. Javascript module system: exploring the design space. In

Proceedings of the 13th international conference on Modularity, pages 229–240. ACM, 2014.

[17] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for javascript. SIGPLAN Not.,

47(10):587–606, October 2012.

[18] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open objects in

dynamic language programs. In Static Analysis - 21st International Symposium, SAS 2014,

Munich, Germany, September 11-13, 2014. Proceedings, pages 134–150, 2014.

[19] Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-based

program verifiers for all languages. In Proceedings of the 31th Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’16), pages 74–91. ACM, Nov

2016.

[20] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. An

efficient method of computing static single assignment form. In Conference Record of the Sixteenth

Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January

11-13, 1989, pages 25–35. ACM Press, 1989.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,

2008. Springer-Verlag.

[22] Dino Distefano and M. Parkinson. jStar: Towards practical verification for Java. In OOPSLA,

2008.

[23] ECMAScript Committee. Test262 test suite. https://github.com/tc39/test262, 2017.

[24] Facebook. Flow: a static type checker for javascript. https://flowtype.org/.

[25] Facebook. react.js. https://facebook.github.io/react/.

140

[26] Asger Feldthaus and Anders Møller. Checking correctness of TypeScript interfaces for JavaScript

libraries. In Proceedings of the 29th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA, 2014.

[27] Stephen Fink and Julian Dolby. WALA — The T.J. Watson Libraries for Analysis.

http://wala.sourceforge.net/.

[28] David Flanagan. JavaScript - The Definitive Guide. O’Reilly, 2011.

[29] P. Gardner, D. Naudžiūnienė, and G. Smith. JuS: Squeezing the sense out of JavaScript programs.

In Second Annual Workshop on Tools for JavaScript Analysis, 2013.

[30] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards a program logic for JavaScript.

In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’13, pages 31–44. ACM Press, 2012.

[31] Google. v8. http://v8project.blogspot.co.uk.

[32] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of Javascript. In Pro-

ceedings of the 24th European Conference on Object-Oriented Programming (ECOOP), Lecture

Notes in Computer Science, pages 126–150. Springer, 2010.

[33] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of JavaScript. In Proceed-

ings of the 25th IEEE Computer Security Foundations Symposium, CSF’12, pages 3–18. IEEE

Computer Society, 2012.

[34] Ariya Hidayat. Esprima : ECMAScript parsing infrastructure for multipurpose analysis.

http://esprima.org/, 2012.

[35] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 1969.

[36] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank

Piessens. Verifast: A powerful, sound, predictable, fast verifier for c and java. In NASA Formal

Methods, pages 41–55. Springer, 2011.

[37] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In

Proceedings of the 16th International Static Analysis Symposium (SAS), volume 5673 of Lecture

Notes in Computer Science, pages 238–255. Springer, 2009.

[38] jQuery: a fast, small, and feature-rich JavaScript library. https://jquery.com/.

[39] JSIR, An Intermediate Representation for JavaScript Analysis. http://too4words.github.io/

jsir/.

[40] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and

Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’15, pages 637–650, New York, NY, USA, 2015. ACM.

141

https://jquery.com/
http://too4words.github.io/jsir/
http://too4words.github.io/jsir/

[41] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino,

Ben Wiedermann, and Ben Hardekopf. JSAI: a static analysis platform for javascript. In FSE,

pages 121–132, 2014.

[42] Daniel Kroening and Michael Tautschnig. CBMC – C bounded model checker. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), volume 8413 of LNCS, pages

389–391. Springer, 2014.

[43] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. Safe: Formal specifi-

cation and implementation of a scalable analysis framework for ecmascript. In Proceedings of the

2012 International Workshop on Foundations of Object-Oriented Languages, 2012.

[44] Benjamin S Lerner, Liam Elberty, Jincheng Li, and Shriram Krishnamurthi. Combining form

and function: Static types for jquery programs. In European Conference on Object-Oriented

Programming, pages 79–103. Springer, 2013.

[45] Benjamin S Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Tejas: retrofitting

type systems for javascript. In ACM SIGPLAN Notices, volume 49, pages 1–16. ACM, 2013.

[46] Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of javascript

applications in the presence of frameworks and libraries. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, pages 499–509. ACM, 2013.

[47] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for JavaScript. In

Proceedings of the 6th Asian Symposium on Programming Languages and Systems, volume 5356

of Lecture Notes in Computer Science, pages 307–325. Springer, 2008.

[48] Microsoft. TypeScript language specification. Technical report, Microsoft, 2014.

[49] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for permission-

based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verification, Model Checking, and

Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

[50] Peter OHearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that alter

data structures. In International Workshop on Computer Science Logic, pages 1–19. Springer,

2001.

[51] Changhee Park and Sukyoung Ryu. Scalable and precise static analysis of javascript applications

via loop-sensitivity. In ECOOP, pages 735–756, 2015.

[52] Daejun Park, Andrei Stefănescu, and Grigore Roşu. Kjs: A complete formal semantics of

javascript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2015, pages 346–356, New York, NY, USA, 2015. ACM.

[53] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In ACM SIGPLAN

Notices, volume 40, pages 247–258. ACM, 2005.

[54] Pieter Philippaerts, Jan Tobias Mühlberg, Willem Penninckx, Jan Smans, Bart Jacobs, and

Frank Piessens. Software verification with verifast: Industrial case studies. Science of Computer

Programming, 82:77–97, 2014.

142

[55] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pombrio, and Shriram Krish-

namurthi. A Tested Semantics for Getters, Setters, and Eval in JavaScript. In Proceedings of the

8th Symposium on Dynamic Languages, 2012.

[56] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe &

efficient gradual typing for TypeScript. In Proceedings of the 42nd ACM Symposium on Principles

of Programming Languages. ACM Press, 2015.

[57] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.

[58] Grigore Rosu and Traian Florin Serbănută. An overview of the k semantic framework. The

Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[59] Grigore Rosu and Andrei Stefanescu. Checking reachability using matching logic. In OOPSLA,

2012.

[60] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok Yang. Nested hoare triples

and frame rules for higher-order store. Logical Methods in Computer Science, 7(3), 2011.

[61] Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation tracking

for points-to analysis of javascript. In ECOOP, pages 435–458, 2012.

[62] Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In Program-

ming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held

as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,

Grenoble, France, April 5-13, 2014, Proceedings, pages 149–168, 2014.

[63] Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller, and Jasvir Nagra. Automated

analysis of security-critical javascript apis. In Proceedings of the 2011 IEEE Symposium on

Security and Privacy, SP ’11, pages 363–378, Washington, DC, USA, 2011. IEEE Computer

Society.

[64] CBMC Team. The JSIL front end of CBMC. https://github.com/diffblue/cbmc/pull/51,

https://github.com/diffblue/cbmc/pull/91.

[65] JSIL Team. JSIL as a Service. http://goo.gl/au69SV, 2016.

[66] JSIL Team. The source code of JSIL. https://github.com/resource-

reasoning/JavaScriptVerification, 2017.

[67] Peter Thiemann. Towards a type system for analysing JavaScript programs. In Proceedings of the

14th European Symposium on Programming Languages and Systems, Lecture Notes in Computer

Science, pages 408–422. Springer, 2005.

[68] Emina Torlak and Rastislav Bod́ık. Growing solver-aided languages with rosette. In Antony L.

Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas

in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,

IN, USA, October 26-31, 2013, pages 135–152. ACM, 2013.

143

[69] Emina Torlak and Rastislav Bod́ık. A lightweight symbolic virtual machine for solver-aided host

languages. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom

- June 09 - 11, 2014, page 54. ACM, 2014.

[70] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, pages 310–325. ACM, 2016.

[71] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation with java

pathfinder. In Proceedings of the 2004 ACM SIGSOFT International Symposium on Software

Testing and Analysis, ISSTA ’04, pages 97–107, New York, NY, USA, 2004. ACM.

[72] Hongseok Yang, Oukseh Lee, Josh Berdine, C. Calcagno, Byron Cook, Dino Distefano, and Peter

O’Hearn. Scalable shape analysis for systems code. In CAV ’08: Proc. of the 20th international

conference on Computer Aided Verification, pages 385–398, Berlin, Heidelberg, 2008. Springer-

Verlag.

144

A. Pretty-Big-Step Semantics of a Fragment of

ES5 Strict

A.1. Notation

Auxiliary Functions.

l 7→ {p1 : v1, . . . , pn : vn} , (l, p1) 7→ v1] · · ·] (l, pn) 7→ vn

ER(l.ax) , a = v

fun(l, L, l′,m) , l 7→ {@proto : lfp,@class : “Function”,@extensible : true, “prototype” : l′,@scope : L,@code : m}

env(ls, x, v, s) ,
(
] ni=1(ls, xi) 7→ vi

)
]
(
]mi=1(ls, yi) 7→ undefined

)
, where: defs(s) = {y1, ..., ym}

err(l, lp) , l 7→ {@proto : lp,@class : “Error”,@extensible : true}

Itb(v) ,

{
false if v ∈ {null, undefined, false,+0,−0,NaN, “”}
true otherwise

Iprimts (v) ,



“undefined” if v = undefined

“null” if v = null

“true” if v = true

“false” if v = false

NumberToString(v) if v ∈ Num
v if v ∈ Str

Iprimtn (v) ,



NaN if v = undefined

+0 if v = null ∨ v = false

1 if v = true

v if v ∈ Num
StringToNumber(v) if v ∈ Str

Iprimti (v) ,


+0 if n = NaN

v if n ∈ {+0,−0,+∞,−∞)}
sign(n)× floor(abs(n)) otherwise, where n = Iprimtn (v)

Itype(v) ,



Undefined if v = undefined

Null if v = null

Boolean if v ∈ Bool
Number if v ∈ Num
String if v ∈ Str
Object if v ∈ L

Itypeof (h, v) ,



“undefined” if v = undefined

“null” if v = null

“boolean” if v ∈ Bool
“number” if v ∈ Num
“string” if v ∈ Str
“object” if v ∈ L ∧ (v,@code) /∈ dom(h)

“function” if v ∈ L ∧ (v,@code) ∈ dom(h)

I===(v1, v2) ,


false if Itype(v1) 6= Itype(v2)

true if (v1 = −0 ∧ v2 = +0) ∨ (v1 = +0 ∧ v2 = −0)

false if Itype(v1) = Itype(v2) = Number ∧ (v1 = NaN ∨ v2 = NaN)

v1 = v2 otherwise

SelectProto(v) ,

{
l if v ∈ L
lop otherwise

145

SelectThis(w) ,

{
l if w = l.ox

undefined otherwise

FunRet(o) ,


undefined if o = v or o = empty

v if o = ret v

error v if o = error v

ConsRet(o, l) ,


error v if o = error v

l′ if o = ret l′

l otherwise

defs(s) ,



∅ if s ∈ EJS
{x} if s = varx

defs(s1) ∪ defs(s2) if s = s1; s2

defs(s1) ∪ defs(s2) if s = if(e) {s1} else {s2}
defs(s) if s = while(e) {s}
∅ if s = break

∅ if s = throw e

∅ if s = return e

Heap update and cell deallocation: h[(l, x) 7→ ω] and h\l.ax.

(l, x) 6∈ dom(h)

h[(l, x) 7→ ω] , h] (l, x) 7→ ω

h = h′] (l, x) 7→ ω′

h[(l, x) 7→ ω] , h] (l, x) 7→ ω

(l, x) 6∈ dom(h)

h\l.ax , h

h = h′] (l, x) 7→ v

h\l.ax , h′

A.2. Expressions and Statements

PBS Semantics for Expressions: ℘,L, vt ` 〈h, e〉 ⇓m 〈h, o〉.

This

℘, , vt ` 〈h, this〉 ⇓m 〈h, vt〉

Variable

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, id(x, o1)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, x〉 ⇓m 〈hf , of 〉

Variable-ref

` 〈h, id(x, v)〉 ⇓m 〈h, v.vx〉

Literal

` 〈h, λ〉 ⇓m 〈h, λ〉

Object Literal

hf = h] l 7→ {@proto : lop, @class : “Object”, @extensible : true}
` 〈h, { } 〉 ⇓m 〈hf , l〉

Computed Access

℘,L, vt ` 〈h, e1〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, o1[e2]1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1[e2]〉 ⇓m 〈hf , of 〉

Computed Access - 1

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, v1[o1]2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1[e2]1〉 ⇓m 〈hf , of 〉

Computed Access - 2

℘,L, vt ` 〈h, Icoc(v1)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, v1[v2](o1)3〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1[v2]2〉 ⇓m 〈hf , of 〉

Computed Access - 3

℘,L, vt ` 〈h, Its(v2)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, v1[o1]4〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1[v2](empty)3〉 ⇓m 〈hf , of 〉

Computed Access - 4

` 〈h, v[p]4〉 ⇓m 〈h, v.op〉

146

Constructor Call

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, new1 o1(e)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, new e(e)〉 ⇓m 〈hf , of 〉

Constructor Call - 1

℘,L, vt ` 〈h, iterate{e}〉 ⇓m 〈h1, v〉
℘,L, vt ` 〈h1, new2 v(v)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, new1 v(e)〉 ⇓m 〈hf , of 〉

Constructor Call - 2 (Fault)

¬Pc(h, v) hf = h] err(l, ltep)

` 〈h, new2 v(v)〉 ⇓m 〈hf , error l〉

Constructor Call - 2

Pc(h, l) v = h(l, ”prototype”) l′ = SelectProto(v)

h1 = h] lo 7→ {@proto : l′, @class : “Object”, @extensible : true}
m′ = h(l,@code) L = h(l,@scope)

℘(m′) = λx1, ...xn2
.s

∀1≤n≤n1
v′n = vn

∀n1<n≤n2v
′
n = undefined

℘,L, lo ` 〈h,m′(x, v′)〉 ⇓m′ 〈hf , o〉
℘, , ` 〈h, new2 l(v1, ...vn1)〉 ⇓m 〈hf ,ConsRet(o, lo)〉

Function Call

℘,L, vt ` 〈h, e〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1(e)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e(e)〉 ⇓m 〈hf , of 〉

Function Call - 1

℘,L, vt ` 〈h, Igv(w)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, (w, o1)(e)2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w(e)1〉 ⇓m 〈hf , of 〉

Function Call - 2

℘,L, vt ` 〈h, iterate{e}〉 ⇓m 〈h1, v〉
℘,L, vt ` 〈h1, (w, v)(v)3〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, (w, v)(e)2〉 ⇓m 〈hf , of 〉

Function Call - 3

Pc(h, v) vt = SelectThis(w)

m′ = h(v,@code) L = h(v,@scope)

℘(m′) = λx1, ...xn2
.s

∀1≤n≤n1v
′
n = vn

∀n1<n≤n2
v′n = undefined

℘,L, vt ` 〈h,m′(x, v′)〉 ⇓m′ 〈hf , of 〉
℘, , ` 〈h, (w, v)(v1, ...vn1

)3〉 ⇓m 〈hf , of 〉

Function Call - 3 (Fault)

¬Pc(h, v) hf = h] err(l, ltep)

` 〈h, (w, v)(v)3〉 ⇓m 〈hf , error l〉

Function Literal

hf = h] l′ 7→ {@proto : lop, @class : “Object”, @extensible : true}] fun(l, L, l′,m)

℘,L, ` 〈h, function (x){s}m〉 ⇓m 〈hf , l〉

Delete

℘,L, vt ` 〈h, e〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, del1 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, delete e〉 ⇓m 〈hf , of 〉

Delete - 1 (Not A Ref)

` 〈h1, del1 v〉 ⇓m 〈h, true〉

Delete - 1 (Fault)

v = undefined ∨ ER(v.ap)

hf = h] err(l, lsep)

` 〈h, del1 v.ap〉 ⇓m 〈hf , error l〉

Delete - 1 (Prop Ref)

