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Abstract
We introduce a program logic for specifying a core sequen-
tial subset of the POSIX file system and for reasoning ab-
stractly about client programs working with the file system.
The challenge is to reason about the combination of local di-
rectory update and global pathname traversal (including ’..’
and symbolic links) which may overlap the directories be-
ing updated. Existing reasoning techniques are either based
on first-order logic and do not scale, or on separation logic
and can only handle linear pathnames (no ’..’ or symbolic
links). We introduce fusion logic for reasoning about local
update and global pathname traversal, introducing a novel
effect frame rule to propagate the effect of a local update on
overlapping pathnames. We apply our reasoning to the stan-
dard recursive remove utility (rm -r), discovering bugs in
well-known implementations.

Categories and Subject Descriptors F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Logics of pro-
grams

Keywords POSIX, file systems, local reasoning, global
pathnames, separation logic

1. Introduction
POSIX client programs manipulate the file system by using
the POSIX programming interfaces [1] to update regular
files or directories1. POSIX file system operations typically
identify the entries to be updated using pathnames (paths).
The specification of the POSIX file system and the modular

1 POSIX defines many types of files, which include regular files and
directories, and uses the term ‘file’ to refer to a file of any type. To avoid
confusion, we use ‘file’ for a regular file and ‘entry’ for a file of any type.

verification of POSIX client programs provide a significant
challenge to existing reasoning techniques. The update is
local, in that it simply affects the identified entry, but the
pathname resolution is global, in that it is able to traverse up
and down the whole directory hierarchy. Existing reasoning
techniques are either based on first-order logic which do not
scale (see related work), or on separation logic which can
only handle simple linear paths [3, 18]. We provide modular
sequential reasoning about the POSIX file system based on
separation logic [24], introducing new reasoning techniques
to account for local update and global pathname resolution.

In the simple setting without ’..’ and symbolic links, we
can use the linear pathname /usr/lib/tex to remove the
directory tex. The local update, which removes the empty
directory tex from lib, has no effect on the linear pathname
/usr/lib which identifies its location; the path does not
change and remains valid after update. This separation of the
linear pathname and local update makes the reasoning com-
paratively straightforward. With arbitrary pathnames, there
is no such separation and the reasoning is more difficult.
Reasoning about arbitrary pathnames is essential for accu-
rately specifying POSIX, since no primitive file system op-
eration is restricted to linear pathnames. Reasoning about
arbitrary pathnames is also essential for verifying client pro-
grams: standard utilities such as recursive remove accept ar-
bitrary pathnames as input; Makefiles and admin scripts fre-
quently use ’..’ to traverse a directory relative to some start-
ing directory; and installers use symbolic links to reference
different versions of files.

POSIX pathnames use ’..’ to traverse up the directory
structure and symbolic links to jump between directo-
ries. They thus cut across the underlying inductive def-
inition of the directory tree and overlap with the direc-
tory subtree(s) being updated. For example, we can use
the path /usr/lib/tex/../tex to remove the directory
tex. In this case, the update is not separate from the path
/usr/lib/tex/.. that identifies its location. The path
is no longer valid after update. To complicate things fur-
ther, a directory in lib which is different (disjoint) from
tex can be identified by a path using it, for example



/usr/lib/tex/../latex. Removing tex, will invalidate
this path as well; the local update has a global effect.

When providing a sequential specification of POSIX, a
fundamental question is whether to use global reasoning
(e.g. using first-order logic) and add mechanisms to account
for disjointness, or whether to start with local reasoning (e.g.
using separation logic) and add mechanisms to account for
sharing. There has been much work on traditional global rea-
soning techniques for specifying POSIX [2, 15, 19], such as
the well-known Z specification [22] and Forest [14]. This
work mainly showed that implementations were correct with
respect to the POSIX specification. We have recently de-
veloped a local reasoning technique for specifying POSIX
file systems restricted to linear pathnames [18]. In particu-
lar, we have mainly focused on how to reason about client
programs and demonstrated that global reasoning does not
provide scalable reasoning about client programs. We sum-
marise this argument against global reasoning in the related
work, and also argue that our previous local reasoning work
does not extend to arbitrary pathnames.

We introduce fusion logic, providing a specification of a
sequential core fragment of POSIX file systems with arbi-
trary pathnames and verifying file-system client programs.
With fusion logic, we start from local reasoning and intro-
duce new techniques to account for the sharing of pathnames
which overlap the local update. In this paper, we concentrate
on pathnames using ’..’, as this is enough to introduce the
important features of the reasoning. We also summarise how
to extend our reasoning to symbolic links, giving full details
in the accompanying technical report [23].

With fusion logic, we reason precisely about disjoint local
update, whilst at the same time accounting for overlapping
pathnames which can become obsolete after the update. We
achieve this by combining a specific permission algebra for
describing the disjoint and shared structure, with a novel ef-
fect separating conjunction and effect frame rule which per-
colates the effect of the update through the frame. The per-
mission structure provides the following sharing information
and update capability: the standard full permission (value 1),
used to describe disjoint entries with exclusive permission to
update; Boyland-style fractional permissions [4, 6] (values
in (0, 1)), used to describe shared entries which can be read,
cannot be updated and, hence, cannot overlap with an updat-
able entry; and a non-standard shadow permission (value 0),
used to describe shared entries which can be read as part of
a pathname, cannot themselves be updated, but can overlap
with an updatable entry.

The shadow permission provides accurate information
about directory entries and pathnames before update. How-
ever, after update, the information may be out of date, as the
pathname can become invalid. The local update of a direc-
tory entry can have a global effect on shared paths and needs
to be propagated through the reasoning. This is achieved by
an effect separating conjunction ∗̂ and an effect frame rule:

EFFECTFRAME
`
{
P
}
C
{
Q
}

`
{
P ∗R

}
C
{
Q ∗̂ R

}
The precondition of the conclusion of the effect frame is
standard. The postcondition is unusual. The effect separat-
ing conjunction is only present in postconditions. It enables
an update to be propagated to the frame using a set of effect
fusion axioms to make R consistent with Q. After propa-
gation, the resulting postcondition has no more effect sep-
arating conjunctions, and hence can be used as the precon-
dition of another command. The effect frame rule enables
us to reason locally. We can keep specifications small and
consider the global effects only when necessary. Our effect
frame rule is a particular example of the generalised frame
rule of the views framework [11]. We can therefore appeal
to the general soundness result of the views framework to
prove the soundness of our reasoning.

We provide a sequential specification for a core subset
of the POSIX file system which is faithful to the English
specification. We demonstrate our modular reasoning about
client programs using the standard recursive remove utility
(rm -r), giving a natural specification, demonstrating that
the busybox, GNU Core Utils and FreeBSD implementa-
tions are incorrect, and providing a simple fix for the busy-
box implementation which does satisfy our specification. Fi-
nally, we are able to specify correctness properties for a soft-
ware installer with a versioning strategy based on symbolic
links: the software installer either fully installs the software
or rolls back to its previous state; and the installation keeps
previous versions intact and usable.

We believe POSIX is an ideal real-world example for
highlighting the difficulties associated with reasoning about
local update and global traversal to the place where the up-
date occurs. We have demonstrated the need for shadow per-
missions and the effect frame rule for sequential reasoning
about POSIX. There are many other examples where we be-
lieve these techniques will be useful, such as graph algo-
rithms and DOM querying. By studying such examples, we
aim eventually to develop a general logic for reasoning about
the combination of local update and global traversal.

1.1 Related Work
Global approach
Specifications of file systems based on first-order logic have
been widely studied [2, 14–16, 19, 22], leading to the ver-
ification grand challenge by Joshi and Holzmann [21]. The
work mainly focused on the specification of the file system
and the correctness of implementations. First-order reason-
ing scales poorly when reasoning about file-system client
programs. The POSIX English specification defines many
operations using disjointness conditions between entries: for
example, rename moves a directory from one place to an-
other, as long as the directory being moved does not con-
tain the place to which it is moving. First-order reasoning



enforces such disjointness conditions with reachability side-
conditions. These constraints increase non-linearly with re-
spect to the size of programs, as we have demonstrated in
previous work [18] using rename as an example. Essentially,
this is similar to the non-linear increase of reachability con-
straints when using first-order logic, to reason about standard
heap update, compared to separation logic as demonstrated
by Reynolds [24].

Local approach
Specifications of file systems based on separation logic have
only recently been studied. Ernst et al. [13] give a global
first-order specification of the POSIX file system, and show
that a heap-based implementation of VFS (Virtual Filesys-
tem Switch), an abstraction layer within the Linux imple-
mentation of file systems, is correct. They use separation
logic to reason about the implementation. Their reasoning
is limited to linear paths which nicely match the inductive
directory tree structure. It is neither clear how to extend to
arbitrary pathnames, nor how their techniques can be lifted
to a local specification of POSIX. On the other hand, we
wish to link our local POSIX specification to an implemen-
tation in the future. This is an obvious option to explore.

In our previous work [18], we introduced structural sepa-
ration logic (SSL) to reason abstractly about complex struc-
tured data, observing that previous work on context logic [7]
for reasoning about trees was not fine-grained enough. We
provided an abstract specification of a sequential core frag-
ment of the POSIX file system with linear paths, and used
it to reason about client programs such as a simple software
installer. Structural separation logic combines fine-grained
local reasoning about directory fragments with global path
promises which limits the frame to those environments sat-
isfying the path promises. We conjectured that a combina-
tion of path promises (the environment must preserve certain
path information) and path obligations (the current thread
must preserve certain path information) would extend the
work to arbitrary paths. However, when we attempted to ex-
pand on this we found that path promises and obligations
do not work. A path can be broken during a local update,
whereas path obligations require that the path is preserved.

In the work presented here, we introduce fusion logic to
specify a sequential core fragment of the POSIX file sys-
tem with arbitrary pathnames and symbolic links. In fact,
we believe that our specification is also simpler than SSL in
that our axioms are smaller and more readable since they
are based on simple tree assertions rather than assertions
based on tree contexts: for example, compare the axioms for
rename given in figure 4 with those of SSL. We can also ver-
ify more realistic client programs: for example, unlike SSL,
we can verify a software installer with versioning based on
symbolic links. In future, we will verify Makefiles and ad-
min scripts which require ’..’ for their relative pathnames.
Indeed, we are finally in a position to talk to system admin-
istrators about interesting file-system use cases. For a more

technical discussion on why SSL does not work with arbi-
trary paths, we refer the reader to the technical report [23].

A natural question is whether techniques from fine-
grained concurrent separation logics (such as deny-guaran-
tee [12] and concurrent abstract predicates [10]), involving
standard permissions and the standard separating conjunc-
tion, can be adapted to specify POSIX file systems. For ex-
ample, da Rocha Pinto et al. [9] define concurrent abstract
predicates for concurrent indexes that allow overlapping up-
dates and reads. In particular, the predicate indef(k, v), stat-
ing that a thread can update the key k with value v, can
be used at the same time as the predicate read(k), stating
that a thread can only read the key k but other threads may
change it. The predicates are required to be stable, mean-
ing that read(k) does not imply that the key exists. POSIX
commands require stronger preconditions. We need to know
that an entry really does exist before update, and might not
exist after update. A shadow permission in the precondition
guarantees that the entry does exist. A shadow permission
in the postcondition describes an entry that may or may not
exist depending on how the update is propagated by the ef-
fect conjunction. We did spend a significant amount of time
trying to use shadow permissions with just the standard sep-
arating conjunction and the frame rule. However, all our
attempts involved complex well-formedness constraints on
the preconditions of axioms and on the frame rule, severely
complicating the reasoning. We now believe that our effect
frame rule is fundamental.

