
Imperial College London
Department of Computing

Abstraction, Refinement and
Concurrent Reasoning

Azalea Raad

September 2016

Supervised by Professor Philippa Gardner

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

1

2

Declaration of Originality

I herewith certify that all material in this thesis which is not my own work
has been properly acknowledged.

Azalea Raad

3

4

Copyright

The copyright of this thesis rests with the author and is made available
under a Creative Commons Attribution Non-Commercial No Derivatives
licence. Researchers are free to copy, distribute or transmit the thesis on
the condition that they attribute it, that they do not use it for commercial
purposes and that they do not alter, transform or build upon it. For any
reuse or redistribution, researchers must make clear to others the licence
terms of this work.

5

6

Abstract

This thesis explores the challenges in abstract library specification, library
refinement and reasoning about fine-grained concurrent programs.
For abstract library specification, this thesis applies structural separa-

tion logic (SSL) to formally specify the behaviour of several libraries in
an abstract, local and compositional manner. This thesis further gener-
alises the theory of SSL to allow for library specifications that are language-
independent. Most notably, we specify a fragment of the Document Object
Model (DOM) library. This result is compelling as it significantly improves
upon existing DOM formalisms in that the specifications produced are local,
compositional and language-independent.
Concerning library refinement, this thesis explores two existing approaches

to library refinement for separation logic, identifying their advantages and
limitations in different settings. This thesis then introduces a hybrid ap-
proach to refinement, combining the strengths of both techniques for simple
scalable library refinement. These ideas are then adapted to refinement for
SSL by presenting a JavaScript implementation of the DOM fragment stud-
ied and establishing its correctness with respect to its specification using the
hybrid refinement approach.
As to concurrent reasoning, this thesis introduces concurrent local sub-

jective logic (CoLoSL) for compositional reasoning about fine-grained con-
current programs. CoLoSL introduces subjective views, where each thread
is verified with respect to a customised local view of the state, as well as
the general composition and framing of interference relations, allowing for
better proof reuse.

7

8

“The isolated person does not develop any intellectual
power. It is necessary for them to be immersed in an

environment of other people, whose techniques they absorb
during the first twenty years of their life. They may then
perhaps do a little research of their own and make a very
few discoveries which are passed on to others. From this
point of view the search for new techniques must be
regarded as carried out by the human community as a

whole, rather than by individuals.”
–Alan Turing

“A man provided with paper, pencil, and rubber, and
subject to strict discipline, is in effect a universal machine.”

–Alan Turing

9

10

Acknowledgements

I am eternally grateful to my supervisor Philippa for her untiring support
and her passion for excellence; to my friends and mentors at Imperial College
for nurturing me emotionally and intellectually; to my collaborators Adam,
Aquinas, José, Jules, Mark, Matt and Sophia for inspiring and challenging
me; and to the formal verification community for motivating and influencing
my work in countless ways.
I am immensely indebted to my mother Azar for her unconditional love,

her devotion to my happiness and her sacrifices for bettering me; to my aunt
and second mother Sabereh for igniting in me the passion for the pursuit
of science and knowledge from an early age; and to my siblings Aydin and
Alalea for inspiring me with their strength, intellect and dedication.
I am forever beholden to my best friend, colleague and partner in life

Michael for his limitless love and loyalty, his drive for academic excellence,
his ardour for moral and intellectual integrity, and his patience to persevere
through the hardest times of the last decade with me.

11

12

Contents

Declaration of Originality 3

Copyright 5

Abstract 7

Acknowledgements 11

Contents 13

List of Figures 17

List of Definitions 19

List of Theorems 25

1. Introduction 27
1.1. Contributions . 27
1.2. Publications . 28
1.3. Thesis Overview . 29
1.4. Notational Conventions . 31

I. Abstraction and Refinement 34

2. Technical Background:Abstraction 35
2.1. Abstraction for Separation Logic 38

2.1.1. Set Module . 40
2.1.2. List Module . 42
2.1.3. Structural Separation Logic: Informal Development . . 48

2.2. Client Reasoning . 51
2.2.1. The x.size() Client Program 51

13

3. Structural Separation Logic (SSL) 55
3.1. SSL Model and Assertions . 57
3.2. The PLogicA Reasoning Framework 72

4. A Tree Library: T 115
4.1. SSL Model and Assertions: Library T 115
4.2. Reasoning about T Client Programs 124

4.2.1. The getLast(n) Client Program 124
4.2.2. The moveChildren(n, m) Client Program 125

5. The DOM Library: DOM 132
5.1. Overview . 133
5.2. SSL Model and Assertions: Library DOM 142
5.3. JSLogicDOM Reasoning Framework 166
5.4. Reasoning about DOM Client Programs 181

5.4.1. The santiseImg Client Program 181
5.4.2. The adblocker1 Client Program 183
5.4.3. The adblocker2 Client Program 189

6. Technical Background:Refinement 197
6.1. Locality-breaking Translations 199

6.1.1. Locality-breaking Limitations: Scalability 204
6.1.2. Locality-breaking Limitations: Concurrency 206

6.2. Locality-preserving Translations 207
6.2.1. Locality-preserving Limitations: Complexity 213

6.3. Hybrid Translations . 214

7. Refinement for DOM 216
7.1. A DOM Implementation in JavaScript 216
7.2. DOM Implementation Correctness 226

II. CoLoSL: Concurrent Local Subjective Logic 240

8. Technical Background: CoLoSL 241
8.1. CoLoSL: Overview . 244
8.2. Dijkstra’s Token Ring Algorithm 248
8.3. Comparison to CAP . 255

14

8.4. Comparison to Iris and Contemporary Logics 258

9. Concurrent Local Subjective Logic 259
9.1. CoLoSL Model . 260
9.2. CoLoSL Assertions . 271
9.3. Interference Manipulations . 283
9.4. Rely and Guarantee . 289
9.5. CoLoSL Judgements as SL Entailments 297
9.6. Programming Language and Proof Rules 313
9.7. Operational Semantics and Soundness 316

10.CoLoSL Examples 323
10.1. Parallel Spanning Tree Computation 326
10.2.Copying Heap-represented Dags Concurrently 339
10.3. Parallel Speculative Shortest Path (Dijkstra) 351

11.Conclusions 360

A. DOM Specification 368
A.1. Node Axioms . 368
A.2. Text Node Axioms . 384
A.3. Element Node Axioms . 387
A.4. Attribute Node Axioms . 390
A.5. Document Node Axioms . 390
A.6. NodeList Axioms . 392

B. DOM Implementation Correctness 396

C. Auxiliary CoLoSL Lemmata 435

15

16

List of Figures

2.1. Abstract list heaps . 49
2.2. The axiomatic specification of the list module using SSL . . . 51
2.3. The x.size() client program of the list module 52
2.4. A proof sketch of x.size() 53
2.5. A proof sketch of x.size() (continued) 54

3.1. The WL parametric small-step transitions 83
3.2. WLogic proof rules . 110

4.1. Abstract tree heaps . 116
4.2. The axiomatic specification of T operations 123
4.3. The getLast(n) client program 125
4.4. A proof sketch of getLast(n) 126
4.5. A proof sketch of getLast(n) (continued) 127
4.6. The moveChildren(n, m) client program 128
4.7. A proof sketch of moveChildren(n,m) 130
4.8. A proof sketch of moveChildren(n,m) (continued) 131

5.1. Abstract DOM heaps in SSL 134
5.2. Selected DOM axioms . 159
5.3. Selected DOM axioms (continued) 160
5.4. Derived assertions for DOM 162
5.5. JavaScript scope chain, prototype chain and lookup functions 173
5.6. Selected JSLogicDOM proof rules 179
5.7. The sanitiseImg client program and its specification 182
5.8. A proof sketch of the sanitiseImage program 184
5.9. The adBlocker1 client program and its specification 185
5.10. A proof sketch of the adblocker1 program 190
5.11. The adBlocker2 client program and its specification 194
5.12. A proof sketch of the adBlocker2 program 195

17

5.13. A proof sketch of the adBlocker2 program (continued) 196

6.1. A sequential implementation of the list operations 200
6.2. An incomplete abstract list; several completions of (a); im-

plementations of complete lists in (b) 202
6.3. The possible completions of the appendChild(n, m) resources 205

7.1. A partial representation of our DOM implementation 217
7.2. DOM node interfaces as JavaScript prototypes 219
7.3. The DOM NodeList interfaces as JavaScript prototypes . . . 220
7.4. A partial representation of “img” element 3 from Fig. 5.1a . . 224
7.5. DOM Node and NodeList instances as JavaScript objects . . 225
7.6. DOM data translation . 234

8.1. The concurrent increment program 249
8.2. The token ring programs and their CoLoSL proof sketches . . 250

9.1. Interference confinement and local fencing judgements 300
9.2. Interference shifting (above) and fencing judgements (below) . 303
9.3. CoLoSL stability judgements 312

10.1. The concurrent span program 327
10.2. Code and a proof sketch of span 338
10.3. An example trace of copy_dag 341
10.4. The mathematical actions of copy_dag 343
10.5. The code and a proof sketch of copy_dag 350
10.6. A parallel non-greedy variant of Dijkstra’s algorithm 352
10.7. The mathematical actions of dijkstra 355
10.8. A proof sketch of dijkstra (continued in Fig. 10.9) 358
10.9. A proof sketch of dijkstra (continued from Fig. 10.8) 359

18

List of Definitions

Notation (Types as sets) . 31
Notation (Relations) . 32
Notation (Functions) . 33
Notation (Lists) . 33

1. Definition (Program variables) 56
2. Definition (Logical variables) 57
3. Definition (Logical environments) 57
1. Parameter (Root addresses) 58
4. Definition (List root addresses) 58
2. Parameter (Program data) . 58
5. Definition (List program data) 58
3. Parameter (Library program values) 59
6. Definition (List program values) 59
7. Definition (Abstract program heaps) 59
8. Definition (Abstract addresses) 60
9. Definition (Addresses) . 60
4. Parameter (Logical data) . 61
10. Definition (List logical data) 61
5. Parameter (Application) . 62
11. Definition (List application) 63
12. Definition (Logical pre-heaps) 64
13. Definition (Completion/collapse) 64
14. Definition (Abstract logical heaps) 65
15. Definition (Abstract (de)allocation) 65
6. Parameter (Library operations) 66
16. Definition (List operations) 66
7. Parameter (Library logical values) 67
17. Definition (List logical values) 67

19

8. Parameter (Library logical expressions) 68
18. Definition (List logical expressions) 68
9. Parameter (Library data assertions) 69
19. Definition (SSL assertions) . 69
20. Definition (SSL satisfiability relations) 70
21. Definition (List data assertions) 71
10. Parameter (PL program values) 73
22. Definition (PLA program values) 73
23. Definition (WL program values) 74
11. Parameter (PL program states) 75
24. Definition (PLA program states) 75
25. Definition (WL program states) 75
12. Parameter (PL operations) . 77
26. Definition (PLogicA operations) 77
27. Definition (WL operations) 78
13. Parameter (PL semantics) . 80
28. Definition (PLA semantics) 81
29. Definition (WLogic semantics) 82
14. Parameter (PLogic logical values) 85
30. Definition (PLogicA logical values) 85
31. Definition (WLogic logical values) 85
15. Parameter (PLogic partial commutative monoid) 86
32. Definition (PLogicA partial commutative monoid) 87
33. Definition (WLogic partial commutative monoid) 88
16. Parameter (PLogic logical expressions) 89
34. Definition (PLogicA logical expressions) 90
35. Definition (WLogic logical expressions) 91
17. Parameter (PLogic assertions and their semantics) 93
36. Definition (PLogicA assertions and their semantics) 96
37. Definition (WLogic assertions and their semantics) 98
18. Parameter (Library specifications) 101
38. Definition (List axioms) . 101
19. Parameter (PLogic reification) 103
39. Definition (PLogicA reification) 103
40. Definition (WLogic reification) 104
41. Definition (Safe triples) . 104

20

20. Parameter (Library semantics) 105
42. Definition (List semantics) . 106
21. Parameter (PLogic triples) 106
43. Definition (PLogicA triples) 107
44. Definition (WLogic triples) 109

45. Definition (Tree root addresses) 115
46. Definition (Tree program data) 116
47. Definition (Tree program values) 117
48. Definition (Tree logical data) 117
49. Definition (Tree application) 118
50. Definition (Tree operations) 119
51. Definition (Tree logical values) 120
52. Definition (Tree logical expressions) 120
53. Definition (Tree data assertions) 121
54. Definition (Tree axioms) . 123

55. Definition (DOM root addresses) 143
56. Definition (DOM program data) 145
57. Definition (DOM program values) 146
58. Definition (DOM logical data) 146
59. Definition (DOM logical heaps) 147
60. Definition (DOM application) 148
61. Definition (DOM operations) 149
62. Definition (DOM logical values) 153
63. Definition (DOM logical expressions) 153
64. Definition (DOM data assertions) 155
65. Definition (DOM-specific data assertions) 156
66. Definition (DOM heap assertions) 157
67. Definition (JS program values) 167
68. Definition (JS program heaps) 168
69. Definition (JS operations) . 169
70. Definition (JSDOM operations) 169
71. Definition (JSLogic logical values) 170
72. Definition (JSLogic partial commutative monoid) 171
73. Definition (JSLogicDOM partial commutative monoid) 171

21

74. Definition (JSLogic logical expressions) 173
75. Definition (JSLogic assertions and their semantics) 175
76. Definition (JSDOM assertions) 177
77. Definition (DOM axioms) . 177
78. Definition (JSLogic reification) 177

79. Definition (DOM prototypes) 223
80. Definition (Interfaces) . 228
81. Definition (Crust set) . 230
82. Definition (Identifier function) 230
83. Definition (Crust child lists) 231
84. Definition (Crust) . 231
85. Definition (DOM heap translation) 232
86. Definition (DOM data translation) 233
87. Definition (Implementation function) 236
88. Definition (JavaScript heap translation) 238
89. Definition (Correct refinement) 238

1. Property (Cross-split) . 262
22. Parameter (Logical state partial commutative monoid) 262
23. Parameter (Primitive capability partial commutative monoid) 262
90. Definition (Capability monoid) 263
91. Definition (Instrumented states) 264
92. Definition (Ordering) . 265
93. Definition (Compatibility and disjointness) 265
94. Definition (Actions, action models) 266
95. Definition (Agreement) . 267
96. Definition (Action confinement) 267
97. Definition (Action application) 268
98. Definition (Visible actions) . 268
99. Definition (Locally-fenced action model) 269
100. Definition (Action model confinement) 269
101. Definition (Well-formedness) 270
102. Definition (Worlds) . 270
24. Parameter (Logical state assertions) 271
25. Parameter (Primitive capability assertions) 272

22

103. Definition (CoLoSL assertions) 272
104. Definition (Assertion semantics) 275
105. Definition (Combined action application) 277
106. Definition (Action reflection) 278
107. Definition (Action model closure) 278
108. Definition (Interference confinement) 284
109. Definition (Subjective action application) 285
110. Definition (Fenced action model) 285
111. Definition (Action model shifting) 287
112. Definition (Rely) . 290
113. Definition (Stability) . 290
114. Definition (Orthogonal set) 292
115. Definition (Guarantee) . 292
116. Definition (Repartitioning) . 293
117. Definition (Weakening) . 298
118. Definition (Normalised flat assertions) 310
26. Parameter (Primitive operations) 314
119. Definition (Sequential operations) 314
120. Definition (Sequential command axioms) 314
121. Definition (Atomic operations) 315
122. Definition (Atomic axioms) 315
123. Definition (Programming language) 315
124. Definition (Proof rules) . 315
27. Parameter (Program states) 317
28. Parameter (Primitive interpretation) 317
125. Definition (Sequential interpretation) 317
126. Definition (Atomic interpretation) 317
29. Parameter (Logical state reification) 318
30. Parameter (Primitive soundness) 319
127. Definition (Reification) . 319

128. Definition (JS assertion transformation) 396
129. Definition (Array axioms) . 425

23

24

List of Theorems

1. Lemma (Abstract (de)allocation) 97
2. Lemma (Primitive soundness) 108
1. Theorem (PLogicA soundness) 108
2. Theorem (WLogic soundness) 112

3. Theorem (Correct refinement) 239

3. Lemma (Confinement monotonicity) 270
4. Lemma (satisfiability relations) 277
5. Lemma (Forget, Merge and Extend closure) 280
6. Lemma (Copy, Forget and Merge validity) 281
7. Lemma (Shift closure) . 287
8. Lemma (Shift validity) . 288
9. Lemma (Assertion stability) 291
10. Lemma (Extend validity) . 294
11. Lemma (Weakening) . 298
12. Lemma (Flattening normalisation) 311
4. Theorem (Atomic soundness) 319

13. Lemma (span stability) . 332
14. Lemma (Graph unfolding due to [58]) 333
15. Lemma (copy_dag stability) 346
16. Lemma (dijkstra stability) 356

17. Lemma (JS expression translation) 396
18. Lemma (JS assertion translation) 397
5. Theorem (Correct refinement (with proof)) 398
19. Lemma (Implication preservation) 415
20. Lemma (Abstract (de)allocation preservation) 416
21. Lemma (Abstract (de)allocation preservation (auxiliary)) . . 419

25

22. Lemma (Function call (auxiliary)) 426
23. Lemma (Axiom correctness) 427

24. Lemma (|=† implies �sl) . 435
25. Lemma (|= implies �sl) . 435
26. Lemma (Compatibility) . 437
27. Lemma (Closure monotonicity) 437
28. Lemma (Forget closure) . 439
29. Lemma (Merge closure) . 442
30. Lemma (Shift auxiliary) . 446
31. Lemma (Shift closure) . 447
32. Lemma (Confinement monotonocity) 451
33. Lemma (Extend closure) . 452
34. Lemma (Extend closure (continued)) 457
35. Lemma (|=† monotonicity) . 463
36. Lemma (Confinement (auxiliary)) 465
37. Lemma (Extend stability) 467
38. Lemma (Stability) . 468
39. Lemma (Weakening (full proof)) 470
40. Lemma (Boxed assertions) . 471
41. Lemma (Boxed assertions (continued)) 473
42. Lemma (Flattening normalisation (auxiliary)) 474
43. Lemma (Flattening normalisation (full proof)) 478
44. Lemma (Sequential command soundness) 481
45. Lemma (Update guarantee containment) 483
46. Lemma (Extension guarantee containment) 485
47. Lemma (Guarantee containment) 486

26

1. Introduction

1.1. Contributions

The main contributions of this thesis are threefold, summarised as follows:

• Abstraction. Our first contribution is the application of structural
separation logic (SSL) [60] to specify the behaviour of several libraries
and to reason locally about their client programs. SSL is a program
logic for the abstract specification of libraries that manipulate struc-
tured data, and local reasoning about their client programs. Most
notably, we use SSL to specify a fragment of the Document Object
Model (DOM) library and highlight the merits of our specifications
over existing formalisms. We demonstrate that unlike the existing
DOM specification [52, 24] in context logic (CL) [7, 6], our SSL speci-
fication is compositional, allowing for scalable client reasoning. In par-
ticular, we show that a simple DOM client program (comprising 3 lines
of code) can be described with a single SSL specification, whilst the
same program requires at least six separate CL specifications. More-
over, our SSL specification is more local than that of the CL speci-
fication, capturing the footprint of DOM operations more accurately.
While the non-locality of the CL specification was noted by the au-
thors in [52, 24] at the time, we are the first to discover and remedy its
non-compositionality. We further generalise the SSL theory in [60] to
allow for a language-independent library specification and client rea-
soning. More concretely, we generalise the SSL theory so that the
specification of a library does not rely on the memory model of the
programming language used to interact with the library. Rather, the
library specification in SSL may be incorporated into an existing pro-
gram logic as an add-on. This way, our library specification may be
used to reason about different client programs of the library written
in different programming languages.

27

• Refinement. Our second contribution is the application of refinement
techniques in order to establish the correctness of library implemen-
tations. We explore two existing approaches to library refinement for
separation logic, namely the locality-breaking and locality-preserving
techniques. We discuss the merits and shortcomings of each approach.
We demonstrate that the locality-breaking approach is neither scalable
nor suitable in concurrent settings, whereas the locality-preserving ap-
proach overcomes both the scalability and concurrency limitations,
albeit at the price of complex translations. We introduce a hybrid
approach to refinement where we combine the strengths of both tech-
niques for simple scalable refinement of libraries. We then present a
JavaScript implementation of the DOM fragment formally specified
in this thesis and establish its correctness with respect to its formal
specification using our hybrid approach.

• Concurrency. Our third contribution is the program logic of CoLoSL
(Concurrent Local Subjective Logic) for compositional reasoning about
concurrent programs. We introduce the notion of subjective views
where each thread is verified with respect to its customised local view
of the state. Subjective views may arbitrarily overlap with one another,
and may expand or contract in accordance with the thread footprint.
We introduce the general composition and framing of interference re-
lations (describing how the shared resources may be manipulated by
each thread) in the spirit of resource composition and framing in stan-
dard separation logic. We demonstrate that this fluidity allows for
better proof reuse. We use CoLoSL to reason about several graph-
manipulating algorithms.

1.2. Publications

The following is a list of articles published as part of this PhD:

• A sip of the Chalice
FTfJP 2011 [43]

• Abstract Local Reasoning for Concurrent Libraries: Mind
the Gap
MFPS 2014 [23]

28

• CoLoSL: Concurrent Local Subjective Logic
ESOP 2015 [48]

• DOM: Specification and Client Reasoning
APLAS 2016 [45]

• Verifying Concurrent Graph Algorithms
APLAS 2016 [46]

1.3. Thesis Overview

• Chapter 2 introduces the background theory for the abstraction part
of this thesis on which the following three chapters are based. We give
an overview of program verification, separation logic and the existing
abstraction techniques for library specification. We then provide an
intuitive account of structural separation logic (SSL) [60] and demon-
strate its merits for abstract library specification and local reasoning.

• Chapter 3 presents the SSL theory as given in [60]. We use SSL to
specify a simple list library. The program logic of SSL in [60] is based
on a simple while language. As such, the SSL library specifications are
language dependent and may be used to reason about the client pro-
gram written in this while language only. We generalise the approach
in [60] and demonstrate how to integrate SSL with any separation logic
(SL) based program logic and use it to reason about client program
written in any language with an accompanying SL-based program logic
(e.g. Java [42] and JavaScript [21]). That is, we describe how SSL may
be incorporated into SL-based logics meeting certain conditions as an
add-on with minimal change to their underlying models. To demon-
strate this approach, we integrate SSL with an SL-based logic with a
simple while language, a variable stack and a heap.

• Chapter 4 applies the generalised SSL theory introduced in §3 to spec-
ify a simple tree library inspired by the Document Object Model
(DOM) library [2]. We then use the SL-based logic of the previous
chapter to reason about several client programs of the tree library.

• Chapter 5 applies the general SSL theory in §3 to formally specify a
fragment of the DOM Core Level 1 standard [1]. We demonstrate that

29

in comparison to existing formal specification [24, 52] of the DOM li-
brary in context logic [7, 6], our specification is both more local and
compositional. Our specification is more local in that several DOM op-
erations have smaller footprints in our specification, closely reflecting
the intuitive resources needed by these operations. We demonstrate
the compositionality of our specification via a simple DOM client pro-
gram whose behaviour is specified by a single triple using our spec-
ification, compared to six triples using the existing DOM specifica-
tion [24, 52]. We then use the general technique described in §3 to
integrate our DOM SSL specification with the SL-based JavaScript
program logic, JSLogic, introduced in [21]. We use our DOM exten-
sion of JSLogic to reason about several JavaScript ad blocker programs
that call the DOM.

• Chapter 6 introduces the background theory for the refinement part
of this thesis on which the following chapter is based. We give an
overview of existing refinement techniques for library implementation.
We demonstrate how to establish the correctness of a library implemen-
tation with respect to its abstract specification. We then provide an
intuitive account of the two approaches to library refinement put forth
by Dinsdale-Young et al in [16, 13, 59], namely the locality-breaking and
locality-preserving approaches. We discuss the merits and shortcom-
ings of each approach. We demonstrate that the locality-breaking ap-
proach is neither scalable nor suitable in concurrent settings, whereas
the locality-preserving approach overcomes both the scalability and
concurrency limitations, albeit at the price of complex translations.
We then introduce a hybrid approach to refinement where we combine
the strengths of both locality-breaking and locality-preserving tech-
niques for simple scalable refinement of libraries.

• Chapter 7 presents a JavaScript implementation of the DOM frag-
ment specified in §5. We then apply the hybrid refinement approach
described in the previous chapter to demonstrate that our implemen-
tation correctly refines the DOM specification in §5 and satisfies the
same specification.

• Chapter 8 introduces the background theory for the concurrency part

30

of this thesis. We give an overview of the existing program logics for
fine-grained concurrent reasoning and introduce the program logic of
CoLoSL (Concurrent Local Subjective Logic) for compositional rea-
soning about concurrent programs. CoLoSL introduces the notion of
subjective views where each thread is verified with respect to its cus-
tomised local view of the global shared resources, describing only those
parts of the state accessed by the thread. Subjective views may arbi-
trarily overlap with each other, and expand and contract depending on
the resource required by the thread. Inspired by local rely-guarantee
(LRG) reasoning [19], CoLoSL introduces the general composition and
framing of interference relations (describing how the shared resources
may be manipulated by each thread) in the spirit of resource compo-
sition and framing in standard separation logic.

• Chapter 9 presents the general theory of CoLoSL including its model,
assertion language, programming language, reasoning framework, se-
mantics and soundness.

• Chapter 10 applies CoLoSL to specify and reason about several fine-
grained concurrent graph manipulating algorithms. In particular, we
specify and verify several algorithms for computing the spanning tree
of a graph, copying a heap-represented graph and a speculative parallel
variant of Dijkstra’s shortest path algorithm.

• Chapter 11 concludes this thesis with a summary of achievements and
a discussion of future work.

1.4. Notational Conventions

We outline the basic notational conventions for standard mathematical con-
cepts that are used in this thesis.

Notation (Types as sets). We identify specific types (sets) by names in
the Small-Caps format, and write for example Expr to identify a set of
expressions. We use the terms “set” and “type” interchangeably depending
on the context. Certain mathematical sets have their designated notation:

• ∅, for the empty set;

31

• N = {0, 1, . . . }, for the set of natural numbers;

• N+ = {1, 2, . . . }, for the set of positive natural numbers; and

• Z = {. . . ,−1, 0, 1, . . . }, for the set of integers.

We use the following standard set notations and write:

• s ∈ S and s′ 6∈ S for set membership and its negation, respectively;

• S1 ⊆ S2 and S1 ⊂ S2 for the subset and strict subset relations, respec-
tively;

• S1 ⊇ S2 and S1 ⊃ S2 for the superset and strict superset relations,
respectively;

• S1 ∩ S2 and S1 \ S2 for set intersection and set difference, respectively;

• S1 ∪ S2 and S1] S2 for set union and disjoint union, respectively;

• S1 × S2 for the Cartesian product of the sets S1 and S2;

• |S| for the cardinality of S;

• P (S) for the powerset of S;

• {f(x) | P (x)} for set comprehension, denoting the set of values f(x)

for each x for which the proposition P (x) holds; and

• s : S to denote that s is an instance of the type S, i.e. s ∈ S;

When defining a type S for the first time, typically in the Definition or
Parameter environments, we write s ∈ S to denote that the elements of S

are ranged over by s and its variants such as s1, s′ and so forth. We write
S 〈A〉 to denote a generic type with type parameter A. For instance, the
powerset construction P (N) can be defined as PSet 〈N〉, where given a type
parameter A, then PSet 〈A〉 , {S | S ⊆ A}.

