A Concurrent Specification of POSIX File Systems

Authors

  • Gian Ntzik
  • Pedro Rocha Pinto
  • Julian Sutherland
  • Philippa Gardner

Abstract

POSIX is a standard for operating systems, with a substantial part devoted to specifying file-system operations. File-system operations exhibit complex concurrent behaviour, comprising multiple actions affecting different parts of the state: typically, multiple atomic reads followed by an atomic update. However, the standard’s description of concurrent behaviour is unsatisfactory: it is fragmented; contains ambiguities; and is generally under-specified. We provide a formal concurrent specification of POSIX file systems and demonstrate scalable reasoning for clients. Our specification is based on a concurrent specification language, which uses a modern concurrent separation logic for reasoning about abstract atomic operations, and an associated refinement calculus. Our reasoning about clients highlights an important difference between reasoning about modules built over a heap, where the interference on the shared state is restricted to the operations of the module, and modules built over a file system, where the interference cannot be restricted as the file system is a public namespace. We introduce specifications conditional on context invariants used to restrict the interference, and apply our reasoning to the example of lock files.

Venue

32nd European Conference on Object-Oriented Programming (ECOOP 2018).

Publication Date

Jul 2018

Source Materials