Another natural question is whether Hobor and Villard’s
reasoning about graph algorithms [20], using “sepish” (over-
lapping conjunction) connective of [17, 20], can be adapted
to POSIX file systems. Sepish allows overlaps at the cost of
disjointness. It is possible to regain disjointness with reach-
ability constraints. However, just as the rename example is
used to show that first-order reasoning does not scale [18],
it can also be used to show that sepish reasoning does not
scale. In contrast, fusion expresses overlaps whilst still re-
taining disjointness information. Our reasoning does scale,
because no reachability constraints are needed, but also the
effect frame makes the reasoning modular; it is a frame rule.

Finally, Biri and Galmiche propose a separation logic
for simple tree updates with paths [3]. They use a similar
tree model but without any permission structure to control
resource sharing. This approach leads to non-local axioms
and, as the authors admit, a frame rule that is only sound
when allocation of new nodes in prohibited. In contrast, we
avoid such issues by using the permission system to control
resource sharing as is standard with fractional permissions.

2. Example Specifications
We focus on a sequential core fragment of POSIX file system
commands. Even though small, it includes the basic primi-
tive commands for manipulating the file system’s structure.
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(a) An instrumented directory tree on which we can run mkdir
with pathname /usr/local/../lib/tex.
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(b) The resulting instrumented directory tree after running
mkdir with pathname /usr/local/../lib/tex.
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(c) Composition of two instrumented directory trees, equivalent to figure 1b by fusion.

Figure 1: Examples of partial directory trees.

Consider the command r := mkdir(path) where the
variable path has value /usr/local/../lib/tex. Ac-
cording to its POSIX description, it creates a new empty
directory named tex within the directory identified by the
path /usr/local/../lib. The intuitive tree footprint of
mkdir is a partial directory tree consisting of only those
entries required by the path traversal, the global pathname
footprint, and those entries updated by the command, the lo-
cal update footprint. The local update footprint requires full
ownership so that it can be updated. The global pathname
footprint requires partial ownership so that paths identifying
different disjoint entries can share common prefixes.

To do the update in our example, we require partial own-
ership of the entries in the directory tree that are required
by the path /usr/local/../lib, and full knowledge and
ownership that tex is not in the directory at the end of the
path. To express this information, we instrument the entries
of a directory tree with permissions and extend entries to
also describe entry non-existence. Consider figure 1a, which
gives a partial directory tree corresponding to the footprint
of mkdir(path). The fractional permissions on usr, local
and lib indicate that they are shared with the rest of the file
system (the rest of the file system is not depicted). In addi-
tion, the lib directory contains the non-existent entry tex
with full permission given by 1. This indicates that, although
we do not have a complete description of the directory lib,
we know for certain that tex is not in the directory and we
have exclusive permission to create a new entry named tex.
Figure 1b depicts the tree after the update, with a new empty
sub-directory tex under lib, again with full permission.

We introduce fusion logic, consisting of tree asser-
tions for reasoning about such tree footprints. A tree as-
sertion satisfied by the partial directory tree in figure 1a
is tree

(
>
[
usr1/2

[
local1/3[∅] ∗ lib1/2

[
t̂ex1

]]])
, where > is

the root directory, t̂ex1 denotes the non-existence of a tex
entry with permission 1 and the fractions denote sharing
with the rest of the directory tree. The shape of such tree
assertions is familiar: for example, from ambient logic [8].
The addition of permission instrumentation and non-entries
to such tree assertions is novel to fusion logic, although
they have been used in reasoning about concurrency ([6]
for permissions; [10] for non-entry). It is also convenient to
use path syntax in tree assertions. For example, the asser-
tion tree

(
/usr1/2/local1/3/../lib1/2/t̂ex1

)
is satisfied by

the same partial directory tree as the previous assertion. The
instrumented path syntax /usr1/2/local1/3/../lib1/2 iden-
tifies the nodes of the partial directory tree and the order in
which they are traversed. The t̂ex1 assertion is as before.

We can give the following small axiom for mkdir:{
var(r,−) ∗ pvar(path, p/a1) ∗ tree(p/â1)

}
r := mkdir(path){

var(r, 0) ∗ pvar(path, p/a1) ∗ tree(p/a1[∅])
}

In the precondition, the variable assertion var(r,−) states
that the program variable r, in which the return value of the
command will be stored, currently has some value that we do
not care about. The variable path assertion pvar(path, p/a1)

states that the program variable path has a value given
by the path p/a1. The tree assertion tree(p/â1) describes a
partial directory tree where the nodes in the tree are de-



scribed by path p and the non-entry a has full permission and
hence can be updated. In the postcondition, the tree assertion
tree(p/a1[∅]) states that, under p, we now have an empty di-
rectory named a with full permission. The command returns
the value 0 to indicate a successful update and this specifica-
tion implies that nothing else has been modified.

Now consider the command r := rmdir(path) where,
this time, the variable path is a linear path /usr/lib/tex.
According to the English specification, it removes the direc-
tory tex under path /usr/lib when it is empty. Consider
figure 1b. The command will remove the directory tex that
we had previously created. However, with this path, the tree
in figure 1b is bigger than the command’s intuitive footprint.
Since the path does not go through the local directory, it
should not be part of the small footprint. Figure 1c illus-
trates how the instrumented directory tree in figure 1b can
be separated: the tree on the right of the composition is a
tree footprint for our example; and the tree on the left is not
necessary since either the structure is already shared by the
tree on the right, or the structure (in this case the local di-
rectory) is not touched.

The tree in figure 1b can be described by the assertion
given by path syntax:

tree
(
/usr1/2/local1/3/../lib1/2/tex1[∅]

)
This can be rewritten as the following assertion, satisfied by
the partial directory trees in figure 1c:

tree
(
/usr1/4/local1/3/../lib1/4[∅]

)
∗ tree

(
/usr1/4/lib1/4/tex1[∅]

)
Then, we can frame-off the top assertion and use the bottom
one as the precondition of the update. After the update, we
can frame it back on, and fuse the resulting assertions to
yield one satisfied by the directory tree in figure 1a.

When the paths are complex (non-linear), rmdir requires
more complicated reasoning. Consider the case when path
is /usr/lib/tex/../tex. The tree footprint is the right
hand side of figure 1c. This time, interestingly, the update
footprint and the pathname footprint overlap, as both require
the same tex sub-directory. Standard permissions are not
enough to cope with this situation. The local update requires
full permission 1, but the global path traversal requires frac-
tional permissions 0 < π < 1 which is inconsistent with the
full permission of the update. Our solution is to introduce a
non-standard shadow permission 0, with the unusual mean-
ing that tex0 denotes that we know the directory tex exists
before the update (in this case, the command has followed a
path using tex) but we do not know if it will exist after the
update (in this case, rmdir has removed it).

Consider the following path-based assertion satisfied by
the right-hand-side tree of figure 1c:

tree
(
usr1/4/lib1/4/tex0/../tex1[∅]

)
which is equivalent to the assertion:

tree
(
>
[
usr1/4

[
lib1/4[tex0[∅] ∗ tex1[∅]]

]])

The local update on the directory has an effect on the path
in the sense that, after update, the path /usr/lib/tex no
longer exists. This means that not only must the tex1[∅] be
removed, but also the effect of the update must be propa-
gated through the rest of the tree assertion. We achieve this
by introducing the effect separating conjunction ∗̂, which
propagates the effects of updates to shared entries. In this
example, after update, we obtain the assertion:

tree
(
>
[
usr1/4

[
lib1/4

[
tex0[∅] ∗̂ t̂ex1

]]])
The composition tex0[∅] ∗̂ t̂ex1 propagates the effect of the
update by discarding the now outdated tex0[∅], leading to
the assertion tree

(
>
[
usr1/4

[
lib1/4

[
t̂ex1

]]])
.

It is helpful in postconditions to introduce the path-based
syntax tree

(
/usr1/4/lib1/4/tex0/..( t̂ex1

)
as equivalent to

tree
(
>
[
usr1/4

[
lib1/4

[
tex0[∅] ∗̂ t̂ex1

]]])
. Using this path-

based notation, the small axiom for rmdir is:{
var(r,−) ∗ pvar(path, p/a1) ∗ tree(p/a1[∅])

}
r := rmdir(path){

var(r, 0) ∗ pvar(path, p/a1) ∗ tree(p( â1)
}

This specification is simple despite the complex behaviour
of updates using arbitrary pathnames.

The local update of rmdir does not affect only the path
identifying the update, as seen in the previous example. Any
disjoint directory from the one being removed can be iden-
tified by a path that overlaps it. Local update can there-
fore have a global effect. We introduce the effect frame rule
which uses the effect separating conjunction ∗̂ to propagate
the effects of the update, to larger footprints:

EFFECTFRAME
`
{
P
}
C
{
Q
}

`
{
P ∗R

}
C
{
Q ∗̂ R

}
This rule is an instance of the generalised frame rule of
views [11]. We prove soundness by appealing to views, as
summarised in section 4.3 and appendix B.

Now consider running rmdir(path) on a directory tree
described by:

tree
(
/usr1/4/lib1/4/tex1[∅]

)
∗ tree

(
/usr1/4/lib1/4/tex0/../../local1/3[∅]

)
where path is /usr/lib/tex. The proof derivation is:

In the following, let: p = /usr1/4/lib1/4{
var(r,−) ∗ pvar(path, p/tex1) ∗ tree(p/tex1[∅])

∗ tree
(
p/tex0/../../local1/3[∅]

) }

E
FF

E
C

T
F

R
A

M
E

{
var(r,−) ∗ pvar(path, p/tex1) ∗ tree(p/tex1[∅])

}
// apply the rmdir axiom
r := rmdir(path){

var(r, 0) ∗ pvar(path, p/tex1) ∗ tree
(
p( t̂ex1

)}
// consequence rule:
// propagate effect on the path{

var(r, 0) ∗ pvar(path, p/tex1) ∗ tree
(
p/t̂ex1

)}{
var(r, 0) ∗ pvar(path, p/tex1) ∗ tree

(
p/t̂ex1

)
∗̂ tree

(
p/tex0/../../local1/3[∅]

) }
// consequence rule:
// propagate effect on the recombined resource{

var(r, 0) ∗ pvar(path, p/tex1) ∗ tree
(
p/t̂ex1

)
∗ tree

(
p/../local1/3[∅]

) }



In the precondition, the assertion tree(p/tex1[∅]) describes
all the resource required by rmdir. We therefore frame-off
the assertion tree

(
p/tex0/../../local1/3[∅]

)
. Notice, how-

ever, that the path of this assertion overlaps the directory
being removed. After framing-off this assertion, we can ap-
ply rmdir’s axiom to yield tree

(
p( t̂ex1

)
. Note the use of(

in the assertion, as required by the axiom’s postcondition.
In this particular example, the path p does not overlap with
the removed tex directory, and so we use the consequence
rule to obtain tree

(
p/t̂ex1

)
. Next, we frame-on the assertion

we had previously set aside, using the effect separating con-
junction ∗̂. Using the consequence rule, we can remove tex0
and one ’..’ to obtain an assertion where all effects have been
propagated (no more ∗̂). The postcondition is now ready to
be used as a precondition for another command.

Consider the case where after the previous program we
run mkdir(path) where path is using the previously re-
moved directory, e.g. /usr/lib/tex/../../local/lib.
From mkdir’s precondition, the assertion tree(p/â1) states
that the final component of the path must not exist, but the
prefix p must. Given the previous example’s postcondition
we see that the prefix /usr/lib/tex/../../local is no
longer valid and therefore we cannot establish mkdir’s pre-
condition. This didactic example highlights the fact that ex-
tra care must be taken when using such complex paths in
programs. This is especially true with programs that work
on path arguments. In section 5, we demonstrate that well-
known implementations of recursive remove are incorrect.
Fortunately, by reasoning about the effects of updates on
paths, we can expose this lack of care.