℘,L, vt ` 〈h, Ito(v)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, del2 o1.op〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, del1 v.op〉 ⇓m 〈hf , of 〉

Delete - 2

℘,L, l ` 〈h, Id(p, true)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, del2 l.op〉 ⇓m 〈hf , of 〉

147

typeof

℘,L, vt ` 〈h, e〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, typeof1 o〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, typeof e〉 ⇓m 〈hf , of 〉

typeof - 1 (unresolved)

` 〈h, typeof1 undefined.ap〉 ⇓m 〈h, “undefined”〉

typeof -1 (ref)

v 6= undefined

℘,L, vt ` 〈h, Igv(v.ap)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, typeof1 o〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, typeof1 v.ap〉 ⇓m 〈hf , of 〉

typeof - 1 (val)

` 〈h, typeof1 v〉 ⇓m 〈h, Itypeof (h, v)〉

Addition Operator

℘,L, vt ` 〈h, e1〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, o1 +1 e2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1 + e2〉 ⇓m 〈hf , of 〉

Addition Operator - 1

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, v1 +2 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1 +1 e2〉 ⇓m 〈hf , of 〉

Addition Operator - 2

℘,L, vt ` 〈h, Itp(v1)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, o +3 v2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1 +2 v2〉 ⇓m 〈hf , of 〉

Addition Operator - 3

℘,L, vt ` 〈h, Itp(v2)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, v1 +4 o〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1 +3 v2〉 ⇓m 〈hf , of 〉

Addition Operator - Concat

v1 ∈ Str ∨ v2 ∈ Str
v = Iprimts (v1) · Iprimts (v2)

` 〈h, v1 +4 v2〉 ⇓m 〈h, v〉

Addition Operator - Plus

v1 /∈ Str ∧ v2 /∈ Str
v = Iprimtn (v1) + Iprimtn (v2)

` 〈h, v1 +4 v2〉 ⇓m 〈h, v〉

Strict Equality

℘,L, vt ` 〈h, e1〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, o1 ===1 e2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1 === e2〉 ⇓m 〈hf , of 〉

Strict Equality - 1

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, v1 ===2 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1 ===1 e2〉 ⇓m 〈hf , of 〉

Strict Equality - 2

` 〈h, v1 ===2 v2〉 ⇓m 〈h, I===(v1, v2)〉

Strict Inequality

℘,L, vt ` 〈h, e1〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, o1 ! ==1 e2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1 ! == e2〉 ⇓m 〈hf , of 〉

Strict Inequality - 1

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, v1 ! ==2 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, v1 ! ==1 e2〉 ⇓m 〈hf , of 〉

Strict Inequality - 2 (true)

I===(v1, v2) = true

` 〈h, v1 ! ==2 v2〉 ⇓m 〈h, false〉

Strict Inequality - 2 (false)

I===(v1, v2) = false

` 〈h, v1 ! ==2 v2〉 ⇓m 〈h, true〉

Assignment - 1

℘,L, vt ` 〈h, e1〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1 =1 e2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈hf , of 〉

Assignment - 2 and 3

℘,L, vt ` 〈h, e2〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, w1 =2 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w1 =1 e2〉 ⇓m 〈hf , of 〉

148

Assignment - 4

p ∈ {eval, arguments}
hf = h] err(l′, lsep)

` 〈h, l.vp =2 v〉 ⇓m 〈hf , error l′〉

Assignment - 5

(w1 = v1 ∨ w1 = l.op ∨
(w1 = l.vp ∧ p 6∈ {eval, arguments}))
℘,L, vt ` 〈h, Ipv(w1, v2)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, o1 =3 v2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,w1 =2 v2〉 ⇓m 〈hf , of 〉

Assignment - 6

` 〈h, =3 v〉 ⇓m 〈h, v〉

PBS Semantics for Statements: ℘,L, vt ` 〈h, s〉 ⇓m 〈h, o〉.

Sequence

℘,L, vt ` 〈h, s1〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, seq1(o1, s2)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, s1; s2〉 ⇓m 〈hf , of 〉

Sequence - 1

o1 6= error v o1 6= ret v o1 6= breakw

℘,L, vt ` 〈h, s2〉 ⇓m 〈h1, o2〉
℘,L, vt ` 〈h1, seq2(o1, o2)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, seq1(o1, s2)〉 ⇓m 〈hf , of 〉

Sequence - 1 (return)

` 〈h, seq1(ret v,)〉 ⇓m 〈h, ret v〉
Sequence - 1 (break)

` 〈h, seq1(breakw,)〉 ⇓m 〈h, breakw〉

Sequence - 2 (non-empty)

o 6= empty o 6= break empty

` 〈h, seq2(, o)〉 ⇓m 〈h, o〉

Sequence - 2 (empty)

` 〈h, seq2(o, empty)〉 ⇓m 〈h, o〉
Sequence - 2 (break)

` 〈h, seq2(w, break empty)〉 ⇓m 〈h, breakw〉

Var Decl

` 〈h, varx〉 ⇓m 〈h, empty〉

Expr

℘,L, vt ` 〈h, e〉 ⇓γm 〈hf , of 〉
℘,L, vt ` 〈h, e〉 ⇓m 〈hf , of 〉

if

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, if1(o1) {s1} else {s2}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, if(e) {s1} else {s2}〉 ⇓m 〈hf , of 〉

if - 1 (true)

Itb(v) = true ℘,L, vt ` 〈h, s1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, if1(v) {s1} else {s2}〉 ⇓m 〈hf , of 〉

if - 1 (false)

Itb(v) = false ℘,L, vt ` 〈h, s2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, if1(v) {s1} else {s2}〉 ⇓m 〈hf , of 〉

While

℘,L, vt ` 〈h,while1(e){s, empty}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,while(e) {s}〉 ⇓m 〈hf , of 〉

While - 1

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1,while2(o1, e){s, o}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,while1(e){s, o}〉 ⇓m 〈hf , of 〉

While - 2 (true)

Itb(v) = true ℘,L, vt ` 〈h, s〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1,while3(e){s, o, o1}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,while2(v, e){s, o}〉 ⇓m 〈hf , of 〉

While - 2 (false)

Itb(v) = false

` 〈h,while2(v,){ , o}〉 ⇓m 〈h, o〉

While - 3 (value)

℘,L, vt ` 〈h,while1(e){s, v}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,while3(e){s, o, v}〉 ⇓m 〈hf , of 〉

While - 3 (return)

` 〈h,while3(e){s, o, ret v}〉 ⇓m 〈h, ret v〉

While - 3 (empty)

℘,L, vt ` 〈h,while1(e){s, o}〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h,while3(e){s, o, empty}〉 ⇓m 〈hf , of 〉

While - 3 (break)

` 〈h,while3(e){s, o, break v}〉 ⇓m 〈h, v〉

149

Break

` 〈h, break 〉 ⇓m 〈h, break empty〉

Return

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, return1 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, return e〉 ⇓m 〈hf , of 〉

Return - 1

` 〈h, return1 v〉 ⇓m 〈h, ret v〉

Throw

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, o1〉
℘,L, vt ` 〈h1, throw1 o1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, throw e〉 ⇓m 〈hf , of 〉

Throw - 1

` 〈h, throw1 v〉 ⇓m 〈h, error v〉

Error Propagation

` 〈h, s�〉 ⇓m 〈h, error v〉

s� , (error v)[e]1 | v1[error v]2 | v1[v2](error v)3 | v1[error v]4

| new1 (error v)(e) | new2 v(error v) | iterate1{e, v :: (error v)}
| (error v)(e)1 | (w, error v)(e)2 | (w, v)(error v)3

| del1 (error v) | del2 (error v).op | typeof1 error v
| (error v) +1 e | v +2 (error v) | (error v) +3 e | v +4 (error v)

| (error v) ===1 e | v ===2 (error v) | (error v) ! ==1 e | v ! ==2 (error v)

| (error v) =1 e | w =2 (error v) | (error v) =3 v

| seq1(error v, s) | seq2(o, error v)

| if1(error v) {s1} else {s2} | while2(error v, e){s, o} | while3(e){s, o, error v}
| return1 (error v) | throw1 (error v)

A.3. Property Descriptors

1. makeDataDesc(d) : create a (fully populated) data descriptor based on the appropriate fields of

d.

makeDataDesc(d) =



[[V]] : if d.[[V]] exists then d.[[V]] else undefined

[[W]] : if d.[[W]] exists then d.[[W]] else false

[[C]] : if d.[[C]] exists then d.[[C]] else false

[[E]] : if d.[[E]] exists then d.[[E]] else false

2. makeAccessorDesc(d) : create a (fully populated) accessor descriptor based on the appropriate

fields of d.

makeAccessorDesc(d) =



[[G]] : if d.[[G]] exists then d.[[G]] else undefined

[[S]] : if d.[[S]] exists then d.[[S]] else undefined

[[C]] : if d.[[C]] exists then d.[[C]] else false

[[E]] : if d.[[E]] exists then d.[[E]] else false

3. containsDesc(dc, d) =


true : if all fields that exist in d also exist in dc,

and for each such field X, SameValue(dc.[[X]], d.[[X]])

false : otherwise

150

4. changeEnumOnNotConf(dc, d) =


true : dc = false ∧

(d.[[C]] = true ∨ (d.[[E]] exists ∧ dc.[[E]] = ¬d.[[E]]))

false : otherwise

5. changeDataOnNotConf(dc, d) =



true : dc.[[C]] = false ∧ dc.[[W]] = false ∧

(d.[[W]] = true ∨ (d.[[V]] exists ∧

¬SameValue(dc.[[V]], d.[[V]])))

false : otherwise

6. changeAccOnNotConf(dc, d) =



true : dc.[[C]] = false ∧

((d.[[G]] exists ∧ ¬SameValue(dc.[[G]], d.[[G]])) ∨

((d.[[S]] exists ∧ ¬SameValue(dc.[[S]], d.[[S]])))

false : otherwise

7. updateDesc(dc, d) =


[[X]] : if d.[[X]] exists then d.[[X]]

else if dc.[[X]] exists then dc.[[X]] else not defined

for X ∈ {V,W,G, S,C,E}

8. IsDataDescriptor(d) : true, iff d is a data descriptor.

IDD-undefined

¬Pdd(undefined)

IDD-true

(d, [[D]]) ∈ h ∨ (d, [[W]]) ∈ h
Pdd(d)

IDD-false

(d, [[V]]) /∈ h ∧ (d, [[W]]) /∈ h
¬Pdd(d)

9. IsAccessorDescriptor(d) : true, iff d is an accessor descriptor.

IAD-undefined

¬Pad(undefined)

IAD-true

(d, [[G]]) ∈ h ∨ (d, [[S]]) ∈ h
Pad(d)

IAD-false

(d, [[G]]) /∈ h ∧ (d, [[S]]) /∈ h
¬Pad(d)

10. IsGenericDescriptor(d) : true, iff d is neither a data nor an accessor descriptor.

IPD-undefined

¬Pgd(undefined)

IPD-true

¬Pdd(d) ∧ ¬Pad(d)

Pgd(d)

IPD-false

Pdd(d) ∨ Pad(d)

¬Pgd(d)

A.4. Internal Properties

1. General GetOwnProperty(P) — Igop(x): : returns the property descriptor of the named own

property of the this object, or undefined if absent. Does not traverse the prototype chain. String

objects have different behaviour than all other objects.

GOP-default

h(lt,@class) 6= “String”

℘,L, lt ` 〈h, Iogop(x)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igop(x)〉 ⇓m 〈hf , of 〉

GOP-string

h(lt,@class) = “String”

℘,L, lt ` 〈h, Isgop(x)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igop(x)〉 ⇓m 〈hf , of 〉

151

2. GetOwnProperty(P) — Iogop(p) : returns the property descriptor of the named own property of

the this object, or undefined if absent. Does not traverse the prototype chain.

OGOP-undef

(lt, p) /∈ dom(h)

℘, , lt ` 〈h, Iogop(p)〉 ⇓m 〈h, undefined〉

OGOP-def

h(lt, p) = d

℘, , lt ` 〈h, Iogop(p)〉 ⇓m 〈h, desc d〉

3. GetOwnProperty(P) — Isgop(x) : provides access to named properties corresponding to the indi-

vidual characters of String objects.

SGOP-general

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o1〉
℘,L, lt ` 〈h1, Isgop(p, o1)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Isgop(p)〉 ⇓m 〈hf , of 〉

SGOP-exists

` 〈h, Isgop(, desc d)1〉 ⇓m 〈h, desc d〉

SGOP-notaposint

Iprimts (abs(Iprimti (x))) 6= p

` 〈h, Isgop(p, undefined)1〉 ⇓m 〈h, undefined〉

SGOP-posint

Iprimts (abs(Iprimti (p))) = p

h(lt,@primval) = s

length(s) ≤ Iprimti (p)

℘, , lt ` 〈h, Isgop(p, undefined)1〉 ⇓m 〈h, undefined〉

SGOP-index

Iprimts (abs(Iprimti (p))) = p

h(lt,@primval) = s

length(s) > Iprimti (p)

charAt(s, Iprimti (p)) = v

d = {[[V]] : v, [[W]] : false, [[C]] : false, [[E]] : true}
℘, , lt ` 〈h, Isgop(p, undefined)1〉 ⇓m 〈h, desc d〉

4. GetProperty(P) — Igp(p) : returns the property descriptor of the named property of the this

object, or undefined if absent. Traverses the prototype chain.

GP-getOwn

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Igp(p, o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈hf , of 〉

GP-ownDef

` 〈h, Igp(, desc d)1〉 ⇓m 〈h, desc d〉

GP-ownUndef-protoNull

h(lt,@proto) = null

℘, , lt ` 〈h, Igp(, undefined)1〉 ⇓m 〈h, undefined〉

GP-ownUndef-protoNotNull

h(lt,@proto) = l′t ℘,L, l′t ` 〈h, Igp(p)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Igp(p, undefined)1〉 ⇓m 〈hf , of 〉

5. Get(P) — Ig(p) : returns the value of the named property of the this object.

152

G-getProp

℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ig(o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ig(p)〉 ⇓m 〈hf , of 〉

G-propUndef

` 〈h, Ig(undefined)1〉 ⇓m 〈h, undefined〉

G-propDefData

Pdd(d) v = d.[[V]]

` 〈h, Ig(desc d)1〉 ⇓m 〈h, v〉

G-propDefAccGetUndef

Pad(d) d.[[G]] = undefined

` 〈h, Ig(desc d)1〉 ⇓m 〈h, undefined〉

G-propDefAccGetDef

Pad(d) ag = d.[[G]] 6= undefined

℘,L, ag ` 〈h, Icall(ag, [])〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ig(desc d)1〉 ⇓m 〈hf , of 〉

6. CanPut(P) — Icp(p) - returns true iff a Put operation can be performed on a given property of

the this object.

CP-getOwnProp

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h, o〉
℘,L, lt ` 〈h, Icp(p, o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Icp(p)〉 ⇓m 〈hf , of 〉

CP-ownPropData

Pdd(d) bw = d.[[W]]

` 〈h, Icp(, desc d)1〉 ⇓m 〈h, bw〉

CP-getProp

¬Pdd(d) ℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Icp(o)2〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Icp(p, desc d)1〉 ⇓m 〈hf , of 〉

CP-propNotFound

v = h(lt,@extensible)

℘, , lt ` 〈h, Icp(undefined)2〉 ⇓m 〈h, v〉

CP-propAccSetUndef

Pad(d) d.[[S]] = undefined

` 〈h, Icp(desc d)2〉 ⇓m 〈h, false〉

CP-propAccSetDef

Pad(d) d.[[S]] 6= undefined

` 〈h, Icp(desc d)2〉 ⇓m 〈h, true〉

CP-propDataExtens

Pdd(d) bw = d.[[W]] h(lt,@extensible) = true

℘, , lt ` 〈h, Icp(desc d)2〉 ⇓m 〈h, bw〉

CP-propDataNotExtens

Pdd(d) h(lt,@extensible) = false

℘, , lt ` 〈h, Icp(desc d)2〉 ⇓m 〈h, false〉

7. Put(P, V, Throw) — Ip(p, v, bt) : sets the specified named property of the this object to the spec-

ified value.