Notation (Relations). Relations are subsets of the Cartesian product of
two (or more) sets. As relations are themselves sets, the set notations also
apply to relations. We further appeal to the following standard relation
notations. Let R ∈ P (A× B). We then write:

32

• aR b for (a, b) ∈ R;

• a 6Rb for (a, b) 6∈ R;

• R(a) for {b | aR b}, namely the R-image of a;

• dom(R) for {a | ∃b. aR b}, namely the domain of R; and

• rng(R) for {b | ∃a. aR b}, namely the range of R.

Notation (Functions). The set of functions from A to B is denoted A→ B.
The set of partial functions from A to B is denoted A ⇀ B. The set of partial
finite functions from A to B is denoted A

fin
⇀ B. We use the following standard

function notations. When f ∈ A → B or f ∈ A ⇀ B, or f ∈ A
fin
⇀ B, we

write:

• f(a) for the application of f to argument a ∈ A;

• dom(f) , {a | f(a) is defined}, for the domain of f ; and

• rng(f) , {b | ∃a. f(a) is defined}, for the range of f .

Notation (Lists). Given a type parameter A, the generic type List〈A〉
delimits the set of all lists of A. The List〈A〉 is defined by the following
inductive grammar, where a ∈ A:

List〈A〉 3 L ::= [] | a : L

We use the following list notation and write:

• [a, b, . . . , z] for a : (b : (. . . z : []));

• [a1, . . . , an]++[a′1, . . . , a
′
m] for [a1, . . . , an, a

′
1, . . . , a

′
m];

• |L| for the length of list L, where |[]|=0 and |a : L|=1+ |L|; and

• |L|i for the ith item of L (indexed from zero with i ∈ N), defined as
follows when L 6= [] and is otherwise undefined:

|a : L|0 , a |a : L|n+1 , |L|n

33

Part I.

Abstraction and Refinement

34

2. Technical Background:Abstraction

Modern program verification as we know it began with the seminal work of
Hoare in [29]. Although others had attempted to specify the behaviour of
programs by writing pre- and postconditions describing the program state
before and after the program execution, the pioneering work of Hoare in [29]
was indeed the first attempt at a formal specification. Hoare further revolu-
tionised the field by proposing the use of formal specifications to derive the
specifications of larger programs without having to run their code.

The main idea behind Hoare’s methodology was the identification of a core
set of operations and the axiomatisation of their behaviour. The axioms of
core operations are given as Hoare triples of the form {P} C {Q} where
C denotes a core command and P and Q are first-order logical assertions
describing the program state before and after the execution of C. Hoare
triples may have a partial or total interpretation. The partial interpretation
of the {P} C {Q} states that if prior to the execution of C the program
state satisfies P , then if and when C terminates the resulting program state
satisfies Q. The total correctness interpretation additionally states that the
execution of C does indeed terminate. It is more common to work with
partial correctness interpretation of Hoare triples as termination proofs are
challenging, especially in the presence of loops.

Combined with a set of rules for manipulating the Hoare triples, one can
use the axiomatisation of the core operations to derive the specification of
larger programs. For instance, one such is rule is that of sequential compo-
sition:

{P} C1 {R} {R} C2 {Q}
{P} C1; C2 {Q}

The sequential composition rule states that if running C1 from a state sat-
isfying P terminates in a state satisfying R, and if running C2 from a state
satisfying R terminates in a state satisfying Q, then the resulting state from
running C1; C2 (i.e. running C1 and C2 in succession) in a state satisfying

35

P satisfies Q (if C1; C2 terminates). Hoare reasoning has been studied ex-
tensively since its advent. However, the reasoning principles of Hoare logic
do not scale to realistic programs. As mentioned earlier, the assertions
in the pre- and postconditions of Hoare triples are written in first-order
logic, describing the entire (global) program state. When dealing with large
complex data structures, describing the entire program state is nontrivial.
Moreover, in most realistic programming languages it is common to deal
with memory pointers in order to dynamically modify the data structures.
These constructs in turn may introduce complex aliasing relationships be-
tween memory pointers, further compounding the description of the global
program states.

In 2001, O’Hearn, Reynolds and Yang reformed the field of program veri-
fication by introducing separation logic [32, 40, 49]. The formalisms hitherto
studied advocated global reasoning where the program behaviour is specified
with respect to the entire state. By contrast, separation logic was a cham-
pion of local reasoning where the behaviour of a program C is specified with
respect to those parts of the state affected by C, namely the footprint of C.
One can thus infer the behaviour of C on larger states as those parts beyond
the footprint of C remain unchanged. This in turn allows one to combine
the effects of multiple programs and specify the behaviour of more complex
programs compositionally.

The novel idea behind separation logic is the introduction of the spatial
connective ∗ known as the separating conjunction. The separating conjunc-
tion splits the program state (usually a heap) into to separate components.
That is, P ∗Q describes a state that can be split into two parts such that one
part satisfies P and the other satisfies Q. Using the ∗ connective, one can
express the disjointness and aliasing properties of program states concisely.
For instance, we can write x 7→ y ∗ y 7→ x to describe two distinct heap
cells (x 6=y) that reference one another. Note that by contrast the first-order
assertion x 7→ y∧y 7→ x merely describes the presence of two heap cells that
may or may not be aliased. That is, it is not known whether x=y. Com-
pared to traditional Hoare reasoning, expressing the disjointness of program
states allows for far more tractable reasoning about pointer manipulating
programs as one no longer needs to describe the aliasing relation between
various memory locations.

In order to use the local specifications of separation logic in larger states,

36

separation logic introduces the frame rule of inference:

{P} C {Q}
{P ∗R} C {Q ∗R} mod(C) ∩ free(R)=∅

The frame rule states that, if executing C in a local state P transforms it to
a state satisfying Q, then executing C in a larger state (satisfying P ∗R) will
behave in the same way in that it will transform the local substate satisfying
P to one satisfying Q while the extension substate (satisfying R) remains
unchanged by the execution. The side condition ensures that the execution
of C does not modify the state satisfying R by violating its assumptions
about the values of program variables.

Later in [39], O’Hearn extended separation logic to allow for reasoning
abut concurrent programs such as C1 || C2. The parallel composition con-
struct C1 || C2 denotes the execution of the C1 and C2 programs in parallel
by two distinct threads.

In order to reason about concurrent programs, O’Hearn introduced the
parallel composition rule of inference:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1||C2 {Q1 ∗Q2}

(Par)

provided that C1 does not modify any variables free in P2, C2, Q2; similarly
for C2 and P1, C1, Q1. The (Par) rule states that, if executing C1 in a local
state P1 transforms it to a state satisfying Q1, and similarly executing C2 in a
local state P2 transforms it to a state satisfying Q2, then executing C1 || C2

in a larger state satisfying P1 ∗ P2 will transform it to a state satisfying
Q1 ∗Q2. We can use the (Par) rule to prove that two programs, C1 and C2,
which act on separate (compatible) parts of the state described by P1 and
P2 can be executed in parallel. For instance, consider the following proof
sketch for the program C , [x] = 1 || [y] = 2:

{x 7→ − ∗ y 7→ −}
{x 7→ −} {y 7→ −}
[x] = 1 [y] = 2

{x 7→ 1} {y 7→ 2}
{x 7→ 1 ∗ y 7→ 2}

37

What we have seen so far provides a rather low-level view of the program
state. When reasoning about large software libraries, abstraction is as im-
portant as locality. While locality allows us to study each part of the system
in isolation, abstraction affords us a simpler view of the system, hiding the
irrelevant details. That is, abstraction allows us to take a concrete imple-
mentation of a module and produce its abstract specification. A client of
the module can then appeal to this abstract specification and reason about
it without having to understand the specifics of its implementation. We
proceed with an overview of the existing work for combining abstraction
techniques with separation logic.

2.1. Abstraction for Separation Logic

Separation logic is extensively studied and the benefits of the locality it
affords in program verification is well-established. However, separation logic
provides a low-level abstraction of the program state akin to that of physical
machine states. To allow for more abstract specifications, Parkinson and
Bierman extended separation logic with abstract predicates [41].
An abstract predicate is a black box description that provides a high-

level representation of the underlying data structure without exposing its
implementation details. For instance, consider variable stores that map pro-
gram variables onto their associated values. The implementation of vari-
able stores and their representation in memory varies from one program-
ming language to another. For example, while in programming languages
such as C program variables are allocated and stored on the stack, the
variable store in JavaScript is emulated in the heap. However, when rea-
soning about client programs it is important to abstract away from the
implementation details of the variable store and work instead with a more
high-level representation of them. We can thus write an abstract predicate
vars(x1 : v1, x2 : v2, . . . , xn : vn) stating that the program variables x1, x2, . . . ,

xn hold values denoted by the logical variables v1,v2, . . . ,vn, respectively.
The vars predicate thus provides a high-level representation of program vari-
ables that can be instantiated to describe a particular implementation.
As another example, consider specifying the operations of a set module.

There are many different ways to represent a set in memory. For instance,
amongst many other possible representations, we may choose to represent

38

the set in memory as a singly-linked list or as a skip list. However, the
choice of in-memory representation of the set does not affect the high-level
behaviour of the set operations. As such, when reasoning about client pro-
grams of the set module, it is highly desirable to shield the user from the
intricate implementation-specific details, and work instead with a more ab-
stract representation of the sets. We can thus write an abstract predicate
set(Rs, s) stating that the contents of the set at heap address Rs is described
by the mathematical set s. The abstract predicate set(Rs, s) does not reveal
the heap representation of the set and merely provides a high-level descrip-
tion of the set via the mathematical set s. The set predicate thus provides a
high-level opaque representation of a set and may be instantiated to describe
a particular implementation.

Although abstract predicates successfully introduce the benefits of ab-
straction to separation logic, additional axiomatisation is required in order
to achieve the same degree of locality as that of separation logic at each
abstraction level. For instance, consider the variable assignment operation
x = y updating the value of variable x to that of y. Using the abstract predict
vars described above, we can specify this operation locally as follows:{

vars(x : x, y : y)
}
x = y

{
vars(x : y, y : y)

}
Now let us suppose that we hold the vars(x : x, y : y, z : z) resource and we
wish to perform the x = y operation. In order to verify x = y, the resources
we hold must match those described by the precondition of x = y. In other
words, we must split the vars(x : x, y : y, z : z) predicate, frame off variable z
and its value and thus arrive at vars(x : x, y : y) as required by the precondi-
tion of x = y above. However, as the vars predicate is opaque and its low-level
representation is hidden from us, we do not know how such splitting can be
achieved. To remedy this, abstract predicates allow for further axiomatisa-
tion of their properties, including that of their splitting. For instance, we
can introduce the following axiom in order to describe the splitting of vari-
able stores where s1 and s2 describe sets of program variable and value pairs
and s1] s2 ensures that s1 and s2 contain disjoint program variables:

∀s1, s2. vars(s1] s2)⇔ vars(s1) ∗ vars(s2)

39

Using the above axioms, we may now split the vars(x : x, y : y, z : z) predi-
cate as vars(x : x, y : y) ∗ vars(z : z), frame off vars(z : z) and thus match the
precondition of x = y above. As such, in order to achieve the same degree of
locality as that readily offered by separation logic, we must appeal to further
axiomatisation. To better illustrate this and to understand the advantages
and shortcomings of abstract predicates, we study two simple library mod-
ules, sets and lists, and specify their operations using abstract predicates.

2.1.1. Set Module

Consider a set module with three operations add, remove and size. For a
given set at address x, the x.add(n) operation adds the element identified
by n to the set if it does not contain n; otherwise it leaves the set unchanged.
Similarly, the x.remove(n) operation removes the element identified by n

from the set when it is contained in the set; otherwise it leaves the set
unchanged. Lastly, the r := x.size() operation returns the size of the set
in r.1

Using the vars and set abstract predicates described earlier, we can specify
the behaviour of the set operations as follows:{

vars(x : Rs, n : n)

∗ set(Rs, s)

}
x.add(n)

{
vars(x : Rs, n : n)

∗ set(Rs, s ∪ {n})

}
{
vars(x : Rs, n : n)

∗ set(Rs, s)

}
x.remove(n)

{
vars(x : Rs, n : n)

∗ set(Rs, s \ {n})

}
{
vars(x:Rs, n:n, r:r)

∗ set(Rs, s)

}
r := x.size()

{
∃r. vars(x:Rs, n:n, r:r)

∗ set(Rs, s) ∧ r= |s|

}

In the postcondition of x.add(n), the contents of the mathematical set s at
heap address Rs is extended with value n. Analogously, in the postcondition
of x.remove(n), value n is removed from the mathematical set s at Rs.
Finally, in the postcondition of x.size(), the set s at Rs remains unchanged
and the result r reflects the number of elements in s, i.e. |s|.
Observe that the footprint of the size operation spans the entire math-

ematical set s in that without having each and every element in s, its size

1We write, for example, r := x.size() for x.size(r). That is, r denotes a program vari-
able in which the operation result is returned, and ‘:=’ does not necessarily correspond
to assignment in the client programming language.

40

cannot be determined. The specification of the size operation above thus
accurately captures its intuitive footprint. By contrast, it is possible to spec-
ify the behaviour of the x.add(n) and x.remove(n) operations more locally
by focussing solely on the element denoted by n, rather than the entire set s.
More concretely, we can specify the x.add(n) operation such that the pre-
and postcondition respectively assert “the set may or may not contain n”,
and “the set does indeed contain n”; mutatis mutandis for x.remove(n). As
such, the specifications of the add and remove operations above greatly over-
estimate the footprint of their associated operations. This in turn hinders
local and compositional reasoning, especially in concurrent settings.

For instance, consider the concurrent set program x.add(17)||x.add(23).
Intuitively, the footprints of x.add(17) and x.add(23) are limited to the
set elements 17 and 23, respectively. Since 17 and 23 are distinct elements,
the footprints of the two operations are disjoint from one another. As such,
using the (Par) rule above (see p. 37), we expect to be able to execute
x.add(17) and x.add(23) in parallel. However, in the specification above,
the footprint of the add operation spans the entire set set(Rs, s). As the set
predicate set(Rs, s) cannot be duplicated as set(Rs, s)∗ set(Rs, s), we cannot
execute the x.add(17) and x.add(23) programs in parallel, as expected.

In order to specify the set operations locally, we thus appeal to more local
abstract predicates in(Rs,n) and out(Rs,n). The in(Rs,n) predicate states
that the set contains value n. Similarly, the out(Rs,n) predicate states that
the set does not contain value n. Using these predicates, we can specify the
behaviour of x.add(n) and x.remove(n) as follows:{

vars(x : Rs, n : n)

∗ (in(Rs,n) ∨ out(Rs,n))

}
x.add(n)

{
vars(x : Rs, n : n)

∗ in(Rs,n)

}
{
vars(x : Rs, n : n)

∗ (in(Rs,n) ∨ out(Rs,n))

}
x.remove(n)

{
vars(x : Rs, n : n)

∗ out(Rs,n)

}

Ideally, since the size operation involves the global predicate set(Rs, s), in
order to reason about all set operations simultaneously, we need a mechanism
that allows us to move back and forth between the global predicate set(Rs, s)

and the local predicates in(Rs,n) and out(Rs,n). To do this, we introduce

41

the following axioms:

∀s. set(Rs, s) ⇐⇒ ins(Rs, s) ∗ outs(Rs,N \ s)

∀s,n. ins(Rs, s] {n}) ⇐⇒ ins(Rs, s) ∗ in(Rs,n)

∀s,n. outs(Rs, s] {n}) ⇐⇒ outs(Rs, s) ∗ out(Rs,n)

(2.1)

That is, when s is a set of natural numbers, the above axiom describes how
the global resources of set(Rs, s) may be split into smaller local resources to
reflect the elements in s (via in(Rs,n)) and those not in s (via out(Rs,n)).

By combining abstract predicates with a set of axioms for enforcing the
structural splitting of resources (e.g. those in 2.1), we can recover the ben-
efits of locality afforded by separation logic at different abstraction levels.
However, while the splitting of resources comes for free in separation logic
(via the ∗ connective), it must be explicitly axiomatised on a per example
basis for each abstract data structure. Moreover, as the data structures grow
more complex, the number of the required axioms as well as their complexity
must also grow to achieve the same degree of expressivity and separation as
that of separation logic. To better demonstrate this, we next study a list
module and specify its operations using abstract predicates.

2.1.2. List Module

We will shortly study a generic list module and specify its operations using
abstract predicates. Lists are widely used data structures and have long
been the subject of study in separation logic. In particular, consider the
following inductive definition of lists first introduced as a motivating example
for separation logic:

list(Rl, l) , lseg(Rl, l, null)

lseg(x, l,n) , (x=n ∧ l=[] ∧ emp)

∨ (∃y,v, l′. l=v:l′ ∧ x 7→ v,y ∗ lseg(y, l′,n))

The list and lseg predicates above are well-known in the separation logic
community and are a staple in separation logic teachings. The list(Rl, l)

predicate describes a list at heap address Rl with its contents captured by
the mathematical list l. The lseg(x, l,n) predicate describes a list segment
l between heap addresses x and n, and provides a mechanism for splitting

42

lists and list segments into smaller segments, thus enabling local reasoning.
More concretely, for any list segments l1 and l2 we have:

lseg(x, l1++l2,n) ⇐⇒ ∃y. lseg(x, l1,y) ∗ lseg(y, l2,n) (2.2)

The use of the mathematical list l in conjunction with the splitting property
above is reminiscent of abstract predicates studied so far and at first glance
may suggest that the list and lseg predicates are abstract (i.e. implemen-
tation independent). However, on closer inspection we note that the lseg

predicate (and consequently the list predicate) exposes the in-heap repre-
sentation of the underlying list as a singly-linked list, and thus may only be
used when reasoning about singly-linked lists. As such, these predicates are
not abstract enough and cannot be used to specify the behaviour of a generic
list module. More concretely, the n parameter in lseg(x, l,n) describes the
value of the “next” pointer for the last list node in the segment. Were we
to reason about a doubly-linked list instead, we would then need to rede-
fine both predicates as follows by extending them with a new parameter p

tracking the value of the “previous” pointer for the first node in the segment:

dlist(Rl, l) , dlseg(Rl, l, null, null)

dlseg(x, l,n,p) , (x=n ∧ l=[] ∧ emp)

∨ (∃y,v, l′. l=v:l′ ∧ x 7→ v,y,p ∗ dlseg(y, l′,n,x))

In other words, by exposing the connectivity information of a list segment via
the n and p parameters (i.e. how a list segment connects with its surrounding
data), we have to redefine our predicates each time we consider a different list
representation. Ideally, we would like to abstract this connectivity and work
instead with a general list predicate that may be implemented by various
list representations.

To this end, rather than defining the list predicates by describing their
heap representation (as in list and lseg above), we assume two abstract
predicates list and lfrag (list fragment), analogous to list and lseg , and hide
their heap representation. To enable local reasoning, we must then axioma-
tise how a list may be split into smaller fragments. In other words, while
the splitting of list follows immediately from its in-heap definition, we must

43

axiomatise this property for the abstract list predicate list as follows:

∀l1, l2. list(Rl, l1++l2) ⇐⇒ ∃α. list(Rl, l1++α) ∗ lfrag(α, l2)

That is, we can split off an arbitrary l2 fragment of the list, provided
that we track how this fragment fits in its associated list via α. The α
in list(Rl, l1++α) identifies a context hole denoting the position to which the
list fragment at α is to return. Conversely, the counterpart α in lfrag(α, l2)

identifies an abstract address denoting the location at which the data asso-
ciated with the context hole α is stored. The address α is abstract in that
unlike Rl (or x and n in lseg(x, l,n)), it does not correspond to an actual
address in the heap and is a mere product of the abstraction. Observe that
by describing the splitting of list data via an abstract address α, we abstract
the connectivity of lists and list fragments to their surrounding data with-
out exposing their heap representations. As we describe shortly, when we
consider a particular list implementation (e.g. a singly-linked list), we also
concretise this abstract connectivity captured by α.

In order to move between list fragments of various lengths and break list
fragments into smaller ones, we use the following axiom:

∀l1, l2, β.
(
lfrag(β, l1++l2) ⇐⇒ ∃α. lfrag(β, l1++α) ∗ lfrag(α, l2)

)
We can now use the list and lfrag abstract predicates to specify the behaviour
of a generic list module. We can then use the list specification in conjunction
with the splitting properties above in order to enable local client reasoning.
To reason about a particular implementation of the list module, we can in-
stantiate the list and lfrag predicates by describing their heap representation
e.g. as a singly-linked list or a doubly-linked list, defined respectively as list

and dlist above. In doing so, we also concretise the abstract connectivity
captured by the abstract address α. In case of the singly-linked list rep-
resentation the concrete connectivity is realised by a single heap address n

denoting the value of the “next” pointer for the last node in the fragment.
In case of the doubly-linked list representation the concrete connectivity is
realised by two heap addresses n and p, where n denotes the value of the
“next” pointer for the last node in the fragment, and p captures the value of
the “previous” pointer for the first node in the fragment.

44

Note that in the same spirit as the lseg splitting property in (2.2), in
the abstract list splitting axioms above the splitting of the list data is al-
lowed from the right end only. As such, given a list fragment of the form
lfrag(α, l1++l2++l3), in order to get at the l2 fragment we must use the
splitting axiom twice as follows:

lfrag(α, l1++l2++l3)⇔ ∃β. lfrag(α, l1++β) ∗ lfrag(β, l2++l3)

⇔ ∃β, γ. lfrag(α, l1++β) ∗ lfrag(β, l2++γ) ∗ lfrag(γ, l3)

Although this is not a significant restriction, we generalise the splitting ax-
ioms as follows and use them instead in the remainder of this section:

∀l1, l2, l3.

list(Rl, l1++l2++l3) ⇐⇒ ∃α. list(Rl, l1++α++l3) ∗ lfrag(α, l2) (2.3)

∀l1, l2, l3, β.

lfrag(β, l1++l2++l3)⇐⇒ ∃α. lfrag(β, l1++α++l3) ∗ lfrag(α, l2) (2.4)

Let us now turn our focus to a generic list module and specify its operations
using the list and lfrag abstract predicates. Consider a list module with three
operations add, remove and item. For a given list at address x, the x.add(n)
operation appends n to the end of the list. The x.remove(n) operation
removes the first occurrence of n from the list when the list contains n;
otherwise the operation faults. The r := x.item(i) operation returns the
ith element of the list (indexed from 0) in r when i denotes a non-negative
integer. When i is out of bounds (i.e. greater than or equal to the length
of the list), then null is returned in r. This operation faults if i denotes a
negative value.

As with the set module, it is possible to specify all list operations by
appealing to a global abstract predicate list(Rl, l), stating that the contents
of the list at x are described by the mathematical list l. However, to allow
local reasoning we must accurately capture the operation footprints and
choose our abstract predicates accordingly. Let us then turn our focus to
the operation footprints.

The locality of footprints varies from one operation to another. Since lists
allow for duplicate elements, the x.add(n) operation does not need to know
of other n elements in the list. That is, the x.add(n) operation adds n to the

45

end of the list regardless of other list elements. As such, the precondition
of x.add(n) must ideally accommodate access to the end of the list without
exposing its elements. The footprint of x.add(n) thus contains no tangible
resources associated with the underlying list and merely requires access to
the last position in the list. When the list contains the value denoted by
n, the footprint of x.remove(n) is limited to the list fragment between the
beginning of the list and the first occurrence of n (inclusive). Lastly, the
footprint of the x.item(i) operation depends on the value of the index i.
When i denotes a valid index (i.e. a non-negative integer less than the length
of the list), then the footprint of x.item(i) comprises all elements from the
beginning of the list up to and including the ith element. When i is greater
than or equal to the length of the list, in order to calculate the length of the
list and compare it against the index i, the footprint of x.item(i) spans
the entire list.

Using the list and lfrag abstract predicates, we can specify the list op-
erations as follows, capturing the footprints locally. For a binary operator
⊕ ∈ {∈,=,≤, . . . }, we write x⊕̇y for x⊕ y ∧ emp.{

vars(x :Rl, n :n)

∗ list(Rl, α)

}
x.add(n)

{
vars(x :Rl, n :n)

∗ list(Rl, α++[n])

}

vars(x : Rl, n : n)

∗ list(Rl, l++[n]++α)

∗n ˙6∈l ∗ complete(l)

 x.remove(n)

{
vars(x : Rl, n : n)

∗ list(Rl, l++[n])

}

vars(x :Rl, i : i, r :r)

∗ list(Rl, l++[n]++α)

∗ i=̇ |l| ∗ complete(l)

 r := x.item(i)

{
vars(x :Rl, i : i, r :n)

∗ list(Rl, l++[n]++α)

}

vars(x :Rl, i : i, r :r)

∗ list(Rl, l) ∗ i≥̇ |l|
∗ complete(l)

 r := x.item(i)

{
vars(x :Rl, i : i, r :null)

∗ list(Rl, l)

}

Recall that for n=n, the footprint of x.add(n) is independent of the list
elements and solely requires access to the last position in the list. To specify
this, we use the lfrag(Rl, α) predicate in the precondition of x.add(n) to
assert that the contents of the list have been split off, leaving behind the
context hole α. Observe that for any list l, we can start with the list
list(Rl, l), split off the contents of the list, and obtain list(Rl, α) using the

46

axiom in (2.3). That is, list(Rl, l) ⇐⇒ ∃α. list(Rl, α) ∗ lfrag(α, l). In the
postcondition, the list is simply extended with the new element n.

When n=n and the list contains n, the footprint of x.remove(n) comprises
the fragment from the beginning of the list up to and including the first
occurrence of n. This is captured by list(Rl, l++[n]++α) in the precondition.
The n 6∈ l in the precondition ensures that the n given is indeed the first
occurrence of n in the list and does not occur in l. To ensure that the n does
not occur in l, the list fragment described by l must be complete (i.e. contain
no context holes). Were this not the case, we could not ascertain that n is
not contained in l (e.g. when l=α++l′, the list fragment at α may also
contain n). To capture this, we appeal to the following inductive predicate
complete(l), asserting that l is a complete list fragment with no context
holes:

complete(l) , (l=̇[]) ∨ (∃h, l′. l=̇[h]++l′ ∗ complete(l′))

The complete(l) predicate states that either the list l is empty and thus the
contents of the list are captured by []; or the list has at least one element
h, and the tail of the list, l′, is also complete. This is captured by the l=̇[]

and l=̇[h]++l′ assertions respectively, where [] and [h]++l′ denote logical
expressions. In the postcondition the n is removed from the list as required.

Recall that when i=i denotes a valid index (non-negative and less than
the length of the list), the footprint of x.item(i) comprises the fragment
from the beginning of the list up to and including the ith element. This is
specified in the precondition of the first axiom by list(Rl, l++[n]++α)∗|l| =̇i.
As before, to ensure that the l is equal to i, the list fragment given by l

must be complete, as stipulated by complete(l) in the precondition. In the
postcondition the ith element (i.e. n) is returned in r.

When i=i is out of bounds (i.e. greater than or equal to the length of
the list), the footprint of x.item(i) spans the entire list as specified by
list(Rl, l) ∗ i≥̇ |l| in the precondition of the second axiom. In the postcondi-
tion, the list remains unchanged and null is returned in r as required.