Finally, consider the r := rename(old, new) com-
mand which moves entries in the directory tree. It has many
cases depending on whether a file or directory is moved and
whether the target exists. Consider the case of moving a
directory to an already existing target. According to the En-
glish specification, both paths must identify directories but
the one identified by new must be empty2. The two paths
may have a shared pathname prefix and, crucially, may mu-
tually overlap the directories they identify. The axiomatic
specification for this case is:{

var(r,−) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p/a1[d]) ∗ tree(p′/b1[∅])

}
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p( â1) ∗̂ tree(p′/b1[d])

}
In the precondition, tree(p/a1[d]) describes the tree where, at
the end of p, there is a directory named awith contents given
by directory forest d. The assertion has full permission of
both a and all its contents d (full permission propagates to
descendants). The assertion tree(p′/b1[∅]) describes the di-
rectory tree where, at the end of p′, there is an empty direc-
tory b with full permission. The full permission on both up-

2 Note that the primitive operation rename works differently from the shell
utility mv, where mv old new will place old into new.

dated directories ensures that they are disjoint. There might
be shadow permissions in p and p′, meaning that they might
overlap with e.g. the directories a and b. The full permission
on a guarantees that b is not its descendant. In the postcondi-
tion, tree(p( â1) ensures that effects are propagated to p. The
assertion tree(p′/b1[d]) does not require any propagation, as
the addition of d does not affect p′. However, the removal of
a1[d] under p may, and ∗̂ ensures effect propagation to p′.

3. Core POSIX File Systems
A program state comprises: a file system, which represents
the directory tree and associated files; a process heap, which
represents the memory contents of a client; and a variable
store, which represents the values of program variables.

3.1 File System
The file system structure is a directed acyclic graph consist-
ing of a directory tree and files3. Files are uniquely identified
by inodes from the set INODES, ranged over by ι, k, . . . . We
use the set FNAMES, ranged over by a, b, . . . , for naming
both files and directories.

Definition 1 (Directories). Concrete directory forests, cd ∈
DIRS, are defined by:

cd ::= ∅ | a[cd] | a : ι | cd⊗ cd

where ∅ is the empty directory forest, a[cd] is a directory
named a containing sub-directories cd, a : ι is a file link
associating file name a with inode ι, and ⊗ is the composi-
tion of directories. The equivalence relation, cd ≡ cd′, states
that ⊗ is commutative and associative with identity ∅. Well-
formed directory forests have sibling distinct names. We only
consider concrete directory forests that are well formed.

The set of directory trees is DTREES , {>[cd] | cd ∈
DIRS} where > 6∈ FNAMES denotes the root directory.
Entry types are defined as FTYPES , {F,D}, where F
denotes a file link type and D denotes a directory type.

Definition 2 (File Heaps). Let BYTES be the set of byte
sequences, ranged over by α, β. A file heap, f ∈ FILES,
defined as f : INODES

fin
⇀ BYTES, is a partial function

mapping inodes to byte sequences.

A directory tree combined with a file heap forms a file
system. However, for a file system to be well formed, we
require that the inode of every file link in the directory tree
must be in the domain of the file heap.

Definition 3 (File Systems). File systems are defined as:

FS , {fs ∈ DTREES × FILES | inodes(fs ↓1) ⊆ dom(fs ↓2)}

where fs ↓i denotes the ith projection on fs and inodes :
DTREES → P(INODES) denotes the set of all inodes refer-
enced within a directory tree.

3 As most implementations we only allow hard links to files. Directory hard
links introduce cycles which are not detectable during directory traversal.



Definition 4 (Concrete Paths). A concrete relative path,
crp ∈ RELPATHS, is a sequence of filenames defined by:

crp ::= . | .. | a | ./crp | ../crp | a/crp

with an equivalence relation, crp ≡ crp′, stating that / is
associative with ’.’ as identity.

Absolute paths ABSPATHS , {/crp | crp ∈ RELPATHS},
are paths that begin at the root directory. Equivalence is ex-
tended to absolute paths: /crp ≡ /crp′ ⇐⇒ crp ≡ crp′.
The set of all paths is PATHS , RELPATHS ∪ ABSPATHS.

Commands accept concrete paths as arguments. In order
to relate the partial directory tree footprints of commands
with the paths they use, we instrument paths with permis-
sions in section 4.1.

3.2 Process Heaps
A process heap represents the contents of the heap during
program execution. It consists of structures used for con-
trolling access to directories and files by IO (input/output)
commands: directory streams and open file descriptions. It
also contains a standard program heap. In this paper, we only
consider directory IO. We refer the reader to our technical re-
port [23] for details on file IO and standard program heaps.

A directory stream is the POSIX abstraction for directory
iterators. The command opendir(path) is used to create a
directory stream, for the directory identified by path. The
command readdir(dir) is then used to iterate over the
directory stream dir, either returning an entry or null (0)
when the iteration completes. POSIX does not specify the or-
dering of returned entries and allows directory streams to act
as mutable iterators in which case updates to the directory’s
contents may or may not be observed. For simplicity, in this
paper we consider directory streams to act as immutable it-
erators simply providing a snapshot.

Definition 5 (Process Heaps). Assume a set of directory
stream addresses DSADDRS. Process heaps, ph ∈ PH, are
heaps of directory streams:

PH , DSADDRS
fin
⇀ P(FNAMES)

3.3 Variable Stores
Assume a set of program variables VARS, and a set of values
VALS , PATHS∪Z∪FTYPES∪DSADDRS∪{true, false}.
A variable store, σ ∈ Σ, is a partial function, σ : VARS ⇀
VALS, mapping program variables to values.

Definition 6 (Program States). A program state, st ∈
STATES, consists of a variable store, a process heap and
a file system: STATES , Σ× PH × FS.

3.4 Core Fragment
In this paper we consider the following fragment of POSIX
file system commands, Cfs:

Cfs ::=

r := mkdir(path) | r := rmdir(path)
| r := unlink(path) | r := rename(old, new)
| dir := opendir(path) | closedir(dir)
| fn := readdir(dir) | t := stat(path)
| p := realpath(path)

This fragment includes the primitive POSIX commands for
manipulating the file-system structure and reading directo-
ries. In our technical report [23] we also include primitive
commands for file IO. In POSIX, the commands are defined
as C function interfaces. Here, we adapt them to a simple
imperative language, abstracting the details of C. Our aim is
to focus on file-system updates, which should be the same
irrespective of the programming language environment.

We reason about programs written in a sequential WHILE
language with calls to the commands our fragment. The lan-
guage uses program expressions, Expr ∈ EXPR, which are
constructed from values, variables, arithmetic and boolean
operations (such as +,−,∧ and ∨) and path composition
(using /). Expression evaluation [[−]]− : EXPR → Σ ⇀
VALS is standard. The programming language is given by
the following grammar:

C ::=
local var in C end | if Expr then C else C fi
| while Expr do C done | skip | C;C | x := Expr | Cfs

4. Local Reasoning
File-system programs manipulate the concrete file-system
states defined in the previous section. We instrument file sys-
tems with further information to express ownership and shar-
ing in the form of permissions (§4.1). This follows the gen-
eral approach of views [11], where reasoning is performed
in terms of instrumented views of the underlying concrete
program states. The instrumented views form the basis of
assertions (§4.2) used in the program logic and axiomatic
specifications of commands (§4.3).

4.1 Instrumentation
We instrument the directory entries of definition 1 with per-
missions in the range [0, 1] to regulate their ownership:

• Full permission, with value 1, indicates full ownership
on an entry, where we know that only we can update
and overlapping entries can only be read. In the directory
case, we know it is complete; nothing from the concrete
directory is missing.
• Fractional permission, with value 0 < π < 1, indicates

partial ownership of an entry and that we can only read it.
In the directory case, we own only some of its contents.
• Shadow permission, with value 0, indicates partial own-

ership of a directory, which cannot be updated but we
know an overlapping directory with full permission can.

Inspired by fine-grained reasoning on concurrent sets
[10], we add further instrumentation to locally describe the
non-existence of entries. Otherwise, we would have to in-



spect all the entries in a directory to determine if something
does not exist, leading to bigger footprints.

Definition 7 (Instrumented Directories). Instrumented di-
rectory forests, d ∈ IDIRS, are defined by:

d ::= ∅ | aπ[d] | aπ : ι | 〈̂S〉π | d⊗ d

where π ∈ [0, 1], S ⊆ FNAMES and 〈̂S〉π denotes a set of
non-existing entries with permission π.

Well-formed instrumented directory forests have the fol-
lowing constraints: siblings with π = 1 have distinct names,
all the descendants of a directory with π = 1 also have (a
sum of) π = 1, and finally all the descendants of a directory
with π = 0 also have π = 0. We only consider well-formed
instrumented directory forests. IDTREES , {>[d] | d ∈
IDIRS} denotes instrumented directory trees.

Note that full permission on a directory means all de-
scendants also have full permission to enforce complete-
ness. Shadow permission is also enforced on descendants
accordingly4. We use sets for non-existing entries instead
of individual names so that we can easily express the non-
existence of potentially (countably) infinite sets of names.
For example, a1/2

[
̂〈FNAMES〉1/3

]
describes an empty direc-

tory because we know all the entry names do not exist. In
contrast, a1/2[∅], does not describe an empty directory. The
fractional permission 1/2 indicates that we only know part
of its contents. In this case we know ∅, in other words we
know nothing about the contents of a.

In section 2 we informally described how instrumented
directory entries are composed or fused. Fusion allows en-
tries to be composed by merging entries with the same name
and summing their permissions. Recall the rmdir exam-
ple of section 2, where updating a full permission directory
induces effects on shared shadow permission directories.
These effects must be propagated so that globally shared di-
rectories remain consistent. Effect fusion extends normal fu-
sion so that update effects are propagated by discarding any
inconsistent shadow permission directories.

Definition 8 (Fusion equivalences). The fusion equivalence
relation, ≡ ⊆ IDIRS × IDIRS, is defined by the axioms:

aπ[d]⊗ aπ′
[
d ′
]
≡ aπ+π′

[
d⊗ d ′

]
if π, π′ > 0 (1)

aπ
[
d⊗ d ′

]
⊗ a0

[
d ′
]
≡ aπ

[
d⊗ d ′

]
(2)

aπ : ι⊗ aπ′ : ι ≡ aπ+π′ : ι if π, π′ > 0 (3)

〈̂S〉π ⊗ 〈̂S′〉π ≡ ̂〈S ] S′〉π if π > 0 (4)

〈̂S〉π ⊗ 〈̂S〉π′ ≡ 〈̂S〉π+π′ if π, π′ > 0 (5)

and standard axioms stating ⊗ is associative and commuta-
tive with unit ∅.

4 Definition 7 allows all entries to have 0 permission. However, in our
program reasoning and specifications we only use it for directories. Any
other resource with 0 permission is effectively invalid.

The effect fusion equivalence relation, ≡∧⊆ IDIRS ×
IDIRS, is defined by extending ≡ with the following axioms:

〈̂{a}〉1 ⊗ a0[d] ≡∧ 〈̂{a}〉1 (6)

a1 : ι⊗ a0[d] ≡∧ a1 : ι (7)

a1[d]⊗ a0
[
d′
]
≡∧ a1[d] if d⊗ d′ 6≡ d (8)

Both sets of axioms are closed under structural rules and
equivalence accordingly.