P-canPut

℘,L, lt ` 〈h, Icp(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(p, v, bt, o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ip(p, v, bt)〉 ⇓m 〈hf , of 〉

P-cannotPutThrow

hf = h] err(l, ltep)

` 〈h, Ip(, , true, false)1〉 ⇓m 〈hf , error l〉

P-cannotPutNoThrow

` 〈h, Ip(, , false, false)1〉 ⇓m 〈h, empty〉

153

P-canPutGetOwnProp

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(p, v, bt, o)2〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ip(p, v, bt, true)1〉 ⇓m 〈hf , of 〉

P-canPutOwnPropData

Pdd(d) d′ = {[[V]] : v}
℘,L, lt ` 〈h, Iodop(p, d′, bt)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(o)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ip(p, v, bt, desc d)2〉 ⇓m 〈hf , of 〉

P-getProp

¬Pdd(d) ℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(p, v, bt, o)3〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ip(p, v, bt, desc d)2〉 ⇓m 〈hf , of 〉

P-propAccSet

Pad(d) as = d.[[S]]

℘,L, as ` 〈h, Icall(as, [v])〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(o)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Icp(, v, , desc d)3〉 ⇓m 〈hf , of 〉

P-propDOP

¬Pad(d) d′ = {[[V]] : v, [[W]] : true, [[C]] : true}
℘,L, lt ` 〈h, Iodop(p, d′, bt)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Ip(o)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Icp(p, v, bt, desc d)3〉 ⇓m 〈hf , of 〉

P-PutReturn

` 〈h, Ip(v)4〉 ⇓m 〈h, empty〉

8. HasProperty(P) — Ihp(p) : returns true iff the this object has the specified property in its pro-

totype chain.

HP-getProp

℘,L, lt ` 〈h, Igp(p)〉 ⇓m 〈h1, o1〉
℘,L, lt ` 〈h1, Ihp(o1)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ihp(p)〉 ⇓m 〈hf , of 〉

HP-propUndef

` 〈h, Ihp(undefined)1〉 ⇓m 〈h, false〉

HP-propDef

` 〈h, Ihp(desc d)1〉 ⇓m 〈h, true〉

9. Delete(P, Throw) — Id(p, bt) : removes the specified property from the this object

D-getOwnProp

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Id(p, bt, o)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Id(p, bt)〉 ⇓m 〈hf , of 〉

D-ownPropUndef

` 〈h, Id(, , undefined)1〉 ⇓m 〈h, true〉

D-ownPropDef

bc = d.[[C]]

℘,L, lt ` 〈h, Id(p, bt, bc)2〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Id(p, bt, desc d)1〉 ⇓m 〈hf , of 〉

154

D-ownPropDefNotConfThrow

hf = h] err(l, ltep)

` 〈h, Ihp(, true, false)2〉 ⇓m 〈hf , error l〉

D-ownPropDefNotConfNoThrow

` 〈h, Ihp(, false, false)2〉 ⇓m 〈h, false〉

D-ownPropDefConf

hf = h\lt.x
℘, , lt ` 〈h, Ihp(x, , true)2〉 ⇓m 〈hf , true〉

10. DefaultValue(hint) — Idv(x) : returns the default value for the this object.

DV-defNum

℘,L, lt ` 〈h, Idv(“valueOf”, “toString”)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv()〉 ⇓m 〈hf , of 〉

DV-hintNum

℘,L, lt ` 〈h, Idv(“valueOf”, “toString”)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(“Number”)〉 ⇓m 〈hf , of 〉

DV-hintStr

℘,L, lt ` 〈h, Idv(“toString”, “valueOf”)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(“String”)〉 ⇓m 〈hf , of 〉

DV-firstPass

℘,L, lt ` 〈h, Idv(x1, Idv(x2)2)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(x1, x2)1〉 ⇓m 〈hf , of 〉

DV-secondPass

℘,L, lt ` 〈h, Idv(x, Idv()3)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(x)2〉 ⇓m 〈hf , of 〉

DV-error

hf = h] err(l, ltep)

` 〈h, Idv()3〉 ⇓m 〈hf , error l〉

DV-getMethod

℘,L, lt ` 〈h, Ig(x)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Idv(I, o)5〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(x, I)4〉 ⇓m 〈hf , of 〉

DV-NotCallable

¬Pc(h, v) ℘,L, lt ` 〈h, I〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(I, v)5〉 ⇓m 〈hf , of 〉

DV-Callable

Pc(h, v) ℘,L, lt ` 〈h, v()〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Idv(I, o)6〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(I, v)5〉 ⇓m 〈hf , of 〉

DV-CallablePrimitive

Ppv(v)

` 〈h, Idv(, v)6〉 ⇓m 〈h, v〉

DV-CallableNotPrimitive

¬Ppv(v) ℘,L, lt ` 〈h, I〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idv(I, v)6〉 ⇓m 〈hf , of 〉

11. General DefineOwnProperty(P, Desc, Throw) — Idop(p, d, bt) : creates or modifies the specified

named own property of the this object using the specified property descriptor. Array objects

have different behaviour than all other objects. We do not give operational semantics for the

Array objects.

155

DOP-default

h(lt,@class) 6= “Array”

℘,L, lt ` 〈h, Iodop(p, d, bt)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idop(p, d, bt)〉 ⇓m 〈hf , of 〉

DOP-array

h(lt,@class) = “Array”

℘,L, lt ` 〈h, Iadop(p, d, bt)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Idop(p, d, bt)〉 ⇓m 〈hf , of 〉

12. Default DefineOwnProperty(P, Desc, Throw) — Iodop(p, d, bt) : creates or modifies the specified

named own property of the this object using the specified property descriptor.

DOP-getOwnPropAndExtens

b = h(lt,@extensible)

℘,L, lt ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, lt ` 〈h1, Iodop(p, d, bt, o, b)1〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt)〉 ⇓m 〈hf , of 〉

DOP-undefinedNotExtens

℘,L, lt ` 〈h, Iodop(bt)r〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, undefined, false)1〉 ⇓m 〈hf , of 〉

DOP-undefinedExtensGenData

Pgd(d) ∨ Pdd(d)

d′ = makeDataDesc(d)

hf = h[(lt, p) 7→ d′]

℘, , lt ` 〈h, Iodop(p, d, , undefined, true)1〉 ⇓m 〈hf , true〉

DOP-undefinedExtensAcc

Pad(d)

d′ = makeAccessorDesc(d)

hf = h[(lt, p) 7→ d′]

℘, , lt ` 〈h, Iodop(p, d, , undefined, true)1〉 ⇓m 〈h′, true〉

DOP-noUpdates

containsDesc(dc, d) = true

` 〈h, Iodop(p, d, , desc dc,)1〉 ⇓m 〈h, true〉

DOP-updates

containsDesc(dc, d) = false

℘,L, lt ` 〈h, Iodop(p, d, bt, dc)2〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, desc dc,)1〉 ⇓m 〈hf , of 〉

DOP-changeEnumNotConfig

changeEnumOnNotConf(dc, d) = true

℘,L, lt ` 〈h, Iodop(bt)r〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(, d, bt, dc)2〉 ⇓m 〈hf , of 〉

DOP-updates

changeEnumOnNotConf(dc, d) = false

℘,L, lt ` 〈h, Iodop(p, d, bt, dc)3〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)2〉 ⇓m 〈hf , of 〉

DOP-isGeneric

Pgd(d) ℘,L, lt ` 〈h, Iodop(p, d, dc)w〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, , dc)3〉 ⇓m 〈hf , of 〉

DOP-notBothData

¬Pgd(d) Pdd(d) 6= Pdd(dc)
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)4〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)3〉 ⇓m 〈hf , of 〉

156

DOP-bothData

¬Pgd(d) Pdd(d) Pdd(dc)
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)5〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)3〉 ⇓m 〈hf , of 〉

DOP-bothAccessor

¬Pgd(d) Pad(d) Pad(dc)
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)6〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, bt, dc)3〉 ⇓m 〈hf , of 〉

DOP-differentNotConf

dc.[[C]] = false

℘,L, lt ` 〈h, Iodop(bt)r〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(, , bt, dc)4〉 ⇓m 〈hf , of 〉

DOP-dataNotConf

changeDataOnNotConf(dc, d) = true

℘,L, lt ` 〈h, Iodop(bt)r〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(, d, bt, dc)5〉 ⇓m 〈hf , of 〉

DOP-accessorNotConf

changeAccOnNotConf(dc, d) = true

℘,L, lt ` 〈h, Iodop(bt)r〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(, d, bt, dc)6〉 ⇓m 〈hf , of 〉

DOP-differentConf

dc.[[C]] = true

℘,L, lt ` 〈h, Iodop(p, d, dc)7〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, , dc)4〉 ⇓m 〈hf , of 〉

DOP-dataOk

changeDataOnNotConf(dc, d) = false

℘,L, lt ` 〈h, Iodop(p, d, dc)w〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, , dc)5〉 ⇓m 〈hf , of 〉

DOP-accessorOk

changeAccOnNotConf(dc, d) = false

℘,L, lt ` 〈h, Iodop(p, d, dc)w〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, , dc)6〉 ⇓m 〈hf , of 〉

DOP-toAccessor

Pdd(dc)
d′ = {[[G]] : undefined, [[S]] : undefined, [[C]] : dc.[[C]], [[E]] : dc.[[E]]}
h′ = h[(lt, p) 7→ d′]

℘,L, lt ` 〈h′, Iodop(p, d, d′)w〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, dc)7〉 ⇓m 〈hf , of 〉

DOP-write

d′ = updateDesc(dc, d)

hf = h[(lt, p) 7→ d′]

℘, , lt ` 〈h, Iodop(p, d, dc)w〉 ⇓m 〈hf , true〉

DOP-toData

¬Pdd(dc)
d′ = {[[V]] : undefined, [[W]] : false, [[C]] : dc.[[C]], [[E]] : dc.[[E]]}
h′ = h[(lt, p) 7→ d′]

℘,L, lt ` 〈h′, Iodop(p, d, d′)w〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Iodop(p, d, dc)7〉 ⇓m 〈hf , of 〉

DOP-rejectThrow

hf = h] err(l, ltep)

` 〈h, Iodop(true)r〉 ⇓m 〈hf , error l〉
DOP-rejectNoThrow

` 〈h, Iodop(false)r〉 ⇓m 〈h, false〉

157

A.5. Auxiliary Internal Functions

1. GetIdentifierReference(x) — Iσ(x): scope chain traversal.

Gir-current

(l, x) ∈ dom(h) l 6= lg

, L@ [l], ` 〈h, Iσ(x)〉 ⇓m 〈h, l〉

Gir-next

(l, x) /∈ dom(h) l 6= lg

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , o〉
℘,L@ [l], vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , o〉

Gir-hasProp

℘, [lg], lg ` 〈h, Ihp(x)〉 ⇓m 〈h, o1〉
℘, [lg], vt ` 〈h, Iσ(o1)1〉 ⇓m 〈hf , of 〉
℘, [lg], vt ` 〈h, Iσ(x)〉 ⇓m 〈hf , of 〉

Gir-global

` 〈h, Iσ(true)1〉 ⇓m 〈h, lg〉
Gir-undef

` 〈h, Iσ(false)1〉 ⇓m 〈h, undefined〉

2. iterate{e}: returns the list of values obtained by evaluating and dereferencing each expression in

e.

Iterate

℘,L, vt ` 〈h, iterate1{e, []}〉 ⇓m 〈hf , vf 〉
℘,L, vt ` 〈h, iterate{e}〉 ⇓m 〈hf , vf 〉

Iterate - 1 (non-empty)

℘,L, vt ` 〈h, e〉 ⇓γm 〈h1, v〉
℘,L, vt ` 〈h1, iterate1{e, v :: v}〉 ⇓m 〈hf , vf 〉
℘,L, vt ` 〈h, iterate1{e :: e, v}〉 ⇓m 〈hf , vf 〉

Iterate - 1 (empty)

` 〈h, iterate1{[], v}〉 ⇓m 〈h, v〉

3. Call(params, args) — m(x, v): evaluates the body of the function m.

Call

℘(m) = λx.s ℘, L@ [ls], lt ` 〈h] envm(ls, x, v, s), s〉 ⇓m 〈hf , o〉
℘,L, lt ` 〈h,m(x, v)〉 ⇓m 〈hf ,FunRet(o)〉

4. ToPrimitive(v, x) — Itp(v, x): converts v to a primitive value if it is an object.

ToPrimitive - Not An Object

Ppv(v)

` 〈h, Itp(v,)〉 ⇓m 〈h, v〉

ToPrimitive - Object

℘,L, l ` 〈h, Idv(x)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Itp(l, x)〉 ⇓m 〈hf , of 〉

5. ToNumber(v) — Itn(v) : converts v to a number.

ToNumber - Prim

Ppv(v)

` 〈h, Itn(v)〉 ⇓m 〈h, Iprimtn (v)〉

ToNumber - Object

℘,L, vt ` 〈h, Itp(l, “Number”)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, Itn(o1)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Itn(l)〉 ⇓m 〈hf , of 〉

158

ToNumber - 1

` 〈h, Itn(v)1〉 ⇓m 〈h, Iprimtn (v)〉

6. ToInteger(v) — Iti(v) : converts v to an integer.

ToInteger - Prim

Ppv(v)

` 〈h, Iti(v)〉 ⇓m 〈h, Iprimti (v)〉

ToInteger - Object

℘,L, vt ` 〈h, Itn(l)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, Iti(o1)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iti(l)〉 ⇓m 〈hf , of 〉

ToInteger - 1

` 〈h, Iti(v)1〉 ⇓m 〈h, Iprimti (v)〉

7. ToString(v) — Its(v) : converts v to a string.

ToString - Prim

Ppv(v)

` 〈h, Its(v)〉 ⇓m 〈h, Iprimts (v)〉

ToString - Object

℘,L, vt ` 〈h, Itp(l)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, Its(o1)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Its(l)〉 ⇓m 〈hf , of 〉

ToString - 1

` 〈h, Its(v)1〉 ⇓m 〈h, Iprimts (v)〉

8. ToObject(v) — Ito(v): converts v to an object.

ToObject-throw

v = null ∨ v = undefined

hf = h] err(l, ltep)

` 〈h, Ito(v)〉 ⇓m 〈hf , error l〉

ToObject-boolean

℘,L, lt ` 〈h, Icb (b)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ito(b)〉 ⇓m 〈hf , of 〉

ToObject-numbers

℘,L, lt ` 〈h, Icn(n)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ito(n)〉 ⇓m 〈hf , of 〉

ToObject-strings

℘,L, lt ` 〈h, Ics(m)〉 ⇓m 〈hf , of 〉
℘,L, lt ` 〈h, Ito(m)〉 ⇓m 〈hf , of 〉

ToObject-object

` 〈h, Ito(l)〉 ⇓m 〈h, l〉

9. CheckObjectCoercible(v) — Icoc(v) : throws an exception if v is null or undefined.

COC

v 6= null ∧ v 6= undefined

` 〈h, Icoc(v)〉 ⇓m 〈h, empty〉

COC-throw

v = null ∨ v = undefined

hf = h] err(l, ltep)

` 〈h, Icoc(v)〉 ⇓m 〈hf , error l〉

10. IsCallable(h, v) — Pc(h, v) : in order for a value v ∈ VJS to be callable, it must be an object

that has the internal @code property.