The above specification of the list operations is both abstract and local.
That is, the list and lfrag abstract predicates allowed us to specify the list op-
erations in a way that is independent of the underlying list implementation.
However, the locality of our specifications comes at the price of explicitly

47

axiomatising the list splitting properties in (2.3)-(2.4). In general, splitting
abstract data structures is crucial to local reasoning. As such, it is highly
desirable to write our specifications in a logic where this splitting is derivable
within the logic itself, rather than having to be axiomatised separately for
each abstract data structure. This is precisely the motivation behind struc-
tural separation logic [60]. Structural separation logic integrates the local
reasoning of separation logic (where resources may always be split using the
∗ connective), with the abstract treatment of data structures advocated by
abstract predicates. We proceed with an overview of structural separation
logic and use it to specify the operations of the list module studied here.

2.1.3. Structural Separation Logic: Informal Development

Structural separation logic [60], henceforth SSL, is a general program logic
for the abstract specification of libraries that manipulate structured data,
and local reasoning about their client programs. To achieve this, SSL com-
bines the local reasoning of separation logic [40, 49] with the abstract rea-
soning of context logic [7, 6]. Here, we give an intuitive account of SSL and
use it to specify the operations of the list module studied in §2.1.2. We give
the technical details of SSL and its general theory in §3. We then use SSL
to specify the operations of a simple tree library, as well as the Document
Object Model (DOM) library [1] and to reason about their client programs.

Consider the list operation x.remove(n). Informally, this operation re-
moves the first occurrence of the element identified by the value of variable
n, leaving the rest of the list unchanged. To formalise this English descrip-
tion, we write SSL assertions that describe abstract heaps. Abstract heaps
allow us to avoid considering the implementation details of the list structure.
They are similar to the flat heaps of separation logic in that they consist
of cells that map addresses to values. However, rather than storing simple
values such as integers, they may store rich and complex structures.

For instance, Fig. 2.1a illustrates an abstract list heap, comprising a single
cell at Rl with the complete abstract list [a, b, c] as its value. This heap
is abstract in that it hides the details of how the list at Rl is concretely
represented in a machine.

Intuitively, when n=b then the footprint of the x.remove(n) operation
comprises the list fragment [a, b] and not the list tail given by the [c] frag-

48

Rl

a b c[]
(a) A complete abstract list heap

Rl

a b y[]

y

c

(b) The heap in (a) after abstract allocation

Figure 2.1.: Abstract list heaps

ment. Abstract heaps allow for their data to be split by imposing additional
instrumentation using abstract addresses. This is reflected in the transition
from Fig. 2.1a to Fig. 2.1b. The heap in Fig. 2.1a contains the complete list
[a, b, c] at Rl. We then split this complete list using abstract allocation to
obtain the abstract heap in Fig. 2.1b with the list fragment [c] at a fresh,
fictional abstract address y, and an incomplete list at Rl with a context hole
y, indicating the position to which the list fragment will return. The list
fragment [a, b]++y now matches the intuitive footprint of x.remove(n) with
the tail [c] split off and excluded from the footprint. Once the x.remove(n)
operation is completed and the necessary updates have been carried out,
the heap can be joined back together using abstract deallocation, as in the
transition from Fig. 2.1b to 2.1a.

To specify the behaviour of list operations, we write assertions that de-
scribe abstract heaps. For instance, let n denote a logical variable with value
b, l denote a logical variable with value [a], α denote a logical variable with
value y, and l′ denote a logical variable with value [c]. To describe the list
cell at Rl in Fig. 2.1b, we write Rl 7→ l++[n]++α. This assertion describes
an abstract heap with a single list cell at address Rl, containing the list
fragment l++[n]++α. Similarly, to describe the list cell at y in Fig. 2.1b, we
write α 7→ l′. This assertion describes an abstract heap with a single list
cell at abstract address α, containing the list fragment l′.

We now have all the ingredients to describe the behaviour of list opera-
tions (specified using the list and lfrag abstract predicates in §2.1.2) using
SSL assertions instead. Observe that there is close correspondence between
the abstract predicates list and lfrag, and the SSL assertions describing ab-
stract list heaps. More concretely, given any list data l and abstract address
α, the list(Rl, l) predicate corresponds to the SSL assertion Rl 7→ l, and the
lfrag(α, l) predicate corresponds to the SSL assertion α 7→ l. The list split-

49

ting axioms of (2.3)-(2.4) correspond to abstract allocation and deallocation
on abstract list heaps (e.g. the transition from Fig. 2.1a to 2.1b and back).
That is,

∀l1, l2, l3,a.

a 7→ l1++l2++l3 ⇐⇒ ∃α. a 7→ l1++α++l3 ∗ α 7→ l2 (2.5)

where a ranges over the heap address Rl and abstract addresses such as
α. However, while we must explicitly axiomatise (2.3)-(2.4) for abstract list
predicates, the property in (2.5) is derivable within the logic of SSL and
need not be axiomatised.

We can now specify the behaviour of x.remove(n) in a similar way to the
lfrag specification (p. 46), using SSL assertions instead:

vars(x :Rl, n :n)

∗Rl 7→ l++[n]++α

∗n ˙6∈l ∗ complete(l)

 x.remove(n)

{
vars(x :Rl, n :n)

∗Rl 7→ l++α

}

As before, the precondition comprises four assertions, with the vars(x :Rl, n :

n) assertion describing the values associated with program variables. The
second assertion, Rl 7→ l++[n]++α, describes an abstract list heap compris-
ing a single cell at address Rl, holding the list fragment l++[n]++α. The
last two assertions, n ˙6∈l ∗ complete(l), state that the list fragment given by
l is complete and does not contain n. Analogously, the postcondition states
that the result of removing n is the list fragment l++α at address Rl. Note
that the context hole α must be preserved in order to join this list fragment
with the list that was split from it, using abstract deallocation. Were this
not the case, the resulting heap would be malformed in that one could not
join up the data at abstract address α with its associated context hole α,
as it would have been deleted by remove. We can use SSL to specify the
remaining list operations as given in Fig. 2.2.

We have given an intuitive account of SSL, a program logic for abstract
specification and local reasoning about libraries that manipulate structured
data. SSL consolidates the ideas behind context logic [7, 6] and segment
logic [59, 25], refining them into a logic with a simple heap model based on
that of separation logic. The heap model of SSL allows it to be integrated

50

{
vars(x:Rl, n:n) ∗ Rl 7→ α

}
x.add(n)

{
vars(x:Rl, n:n) ∗ Rl 7→ α++[n]

}
vars(x:Rl, n:n)
∗Rl 7→ l++[n]++α

∗n ˙6∈l ∗ complete(l)

 x.remove(n)
{
vars(x:Rl, n:n)
∗Rl 7→ l++α

}

vars(x :Rl, i : i, r :r)
∗Rl 7→ l++[n]++α
∗ i=̇ |l| ∗ complete(l)

 r := x.item(i)
{
vars(x :Rl, i : i, r :n)
∗Rl 7→ l++[n]++α

}

vars(x :Rl, i : i, r :r)
∗Rl 7→ l
∗ i≥̇ |l| ∗ complete(l)

 r := x.item(i)
{
vars(x :Rl, i : i, r :null)
∗Rl 7→ l

}

Figure 2.2.: The axiomatic specification of the list module using SSL

with other program logics based on separation logic, such as the original
work of O’Hearn [49], Parkinson’s separation logic for Java [42], and the
work on JavaScript by Smith and others [21]. SSL allows us to write specifi-
cations that are both abstract and local, without additional axiomatisation
or complex machinery. As such, in the remainder of this thesis we choose
SSL as the abstraction mechanism, and use it to specify the behaviour of the
library operations we study, as well as to reason about their client programs.

2.2. Client Reasoning

To reason about our client programs, we use the WLogic program logic
presented by Wright in his thesis [60]. WLogic is a program logic for a simple
while language comprising the standard constructs of sequential composition
(;), skip, conditionals, loops and parallel composition (||). The reasoning
principles and proof rules of WLogic are standard and are omitted here. We
describe the technical details of WLogic in §3. We combine the list module
specification given in Fig. 2.2 with WLogic to reason about the x.size()

client program given in Fig. 2.3.

2.2.1. The x.size() Client Program

The r := x.size() client program in Fig. 2.3 computes the length of the
list at address x and returns it in r. To do this, the program proceeds by
traversing the list from the head (the first element) to the end, keeping a

51

r := x.size() , var curr, size in {
size = 0;
curr := x.item(size);
while(curr != null){
size++;
curr := x.item(size);

}
r = size;

}

Figure 2.3.: The x.size() client program of the list module

count along the way. As such, the footprint of the x.size() program spans
the entire list, and the precondition must thus include the complete list at
x. We can specify the behaviour of the x.size() program as follows.{

vars(x : Rl, r : r) ∗ Rl 7→ l ∗ complete(l)
}

r := x.size(){
∃s. vars(x : Rl, r : s) ∗ Rl 7→ l ∗ s=̇ |l|

}
A proof sketch of x.size() is given in Figs. 2.4 and 2.5. At each proof point,
we have highlighted the effect of the preceding command, where applicable.
For instance, after the assignment of line 2, the value of variable size is
updated to 0, whereas the while statement of line 4 has no effect.

Concluding Remarks We have given an informal account of SSL, a pro-
gram logic for abstract specification, and have demonstrated how it may be
used for local reasoning about libraries that manipulate structured data. We
present the general theory of SSL in §3 and demonstrate how it may be inte-
grated into an SL-based program logic for client reasoning. In §4, we use SSL
to specify a simple tree library T, and integrate it into WLogic, an SL-based
program logic for a simple while language, to reason about the client pro-
grams of T in WLogic. Later in §5, we specify the behaviour of a fragment
of the Document Object Library (DOM) [1]. We then integrate our DOM
specification into JSLogic, an SL-based program logic for JavaScript [21], to
reason about the DOM client programs written in JavaScript. As mentioned
earlier, SSL consolidates the ideas behind context logic [7, 6], refining them

52

{
vars(x : Rl, r : r) ∗ Rl 7→ l ∗ complete(l)

}
1. var curr, size in {{

vars(x : Rl, r : r, curr:−, size:−) ∗ Rl 7→ l ∗ complete(l)
}

2. size = 0;{
vars(x : Rl, r : r, curr : −, size : 0) ∗ Rl 7→ l ∗ complete(l)

}
// Unwrap the definition of complete{
vars(x : Rl, r : r, curr : −, size : 0)

∗
(

(l=̇[] ∗ Rl 7→ []) ∨ (∃h, l′. l=̇[h]++l′ ∗ complete(l′) ∗ Rl 7→ [h]++l′)
)}

// Abstract allocation at α by (2.5)vars(x : Rl, r : r, curr :, size : 0) ∗
(

(l=̇[] ∗ Rl 7→ [])

∨ (∃h, l′, α. l=̇[h]++l′ ∗ complete(l′) ∗ Rl 7→ [h]++α ∗ α 7→ l′)
)

3. curr := x.item(size);∃c. vars(x :Rl, r :r, curr :c , size :0) ∗
(
(l=̇[] ∗ c=̇null ∗ Rl 7→ [])

∨ (∃h, l′. l=̇[h]++l′ ∗ complete(l′) ∗ c=̇h ∗ Rl 7→ [h]++α ∗ α 7→ l′)
)

// Abstract deallocation at α by (2.5)∃c. vars(x : Rl, r : r, curr : c, size : 0) ∗
(

(l=̇[] ∗ c=̇null ∗ Rl 7→ [])

∨ (∃h, l′. l=̇[h]++l′ ∗ complete(l′) ∗ c=̇h ∗ Rl 7→ [h]++l′)
)

// Weaken each disjunct to arrive at the loop invariant
∃c, s, l1, l2. vars(x : Rl, r : r, curr : c, size : s)

∗
(
(c=̇null ∗ Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++l2)
)

Figure 2.4.: A proof sketch of x.size() (continued in Fig. 2.5)

into a logic with a simple heap model based on that of separation logic. As
we demonstrate later in §5, SSL improves on context logic in several ways.
Most notably, SSL allows for compositional client reasoning, significantly
reducing the number of specifications needed for describing the behaviour of
programs. To illustrate this, we show that specifying a simple DOM client
program (comprising 3 lines of code) in context logic requires at least six
separate Hoare triples, whereas the same program can be specified in SSL
with a single triple (see p. 139).

53

// Repeat the last line from Fig. 2.4
∃c, s, l1, l2. vars(x : Rl, r : r, curr : c, size : s)

∗
(
(c=̇null ∗ Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++l2)
)

4. while(curr != null) {{

∃c, s, l1, l2. vars(x : Rl, r : r, curr : c, size : s) ∗ l=̇l1++[c]++l2 ∗ s=̇ |l1|
∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++l2

}
5. size++;{

∃s, l1, l2. vars(x : Rl, r : r, curr : −, size : s) ∗ l=̇l1++l2 ∗ s=̇ |l1|
∗ complete(l1) ∗ complete(l2) ∗ Rl 7→ l1++l2

}
// Unwrap the definition of complete(l2)
∃s, l1, l2. vars(x : Rl, r : r, curr : -, size : s)

∗
(

(Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (∃c. l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++l2)
)

// Abstract allocation at α by (2.5)
∃s, l1, l2, α. vars(x : Rl, r : r, curr : -, size : s)

∗
(

(Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (∃c. l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++α ∗ α 7→ l2)
)

6. curr := x.item(size)
∃s, l1, l2, α, c . vars(x : Rl, r : r, curr : c , size : s)

∗
(

(c=̇null ∗ Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++α ∗ α 7→ l2)
)

// Abstract deallocation at α by (2.5)
∃s, l1, l2,c. vars(x : Rl, r : r, curr : c, size : s)

∗
(

(c=̇null ∗ Rl 7→ l ∗ s=̇ |l| ∗ complete(l)) ∨ (l=̇l1++[c]++l2 ∗ s=̇ |l1|

∗ complete(l1++[c]) ∗ complete(l2) ∗ Rl 7→ l1++[c]++l2)
)

7. }

// Exit from the loop; only the first disjunct of the invariant applies.{
∃s. vars(x : Rl, r : r, curr : null, size : s) ∗ Rl 7→ l ∗ s=̇ |l| ∗ complete(l)

}{
∃s. vars(x : Rl, r : r, curr : null, size : s) ∗ Rl 7→ l ∗ s=̇ |l|

}
8. r = size;{

∃s. vars(x : Rl, r : s , curr : null, size : s) ∗ Rl 7→ l ∗ s=̇ |l|
}

9. }{
∃s. vars(x : Rl, r : s) ∗ Rl 7→ l ∗ s=̇ |l|

}
Figure 2.5.: A proof sketch of x.size() (continued from Fig. 2.4)

54

3. Structural Separation Logic (SSL)

Structural separation logic (SSL) introduced by Wright in [60] is a general
program logic for abstractly specifying the behaviour of libraries of struc-
tured data, and for reasoning locally about their client programs. We present
the general theory of SSL and its various ingredients necessary to specify a
library abstractly, as presented in [60]. The general theory of SSL is para-
metric and may be instantiated accordingly to specify the behaviour of any
library for structured data. We present the general model of SSL and its
assertion language in §3.1.

Given a library A for abstract data (e.g. a list library such as that in
§2.1.2), in §3.2 we demonstrate how to use the SSL specification of A to rea-
son about its client programs written in an arbitrary programming language
with an SL-based program logic. More concretely, given a programming lan-
guage PL, with an SL-based program logic PLogic, we demonstrate how to
extend PLogic to PLogicA to specify the behaviour of A operations, and to
reason about the client programs of A written in PL, provided that PLogic

meets certain assumptions.

In order to extend PLogic to PLogicA, we integrate the various com-
ponents of SSL (e.g. states, assertions, etc.) with those of PLogic. In
particular, we must integrate the assertions of the SSL and PLogic in a way
that allows for combining the information about their respective underlying
sates. For instance, in the specification of the x.remove(n) list operation
in Fig. 2.2, the vars(x : Rl, n : n) assertion describes a variable store in the
client programming language where program variables x and n respectively
hold the value Rl, and the value denoted by the logical variable n. In other
words, program variables provide a means of interaction between the client
programming language PL and the library A operations. Similarly, logi-
cal variables provide a means of information exchange between the client
program logic PLogic and the library A specification in SSL. As such, to
integrate PLogic and SSL we must adopt a unified notion of program and

55

logical variables. More concretely, since we aim to reason about library A
client programs written in PL, the set of program variables are those of PL.
Analogously, since we aim to incorporate the SSL specification of library A
into the program logic of PLogic, the set of logical variables are those of
PLogic. To this end, we define a unified set of program variables, PVar, as
well as a unified set of logical variables, LVar.

Unlike program variables, the choice of program values may differ between
the PL language and library A. Program values describe the set of values
that can be represented in the machine and may be observed via program
variables. For instance, in the above variable store assertion vars(x : Rl, n :

n), the value associated with variable x, namely Rl, denotes a program value
of the list library describing the location of the list in the underlying abstract
list heap. Moreover, the Rl is a list library value and may not necessarily
correspond to a program value in PL. As such, the programming language
PL and library A may each define their own sets of program values.

Similarly, the choice of logical values in the program logic PLogic may
differ from those of SSL. Logical values describe the values that may be
associated with logical variables and often include program values. The set
of logical values may additionally include instrumented values used purely
for reasoning (e.g. an abstract address x denoting a fictional address in the
abstract heap). Since PL program values may not necessarily correspond to
those of library A, the SSL specification for A and PLogic may each define
their own sets of logical value.

To track the values of logical variables in assertions, we then define a set of
parametric logical environments, LEnv 〈V〉, that map logical variables onto
logical values in V. As we show later, when the set of logical values for
PLogic is given by PLLVal, and the set of SSL logical values for library A
is given by LValA, we interpret PLogicA assertions with respect to a logical
environment in LEnv 〈PLLVal ∪ LValA〉.
The W-coercion of a logical environment Γ, written Γ↓W, limits the do-

main of Γ to those variables whose values inhabit W. We use this to enforce
the correct interpretation of assertions when the range of Γ is bigger than
permitted. For instance, when interpreting PLogicA assertions (which in-
clude both SSL and PLogic assertions) with respect to Γ ∈ LEnv〈PLLVal

∪LValA〉, SSL assertions are interpreted over Γ↓LValA .

56

Definition 1 (Program variables). The countably infinite set of program
variables is x ∈ PVar.

Definition 2 (Logical variables). The countably infinite set of logical vari-
ables is x ∈ LVar.

Definition 3 (Logical environments). Given the set of logical variables LVar

(Def. 2) and a set of logical values V, the set of parametric logical environ-
ments on V is Γ ∈ LEnv 〈V〉 , LVar

fin
⇀ V.

Given two sets of logical values V and W and a logical environment Γ ∈
LEnv 〈V〉, the W-coercion of Γ, written Γ↓w, is defined as follows:

Γ↓w(x) ,

Γ(x) if Γ(x) ∈W

undefined otherwise

We proceed with the general theory of SSL and its assertion language.

3.1. SSL Model and Assertions

The general theory of SSL [60] is parametric and may be instantiated to
specify the behaviour of a particular library of structured data. We present
the SSL theory for a general library A, and delineate the parameters of SSL
enclosed in solid boxes labelled “SSL Parameter”. To provide a clearer ac-
count of the SSL theory, we appeal to the list library L presented informally
in §2.1 and follow each SSL parameter with the instantiation of the corre-
sponding parameter for L enclosed in dashed boxes labelled “SSL L Instance
(Parameter X)”, where X is the reference to the corresponding parameter.
We proceed with the general SSL model and its assertion language.

SSL Model

We begin by modelling abstract program heaps such as the list heap in
Fig. 2.1a. Abstract program heaps are mappings from root addresses (e.g. Rl)
to complete program data with no context holes (e.g. [a, b, c]). Root ad-
dresses are library specific and may vary from one library to another. We
thus parameterise the library-specific root addresses R ∈ RAddA.

57

SSL Parameter

Parameter 1 (Root addresses). Assume a countable set of root ad-
dresses, R ∈ RAddA.

For list heaps, we define a designated root address Rl, denoting the loca-
tion in the list heap where the list data is stored.

SSL L Instance (Parameter 1)

Definition 4 (List root addresses). The set of root addresses for lists
is RAddL , {Rl}.

Recall that abstract program heaps are mappings from root addresses to
program data. Program data is library specific and describes complete data
with no context holes. It provides a high-level representation of the under-
lying data structure that is agnostic to the implementation details and how
the data structure may be represented in the heap. For instance, program
data for the list module in §2.1 comprises complete abstract lists such as
[a, b, c] in Fig. 2.1a.

SSL Parameter

Parameter 2 (Program data). Assume a set of program data, d ∈
PDataA.

For the list library L, program data describes an ordered collection of val-
ues defined inductively and includes empty lists, singleton lists, and compos-
ite lists. To model lists, we assume a countably infinite set of list elements,
n ∈ LElem, delimiting the space from which list elements are drawn.

SSL L Instance (Parameter 2)

Definition 5 (List program data). Let LElem denote a countably
infinite set of list elements. The set of program data for lists, l ∈
PDataL, is defined by the following grammar where n ∈ LElem:

l ::= [] | [n] | l1++l2

58

The ++ operation is associative with identity [] and all list data are
equal up to the associativity of ++.1

We write [n1, . . . , nk] as a shorthand for [n1]++ . . .++[nk].

As previously discussed, the set of program values may vary from one
library to another. We thus assume a set of library-specific program values
that include root addresses. Library-specific program values denote the set
of program values that may be observed by the clients of the library (via
program variables). For instance, for the list library studied in §2.1.3, the
library-specific program values comprise the list root address Rl, as well as
the list elements in LElem (Def. 5). This is evident in the list axioms of
Fig. 2.2 where the program variables may contain either the root address Rl
or logical values corresponding to elements in the underlying list.

SSL Parameter

Parameter 3 (Library program values). Given the set of root ad-
dresses RAddA (Par. 1), assume a set of library program values,
v ∈ PValA, such that RAddA ⊆ PValA.

For the list library L, the program values include the list root address Rl
and the elements in LElem.

SSL L Instance (Parameter 3)

Definition 6 (List program values). Given the set of list root ad-
dresses RAddL (Def. 4) and the set of list elements LElem (Def. 5),
the set of program values for lists is v ∈ PValL , RAddL] LElem.

We can now model abstract program heaps as partial functions mapping
root addresses onto abstract program data.

Definition 7 (Abstract program heaps). Given the set of root address
RAddA (Par. 1) and the set of program data PDataA (Par. 2), the set of

1It is straightforward to formalise this associativity property.

59

abstract program heaps for library A is:

h ∈ PHeapA , RAddA
fin
⇀ PDataA

We now proceed to model abstract logical heaps such as the list heap in
Fig. 2.1b. Abstract logical heaps are mappings from addresses to logical
data. Addresses comprise abstract addresses (e.g. y in Fig. 2.1b), as well as
library-specific root addresses (e.g. Rl for lists). To model this, we assume
a countably infinite set of abstract addresses, x ∈ AAdd, such that the sets
of abstract addresses and root addresses are disjoint.

Definition 8 (Abstract addresses). Given the set of library root addresses
RAddA (Par. 1), the countably infinite set of abstract addresses is x ∈ AAdd,
such that AAdd ∩ RAddA=∅.

Definition 9 (Addresses). Given the set of library root addresses RAddA

(Par. 1) and the set of abstract addresses AAdd (Def. 8), the set of addresses
for library A is a ∈ AddA , AAdd] RAddA.

As mentioned earlier, abstract logical heaps are mappings from addresses
to logical data. As with program data, logical data is library specific and
provides a high-level representation of the underlying data structure that is
agnostic to how the data structure may be represented in the heap. Logical
data contains the (complete) program data (Par. 2) and may additionally
contain incomplete data with context holes (e.g. x). In other words, since
the definition of logical data is library specific, we may choose to limit log-
ical data to include program data only. However, as we demonstrated in
§2.1, admitting incomplete data allows us to specify library operations more
locally. Notationally, as with context holes, we use the boldface font and
write d, d1 and so forth to range over logical data. This is to remind the
reader that logical data may contain context holes. Given the set of logical
data, there is an associated address function which returns the set of context
holes present in the logical data.

60

SSL Parameter

Parameter 4 (Logical data). Given the set of program data PDataA

(Par. 2), assume a set of logical data, d ∈ LDataA, such that
PDataA ⊆ LDataA.
Given the set of abstract addresses AAdd (Def. 8), assume an address
function, addrA(.) : LDataA → P (AAdd), returning the set of context
holes present in the logical data.

When the type of logical data is clear from the context, we drop the
subscript and write addr(.) for addrA(.).
For the list library L, logical data includes the complete lists defined by

list program data (Def. 5), as well as incomplete lists with context holes.

SSL L Instance (Parameter 4)

Definition 10 (List logical data). The set of logical list data, l ∈
LDataL, is defined by the following grammar where x ∈ AAdd (Def. 8)
and n ∈ LElem (Def. 5):

l ::= [] | x | [n] | l1++l2

Logical list data does not contain repeated context holes; the ++

operation is associative with identity [] and all logical list data are
equal up to the associativity of ++.2

The list address function, addrL(.) : LDataL → P (AAdd), is defined
inductively over the structure of logical list data as follows:

addrL([]) , ∅ addrL(x) , {x} addrL([n]) , ∅
addrL(l1++l2) , addrL(l1)] addrL(l2)

Recall that data splitting in SSL is achieved through abstract allocation
(e.g. the transition from Fig. 2.1a to 2.1b). Conversely, data can be com-
bined via abstract deallocation (e.g. the transition from Fig. 2.1b to 2.1a)
where subdata at an abstract address is compressed into its counterpart con-
text hole. To model this data compression, we appeal to context application

2It is straightforward to formalise these restrictions.

61

on logical data, written d1 �x d2, describing the collapsing of logical data
d2 into the context hole x in d1. This is typically defined as the standard
substitution of x in d1 with d2.

SSL Parameter

Parameter 5 (Application). Given the set of abstract addresses
AAdd (Def. 8) and the set of logical data LDataA (Par. 4), assume
a context application function, � : LDataA × AAdd × LDataA ⇀

LDataA, such that the following properties hold for all d,d1,d2 ∈
LDataA and x,y ∈ AAdd, where for clarity �(d1,x,d2) is written as
d1 �x d2:

1. if d1 �x d2 is defined then:

a) Containment : x ∈ addr(d1)

b) Non-overlap: addr(d1) ∩ addr(d2) ⊆ {x}

c) Preservation: (addr(d1) \ {x}) ∪ addr(d2) = addr(d1 �x d2)

2. Identity : x �x d = d.

3. Arbitrary addresses: if x ∈ addr(d) and either y 6∈ addr(d) or
y = x, then d �x y is defined. Also, d �x x = d.

4. Left-cancellativity : if d �x d1 = d �x d2, then d1 = d2.

5. Quasi-associativity : if y ∈ addr(d2) and either y 6∈ addr(d1) or
x = y, then (d1 �x d2) �y d = d1 �x (d2 �y d).

6. Quasi-commutativity : if x 6∈ addr(d2) and y 6∈ addr(d1), then
(d �x d1) �y d2 = (d �y d2) �x d1.

where undefined terms are considered equal.

For list data, we define context application l1 �x l2 in the standard way: it
is undefined when x 6∈ addr(l1); otherwise, it is defined as l1[l2/x], denoting
the standard substitution of l2 for x in l1, provided that the substitution
result is in LDataL.