Equation (1) allows a directory to be split into two parts,
each getting some of its contents. Equation (2) allows cre-
ation of shadow permission directories. Note that the full
permission directory retains all of its contents. Equation (3)
simply allows sharing of file links. Equations (4) and (5)
deal with sets of non-existing entries. The former allows
the splitting of a set into disjoint subsets, in which case the
subsets preserve the original permission. Note that by this
axiom the permission on a set of non-existing entries ap-
plies to every individual element of the set. The latter al-
lows sets to be shared. The effect fusion equations deal with
stale shadow permission directories resulting from update.
In equations (6) and (7) the directory has been removed and
replaced by a file. In equation (8), when the side condition
holds the contents in a0[d′] do not agree with those in a1[d].
Essentially, a0[d′] is stale and we discard it.

In [23] we also instrument the file heap to allow fine
grained local reasoning for IO. In this paper, we assume
coarse grained IO and do not instrument file heaps.

Definition 9 (Instrumented Program States). Instrumented
filesystems are defined as: IFS , IDTREES × FILES. An
instrumented program state, is ∈ ISTATES, is a triple com-
prising a variable store, a process heap and an instrumented
file system: ISTATES , Σ× PH × IFS.

We relate instrumented program states to concrete pro-
gram states via a reification function. Reification is crucial
for defining semantic consequence (§ 4.2) and justifying the
soundness of our logic (§ 4.3).

Definition 10 (Reification). Instrumented program states
are reified to program states via the reification function,
b−c : ISTATES → P(STATES), defined as:

b(σ,ph, (>[d] , f)c ,
{(σ,ph, (>[cd] , f ′)) | strip(d) = cd ∧ f ′ = f ] f ′′}

where the function strip : IDIRS ⇀ DIRS is defined by
propagating any outstanding effects (using ≡∧), stripping
permissions and discarding non-existing entries when the
result is a well-formed directory forest.

Reification propagates all outstanding effects via ≡∧, be-
fore stripping directory instrumentation, and extends the file
heap in all possible ways so that the reified file system is well
formed according to definition 3.

Finally, we also instrument pathnames to use them as con-
venient syntax for describing the tree footprints of paths used



by programs as described in section 2. The instrumentation
simply adds permissions to the entry name path component.

Definition 11 (Instrumented Pathnames). Instrumented rel-
ative pathnames, rp ∈ IRELPATHS, are defined by:

rp ::= . | .. | aπ | ./rp | ../rp | aπ/rp

with an equivalence relation, rp ≡ rp′, stating that / is
associative with ’.’ as identity. Absolute instrumented paths,
IABSPATHS , {/rp | rp ∈ IRELPATHS}, are paths that
begin at the root directory. Equivalence on instrumented
relative paths is extended to instrumented absolute paths:
/rp ≡ /rp′ ⇐⇒ rp ≡ rp′. The set of all instrumented
paths is IPATHS , IRELPATHS ∪ IABSPATHS.

Instrumented linear paths are defined as ILPATHS ,
{p ∈ IPATHS |6 ∃p′, p′′ ∈ IPATHS. p ≡ p′/../p′′} and are
ranged over by lp. The function lin : IPATHS → ILPATHS
produces the linear path equivalent to an instrumented path:

lin(p) = lp
def⇐⇒ p ≡.. lp ∧ lp ∈ ILPATHS

where ≡.. extends ≡ on paths with aπ/../rp ≡.. rp and
/../rp ≡.. /rp. Finally, we use the function strippath :
IPATHS → PATHS, to relate instrumented paths to concrete
paths by simply removing the permission instrumentation.

We use instrumented directory trees to express the lo-
cal tree footprints of commands, such as those of fig-
ure 1. We think of a local tree footprint consisting of
two parts: a path footprint, which includes the directo-
ries required by a path; and an update footprint, which
includes the entries we wish to update. We use the nota-
tion /rp/d to describe such tree footprints. For example,
in /usr1/2/local1/3/../lib1/2/tex1[∅] the absolute instru-
mented path /usr1/2/local1/3/../lib1/2 corresponds to
the path footprint and the instrumented directory tex1[∅]

corresponds to the update footprint. The path footprint is the
natural one-holed context arising from the path. For exam-
ple, the instrumented path /usr1/2/local1/3 gives rise to
the path footprint >

[
usr1/2

[
local1/3[−]

]]
, where − is the

context hole, and /usr1/2/local1/3/../lib1/2 gives rise
to the path footprint >

[
usr1/2

[
local1/3[∅]⊗ lib1/2[−]

]]
.

The notation /usr1/2/local1/3/../lib1/2/tex1[∅] thus
describes the tree footprint given by the composition of the
path footprint context with the update footprint directory:

>
[
usr1/2

[
local1/3[∅]⊗ lib1/2[−]

]]
◦ tex1[∅]

= >
[
usr1/2

[
local1/3[∅]⊗ lib1/2[tex1[∅]]

]]
Definition 12. One-holed instrumented directory contexts,
c ∈ ICDIRS, are defined by

c ::= ∅ | aπ[c] | aπ : ι | 〈̂S〉π | c⊗ d | d⊗ c | −

with an equivalence relation, c ≡ c′, stating that ⊗ is as-
sociative and commutative with identity ∅. The same well-
formedness conditions of instrumented directories (defini-
tion 7) apply. Context application, ◦ : ICDIRS× ICDIRS →
ICDIRS, is standard.

The conversion of an instrumented path to the corre-
sponding one-holed context (up to equivalence) is subtle.
Starting at the root, it involves walking inductively down the
instrumented path rp, constructing the context as it goes. It
is defined by a reduction relation on pairs of instrumented
contexts and paths.

Definition 13 (Path-to-context reduction).
↓⊆ (ICDIRS × IPATHS)× (ICDIRS × IPATHS)

(>[−] , /rp) ↓ (>[−] , rp)
(>[c] , ..) ↓ (>[c′ ◦ (aπ[d]⊗−)] , .)

if c ≡ c′ ◦ (aπ[d′ ⊗−])
(>[c] , ..) ↓ (>[c] , .) if c ≡ d⊗−

(>[c] , aπ) ↓ (>[c ◦ aπ[−]] , .)
(>[c] , ./rp) ↓ (>[c] , rp)

(>[c] , ../rp) ↓ (>[c′ ◦ (aπ[d′]⊗−)] , rp)
if c ≡ c′ ◦ (aπ[d⊗−])

(>[c] , ../rp) ↓ (>[c] , rp) if c ≡ d⊗−
(>[c] , aπ/rp) ↓ (>[c ◦ aπ[−]] , rp)

Let ↓∗ denote the reflexive transitive closure of ↓.

The reduction ↓ takes (on the left hand side) a partially
constructed context and the path to convert, and produces (on
the right hand side) an extended context, given by the first
component in the path, and the remaining path. When the
initial path is a single component (’..’ or aπ), the reduction
produces the final directory context and ’.’ to indicate that
the path is fully reduced. We require two cases for ’..’:
one case for going up to the parent directory when inside
a normal directory; and the other for staying in the root
directory when already at the top.

Note that ↓ is deterministic up to equivalence and each
reduction decreases the remaining path by one component.
Starting with the context >[−] and an absolute instrumented
path /rp, the reduction relation ↓∗ will reach a unique final
context (up to equivalence) and ’.’ in a finite number of steps.
For example, consider the reduction for the instrumented
path /usr1/2/local1/3/../lib1/2:(

>[−] , /usr1/2/local1/3/../lib1/2
)

↓
(
>[−] , usr1/2/local1/3/../lib1/2

)
↓
(
>
[
usr1/2[−]

]
, local1/3/../lib1/2

)
↓
(
>
[
usr1/2

[
local1/3[−]

]]
, ../lib1/2

)
↓
(
>
[
usr1/2

[
local1/3[∅]⊗−

]]
, lib1/2

)
↓
(
>
[
usr1/2

[
local1/3[∅]⊗ lib1/2[−]

]]
, .
)

We define the notation p/d for arbitrary instrumented
paths, by first reducing p to the corresponding context and
then filling that context with the directory forest d.

Definition 14 (Path/tree notation).

rp/d = d′

⇐⇒ ∃c. (−, rp) ↓∗ (c, .) ∧ c ◦ d = d′

/rp/d = >[d′]
⇐⇒ ∃c. (>[−] , rp) ↓∗ (>[c] , .) ∧ c ◦ d = d′



Assertions P,Q
Directory Tree tree(E/∆)
Effect Directory Tree tree(E( ∆)
Root Directory tree(>[∆])
File Heap file(ι,E)
Directory Stream ds(dir,E)
Program Variable Value var(x,E)
Separating Conjunction P ∗Q
Effect Separating Conjunction P ∗̂ Q
Logical Expression E
Empty emp

Directory Assertions ∆,∆′

File Type Entry EE′ : ι
Directory Type Entry EE′ [∆]

Non Existing Entries 〈̂E〉E′

Fusion ∆ ∗∆′

Effect fusion ∆ ∗̂ ∆′

Logical Expression E
Empty Entry ∅

where E,E′ ∈ LEXPRS are logical expressions and ι is a logical variable evaluating to an inode.

Figure 2: Fusion logic assertions.

The notation /rp/d is defined for any number of ’..’s.
However, notice that, due to ’..’, the notation rp/d may not
always be defined. For example, the notation ../∅ is not
defined, but usr1/2/local1/3/../../∅ is. The ’..’ requires
a parent directory to go up, which may not always be present
in a relative path. This is not surprising, in that relative paths
only have meaning with respect to a suitable context.

4.2 Assertions
Assertions use logical variables and logical expressions, in
a similar way to programs using program variables and ex-
pressions. We extend values, VALS from section 3.3, to in-
clude instrumented paths, instrumented directories, permis-
sions, byte sequences and sets of such values, and use a log-
ical environment, e ∈ LENVS, to map logical variables to
the extended values. Logical expressions, E ∈ LEXPRS,
are constructed from values, logical variables, arithmetic,
boolean and set operations (such as +,−,∧,∨,∪ and ∩)
and path composition (using /). Logical expression evalu-
ation function, (| − |)− : LEXPRS → LENVS ⇀ VALS, is
standard. We treat all variables in assertions that are not pro-
gram variables as logical variables. We slightly abuse nota-
tion and use p, q, . . . for logical instrumented path variables,
a, b, . . . for logical entry name variables, ι, j, . . . for logical
inode variables and d, d′, . . . for logical instrumented direc-
tory tree variables.

Assertions P,Q ∈ ASRTS are constructed from standard
logical connectives and quantifiers and the left-hand-side as-
sertions of figure 2. The assertion tree(E/∆) describes a di-
rectory tree with path footprint given by the instrumented
path that is the value of the logical expression E and update
footprint described by the directory assertion ∆. The asser-
tion tree(E( ∆) describes a directory tree with path footprint
given by E and update footprint described by ∆, where up-
date effects are propagated from ∆ to the path footprint. Re-
call the rmdir specification from section 2, where we use
an assertion of this form so that when the path overlaps with
the removed directory, the directory’s removal is propagated
to the path. To directly describe directory trees, without us-
ing paths we use the assertion tree(>[∆]) which describes

the root directory with contents given by the directory as-
sertion ∆. The assertion file(ι,E) describes a file with in-
ode ι and byte contents given by the logical expression E.
The assertion ds(dir,E) describes a directory stream with
address dir containing the set of unread entries given by
the logical expression E. The assertion var(x,E) states that
the value of the program variable x is given by the logical
expression E. We follow the approach of variables as re-
source [5] in which the assertion states ownership of the vari-
able. P ∗Q is the standard separating conjunction describing
states split into two parts, one satisfying P and the other sat-
isfying Q. The effect separating conjunction P ∗̂ Q extends
∗, by propagating effects of P andQ to each other, with emp
being the identity of both ∗ and ∗̂. Finally, directory tree
assertions, ∆ ∈ IDIRENTRYASRTS, are constructed from
standard logical connectives and quantifiers and the right-
hand-side assertions of figure 2. These essentially lift instru-
mented directory trees to the assertion language. We over-
load ∗ and ∗̂ to describe fusion (definition 8). Instrumented
program states satisfying the assertions are given by satis-
faction relations, |=: (LENVS × ISTATES) × ASRTS, and,
|=′: (LENVS× IDIRS)× IDIRENTRYASRTS, defined in fig-
ure 3, for top level and directory assertions, respectively.