IC-true

(l,@code) ∈ dom(h)

Pc(h, l)

IC-false

v 6= l ∨ (l,@code) /∈ dom(h)

¬Pc(h, v)

159

11. IsPrimitiveValue(v) — Ppv(v) : a value is primitive if it is not an object location.

IPV-false

¬Ppv(l)

IPV-true

v 6= l

Ppv(v)

A.6. Operations on References

1. Get(P) — Iig(p) internal method for GetValue.

iG-toObject

℘,L, vt ` 〈h, Ito(vt)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iig(p, o)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iig(p)〉 ⇓m 〈hf , of 〉

iG-getProperty

℘,L, l ` 〈h, Igp(p)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iig(o)2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iig(p, l)1〉 ⇓m 〈hf , of 〉

iG-propUndefined

` 〈h, Iig(undefined)2〉 ⇓m 〈h, undefined〉

iG-propData

Pdd(d) v = d.[[V]]

` 〈h, Iig(desc d)2〉 ⇓m 〈h, v〉

iG-propAccessorNoGet

Pad(d) d.[[G]] = undefined

` 〈h, Iig(desc d)2〉 ⇓m 〈h, undefined〉

iG-propAccessorGet

Pad(d) ag = d.[[G]] 6= undefined

℘,L, ag ` 〈h, Icall(ag, [])〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iig(desc d)2〉 ⇓m 〈hf , of 〉

2. Put(P,V) — Iip(p, v) internal method for PutValue.

iG-toObject

℘,L, vt ` 〈h, Ito(vt)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iip(p, v, o)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iip(p, v)〉 ⇓m 〈hf , of 〉

iG-canPut

℘,L, l ` 〈h, Icp(p)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iig(p, v, l, o)2〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iig(p, v, l)1〉 ⇓m 〈hf , of 〉

iG-cannotPut

hf = h] err(l, ltep)

` 〈h, Iip(, ,), false)2〉 ⇓m 〈hf , error l〉

iG-canPutGetOwnProp

℘,L, l ` 〈h, Igop(p)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iip(p, v, l, o)3〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iip(p, v, l, true)2〉 ⇓m 〈hf , of 〉

iG-propData

Pdd(d) hf = h] err(l, ltep)

` 〈h, Iip(, , , desc d)3〉 ⇓m 〈hf , error l〉

iG-getProp

¬Pdd(d) ℘,L, l ` 〈h, Igp(p)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iip(v, l, o)4〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iip(p, v, l, desc d)3〉 ⇓m 〈hf , of 〉

iG-propAccessorGet

Pad(d) as = d.[[S]]

℘,L, as ` 〈h, Icall(as, [v])〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Iip(o)5〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Iip(v, l, desc d)4〉 ⇓m 〈hf , of 〉

160

iG-propUndefined

¬Pad(d) hf = h] err(l, ltep)

` 〈h, Iip(, , desc d)4〉 ⇓m 〈hf , error l〉

iG-return

` 〈h, Iip(v)5〉 ⇓m 〈h, empty〉

3. GetValue(W) — Igv(w) : obtaining the value from a reference.

Gv-notReference

` 〈h, Igv(v)〉 ⇓m 〈h, v〉

Gv-unresolvable

hf = h] err(l, lrep)

` 〈h, Igv(undefined.ap)〉 ⇓m 〈hf , error l〉

Gv-noPrimitiveBase

℘,L, l ` 〈h, Ig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(l.op)〉 ⇓m 〈hf , of 〉

Gv-primitiveBase

v /∈ L ℘,L, v ` 〈h, Iig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(v.op)〉 ⇓m 〈hf , of 〉

Gv-variableReferenceLg

℘,L, lg ` 〈h, Ig(p)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Igv(lg.vp)〉 ⇓m 〈hf , of 〉

Gv-variableReferenceNotLg

l 6= lg v = h(l, p)

` 〈h, Igv(l.vp)〉 ⇓m 〈h, v〉

4. PutValue(W, V) — Ipv(w, v) : setting the value of a reference.

PV-notReference

hf = h] err(l, lrep)

` 〈h, Ipv(v,)〉 ⇓m 〈hf , error l〉

PV-unresolvable

hf = h] err(l, lrep)

` 〈h, Ipv(undefined.ap,)〉 ⇓m 〈hf , error l〉

PV-noPrimitiveBase

℘,L, l ` 〈h, Ip(p, v, true)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Ipv(o)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Ipv(l.op, v)〉 ⇓m 〈hf , of 〉

PV-PrimitiveBase

Ppv(v) ℘,L, v ` 〈h, Iip(p, v′)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Ipv(o)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Ipv(v, p, v′)o〉 ⇓m 〈hf , of 〉

PV-variableReferenceLg

℘,L, lg ` 〈h, Ip(p, v, true)〉 ⇓m 〈h1, o〉
℘,L, vt ` 〈h1, Ipv(o)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Ipv(lg.vp, v)〉 ⇓m 〈hf , of 〉

PV-variableReferenceNotLg

l 6= lg

hf = h[(l, p) 7→ v]

` 〈h, Ipv(l.vp, v)〉 ⇓m 〈hf , empty〉

PV-return

` 〈h, Ipv(v)1〉 ⇓m 〈h, empty〉

A.7. Libraries

1. new Boolean (v) : constructs new boolean object with primitive value v.

Boolean Constructor

hf = h] l 7→ {@proto : lbp, @class : “Boolean”, @extensible : true, @primval : Itb(v)}
` 〈h, Icb (v)〉 ⇓m 〈hf , l〉

161

2. new Number ([v]) : constructs new number object with primitive value v.

Number Constructor - no value

℘,L, vt ` 〈h, Icn(+0)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Icn()〉 ⇓m 〈hf , of 〉

Number Constructor - value

℘,L, vt ` 〈h, Itn(v)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, Icn(o1)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Icn(v)〉 ⇓m 〈hf , of 〉

Number Constructor

hf = h] l 7→ {@proto : lnp, @class : “Number”, @extensible : true, @primval : n}
` 〈h, Icn(n)1〉 ⇓m 〈hf , l〉

3. new String ([v]) : constructs new string object with primitive value v.

String Constructor - no value

℘,L, vt ` 〈h, Ics(“”)〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Ics()〉 ⇓m 〈hf , of 〉

String Constructor - value

℘,L, vt ` 〈h, Its(v)〉 ⇓m 〈h1, o1〉
℘,L, vt ` 〈h1, Ics(o1)1〉 ⇓m 〈hf , of 〉
℘,L, vt ` 〈h, Ics(v)〉 ⇓m 〈hf , of 〉

String Constructor

hf = h] l 7→ {@proto : lsp, @class : “String”, @extensible : true, @primval : m}
` 〈h, Ics(m)1〉 ⇓m 〈hf , l〉

162

B. Correctness Proof

B.1. The JS-2-JSIL Compiler

Cm , lambda e, x. Inputs: an expression e and a JSIL variable x

match s with Branching on the type of expression to compile

| λ⇒ Literal value
x := λ, 1. Output var is assigned to λ
[]

| this⇒ This
x := xthis 1. Set output var to value of this
[]

| x⇒ Variable
let x′, xh, x

′
1, x
′
2 = fresh();

t, e, n = fresh() in
match ψm(x) with a. Obtain the index of the ER in which x is stored
| i⇒ b. x is statically declared in the original statement

x′ := nth (xscope, i) 1. Obtain the index of ER in which x is defined
x := [”v”, x′, x], 2. Create a new var reference denoting the variable x
[]

| ⊥ ⇒ c. x is not statically declared in the original statement
xh := hasProperty(lg , x) with perr 1. Check if x is in the prototype chain of the global object
goto [xh] t, e 2. Branch depending on the global object containing x

t : x′1 := lg 3. lg contains x: the base of reference is lg
goto n 4. Go to the end of the reference creation.

e : x′2 := undefined 5. lg does not contain x: the base of reference is undefined
n : x′ := φ(x′1, x

′
2), 6. Joining of the two branches

x := [”v”, x′, x] 7. Create the resulting reference
[xh]

| e1 = e2 ⇒ Assignment
let x1, x2, x′, x′′ = fresh(); a. Fresh vars

c1, e1 = Cm(e1, x1); b. Compile e1
c2, e2 = Cm(e2, x2); c. Compile e2
in d. Generated code:

c1 :: c2 1. Compilation of e1 and e2
x := getValue(x2) with perr 2. Obtain the value denoted by x2
x′ := checkAssignment(x1) with perr 3. Check if assignment to x1 is legal
x′′ := putValue(x1, x) with perr, 4. Assign x to the x1
e1 :: e2 :: [x, x′, x′′]

| { } ⇒ Object literal
x := new () 1. Create new object and assign it to output var
x′ := defaultObj(x, lop), 2. Set prototype of new object to lop
[]

Figure B.1.: Compilation of Expressions, Part 1

163

Cm , lambda e, x. Inputs: an expression e and a JSIL variable x

match e with Branching on the type of expression to compile

| delete e⇒ Field Deletion
let x1, x2, x3, x4 = fresh(); a. Fresh vars

t1, t2, e1, e2, n1, n2 = fresh(); b. Fresh labels
c, e = Cm(e, x1); c. Compile e
in d. Generated code:

c 1. Compilation of e
goto [typeOf (x1) = List ∧ (nth (x1, 0) = v 2. Branch on x1 being a reference

∨nth (x1, 0) = o)] t1, e1
t1 : goto [(nth (x1, 1) = undefined)] t2, e2 3. Branch on x1 having undefined as its base
t2 : xerr := syntaxError() 4. Creating a new syntax error

goto perr 5. Jumping to the error section
e2 : goto [nth (x1, 0) = v] t2, n1 6. Syntax error if x1 is a variable reference
n1 : x2 := toObject(nth (x1, 1)) with perr 7. Converting the base of x1 to an object

x3 := delete(x2, nth (x1, 2), true) with perr 8. Calling internal Delete function
goto n2 9. Jumping to the end of the generated code

e1 : x4 := true 10. If e does not evaluate to a reference, true is returned
n2 : x := φ(x3, x4), 11. Joining of the two branches
e :: [xerr, x2, x3]

| function (x){s}m′ ⇒ Function Literal
let x′ = fresh(); a. Fresh var

in b. Generated code:
x′ := new () 1. Create prototype object
x′ := defaultObj(x, lop) 2. Set @proto of x′ to default prototype
x := new () 3. Create function object
[x,@proto] := lfp 4. Set property @proto of function object to the

default function prototype
[x,@class] := “Function” 5. Set property @class of function object to “Function”
[x,@extensible] := true 6. Set property @extensible of function object to true
[x,@scope] := xsc 7. Set property @scope of function object to

the current scope chain
[x,@code] := m′ 8. Set property @code of function object to the

the identifier of the function literal
[x, prototype] := x′, 9. Set property prototype of function object to x′

[]

| e1 === e2 ⇒ Strict Equality
let x1, x2, x′1, x

′
2 = fresh(); a. Fresh vars

c1, e1 = Cm(e1, x1); b. Compile e1
c2, e2 = Cm(e2, x2); c. Compile e2
in d. Generated code:

c1 1. Compilation of e1
x′1 := getValue(x1) with perr 2. Obtain the value denoted by x1
c2 3. Compilation of e2
x′2 := getValue(x2) with perr 4. Obtain the value denoted by x2
x := strictEq(x′1, x

′
2) with perr 5. Checking if strict equality holds

e1 :: [x′1] :: e2 :: [x′2, x]

| e1! == e2 ⇒ Strict Inequality
let x1, x2, x′1, x

′
2, x3 = fresh(); a. Fresh vars

c1, e1 = Cm(e1, x1); b. Compile e1
c2, e2 = Cm(e2, x2); c. Compile e2
in d. Generated code:

c1 1. Compilation of e1
x′1 := getValue(x1) with perr 2. Obtain the value denoted by x1
c2 3. Compilation of e2
x′2 := getValue(x2) with perr 4. Obtain the value denoted by x2
x3 := strictEq(x′1, x

′
2) with perr 5. Checking if strict equality holds

x := ¬x3 6. Negating the result of strict equality
e1 :: [x′1] :: e2 :: [x′2, x3]

Figure B.2.: Compilation of Expressions, Part 2

164

Cm , lambda e, x. Inputs: an expression e and a JSIL variable x

match e with Branching on the type of expression to compile

| e1 + e2 ⇒ Addition Operator
let xi|10i=1, x

′
1, x
′
2 = fresh(); a. Fresh vars

t1, e1, n = fresh(); b. Fresh labels
c1, e1 = Cm(e1, x1); c. Compile e1
c2, e2 = Cm(e2, x2); d. Compile e2
in e. Generated code:

c1 1. Compilation of e1
x′1 := getValue(x1) with perr 2. Obtain the value denoted by x1
c2 3. Compilation of e2
x′2 := getValue(x2) with perr 4. Obtain the value denoted by x2
x3 := toPrimitive(x′1) with perr 5. Converting x′1 to primitive
x4 := toPrimitive(x′2) with perr 6. Converting x′2 to primitive
goto [typeOf (x3) = Str 7. Branch on either x′1 or x′2 being a string

∨ typeOf (x4) = Str] t1, e1
t1 : x5 := toString(x3) with perr 8. Converting the first operand to string

x6 := toString(x4) with perr 9. Converting the second operand to string
x7 := x5 @ s x6 10. String concatenation
goto n 11. Go to the end of the generated code.

e1 : x8 := toNumber(x3) with perr 12. Converting the first operand to number
x9 := toNumber(x4) with perr 13. Converting the second operand to number
x10 := x8 + x9 14. Addition operation

n : x := φ(x7, x10), 15. Joining of the two branches
e1 :: [x′1] :: e2 :: [x′2, x3, x4, x5, x6, x8, x9]

| e(e1, · · · , en)⇒ Function/Method Call
let xe, xi|ni=1, x

′
e, x
′
i|ni=1, xerr, xc, xt1, xt2, xt, a. Fresh vars

xscp, xm′ = fresh();
t1, t2, e1, e2, n1, n2 = fresh(); b. Fresh labels
ce, ee = Cm(e, xe); c. Compile e
ci, ei = Cm(ei, xi)|ni=1; d. Compile arguments ei|ni=1
c′i = x′i := getValue(xi) with perr|ni=1; e. Generate the code to dereference xi|ni=1
in f. Generated code:

ce 1. Compilation of e
x′e := getValue(xe) with perr 2. Dereferencing of xe
{ci :: c′i}|ni=1 3. Compilation of arguments and their dereferencing
goto [typeOf (x′e) != Obj] t1, e1 4. Branch on x′e being an object

t1 : xerr := typeError() 5. Type error if x′e in not a callable object
goto perr 6. Go to the error section

e1 : xc := isCallable(x′e) 7. Check if x′e is callable
goto [xc] n1, t1 8. If x′e is not callable throw type error

n1 : goto [typeOf (xe) = List ∧ (nth (xe, 0) = o] t2, e2 9. Branch on xe being an object reference
t2 : xt1 := nth (xe, 1) 10. Set this to the base of an object reference xe

goto n2 11. Go to the next joining command
e2 : xt2 := undefined 12. Set this to undefined
n2 : xt := φ(xt1, xt2) 13. Joining of the two branches

xscp := [x′e,@scope] 14. Set xscp to the @scope property of x′e
xm′ := [x′e,@code] 15. Set xm′ to the @code property of x′e
x := xm′ (xscp, xt, x′1, ..., x

′
n) with perr 16. Call the procedure with identifier xm′

ee :: [x′e] :: (ei :: [x′i])|ni=1 :: [xerr, x1, x]