62

SSL L Instance (Parameter 5)

Definition 11 (List application). Given the set of abstract addresses
AAdd (Def. 8) and the set of logical list data LDataL (Def. 10), the list
context application function, � : LDataL×AAdd×LDataL ⇀ LDataL,
is defined inductively over the structure of logical list data as follows:

[] �x l undefined [n] �x l undefined

y �x l ,

l if x = y

undefined otherwise

(l1++l2) �x l ,

l′++l2 if l1 �x l = l′ and l′++l2 ∈ LDataL

l1++l′ if l2 �x l = l′ and l1++l′ ∈ LDataL

undefined otherwise

We are almost in a position to formally define abstract logical heaps.
An abstract logical heap is a mapping from addresses (Def. 9) to logical
data (Par. 4). A logical heap may be: i) complete, with no use of abstract
addresses in its domain or range, i.e. a program heap (e.g. the list heap in
Fig. 2.1a); or ii) complete, but with its data split across several abstract heap
cells (e.g. the list heap in Fig. 2.1b); or iii) incomplete, missing some heap
cells needed to join some abstract addresses (e.g. the list subheap y 7→ [n] in
Fig. 2.1b). As we demonstrated in §2.1, incomplete heaps are necessary for
local reasoning using the frame rule. In this case, there will be some choice
for the missing cells in the frame that would render the heap complete.
Logical heaps are subject to structural invariants to ensure that they are
well-formed. In particular, a context hole x must not be reachable from the
abstract address x in the domain of the heap. For instance, the list heap
{x 7→ [n]++y,y 7→ [m]++x} is not well-formed due to the cycle. To this
end, we first define logical pre-heaps as mappings from addresses (Def. 9)
to logical data (Par. 4). We then define abstract logical heaps as logical
pre-heaps that are well-formed. More concretely, a logical pre-heap ph is
well-formed if:

i) ph is complete with no abstract addresses in its domain or range,
i.e. ph is a program heap in PHeapA (Def. 7); or

63

ii) ph is complete with its data split across several abstract heap cells,
and it is possible to collapse the data at abstract addresses to their
counterpart context holes to produce a complete pre-heap as in i); or

iii) ph is incomplete and it is possible to complete it by extending it to a
well-formed complete pre-heap as in ii).

Note that the collapsibility property in ii) ensures that logical heaps are
acyclic with respect to abstract addresses, and dismisses malformed heaps
such as {x 7→ [n]++y,y 7→ [m]++x} since it cannot be collapsed to a com-
plete heap. We proceed with the formal definition of logical pre-heaps, fol-
lowed by the definitions of heap collapse and completion functions. We then
formulate the definition of abstract logical heaps.

Definition 12 (Logical pre-heaps). Given the set of library A addresses
AddA (Def. 9) and the set of logical data LDataA (Par. 4), the set of logical
pre-heaps for library A is:

ph ∈ PreHeapA , AddA
fin
⇀ LDataA

The empty pre-heap, 0A, is a function with an empty domain.

As before, when the type of an abstract heap is clear from the context,
we drop the subscript and write 0 for 0A.

Definition 13 (Completion/collapse). A pre-heap ph ∈ PreHeapA is com-
plete, written isComp(ph), if and only if it satisfies the following condition,
where dom(ph) denotes the domain of ph, and addr(.) is the address func-
tion (Par. 4):

isComp(ph)
def⇐⇒ ∀x.

(
x ∈ dom(ph)⇔ ∃a ∈ dom(ph). x ∈ addr(ph(a))

)
The pre-heap completion function, comp(.) : PreHeapA → P (PreHeapA),
is defined as follows, where] denotes the standard disjoint function union:

comp(ph) ,
{
ph′ ∃ph′′. ph′=ph] ph′′ ∧ isComp(ph′)

}
The pre-heap collapse function, collapse(.) : PreHeapA ⇀ PreHeapA, is

64

defined as follows:

collapse(ph) ,

ph if isComp(ph)

and dom(ph) ∩ AAdd = ∅

collapse(ph′) if isComp(ph)

and ∃ph′′, a,x,d1,d2.

ph=ph′′] [a 7→ d1]] [x 7→ d2]

∧ph′=ph′′] [a 7→ (d1 �x d2)]

undefined otherwise

Observe that only complete pre-heaps with unique context holes in their
range can be collapsed. That is, for any two distinct addresses a1 and a2 in
the domain of ph, the context holes of ph(a1) and ph(a2) should not overlap.
As such, the order of data collapse does not matter. As the collapsibility
of a pre-heap ensures its acyclicity with respect to abstract addresses, we
define the set of abstract logical heaps to comprise logical pre-heaps that
can be completed into collapsible pre-heaps.

Definition 14 (Abstract logical heaps). Given the set of logical pre-heaps
PreHeapA (Def. 12), the set of abstract logical heaps for library A, h ∈
LHeapA, is defined as follows:

h ∈ LHeapA ,

{
ph

ph ∈ PreHeapA ∧ ∃ph1,ph2.

ph1 ∈ comp(ph) ∧ ph2=collapse(ph1)

}

Logical heap composition, •A : LHeapA × LHeapA ⇀ LHeapA, is defined as
the standard disjoint function union]. The empty logical heap, 0A, is the
logical heap with empty domain. The separation algebra of logical heaps for
library A is SAA , (LHeapA, •A,0A).

Observe that abstract heaps are also abstract pre-heaps: LHeapA ⊂
PreHeapA. When the type of abstract heaps is clear from the context,
we drop the subscripts and write • for •A and 0 for 0A.
We can now formalise the abstract allocation/deallocation relation on ab-

stract logical heaps.

Definition 15 (Abstract (de)allocation). The abstract (de)allocation re-
lation, ≈: LHeapA × LHeapA, is defined as follows, where ∗ denotes the

65

reflexive transitive closure of the relation and h1[a 7→ d1] denotes a function
that behaves like h1 except that a is mapped onto d1:

≈ ,

{
(h1,h2), (h2,h1)

∃a,d1,d2,x. h1(a)=(d1 �x d2) ∧
h2=h1[a 7→ d1] • [x 7→ d2]

}
*

During abstract allocation (in the transition from h1 to h2), the subdata
d2 at address a is split and promoted to a fresh abstract address x in the
heap, leaving the context hole x behind in its place. Dually, during abstract
deallocation (in the transition from h2 to h1), the context hole x in logical
data d1 is replaced by its associated data d2 at abstract address x, removing
x from the domain of the heap in doing so.

An abstract library provides an interface for manipulating the underlying
data structure. In SSL this is achieved through a set of atomic operations
associated with the library without exposing their implementation details.
As such, the operations of library A are parameterised and must be provided
alongside the other SSL parameters studied so far. For instance, for the list
library L in §2.1.3, the library operations comprise x.add(n), x.remove(n)
and r := x.item(i).

SSL Parameter

Parameter 6 (Library operations). Assume a set of atomic library
operations, CA ∈ OpA.

SSL L Instance (Parameter 6)

Definition 16 (List operations). The set of atomic list operations,
CL ∈ OpL, is defined by the following grammar, for all program vari-
ables x, n, r ∈ PVar (Def. 1):

CL ::= x.add(n) | x.remove(n) | r := x.item(i)

We have now introduced all the ingredients of the SSL model. We proceed
with the SSL assertions and their semantics.

66

SSL Assertions

As we discussed earlier at the beginning of this chapter, the set of logical
values are library specific and may vary from one library to another. Logical
values denote the values associated with logical variables. We thus assume a
set of library-specific logical values that include library program values (Par.
3) as well as abstract addresses. For instance, in the list axioms of Fig. 2.2,
the (logical) value of the logical variable α is an abstract address x.

SSL Parameter

Parameter 7 (Library logical values). Given the set of library pro-
gram values PValA (Par. 3) and the set of abstract addresses AAdd

(Def. 8), assume a set of library logical values, v ∈ LValA, such that
PValA ∪ AAdd ⊆ LValA.

For the list library L, the logical values are the extension of list program
values (Def. 6) with abstract addresses and logical list data (Def. 10). We
include the logical list data in the set of logical values to allow for writing
logical expressions that inspect the structure of list data.

SSL L Instance (Parameter 7)

Definition 17 (List logical values). Given the set of program values
for lists PValL (Def. 6), the set of abstract addresses AAdd (Def. 8)
and the set of list logical data LDataL (Def. 10), the set of logical
values for lists is v ∈ LValL , PValL ∪ AAdd ∪ LDataL.

Library A may specify a set of logical expressions in order to assert certain
properties about the underlying data. For instance, the logical expressions
of the list library studied in §2.1.2 include the |l| expression describing the
length of list l (see the specification of x.item(i) operation in Fig. 2.2).
As such, SSL is parametric in the set of library logical expressions and their
evaluation function.

67

SSL Parameter

Parameter 8 (Library logical expressions). Assume a set of library
logical expressions, e ∈ LExpA.
Given the set of library logical values LValA (Par. 7) and the set of
logical environments in LEnv 〈LValA〉 (Def. 3), assume an evaluation
function, (|.|)(.)

A : (LExpA × LEnv 〈LValA〉) ⇀ LValA, that given a
logical environment in LEnv 〈LValA〉, evaluates a logical expression
in LExpA to a logical value in LValA.

For the list library L, the logical expressions include logical variables,
list expressions defined by the same grammar as that of logical list data
(Def. 10), and the list length expression.

SSL L Instance (Parameter 8)

Definition 18 (List logical expressions). The set of logical expres-
sions for lists, e ∈ LExpL, is defined by the following grammar where
l,n, α ∈ LVar (Def. 2):

e ::= [] | l | α | [n] | e1++e2 | |e|

Given the set of logical values for lists LValL (Def. 17) and the set of
logical environments LEnv 〈PValL〉 (Def. 3), the evaluation function
for list expressions, (|.|)(.)

L : (LExpL × LEnv 〈LValL〉) ⇀ LValL, is
defined inductively over the structure of list expressions as follows,
where Γ ∈ LEnv 〈LValL〉:

(|[]|)Γ
L =[] (|l|)Γ

L =Γ(l) (|α|)Γ
L =

Γ(α) if Γ(α) ∈ AAdd

undefined otherwise

(|[n]|)Γ
L =

[n] if Γ(n)=n

undefined otherwise

(|e1++e2|)Γ
L =

l1++l2 if (|e1|)Γ
L =l1 ∧ (|e2|)Γ

L =l2

undefined otherwise

68

(||e||)Γ
L =

|l| if (|e|)Γ
L =l ∧ addrL(l)=∅

undefined otherwise

Given a library A, the SSL assertions for A comprise heap assertions de-
scribing sets of abstract heaps in LHeapA (Def. 14). Heap assertions in turn
are defined via data assertions, describing the underlying data in LDataA.
As well as assertions describing context holes, data assertions are parame-
terised and may be instantiated with library-specific data assertions. For
instance, as we demonstrated in §2.1, the data assertions for the list library
include [], describing an empty list, as well as assertions of the form l1++l2,
describing composite lists. Data assertions are interpreted as sets of library-
specific data given a logical environment.

SSL Parameter

Parameter 9 (Library data assertions). Assume a set of library data
assertions Λ ∈ LAstA.
Given the set of library logical values LValA (Par. 7), the set of log-
ical environments LEnv 〈LValA〉 (Def. 3) and the set of logical data
LDataA (Par. 4), assume a satisfiability relation for library data as-
sertions, |||=A: (LEnv 〈LValA〉 × LDataA)× LAstA.

Given a set of library data assertions, we can now define the SSL heap
and data assertions.

Definition 19 (SSL assertions). The set of library A heap assertions, Θ ∈
HAstA, and the set of library A data assertions, ∆ ∈ DAstA, are defined by
the following grammars, where R ∈ RAddA (Par. 1); α,x ∈ LVar (Def. 2);
and Λ ∈ LAstA (Par. 9):

Θ ::=R 7→ ∆ root cell assertions

| α 7→ ∆ abstract cell assertions

∆ ::=false | ∆1 ⇒ ∆2 | ∃x. ∆ classical assertions

69

| x logical variable

| ∆1 �α ∆2 context hole application

| 3α context hole containment

| Λ library data assertions

The R 7→ ∆ assertion describes a logical heap comprising a single cell at
root address R containing data described by data assertion ∆. Analogously,
the α 7→ ∆ assertion describes a logical heap comprising a single cell at the
abstract address denoted by α containing data described by ∆.

For data assertions, classical assertions are standard. Other classical con-
nectives (¬,∧,∨,∀) can be derived in the usual way. The x denotes a logical
variable interpreted in the usual way by looking up its value in the logical
environment. The ∆1 �α ∆2 assertion (borrowed from context logic [7]) de-
scribes data satisfying ∆1 with its context hole denoted by α replaced by
data satisfying ∆2. The 3α assertion (read “somewhere α”) describes data
that contains the context hole α.

Recall that in order to specify the behaviour of library operations (e.g. the
list library in §2.1.3), we appeal to standard separation logic (SL) assertions
such as P ∗Q. On the other hand, observe that the SSL assertion language
(Def. 19) comprises assertions for describing single-cell abstract heaps only,
and does not include the standard SL assertions. As the underlying model
of SSL is a separation algebra (Def. 14), it is straightforward to extend the
SSL assertions with the standard SL assertions. However, we view SSL as
an add-on to SL and expect the SSL assertions to be incorporated into an
SL-based logic including the standard connectives such as P ∗Q.

Definition 20 (SSL satisfiability relations). Given the library logical values
LValA (Par. 7), the logical environments LEnv 〈LValA〉 (Def. 3), the logical
heaps LHeapA (Def. 14) and the logical data LDataA (Par. 4), the heap
assertion satisfiability relation, |=A: (LEnv 〈LValA〉×LHeapA)×HAstA, and
the data assertion satisfiability relation, ||=A: (LEnv 〈LValA〉 × LDataA) ×
DAstA, are defined as follows, where |||=A denotes the satisfiability relation
for A-specific data assertions (Par. 9):

Γ,h |=A α 7→ ∆ iff ∃x,d. Γ(α)=x ∧ dom(h)={x}
∧ h(x)=d ∧ Γ,d ||=A ∆

70

Γ,h |=A R 7→ ∆ iff ∃d. dom(h)={R} ∧ h(R)=d ∧ Γ,d ||=A ∆

Γ,d ||=A false never

Γ,d ||=A ∆1 ⇒ ∆2 iff Γ,d ||=A ∆1 ⇒ Γ,d ||=A ∆2

Γ,d ||=A ∃x. ∆ iff ∃v. Γ[x 7→ v],d ||=A ∆

Γ,d ||=A x iff d = Γ(x)

Γ,d ||=A ∆1 �α ∆2 iff ∃d1,d2,x. Γ(α)=x ∧ d=d1 �x d2

∧ Γ,d1 ||=A ∆1 ∧ Γ,d2 ||=A ∆2

Γ,d ||=A 3α iff Γ(α) ∈ addr(d)

Γ,d ||=A Λ iff Γ,d |||=A Λ

The list-specific data assertions comprise assertions to describe list data,
including empty lists, context holes (where the associated list data has been
split away, leaving behind a hole), singleton lists and composite lists.

SSL L Instance (Parameter 9)

Definition 21 (List data assertions). The set of data assertions for
lists, Λ ∈ LAstL, is defined by the following grammar, where ∆1,∆2 ∈
DAstL (Def. 19) and α,n ∈ LVar (Def. 2):

Λ ::= [] | α | [n] | ∆1++∆2

Given the logical values for lists LValL (Def. 17) and the logical en-
vironments LEnv 〈LValL〉 (Def. 3), the satisfiability relation for list-
specific data assertions, |||=L: (LEnv 〈LValL〉 × LDataL) × LAstL, is
defined as follows, where Γ ∈ LEnv 〈LValL〉, l ∈ LDataL (Def. 10),
n ∈ LElem (Def. 5), AAdd denotes the set of abstract addresses
(Def. 8) and ||=L denotes the list data satisfiability relation (Def. 20):

Γ, l |||=L [] iff l = []

Γ, l |||=L α iff Γ(α)=l ∧ l ∈ AAdd

Γ, l |||=L [n] iff ∃n. Γ(n)=n ∧ l=[n]

Γ, l |||=L ∆1++∆2 iff ∃l1, l2. l=l1++l2 ∧ Γ, l1 ||=L ∆1 ∧ Γ, l2 ||=L ∆2

71

We write [n1, . . . ,nk] as a shorthand for [n1]++ . . .++[nk].
Recall that in order to specify the behaviour of library operations (e.g. the

list library in §2.1.3), we appeal to an abstract predicate, vars(. . .), describ-
ing the values associated with program variables. However, the SSL asser-
tion language (Def. 19) does not include assertions for describing a variable
store. As the underlying model of SSL is a separation algebra (Def. 14), it
is straightforward to extend the SSL model to incorporate a variable store
(based on e.g. the variables-as-resource model [5]), and accordingly include
assertions for describing the variable store.
In order to use the axiomatic specification of a library for client-side rea-

soning, the specification must ideally be impartial to the choice of client
programming language. That is, since the library operations may be called
by different client programs written in different programming languages, the
specification must be agnostic to the variable store model in the client pro-
gramming language. However, explicit modelling of the variable store as
described above makes certain assumptions about the store model in the
client programming language, and thus limits the usability of the specifi-
cation. For instance, unlike most languages where program variables are
tracked in a dedicated stack, in JavaScript the variable store is emulated
in the heap. As such, modelling the variable store as a stack departs from
the JavaScript model, and consequently our library specifications cannot be
used to reason about client programs written in JavaScript.
To remedy this, we leave the choice of the client programming language

open, so long as the client provides an accompanying SL-based program logic
in order reason about its programs. In other words, since we expect SSL to
be incorporated into an SL-based logic as an add-on, we further expect this
SL-based logic to provide assertions describing the underlying variable store.
In what follows, we demonstrate how to extend this SL-based program logic
in order to enable client reasoning for library A.

3.2. The PLogicA Reasoning Framework

Given an abstract library A, we show how to reason about its client pro-
grams in an arbitrary programming language with an SL-based program
logic. More concretely, given a programming language PL, with an SL-based
program logic PLogic, we demonstrate how to extend PLogic to PLogicA to

72

reason about the client programs of A written in PL, provided that PLogic

meets certain assumptions.
To demonstrate our techniques better, we present two instances of our

methodology. The first instance, WLogic, is due to Wright in his thesis [60]
where he illustrates how to reason about SSL client programs written in a
simple while language by extending the program logic of the Views frame-
work [14]. We use WLogic in §4 in order to reason about the client programs
of a tree library. In the second instance (§5), we show how to reason about
the JavaScript client programs of the DOM (Document Object Model) li-
brary, by extending the SL-based JavaScript program logic of [21].
As described above, in order to extend PLogic to PLogicA, we assume

that PLogic meets certain assumptions. We delineate these assumptions
in solid boxes labelled “PLogic Parameter”. To provide the reader with
a clearer account of our extension methodology, we follow each PLogic pa-
rameter with its corresponding instantiation for WLogic, enclosed in dashed
boxes labelled “WLogic Instance (Parameter X)” where X is a reference to
the corresponding PLogic parameter.
Although we demonstrate how to extend PLogic with a single library A,

the approach described here may be used to extend PLogic with multiple
libraries. This can be done by extending PLogic with one library at a
time, e.g. first extending PLogic to PLogicA, then extending PLogicA to
PLogicAB and so forth.
In what follows, we visit the various components of PLogic, stipulate the

conditions they must meet, and describe how we extend them in PLogicA

to enable client reasoning for library A.

Program values We assume a set of PL program values describing the
set of values that may be observed via program variables. In order to reason
about the client programs of A, in PLogicA we extend the set of PL program
value with those of library A in PValA (Par. 3).

PLogic Parameter

Parameter 10 (PL program values). Assume a set of PL program
values v ∈ PLPVal.

73

Definition 22 (PLA program values). Given the set of library program
values PValA (Par. 3), the set of PLA program values is v ∈ PLPValA ,

PLPVal ∪ PValA.

WL program values The set of program values for WL comprises inte-
ger values, boolean values and the null location.

WLogic Instance (Parameter 10)

Definition 23 (WL program values). The set of WL program values
is WPVal , Z ∪ {true, false, null}.

Example 1 (WLL program values). Given the list program values PValL

(Def. 6) and the WL program values WPVal (Def. 23), the WLL program
values are WPValL ,WPVal ∪ PValL.

Program states Recall that the interaction between the programs writ-
ten in PL and a library A are carried out via program variables. Therefore,
a PL program state must embody a variable store representation in the PL

language. Furthermore, the representation of the variable store must be
parametric in the choice of the values associated with program variables.
This is to ensure that we can extend the set of possible program values with
those of library A so that the PL program variables may record A-specific
values. We thus assume a set of PL program states PState 〈V〉, parametric
in the choice of program values V ⊇ PLPVal (Par. 10), denoting a generic
extension of PL program values. To incorporate the PL program states with
those of library A, in PLA we instantiate the PL program states with PLA

program values as PState 〈PLPValA〉, and further extend the states to incor-
porate abstract program heaps (Def. 7). That is, we define a program state
to be a pair, (s, h), comprising a PL program state s ∈ PState 〈PLPValA〉
and an abstract program heap h ∈ PHeapA.

74

PLogic Parameter

Parameter 11 (PL program states). Given the set of PL program
values PLPVal (Par. 10) and a generic extension of PL program values
V ⊇ PLPVal, assume a set of parametric program states PState 〈V〉.
Assume that the set of PL program states is PState 〈PLPVal〉.

Definition 24 (PLA program states). Given the set of PLA program values
PLPValA (Def. 22), the set of parametric program states PState 〈.〉 (Par.
11) and the set of abstract program heaps PHeapA (Def. 7), the set of PLA

program states is: w ∈ PLPStatesA , PState 〈PLPValA〉 × PHeapA.

WL program states The WL program states comprise a designated fault
state �, as well as pairs of the form (σ, h) where σ denotes a variable stack
and h denotes a heap. A variable stack is based on the variable-as-resource
model introduced by Bornat, Calcagno and Yang in [5]. The variables-as-
resource model treats program variables as (spatial) resource, much like heap
cells. This removes the need for the side-condition on the frame and parallel
composition rules. A variable stack is a function mapping program variables
onto program values. Similarly, a heap is a function mapping addresses (in
N+) onto program values. In order to enable client reasoning, variable stacks
are parametric in the choice of program values (the values in their range)
and may be extended with library values. That is, since program variables
are the means of interaction between the client programming language and
the library, we allow their values to extend beyond WL program values to
include library values. On the other hand, unlike variable stacks, heaps are
not parametric in the choice of program values. In other words, we do not
allow the underlying memory to have pointers into the library and variable
stacks are the sole point of interaction between the client and the library.

WLogic Instance (Parameter 11)

Definition 25 (WL program states). Let V ⊇ WPVal denote a
generic extension of WL program values (Def. 23).

75

The set of parametric variable stacks is:

σ ∈ Stack 〈V〉 , PVar
fin
⇀ V

The set of heaps is h ∈ Heap , N+ fin
⇀ WPVal.

The set of WL parametric program states is:

WPState 〈V〉 , (Stack 〈V〉 × Heap)] {�}

The set of WL program states is:

s ∈WPState ,WPState 〈WPVal〉

Example 2 (WLL program states). Given the WLL program values WPValL

(Example 1), the list program heaps PHeapL (Def. 7) and the parametric
WL program states WPState 〈.〉 (Def. 25), the WLL program states are:

WPStateL ,WPState 〈WPValL〉 × PHeapL

Programming language We assume the PL programming language to
be defined by an inductive grammar comprising a set of primitive operations
(e.g. variable assignment in PL) in PrimPLOp, as well as a set of composite
operations (e.g. sequential composition ;) in Op 〈O〉, parametric in the choice
of primitive operations used as the “building blocks” of composite operations.
That is, for a generic extension of primitive operations, O ⊇ PrimPLOp, we
assume Op 〈O〉 to define the set of operations with its “building blocks”
(i.e. the base cases in the inductive grammar) drawn from O. In PLA we ex-
tend the primitive operations of PL with those of atomic library operations
in OpA (Par. 6); that is, PrimPLOpA , PrimPLOp]OpA. We then instanti-
ate the parametric composite operations to take into account the extended
primitive operation set (i.e. inhabit the Op 〈PrimPLOpA〉 set).

76

PLogic Parameter

Parameter 12 (PL operations). Assume a set of primitive operations
PrimPLOp.
Given a generic extension of primitive operations O ⊇ PrimPLOp,
assume a set of parametric operations Op 〈O〉 such that O ⊆ Op 〈O〉.
Assume that the set of PL operations is C ∈ PLOp , Op 〈PrimPLOp〉.

Definition 26 (PLogicA operations). Given the primitive PL operations
PrimPLOp (Par. 12) and the atomic library operations OpA (Par. 6), the set
of primitive PLA operations is PrimPLOpA , PrimPLOp]OpA.
The set of PLA operations is C ∈ PLOpA , Op 〈PrimPLOpA〉.

WL programming language The programming language of WL is a
simple while language and consists of i) heap operations; ii) variable stack
operations; and iii) standard inductive programming constructs. The heap
operations comprise memory allocation and deallocation (x = alloc() and
free(x)), cell dereference (x = [y]) and cell update ([x] = y). The stack
operations comprise variable assignment (x = e). The inductive constructs
comprise skip, scoped variable declaration (var x in {C}), sequential com-
position (;), parallel composition (||), conditional loop (while (b) {C}), and
conditional choice (if (b) then {C} else {C’}). As per the stipulations de-
lineated in Par. 12, the WL operations are to be categorised as either
primitive or composite. Moreover, as we demonstrate shortly, while the
semantics and proof rules of primitive operations must not depend on the
library extension (i.e. not refer to the abstract heaps of the library), the
semantics and proof rules of composite operations may be lifted to ac-
count for the extension as required. Observe that neither stack nor heap
operations depend on the abstract program heaps of the library. In other
words, the only way to manipulate the abstract program heaps is either
via library operations, or the inductive constructs built from library oper-
ations. As such, we declare both stack and heap operations as primitive,
while categorising the inductive constructs as composite so that their se-
mantics and proof rules are lifted accordingly upon extension with library
operations.