In P ∗Q, the separating conjunction states that P and Q
have no effect on each other. It is always possible to replace
∗ with ∗̂: P ∗ Q =⇒ P ∗̂ Q. The converse does not
apply. Replacing ∗̂ with ∗ is only possible by propagating
the effects between the two assertions by using the effect
fusion axioms of definition 8. These are directly lifted to the
logic. For example, from equation (6) in definition 8 we have
the logical axiom: 〈̂{a}〉1 ∗̂ a0[d] ⇐⇒ 〈̂{a}〉1.

We also define the following derived assertions to use in
our specifications:

Derived assertions
âπ , 〈̂{a}〉π entπ(a) , (∃ι. aπ : ι) ∨ aπ[true]

�
x∈∅

∆ , ∅ �
x∈{n}

∆ , ∆[n/x]

�
x∈{n}]S

∆ , ∆[n/x] �
x∈S

∆



e, (∅, ∅, (>[d] , ∅)) |= tree(E/∆) ⇐⇒ ∃d′, d′′. e, d′ |=′ ∆ ∧ >[d′′] = /(|E|)e/d′ ∧ d′′ ≡ d
e, (∅, ∅, (>[d] , ∅)) |= tree(E( ∆) ⇐⇒ ∃d′, d′′. e, d′ |=′ ∆ ∧ >[d′′] = /(|E|)e/d′ ∧ d′′ ≡∧ d
e, (∅, ∅, (>[d] , ∅)) |= tree(>[∆]) ⇐⇒ e, d |=′ ∆

e, (∅, ∅, (∅, f)) |= file(ι,E) ⇐⇒ f = e(ι) 7→ (|E|)e
e, (σ,ph, (∅, ∅)) |= ds(dir,E) ⇐⇒ ∃ds. ph = ds 7→ (|E|)e ∧ σ = dir 7→ ds

e, (σ, ∅, (∅, ∅)) |= var(x,E) ⇐⇒ σ = var 7→ (|E|)e

e, (σ,ph, (>[d] , f)) |= P ∗Q ⇐⇒ ∃σ′, σ′′, ph′,ph′′, d′, d′′, f ′, f ′′ .(σ,ph, (>[d] , f)) = (σ′ ]σ′′,ph′ ]ph′′, (>[d] , f ′ ] f ′))
∧ d ≡ d′ ⊗ d′′ ∧ e, (σ′, ph′, (>[d′] , f ′)) |= P ∧ e, (σ′′,ph′′, (>[d′′] , f ′′)) |= Q

e, (σ,ph, (>[d] , f)) |= P ∗̂ Q ⇐⇒ ∃σ′, σ′′, ph′, ph′′, d′, d′′, f ′, f ′′ .(σ,ph, (>[d] , f)) = (σ′ ]σ′′, ph′ ]ph′′, (>[d] , f ′ ] f ′))
∧ d ≡∧ d′ ⊗ d′′ ∧ e, (σ′, ph′, (>[d′] , f ′)) |= P ∧ e, (σ′′, ph′′, (>[d′′] , f ′′)) |= Q

e, (∅, ∅, (>[d] , ∅)) |= E ⇐⇒ >[d] = (|E|)e
e, (∅, ∅, (∅, ∅)) |= emp ⇐⇒ true

e, d |=′ EE′ : ι ⇐⇒ d ≡ (|E|)e(|E′|)e : e(ι)

e, d |=′ 〈̂E〉E′ ⇐⇒ d ≡ 〈̂(|E|)e〉(|E′|)e
e, d |=′ EE′ [∆] ⇐⇒ ∃d′. d ≡ (|E|)e(|E′|)e [d′] ∧ e, d′ |=′ ∆

e, d |=′ ∆ ∗∆′ ⇐⇒ ∃d′, d′′. d ≡ d′ ⊗ d′′ ∧ e, d′ |=′ ∆ ∧ e, d′′ |=′ ∆′

e, d |=′ ∆ ∗̂ ∆′ ⇐⇒ ∃ e, d′, d′′. d ≡∧ d′ ⊗ d′′ ∧ e, d′ |=′ ∆ ∧ e, d′′ |=′ ∆′

e, d |=′ E ⇐⇒ d ≡ (|E|)e
e,∅ |=′ ∅ ⇐⇒ true

Figure 3: Satisfaction relation.

pvar(path, p) , ∃cp. var(path, cp) ∧ strippath(p) = cp

all(d) , d ∧ ∃S, S′. (FNAMES = S ] S′)

∧
(
�
n∈S
∃π. entπ(n)

)
∗ ∃π. 〈̂S′〉π

names(S) , ∀a. (a ∈ S ⇐⇒ true ∗ ∃π. entπ(a))

E .
= E′ , E = E′ ∧ emp

where strippath(p) is the strippath function from defini-
tion 11 lifted to the assertion language. The assertion âπ
is derived notation for a singleton set of a non-existing en-
try with name a and permission π. entπ(a) describes a file
or directory with name a and permission π. �

x∈S
∆ is the

iterative version of ∗ on elements of the set S. The asser-
tion pvar(path, p) states that the path value of the program
variable path matches the instrumented pathname p once
permissions are stripped. The predicate all(d) describes a
complete list of entries d, requiring ownership of all pos-
sible entries either existing (set S) or non-existing (set S′).
names(S) describes entries for every file name in the set S
and finally, E .

= E′ provides a ∗-separated version of equals.
Consider the following two instrumented directories:

a1[∅] and a1
[
b̂1
]
. By reification (definition 10), both reify

to exactly the same concrete directories. In the first, the di-
rectory contains no entries. In the second, we know that b
does not exist but also that no other entries exist. They are
semantically equivalent. This fact is part of the general no-
tion of semantic entailment of views [11].

Definition 15 (Semantic Entailment). The semantic entail-
ment relation, 4 ⊂ ASRTS × ASRTS, is defined as:

P 4 Q ⇐⇒
∀ R ∈ ASRTS, e ∈ LENVS. b[[[P ∗R]]]ec ⊆ b[[[Q ∗R]]]ec

where [[[P ]]]e , {is ∈ ISTATES | e, is |= P} denotes the
set of all instrumented states satisfying P and b−c is the
reification function from definition 10.

With semantic entailment we can generalise the previous
example: a1[∆ ∧ notnamed(S)] 4 a1

[
∆ ∗ 〈̂S〉1

]
where

notnamed(S) asserts that the names in S are not mentioned
as top level entries in the directory and is defined as:

notnamed(S) , ∀a. a ∈ S ⇐⇒

¬

(
true ∗ ∃π. entπ(a)

∨
(
∃S′. 〈̂S′〉π ∧ a ∈ S

′
) )


This allows us to express an empty directory simply with as-
sertions of the form a1[∅] and introduce sets of non-existing
entries only when needed.

When π < 1, the assertion aπ[∅] does not mean that a is
empty, but simply that we do not own anything from its con-
tents (they are potentially framed off). Note that this is dif-
ferent from the assertion aπ[true] where we own anything,
including nothing, from its contents. The only way to say
that a partially-owned directory is empty is by owning the
fact that every file and directory name does not exist within
it, for example as with the assertion a1/2

[
̂〈FNAMES〉1/2

]
.



4.3 Program Logic
We present a Hoare-style program logic comprising: our
small axioms for our POSIX fragment; the standard axioms
for skip and assignment from separation logic; our new ef-
fect frame rule; the semantic consequence rule of the views
framework [11]; and the standard Hoare inference rules for
control-flow statements (e.g. if, while) and logical connec-
tives (e.g., existential elimination, disjunction). We adopt
a fault-avoiding partial-correctness interpretation of Hoare
triples

{
P
}
C
{
Q
}

: when the program C is run on a state
reified from P , it will not fault and, if it terminates, will re-
sult in a state reified from Q.

The small axioms for our POSIX fragment are given in
figure 4. They match very closely the English descriptions
given in the POSIX standard. For example, consider the ax-
iom for mkdir(path) which creates a new empty directory
identified by path, as long as an existing entry with the
same name does not already exist. In the precondition, the
assertion pvar(path, p/a1) states that path has a path-prefix
p and ends with the name a with full permission 1. Assertion
tree(p/â1) states that a does not exist at the end of p and a
new entry can be created as the permission is 1. Assertion
var(r,−) states that variable r has an undeclared value us-
ing the variables-as-resource interpretation [5]. In the post-
condition, assertion tree(p/a1[∅]) states that a new empty di-
rectory, named a with permission 1, has been created at the
end of path p. Assertion var(r, 0) states that the return value
captured by r is set to 0 indicating a successful update.

Now consider rmdir(path) which removes the empty
directory identified by path. In the precondition, assertion
tree(p/a1[∅]) states that at the end of the path-prefix p there
is an empty directory a which can be removed as indicated
by full permission 1. As seen in the rmdir example in sec-
tion 2, the path p can overlap with directory a. The removal
of a therefore has an effect on p since parts of p may no
longer exist. In the postcondition, assertion tree(p( â1) states
that the entry a1 does not exist and there is a potential effect
of the removal of directory a on the path p which needs to
be propagated, as described in section 2.

The propagation of local directory update effects can be
more complicated than just effecting the path to the update.
Consider the rename command. The first two axioms in fig-
ure 4 give the cases for renaming files and are straightfor-
ward. The next two axioms give the cases for renaming di-
rectories. The last axiom is a simple degenerate case. The
third and fourth axioms are the most interesting. They state
that the removal of the directory a may have an effect on
both p, as given by tree(p( â1), and on p′, as given by the
effect separating conjunction ∗̂.

As seen in section 2, local directory updates have global
effects that need to be propagated to the environment. This
is achieved by the effect frame rule:

EFFECTFRAME
`
{
P
}
C
{
Q
}

`
{
P ∗R

}
C
{
Q ∗̂ R

}

As with the standard frame rule from separation logic, we
can extend the state using an arbitrary assertion R. Unlike
the frame rule, we must propagate the effect of the local up-
date toR, as given by the effect propagating conjunction ∗̂ in
the postcondition of the conclusion. Note that the precondi-
tion of the conclusion, as well the preconditions of every ax-
iom, use the standard separating conjunction which require
pre-states where all global effects have already been propa-
gated. This highlights a crucial aspect of our reasoning. After
performing an update, it is essential to propagate all effects
on the owned resources using the effect fusion axioms before
continuing with subsequent updates.
Soundness The views framework [11] has associated with
it a general soundness result. This means that it is enough
to give certain parameters and establish certain properties
for the soundness result to hold. We show that our effect
frame rule is an instance of the generalised frame rule of
views. The detailed proof can be found in the accompa-
nying technical report [23]. We determine the necessary
parameters: the primitive commands, Cfs (§3.4); the con-
crete states, STATES (definition 6); the separation algebra
(ISTATES, •, (∅, ∅, (∅, ∅))); the axioms of figure 4; and the
reification function b−c of definition 10. We give a more
detailed account of the parameters and state the required
properties in appendix B.

Theorem 1 (Soundness). Assume `
{
P
}
C
{
Q
}

. Then, for
all e ∈ LENVS, st ∈ b[[[P ]]]ec and st′ ∈ STATES, if C, st ∗
skip, st′ in the operational semantics then st′ ∈ b[[[Q]]]ec.