Figure B.3.: Compilation of Expressions, Part 3

165

Cm , lambda e, x. Inputs: an expression e and a JSIL variable x

match e with Branching on the type of expression to compile

| new e(e1, · · · , en)⇒ Constructor Call
let xe, x′e, xi|ni=1, x

′
i|ni=1, xerr, xhp, xl, xr, a. Fresh vars

x′p, x
′′
p , xp, x

′
l, xm′ , xscp, x′ = fresh();

t1, t2, t3, e1, e2, e3, n = fresh(); b. Fresh labels
ce, ee = Cm(e, xe); c. Compile e
ci, ei = Cm(ei, xi)|ni=1; d. Compile arguments ei|ni=1
c′i = x′i := getValue(xi) with perr|ni=1; e. Generate the code to dereference arguments
in f. Generated code:

ce 1. Compilation of e
x′e := getValue(xe) with perr 2. Dereferencing xe
{ci :: c′i}|ni=1 3. Compilation of arguments and their dereferencing
goto [typeOf (x′e) != Obj] t1, e1 4. Branch on x′e being an object

t1 : xerr := typeError() 5. Type error if x′e in not a constructor object
goto perr 6. Go to the error section

e1 : xhp := hasProperty (x′e,@code) 7. Check if x′e has property @code
goto [xhp] n, t1 8. If x′e does not have @code throw type error

n : xl := new () 9. Create the this object
xr := [”o”, x′e, prototype] 10. Obtaining the property prototype
x′p := getValue(xr) with perr of the function object x′e
goto [typeOf (xp) = Obj] t2, e2 11. Branch on the property prototype of x′e being an object

t2 : x′′p := lop 12. If the property prototype of x′e is not an object:
use lop

e2 : xp := φ(x′p, x
′′
p) 13. Joining of the two branches

x′l := defaultObj(xl, xp) 14. Set prototype of newly created object xl
to selected prototype xp

xm′ := [x′e,@code] 15. Set xm′ to the @code property of x′e
xscp := [x′e,@scope] 16. Set xscp to the @scope property of x′e
x′ := xm′ (xscp, xl, x

′
i|ni=1) with perr 17. Call the procedure with identifier m′

goto [typeOf (x′) = Obj] t3, e3 18. Branch depending on whether or not x′ is an object
e3 : skip
t3 : x := φ(x′, xl), 19. Joining of the two branches
ee :: [x′e] :: (ei :: [x′i])|ni=1 :: [xerr, x′p, x

′]

| typeof e⇒ Typeof Operator
let x1, x2, x3, x4 = fresh(); a. Fresh vars

t1, e1, n1, n2 = fresh(); b. Fresh labels
c, e = Cm(e, x1); c. Compile e
in d. Generated code:

c 1. Compilation of e
goto [typeOf (x1) = List ∧ (nth (x1, 0) = v 2. Branch on x1 being a reference

∨nth (x1, 0) = o)] t1, e1
t1 : goto [(nth (x1, 1) = undefined)] n1, e1 3. Branch on x1 having undefined as its base
n1 : x2 := “undefined” 4. The type of unresolved reference is “undefined”

goto n2 5. Go to the end of the generated code
e1 : x3 := getValue(x1) with perr 6. Dereferencing x1

x4 := typeof(x3) with perr 7. Getting the type
n2 : x := φ(x2, x4), 8. Joining of the two branches
e :: [x3, x4]

Figure B.4.: Compilation of Expressions, Part 4

166

Cm , lambda s, x, xpr, br. Inputs: a statement s, a JSIL variable x, that denotes
the result of the current statement, a JSIL variable xpr,
that denotes the result of the previous statement,
and a label br for break statements

match s with Branching on the type of statement to compile

| varx⇒ Variable Declaration
x = empty, a. Variable declarations evaluate to empty

[], [], []

| e⇒ Expression Statement
let xe = fresh(); a. Fresh vars

ce, ee = Cm(e, xe); b. Compile e
in c. Generated code:

ce 1. Compilation of e
x := getValue(xe) with perr 2. Dereferencing of xe
ee :: [x], [], []

| s1; s2 ⇒ Sequence Statement
let x1, x2 = fresh(); a. Fresh vars to hold the return values of s1 and s2

t, e = fresh(); b. Fresh labels
c1, e1, r1, b1 = Cm(s1, x1, xpr, br); c. Compile s1
c2, e2, r2, b2 = Cm(s2, x2, x1, br); d. Compile s2
in e. Generated code:

c1 1. Compilation of s1
c2 2. Compilation of s2
goto [x2 = empty] t, e 3. Branch on x2 being equal to empty

e : skip
t : x := φ(x1, x2), 4. Joining of the two branches
e1 :: e2, r1 :: r2, b1 :: b2

| if(e) {s1} else {s2} ⇒ If Statement
let xe, x′e, x1, x2, xb = fresh(); a. Fresh vars

t, e, n = fresh(); b. Fresh labels
ce, ee = Cm(e, xe); c. Compile e
c1, e1, r1, b1 = Cm(s1, x1, xpr, br); d. Compile s1
c2, e2, r2, b2 = Cm(s2, x2, xpr, br); e. Compile s2
in f. Generated code:

ce 1. Compilation of e
x′e := getValue(xe) with perr 2. Dereferencing of xe
xb := toBoolean(x′e) with perr 3. Converting the if condition to boolean
goto [xb] t, e 4. Branch on xb

t : c1 5. The if condition holds: compilation of s1
goto n 6. Go to the end of the generated code

e : c2 7. The if condition does not hold: compilation of s2
n : x := φ(x1, x2), 8. Joining of the two branches
ee :: [x′e, xb] :: e1 :: e2,
r1 :: r2, b1 :: b2

| while(e) {s} ⇒ While Statement
let xe, xs, x′e, x

′, x′′, x′′′, xb = fresh(); a. Fresh vars
t, e, n, h, b = fresh(); b. Fresh labels
ce, ee = Cm(e, xe); c. Compile e
cs, es, rs, bs = Cm(s, xs, x′′, b); d. Compile s
in e. Generated code:

x′ := empty 1. Result of while is empty in case no iterations occur
h : x′′ := φ(x′, x′′′) 2. Joining the branch of no iterations with

the branch iterating the while body
ce 3. Compilation of e
x′e := getValue(xe) with perr 4. Dereferencing of xe
xb := toBoolean(x′e) with perr 5. Converting the while condition to boolean
goto [xb] n, b 6. Branch on xb

n : cs 7. The while condition holds: compilation of s
goto [xs != empty] t, e 8. Branch on xs not being equal to empty

t : skip 9. xs is not equal to empty: the result is xs
e : x′′′ := φ(x′′, xs) 10. xs is empty: the result is the value of the previous iteration

goto h 11. Proceed to the next iteration
b : x := φ(x′′, bs), 12. The while condition does not hold: exit the loop
ee :: [x′e, xb] :: es, rs, []

Figure B.5.: Compilation of Statements, Part 1

167

Cm , lambda s, x, xpr, br. Inputs: a statement s, a JSIL variable x, that denotes
the result of the current statement, a JSIL variable xpr,
that denotes the result of the previous statement,
and a label br for break statements

match s with Branching on the type of statement to compile

| return e⇒ Return Statement
let xe = fresh(); a. Fresh vars

ce, ee = Cm(e, xe); b. Compile e
in c. Generated code:

ce 1. Compilation of e
x := getValue(xe) with perr 2. Dereferencing of xe
goto pret, 3. Go to the return section
ee :: [x], [x], []

| throw e⇒ Throw Statement
let xe = fresh(); a. Fresh vars

ce, ee = Cm(e, xe); b. Compile e
in c. Generated code:

ce 1. Compilation of e
x := getValue(xe) with perr 2. Dereferencing of xe
goto perr, 3. Go to the error section
ee :: [x, x], [], []

| break ⇒ Break Statement
a. Generated code:

x := xpr 1. The result is the provided previous value xpr
goto br, 2. Go to the provided break label
[], [], [x]

Figure B.6.: Compilation of Statements, Part 2

168

B.2. Compiler Correctness

JSIL semantics defined in §4 Figure 4.5 describes evaluation of JSIL procedures starting at some label

i and ending at the final label. To prove the compiler correctness we need to define an alternative JSIL

semantics, which allows us to describe evaluation of JSIL procedure from some label i up to some label

j. In §B.2.1, we define the alternative JSIL semantics p ` 〈h, ρ, k, i〉 →∗m 〈h′, ρ′, j, l〉 (Definition B.1)

and state the equivalence to the JSIL semantics defined in §4 Figure 4.5 (Lemma 3). In §B.2.2, we

prove the compiler correctness theorem B.1 stated in terms of the alternative JSIL semantics. To prove

the theorem we also need to describe what does it mean for the translation of JavaScript expression

e (Lemma 4) and the translation of JavaScript statement s (Lemma 5) to be correct. In §B.2.3, we

state a list of helper lemmas that we use in the compiler correctness proof.

B.2.1. Alternative JSIL semantics

Definition B.1 (Alternative JSIL Semantics). A state transition relation p ` 〈h, ρ, k, i〉 →∗m 〈h′, ρ′, j, l〉
relates the state before starting to execute ith command of JSIL procedure m of program p and the

state after executing jth command. Labels k and l point to the previous and the following commands,

respectively. The relation is defined by the following rules:

Basic Command

pm(i) = bc ∈ BCmd JbcKh,ρ = (h′, ρ′,−)

p ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i, i+ 1〉

Goto

pm(i) = goto j

p ` 〈h, ρ, , i〉 →∗m 〈h, ρ, i, j〉

Cond. Goto - True

pm(i) = goto [e] j, k JeKρ = true

p ` 〈h, ρ, , i〉 →∗m 〈h, ρ, i, j〉

Cond. Goto - False

pm(i) = goto [e] j, k JeKρ = false

p ` 〈h, ρ, , i〉 →∗m 〈h, ρ, i, k〉

Procedure Call - Normal

pm(i) = x := e(e1, ..., en1
) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2){c}
∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 →∗m′ 〈h′, ρ′, , ret〉

ρ′(xret) = v

p ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ v], i, i+ 1〉

Procedure Call - Error

pm(i) = x := e(e1, ..., en1
) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2){c}
∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 →∗m′ 〈h′, ρ′, , err〉

ρ′(xerr) = v

p ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ v], i, j〉

Phi-Assignment

pm(j) = x1, ..., xn := φ(x11, ..., x
r
1; ...; x1n, ..., x

r
n) i

k7→m j

p ` 〈h, ρ, i, j〉 →∗m 〈h, ρ[xt 7→ ρ(xkt)|nt=1], j, j + 1〉

Transitivity

p ` 〈h, ρ, i, j〉 →∗m 〈h′, ρ′, j, k〉
p ` 〈h′, ρ′, k, i′〉 →∗m 〈h′′, ρ′′, i′, j′〉
p ` 〈h, ρ, i, j〉 →∗m 〈h′′, ρ′′, i′, j′〉

Lemma 3 (Semantics Equivalence). The following relationship binds the main and the alternative

semantics for JSIL.

p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, nm〈v〉〉 ⇐⇒ p ` 〈h, ρ, i, j〉 →∗m 〈h′, ρ′, , ret〉 ∧ ρ′(xret) = v

p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, er〈v〉〉 ⇐⇒ p ` 〈h, ρ, i, j〉 →∗m 〈h′, ρ′, , err〉 ∧ ρ′(xerr) = v

Proof. By induction on ⇓m and →∗m.

169

B.2.2. The Proof of the Compiler Correctness

Lemma 4 (Correctness of Expression Translation). For a given JavaScript expression e and JSIL

variable x, the translation Cm(e, x) = c(i,j), e is correct, meaning that:

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, w〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, errorw〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w

where ρ ≥ ∅[xscope 7→ L, xthis 7→ vt].

Lemma 5 (Correctness of Statement Translation). For a given JavaScript statement s, JSIL variables

x, xpr and break label br, the translation Cm(s, x, xpr, br) = c(i,j), e, r, b is correct, meaning that:

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, w〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, errorw〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, breakw〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k7→ br

∧ ρ′(bk) = (w 6= empty ? w : ρ′(xpr))

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, retw〉 ⇐⇒ ∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, pret〉 ∧ i′
k7→ pret ∧ ρ′(rk) = w

where ρ ≥ ∅[xscope 7→ L, xthis 7→ vt].

Theorem B.1 (Compiler Correctness). The JS-2-JSIL compiler C is correct, meaning that compiled

programs preserve the behaviour of their original versions.

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , v〉 ⇐⇒ ∃ρf . C(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = v

℘, L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , error v〉 ⇐⇒ ∃ρf . C(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = v

where ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt].

Proof: =⇒. We prove the theorem and the two above lemmas together, by mutual induction on the

derivation of expressions, statements, and the full function body. The statements that we are proving

are:

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, w〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w (G1)

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, errorw〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w (G2)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, w〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w (G3)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, errorw〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w (G4)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, breakw〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k7→ br

∧ ρ′(bk) = (w 6= empty ? w : ρ′(xpr)) (G5)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, retw〉 ⇒∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, pret〉 ∧ i′
k7→ pret ∧ ρ′(rk) = w (G6)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , w〉 ⇒∃ρf . C(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = w (G7)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , errorw〉 ⇒∃ρf . C(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = w (G8)

where, for the last two cases, ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt], and for the other cases,

170

(A)
...

` 〈h, e1〉 ⇓m 〈h1, w1〉

(B)
...

` 〈h1, e2〉 ⇓m 〈h2, w2〉

(C)
...

` 〈h2, Igv(w2)〉 ⇓m 〈h3, v〉
` 〈h2, γ(w2)〉 ⇓m 〈h3, v〉

` 〈h1, e2〉 ⇓γm 〈h3, v〉 (∗)
` 〈h1, w1 =1 e2〉 ⇓m 〈h4, v〉

` 〈h, e1 = e2〉 ⇓m 〈h4, v〉

where (∗) is

(D)
w1 = v1 ∨ w1 = l.op ∨
(w1 = l.vp ∧ p 6∈ {eval, arguments})

...

` 〈h3, Ipv(w1, v)〉 ⇓m 〈h4, v〉
(E)

` 〈h4, w1 =3 v〉 ⇓m 〈h4, v〉
` 〈h3, w1 =2 v〉 ⇓m 〈h4, v〉

Figure B.7.: JavaScript operational semantics proof tree of an assignment for the normal execution.

ρ ≥ ∅[xscope 7→ L, xthis 7→ vt].

We select the representative cases for the expressions and statements. The proof for other cases

follow the same pattern. For JavaScript expressions we prove assignment e1 = e2 (G1 - G2), function

call e0(e) (G1) and variable x (G1). For JavaScript statements we prove sequence s1; s2 (G3-G6).

Finally we prove normal and error cases for the full function body m(x, v) (G7-G8).

[Expressions: Assignment Expression: e ≡ e1 = e2]

Let

Cm(e1, x1) = c1(l1,l2), e
′

Cm(e2, x2) = c2(l2,l3), e
′′

Cm(e1 = e2, x) = ca(l1,l6), e

where e = e′ :: e′′ :: [x, x′, x′′]

We need to prove G1, G2 where (i, j) = (l1, l6). The translated code is

ca =



l1 : c1

l2 : c2

l3 : x := getValue(x2) with perr

l4 : x′ := checkAssignment(x1) with perr

l5 : x′′ := putValue(x1, x) with perr

For the moment, let us focus on the success case and prove

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, v〉 ⇒ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = v.

From the proof tree in Fig. B.7 we can apply the induction hypothesis (1) to A and B, Lemma 9

(getValue) to C, Lemma 11 (checkAssignment) to D, and Lemma 10 (putValue) to E to obtain the

171

following:

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h, ρ1, , l2〉 →∗m 〈h1, ρ2, , l3〉 ∧ ρ2(x2) = w2

x := getValue(x2) with perr ` 〈h2, ρ2, , l3〉 →∗m 〈h3, ρ3, l3, l4〉 ∧ ρ3(x) = v

x′ := checkAssignment(x1) with perr ` 〈h3, ρ3, , l4〉 →∗m 〈h3, ρ4, l4, l5〉

x′′ := putValue(x1, x) with perr ` 〈h3, ρ4, l4, l5〉 →∗m 〈h4, ρ5, l5, l6〉 ∧ ρ5(x′′) = empty

Combining the above transitions using Lemma 6 (concatenation), we obtain that

ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h4, ρ5, , l6〉 ∧ ρ5(x) = v.