77

WLogic Instance (Parameter 12)

Definition 27 (WL operations). The set of WL program expressions,
e ∈ WExp, is defined by the following grammar, where x ∈ PVar

(Def. 1) and v ∈WPVal (Def. 23):

e ::= v | x

Let V ⊇WPVal denote a generic extension of WL program values.
The WL parametric program expression evaluation function, (|.|)(.) :

WExp× Stack 〈V〉⇀ V, is defined inductively over the structure of
program expressions as follows:

(|v|)σ , v (|x|)σ ,

σ(x) if x ∈ dom(σ)

undefined otherwise

The set of WL boolean expressions, b ∈ WBExp, is defined by the
following grammar, where e ∈WExp:

b ::= e | !b | b1&&b2 | b1 = b2

The WL parametric boolean expression evaluation function, 〈|.|〉(.) :

WBExp × Stack 〈V〉 ⇀ {true, false}, is defined inductively over the
structure of program expressions as follows:

〈|e|〉σ ,

(|e|)σ if (|e|)σ ∈ {true, false}

undefined otherwise

〈|!b|〉σ ,

¬ 〈|b|〉
σ if 〈|b|〉σ ∈ {true, false}

undefined otherwise

〈|b1&&b2|〉σ ,

〈|b1|〉σ ∧ 〈|b1|〉σ if 〈|b1|〉σ , 〈|b2|〉σ ∈ {true, false}

undefined otherwise

78

〈|b1 = b2|〉σ ,

(|b1|)σ = (|b2|)σ if b1, b2 ∈WExp

and (|b1|)σ , (|b2|)σ 6= undefined

(|b1|)σ = 〈|b2|〉σ if b1 ∈WExp

and (|b1|)σ , 〈|b2|〉σ 6= undefined

〈|b1|〉σ = (|b2|)σ if b2 ∈WExp

and 〈|b1|〉σ , (|b2|)σ 6= undefined

〈|b1|〉σ = 〈|b2|〉σ if 〈|b1|〉σ , 〈|b2|〉σ 6= undefined

undefined otherwise

The set of primitive WLogic operations, PrimWOp, is defined by
the following grammar:

PrimWOp 3 Cw ::= x = alloc() | free(x) | x = [y] | [x] = y | x = e

Given a generic extension of primitive WL operations O ⊇
PrimWOp, the WL parametric operations, WOp 〈O〉, is defined by
the following grammar, where o ∈ O:

WOp 〈O〉 3 C ::= o | skip | var x in {C} | C; C’ | C||C’
| if (b) then {C} else {C’} | while (b) {C}

The set of WLogic operations is WOp ,WOp 〈PrimWOp〉.

Example 3 (WLL operations). Given the list library operations OpL

(Def. 16) and the WL primitive operations PrimWOp (Def. 27), the set of
WLL primitive operations is PrimWOpL , PrimWOp ∪OpL.
Given the WL parametric operations WOp 〈.〉 (Def. 27), the set of WLL

operations is WOpL ,WOp 〈PrimWOpL〉

Semantics We require PL to define the semantics of its operations by
associating each PL operation with a state transformer. A state trans-
former is a function describing how a program state may be manipulated
by the corresponding operation. As we demonstrate shortly for WL, it is
straightforward to redefine the operational semantics of a language (both
small-step and big-step) using state transformers. As before, we require

79

the state transformers to follow the structure of primitive and composite
PL operations. For PLA, we modify the low-level semantics of PL and
redefine it in terms of the extended program states incorporating abstract
program heaps. We further extend the semantics to incorporate the op-
erations of library A. While it is possible for a library to describe the
low-level semantics of its operations, the behaviour of library operations
is often described axiomatically at a high-level. The abstract specification
of library operations is then justified with respect to their implementation
rather than their low-level semantics. As such, when this is the case it
seems unsuitable to require the invention of a low-level semantics for the
library. Therefore, we declare the low-level semantics of library A oper-
ations as an optional parameter. As we demonstrate shortly, when no
low-level semantics is provided, we describe the semantics of library A op-
erations denotationally via their high-level axiomatic semantics (Par. 18).
We thus delay the formulation of the low-level library semantics until we
present its axiomatic semantics.

PLogic Parameter

Parameter 13 (PL semantics). Let V ⊇ PLPVal denote a generic
extension of PL program values (Par. 10).
Given the set of primitive PL operations PrimPLOp (Par. 12),
assume a primitive semantics function, 〈|.|〉pl : PrimPLOp →
PState 〈V〉 → P (PState 〈V〉), that associates each primitive op-
eration in PrimPLOp with a state transformer.
Given the parametric PL program states PState 〈V〉 (Par. 11), let
S , PState 〈V〉×C denote a generic extension of PL program states,
comprising parametric PL program states, as well as library program
states captured by C. Given a generic extension of primitive PL

operations O ⊇ PrimPLOp (Par. 12), assume a parametric semantics
function,

sem(.) :
(
O→ S→ P (S)

)
→ Op 〈O〉 → S→ P (S)

that given a semantics function f : O → S → P (S) for primitive
operations in O, it associates each operation in Op 〈O〉 with a state

80

transformer, provided that for all o ∈ O:

sem(f)(o) , f(o)

Assume that the PL semantics function, [[.]]pl : PLOp →
PLPStates→ P (PLPStates), is defined as follows:

[[.]]pl , sem(〈|.|〉pl)

Definition 28 (PLA semantics). Given the PL primitive semantics function
〈|.|〉pl (Par. 13) and the library semantics function 〈|.|〉A (Par. 20), the
PLA primitive semantics function, 〈|.|〉plA : PrimPLOpA → PLPStatesA →
P (PLPStatesA), is defined as follows, where CPL ∈ PrimPLOp, CA ∈ OpA

and (s, h) ∈ PLPStatesA:

〈|CPL|〉plA (s, h) , {(s′, h) | s′ ∈ 〈|CPL|〉pl (s)}

〈|CA|〉plA (s, h) , 〈|CA|〉A (s, h)

Given the PL parametric semantics function sem(.) (Par. 13), the PLA

semantics function, [[.]]plA : PLOpA → PLPStatesA → P (PLPStatesA), is
defined as follows:

[[.]]plA , sem(〈|.|〉plA)

WL semantics As stipulated by Par. 13, we define a primitive semantics
function associating each primitive WL operation in PrimWOp with a state
transformer. We then define a parametric semantics function that given a
generic extension of WL primitive operations O ⊇ PrimWOp and a seman-
tics function for the primitive operations in O, it associates each operation
in Op 〈O〉 with a state transformer. To do this, we define a small-step
transition system, →(.), capturing the small-step (structural) operational
semantics of the operations in Op 〈O〉. That is, given a primitive semantics
function f describing the semantics of the primitive operations in O, then
→f produces a transition system describing the small-step semantics of
the operations in Op 〈O〉. Using the small-step transition system →f , we
define a big-step transition system ;f , capturing the terminating traces,

81

i.e. those ending with skip. The semantics of an operation is then defined
via the big-step transition system.
Recall that scoped variable declaration, var x in {C}, defines a local

variable x for the duration of C (i.e. scoped in C). As the current scope
may already contain a variable named x, upon executing var x in {C}

we i) extend the current stack with a fresh variable named z; ii) substitute
all occurrences of x in C with z; and iii) remove z from the stack upon
termination of C. To describe the small-step semantics of var x in {C},
we appeal to an auxiliary operation, rem(z), describing the removal of z

from the stack upon termination of C as described above.

WLogic Instance (Parameter 13)

Definition 29 (WLogic semantics). Let V ⊇ WPVal denote a
generic extension of WL program values (Def. 23).
The primitive WL semantics function, 〈|.|〉wl : PrimWOp →
PState 〈V〉 → P (PState 〈V〉), is defined over the structure of primi-
tive operations as follows, where given a function g, g[a 7→ b] denotes
a function that behaves as g, except that a is mapped to b:

〈|x = alloc()|〉wl (σ, h) ,

(σ[x 7→ i], h] [i 7→ v])

x ∈ dom(σ)

∧ i ∈ N+\dom(h)

∧ v ∈WPVal

∪
{
� x 6∈ dom(σ)

}
〈|free(x)|〉wl (σ, h) ,

{
(σ, h′) σ(x)=i ∧ h=h′] [i 7→−]

}
∪
{
� x 6∈ dom(σ) ∨ σ(x) 6∈ dom(h)

}
〈|x = [y]|〉wl (σ, h) ,

{
(σ[x 7→h(i)], h) σ(y)=i ∧ i ∈ dom(h)

}
∪

{
�
x 6∈ dom(σ) ∨ y 6∈ dom(σ)

∨σ(y) 6∈ dom(h)

}

〈|[x] = y|〉wl (σ, h) ,

{
(σ, h[i 7→σ(y)])

σ(x)=i ∧ i ∈ dom(h)

∧σ(y) ∈WPVal

}

∪

{
�
x 6∈ dom(σ) ∨ y 6∈ dom(σ)

∨σ(x) 6∈ dom(h) ∨ σ(y) 6∈WPVal

}

82

s 6=(�,−) s′ ∈ f(o)(s)

(o, s)→f (skip, s′)

σ′=σ] [z 7→ v] v ∈ V

(var x in {C}, (σ, h), c))→f (C[z/x]; rem(z), ((σ′, h), c))
fresh(z)

σ=σ′] [x 7→ v]

(rem(x), ((σ, h), c))→f (skip, ((σ′, h), c))

s=((σ, h), c) x 6∈ dom(σ)

(rem(x), s)→f (skip, (�, c))

(C1, s)→f (C′1, s
′)

(C1; C2, s)→f (C′1; C2, s
′)

s 6=(�,−)

(skip; C, s)→f (C, s)

(C1, s)→f (C′1, s
′)

(C1||C2, s)→f (C′1||C2, s
′)

s6=(�,−)

(skip||C, s)→f (C, s)

(C2, s)→f (C′2, s
′)

(C1||C2, s)→f (C1||C′2, s
′)

s6=(�,−)

(C||skip, s)→f (C, s)

s=((σ, h), c) 〈|b|〉σ=true
(if(b)then{C1}else{C2}, s)→f (C1, s)

s=((σ, h), c) 〈|b|〉σ=false
(if(b)then{C1}else{C2}, s)→f (C2, s)

s=((σ, h), c) 〈|b|〉σundefined
(if (b) then {C1} else {C2}, s)→f (skip, (�, c))

s=((σ, h), c) 〈|b|〉σ=true(
while (b) {C}, s

)
→f

(
C; while (b) {C}, s

)
s=((σ, h), c) 〈|b|〉σ=false(

while (b) {C}, s
)
→f

(
skip, s

) s=((σ, h), c) 〈|b|〉σundefined(
while (b) {a}, s

)
→f (skip, (�, c))

Figure 3.1.: The WL parametric small-step transitions

83

〈|x = e|〉wl (σ, h) ,

{
(σ[x 7→ v], h)

(|e|)σ=v ∧ v ∈ V

∧ x ∈ dom(σ)

}
∪
{
� x 6∈ dom(σ) ∨ (|e|)σ undefined

}
Given the parametric WL program states WPState 〈V〉 (Def. 25),
let S ,WPState 〈V〉×C denote a generic extension of WL program
states, comprising parametric WL program states, as well as library
program states captured by C. Let O ⊇ PrimWOp denote a generic
extension of primitive WL operations (Def. 27) and let

WOp 〈O〉† ,WOp
〈
O]

{
rem(x) x ∈ PVar

}〉
The WL parametric small-step transition system,

→(.):
(
O→ S→ P (S)

)
→ P

(
(WOp 〈O〉† × S)× (WOp 〈O〉† × S)

)
is defined by the rules in Fig. 3.1 for o ∈ O, f : O → S → P (S),
c ∈ C, and s ∈ S.
The WL parametric big-step transition system, ;(.):

(
O → S →

P (S)
)
→ P

(
(WOp 〈O〉† × S)× S

)
, is defined as follows, for f : O→

S→ P (S), c ∈ C, and s ∈ S:

(skip, s) ;f s

(o, s)→f (o′, (�, c))
(o, s) ;f (�, c)

(o, s)→f (o′′, s′′) (o′′, s′′) ;f s
′

(o, s) ;f s
′

The WL parametric semantics function,

sem(.) :
(
O→ S→ P (S)

)
→WOp 〈O〉 → S→ P (S)

is defined as follows, for all f : O → S → P (S), o ∈ WOp 〈O〉 and
s ∈ S:

sem(f)(o)(s) , {s′ | (o, s) ;f s
′}

Example 4 (WLL semantics). Given the WL primitive semantics func-

84

tion 〈|.|〉wl (Def. 29) and the list semantics function 〈|.|〉L (Def. 42), the
WLL primitive semantics function, 〈|.|〉wlL : PrimWOpL → WPStateL →
P (WPStateL), is defined as follows, for all Cwl ∈ PrimWOp (Def. 27),
CL ∈ OpL (Def. 16), and (s, h) ∈WPStateL (Example 2):

〈|Cwl|〉wlL (s, h) , {(s′, h) | s′ ∈ 〈|Cwl|〉wl (s)}

〈|CL|〉wlL (s, h) , 〈|CL|〉L (s, h)

Given the WL program states WPStateL (Example 2), the WLL operations
WOpL (Example 3) and the WL parametric semantics function sem(.)

(Def. 29), the WLL semantics function, [[.]]wlL : WOpL → WPStateL →
P (WPStateL), is defined as follows:

[[.]]wlL , sem(〈|.|〉wlL)

Logical values We assume a set of PLogic logical values denoting those
values that may be associated with logical variables. In PLogicA we ex-
tend the set of PLogic logical values with those of library A in LValA

(Par. 7).

PLogic Parameter

Parameter 14 (PLogic logical values). Assume a set of PLogic

logical values v ∈ PLLVal.

Definition 30 (PLogicA logical values). Given the set of PLogic logical
values PLLVal (Par. 14) and the set of library logical values LValA (Par.
7), the set of PLogicA logical values is v ∈ PLLValA , PLLVal ∪ LValA.

WLogic logical values For WLogic, the set of logical values is the
extension of WL program values with lists.

WLogic Instance (Parameter 14)

Definition 31 (WLogic logical values). Given the set of WL pro-
gram values WPVal (Def. 23), the set of WLogic logical values is

85

WLVal ,WPVal ∪ List〈WLVal〉.

Example 5 (WLogicL logical values). Given the set of list logical values
LValL (Def. 17) and the set of WLogic logical values WLVal (Def. 31),
the set of WLogicL logical values is WLValL ,WLVal ∪ LValL.

Logical states Recall that the interaction between the programs written
in PL and a library A are carried out via program variables. As such, we
stipulated that PL program states embody a variable store parametric in
the choice of program values (see Par. 11) in order to allow for the exten-
sion of the set of program values with those of the library upon integration.
Analogously, we require that a PLogic logical state embody a high-level
representation of the PL variable store parametric in the choice of program
values V ⊇ PLPVal, denoting a generic extension of PL program values.
As before, this is to allow for the extension of program values (i.e. the
values associated with program variables) with those of the library to en-
able client reasoning for library A. We further require the logical states of
PLogic to be modelled as a parametric partial commutative monoid of the
form (LState 〈V〉 , ◦〈V〉,Unit 〈V〉), where LState 〈V〉 denotes the paramet-
ric set of states, the ◦〈V〉 denotes the parametric state composition, and
Unit 〈V〉 denotes the parametric unit set.
In order to reason about the A operations, in PLogicA we instantiate

the PLogic states with PLogicA program values as LState 〈PLPValA〉,
and further extend the states to incorporate abstract heaps. That is, we
combine the partial commutative monoid of PLogic states with the sep-
aration algebra of abstract heaps (Def. 14) and define a program state
to be a pair, (s,h), comprising a PL state s ∈ LState 〈PLPValA〉 and an
abstract heap h ∈ LHeapA.

PLogic Parameter

Parameter 15 (PLogic partial commutative monoid). Given the
set of PL program values (Par. 10) and a generic extension of
PL program values V ⊇ PLPVal, assume a set of parametric
PLogic logical states LState 〈V〉. Assume a parametric partial com-

86

mutative monoid, PLPCM 〈V〉 , (LState 〈V〉 , ◦〈V〉,Unit 〈V〉), with
◦〈V〉 : LState 〈V〉 × LState 〈V〉 ⇀ LState 〈V〉 and Unit 〈V〉 ∈
P (LState 〈V〉).
Assume that the PLogic partial commutative monoid is:

(PLLState, ◦,PLUnit) , PLPCM 〈PLPVal〉

Definition 32 (PLogicA partial commutative monoid). Given the set of
PLA program values PLPValA (Def. 22) and the separation algebra of
abstract logical heaps (LHeapA, •,0), the set of PLogicA logical states is:
w ∈ PLLStateA , LState 〈PLPValA〉 × LHeapA. The PLogicA logical
state composition, + : PLLStateA × PLLStateA ⇀ PLLStateA, is defined
component-wise as + , (◦〈PLPValA〉, •) and is not defined if composition

on either component is undefined. The PLogicA unit set is PLUnitA ,

{(s,0) | s ∈ Unit 〈PLPValA〉}. The PLogicA partial commutative monoid
is:

PLPCMA , (PLLStateA,+,PLUnitA)

WLogic logical states The WLogic logical states are those of WL

program states excluding the fault state. That is, a WLogic logical state
is a pair comprising a variable stack and a heap. WLogic state compo-
sition is defined component-wise as (],]) where] denotes the standard
disjoint function union. The empty WLogic state is defined as a pair com-
prising two functions with empty domains. As before, variable stacks are
parametric in the choice of program values whereas heaps are not. That
is, variable stacks are the sole point of interaction between the client and
the library and hence we do not allow the underlying heap (memory) to
have pointers into the library. Instead, we allow the values of program
variables to extend beyond WL program values to include library values.

87

WLogic Instance (Parameter 15)

Definition 33 (WLogic partial commutative monoid). Let V ⊇
WPVal denote a generic extension of WL program values (Def. 23).
Given the set of WL parametric variable stacks Stack 〈V〉 and the
set of WL heaps Heap (Def. 25), the set of parametric WLogic

logical states is s ∈WLState 〈V〉 , Stack 〈V〉 × Heap.
The parametric WLogic state composition, ◦〈V〉 : WLState 〈V〉 ×
WLState 〈V〉⇀ WLState 〈V〉, is defined component-wise as ◦〈V〉 ,
(],]), where] denotes the standard disjoint function union,
and ◦〈V〉 is not defined when composition on either component
is undefined. The parametric WLogic unit set, WUnit 〈V〉 ∈
P (WLState 〈V〉), is WUnit 〈V〉 , {(0,0)}, where 0 denotes a func-
tion with an empty domain. The parametric WLogic partial com-
mutative monoid is WPCM 〈V〉 , (WLState 〈V〉 , ◦〈V〉,WUnit 〈V〉).
The WLogic partial commutative monoid is
(WLState, ◦W,WUnit) ,WPCM 〈WPVal〉.

Example 6 (WLogicL logical states). Given the WLL program values
WPValL (Example 1), the list logical heaps LHeapL (Def. 14) and the
parametric WLogic program states WLState 〈.〉 (Def. 25), the WLogicL

logical states are:

WLStateL ,WLState 〈WPValL〉 × LHeapL

Given the parametric WLogic composition ◦〈.〉 (Def. 25) and the list logical
heap composition •L (Def. 14), the WLogicL logical state composition is
defined component-wise as + , (◦〈WPValL〉, •L), and is not defined if the
composition on either component is undefined.

Given the parametric WLogic unit set WUnit 〈.〉 (Def. 25) and the list
unit element 0L (Def. 14), the WLogicL unit set is:

WUnitL , {(s,0L) | s ∈WUnit 〈WPValL〉}

The WLogicL partial commutative monoid is: (WLStateL,+,WUnitL).

88

Logical expressions We require PLogic to define a set of logical expres-
sions that includes logical variables and values. We assume the PLogic

logical expressions to be defined by an inductive grammar comprising a set
of primitive logical expressions in PrimPLLExp, as well as a set of com-
posite logical expressions in LExp 〈E〉, parametric in the choice of primitive
expressions used as the “building blocks” of logical expressions. We further
require PLogic to define an evaluation function for logical expressions.
Logical expressions are often evaluated with respect to a logical environ-
ment (Def. 3). However, in order to evaluate the logical expressions,
PLogic may need additional information besides that provided by the log-
ical environment. For instance, as we demonstrate later in §5, the logical
expressions of the JavaScript program logic in [21] are evaluated with re-
spect to a logical environment and a scope chain. To capture this, we
require PLogic to define an evaluation environment which must comprise
a logical environment, and may include additional information required
for expression evaluation. In PLogicA we extend the primitive logical ex-
pressions of PLogic with those of the library (Par. 8), and instantiate
the parametric composite expressions with the extended primitive expres-
sions. Accordingly, we lift the expression evaluation function of PLogic to
PLogicA expressions.

PLogic Parameter

Parameter 16 (PLogic logical expressions). Let L ⊇ PLLVal de-
note a generic extension of PLogic logical values (Par. 7).
Assume a set of primitive logical expressions, e ∈ PrimPLLExp.
Let E ⊇ PrimPLLExp denote a generic extension of PLogic primi-
tive logical expressions.
Given the set of logical variables LVar (Def. 2), assume a set of para-
metric logical expressions LExp 〈E〉 such that LVar ∪ E ⊆ LExp 〈E〉.
Assume that the set of PLogic logical expressions is:

E ∈ PLLExp , LExp 〈PrimPLLExp〉

Given the set of logical environments Env 〈L〉 (Def. 3), assume a
parametric evaluation environment, Env 〈L〉 , LEnv 〈L〉 × B, com-

89

prising a parametric logical environment, as well as additional in-
formation captured by B.
Assume a primitive logical expression evaluation function, (|.|)(.)

pl :

PrimPLLExp× Env 〈PLLVal〉⇀ PLLVal.
Assume a generic evaluation function,

eval(.) : (E× Env 〈L〉⇀ L)→ (LExp 〈E〉 × Env 〈L〉⇀ L)

that given an evaluation function for primitive expressions in E,
it produces an evaluation function for expressions in LExp 〈E〉,
provided that for all e ∈ E, ε=(Γ, b) ∈ Env 〈L〉, x ∈ LVar and
fp ∈ E× Env 〈L〉⇀ L, it satisfies the following where f , eval(fp):

f(e, ε) = fp(e, ε) (|x|)(Γ,b)
pl =Γ(x)

Assume that the PLogic logical expression evaluation function, ||.||(.)pl :

PLLExp× Env 〈PLLVal〉⇀ PLLVal, is defined as follows:

||.||(.)pl , eval((|.|)(.)
pl)

Definition 34 (PLogicA logical expressions). Given the PLogic primitive
logical expressions PrimPLLExp (Par. 16) and the library logical expres-
sions LExpA (Par. 8), the set of PLogicA primitive logical expressions is
e ∈ PrimPLLExpA , PrimPLLExp ∪ LExpA.

The set of PLogicA logical expressions is defined as E ∈ PLLExpA ,

LExp 〈PrimPLLExpA〉.

Given the library expression evaluation function (|.|)(.)
A (Par. 8), the

PLogic parametric evaluation environment Env 〈L〉 and the primitive ex-
pression evaluation function (|.|)(.)

pl (Par. 16), the PLogicA primitive ex-
pression evaluation function, (|.|)(.)

plA : PrimPLLExpA × Env 〈PLLValA〉 ⇀
PLLValA, is defined inductively over the structure of PrimPLLExpA as
follows, for eA ∈ LExpA, epl ∈ PrimPLLExp and (Γ, b) ∈ Env 〈PLLValA〉,
where Γp , Γ↓PLLVal and Γa , Γ↓LValA (see Def. 3):

(|epl|)(Γ,b)
plA , (|epl|)(Γp,b)

pl (|eA|)
(Γ,b)
plA , (|eA|)Γa

A

90

Given the generic expression evaluation function eval(.) (Par. 16), the
logical expression evaluation function for PLogicA, ||.||

(.)
plA : PLLExpA ×

Env 〈PLLValA〉⇀ PLLValA, is defined as follows:

||.||(.)plA , eval((|.|)(.)
plA)

WLogic logical expressions The logical expressions of WLogic com-
prise logical variables and values, the empty list [], list cons written E1 : E2

and list concatenation written E1++E2.

WLogic Instance (Parameter 16)

Definition 35 (WLogic logical expressions). Given the set of log-
ical values WLVal (Def. 31), the set of WLogic primitive logical
expressions is e ∈ PrimWLExp ,WLVal.
Let PE ⊇ PrimWLExp denote a generic extension of WLogic prim-
itive logical expressions.
Given the set of logical variables LVar (Def. 2), the set of parametric
logical expressions LExp 〈PE〉 is defined by the following grammar,
where e ∈ PE and x ∈ LVar:

WLExp 〈E〉 3 E ::= e | x | E1:E2 | E1++E2

The set of WLogic logical expressions is WLExp ,

WLExp 〈PrimWLExp〉.
Given the set of logical values WLVal (Def. 31) and the set of logical
environments LEnv 〈WLVal〉 (Def. 3), the set of parametric WLogic

evaluation environments is Γ ∈ LEnv 〈WLVal〉.
Given an evaluation environment Γ ∈ LEnv 〈WLVal〉, the prim-
itive logical expression evaluation function, (|.|)(.)

wl : PrimWLExp ×
LEnv 〈WLVal〉 ⇀ WLVal, is defined inductively over the structure
of primitive expressions as:

(|v|)Γ
wl ,v

Given an extension of WLogic logical values L ⊇WLVal and an ex-
tension of WLogic primitive logical expressions PE ⊇ PrimWLExp,

91

the parametric evaluation function,

eval(.) : (PE× LEnv 〈L〉⇀ L)→ (LExp 〈PE〉 × LEnv 〈L〉⇀ L)

is defined as follows, for all e ∈ PE, Γ ∈ LEnv 〈L〉 and fp : PE ×
LEnv 〈L〉⇀ L where f , eval(fp):

f(e,Γ) , fp(e,Γ) f(x,Γ) , Γ(x)

f(E1 : E2,Γ) ,

v : L if f(E1,Γ)=v and f(E2,Γ)=L

and L ∈ List〈L〉

undefined otherwise

f(E1++E2,Γ) ,

L1++L2 if f(E1,Γ)=L1 and f(E2,Γ)=L2

and L1, L2 ∈ List〈L〉

undefined otherwise

The WLogic logical expression evaluation function, ||.||(.)wl : (WLExp×
LEnv 〈WLVal〉) ⇀ WLVal, is defined as follows:

||.||(.)wl , eval((|.|)(.)
wl)

Example 7 (WLogicL logical expressions). Given the logical expressions
for lists LExpL (Def. 18) and the WLogic primitive logical expressions
PrimWLExp (Def. 35), the WLogicL primitive expressions are:

PrimWLExpL , PrimWLExp ∪ LExpL

Given the WLogic parametric expressions WLExp 〈.〉 (Def. 35), the
WLogicL logical expressions are WLExpL ,WLExp 〈PrimWLExpL〉.
Given the WLogicL logical values WLValL (Example 5), the set of

logical environments LEnv 〈WLValL〉 (Def. 3), the WLogic primitive eval-
uation function (|.|)(.)

wl (Par. 35) and the list evaluation function (|.|)(.)
L (Par.

18), the WLogic primitive evaluation function, (|.|)(.)
wlL : PrimWLExpL ×

LEnv 〈WLValL〉⇀ WLValL, is defined follows, for all eL ∈ LExpL (Def. 18),

92

ewl ∈ PrimWLExp (Def. 35) and Γ ∈ LEnv 〈WLValL〉, where Γw ,

Γ↓WLVal and Γl , Γ↓LValL (see Def. 3):

(|ewl|)Γ
wlL , (|ewl|)Γw

wl (|eL|)Γ
wlL , (|eL|)Γl

L

Given the parametric WLogic evaluation function eval(.) (Par. 16), the
WLogicL evaluation function, ||.||(.)wlL:WLExpL×LEnv 〈WLValL〉⇀WLValL,
is defined as follows:

||.||(.)wlL , eval((|.|)(.)
wlL)

Assertions and their semantics We assume that the assertions of
PLogic, P ∈ PLAst, include: i) standard classical assertions (e.g. P ⇒ Q);
ii) standard boolean assertions (e.g. E1=E2); iii) standard SL assertions
(e.g. P ∗Q); and iv) assertions to describe the underlying PL-specific vari-
able store. We assume that the PLogic assertions are interpreted via a
satisfiability relation and that the classical, boolean and SL assertions have
their standard semantics. We require that the PLogic assertion language
be defined by an inductive grammar comprising primitive and composite
assertions. In PLogicA, we extend the primitive assertions of PLogic with
those of SSL assertions (Def. 19), and accordingly lift the satisfiability
relation to PLogicA assertions.