5. Recursive remove
The primitive POSIX command rmdir removes a directory
only if it is empty. More often than not, we need to remove
non-empty directories. The POSIX standard does not specify
a programming interface to do that (as in a C function), and
so this either has to be implemented, or the shell (command
line) utility rm with the option -r has to be used, which is
specified in POSIX as one of the required utility programs
systems must implement. An implementation of this utility
is given in figure 5a. In fact, it is the implementation found
in busybox stylised to our simple programming language.

Intuitively, the command removes the entry identified by
its pathname argument, even if it is a non-empty directory.
Formally, the specification is:{

pvar(path, p/a1) ∗ tree(p/ent1(a))
}

rmr(path){
pvar(path, p/a1) ∗ tree(p( â1)

}
In the precondition, path identifies either a file or directory
with a full permission. In the postcondition, this entry is
removed and we know that this has an effect on the path
prefix p due to possible overlap of the path with the removed
entry. For simplicity, we omit return values where possible.



{
var(r,−) ∗ pvar(path, p/aπ) ∗ lin(p/aπ)

.
= lp

∗ tree(p/(d ∧ entπ(a)))

}
r := realpath(path){

pvar(r, lp) ∗ pvar(path, p/aπ) ∗ lin(p/aπ)
.
= lp

∗ tree(p/d)

}
{

var(r,−) ∗ pvar(path, p/a1) ∗ tree(p/â1)
}

r := mkdir(path){
var(r, 0) ∗ pvar(path, p/a1) ∗ tree(p/a1[∅])

}
{

var(r,−) ∗ pvar(path, p/a1) ∗ tree(p/a1[∅])
}

r := rmdir(path){
var(r, 0) ∗ pvar(path, p/a1) ∗ tree(p( â1)

}
{

var(r,−) ∗ pvar(path, p/a1) ∗ tree(p/a1 : ι)
}

r := unlink(path){
var(r, 0) ∗ pvar(path, p/a1) ∗ tree(p/â1)

}
{

var(r,−) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p/a1 : ι) ∗ tree(p′/b1 : ι′)

}
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p/â1) ∗ tree(p′/b1 : ι)

}
{

var(r,−) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)

∗ tree(p/a1 : ι) ∗ tree
(
p′/ b̂1

) }
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p/â1) ∗ tree(p′/b1 : ι)

}
{

var(r,−) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p/a1[d]) ∗ tree(p′/b1[∅])

}
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p( â1) ∗̂ tree(p′/b1[d])

}

{
var(r,−) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)

∗ tree(p/a1[d]) ∗ tree
(
p′/b̂1

) }
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/a1) ∗ pvar(new, p′/b1)
∗ tree(p( â1) ∗̂ tree(p′/b1[d])

}
{

var(r,−) ∗ pvar(old, p/aπ) ∗ pvar(new, p′/aπ)
∗ lin(p/a1)

.
= lin(p′/a1) ∗ tree(p/(d ∧ entπ(a)))

}
r := rename(old, new){

var(r, 0) ∗ pvar(old, p/aπ) ∗ pvar(new, p′/aπ)
∗ lin(p/a1)

.
= lin(p′/a1) ∗ tree(p/d)

}
{

var(t,−) ∗ pvar(path, p) ∗ tree(p/∅)
}

t := stat(path){
var(t, D) ∗ pvar(path, p) ∗ tree(p/∅)

}
{

var(t,−) ∗ pvar(path, p/aπ) ∗ tree(p/aπ : ι)
}

t := stat(path){
var(t, F ) ∗ pvar(path, p/aπ) ∗ tree(p/aπ : ι)

}
{

var(dir,−) ∗ pvar(var, p) ∗ tree(p/all(d))
}

dir := opendir(path){
ds(dir, S) ∗ pvar(var, p)
∗ tree(p/ (d ∧ names(S)))

}
{

var(fn,−) ∗ ds(dir, S) ∧ S 6= ∅
}

fn := readdir(dir){
var(fn, a) ∗ ds(dir, (S \ {a})) ∧ a ∈ S

}
{

var(fn,−) ∗ ds(dir, ∅)
}

fn := readdir(dir){
var(fn, 0) ∗ ds(dir, ∅)

}
{

ds(dir, S)
}

closedir(dir){
var(dir, -)

}
Figure 4: Small axioms for the POSIX file-system fragment.

The implementation shown in figure 5a does not meet this
intuitive specification. By trying to prove that the specifi-
cation holds using our program logic we can easily detect
the issue. The implementation first performs a stat to test
whether path identifies a file or directory. The file case is
simple. In the directory case, lines 7 to 14 read the contents
of the directory one by one and recursively call rmr on each.
Assume that the implementation satisfies the specification so
that we can use it at the recursive call on line 10. However,
note that from the specification’s postcondition, removing
the entry has an effect on the path that identifies it, which
means that the path may no longer be valid after the update.
In fact, we cannot establish a loop invariant where we know
that the path prefix path exists.

At some point, the implementation of figure 5a will reach
line 3 and invoke stat using a non-existing path. The ax-
ioms of figure 4 require paths to exist. In POSIX, commands

fail with an error code when invalid paths are used. We spec-
ify such error cases in the technical report [23]. Here, we
only discuss the E_NOENT error for stat that is triggered
when a path is empty or does not identify an existing file or
directory. This is captured by the following predicate:

E_NOENT(path, v) ,
var(path, v)∧

((v
.
= 0) ∨ (∃p, a, p′, π. pvar(path, p/aπ/p′) ∗ tree(p/âπ)))

with which we can give the following specification for stat:{
var(t,−) ∗ var(errno,−) ∗ E_NOENT(path, v) ∧ t

}
t := stat(path){

var(t,−1) ∗ var(errno, E_NOENT) ∗ var(path, v) ∗ t
}

In the precondition we use the predicate to assert that the
state is erroneous. Note that we use the variable t to capture
the directory tree in which the error occurs. In the postcon-
dition, the state is preserved, the global variable errno is



1: rmr(path) ,
2: local t, dir, fn in
3: t := stat(path)
4: if t = F then
5: unlink(path)
6: else if t = D then
7: dir := opendir(path)
8: fn := readdir(dir)
9: while fn 6= 0 do

10: rmr(path/fn)
11: fn := readdir(dir)
12: done
13: closedir(dir)
14: rmdir(path)
15: fi
16: end

(a) A naive recursive remove.
1: rmrSafe(path) ,
2: local lp in
3: lp := realpath(path)
4: rmr(lp)
5: end

(b) A safe recursive remove.

Figure 5: A naive recursive remove (top), that fails to remove
a directory completely, and the suggested fix (bottom).

assigned the error code explaining the error and the return
variable r is assigned −1 to indicate failure. Using the stat
error specification we can prove that the actual specification
for the naive implementation of figure 5a is:{

var(errno,−) ∗ pvar(path, p/a1) ∗ tree(p/ent1(a))
}

rmr(path){
var(errno, e) ∗ pvar(path, p/a1)

∗ tree(p( (â1 ∨ (e = E_NOENT ∧ a1[true])))

}
In the postcondition, the entry identified by the path argu-
ment may have been removed, or not. When the entry is not
removed we know that it is a directory, but we do not know
the actual remaining contents5.

Correcting the implementation turns out to be simple.
When path is linear, we get the following specification:{

pvar(path, p/a1) ∗ islin(p/a1) ∗ tree(p/ent1(a))
}

rmr(path){
pvar(path, p/a1) ∗ islin(p) ∗ tree(p/â1)

}
where islin(p) , lin(p)

.
= p states that p is a linear path. In

the postcondition, the entry identified by path is removed
and we know that p remains valid, since linear paths never
overlap with updated resource. The proof that the implemen-
tation satisfies the specification is given in figure 6.

A simple way to correct the implementation is to use
the POSIX command realpath, which computes the lin-
ear path of any given valid path. In figure 5b we demonstrate
such an implementation that meets the intended specifica-
tion. Note that we reuse the naive rmr of figure 5a.

5 A detailed proof is given in our technical report [23].

1:
{
pvar(path, p/a1) ∗ islin(p/a1) ∗ tree(p/ent1(a))

}
2: rmr(path),
3: local t, dir, fn in

4:
{
var(t,−) ∗ var(dir,−) ∗ var(fn,−) ∗ pvar(path, p/a1)

∗ islin(p/a1) ∗ tree(p/ent1(a))

}
5: t := stat(path)

6:
{
∃d, t. var(t, t) ∗ var(dir,−) ∗ var(fn,−) ∗ pvar(path, p/a1)
∗ islin(p/a1) ∗ tree(p/ ((a1 : ι ∧ t = F ) ∨ (a1[d] ∧ t = D)))

}
7: if t = F then
8:

{
var(t, F ) ∗ pvar(path, p/a1) ∗ islin(p/a1) ∗ tree(p/a1 : ι)

}
9: unlink(path)

10:
{
var(t, F ) ∗ pvar(path, p/a1) ∗ islin(p) ∗ tree(p/â1)

}
11: else if t = D then
12:

{
var(t, D) ∗ var(dir,−) ∗ var(fn,−) ∗ pvar(path, p/a1)

∗ islin(p/a1) ∗ tree(p/a1[d])

}
13: dir := opendir(path); fn := readdir(dir)

14:


∃S, b, d′. ds(dir, S) ∗ var(fn, b)
∗ pvar(path, p/a1) ∗ islin(p/a1)

∗ tree
(
p/a1

[(
(b = 0 ∧ S = ∅ ∧∅)

∨
(
ent1(b) ∗ d′ ∧ names(S \ {b})

))])


15: while fn 6= 0 do
16: rmr(path/fn); fn := readdir(dir)
17: done
18:

{
ds(dir, ∅) ∗ var(fn, 0) ∗ pvar(path, p/a1) ∗ islin(p/a1)

∗ tree(p/a1[∅])

}
19: closedir(dir); rmdir(path)
20: fi
21: end
22:

{
pvar(path, p/a1) ∗ islin(p) ∗ tree(p/â1)

}
Figure 6: Proof derivation on a naive recursive remove im-
plementation when we specifically use a linear pathname.

The proof is given in figure 7. Initially we use realpath
to get a linear pathname for the path argument. However,
before applying the linear rmr specification we showed ear-
lier, we need to frame off from the state on line 7 the parts
of the non-linear pathname p that are not shared with the
linear pathname pl. We do this on line 8 where the asser-
tion tree(pl/ent1(a)) is the appropriate local resource for the
linear specification of rmr. However, note that the recur-
sive remove will have an effect on the framed-off assertion
tree(p′/∅). Next, on line 9, we apply the rmr specification to
reach the state on line 11. Then we frame back on the rest of
the state, including tree(p′/∅). Note the use of ∗̂ on the com-
bined state. We propagate the effects on line 13, where the
assertion tree(p( â1) states that the path-prefix p is affected.
The final postcondition follows trivially.

We have further investigated the widely used imple-
mentations of the rm utility found in GNU Coreutils and
FreeBSD, to find similar issues in both. Executing the fol-
lowing set of commands on the system’s shell:

$> mkdir -p /tmp/a/b/c
$> mkdir -p /tmp/a/e
$> rm -r /tmp/a/b/../..

which should remove the directory /tmp/a and its contents.
Both implementations actually result in the directory not be-
ing removed but becoming empty instead. We have reported
these issues to the appropriate mailing lists of the implemen-
tations we investigated.