Next, we prove the error case.

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉 ⇒ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, i, perr〉∧i
k7→ perr∧ρ′(ek) = w

Fig. B.8 and B.9 show the five proof trees that produce error for assignment statement. Consider

the first proof tree, where e1 throws an exception. Using induction hypothesis (2) on A we get

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, i, perr〉 ∧ i
k7→ perr ∧ ρ′(e′k) = w

We have that ek = e′k, since c1 is at the start of ca. Hence ρ′(ek) = w. From Lemma 7 (concatenation)

we immediately get G2.

For the second proof tree, where e2 throws an exception, we apply induction hypothesis (1, 2) to B

and C to obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ′, i, perr〉 ∧ i
k′7→ perr ∧ ρ′(e′′k′) = w

Since c1 comes before c2 in ca, we get that ek = e′′k′ where k = k′+ d and d is the length of e′. Again,

using Lemma 7 (concatenation) we get G2.

For the third proof tree, where GetValue throws an exception, we apply induction hypothesis (1) to

D, E and Lemma 9 (getValue) to F , and obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h2, ρ2, , l3〉 ∧ ρ2(x2) = w2

x := getValue(x2) with perr ` 〈h2, ρ2, , l3〉 →∗m 〈h′, ρ′, l3, perr〉 ∧ ρ′(x) = w

Since c1, c2 comes before GetValue in ca, we get that ek = x where k = d′+d′′+ 1 and d′ is the length

of e′, and d′′ is the length of e′′. Again, using Lemma 7 (concatenation) we get G2:

ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, l3, perr〉 ∧ l3
k7→ perr ∧ ρ′(ek) = w

The proof trees in Fig. B.9 correspond to the last two paths where the execution of the assignment

172

(A)
...

` 〈h, e1〉 ⇓m 〈h′, errorw〉 ` 〈h′, errorw =1 e2〉 ⇓m 〈h′, errorw〉
` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉

(B)
...

` 〈h, e1〉 ⇓m 〈h1, w1〉

(C)
...

` 〈h1, e2〉 ⇓m 〈h′, errorw〉 ` 〈h′, γ(errorw)〉 ⇓m 〈h′, errorw〉
` 〈h1, e2〉 ⇓γm 〈h′, errorw〉 (∗)
` 〈h1, w1 =1 e2〉 ⇓m 〈h′, errorw〉

` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉

(D)
...

` 〈h, e1〉 ⇓m 〈h1, w1〉

(E)
...

` 〈h1, e2〉 ⇓m 〈h2, w2〉

(F)
...

` 〈h2, Igv(w2)〉 ⇓m 〈h′, errorw〉
` 〈h2, γ(w2)〉 ⇓m 〈h′, errorw〉

` 〈h1, e2〉 ⇓γm 〈h′, errorw〉 (∗)
` 〈h1, w1 =1 e2〉 ⇓m 〈h′, errorw〉

` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉

where (*) is

` 〈h′, w1 =2 errorw〉 ⇓m 〈h′, errorw〉

Figure B.8.: JavaScript operational semantics proof trees of an assignment for the error case. Part I

terminates with an error. First, we apply induction hypothesis (1) to G and H, and Lemma 9

(getValue) to I, for both proof trees, as they share the beginning part, to obtain the following :

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h2, ρ2, , l3〉 ∧ ρ2(x2) = w2

x := getValue(x2) with perr ` 〈h2, ρ2, , l3〉 →∗m 〈h3, ρ3, , l4〉 ∧ ρ3(x) = v

If we, then, take the first proof tree, we can apply Lemma 11 (checkAssignment) to J to obtain:

x′ := checkAssignment(x1) with perr ` 〈h3, ρ3, , l4〉 →∗m 〈h′, ρ′, l4, perr〉 ∧ ρ′(x′) = w

Since c1, c2 and GetValue come before CheckAssignment in ca, we get that ek = x′ where k = d′+d′′+2

and d′ is the length of e′, and d′′ is the length of e′′. Again, using Lemma 7 (concatenation) we get

G2.

Similarly for the last proof tree, where PutValue throws an exception, we can apply Lemma 11

(checkAssignment) to K and Lemma 10 (putValue) to L to obtain:

x′ := checkAssignment(x1) with perr ` 〈h3, ρ3, , l4〉 →∗m 〈h3, ρ4, l4, l5〉

x′′ := putValue(x1, x) with perr ` 〈h3, ρ4, l4, l5〉 →∗m 〈h′, ρ′, l5, perr〉 ∧ ρ5(x′′) = w

Since c1, c2, GetValue and CheckAssignment come before PutValue in ca, we get that ek = x′ where

k = d′ + d′′ + 3 and d′ is the length of e′, and d′′ is the length of e′′. Again, using Lemma 7

173

(G)
...

` 〈h, e1〉 ⇓m 〈h1, w1〉

(H)
...

` 〈h1, e2〉 ⇓m 〈h2, w2〉

(I)
...

` 〈h2, Igv(w2)〉 ⇓m 〈h3, v〉
` 〈h2, γ(w2)〉 ⇓m 〈h3, v〉

` 〈h1, e2〉 ⇓γm 〈h3, v〉 (1− 2)

` 〈h1, w1 =1 e2〉 ⇓m 〈h′, errorw〉
` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉

where (1) is

(J)

w1 = l.vp p ∈ {eval, arguments}) h′ = h] err(w, lsep)

` 〈h3, w1 =2 v〉 ⇓m 〈h′, errorw〉

where (2) is

(K)
w1 = v1 ∨ w1 = l.op ∨
(w1 = l.vp ∧ p 6∈ {eval, arguments})

...

` 〈h3, Ipv(w1, v)〉 ⇓m 〈h′, errorw〉
(L)

` 〈h′, w1 =3 v〉 ⇓m 〈h′, errorw〉
` 〈h3, w1 =2 v〉 ⇓m 〈h′, errorw〉

Figure B.9.: JavaScript operational semantics proof trees of an assignment for the error case. Part II

(concatenation) we get G2.

[Expressions: Function call: e ≡ e0(e)]

Let

Cm(e, x) = ca(l1,l5), e
a

Cm(e0, xe) = ce(l1,l2), e
0

Cm(ei, xi) = ci(k2i−1,k2i), e
i|ni=1

c′i = x′i := getValue(xi) with perr|ni=1

We need to prove G1 - G2 where (i, j) = (l1, l6). The translated code is shown in Fig. B.10. For the

moment, let us focus on the success case and prove

℘,L, vt ` 〈h, e0(e)〉 ⇓m 〈h′, vo〉 ⇒ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = vo

From the proof tree in Fig. B.11 we can apply the induction hypothesis (1) to A, Lemma 9

(getValue) to C, the induction hypothesis (1) to Bi, Lemma 12 (isCallable) to Pc(h3, v1), Lemma 13

(selectThis) to vt = SelectThis(w1), and JSIL operational semantics for property access to m′ =

174

ca =



l1 : ce

l2 : x′e := getValue(xe) with perr

k2i−1 : {ci :: c′i}|ni=1

k2n+1 : goto [typeOf (x′e) != Obj] t1, e1

t1 : xerr := typeError()

goto perr

e1 : xc := isCallable(x′e)

goto [xc] n1, t1

n1 : goto [typeOf (xe) = List ∧ (nth (xe, 0) = o] t2, e2

t2 : xt1 := nth (xe, 1)

goto n2

e2 : xt2 := undefined

n2 : xt := φ(xt1, xt2)

l3 : xsc′ := [x′e,@scope]

l4 : xm′ := [x′e,@code]

l5 : x := xm′(xsc′ , xt, x
′
1, ..., x

′
n) with perr

Figure B.10.: Translated code of a function call expression e0(e).

h3(v1,@code) and L′ = h3(v1,@scope) to obtain the following:

ce(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(xe) = w1

x′e := getValue(xe) with perr ` 〈h1, ρ1, , l2〉 →∗m 〈h2, ρ2, , k1〉 ∧ ρ2(x′e) = v0

ci(k2i−1,k2i) ` 〈h
′
2i−1, ρ

′
2i−1, , k2i−1〉 →∗m 〈h′2i, ρ′2i, , k2i〉 ∧ ρ′2i(xi) = wi

x′i := getValue(xi) with perr ` 〈h′2i, ρ′2i, , k2i〉 →∗m 〈h′2i+1, ρ
′
2i+1, , k2i+1〉 ∧ ρ′2i+1(x′i) = vi

cic(k2n+1,n1) ` 〈h2n+1, ρ2n+1, , k2n+1〉 →∗m 〈h3, ρ3, , n1〉 ∧ ρ3(xc) = true

cst(n1,l3) ` 〈h3, ρ3, , n1〉 →∗m 〈h3, ρ4, , l3〉 ∧ ρ4(xt) = vt

xsc′ := [x′e,@scope] ` 〈h3, ρ4, , l3〉 →∗m 〈h3, ρ5, , l4〉 ∧ ρ5(xsc′) = L′

xm′ := [x′e,@code] ` 〈h3, ρ5, , l4〉 →∗m 〈h3, ρ6, , l5〉 ∧ ρ6(xm′) = m′

To obtain

x := xm′(xsc′ , xt, x
′
1, ..., x

′
n) with perr ` 〈h4, ρ6, , l5〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = vo

we use the induction hypothesis (7) to M and the Procedure normal rule of JSIL semantics.

Combining all the above transitions using Lemma 6 (concatenation), we obtain that

ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = vo.

[Expressions: Variable: e ≡ x]
Let Cm(x, x) = ca(l1,l3), e

a. We need to prove G1 where (i, j) = (l1, l3) and w = v.vx. We consider

two cases: ψm(x) = n and ψm(x) = ⊥.

175

(A)
...

` 〈h, e〉 ⇓m 〈h1, w1〉

(C)
...

` 〈h1, Igv(w1)〉 ⇓m 〈h2, v0〉

(Bi)
...

` 〈h2, iterate{e}〉 ⇓γm 〈h3, v〉 (∗)
` 〈h2, (w1, v0)(e)2〉 ⇓m 〈h′, vo〉

` 〈h1, w1(e)1〉 ⇓m 〈h′, vo〉
` 〈h, e0(e)〉 ⇓m 〈h′, vo〉

where (∗) is

Pc(h3, v0)
vt = SelectThis(w1)
m′ = h3(v0,@code)
L′ = h3(v0,@scope)
℘(m′) = λx1, ..., xn2 .s
∀1≤n≤n1

v′n = vn
∀n1<n≤n2

v′n = undefined

...

℘, L′, vt ` 〈h3,m′(x, v′)〉 ⇓m′ 〈h′, vo〉
(M)

℘, , ` 〈h3, (w1, v0)(v1, ...vn1
)3〉 ⇓m 〈h′, vo〉

Figure B.11.: JavaScript operational semantics proof tree of a function call for the normal execution.

(A)
...

` 〈h, Iσ(x)〉 ⇓m 〈h′, v〉 ` 〈h′, id(x, v)〉 ⇓m 〈h′, v.vx〉
` 〈h, x〉 ⇓m 〈h′, v.vx〉

Figure B.12.: JavaScript operational semantics proof tree of a variable.

When ψm(x) = n, the translated code is

ca =

 l1 : x′ := nth (xscope, n)

l2 : x := [“v”, x′, x]

When ψm(x) = ⊥, the translated code is

ca =



l1 : xh := hasProperty(lg, x) with perr

goto [xh] t, e

t : x′1 := lg

goto n

x′2 := undefined

n : x′ := φ(x′1, x
′
2)

l2 : x := [“v”, x′, x]

From the proof tree in Fig. B.12 and Lemma 15 (variable) we obtain the following:

ca(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ1, , l2〉 ∧ ρ1(x′) = v

x := [“v”, x′, x] ` 〈h′, ρ1, , l2〉 →∗m 〈h′, ρ′, l2, l3〉 ∧ ρ′(x) = v.vx

176

(A)
...

℘, L, vt ` 〈h, s1〉 ⇓m 〈h1, w〉

(B)
...

` 〈h1, s2〉 ⇓m 〈h′, empty〉 ` 〈h′, seq2(w, empty)〉 ⇓m 〈h′, w〉
` 〈h1, seq1(w, s2)〉 ⇓m 〈h′, w〉

` 〈h, s1; s2〉 ⇓m 〈h′, w〉

(C)
...

` 〈h, s1〉 ⇓m 〈h1, w1〉

(D)
...

` 〈h1, s2〉 ⇓m 〈h′, w〉
w 6= empty

` 〈h′, seq2(w1, w)〉 ⇓m 〈h′, w〉
` 〈h1, seq1(w1, s2)〉 ⇓m 〈h′, w〉

` 〈h, s1; s2〉 ⇓m 〈h′, w〉

Figure B.13.: JavaScript operational semantics proof trees of a sequence for the normal execution.

Combining the above transitions using Lemma 6 (concatenation), we obtain that

ca(l1,l3) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, l2, l3〉 ∧ ρ′(x) = v.vx.

[Statements: Sequence: s ≡ s1; s2]

Let

Cm(s1, x1, xpr, br) = c1(l1,l2), e
′, r′, b

′

Cm(s2, x2, x1, br) = c2(l2,l3), e
′′, r′′, b

′′

Cm(s1; s2, x, xpr, br) = ca(l1,l4), e, r, b

where e = e′ :: e′′, r = r′ :: r′′, and b = b
′
:: b
′′
. We need to prove G3-G6 where (i, j) = (l1, l4). The

translated code is

ca =



l1 : c1

l2 : c2

l3 : goto [x2 = empty] t, e

e : skip

t : x := φ(x1, x2)

For the moment, let us focus on the success case G3 and prove

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, w〉 ⇒ ∃ρ′ . c(l1,l4) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l4〉 ∧ ρ′(x) = w

The two proof trees in Fig. B.13 correspond to the two paths where the execution of the second

statement returns empty or not. If we take the first tree, we can apply the induction hypothesis (3)

to A and B to obtain the following:

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w

c2(l2,l3) ` 〈h1, ρ, , l2〉 →∗m 〈h′, ρ2, , l3〉 ∧ ρ2(x2) = empty

177

(A)
...

` 〈h, s1〉 ⇓m 〈h1, breakw〉 ` 〈h1, seq1(breakw, s2)〉 ⇓m 〈h′, breakw〉
` 〈h, s1; s2〉 ⇓m 〈h′, breakw〉

(B)
...

` 〈h, s1〉 ⇓m 〈h1, w1〉

(C)
...

` 〈h1, s2〉 ⇓m 〈h′, breakw〉
w 6= empty

` 〈h′, seq2(w1, breakw)〉 ⇓m 〈h′, breakw〉
` 〈h1, seq1(w1, s2)〉 ⇓m 〈h′, breakw〉

` 〈h, s1; s2〉 ⇓m 〈h′, breakw〉

(D)
...

` 〈h, s1〉 ⇓m 〈h1, w〉

(E)
...

` 〈h1, s2〉 ⇓m 〈h′, break empty〉 ` 〈h′, seq2(w, break empty)〉 ⇓m 〈h′, breakw〉
` 〈h1, seq1(w, s2)〉 ⇓m 〈h′, breakw〉

` 〈h, s1; s2〉 ⇓m 〈h′, breakw〉

Figure B.14.: JavaScript operational semantics proof trees of a sequence with break .

From the operational semantics of JSIL we get the following for the rest of the statements:

ca(l3,l4) ` 〈h′, ρ2, , l3〉 →∗m 〈h′, ρ′, , l4〉 ∧ ρ′(x) = w.

Combining the above transitions using Lemma 6 (concatenation), we obtain that

ca(l1,l4) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l4〉 ∧ ρ′(x) = w.