PLogic Parameter

Parameter 17 (PLogic assertions and their semantics). Assume a
set of PLogic primitive assertions p ∈ PrimPLAst.
Let A ⊇ PrimPLAst denote an extension of primitive PLogic asser-
tions. Let V ⊇ PLPVal denote an extension of PL program values
(Par. 10) and L ⊇ PLLVal denote an extension of PLogic logical
values (Par. 14). Let W , (LState 〈V〉 × D) denote an extension of
parametric PLogic logical states (Par. 15), comprising PLogic logi-
cal states in LState 〈V〉, as well as library logical states captured by
D. Let PE ⊇ PrimPLLExp denote an extension of PLogic logical
expressions and E , LExp 〈PE〉 (Par. 16).
Given the parametric evaluation environment Env 〈.〉 (Par. 16), as-
sume a primitive satisfaction relation, |=p⊆ (Env 〈L〉×LState 〈V〉)×

93

PrimPLAst.
Assume a set of parametric assertions, Ast 〈A,E〉, defined by the
following inductive grammar where a ∈ A, E1, E2 ∈ E, x1 · · · xn ∈
PVar, x,v1 · · ·vn ∈ LVar, and P,Q,∈ Ast 〈A,E〉:

Ast 〈A,E〉 3 P,Q ::= · · · | a | false | P ⇒ Q | ∃x. P
| E1 	 E2 where 	 ∈ {=, <}
| emp | P ∗Q | P −−∗ Q
| vars(xi : vii=1...n)

Given the set of PLogic logical expressions (Par. 16), assume that
the set of PLogic assertions is:

PLAst , Ast 〈PrimPLAst,PLLExp〉

Assume a parametric ordering on PLogic states, 4〈V〉⊆
LState 〈V〉 × LState 〈V〉.
Given the parametric evaluation environment Env 〈.〉 (Par. 16), as-
sume a generic satisfaction relation,

sat(.) :

P (W×W)

× (W×W ⇀ W)

×P (W)

×P ((Env 〈L〉×W)×A)

× (Env 〈L〉×E ⇀ L)

→ P ((Env 〈L〉×W)×Ast 〈A,E〉)

that given an ordering on states of W, a composition operator
on the states in W, a unit set for W, a satisfaction relation for
primitive assertions in A, and an expression evaluation function
for expressions in E, it produces a satisfaction relation for asser-
tions in Ast 〈A,E〉, with the proviso that for all Rord ∈ W ×W,
⊕ : (W×W ⇀ W), U ∈ P (W), Rp ∈ (Env 〈L〉 × W) × A,
f ∈ Env 〈L〉 × E ⇀ L, ε=(Γ, b) ∈ Env 〈L〉, x ∈ LVar, a ∈ A, w ∈W,
P,Q ∈ Ast 〈A,E〉, and E1, E2 ∈ E, it satisfies the following condi-

94

tions where R , sat(Rord ,⊕, U,Rp, f):

(ε, w) R a iff (ε, w) Rp a

(ε, w) R false never

(ε, w) R (P ⇒ Q) iff (ε, w) R P ⇒ ∃w′. (w,w′) ∈ Rord

∧ (ε, w′) R Q

((Γ, b), w) R (∃x. P) iff ∃x. ((Γ[x 7→ x], b), w) R P

(ε, w) R E1 	 E2 iff f(ε, E1)	 f(ε, E2)

(ε, w) R emp iff w ∈ U

(ε, w) R (P ∗Q) iff ∃w1, w2. w=w1⊕w2 ∧ (ε, w1) R P

∧ (ε, w2) R Q

(ε, w) R (P−−∗ Q) iff ∀w′.(ε, w′)RP ⇒
(
ε, (w+w′)

)
R Q

Given the (PLLState, ◦,PLUnit) PLogic partial commutative
monoid (Par. 15), and the PLogic expression evaluation func-
tion ||.||(.)pl (Par. 16), assume that the PLogic satisfaction relation,
|=pl:

(
(Env 〈PLLVal〉 × PLLState)× PLAst

)
, is:

|=pl, sat(4〈PLPVal〉, ◦,PLUnit, |=p, ||.||(.)pl)

The semantics of boolean and classical assertions (except ⇒) are stan-
dard. We generalise the semantics of ⇒ to incorporate an ordering relation
on the underlying states. For the standard semantics of ⇒, this ordering
is the identity relation. As we demonstrate shortly, we use this generali-
sation to incorporate the abstract (de)allocation relation on logical heaps
(Def. 15) into the semantics of ⇒. This is captured in Lemma 1 below.
The vars(xi : vii=1...n) describes a variable store in PL, where variables
x1 · · · xn have values v1 · · ·vn, respectively. The emp assertion describes
an empty logical state denoted by a unit element of the underlying monoid
(i.e. w ∈ U). The P ∗Q describes a state that can be split (via the compo-
sition operator ⊕ of the underlying monoid) into two substates satisfying
P and Q. The −−∗ connective is the right adjunct of ∗, i.e. P ∗(P−−∗Q)⇒ Q.
Informally, P−−∗Q describes subtracting P from Q (i.e. Q−P): a state that

95

satisfies P−−∗Q is one that is missing P , and when combined with P , it
satisfies Q. That is, a state w satisfies P −−∗ Q if and only if for any
state w′ satisfying P , the combined state w ⊕w′ satisfies Q. For a binary
operator 	, we write E1	̇E2 as a shorthand for E1 	 E2 ∧ emp.

Definition 36 (PLogicA assertions and their semantics). Given the set of
PLogic primitive assertions PrimPLAst (Par. 17) and the set of SSL heap
assertions Θ ∈ HAstA (Def. 19), the set of PLogicA primitive assertions is
PrimPLAstA , PrimPLAst ∪ HAstA.
Given the set of PLogic logical values PLLVal (Par. 14), the parametric

evaluation environment Env 〈.〉 (Par. 16), the PLogic primitive satisfac-
tion relation |=p (Par. 17), the set of library logical values LValA (Par.
7), the SSL satisfaction relation |=A (Def. 20) and the set of PLogicA

logical values PLLValA (Def. 30), the PLogicA primitive satisfaction rela-
tion, |=pA⊆

(
Env 〈PLLValA〉 × PLLStateA

)
× PrimPLAstA, is defined by

induction on the structure of PLogicA primitive assertion as follows, where
p ∈ PrimPLAst, Θ ∈ HAstA, Γp=Γ↓PLLVal and Γa=Γ↓LValA (Def. 3):

((Γ, b), (s,h)) |=pA p iff ((Γp, b), s) |=p p ∧ h=0

((Γ, b), (s,h)) |=pA Θ iff s ∈ PLUnit ∧ Γa,h |=A Θ

The set of PLogicA assertions is P ∈ PLAstA , Ast 〈PrimPLAstA〉.
Given the parametric 4〈.〉 relation on PLogic states (Par. 17) and the

abstract allocation relation ≈ on abstract heaps (Def. 15), the ordering on
PLogicA states, 4A⊆ PLLStateA×PLLStateA, is defined component-wise
as 4A, (4〈PLPValA〉,≈).
Given the PLogic partial commutative monoid (PLLStateA,+,PLUnitA)

in Def. 32, the primitive satisfaction relation |=pA and the expression eval-
uation function ||.||(.)plA (Def. 34), the satisfaction relation for PLogicA as-
sertions, |=plA: ((LEnv 〈PLLValA〉×B)×PLLStateA)×PLAstA, is defined
as follows:

|=plA , sat(4A,+,PLUnitA, |=pA, ||.||
(.)
plA)

The PLogicA assertions are interpreted as sets of PLogicA logical states
(Def. 32). As described above, classical and boolean assertions (except
⇒) are standard. The ⇒ integrates logical implication with the ordering
relation 4A, (4〈PLPValA〉,≈) on programs states. In particular, as stated

96

in Lemma 1, the semantics of ⇒ incorporates the abstract (de)allocation
relation ≈ on abstract heaps (Def. 15). The Π describes states of the form
(s,0) where s satisfies Π. Dually, the Θ describes states of the form (s,h)

where s is in the unit set and h satisfies Θ.

Lemma 1 (Abstract (de)allocation). For all α, β ∈ LVar (Def. 2) , ∆1,∆2 ∈
DAstA (Def. 19) and P,Q ∈ PLAstA (Def. 36):

α 7→ ∆1 �β ∆2 ⇒ ∃β. α 7→ ∆1 ∗ β 7→ ∆2 (3.1)

α 7→ (∆1 ∧3β) ∗ β 7→ ∆2 ⇒ α 7→ ∆1 �β ∆2 (3.2)

Proof. Follows immediately from the semantics of the assertions.

Parts (3.1) and (3.2) describe abstract allocation and deallocation, respec-
tively.

WLogic assertions and their semantics The assertions of WLogic

comprise i) the heap cell assertion x 7→ v; ii) variable stack assertions
comprising the variable cell assertion x⇀⇁ v, expression evaluation asser-
tion e↓v, and boolean expression filters btrue(b) and bfalse(b); and iii)
inductive assertions comprising the standard classical, boolean and sep-
aration logic assertions. WLogic assertions are interpreted over sets of
WLogic logical states, with the classical, boolean and SL assertions inter-
preted in the standard way. The x 7→ v assertion describes a single-cell
heap at address x with its value denoted by v. Similarly, the x⇀⇁ v as-
sertion describes a single-cell stack where variable x is associated with the
value denoted by v. The e↓v assertion states that in the current stack the
program expression e evaluates to the value denoted by v. Similarly, the
btrue(b) and bfalse(b) filters assert that in the current stack the boolean
expression b evaluates to true and false, respectively. We write bsafe(b) for
btrue(b) ∨ bfalse(b), to denote that b safely evaluates to a boolean value.
Similarly, we write vsafe(e) for ∃v. e↓v, to denote that the program ex-
pression e safely evaluates to a value.
As per Par. 12, the WLogic assertions are to be categorised as either prim-
itive or parametric. Moreover, while the semantics of primitive assertions
must not depend on the library extension (i.e. not refer to the abstract
logical heaps of the library), the semantics of composite assertions may

97

be lifted to account for the extension. Observe that neither of heap or
stack assertions depend on the library heaps and the only assertions that
may refer to the logical heaps of the library are SSL assertions and the
inductive assertions built from SSL assertions. As such, we declare the
heap and stack assertions as primitive, while categorising the inductive
assertions as composite.

WLogic Instance (Parameter 17)

Definition 37 (WLogic assertions and their semantics). The set
of primitive WLogic assertions p ∈ PrimWAst, is defined by the
following grammar, where x,v ∈ LVar (Def. 2), x ∈ PVar (Def. 1),
e ∈WExp and b ∈WBExp (Def. 27):

p ::= x 7→ v | x⇀⇁v | e↓v | btrue(b) | bfalse(b)

Let V ⊇ WPVal denote a generic extension of WLogic program
values (Def. 23) and L ⊇ WLVal denote a generic extension of
WLogic logical values (Def. 31).
Given a logical environment Γ ∈ LEnv 〈L〉 (Def. 3), the primitive
satisfaction relation, |=p: (LEnv 〈L〉 ×WLState 〈V〉)×PrimWAst, is
defined as follows, where Γ ∈ LEnv 〈L〉, (σ, h) ∈ WLState 〈V〉 and
0 denotes a function with an empty domain:

(Γ, (σ, h)) |=p x 7→ v iff σ=0 ∧ ∃x, v. Γ(x)=x ∧ Γ(v)=v

∧ dom(h)={x} ∧ h(x)=v

(Γ, (σ, h)) |=p x⇀⇁v iff h=0 ∧ ∃v. Γ(v)=v

∧ dom(σ)={x} ∧ σ(x)=v

(Γ, (σ, h)) |=p e↓v iff ∃v. Γ(v)=v ∧ (|e|)σ =v

(Γ, (σ, h)) |=p btrue(b) iff 〈|b|〉σ = true

(Γ, (σ, h)) |=p bfalse(b) iff 〈|b|〉σ = false

Let PE ⊇ PrimWLExp denote a generic extension of WLogic prim-
itive logical expressions with E , WLExp 〈PE〉 (Def. 35), and let
A ⊇ PrimWAst denote a generic extension of primitive WLogic

assertions.

98

The set of WLogic parametric assertions, WAst 〈A,E〉, is defined
as follows, where a ∈ A, E1, E2 ∈ E, 	 ∈ {=, <} and x ∈ LVar

(Def. 2):

Ast 〈A,E〉 3 P,Q ::= a | false | P ⇒ Q | ∃x. P | E1 	 E2

| emp | P ∗Q | P −−∗ Q

The WLogic assertion set is P ∈ WAst ,

WAst 〈PrimWAst,WLExp〉. The parametric ordering relation
on WLState is id 〈V〉 ⊆ WLState 〈V〉 × WLState 〈V〉, where id

denotes the identity relation.
Let W , (WLState 〈V〉 × D) denote a generic extension of para-
metric WLogic logical states (Def. 33), comprising WLogic logical
states in WLState 〈V〉, as well as library logical states captured by
D. The parametric satisfaction relation,

sat(.) :

P (W×W)

× (W×W ⇀ W)

×P (W)

×P ((LEnv 〈L〉×W)×A)

× (LEnv 〈L〉×E ⇀ L)

→P ((LEnv 〈L〉×W)×Ast 〈A,E〉)

is defined as follows for Rord ∈ W ×W, ⊕ : (W×W ⇀ W), U ∈
P (W), Rp ∈ (LEnv 〈L〉 × W) × A, f ∈ LEnv 〈L〉 × E ⇀ L, Γ ∈
LEnv 〈L〉, x ∈ LVar, a ∈ A, w=((σ, h), d) ∈ W, P,Q ∈ Ast 〈A,E〉
and E1, E2 ∈ E, where R , sat(Rord ,⊕, U,Rp, f):

(Γ, w) R a iff (Γ, w) Rp a

(Γ, w) R false never

(Γ, w) R (P ⇒ Q) iff (Γ, w) R P ⇒ ∃w′. (w,w′) ∈ Rord

∧ (Γ, w′) R Q

(Γ, w) R (∃x. P) iff ∃x. (Γ[x 7→ x], w) R P

(Γ, w) R E1 	 E2 iff ||E1||Γwl 	 ||E2||Γwl

(Γ, w) R emp iff w ∈ U

99

(Γ, w) R (P ∗Q) iff ∃w1, w2. w=w1⊕w2 ∧ (Γ, w1) R P

∧ (Γ, w2) R Q

(Γ, w) R (P −−∗ Q) iff ∀w′. (ε, w′) R P ⇒ (Γ, w ⊕ w′) R Q

The WLogic satisfaction relation is |=W:
(
(LEnv 〈WLVal〉 ×

WLState)×WAst
)
, sat(id, ◦W,WUnit, |=p, ||.||(.)wl).

The vars(xi : vii=1...n) assertion is a derived assertion in WLogic de-
fined as follows where the ~ quantifier denotes iterated ∗ (i.e. the finite,

multiplicative analogue of ∀):

vars(xi : vii=1...n) , ~
i=1...n

xi⇀⇁vi

Example 8 (WLogicL assertions and their semantics). Given the set of
WLogic primitive assertions PrimWAst (Def. 37) and the set of SSL list
heap assertions HAstL (Def. 19), the set of WLogicL primitive assertions
is PrimWAstL , PrimWAst ∪ HAstL.

Given the WLogic logical values WLVal (Def. 37), the list logical val-
ues LValL (Def. 17), the WLogicL logical values WLValL (Example 5),
the logical environments LEnv 〈WLValL〉 (Def. 3), the WLogicL logical
states WLStateL (Example 6), the WLogic primitive satisfaction relation
|=p (Def. 37) and the list satisfaction relation |=L (Def. 20), the WLogicL

primitive satisfaction relation, |=pL⊆
(
LEnv 〈WLValL〉×WLStateL

)
×PrimWAstL,

is defined as follows, for all p ∈ PrimWAst, Θ ∈ HAstL and (s,h) ∈
WLStateL, where Γw=Γ↓WLVal and Γl=Γ↓LValL (Def. 3):

Γ, (s,h) |=pL p iff Γp, s |=p p ∧ h=0L

Γ, (s,h) |=pL Θ iff s=(0,0) ∧ Γa,h |=L Θ

Given the parametric WLogic assertions WAst 〈.〉 (Def. 37), the set of
WLogicL assertions is P ∈WAstL ,WAst 〈PrimWAstL〉.
Given the parametric ordering relation on WLogic states id 〈.〉 (Def. 37)

and the abstract allocation relation ≈ on logical heaps (Def. 15), the order-

100

ing on WLogicL states, 4L⊆WLStateL×WLStateL, is defined component-
wise as 4L, (id 〈WPValL〉 ,≈).
Given the WLogicL partial commutative monoid (WLStateL,+,WUnitL)

in Example 6, the expression evaluation function ||.||(.)wlL (Example 7) and
the WLogic parametric satisfaction relation sat(.), the satisfaction relation
for WLogicL assertions, |=wlL: (LEnv 〈WLValL〉 ×WLStateL) ×WAstL,
is:

|=wlL , sat(4L,+,WUnitL, |=pL, ||.||
(.)
wlL)

Library specification The axiomatic specification of the library A op-
erations, AxiomA, are parameterised and must be provided alongside the
other SSL parameters studied so far. For instance, the axiomatic specifi-
cation of the list library studied in §2.1.3 is given in Fig. 2.2.

SSL Parameter

Parameter 18 (Library specifications). Assume a set of operation
axioms, AxiomA : PLAstA ×OpA × PLAstA.

SSL L Instance (Parameter 18)

Definition 38 (List axioms). The axioms of list operations, AxiomL,
are given in Fig. 2.2.

Proof rules and soundness We assume the proof rules of PLogic to
follow an inductive pattern with a set of proof rules for the primitive PL

operations, as well as a set of proof rules for composite operations and
other assertion rewriting rules (e.g. rule of consequence, frame rule, etc.).
The proof rules of PLogicA are those of PLogic where i) the operations in
the premises and conclusions of proof rules are lifted from PL operations
PLOp (Par. 12), to corresponding PLA operations in PLOpA (Def. 26);
and ii) the assertions in the premises and conclusions of proof rules are
lifted from PLogic assertions PLAst (Par. 17), to corresponding PLogicA

assertions in PLAstA (Def. 36). We further extend the primitive proof
rules of PLogic with the axiomatic library A specification in AxiomA

101

(Par. 18). That is, we extend the proof rules with:

(P, C, Q) ∈ AxiomA

{P} C {Q} (Ax)

The soundness of a program logic is typically established by relating the
high-level syntactic proof rules to the low-level semantics of the language,
where high-level logical states are related to low-level program states via
a reification function. We thus require that PLogic define a reification
function mapping PLogic logical states (Par. 15) onto sets of PL program
states (Par. 11). We then modify the definition of state reification and
redefine it as a mapping of the extended logical states (containing abstract
logical heaps) onto extended program states (containing abstract program
heaps). The reification of an extended logical state (s,h) in PLogicA is
defined component-wise with s reified via the PLogic reification function,
and h reified by completion. That is, the reification of an abstract heap h

is the set of all its completions in comp(h) (Def. 13).

In order to establish the soundness of PLogicA, we must show that the
PLogicA triples are safe with respect to the PL semantics. That is, if
running C from a state that satisfies P terminates, then the resulting state
must satisfy Q. Moreover, the execution of C must be frame-preserving :
when run on a bigger state (P ∗ R), the execution of C must leave R

unchanged with its effect contained in P . Put formally, given a PLogicA

triple {P} C {Q}, a logical state w=(s,h) satisfying P , a logical state wr

that is compatible with w (i.e. their composition w+wr is defined), and a
program state w in the reification of w + wr, then for any program state
w′ resulting from running C on w, there must exist a logical state w′ such
that i) w′ satisfies Q; and ii) w′ is contained in the reification of w′ + wr.
We formalise this in the upcoming definition of safe triples (Def. 41).

To show the soundness of PLogicA, we then require the PLogic triples
to be safe as described above. The soundness of PLogicA rules is straight-
forward and follows the same pattern as that of PLogic. In particular,
in case of the existing rules lifted from PLogic, the soundness argument
remains largely unaffected and is simply lifted to PLogicA. The soundness
of the (Ax) rule above is established in a similar way with respect to the
semantics of A operations. Recall that we declare the low-level semantics

102

of library A operations as an optional parameter. When the semantics of
the library is provided, we further require the library axioms to be sound
with respect to their semantics. On the other hand, as mentioned earlier
when the low-level semantics of the library operations is not provided, we
describe the default semantics of library A operations denotationally via
their high-level axiomatic semantics (Par. 18). The soundness of library
axioms with respect to their semantics is then immediate from the defini-
tion of the default library semantics.

PLogic Parameter

Parameter 19 (PLogic reification). Let V ⊇ PLPVal denote a
generic extension of PL program values (Par. 10).
Given the sets of parametric PL program states PState 〈.〉 (Par.
11) and parametric PLogic logical states LState 〈.〉 (Par. 15),
assume a parametric reification function, b.c〈V〉 : LState 〈V〉 →
P (PState 〈V〉), that maps a logical state in LState 〈V〉 onto a set
of program states in P (PState 〈V〉). Assume that the PLogic reifi-
cation function is b.cpl , b.c〈PLPVal〉.

Definition 39 (PLogicA reification). Given the PLogicA program states
PLPStatesA (Def. 24), the PLogicA logical states PLLStateA (Def. 32),
the parametric PLogic reification function b.c〈.〉 (Par. 19), the PLogicA

logical values PLLValA (Def. 30), the heap completion function comp(.)

and the heap collapse function collapse(.) (Def. 13), the PLogicA reification
function, b.cplA : PLLStateA → P (PLPStatesA), is defined as follows:

b(s,h)cplA ,
{

(s, collapse(h′)) | s ∈ bsc〈PLPValA〉 ∧ h′ ∈ comp(h)
}

WLogic reification Recall that the WLogic logical states are those
of WL program states, excluding the fault state �. As such, the WLogic

reification function simply relates each program state to the singleton set
containing the same state.

103

WLogic Instance (Parameter 19)

Definition 40 (WLogic reification). Let V ⊇ WPVal denote an
extension of WL program values (Par. 10).
Given the parametric WL program states WPState 〈.〉 (Def. 25)
and the parametric WLogic logical states WLState 〈.〉 (Def. 33),
the parametric WLogic reification function, b.c〈V〉 : WLState 〈V〉 →
P (WPState 〈V〉), is defined as follows, for (σ, h) ∈WLState 〈V〉:

b(σ, h)c〈V〉 , {(σ, h)}

The WLogic reification function is b.cW , b.c〈WPVal〉.

Example 9 (WLogicL reification). Given the WLogicL program states
WPStateL (Example 2), the set of WLogicL logical states WLStateL

(Example 6), the parametric WLogic reification function b.c〈.〉 (Def. 40),
the WLogicL logical values WLValL (Example 5), the heap completion
function comp(.) and the heap collapse function collapse(.) (Def. 13), the
WLogicL reification function, b.cwlL : WLStateL → P (WPStateL), is de-
fined as follows, for all (s,h) ∈WLStateL:

b(s,h)cwlL ,
{

(s, collapse(h′)) | s ∈ bsc〈WLValL〉 ∧ h′ ∈ comp(h)
}

Definition 41 (Safe triples). Let A denote a set of assertions, E denote
an evaluation environment, O denote a set of operations, S denote a set of
program states, W denote a set of logical states, and let Triples 〈A,O〉 ,
A × O × A. Given a semantics function [[.]] : O → S → P (S), a reification
function b.c : W → P (S), a composition operator ⊕ : W ×W ⇀ W and a
satisfaction relation |=⊆ (E×W)× A, a triple (a, o, a) ∈ Triples 〈A,O〉 is
safe with respect to [[.]] , b.c , ⊕ and |=, written safe((a, o, a), [[.]] , b.c ,⊕, |=),
if and only if:

safe((a, o, a′), [[.]] , b.c ,⊕, |=)
def⇐⇒ ∀ε ∈ E, s, s′ ∈ S, w, r ∈W.

ε,w |= a ∧ s∈bw⊕ rc ∧ s′∈ [[o]](s)⇒
∃w′ ∈W. ε, w′ |= a′ ∧ s′ ∈ bw′ ⊕ rc

104

Triple safety is lifted to sets of triples T ⊆ Triples 〈A,O〉 as follows:

safe(T, [[.]] , b.c ,⊕, |=)
def⇐⇒ ∀t ∈ T. safe(t, [[.]] , b.c ,⊕, |=)

SSL Parameter

Parameter 20 (Library semantics). Assume an optional library se-
mantics function, 〈|.|〉A : OpA → PLPStatesA → P (PLPStatesA),
that associates each library A operation in OpA with a state trans-
former, provided that the set of library axioms AxiomA (Par. 18)
is safe with respect to the semantics function 〈|.|〉A, reification func-
tion b.cplA (Def. 39), the composition operator + (Def. 32) and the
satisfiability relation |=plA (Def. 36):

safe(AxiomA, 〈|.|〉A , b.cplA ,+, |=plA)

When the library semantics function 〈|.|〉A is not provided, define
the default semantics 〈|.|〉A as follows, for CA ∈ OpA (Par. 6) and
w ∈ PLPStatesA (Def. 24):

〈|CA|〉A (w) ,

w′

∀P,Q,Γ,w1,wr.

(P, CA, Q) ∈ AxiomA

∧Γ,w1 |=plA P ∧ w ∈ bw1+wrc〈PLPValA〉
=⇒

∃w2. Γ,w2 |=plA Q ∧ w′∈ bw2◦wrc〈PLPValA〉

Observe that when the semantics of the library is not provided, the
semantics of a library operation is defined denotationally by simply reify-
ing the high-level logical states of its axiomatic specification into their
low-level program state counterparts, provided that the axiomatic speci-
fication is safe with respect to its semantics. In other words, when the
low-level semantics of the library operations are not provided, we simply
define a denotational interpretation [[.]]plA. Observe that the soundness of
axiomatic specification of the library in AxiomA then follows immediately
from the definition of the default semantics.

105

For the list library L, we do not devise a low-level semantics and opt
instead for the default semantics provided by Par. 20. As we mentioned
earlier, when the low-level semantics of a library is not provided, the ax-
iomatic specification of the library operations is typically justified against
an implementation of the library operations. In §6 we provide an imple-
mentation of the list library L operations and describe how to justify the
correctness of the axiomatic list specification (given in Fig. 2.2 of §2) with
respect to this implementation.

SSL L Instance (Parameter 20)

Definition 42 (List semantics). The semantics of the list library
operations, 〈|.|〉L : OpL → PLPStatesA → P (PLPStatesA), is given
by the default library semantics in Par. 20.

PLogic Parameter

Parameter 21 (PLogic triples). Given the primitive PL operations
PrimPLOp (Par. 12), PLogic assertions PLAst and the satisfiabil-
ity relation |=pl (Par. 17), the PL semantics function [[.]]pl (Par.
13), the PLogic reification function b.cpl (Par. 19) and the PLogic

composition operator ◦ (Par. 15), assume a set of PLogic primitive
triples, PrimPLTriples ⊆ Triples 〈PLAst,PrimPLOp〉, such that
safe(PrimPLTriples, [[.]]pl , b.cpl , ◦, |=pl) holds (Def. 41).
Let V ⊇ PLPVal denote an extension of PL program values (Par.
10) and L ⊇ PLLVal denote an extension of PLogic logical values
(Par. 14).
Let O ⊇ PrimPLOp denote an extension of primitive PL operations
(Par. 12).
Let S , PState 〈V〉 × C denote an extension of parametric PL pro-
gram states (Par. 11), comprising PL programs states in PState 〈V〉,
as well as library program states captured by C.
Let W , LState 〈V〉 × D denote an extension of PLogic logical
states (Par. 15), comprising PLogic logical states in LState 〈V〉, as
well as library logical states captured by D.