This example demonstrates two things: i) the behaviour
of non-linear paths with respect to update is not something



1:
{
pvar(path, p/a1) ∗ tree(p/ent1(a))

}
2: rmrSafe(path),
3: local lp in
4:

{
var(lp,−) ∗ pvar(path, p/a1) ∗ tree(p/ent1(a))

}
5:

{
∃pl. var(lp,−) ∗ pvar(path, p/a1)
∗ tree(p/ent1(a)) ∗ lin(p)

.
= pl

}
6: lp := realpath(path)

7:
{
∃pl. pvar(lp, pl) ∗ pvar(path, p/a1)
∗ tree(p/ent1(a)) ∗ lin(p)

.
= pl

}
8:

∃pl, p
′. pvar(lp, pl) ∗ pvar(path, p/a1) ∗ lin(p)

.
= pl

∗ tree(p/∅) ⇐⇒ tree(pl/∅) ∗ tree
(
p′/∅

)
∗ tree(pl/ent1(a)) ∗ tree

(
p′/∅

)


9:
{
pvar(lp, pl) ∗ islin(pl) ∗ tree(pl/ent1(a))

}
10: rmr(lp)
11:

{
pvar(lp, pl) ∗ islin(pl) ∗ tree(pl/â1)

}
12:

∃pl, p
′. pvar(lp, pl) ∗ pvar(path, p/a1) ∗ lin(p)

.
= pl

∗ tree(p/∅) ⇐⇒ tree(pl/∅) ∗ tree
(
p′/∅

)
∗ tree(pl/â1) ∗̂ tree

(
p′/∅

)


13:
{
∃pl. pvar(lp, pl) ∗ pvar(path, p/a1) ∗ lin(p)

.
= pl

∗ tree(p( â1)

}
14: end
15:

{
pvar(path, p/a1) ∗ tree(p( â1)

}
Figure 7: Proof derivation of the fixed recursive delete.

we can brush under the carpet, since clients expect the intu-
itive behaviour to hold as specified informally in the docu-
mentation and all it takes is one sufficiently “wrong” path to
get unspecified results; and ii) reasoning about the effects of
updates is crucial both to verify that unwanted effects do not
leak to clients and to discover the cases where they do.

6. Symbolic links
Even though this paper focuses on paths with ’..’, the same
techniques apply to symbolic links, requiring only minor
extensions. We briefly discuss them here and refer readers
to our technical report [23] for further details.

A symbolic link is a special file whose contents is a
path (the symbolic link’s value). They are special because
they affect path resolution. For example, when resolving
/usr/lib/tex, where lib is a symbolic link with value
/usr/local/lib, once we reach lib, we restart the reso-
lution with its value appending the remainder of the origi-
nal path, i.e. /usr/local/lib/tex. The same problems as
with paths that use ’..’ apply: paths that use symbolic links
may overlap update.

First, we extend instrumented directories (definition 7)
with symbolic links: d ::= . . . | aπ@cap, where aπ@cap
is a symbolic link file named a with path value cap. Instru-
mented directory contexts (definition 12) and concrete direc-
tories (definition 1) are extended similarly. Next, we extend
the fusion equivalences of definition 8 with:

aπ@cap⊗ aπ′@cap ≡ aπ+π′@cap if π, π′ > 0
a1@cap⊗ a0[d] ≡∧ a1@cap

Lifting these extensions to the assertion language is straight-
forward. In order to relate tree footprints with paths as in
the previous sections, we extend instrumented pathnames
with a symbolic link component: rp ::= . . . | aπ@ap. This
provides information about the footprint of paths with sym-

bolic links. For example, given the instrumented pathname
/usr1/4/(lib1@/usr1/4/local1/2/lib1/2)/tex1 we know
that tex is actually located in /usr/local/lib. Finally,
we extend the pathname reduction used for the p/d notation
with rules such as the following:

(>[c] , (aπ@/rp′)/rp) ↓ (>[(c ◦∅)⊗−] , /rp′/rp)

if c ≡ c′ ◦ (aπ@/ strippath(rp′)⊗−)

Note that symbolic link loops may occur in the direc-
tory structure, as in >[usr[la@/usr/lb⊗ lb@/usr/la]].
However, by using the p/d notation, it is not possible to ex-
press paths with such loops. The path based tree footprint
assertions used in our axioms are based on this notation.
Therefore, paths used in our preconditions are always safe.

Crucially, we do not need to change our existing axioms,
merely extend them with more commands such as symlink
for creating symbolic links.{

var(r,−) ∗ var(target, cp) ∗ pvar(link, p/a1) ∗ tree(p/â1)
}

r := symlink(target, link){
var(r,−) ∗ var(target, cp) ∗ pvar(link, p/a1)

∗ tree(p/a1@cp)

}
One typical use of symbolic links is a form of version-

ing for installed software, where multiple versions of the
same program may co-exist under different directories, e.g.
/usr/lib/gcc-4.8, /usr/lib/gcc-4.9, with a symbolic
link, e.g. /usr/lib/gcc pointing to the most recent version.
Maintaining such structures is typically the responsibility of
software installers. Using the extensions outlined in this sec-
tion, we can reason about correctness properties of such soft-
ware installers. For example, in appendix A we reason about
a stylised installer using symbolic links to maintain multiple
versions of the same software, proving that either it installs
successfully and any previous installation remains intact, or
leaves the file system unmodified if something goes wrong.

7. Conclusions and Future Work
We give a natural axiomatic specification for a core sequen-
tial fragment of the POSIX file system with arbitrary path-
names, concentrating on ’..’ but also summarising our ex-
tension to symbolic links. We study client programs such as
the standard recursive remove utility and a software installer
with version control. Our novel effect separating conjunction
and effect frame rule, combined with shadow permissions,
enable the effect of a local directory update to be propa-
gated to the overlapping pathnames. We believe these ideas
are fundamental and will be widely applicable to a variety of
examples. Natural examples are graph algorithms and DOM
querying, where we can compare our techniques with those
based on sepish [17, 20]. We need to understand the trade-off
between the two approaches. In future we aim to extend our
reasoning to concurrent POSIX clients and relate our speci-
fications with file-system implementations.
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A. Sofware Installer
We demonstrate reasoning about programs using symbolic
links by considering a stylised software installer. New soft-
ware is typically packaged and users either download it to
their local file system, or obtain it from media containing a
file system, e.g. a usb key. An installer program is responsi-
ble for correctly and safely placing the files of the package in
the local file system. This may involve correctly dealing with
existing installations. If a previous installation is detected,
for example an older version of the software, some installers
may refuse to proceed while others may completely remove
it before installing their version. However, more advanced
installers are capable of safely maintaining older versions
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and install new ones. This typically involves the use of sym-
bolic links as version agnostic “pointers” to version specific
files and directories.

Here we give an example of this installation strategy by
considering an installer for the fictional software “widget”
with version number 2.0. This consists of an executable
file, called “widget”, and a data file called “data”. Follow-
ing common conventions the installer will place the data
file inside the directory /opt/widget, and the executable
file inside the directory /usr/bin. However, in order to
maintain previous installations /opt/widget is a symbolic
link to a directory specific to a previously installed version,
e.g. /opt/widget-1.8. Similarly, /usr/bin/widget is
a symbolic link to a version specific executable file, e.g.
/usr/bin/widget-1.8. As such, the state the file system
before the installer executes may include the following:

/usr/bin/widget-1.4
/widget-1.8
/widget@/usr/bin/widget-1.8

/opt/widget-1.4
/widget-1.8
/widget@/opt/widget-1.8

Here, there are two versions of “widget” already installed:
versions 1.4 and 1.8. The symbolic links /usr/bin/widget
and /opt/widget point to the executable file and data direc-
tory of the most recent version respectively. Such a structure
allows multiple versions of the same software to co-exist in
isolation. Accessing the software through the symbolic links
results in the most recent version being used, with the older
versions still remaining accessible. This versioning strategy
is widely used in many POSIX operating systems.

The implementation of an installer for “widget” 2.0 is
given in figure 10. The installer assumes that the files to
install are initially located in the directory given by the
variable il, i.e. that is where the client downloaded the
installer package to. The precondition:

Pi ,
W ∧ var(r,−) ∗ var(errno,−) ∗ pvar(il, il)

∗ srcPre ∗ binPre ∗ optPre

captures the state of the file system in the variable W de-
scribes the initial states of variables, the installation source
directory srcPre, the /usr/bin directory binPre and the
program data directory optPre with their definitions given
in figure 8. Note that the precondition allows the state to
be in a condition where installation is not safe. The file
/usr/bin/widget may not exist, or it may not even be
a symbolic link. The file /usr/bin/widget-2.0 may al-
ready exist and even be a directory. Similarly for the contents
of the /opt directory. Such cases may result from previ-
ously corrupt installations or some other client actions. The
installer needs to query the file system and if it determines
that installation is unsafe then it should stop and leave the file

system unmodified. This is captured by the postcondition:

Qi ,
∃r, ι′, j′. var(r, r) ∗ var(errno,−)

∧ (r = −1 =⇒ W)

∧
(
r = 0 =⇒ srcPost ∗ binPost(ι′) ∗ optPost(j′)

∗ filesPost(ι′, j′)

)
If the installer returns -1 to the return variable r, then the file
system state is that of the variable W from the precondition.
Thus in this case, the file system is not modified. On the
other hand, if the installer succeeds by returning 0, then the
file system is described by the combination of the resources
given in figure 9. Note that the pre- and postcondition do not
mention any possible previous installation. Effectively, these
are framed-off and thus remain unchanged.

In summary, the installer’s specification:{
Pi
}
installWidget

{
Qi
}

is stating two main properties: i) if the installer encounters a
state where it cannot safely install, it will produce an error
and leave the file system unmodified, and ii) any previous
installation is guaranteed to remain intact.

Note that the implementation is using a variant of the
stat command, called lstat. The difference is that if the
path given to stat identifies a symbolic link, it follows it,
whereas lstat does not. The specification for lstat is
exactly the same as that of stat in figure 4, extended with
the following axiom for handling a symbolic link:{

var(t,−) ∗ pvar(path, p/aπ) ∗ tree(p/aπ@cp)
}

t := lstat(path){
var(t, S) ∗ pvar(path, p/aπ) ∗ tree(p/aπ@cp)

}
where in the postcondition it returns the value S to indicate
that the path identifies a symbolic link file. The existing
axioms for stat, need only be extended with the following
axioms that follow the symbolic link at the end of the path:{

var(t,−) ∗ pvar(path, p) ∗ tree(p/Saπ : ι)
}

t := stat(path){
var(t, F ) ∗ pvar(path, p) ∗ tree(p/Saπ : ι)

}
{

var(t,−) ∗ pvar(path, p) ∗ tree(p/Saπ[∅])
}

t := stat(path){
var(t, D) ∗ pvar(path, p) ∗ tree(p/Saπ[∅])

}
where the tree(p/aπ/S∆) is defined defined as:

tree(p/aπ/S∆) ,
tree(p/aπ/∆)

∨ ∃p′. tree(p/aπ@strippath(p′)) ∗ tree(p′/S∆)

Furthermore, we use the command fileCopy to copy
files with the following specification:{

var(r,−) ∗ pvar(source, p/aπ) ∗ pvar(target, p′/b1)

∗ tree(p/aπ : ι) ∗ tree
(
p′/b̂1

)
∗ file(ι, β)

}
r := fileCopy(source, target{

∃ι′. var(r, 0) ∗ pvar(source, p/aπ) ∗ pvar(target, p′/b1)
∗ tree(p/aπ : ι) ∗ tree(p′/b1 : ι′) ∗ file(ι, β) ∗ file(ι′, β)

}



srcPre , tree(il/(‘widget’1 : ι ∗ ‘data’1 :j)) ∗ file(ι, β) ∗ file(j, β′)

binPre , tree

(
/‘usr’π1/‘bin’π2/

(
ent1(‘widget’) ∨ ̂‘widget’1

∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1

))

optPre , tree

(
/‘opt’π3

/

(
ent1(‘widget’) ∨ ̂‘widget’1

∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1

))

Figure 8: Components of the installer’s precondition.

srcPost , srcP

binPost(ι) , tree

(
/‘usr’π1/‘bin’π2/

(
‘widget’1@(/‘usr’/‘bin’/‘widget-2.0’)

∗ ‘widget-2.0’1 : ι

))
optPost(j) , tree

(
/‘opt’π3

/

(
‘widget’1@(/‘opt’/‘widget-2.0’)
∗ ‘widget-2.0’1[‘data’1 :j]

))
filesPost(ι, j) , file(ι, β) ∗ file(j, β′)

Figure 9: Components of installer’s postcondition.