If we take the second proof tree from Fig. B.13 using hypothesis (3) to C and D we get

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ2, , l3〉 ∧ ρ2(x2) = w

From the proof tree we also get that w 6= empty. In the same way as in the first case, using operational

semantics of JSIL and combining the transition relations using Lemma 6 (concatenation) we conclude

that

ca(l1,l4) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l4〉 ∧ ρ′(x) = w.

Sequence rules are related to break rules. Hence we explicitly investigate G5 and prove

℘,L, vt ` 〈h, s1; s2〉 ⇓m 〈h′, breakw〉 ⇒∃ρ′ . c(l1,l4) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k7→ br

∧ ρ′(bk) = (w 6= empty ? w : ρ′(xpr))

We need to consider three proof trees of ℘,L, vt ` 〈h, s〉 ⇓m 〈h′, breakw〉 that are shown in Fig. B.14.

They correspond to either s1 returning breakw or s2 returning either break empty or breakw′, where

w′ 6= empty. Let us take the first proof tree. We can apply induction hypothesis (5) to A to obtain

c(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k7→ br ∧ ρ′(b′k) = (w 6= empty ? w : ρ′(xpr))

Since c1 is at the start of c, ρ′(bk) = ρ′(b
′
k). Using Lemma 7 (concatenation), we get G5.

178

(A)
...

` 〈h, s1〉 ⇓m 〈h1, errorw〉 ` 〈h1, seq1(errorw, s2)〉 ⇓m 〈h′, errorw〉
` 〈h, s1; s2〉 ⇓m 〈h′, errorw〉

(B)
...

` 〈h, s1〉 ⇓m 〈h1, w1〉

(C)
...

` 〈h1, s2〉 ⇓m 〈h′, errorw〉 ` 〈h′, seq2(w1, errorw)〉 ⇓m 〈h′, errorw〉
` 〈h1, seq1(w1, s2)〉 ⇓m 〈h′, errorw〉

` 〈h, s1; s2〉 ⇓m 〈h′, errorw〉

Figure B.15.: JavaScript operational semantics proof trees of a sequence with error .

For the second proof tree we apply induction hypothesis (3, 5) to B and C to obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k′7→ br ∧ ρ′(b′′k′) = w

From the proof tree we know that w 6= empty. Since c1 comes before c2 in ca, we get that bk = b
′′
k′

where k = k′ + d and d is the length of b
′
. Using Lemma 7 (concatenation), we get G5.

For the third proof tree we apply induction hypothesis (3, 5) to D and E to obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ′, i′, br〉 ∧ ρ′(bk) = ρ′(x1)

Again bk = b
′′
k′ where k = k′ + d and d is the length of b

′
. Hence ρ′(bk) = w and, using Lemma 7

(concatenation), we get G5.

To illustrate how errors propagate through the translated code we investigate G4 for sequence and

prove

℘,L, vt ` 〈h, s1; s2〉 ⇓m 〈h′, errorw〉 ⇒ ∃ρ′ . c(l1,l4) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉∧i′
k7→ perr∧ρ′(ek) = w

Fig. B.15 shows the two proof trees that produce error for sequence statement. Consider the first

proof tree. Using induction hypothesis (4) on A we get

c1(l1,l2) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(e′k) = w

Now ek = e′k, since c1 is at the start of ca. Hence ρ′(ek) = w. From Lemma 7 (concatenation) we

immediately get G4.

For the second proof tree we apply induction hypothesis (3, 4) to B and C to obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k′7→ perr ∧ ρ′(e′′k′) = w

Since c1 comes before c2 in ca, we get that ek = e′′k′ where k = k′+ d and d is the length of e′. Again,

using Lemma 7 (concatenation) we get G4.

179

(A)
...

` 〈h, s1〉 ⇓m 〈h1, retw〉 ` 〈h1, seq1(retw, s2)〉 ⇓m 〈h′, retw〉
` 〈h, s1; s2〉 ⇓m 〈h′, retw〉

(B)
...

` 〈h, s1〉 ⇓m 〈h1, w1〉

(C)
...

` 〈h1, s2〉 ⇓m 〈h′, retw〉 ` 〈h′, seq2(w1, retw)〉 ⇓m 〈h′, retw〉
` 〈h1, seq1(w1, s2)〉 ⇓m 〈h′, retw〉

` 〈h, s1; s2〉 ⇓m 〈h′, retw〉

Figure B.16.: JavaScript operational semantics proof trees of a sequence with ret .

The final case left to prove for the sequence is G6:

℘,L, vt ` 〈h, s1; s2〉 ⇓m 〈h′, retw〉 ⇒ ∃ρ′ . c(l1,l4) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, pret〉∧i′
k7→ pret∧ρ′(rk) = w

Fig. B.16 shows the two proof trees that contains outcome ret for sequence statement. Consider

the first proof tree. Using induction hypothesis (6) on A we get

c1(l1,l2) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, pret〉 ∧ i′
k7→ pret ∧ ρ′(r′k) = w

Now rk = r′k, since c1 is at the start of ca. Hence ρ′(rk) = w. From Lemma 7 (concatenation) we

immediately get G6.

For the second proof tree we apply induction hypothesis (3, 6) to B and C to obtain

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h1, ρ1, , l2〉 →∗m 〈h′, ρ′, i′, pret〉 ∧ i′
k′7→ pret ∧ ρ′(r′′k′) = w

Since c1 comes before c2 in ca, we get that rk = r′′k′ where k = k′+ d and d is the length of r′. Again,

using Lemma 7 (concatenation) we get G6.

[Functions: m(x, v)]

Let

Cm(s, x, ,) = c, e, r,

where ℘(m) = λx.s and l0 = 0. We need to prove G7-G8. The translated code is the body of the

180

℘(m) = λx.s

...

℘, L′, vt ` 〈h′, s〉 ⇓m 〈hf , w′〉
(A)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , undefined〉

℘(m) = λx.s

...

℘, L′, vt ` 〈h′, s〉 ⇓m 〈hf , retw〉
(B)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , w〉

where L′ = L@ [ls], h
′ = h] envm(ls, x, v, s)

Figure B.17.: JavaScript operational semantics proof tree of a full function body for the normal exe-
cution.

procedure procm(xsc, xthis, xi|ni=1):

ca =



l0 : xer := new ()

l1 : xscope := xsc@ [xer]

l2 : [xer, yi] := undefined |ki=1

l3 : [xer, xi] := xi|ni=1

l4 : c

l5 : xn+1 := undefined

pret : xret := φ(r :: xn+1)

ret : skip

perr : xerr := φ(e)

err : skip

where yi|ki=1 = defs(s).

For the moment, let us focus on the success case G7 and prove

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , w〉 ⇒ ∃ρf . ca ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = w

where ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt].

The two proof trees in Fig. B.17 correspond to the two paths where the execution of the statement

s terminates with normally or with the ret flag. First, we apply Lemma 14 (ER) to envm(ls, x, v, s),

to both proof trees to obtain the following:

ca(l0,l4) ` 〈h, ρ, , 0〉 →∗m 〈h′, ρ1, , l4〉 ∧ ρ1(xscope) = L′

If we, then, take the first proof tree, we can apply the induction hypothesis (3) to A to obtain:

ca(l4,l5) ` 〈h′, ρ1, , l4〉 →∗m 〈hf , ρ2, , l5〉 ∧ ρ2(x) = w′

181

℘(m) = λx.s

...

℘, L′, vt ` 〈h′, s〉 ⇓m 〈hf , errorw〉
(A)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , errorw〉

where L′ = L@ [ls], h
′ = h] envm(ls, x, v, s)

Figure B.18.: JavaScript operational semantics proof tree of a full function body for the error case.

From the operational semantics of JSIL we get the following for the rest of the statements:

ca(l5,ret) ` 〈hf , ρ2, , l5〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = undefined

Combining the above transitions using Lemma 6 (concatenation), we obtain that

ca ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = undefined

If we take the second proof tree from Fig. B.17 using hypothesis (6) to B we get

c1(l4,pret) ` 〈h′, ρ′, , l4〉 →∗m 〈hf , ρ2, i
′, pret〉 ∧ i′ k7→ pret ∧ ρ2(rk) = w

From the operational semantics of JSIL we get the following for the last statement:

ca(pret,ret) ` 〈hf , ρ2, i
′, pret〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = w

In the same way as in the first case, combining the transition relations using Lemma 6 (concatena-

tion), we conclude that

ca ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = w

Next we prove the error case G8:

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , errorw〉 ⇒ ∃ρf . ca ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = w

where ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt].

The proof tree in Fig. B.18 corresponds to the execution of the statement s which terminates with

an error. First, we apply Lemma 14 (ER) to envm(ls, x, v, s), to obtain the following:

ca(l0,l4) ` 〈h, ρ, , 0〉 →∗m 〈h′, ρ1, , l4〉 ∧ ρ1(xscope) = L′

Then, we can apply the induction hypothesis (4) to A to obtain:

c1(l4,perr) ` 〈h′, ρ1, , l4〉 →∗m 〈hf , ρ2, i, perr〉 ∧ i
k7→ perr ∧ ρ2(rk) = w

From the operational semantics of JSIL we get the following for the last statement:

ca(perr,err) ` 〈hf , ρ2, i, perr〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = w

182

Combining the transition relations using Lemma 6 (concatenation), we conclude that

ca ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = w

Proof: ⇐=. We prove the theorem and the two lemmas together, by rule induction→∗m on cases where

c(i,j) are valid translations of expression e, statement s or function body m(x, v). The statements that

we are proving are:

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, w〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w (G1)

℘,L, vt ` 〈h, e〉 ⇓m 〈h′, errorw〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w (G2)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, w〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, , j〉 ∧ ρ′(x) = w (G3)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, errorw〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w (G4)

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, breakw〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, br〉 ∧ i′
k7→ br (G5)

∧ ρ′(bk) = (w 6= empty ? w : ρ′(xpr))

℘,L, vt ` 〈h, s〉 ⇓m 〈h′, retw〉 ⇐∃ρ′ . c(i,j) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ′, i′, pret〉 ∧ i′
k7→ pret ∧ ρ′(rk) = w (G6)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , w〉 ⇐∃ρf . Ĉ(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , ret〉 ∧ ρf (xret) = w (G7)

℘,L, vt ` 〈h,m(x, v)〉 ⇓m 〈hf , errorw〉 ⇐∃ρf . Ĉ(s) ` 〈h, ρ, , 0〉 →∗m 〈hf , ρf , , err〉 ∧ ρf (xerr) = w (G8)

where, for the last two cases, ρ = ∅[xi 7→ vi|ni=1, xsc 7→ L, xthis 7→ vt], and for the other cases,

ρ ≥ ∅[xscope 7→ L, xthis 7→ vt].

The proof cases are essentially the same as in =⇒ proof. We will only consider the assignment case

to show the equivalence. Other cases follow the same pattern.

[Expressions: Assignment Expression: e ≡ e1 = e2]

Let Cm(e1, x1) = c1(l1,l2), e
′, Cm(e2, x2) = c2(l2,l3), e

′′, and Cm(e1 = e2, x) = ca(l1,l6), e. We need to

prove the following:

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, w〉 ⇐ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = w

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, errorw〉 ⇐ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, i′, perr〉 ∧ i′
k7→ perr ∧ ρ′(ek) = w

where ρ ≥ ∅[xscope 7→ L, xthis 7→ vt].

For the moment, let us again focus on the success case and prove

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, w〉 ⇐ ∃ρ′ . ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = w.

Assume that we have ρ′ and ca(l1,l6) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρ′, , l6〉 ∧ ρ′(x) = w. We need to construct

183

℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h′, w〉. The translated code is

ca =



l1 : c1

l2 : c2

l3 : x := getValue(x2) with perr

l4 : x′ := checkAssignment(x1) with perr

l5 : x′′ := putValue(x1, x) with perr

In the case of the normal execution path, we can decompose the above derivation into the following

using Lemma 6 (concatenation):

c1(l1,l2) ` 〈h, ρ, , l1〉 →∗m 〈h1, ρ1, , l2〉 ∧ ρ1(x1) = w1

c2(l2,l3) ` 〈h, ρ, , l2〉 →∗m 〈h1, ρ2, , l3〉 ∧ ρ2(x2) = w2

x := getValue(x2) with perr ` 〈h2, ρ2, , l3〉 →∗m 〈h3, ρ3, l3, l4〉 ∧ ρ3(x) = v

x′ := checkAssignment(x1) with perr ` 〈h3, ρ3, , l4〉 →∗m 〈h3, ρ4, l3, l5〉

x′′ := putValue(x1, x) with perr ` 〈h3, ρ4, l3, l5〉 →∗m 〈h′, ρ′, l5, l6〉 ∧ ρ′(x′′) = empty

Applying the induction hypothesis (1) Lemma 9 (getValue), Lemma 11 (checkAssignment) and

Lemma 10 (putValue), we get the proof trees for A,B,C,D,E and we can construct the proof tree

of ℘,L, vt ` 〈h, e1 = e2〉 ⇓m 〈h4, v〉 as shown in Fig. B.7.

B.2.3. Helper Lemmas

Lemma 6 (Concatenation 1).

∀h′, ρ′.c1 ` 〈h, ρ, , 〉 →∗m 〈h′, ρ′, , i〉 =⇒
(c1 :: c2 ` 〈h, ρ, , i〉 →∗m 〈h′′, ρ′′, , j〉 ⇐⇒ c2 ` 〈h′, ρ′, i, 〉 →∗m 〈h′′, ρ′′, , j〉)

Lemma 7 (Concatenation 2).

∀h′, ρ′.c1 ` 〈h, ρ, i, j〉 →∗m 〈h′, ρ′, i′, j′〉 =⇒ c1 :: c2 ` 〈h, ρ, i, j〉 →∗m 〈h′, ρ′, i′, j′〉

Lemma 8 (Store Expansion).

c ` 〈h, ρ〉 →∗m 〈h′, ρ′〉 =⇒ ρ ≤ ρ′

Lemma 9 (Correctness of getValue). Let c = x := getValue(x′) with perr. Then, for any ρ, such

that ρ(x′) = w:

℘,L, vt ` 〈h, Igv(w)〉 ⇓m 〈h′, v〉 ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ v], i, i+ 1〉

℘,L, vt ` 〈h, Igv(w)〉 ⇓m 〈h′, error v〉 ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ v], i, perr〉

Lemma 10 (Correctness of putValue). Let c = x := putValue(x′, x′′) with perr. For any ρ, such

184

that ρ(x′) = w and ρ(x′′) = v:

℘,L, vt ` 〈h, Ipv(w, v)〉 ⇓m 〈h′, empty〉 ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ empty], i, i+ 1〉

℘,L, vt ` 〈h, Ipv(w, v)〉 ⇓m 〈h′, error v′〉 ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ v′], i, perr〉

Lemma 11 (Correctness of checkAssignment). Let c = x := checkAssignment(x′) with . For any

h and ρ, such that ρ(x′) = w:

(w = v ∨ w = l.op ∨ (w = l.vp ∧ p 6∈ {eval, arguments})) ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ empty], i, i+ 1〉

w = l.vp ∧ p ∈ {eval, arguments}) ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h′, ρ[x 7→ l′], i, perr〉

where h′ = h] err(l′, lsep).

Lemma 12 (Correctness of isCallable). Let c = x := isCallable(x′). For any h and ρ, such that

ρ(x′) = v:

Pc(h, v) ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ true], i, i+ 1〉

¬Pc(h, v) ⇐⇒ c(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ false], i, i+ 1〉

Lemma 13 (Correctness of SelectThis). For any h and ρ, such that ρ(x′) = w:

SelectThis(w) = v ⇐⇒ ∃ρf . c(n1,n3) ` 〈h, ρ, , n1〉 →∗m 〈h, ρf , n2, n3〉 ∧ ρf (xt) = v

where

c =



n1 : goto [typeOf (x′) = List ∧ (nth (x′, 0) = o] t2, e2

t2 : xt1 := nth (x′, 1)

goto n2

e2 : xt2 := undefined

n2 : xt := φ(xt1, xt2)

Lemma 14 (Correctness of Enviroment Record Translation). For any h and ρ, such that ρ = ∅[xi 7→
vi|ni=1, xsc 7→ L, xthis 7→ vt]:

h′ = h] envm(ls, x, v, s) ⇐⇒ ∃ρf . c(l1,l5) ` 〈h, ρ, , l1〉 →∗m 〈h′, ρf , l4, l5〉 ∧ ρf (xscope) = L@[ls]

where

c =



l1 : xer := new ()

l2 : xscope := xsc@ [xer]

l3 : [xer, yi] := undefined |ki=1

l4 : [xer, xi] := xi|ni=1

and yi|ki=1 = defs(s).