106

Let PE ⊇ PrimPLLExp denote an extension of PLogic primitive
expressions with E , LExp 〈PE〉 (Par. 16).
Let PA ⊇ PrimPLAst denote an extension of PLogic primitive as-
sertions with A , Ast 〈PA,E〉 (Par. 17).
Assume a parametric triple making function,

tf (.) :

P (Triples 〈A,O〉)
×
(
Op 〈O〉 → S→ P (S)

)
× (W→ P (S))

× (W ×W ⇀ W)

×P ((Env 〈L〉 ×W)× A)

→ P (Triples 〈A,Op 〈O〉〉)

that given a set of triples T ⊆ Triples 〈A,O〉 describing the be-
haviour of primitive operations in O, an interpretation function
i ∈ Op 〈O〉 → S → P (S), a reification function r ∈ W → P (S),
a composition operator ⊕ : (W × W ⇀ W) and a satisfaction
relation S ⊆ (Env 〈L〉 × W) × A, it produces a set of triples
T ′ ⊆ Triples 〈A,Op 〈O〉〉 with the proviso that:

safe(T, i, r,⊕, S) =⇒ T ⊆ T ′ ∧ safe(T ′, i, r,⊕, S)

Assume that the set of PLogic triples is defined as:

PLTriples , tf (PrimPLTriples, [[.]]pl , b.cpl , ◦, |=pl)

where ◦ denotes the PLogic composition operator (Par. 15).

Definition 43 (PLogicA triples). Given the primitive PLogic triples in
PrimPLTriples (Par. 21) and the library axioms AxiomA (Par. 18), the
set of PLogicA primitive triples is:

PrimPLTriplesA , PrimPLTriples ∪AxiomA

Given the PLogic triple making function tf (Par. 21), the PLogicA com-
position operator + (Def. 32), the PLogicA semantics function [[.]]plA
(Def. 28), the PLogicA reification function b.cplA (Def. 39) and the PLogicA

107

satisfiability relation |=plA (Def. 36), the set of PLogicA triples, PLTriplesA,
is defined as follows:

PLTriplesA , tf (PrimPLTriplesA, [[.]]plA , b.cplA ,+, |=plA)

Lemma 2 (Primitive soundness). The primitive triples PrimPLTriplesA

(Def. 43) are safe with respect to the PLogicA composition + (Def. 32), the
PLogicA semantics function [[.]]plA (Def. 28), the PLogicA reification func-
tion b.cplA (Def. 39) and the PLogicA satisfaction relation |=plA (Def. 36):

safe(PrimPLTriplesA, [[.]]plA , b.cplA ,+, |=plA)

Proof. follows from the safety of primitive PLogic operations (Par. 21)
and the safety of library operations (Par. 20).

Theorem 1 (PLogicA soundness). The PLogicA triples in PLTriplesA

(Def. 43) are safe with respect to the PLogicA semantics function [[.]]plA
(Def. 28), the PLogicA reification function b.cplA (Def. 39), the PLogicA

composition operator + (Def. 32) and the PLogicA satisfaction relation
|=plA (Def. 36):

safe(PLTriplesA, [[.]]plA , b.cplA ,+, |=plA)

Proof. follows immediately from Lemma 2 and the definition of PLTriplesA

(Def. 43).

WLogic proof rules and soundness The WLogic proof rules include
i) the axioms describing the behaviour of primitive operations; ii) the stan-
dard rules for composite operations skip, sequential and parallel composi-
tion, conditional choice and loop; and iii) the standard syntactic rules for
assertion manipulation including consequence, frame, disjunction and exis-
tential elimination. The proof rules of WLogic are given in Fig. 3.2. The
proof rules for primitive while operations are straightforward. The rules
for skip, sequential and parallel composition, as well as syntactic assertion
manipulation rules of consequence, frame, disjunction and existential elimi-
nation are standard. Observe that the treatment of variables as resource [5]
eliminates the need for a side-conditions in the frame (resp. parallel) rule,

108

requiring that variables mentioned in the frame (resp. pre- and postcon-
ditions) and those used in the program be disjoint. Recall that scoped
variable declaration (var x in {C}) allows us to declare a local variable
x scoped within C. As the variable stack may already contain a variable
named x, the var x in {C} rule allows us to extend the stack with a fresh
variable z for the duration of C, provided that all occurrences of x in C

are accordingly substituted by z, and that z is removed from the stack
once C has completed its execution. The if statement rule is standard and
requires a precondition (P) from which we can derive the precondition
of the first (resp. second) branch when b evaluates to true (resp. false).
The P ` bsafe(b) ensures that b can be evaluated without the program
faulting. Similarly, the while statement rule requires us to prove that P is
a loop invariant. That is, when run from P in a state where b evaluates
to true, the loop body re-establishes P when run from P . As such, if P
holds before the loop starts, then it also holds upon termination of the
loop at which point b evaluates to false. As with the if statement rule,
the P ` bsafe(b) ensures that b can be evaluated without the program
faulting.
The WLogic proof rules are fault-avoiding and are sound with respect

to the WLogic operational semantics and reification function (Def. 40).
This is formalised in Theorem 2 below.

Given the parametric WL program states WPState 〈V〉 (Def. 25), let
S , WPState 〈V〉 × C denote a generic extension of WL program states,
comprising parametric WL program states, as well as library program
states captured by C.

WLogic Instance (Parameter 21)

Definition 44 (WLogic triples). The set of WLogic primitive
triples, PrimWTriples, is given by the axioms in the top part of
Fig. 3.2.
Let V ⊇ WPVal denote an extension of WL program values
(Def. 23) and L ⊇ WLVal denote an extension of WLogic logical
values (Def. 31).
Let O ⊇ PrimWOp denote an extension of WL primitive operations

109

{
x⇀⇁x

}
x = alloc()

{
∃y. x⇀⇁y ∗ y 7→ −

}{
x⇀⇁x ∗ x 7→ v

}
dealloc(x)

{
x⇀⇁−

}{
x⇀⇁x ∗ y⇀⇁y ∗ y 7→ v

}
x = [y]

{
x⇀⇁v ∗ y⇀⇁y ∗ y 7→ v

}{
x⇀⇁x ∗ y⇀⇁y ∗ x 7→ v

}
[x] = y

{
x⇀⇁x ∗ y⇀⇁y ∗ x 7→ y

}{
(x⇀⇁x ∗ P) ∧ e↓v

}
x = e

{
x⇀⇁v ∗ P

}
{
P ∗ z⇀⇁−

}
C[z/x]

{
Q ∗ z⇀⇁−

}{
P
}
var x in {C}

{
Q
} fresh(z)

(P, C, Q) ∈ PT{
P
}
C
{
Q
} {

P
}
skip

{
P
}

{
P
}
C1

{
R
} {

R
}
C2

{
Q
}{

P
}
C1; C2

{
Q
} P `P ′

{
P ′
}
C
{
Q′
}

Q′ `Q{
P
}
C
{
Q
}

{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}{
P1 ∗ P2

}
C1||C2

{
Q1 ∗Q2

} {
P
}
C
{
Q
}{

P ∗R
}
C
{
Q ∗R

}
P ` bsafe(b)

{
P ∧ btrue(b)

}
C1

{
Q
}{

P ∧ bfalse(b)
}
C2

{
Q
}{

P
}
if (b) then {C1} else {C2}

{
Q
} {

P1

}
C
{
Q1

} {
P2

}
C
{
Q2

}{
P1 ∨ P2

}
C
{
Q1 ∨Q2

}
P ` bsafe(b)

{
P ∧ btrue(b)

}
C
{
P
}{

P
}
while(b){C}

{
P∧ bfalse(b)

} {
P
}
C
{
Q
}{

∃x.P
}
C
{
∃x.Q

}
Figure 3.2.: WLogic proof rule with primitive rules (above) and generic

composite rules parametric in primitive rules from PT (below)

110

(Def. 27).
Let S ,WPState 〈V〉×C denote an extension of WL program states
(Def. 25), comprising WL program states in WPState 〈V〉, as well
as library program states captured by C.
Let W , WLState 〈V〉 × D denote an extension of WLogic logical
states (Def. 33), comprising WLogic logical states in WLState 〈V〉,
as well as library logical states captured by D.
Let PE ⊇ PrimWLExp denote an extension of WLogic logical ex-
pressions (Def. 35) with E , LExp 〈PE〉.
Let PA ⊇ PrimWAst denote an extension of primitive WLogic as-
sertions (Def. 37) with A , Ast 〈PA,E〉.
The WLogic parametric triple making function,

tfw(.) :

P (Triples 〈A,O〉)
×
(
WOp 〈O〉 → S→ P (S)

)
× (W→ P (S))

× (W ×W ⇀ W)

×P ((LEnv 〈L〉 ×W)× A)

→ P (Triples 〈A,WOp 〈O〉〉)

is defined as follows for a set of primitive triples PT ⊆
Triples 〈A,O〉, an interpretation function i ∈ WOp 〈O〉 → S →
P (S), a reification function r ∈ W → P (S), a composition operator
⊕ : W×W ⇀ W and a satisfaction relation S ⊆ (LEnv 〈L〉×W)×A:

tfw(PT , i, r,⊕, S) ,

T if safe(PT , i, r,⊕, S)

∅ otherwise

where T is defined by the rules in the bottom part of Fig. 3.2, and
P `P ′ def⇐⇒ ∀Γ ∈ LEnv 〈L〉 , w ∈W. (Γ, w) S (P ⇒ P ′).

For all PT ⊆ Triples 〈A,O〉, i ∈ WOp 〈O〉 → S → P (S), r ∈
W → P (S), ⊕ : W × W ⇀ W and S ⊆ (LEnv 〈L〉 × W) × A, if
safe(PT , i, r,⊕, S) holds, then the set of triples T=tfw(PT , i, r,⊕, S)

contains PT and safe(T, i, r,⊕, S) holds (Theorem 2).

111

The set of WLogic triples, WTriples, is defined as follows:

WTriples , tfw(PrimWTriples, [[.]]w , b.cW , ◦W, |=W)

Example 10 (WLogicL triples). Given the primitive triples PrimWTriples

(Def. 44) and the list axioms AxiomL (Def. 38), the set of WLogicL prim-
itive triples is:

PrimWTriplesL , PrimWTriples ∪AxiomL

Given the WLogic triple making function tfw (Def. 44), the WLogicL

composition operator + (Example 6), the WLogicL semantics function
[[.]]wlL (Example 4), the WLogicL reification function b.cwlL (Example
9) and the WLogicL satisfiability relation |=wlL (Example 8), the set of
WLogicL triples is:

WTriplesL , tfw(PrimWTriplesL, [[.]]wlL , b.cwlL ,+, |=wlL)

Theorem 2 (WLogic soundness). For all C,D and for all V ⊇ WPVal

(Def. 23), S ,WPState 〈V〉×C (Def. 25), W ,WLState 〈V〉×D (Def. 33),
⊕ : W × W ⇀ W, L ⊇ WLVal (Def. 31), PE ⊃ PrimWLExp and E ,

LExp 〈PE〉 (Def. 35), PA ⊃ PrimWAst and A , WAst 〈PA,E〉 (Def. 37),
O ⊇ PrimWOp (Def. 27), PT ⊆ Triples 〈A,O〉, i ∈WOp 〈O〉 → S→ P (S),
r ∈ W → P (S) and S ⊆ (LEnv 〈L〉 ×W) × A, if PT is safe with respect to
i, r, ⊕ and S, then the set of triples T=tfw(PT , i, r,⊕, S) contains PT and
is also safe with respect to i, r, ⊕ and S:

safe(PT , i, r,⊕, S) =⇒ PT ⊆ T ∧ safe(T, i, r,⊕, S) (3.3)

Proof. Pick an arbitrary t ∈ T . From the definitions of T and tfw

(Def. 44), we then know the following (since otherwise T=∅ and thus
t 6∈ T):

safe(PT , i, r,⊕, S) (3.4)

From the definitions of T and the triple making function tfw we know
that either i) t ∈ PT ; or t ∈ tfw(PT , i, r,⊕, S)\PT (i.e. t is one of the

112

inductive cases). When t ∈ PT , then its safety follows immediately from
3.4. Now let us assume t=(P, C, Q) ∈ tfw(PT , i, r,⊕, S)\PT (i.e. t is one
of the inductive triples). We are then required to show:

safe(tfw(PT , i, r,⊕, S)\PT , i, r,⊕, S) (3.5)

In his thesis [60], Wright shows that the WLogic triples have a partial,
fault avoiding interpretation. That is,

∀(P, C, Q)∈WTriples,Γ∈LEnv 〈WLVal〉 , s, s′∈WPState, w, r∈WLState.

Γ, w |=W P ∧ s ∈ bw ◦W rcW ∧ s′ ∈ [[C]]w (s)⇒
s′ 6= � ∧ ∃w′ ∈WLState. Γ, w′ |=W Q ∧ s′ ∈ bw′ ◦W rcW

(3.6)

From the definition of safe triples (Def. 41) and (3.6) we have:

safe(WTriples, [[.]]w , b.cW , ◦W, |=W)

From the definition of WTriples and the above we then have:

safe(tfw(PrimWTriples, [[.]]w , b.cW , ◦W, |=W), [[.]]w , b.cW , ◦W, |=W) (3.7)

The proof of (3.6), and consequently that of (3.7), is by induction over
the structure of triples in WTriples. It is straightforward to lift the
inductive proof of (3.7) to establish the correctness of a generic extension
of WLogic as required by (3.5). In particular, as tfw(PT , i, r,⊕, S)\PT

includes inductive cases only, the proof of all cases follows from the (lifted)
inductive hypotheses and the safety of primitive triples in PT (3.4).

We now have described all the necessary ingredients for extending an
SL-based program logic to enable reasoning about the clients of an abstract
library A.
In what follows we present a simple tree library T and use WLogicT

(the WLogic program logic extended with the tree library T using the
methodology described here) to specify the behaviour of its operations
and to reason locally about its client programs. Later in §5 we study the
Document Object Model (DOM) library and demonstrate how to specify
its operations and reason about its client programs. Although the un-

113

derlying data structure of the DOM library is rather complex, it shares
fundamental similarities with that of the tree library T in the upcoming
chapter. As such, we present the tree library T in the upcoming chapter
as a precursor to the DOM library in §5 in order to familiarise the reader
with the necessary reasoning components.

114

4. A Tree Library: T

We study a simple tree library T for reading from and updating a simple
tree data structure. In §4.1 we instantiate the general theory of SSL pre-
sented in §3.1 in order to model the tree library T, and to write assertions
describing the underlying tree data structure. We then integrate our tree
assertions with those of WLogic in §3.2 in order to specify the behaviour
of library T operations. In §4.2 we use our specification to reason about
several client programs of T.

4.1. SSL Model and Assertions: Library T

Recall that the general theory of SSL is parametric and may be instan-
tiated accordingly for a library of structured data. In §3 we presented
the general theory of SSL with its parameters delineated in solid boxes
labelled “SSL Parameter”. In what follows, we revisit the SSL parameters
and instantiate them for the tree library T. As before, we present these
instances in dashed boxes labelled “SSL T Instance (Parameter X)”, where
X is the reference to the corresponding SSL parameter in §3.

Tree root addresses Recall that program heaps (e.g. the tree program
heap in Fig. 4.1a) are mappings from root addresses to complete program
data with no context holes. For the tree library, we define a designated
root address, Rt, denoting the location in the tree heap where the tree
data is stored.

SSL T Instance (Parameter 1)

Definition 45 (Tree root addresses). The set of tree root addresses
is RAddT , {Rt}.

115

Rt

u

t

nl r

(a) A complete abstract tree heap

Rt

u

t

nxl r

x

t

n

(b) The heap in (a) after abstract allocation

Figure 4.1.: Abstract tree heaps

Tree program data Recall that program data is library specific and
provides a high-level representation of the underlying data structure that
is agnostic to how the data structure may be represented in the machine.
The program data for trees describes a forest which is an ordered col-
lection of trees. Forests are defined inductively and include empty forests
(∅), forests with singleton trees (e.g. n[t] in Fig. 4.1) and composite forests
(e.g. l ⊗ n[t]⊗ r in Fig. 4.1a). For brevity, we write n for n[∅]. To model
forests, we assume a countably infinite set of node identifiers, n ∈ Id.

SSL T Instance (Parameter 2)

Definition 46 (Tree program data). Let n ∈ Id denote a countably
infinite set of node identifiers. The set of program data for trees,
t ∈ PDataT, is defined by the following grammar, where n ∈ Id:

t ::= ∅ | n[t] | t1 ⊗ t2

Tree data does not contain repeated identifiers; the ⊗ operation is
associative with identity ∅ and all tree data are equal up to the
associativity of ⊗.1

1It is straightforward to formalise these restrictions.

116

Tree program values Recall from §3.1 that SSL assumes an abstract
library to define a set of library-specific program values that include root
addresses. Library-specific program values denote the set of values that
may be observed by the clients of the library. For the tree library T,
the program values include the tree root address Rt, as well as the node
identifiers in Id.

SSL T Instance (Parameter 3)

Definition 47 (Tree program values). Given the set of tree root ad-
dresses RAddT (Def. 45) and the set of node identifiers Id (Def. 46),
the set of program values for trees is v ∈ PValT , RAddT ∪ Id.

Tree logical data Recall that logical heaps (with context holes) such as
the logical tree heap in Fig. 4.1b are mappings from addresses to logical
data. As with program data, logical data is library specific. Similar to
tree program data, logical data for trees describes a forest which is an or-
dered collection of trees. Forests are defined inductively and include empty
forests, forests with singleton trees and composite forests. Moreover, logi-
cal tree data may be incomplete with context holes. As before, we use the
boldface font and write t, t1 and so forth to range over logical tree data.
This is to remind the reader that logical tree data may contain context
holes.

SSL T Instance (Parameter 4)

Definition 48 (Tree logical data). The set of logical data for trees,
t ∈ LDataT, is defined by the following grammar, where x ∈ AAdd

(Def. 8) and n ∈ Id (Def. 46):

t ::= ∅ | x | n[t] | t1 ⊗ t2

Tree data does not contain repeated identifiers or context holes; the
⊗ operation is associative with identity ∅ and all tree data are
equal upto the associativity of ⊗.2

117

The tree address function, addrT(.) : LDataT → P (AAdd), is defined
inductively over the structure of abstract tree data as follows:

addrT(∅) , ∅ addrT(x) , {x} addrT(n[t]) , addrT(t)

addrT(t1 ⊗ t2) , addrT(t1)] addrT(t2)

Tree context application Recall that data splitting in SSL is achieved
through abstract allocation (e.g. the transition from Fig. 4.1a to 4.1b).
Conversely, data can be combined via abstract deallocation (e.g. the tran-
sition from Fig. 4.1b to 4.1a) where the subdata at an abstract address is
compressed into its counterpart context hole. Data compression is defined
in terms of context application on logical data, describing the collapsing of
abstract data into context holes. For tree data, we define context appli-
cation t1 �x t2 in the standard way: it is undefined when x 6∈ addrT(t1);
otherwise, it is defined as t1[t2/x], denoting the standard substitution of
t2 for x in t1, provided that the substitution result is in LDataT.

SSL T Instance (Parameter 5)

Definition 49 (Tree application). Given the set of logical tree data
LDataT (Def. 48) and the set of abstract addresses AAdd (Def. 8),
the tree context application function, � : LDataT×AAdd×LDataT ⇀

LDataT, is defined inductively over the structure of logical tree data
as follows:

∅ �x t undefined y �x t ,

t if x = y

undefined otherwise

n[t′] �x t ,

n[t′′] if t′ �x t = t′′ and n[t′′] ∈ LDataT

undefined otherwise

2It is straightforward to formalise these restrictions.

118

(t1 ⊗ t2) �x t ,

t′ ⊗ t2 if t1 �x t=t′ and t′ ⊗ t2 ∈ LDataT

t1 ⊗ t′ if t2 �x t=t′ and t1 ⊗ t′ ∈ LDataT

undefined otherwise

Tree operations Recall that abstract libraries allow for the underly-
ing data structure to be manipulated via a set of operations. For the
tree library T, we define the operation set to comprise: r := getFirst(n),
r := getRight(n), r := getUp(n), r := newNodeAfter(n), deleteTree(n),
and appendChild(n, m). We have chosen these operations to demonstrate
a wide range of structural manipulations on trees. Each of these oper-
ations faults if any of the nodes given as parameters are not present in
the tree structure. The r := getFirst(n) operation returns the identifier
of the first child of node n in r when it exists; it returns null if n has
no children. Similarly, r := getRight(n) returns the identifier of the im-
mediate right sibling of node n in r when it exists; it returns null if n

is the last child of its parent and has no right sibling. The r := getUp(n)

operation returns the parent identifier for node n in r when it exists; it
returns null if n is the root node at R. The r := newNodeAfter(n) oper-
ation creates a new node with a fresh identifier, makes it the right sibling
of node n and returns this fresh identifier in r. The deleteTree(n) oper-
ation removes the entire subtree identified by n from the tree. Finally, the
appendChild(n,m) operation moves the subtree at m to be the last child
of node n. This operation faults if n is a descendant of m as it would
introduce a cycle and break the tree structure.

SSL T Instance (Parameter 6)

Definition 50 (Tree operations). The set of tree operations, CT ∈
OpT, is defined by the following grammar, for all program variables
r, n, m ∈ PVar (Def. 1):

CT ::= r := getFirst(n) | r := getRight(n) | r := getUp(n)
| r := newNodeAfter(n) | deleteTree(n) | appendChild(n, m)

119

Tree logical values Recall from §3.1 that SSL assumes an abstract li-
brary to define a set of library-specific logical values that contain program
values as well as abstract addresses. Logical values denote the values as-
sociated with logical variables. For the tree library T, the logical values
are defined as the extension of tree program values (Def. 47) with abstract
addresses (Def. 8) and logical tree data (Def. 48). As we demonstrate
later, we include logical tree data in the set of logical values to allow for
writing expressions that inspect the structure of tree data (see Def. 52).

SSL T Instance (Parameter 7)

Definition 51 (Tree logical values). Given the set of tree program
values PValT (Def. 47), the set of abstract addresses AAdd (Def. 8)
and the set of tree logical data LDataT (Def. 48), the set of logical
values for trees is v ∈ LValT , PValT ∪ AAdd ∪ LDataT.

Tree logical expressions Recall that libraries may specify a set of log-
ical expressions in order to assert certain properties about the underlying
data. For the tree library T, the logical expressions include logical variables
and are defined by a similar grammar to that of logical data (Def. 48).

SSL T Instance (Parameter 8)

Definition 52 (Tree logical expressions). The set of logical expres-
sions for trees, e ∈ LExpT, is defined by the following grammar,
where n,t, α ∈ LVar (Def. 2):

e ::= ∅ | t | α | n[e] | e1 ⊗ e2

Given the set of logical values for trees LValT (Def. 51) and the
set of logical environments LEnv 〈LValT〉 (Def. 3), the evaluation
function for tree expressions, (|.|)(.)

T : (LExpT × LEnv 〈LValT〉) ⇀

LValT, is defined inductively over the structure of primitive logical

120

expressions as follows, where Γ ∈ LEnv 〈LValT〉:

(|∅|)Γ
T =∅ (|t|)Γ

T =Γ(t) (|α|)Γ
T =

Γ(α) if Γ(α) ∈ AAdd

undefined otherwise

(|n[e]|)Γ
T =

n[t] if Γ(n)=n ∧ (|e|)Γ
T =t

undefined otherwise

(|e1 ⊗ e2|)Γ
T =

t1 ⊗ t2 if (|e1|)Γ
T =t1 ∧ (|e2|)Γ

T =t2

undefined otherwise

Tree data assertions Recall that given a library A, the SSL assertions
for A comprise heap assertions describing abstract heaps in LHeapA. Heap
assertions in turn are defined via data assertions, describing the underlying
data in LDataA. For the tree library T, the tree-specific data assertions
comprise assertions to describe empty forests, forest holes (where the asso-
ciated forest has been split away, leaving behind a hole), singleton forests
and composite forests.

SSL T Instance (Parameter 9)

Definition 53 (Tree data assertions). The set of tree data assertions,
Λ ∈ LAstT, is defined by the following grammar, where α,n ∈ LVar

(Def. 2) and ∆ ∈ DAstT (Def. 19):

Λ ::= ∅ | α | n[∆] | ∆1 ⊗∆2

Given the set of logical values for trees LValT (Def. 51), the set
of logical environments LEnv 〈LValT〉 (Def. 3) and the set of tree
logical data LDataT (Def. 48), the satisfiability relation for tree data
assertions, |||=A: (LEnv 〈LValT〉 × LDataT) × LAstT, is defined as
follows, where Γ ∈ LEnv 〈LValT〉, t ∈ LDataT, n ∈ Id (Def. 46 and
AAdd denotes the set of abstract addresses (Def. 8):

Γ, t |||=A ∅ iff t = ∅

121

Γ, t |||=A α iff Γ(α) = t ∧ t ∈ AAdd

Γ, t |||=A n[∆] iff ∃n, t′. Γ(n)=n ∧ t=n[t′] ∧ Γ, t′ ||=A ∆

Γ, t |||=A ∆1⊗∆2 iff ∃t1,t2.t=t1⊗t2 ∧ Γ, t1 ||=A ∆1 ∧ Γ, t2 ||=A ∆2

Library T specification Recall that in order to specify the behaviour of
library operations, we appeal to standard separation logic (SL) assertions
such as P ∗ Q, as well as an abstract predicate, vars(. . .), describing the
values associated with program variables. As we discussed earlier in §3,
rather than extending the SSL assertions with the standard SL assertions
and the vars(. . .) predicate, we view SSL as an add-on to SL, and expect
the SSL assertions to be incorporated into an SL-based logic that includes
the standard connectives such as P ∗Q, as well as assertions for describing
the underlying variable store. Here, we combine SSL with the SL-based
WLogic presented in §3.2 and extend it to WLogicT. We use WLogicT

to specify the behaviour of library T operations, and to reason about
its client programs. The axiomatic specification of library T operations
is given in Fig. 4.2. Observe that each axiom must preserve the set
of abstract addresses present in their footprint. This is evident in the
deleteTree axiom stipulating that the tree being removed be complete,
in that it contains no context holes. This is expressed via the derived
assertion complete defined as follows:

complete(t) , t=̇∅ ∨ (∃c,tc,t′. t=̇c[tc]⊗ t′∗ complete(tc) ∗ complete(t′))

The complete(t) assertion states that the forest t is either empty (the
first disjunct), or it is of the form c[tc]⊗ t′, where tc and t′ both satisfy
complete(t′). The complete(t) assertion is pure, i.e. contains no resource,
and merely describes the shape of the forest t. Observe that complete(t)

ensures that the tree data described by t contains no context holes. Were
the tree data in the precondition of deleteTree(n) incomplete and con-
tained a context hole, it would be destroyed and its counterpart abstract
heap cell could not be connected anywhere. This would in turn yield a
malformed heap as the connectivity described by abstract addresses would
be broken (i.e. the resulting tree heap will not be well-formed according

122

{
vars(r :−, n :n) ∗ α 7→ n[r[β]⊗ γ]

}
r := getFirst(n){

vars(r :r, n :n) ∗ α 7→ n[r[β]⊗ γ]
}

{
vars(r :−, n :n) ∗ α 7→ n[β]⊗ r[γ]

}
r := getRight(n){

vars(r :r, n :n) ∗ α 7→ n[β]⊗ r[γ]
}

{
vars(r :−, n :n) ∗ α 7→ r[β1 ⊗ n[γ]⊗ β2]

}
r := getUp(n){

vars(r :r, n :n) ∗ α 7→ r[β1 ⊗ n[γ]⊗ β2]
}

{
vars(r :−, n :n) ∗ α 7→ n[β]

}
r := newNodeAfter(n){

∃r. vars(r :r, n :n) ∗ α 7→ n[β]⊗ r[∅]
}

{
vars(r :−, n :n) ∗ α 7→ n[∅]

}
r := getFirst(n){

vars(r :null, n :n) ∗ α 7→ n[∅]
}

{
vars(r :−, n :n) ∗ α 7→ u[β ⊗ n[γ]]

}
r := getRight(n){

vars(r :null, n :n) ∗ α 7→ u[β ⊗ n[γ]]
}

{
vars(r :−, n :n) ∗ Rt 7→ β1 ⊗ n[γ]⊗ β2

}
r := getUp(n){

vars(r :null, n :n) ∗ Rt 7→ β1 ⊗ n[γ]⊗ β2

}
{
vars(n : n) ∗ α 7→ n[t] ∗ complete(t)

}
deleteTree(n){

vars(n : n) ∗ α 7→ ∅
}

{
vars(n :n, m :m) ∗ α 7→ n[β] ∗ γ 7→ m[t] ∗ complete(t)

}
appendChild(n , m){

vars(n :n, m :m) ∗ α 7→ n[β ⊗m[t]] ∗ γ 7→ ∅
}

Figure 4.2.: The axiomatic specification of library T operations

to Def. 14), and would thus render the operation unsafe.