Our example installer, along with a proof sketch that
it meets its specification:

{
Pi
}
installWidget

{
Qi
}

, is
given in figure 10.

The installer expects that both /usr/bin/widget and
/opt/widget are symbolic links, to some previous installa-
tion and we do not care which. The implementation initially
checks whether this is true in lines 5 to 8, using the lstat
specification defined earlier. If the paths do not identify sym-
bolic links then the installer cannot proceed safely, e.g. as-
suming that a previous installation is now corrupt, and stops
assigning -1 to the return variable. Next, the installer ex-
pects that /opt/widget-2.0 and /usr/bin/widget-2.0
do not exist since the former is the data directory of the new
version it wants to install and the latter is an executable file.
To check if this is true, the installer again relies on lstat to
get the type of file identified by the paths in lines 12 to 15. If
any of these paths identifies entries that exists, the installer
stops without modifying anything. Otherwise, the installer
can now safely install the new version in lines 19 to 28.
First, it creates the new data directory /opt/widget-2.0
and then proceeds to copy the executable file to the standard
directory /usr/bin and the data file to the newly created
data directory. Note that at this point in the proof we use the
fileCopy specification given earlier. Finally, the installer
needs to update the symbolic links /usr/bin/widget and
/opt/widget to point the newly installed version. This
is done by first deleting them with unlink, and then re-
creating them with the new path values using symlink as
specified in section 6.

B. Soundness
Views [11] is a framework for proving the soundness of
existing and new programming logics and type systems. By

instantiating a set of parameters and establishing a set of
properties the views framework provides a soundness result.

Here, we give a sketch proof of the soundness of our logic
based on the views framework. For a more detailed proof we
refer the reader to the technical report [23].

First, we summarise our parameterisation of the frame-
work. The parameters are specialised to separation algebras.

Definition 16 (Views Parameters). The views framework
requires the following parameters to be supplied:

1. Atomic Commands: The file system primitive commands,
Cfs, defined in section 3.4.

2. Machine States: The concrete program states, STATES,
given in definition 6.

3. Interpretation of Atomic Commands: A function [−] (−) :
Cfs → STATES → P(STATES) that associates each
atomic command with a state transformer. We define this
in the technical report [23].

4. Separation Algebra: The partial commutative monoid
(ISTATES, •, (∅, ∅, (∅, ∅))), defined using disjoint func-
tion union for variables stores, process heaps and file
heaps, and ⊗ for directory trees.

5. Axiomatisation: The axioms of figure 4, which we denote
with the set Axioms.

6. Reification: The reification function in definition 10.
7. Disjunction: A total function,

∨
: P(P(ISTATES)) →

P(ISTATES), which we define as set union.

Views provides a general operational semantics in the
form of an operational transition relation. It is parameterised
by the interpretation function for primitive commands.

Definition 17 (Operational Semantics). The multi-step oper-
ational transition relation,−,− ∗ −,− : (C×STATES)×



1:
{
Pi
}

2: r := installWidget ,
3: local t1,t2 in
4:

{
var(t1,−) ∗ var(t2,−) ∗ var(errno,−) ∗ binPre ∗ optPre

}
5: t1 := lstat(‘/usr/bin/widget’);
6: t2 := lstat(‘/opt/widget’);

7:
{

var(t1, t1) ∧ t1 = D ∨ F ∨ S ∨ −1 ∗ var(t2, t2) ∧ t2 = D ∨ F ∨ S ∨ −1
∗ var(errno, e) ∧ (t1 = −1 ∨ t2 = −1 =⇒ e = E_NOENT) ∗ binPre ∗ optPre

}
8: if t1 6= S∨ t2 6= S then
9: r := -1

10: else

11:


var(t1, S) ∗ var(t2, S) ∗ var(errno,−)

∗ tree
(
/‘usr’π1/‘bin’π2/((∃cp.‘widget’1@cp) ∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1)

)
∗ tree

(
/‘opt’π3/((∃cp.‘widget’1@cp) ∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1)

)


12: t1 := lstat(‘/opt/widget-2.0’);
13: t2 := lstat(‘/usr/bin/widget-2.0’);

14:


var(t1, t1) ∧ t1 = D ∨ F ∨ S ∨ −1 ∗ var(t2, t2) ∧ t2 = D ∨ F ∨ S ∨ −1

∗ var(errno, e) ∧ (t1 = −1 ∨ t2 = −1 =⇒ e = E_NOENT)
∗ tree

(
/‘usr’π1/‘bin’π2/((∃cp.‘widget’1@cp) ∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1)

)
∗ tree

(
/‘opt’π3/((∃cp.‘widget’1@cp) ∗ ent1(‘widget-2.0’) ∨ ̂‘widget-2.0’1)

)


15: if t1 6= -1 ∨ t2 6= -1 then
16: r := -1
17: else

18:


var(t1,−1) ∗ var(t2,−1) ∗ var(errno,−)

∗ tree
(
/‘usr’π1/‘bin’π2/((∃cp.‘widget’1@cp) ∗ ̂‘widget-2.0’1)

)
∗ tree

(
/‘opt’π3/((∃cp.‘widget’1@cp) ∗ ̂‘widget-2.0’1)

)


19: r := mkdir(‘/opt/widget-2.0’)

20:


var(t1,−1) ∗ var(t2,−1) ∗ var(errno,−)

∗ tree
(
/‘usr’π1/‘bin’π2/((∃cp.‘widget’1@cp) ∗ ̂‘widget-2.0’1)

)
∗ tree

(
/‘opt’π3/((∃cp.‘widget’1@cp) ∗ ‘widget-2.0’1[∅])

)


21: r := fileCopy(il/‘widget’, ‘/bin/widget-2.0’);
22: r := fileCopy(il/‘data‘, ‘/opt/widget-2.0/data’);

23:


∃ι′, j′. var(t1,−1) ∗ var(t2,−1) ∗ var(errno,−)

∗ tree
(
/‘usr’π1/‘bin’π2/((∃cp.‘widget’1@cp) ∗ ‘widget-2.0’1 : ι

′)
)

∗ tree
(
/‘opt’π3/((∃cp.‘widget’1@cp) ∗ ‘widget-2.0’1

[
‘data’1 :j′

]
)
)

∗ filesPost(ι′, j′)


24: r := unlink(‘/usr/bin/widget’);
25: r := unlink(‘/opt/widget’);

26:


∃ι′, j′. var(t1,−1) ∗ var(t2,−1) ∗ var(errno,−)

∗ tree
(
/‘usr’π1/‘bin’π2/( ̂‘widget’1 ∗ ‘widget-2.0’1 : ι

′)
)

∗ tree
(
/‘opt’π3/(

̂‘widget’1 ∗ ‘widget-2.0’1
[
‘data’1 :j′

]
)
)

∗ filesPost(ι′, j′)


27: r := symlink(‘/usr/bin/widget-2.0’, ‘/usr/bin/widget’);
28: r := symlink(‘/opt/widget-2.0’, ‘/opt/widget’)
29:

{
∃ι′, j′. var(t1,−1) ∗ var(t2,−1) ∗ var(errno,−) ∗ binPost ∗ optPost ∗ filesPost(ι′, j′)

}
30: fi
31: fi
32: end
33:

{
Qi
}

Figure 10: Implementation and proof sketch of an installer for “widget” 2.0.

(C×STATES∪{ }), relates programs and their initial states
to either a terminal state or a distinguished fault state  ,
where  6∈ STATES. Command/state pairs not in the relation
are deemed to be divergent.

Given the parameters of definition 16, we establish the
following properties. Again, these are specialised versions
that are induced by separation algebras.

Definition 18 (Views Properties). The Views framework re-
quires the following properties to be satisfied:

1. Atomic Soundness: It is sufficient to show that for every
(P,A, Q) ∈ AXIOMS, where A ∈ Cfs, and every R ∈

ASRTS and e ∈ LENVS,

[A] (b[[[P ]]]e • [[[R]]]ec) ⊆ b[[[Q]]]e • [[[R]]]ec

2. Join Distributivity: p •
∨
{qi}i∈I =

∨
{p • qi}i∈I where

p, q ∈ ISTATES.
3. Join Morphism: b

∨
{pi}i∈Ic =

⋃
{bpic}i∈I where p ∈

ISTATES.

Having established these properties, the framework pro-
vides a soundness result for the program logic.

Theorem 2 (Soundness). Assume that `
{
P
}
C
{
Q
}

is deriv-
able in the program logic. Then, for all e ∈ LENVS and



st ∈ b[[[P ]]]ec and st′ ∈ STATES, if C, st  ∗ skip, st′ then
st′ ∈ b[[[Q]]]ec.

We establish the properties by the following two lemmas
and refer the reader to the technical report [23] for the details
of atomic soundness.

Lemma 1 (Atomic Soundness). The atomic soundness
property holds. A detailed proof is given in the technical
report [23].

Lemma 2 (Join Distributivity and Morphism). Join distribu-
tivity and morphism hold in our instantiation of views.

Proof. We instantiate the disjunction function as set union.
Both properties follow trivially from the properties of set
union and the reification of definition 10.

The soundness of the effect frame rule is justified by
showing it is an instance of the generalised frame rule of
views and that it satisfies the required soundness property.

Definition 19 (Effect Frame Instantiating). We define the ef-
fect frame rule of our logic as an instance of the generalised
frame rule of views:

`
{
P
}
C
{
Q
}

`
{
f(P )

}
C
{
f(Q)

}
where we instantiate the views transforming function f as:

fq,r , λx. if x = q then x ∗̂ r else x ∗ r

where the function chooses the normal separating conjunc-
tion for the precondition and the effect separating conjunc-
tion for the postcondition.

Lemma 3 (Effect Frame Soundness). From the views frame-
work, the effect frame instance of the generalised frame rule
is sound if the f -step preservation property holds.

∀P,Q,R,R′ ∈ ASRTS, e ∈ LENVS,A ∈ Cfs.
[A] (b[[[P ]]]e • [[[R]]]ec) ⊆ b[[[Q]]]e • [[[R]]]ec

=⇒
[A] (bfQ,R′([[[P ]]]e • [[[R]]]ec)) ⊆ bfQ,R′([[[Q]]]e • [[[R]]]e)c

Proof. By atomic soundness and lemma 1 the top of the
implication is true. By the transformation function, for the
precondition we have:

bfQ,R′([[[P ]]]e • [[[R]]]e)c = b[[[P ∗R ∗R′]]]ec

and for the postcondition we have:

bfQ,R′([[[Q]]]e • [[[R]]]e)c = b([[[Q ∗R ∗̂ R′]]]ec

Therefore it suffices to show that:

∀P,Q,R ∈ ASRTS,A ∈ Cfs.
[A] (b[[[P ]]]e • [[[R]]]ec) ⊆ b[[[Q ∗̂ R]]]ec

which established similarly to lemma 1.
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