Lemma 15 (Correctness of variable translation). Let ψm(x) = n ∧ ca = x := nth (xscope, n). For

185

any ρ, such that ρ ≥ ∅[xscope 7→ L, xthis 7→ vt]:

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉 ⇐⇒ ca(i,i+1) ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ v], i, i+ 1〉

Let ψm(x) = ⊥ and

ca =



i : x′ := hasProperty(lg, x) with perr

goto [x′] t, e

t : x′1 := lg

goto n

x′2 := undefined

n : x := φ(x′1, x
′
2)

For any ρ, such as ρ ≥ ∅[xscope 7→ L, xthis 7→ vt]:

℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉 ⇐⇒ ∃ρ′ . ca(i,j) ` 〈h, ρ, , i〉 →∗m 〈h, ρ′[x 7→ v], n, j〉

Proof. We use the notation Li to denote the ith element of the list L and the notation L(i,j) to de

note the elements ith up to jth of the list L. First we prove the case when ψm(x) = n. To prove

the equivalence we need to show that the values v on the both side match. From JSIL operational

semantics we get that

x := nth (xscope, n) ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ Ln], i, i+ 1〉

Hence, we are left to show that v = Ln on the left hand side. From ψm(x) = n Lemma 17 (ψm

correctness), we get that

(Ln, x) ∈ dom(h) ∧ ∀i. i > n =⇒ (Li, x) 6∈ dom(h)

Consequently, we get two unfolded proof trees for ℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉 as shown in Fig. B.19

depending on whether ψm(x) = 0 or not. In case when ψm(x) > 0, we get v = Ln directly from the

tree. When ψm(x) = 0, the proof tree (A) returns true, since lg = L0 and (L0, x) ∈ dom(h). Hence,

we get v = L0.

Now we prove the case when ψm(x) = ⊥. From Lemma 17 (ψm correctness) we get ∀i, i > 1 =⇒
(Li, x) /∈ dom(h). Hence, the proof tree of ℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉 must unfold as shown in

Fig. B.20. To prove implication to the right, we need to show

ca(i,j) ` 〈h, ρ, , i〉 →∗m 〈h, ρ′[x 7→ v], n, j〉

Using hasProperty lemma on the proof tree (A) we get

x′ := hasProperty(lg, x) with perr ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x′ 7→ o], i, i+ 1〉

If o = true, from rule Gir-global, we get that v = lg. Using JSIL operational semantics we get

186

(Ld, x) /∈ dom(h)
Ld 6= lg

(Ln+1, x) /∈ dom(h)
Ln+1 6= lg

(Ln, x) ∈ dom(h) Ln 6= lg

℘,L(0,n), vt ` 〈h, Iσ(x)〉 ⇓m 〈h, Ln〉
. . .

℘, L(0,d), vt ` 〈h, Iσ(x)〉 ⇓m 〈h, Ln〉

(Ld, x) /∈ dom(h)
Ld 6= lg

(L1, x) /∈ dom(h)
L1 6= lg (∗)

. . .

℘, L(0,d), vt ` 〈h, Iσ(x)〉 ⇓m 〈h, lg〉

where (∗) is

(A)
. . .

℘, [lg], lg ` 〈h, Ihp(x)〉 ⇓m 〈h, true〉 ℘, [lg], vt ` 〈h, Iσ(true)1〉 ⇓m 〈h, lg〉
℘, [lg], vt ` 〈h, Iσ(x)〉 ⇓m 〈h, lg〉

Figure B.19.: JavaScript operational semantics proof trees of a variable dereferencing when ψm(x) =
n > 0 and ψm(x) = 0 respectively, where d+ 1 is the length of the current scope chain
L.

(Ld, x) /∈ dom(h)
Ld 6= lg

(L1, x) /∈ dom(h)
L1 6= lg (∗)

. . .

℘, L(0,d), vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉

where (∗) is

(A)
. . .

℘, [lg], lg ` 〈h, Ihp(x)〉 ⇓m 〈h, o〉 ℘, [lg], vt ` 〈h, Iσ(o)1〉 ⇓m 〈h, v〉
℘, [lg], vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉

Figure B.20.: JavaScript operational semantics proof tree of a variable dereferencing when ψm(x) = ⊥.

that ca(i,j) ` 〈h, ρ, , i〉 →∗m 〈h, ρ′[x 7→ lg], n, j〉 as required. If o = false, from rule Gir-undef, we get

that v = undefined. Again, using JSIL operational semantics, we get ca(i,j) ` 〈h, ρ, , i〉 →∗m 〈h, ρ′[x 7→
undefined], n, j〉 as required.

To prove the implication to the right, from ca(i,j) ` 〈h, ρ, , i〉 →∗m 〈h, ρ′[x 7→ v], n, j〉 we get

x′ := hasProperty(lg, x) with perr ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x′ 7→ o], i, i+ 1〉

Using Lemma 16 (hasProperty), we obtain the proof tree for (A). Depending on whether o = true

or o = false, ca evaluates to ρ′(x) = lg or ρ′(x) = undefined respectively. Now we can construct the

proof tree for ℘,L, vt ` 〈h, Iσ(x)〉 ⇓m 〈h, v〉 as shown in Fig. B.20 using (A) and either Gir-global

or Gir-undef rule for both cases.

Lemma 16 (Correctness of hasProperty). Let c = x := hasProperty(vt, x) with perr. Then, for

187

any ρ, such that ρ ≥ ∅[xscope 7→ L, xthis 7→ vt]:

℘,L, vt ` 〈h, Ihp(x)〉 ⇓m 〈h′, v〉 ⇐⇒ c ` 〈h, ρ, , i〉 →∗m 〈h, ρ[x 7→ v], i, i+ 1〉.

Definition B.2 (Validity of ψm). We say that ψm is valid with respect to the current scope chain L

and the heap h if the following hold

ψm(x) = n ⇐⇒ ∀i.i > n, (Li, x) 6∈ dom(h) ∧ (Ln, x) ∈ dom(h)

ψm(x) = ⊥ ⇐⇒ ∀i. i > 1, (Li, x) 6∈ dom(h)

Lemma 17 (Correctness of ψm). The operational semantics of JavaScript and the operational seman-

tics of JSIL preserve the validity of ψm.

188

C. JSIL Logic

Lemma 18 (Substitution Lemma, Expressions). Let vars(e) ⊆ {xi |ni=1}. Then:

Je[ei/xi |ni=1]Kρ = JeK∅[xi 7→JeiKρ|ni=1].

Proof. By induction on the structure of e. We have that: e ∈ EJSIL , λ | x | 	 e | e ⊕ e. As literals

are unaffected by substitution, and unary and binary operators are trivially covered by the induction

hypothesis, the only case that we need to address is when e = xi, for some i ∈ {1, . . . , n}. In that

case, our goal becomes:

JeiKρ = JxiK∅[xi 7→JeiKρ|ni=1]

which holds directly from the definition of J Kρ.

Lemma 19 (Substitution Lemma, Logical Expressions). Let vars(E) ⊆ {xi |ni=1}. Then:

JE[ei/xi |ni=1]Kερ = JEKε∅[xi 7→JeiKρ|ni=1].

Proof. Analogous to the previous lemma, by induction on the structure of E.

Lemma 20 (Substitution Lemma, Assertions). Let vars(P) ⊆ {xi |ni=1}. Then:

H, ρ, ε |= P [ei/xi |ni=1] ⇔ H, ∅[xi 7→ JeiKρ |ni=1], ε |= P

Proof. We will prove the cases when P ≡ E1 = E2 and P ≡ (E1, E2) 7→ E3. The remaining cases are

either unaffected by substitution, are proven directly using the induction hypothesis, or are proven

analogously.

• Let P ≡ E1 = E2. Then, using Lemma 19, we have:

H, ρ, ε |= P [ei/xi |ni=1]⇔
H, ρ, ε |= (E1 = E2)[ei/xi |ni=1]⇔
JE1[ei/xi |ni=1]Kερ = JE2[ei/xi |ni=1]Kερ ⇔
JE1Kε∅[xi 7→JeiKρ|ni=1] = JE2Kε∅[xi 7→JeiKρ|ni=1] ⇔
H, ∅[xi 7→ JeiKρ |ni=1], ε |= E1 = E2 ⇔
H, ∅[xi 7→ JeiKρ |ni=1], ε |= P

189

• Let P ≡ (E1, E2) 7→ E3. Then, using Lemma 19, we have:

H, ρ, ε |= P [ei/xi |ni=1]⇔
H, ρ, ε |= ((E1, E2) 7→ E3)[ei/xi |ni=1]⇔
H = (JE1[ei/xi |ni=1]Kερ, JE2[ei/xi |ni=1]Kερ) 7→ JE3[ei/xi |ni=1]Kερ ⇔
H = (JE1Kε∅[xi 7→JeiKρ|ni=1], JE2Kε∅[xi 7→JeiKρ|ni=1]) 7→ JE3Kε∅[xi 7→JeiKρ|ni=1] ⇔
H, ∅[xi 7→ JeiKρ |ni=1], ε |= (E1, E2) 7→ E3 ⇔
H, ∅[xi 7→ JeiKρ |ni=1], ε |= P

Lemma 21 (Return Values). For any JSIL program p, heaps h and hf , stores ρ and ρf , identifiers i

and j, value v, procedure identifier m, the following implications hold:

p ` 〈h, ρ, i, j〉 ⇓m 〈hf , ρf , nm〈v〉〉 =⇒ ρf (xret) = v

p ` 〈h, ρ, i, j〉 ⇓m 〈hf , ρf , er〈v〉〉 =⇒ ρf (xerr) = v

Proof. Both implications are proven by induction on the derivation of the semantic judgement. All

cases are proven directly using the induction hypothesis.

190

D. JS-2-JSIL Logic Translator

Lemma 22 (Translation of Logical Expressions - Correctness). For any variable store ρ, logical

environment ε, value vt, and scope chain L, it holds that:

JEKερ,vt,L = JTe(E)Kερ[xsc 7→L,xthis 7→vt]

Theorem D.1 (Assertion translation correctness). For any assertion P , abstract heap H, variable

store ρ, logical environment ε, value vt, and scope chain L, it holds that: H, ρ, L, vt, ε |= P iff H, ρ[xsc 7→
L, xthis 7→ vt], ε |= Ta(P).

Proof. We proceed by induction on the structure of P .

1. P = false, Ta(P) = false. It can never be the case that either H, ρ, L, vt, ε |= false or H, ρ, ε |=
false holds. Hence, the result holds.

2. P = true. Ta(P) = true. It is always the case that both H, ρ, L, vt, ε |= true and H, ρ, ε |= true

hold, from which the result follows.

3. P = ∃X.P ′. Ta(P) , ∃X.Ta(P ′). Suppose H, ρ, L, vt, ε |= P . We conclude (using satisfiability

for JS assertions) that there is a value V, such that H, ρ, L, vt, ε[X 7→ V] |= P ′. Applying the

induction hypothesis, we conclude that H, ρ[xsc 7→ L, xthis 7→ vt], ε[X 7→ V] |= Ta(P ′), from which

it follows that H, ρ[xsc 7→ L, xthis 7→ vt], ε |= Ta(P). The converse direction of the equivalence is

proven analogously.

4. P = emp. Ta(P) = emp. Suppose H, ρ, L, vt, ε |= P . We conclude (using the definition of

satisfiability for JS assertions) that H = emp. Using the satisfiability relation for JSIL assertions,

we conclude that: H, ρ[xsc 7→ L, xthis 7→ vt], ε |= Ta(P). The converse direction of the equivalence

is proven analogously.

5. P = (E1, E2) 7→ E3. Ta(P) = (Te(E1), Te(E2)) 7→ Te(E3). Suppose H, ρ, L, vt, ε |= P . We

conclude (using satisfiability for JS assertions) that H = (JE1Kερ,vt,L, JE2Kερ,vt,L) 7→ JE3Kερ,vt,L.

Using Lemma 22, we conclude that: H = (JTe(E1)Kερ′ , JTe(E2)Kερ′) 7→ JTe(E3)Kερ′ for ρ′ = ρ[xsc 7→
L, xthis 7→ vt], from which it follows that H, ρ′, ε |= Ta(P). The converse direction of the equiva-

lence is proven analogously.

6. P = emptyProps(E0 | E1). Ta(P) = emptyProps(Te(E0) | Te(E1)). Suppose H, ρ, L, vt, ε |= P . We

conclude (using satisfiability for JS assertions) thatH =
⊎
p 6∈JE1Kερ,vt,L

((JE0Kερ,vt,L, p) 7→ �). Using

Lemma 22, we conclude that H =
⊎
p 6∈JTe(E1)Kε

ρ′
((JTe(E0)Kερ′ , p) 7→ �), for ρ′ = ρ[xsc 7→ L, xthis 7→

vt], from which it follows that H, ρ′, ε |= Ta(P). The converse direction of the equivalence is

proven analogously.

191

The remaining cases follow by simple application of the induction hypothesis.

192

	Abstract
	Introduction
	Contributions
	Thesis Outline
	Publications

	Background Theory
	Static Program Analysis for JavaScript
	Operational Semantics
	Compilers and Intermediate Representations for JavaScript
	Verification Tools Based on Separation Logic

	The JavaScript Language
	JavaScript: ECMAScript 5
	The Key Concepts of JavaScript
	The Core Language
	Built-in Libraries and the Initial Heap
	Why ES5 Strict?

	The Running Example
	The Memory Model of ES5 Strict
	A Formal Fragment of ES5 Strict
	Syntax of the ES5 Strict Fragment
	Pretty-Big-Step Semantics of the ES5 Strict Fragment
	Following the ES5 Standard

	The JSIL Language
	The JSIL Syntax
	The JSIL Semantics
	An Example of a JSIL Procedure

	The JS-2-JSIL Compiler
	JS-2-JSIL: Compilation by Example
	JS-2-JSIL: Compiler Coverage
	JS-2-JSIL Validation: Testing
	JS-2-JSIL: Compiler Formalisation
	Compiling the Global Code
	Compiling Function Literals
	Compiling Expressions and Statements

	JS-2-JSIL Validation: Compiler Correctness

	JSIL Verification Infrastructure
	JSIL Logic Assertions
	JSIL Logic
	Soundness of JSIL Logic
	JSIL Verify

	The JS-2-JSIL Environment
	Capturing JavaScript prototype chains: the Pi predicate
	Specifying Internal Functions

	JavaScript Verification
	JS Logic
	JS-2-JSIL: Logic Translator
	Basic JS Logic Predicates
	Specification of the Running Example
	Client Code Misusing the Library
	Specification of the Priority Queue Library
	Verification of Client Code

	Conclusion
	Summary of Thesis Achievements
	Open Problems

	Bibliography
	Pretty-Big-Step Semantics of a Fragment of ES5 Strict
	Notation
	Expressions and Statements
	Property Descriptors
	Internal Properties
	Auxiliary Internal Functions
	Operations on References
	Libraries

	Correctness Proof
	The JS-2-JSIL Compiler
	Compiler Correctness
	Alternative JSIL semantics
	The Proof of the Compiler Correctness
	Helper Lemmas

	JSIL Logic
	JS-2-JSIL Logic Translator