Recall that when n=n and m=m, the appendChild(n, m) operation
moves the subtree at m to be the last child of node n, and faults if
m is an ancestor of n (otherwise it would introduce a cycle and break
the tree structure). To ensure that m is not an ancestor of n, we require
the entire subtree at m to be separate from the subtree at n. This is
achieved by the complete(t) assertion and the separating conjunction ∗ in
the precondition. That is, the ∗ ensures that the subtree at m is disjoint
from the subtree at n, and since the forest t underneath m is complete,
the t does not contain a context hole into which the subtree at n may
collapse and render m an ancestor of n.

SSL T Instance (Parameter 18)

Definition 54 (Tree axioms). The axioms of tree operation are given
in Fig. 4.2.

123

4.2. Reasoning about T Client Programs

We use the WLogicT program logic to reason about two client programs
of T written in the while language of WLogicT. For brevity, we write var

x1, x2, . . . , xn in {C} for var x1 in {var x2 in {... var xn in {C}}}.

4.2.1. The getLast(n) Client Program

The m := getLast(n) program in Fig. 4.3 returns the identifier of the last
child of node n in m when it exists, and returns null if n has no chil-
dren. To do this, the program traverses the child list of node n from the
beginning by calling the T library operation getFirst(n), and repeatedly
calling the getRight(...) operation to proceed down the list.
The behaviour of the m := getLast(n) client program can be specified

as follows where (4.1) describes the case when node n has a last child, and
(4.2) describes the case when n has no children.{

vars(n:n, m:−) ∗ α 7→ n[t⊗m[β]] ∗ children(t)
}

m := getLast(n){
vars(n:n, m:m) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

} (4.1)

{
vars(n:n, m:−) ∗ α 7→ n[∅]

}
m := getLast(n){

vars(n:n, m:null) ∗ α 7→ n[∅]
} (4.2)

where

children(t) , t=̇∅ ∨ (∃c,tc,t′. t=̇c[tc]⊗ t′ ∗ children(t′))

When n=n and n has no children (4.2), the behaviour of the program
is simple and its footprint is limited to the (empty) forest underneath
n. On the other hand, when the forest underneath n is not empty, the
footprint comprises the child list of n. For a given tree of the form
n[c1[t1] ⊗ c2[t2] ⊗ . . . ⊗ cm[tm]], the child list of n comprises the nodes
c1, c2, . . . , cm but not their respective child forests t1, t2, . . . , tm. When
n=n, the getLast(n) operation inspects the immediate children of n and
its footprint is thus the child list of n. As such, we must ensure that

124

1. m := getLast(n){
2. var curr, next in {
3. curr := getFirst(n);
4. if(curr != null){
5. next := getRight(curr);
6. while(next != null){
7. curr := next;
8. next := getRight(curr);
9. } }
10. m := curr;
11. }
12. }

Figure 4.3.: The getLast(n) client program

the precondition in (4.1) contains the resources for the child list of n. In
particular, we must ensure that child list of n is complete and contains
no context holes. This is captured by children(t), asserting that the forest
t underneath n is either empty (the first disjunct), or it is of the form
c[tc]⊗t′, where t′ itself satisfies children(t′). Note that children(t) implies
that there are no context holes at the top level of t (i.e. the child list of n

contains no context holes) as required. As with the complete(t) assertion,
the children(t) is pure (i.e. contains no resource).
A proof sketch of specification (4.1) is given in Figs. 4.4-4.5. As before,

at each proof point we highlight the effect of the preceding operation
when applicable. For instance, after the assignment of line 8 the value
of curr is updated to c, whereas the while statement of line 17 has no
effect. At various proof points we use abstract (de)allocation (Lemma 1)
to rewrite the tree resources into the shape required by the axioms of tree
operations (Fig. 4.2). For instance, prior to applying the getFirst(n)

axiom at line 8, we use abstract deallocation at line 7 to split off part of
the forest under n, and thus get the subtree at n into the shape required
by the getFirst(n) axioms.

4.2.2. The moveChildren(n, m) Client Program

The moveChildren(n, m) program in Fig. 4.6 removes the child forest of
node n and appends it to the end of the child forest of node m. To do
this, the program traverses the child list of node n from the beginning

125

1.
{
vars(n:n, m:−) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
2. m := getLast(n){
3.
{
vars(n:n, m:−) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
4. var curr, next in {
5.
{
vars(n:n, m:−, curr:−, next:−) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
// Unwrap the definition of children

6.

vars(n:n, m:−, curr:−, next:−) ∗
(

(t=̇∅ ∗ α 7→ n[∅⊗m[β]])

∨ (∃l,tl,t′. t=̇l[tl]⊗ t′ ∗ children(t′) ∗ α 7→ n[l[tl]⊗ t′ ⊗m[β]])
)

// Abstract allocation at γ by Lemma 1

7.

vars(n:n, m:−, curr:−, next:−) ∗ ∃γ.
(

(t=̇∅ ∗ α 7→ n[m[β]⊗ γ] ∗ γ 7→ ∅)

∨ (∃l,tl,t′. t=̇l[tl]⊗ t′ ∗ children(t′) ∗ α 7→ n[l[tl]⊗ γ] ∗ γ 7→ t′ ⊗m[β])
)

8. curr := getFirst(n);

9.

∃c.vars(n:n, m:−, curr:c , next:−)∗∃γ.
(

(t=̇∅∗c=̇m ∗α 7→n[m[β]⊗γ]∗γ 7→∅)

∨(∃l,tl,t′.t=̇l[tl]⊗t′∗ children(t′) ∗ c=̇l ∗ α 7→n[l[tl]⊗ γ] ∗ γ 7→t′⊗m[β])
)

// Abstract deallocation at γ by Lemma 1

10.

∃c.vars(n:n, m:−, curr:c, next:−) ∗
(

(c=̇m ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨ (∃l,tl,t′. t=̇l[tl]⊗ t′ ∗ children(t′) ∗ c=̇l ∗ α 7→ n[l[tl]⊗ t′ ⊗m[β]])
)

// Unwrap the definition of children in the second disjunct

11.

∃c.vars(n:n, m:−, curr:c, next:−) ∗

(
(c=̇m ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl. t=̇l[tl)] ∗ c=̇l ∗ α 7→ n[l[tl]⊗m[β]])
∨(∃l,tl,o,to,t′. t=̇l[tl]⊗ o[to]⊗ t′ ∗ children(t′) ∗ c=̇l

∗ α 7→ n[l[tl]⊗ o[to]⊗ t′ ⊗m[β]])
)

// Abstract allocation at γ, δ, ε by Lemma 1

12.

∃c.vars(n:n, m:−, curr:c, next:−) ∗

(
(c=̇m ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,γ, δ. t=̇l[tl] ∗ c=̇l ∗ α 7→ n[γ] ∗ γ 7→ l[δ]⊗m[β] ∗ δ 7→ tl)
∨(∃l,tl,o,to,t′,γ, δ, ε. t=̇l[tl]⊗ o[to]⊗ t′ ∗ children(t′) ∗ c=̇l

∗ α 7→ n[γ ⊗ t′ ⊗m[β]] ∗ γ 7→ l[δ]⊗ o[ε] ∗ δ 7→ tl ∗ ε 7→ to)
)

13. if(curr != null){
14. next := getRight(curr)

15.

∃c,r .vars(n:n, m:−, curr:c, next:r)

∗
(

(c=̇m ∗ r=̇null ∗ α 7→n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,γ, δ. t=̇l[tl] ∗ c=̇l ∗ r=̇m ∗ α 7→ n[γ] ∗ γ 7→ l[δ]⊗m[β] ∗ δ 7→ tl)
∨(∃l,tl,o,to,t′,γ, δ, ε. t=̇l[tl]⊗ o[to]⊗ t′ ∗ children(t′) ∗ c=̇l ∗ r=̇o

∗ α 7→ n[γ ⊗ t′ ⊗m[β]] ∗ γ 7→ l[δ]⊗ o[ε] ∗ δ 7→ tl ∗ ε 7→ to)
)

// Abstract deallocation at γ, δ, ε by Lemma 1

16.

∃c,r.vars(n:n, m:−, curr:c, next:r)

∗
(

(c=̇m ∗ r=̇null ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl. t=̇l[tl] ∗ c=̇l ∗ r=̇m ∗ α 7→ n[l[tl]⊗m[β]])
∨(∃l,tl,o,to,t′. t=̇l[tl]⊗ o[to]⊗ t′ ∗ children(t′) ∗ c=̇l ∗ r=̇o

∗ α 7→ n[l[tl]⊗ o[to]⊗ t′ ⊗m[β]])
)

Figure 4.4.: A proof sketch of getLast(n) (continued in Fig. 4.5)

126

15.

∃c,r.vars(n:n, m:−, curr:c, next:r)

∗
(

(c=̇m ∗ r=̇null ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl. t=̇l[tl] ∗ c=̇l ∗ r=̇m ∗ α 7→ n[l[tl]⊗m[β]])
∨(∃l,tl,o,to,t′. t=̇l[tl]⊗ o[to]⊗ t′ ∗ children(t′) ∗ c=̇l ∗ r=̇o

∗ α 7→ n[l[tl]⊗ o[to]⊗ t′ ⊗m[β]])
)

// Generalise the definition of t

16.

∃c,r.vars(n:n, m:−, curr:c, next:r)

∗
(

(c=̇m ∗ r=̇null ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,t′.t=̇t′⊗ l[tl] ∗ children(t′)∗c=̇l∗r=̇m∗α 7→ n[t′ ⊗ l[tl]⊗m[β]])
∨(∃l,tl,o,to,t1,t2. t=̇t1 ⊗ l[tl]⊗ o[to]⊗ t2 ∗ c=̇l ∗ r=̇o

∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ l[tl]⊗ o[to]⊗ t2 ⊗m[β]])
)

17. while(next != null){

18.

∃c,r.vars(n:n, m:−, curr:c, next:r)

∗
(

(∃l,tl,t′.t=̇t′⊗ l[tl] ∗ children(t′)∗c=̇l∗r=̇m∗α 7→ n[t′ ⊗ l[tl]⊗m[β]])

∨(∃l,tl,o,to,t1,t2. t=̇t1 ⊗ l[tl]⊗ o[to]⊗ t2 ∗ c=̇l ∗ r=̇o

∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ l[tl]⊗ o[to]⊗ t2 ⊗m[β]])
)

19. curr := next;

20.

∃c.vars(n:n, m:−, curr:c , next:c)

∗
(

(∃l,tl,t′.t=̇t′⊗ l[tl] ∗ children(t′)∗c=̇m∗α 7→ n[t′ ⊗ l[tl]⊗m[β]])

∨(∃l,tl,o,to,t1,t2. t=̇t1 ⊗ l[tl]⊗ o[to]⊗ t2 ∗ c=̇o

∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ l[tl]⊗ o[to]⊗ t2 ⊗m[β]])
)

// Wrap the definition of children

21.

∃c.vars(n:n, m:−, curr:c, next:c) ∗

(
(c=̇m∗α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,t1,t2. t=̇t1 ⊗ l[tl]⊗ t2 ∗ c=̇l

∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ l[tl]⊗ t2 ⊗m[β]])
)

// Take similar steps as those in 10-12

22.

∃c.vars(n:n, m:−, curr:c, next:c) ∗
(

(c=̇m ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,t′,γ, δ. t=̇t′ ⊗ l[tl] ∗ c=̇l ∗ α 7→ n[t′ ⊗ γ] ∗ children(t′)
∗ γ 7→ l[δ]⊗m[β] ∗ δ 7→ tl)

∨(∃l,tl,o,to,t1,t2,γ, δ, ε. t=̇t1 ⊗ l[tl]⊗ o[to]⊗ t2 ∗ c=̇l
∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ γ ⊗ t2 ⊗m[β]]

∗ γ 7→ l[δ]⊗ o[ε] ∗ δ 7→ tl ∗ ε 7→ to)
)

23. next := getRight(curr);

// Abstractly deallocate γ, δ, ε by Lemma 1 as in line 15

24.

∃c,r.vars(n:n, m:−, curr:c, next:r)

∗
(

(c=̇m ∗ r=̇null ∗ α 7→ n[t⊗m[β]] ∗ children(t))

∨(∃l,tl,t′.t=̇t′ ⊗ l[tl] ∗ c=̇l∗r=̇m ∗α 7→ n[t′ ⊗ l[δ]⊗m[β]]∗children(t′))
∨(∃l,tl,o,to,t1,t2. t=̇t1 ⊗ l[tl]⊗ o[to]⊗ t2 ∗ c=̇l ∗ r=̇o

∗ children(t1) ∗ children(t2) ∗ α 7→ n[t1 ⊗ l[tl]⊗ o[to]⊗ t2 ⊗m[β]])
)

25. } }
26.

{
vars(n:n,m:− ,curr:m,next:null) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
27. m := curr;
28. }

{
vars(n:n,m:m ,curr:m,next:null) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
29. }

{
vars(n:n,m:m) ∗ α 7→ n[t⊗m[β]] ∗ children(t)

}
Figure 4.5.: A proof sketch of getLast(n) (continued from Fig. 4.4)

127

1. moveChildren(n, m){
2. var curr, next in {
3. curr := getFirst(n);
4. while(curr != null){
5. next := getRight(curr);
6. appendChild(m, curr);
7. curr := next;
8. }
9. }
10. }

Figure 4.6.: The moveChildren(n, m) client program

by calling the T library operation getFirst(n). At each iteration, the
program records the child node to the right of the current (curr) node in
next by calling the getRight(curr) operation, and subsequently appends
the current child (curr) to the end of the child list of m by calling the
appendChild(m, curr) library operation.

In order to preserve the tree structure and avoid cycles, we must ensure
that m is not a descendant of n (or its children). That is, the program must
fault if moving the child forest of n breaks the tree structure by introducing
a cycle. However, since the program manipulates the tree structure via
library operations only, and the library operations in turn preserve the
tree structure, the program need not enforce this structure-preservation
explicitly. More concretely, since appendChild(m, curr) faults if m is a
descendant of curr, the well-formedness of the tree structure is ensured at
each iteration when moving the current node by calling appendChild(m,

curr). We thus specify the behaviour of moveChildren(n, m) as follows:{
vars(n:n, m:m) ∗ α 7→ n[t] ∗ β 7→ m[γ] ∗ complete(t)

}
moveChildren(n, m){

vars(n:n, m:m) ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t] ∗ complete(t)
}

When n=n and m=m, to ensure that m is not a descendant of n, we require
the entire subtree at n to be separate from the subtree at m. As with the
specification of appendChild operation in Fig. 4.2, this is achieved by the
separating conjunction ∗ and the complete(t) assertion in the precondition.
That is, the ∗ ensures that the entire subtree at n is disjoint from the

128

subtree at m, and since the forest t underneath n is complete, the t does
not contain a context hole into which the subtree at m may collapse and
render m a descendant of n.
A proof sketch of moveChildren(n, m) is given in Figs. 4.7-4.8. As

before, we use abstract (de)allocation (Lemma 1) at various proof points
to rewrite the tree resources into the shape required by the axioms of tree
operations (Fig. 4.2).

129

1.
{
vars(n:n, m:m) ∗ α 7→ n[t] ∗ β 7→ m[γ] ∗ complete(t)

}
2. moveChildren(n, m){
3.
{
vars(n:n, m:m) ∗ α 7→ n[t] ∗ β 7→ m[γ] ∗ complete(t)

}
4. var curr, next in {
5.
{
vars(n:n, m:m, curr:−, next:−) ∗ α 7→ n[t] ∗ β 7→ m[γ] ∗ complete(t)

}
// Unfold the definition of complete(t).

6.

vars(n:n, m:m, curr:−, next:−) ∗
(

(t=̇∅ ∗ α 7→ n[∅])∨

(∃n,tn,t′.t=̇l[tl]⊗t′∗complete(tl)∗complete(t′)∗α 7→n[l[tl]⊗t′])
)
∗β 7→m[γ]

// Abstract allocation at δ by Lemma 1

7.

vars(n:n, m:m, curr:−, next:−) ∗ ∃δ.

(
(t=̇∅ ∗ α 7→ n[∅])∨

(∃l,tl,t′. t=̇l[tl]⊗t′∗complete(tl)∗complete(t′)∗α 7→n[l[tl]⊗ δ]∗δ 7→t′)
)

∗ β 7→ m[γ]

8. curr := getFirst(n);

9.

∃c. vars(n:n, m:m, curr:c , next:−) ∗

(
(t=̇∅ ∗ c=null ∗ α 7→ n[∅])∨

(∃tc,t′,δ. t=̇c[tc]⊗ t′ ∗complete(tl)∗complete(t′)∗α 7→n[c[tc]⊗δ] ∗ δ 7→ t′)
)

∗β 7→ m[γ]

// Abstract deallocation at δ by Lemma 1

10.

∃c. vars(n:n, m:m, curr:c, next:−) ∗
(

(t=̇∅ ∗ c=null ∗ α 7→ n[∅])∨

(∃c,tc,t′.t=̇c[tc]⊗t′∗complete(tc)∗complete(t′)∗α 7→n[c[tc]⊗t′])
)
∗β 7→m[γ]

11.

∃c. vars(n:n, m:m, curr:c, next:−)

∗
(

(c=null ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t])

∨(∃tc,t1,t2. t=̇t1⊗c[tc]⊗t2 ∗ β 7→ m[γ ⊗ t1]

∗ complete(tc) ∗ complete(t2) ∗ α 7→n[c[tc]⊗ t2])
)

12. while(curr != null){
13.

{
∃c. vars(n:n, m:m, curr:c, next:−) ∗ ∃tc,t1,t2. t=̇t1⊗c[tc]⊗t2

∗ complete(tc) ∗ complete(t2) ∗ β 7→ m[γ ⊗ t1] ∗ α 7→ n[c[tc]⊗ t2]

}
// Unfold the definition of complete(t2).

14.

∃c,tc,t1.vars(n:n, m:m, curr:c, next:−) ∗ β 7→ m[γ ⊗ t1]

∗
(

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ α 7→ n[c[tc]])

∨(∃o,to,t2. t=̇t1 ⊗ c[tc]⊗ o[to]⊗ t2 ∗ complete(tc)

∗ complete(to) ∗ complete(t2) ∗ α 7→n[c[tc]⊗ o[to]⊗ t2])
)

// Abstract allocation at γ, δ, ε by Lemma 1

15.

∃c,tc,t1, δ, ε.vars(n:n, m:m, curr:c, next:−) ∗ β 7→ m[γ ⊗ t1]

∗
(

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ α 7→ n[δ ⊗ c[ε]] ∗ δ 7→ ∅ ∗ ε 7→ tc)

∨(∃o,to,t2, ζ. t=̇t1⊗c[tc]⊗o[to]⊗t2 ∗ complete(tc) ∗ α 7→ n[δ ⊗ t2]

∗ complete(to) ∗ complete(t2) ∗ δ 7→ c[ε]⊗ o[ζ] ∗ ε 7→ tc ∗ ζ 7→ to)
)

16. next := getRight(curr)

17.

∃c,tc,t1,δ,ε,r .vars(n:n, m:m, curr:c, next:r) ∗ β 7→ m[γ ⊗ t1]

∗
(

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ r=̇null ∗ α 7→ n[δ ⊗ c[ε]] ∗ δ 7→∅ ∗ ε 7→tc)

∨(∃o,to,t2,ζ.t=̇t1⊗c[tc]⊗o[to]⊗t2∗complete(tc)∗r=̇o ∗α 7→n[δ ⊗ t2]

∗ complete(to)∗complete(t2) ∗ δ 7→c[ε]⊗ o[ζ] ∗ ε 7→ tc ∗ ζ 7→ to)
)

Figure 4.7.: Proof sketch of moveChildren(n,m) (continued in Fig. 4.8)

130

17.

∃c,tc,t1,δ,ε,r .vars(n:n, m:m, curr:c, next:r) ∗ β 7→ m[γ ⊗ t1]

∗
(

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ r=̇null ∗ α 7→ n[δ ⊗ c[ε]] ∗ δ 7→∅ ∗ ε 7→tc)

∨(∃o,to,t2,ζ.t=̇t1⊗c[tc]⊗o[to]⊗t2∗complete(tc)∗r=̇o ∗α 7→n[δ ⊗ t2]

∗ complete(to)∗complete(t2) ∗ δ 7→c[ε]⊗ o[ζ] ∗ ε 7→ tc ∗ ζ 7→ to)
)

// Abstract deallocation at δ, ε, ζ by Lemma 1

18.

∃c,tc,t1,r. vars(n:n, m:m, curr:c, next:r) ∗ β 7→ m[γ ⊗ t1]

∗
(

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ r=̇null ∗ α 7→ n[c[tc]])

∨(∃o,to,t2. t=̇t1⊗c[tc]⊗o[to]⊗t2 ∗ complete(tc) ∗ r=̇o

∗ complete(to) ∗ complete(t2) ∗ α 7→n[c[tc]⊗ o[to]⊗t2])
)

// Abstract allocation at θ

19.

∃c,tc,t1,r, θ. vars(n:n, m:m, curr:c, next:r) ∗ β 7→ m[γ ⊗ t1](

(t=̇t1 ⊗ c[tc] ∗ complete(tc) ∗ r=̇null ∗ α 7→ n[θ] ∗ θ 7→ c[tc])

∨(∃o,to,t2. t=̇t1⊗c[tc]⊗o[to]⊗t2 ∗ complete(tc) ∗ r=̇o

∗ complete(to) ∗ complete(t2) ∗ α 7→n[θ ⊗ o[to]⊗t2]∗θ 7→c[tc])
)

20. appendChild(m, curr);

21.

∃c,tc,t1,r, θ. vars(n:n, m:m, curr:c, next:r) ∗ β 7→ m[γ ⊗ t1 ⊗ c[tc]](

(t=̇t1 ⊗ c[tc] ∗ r=̇null ∗ α 7→ n[θ] ∗ θ 7→ ∅)

∨(∃o,to,t2. t=̇t1⊗c[tc]⊗o[to]⊗t2 ∗ r=̇o

∗ complete(to) ∗ complete(t2) ∗ α 7→n[θ ⊗ o[to]⊗ t2] ∗ θ 7→ ∅)
)

22. curr := next;

23.

∃c,tc,t1,r, θ. vars(n:n, m:m, curr:r , next:r) ∗ β 7→ m[γ ⊗ t1 ⊗ c[tc]](

(t=̇t1 ⊗ c[tc] ∗ r=̇null ∗ α 7→ n[θ] ∗ θ 7→ ∅)

∨(∃o,to,t2. t=̇t1⊗c[tc]⊗o[to]⊗t2 ∗ r=̇o

∗ complete(to) ∗ complete(t2) ∗ α 7→n[θ ⊗ o[to]⊗ t2] ∗ θ 7→ ∅)
)

// Abstract deallocation at θ and renaming

24.

∃c.vars(n:n, m:m, curr:c, next:−)(

(c=̇null ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t])

∨(∃t1,tc,t2. t=̇t1 ⊗ [(c,tc)]⊗ t2

∗ complete(tc) ∗ complete(t2) ∗ α 7→n[c[tc]⊗ t2]∗β 7→m[γ⊗t1])
)

25. }
26.

{
vars(n:n, m:m, curr:null, next:−) ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t]

}
27. }
28.

{
vars(n:n, m:m) ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t]

}
29. }
30.

{
vars(n:n, m:m) ∗ α 7→ n[∅] ∗ β 7→ m[γ ⊗ t]

}
Figure 4.8.: Proof sketch of moveChildren(n,m) (continued from Fig. 4.7)

131

5. The DOM Library: DOM

The Document Object Model (DOM) describes an XML update library
and is maintained by the World Wide Web Consortium (W3C) [2]. This
English standard is written in an axiomatic style that lends itself well to
formalisation. The standard provides an abstract representation of the
DOM tree as well as a wide range of operations for manipulating this
tree. The most common use of the DOM is manipulating the content of
web pages. The DOM operations are similar to those of our tree library
studied in §4, but are much more extensive. DOM is an ideal example for
SSL formalisation as it demonstrates the scalability of SSL reasoning. In
particular, DOM follows the essence of our tree library in §4, scaling it
to a real-world problem. DOM has previously been studied in the context
of local reasoning. The first formal axiomatic DOM specification is given
in [24, 52], using context logic (CL) [7, 6]. However, this work has several
shortcomings.

First, it is not simple to integrate separation logic (SL) reasoning about
e.g. C [49], Java [42] and JavaScript [21] with the DOM specifications
in CL. The work in [24, 52] explores the verification of simple client pro-
grams manipulating a variable store and calling the DOM. It does not
verify clients manipulating a standard program heap. More concretely, in
contrast to the commutative separating conjunction (∗) of SSL, the CL as-
sertion language contains the non-commutative separating application (�),
that splits the DOM tree into a tree context with a hole applied to a par-
tial DOM tree. These two operators are not compatible with each other.
In particular, the integration of the CL-based DOM specification with an
SL-based program logic requires altering the underlying model and extend-
ing the program logic to include a customised frame rule for the separating
application. By contrast, as we demonstrated in §3.2, we can combine our
SSL specification of DOM with an SL-based program logic in order to rea-
son about DOM client programs written in e.g. C, Java and JavaScript.

132

We illustrate this by verifying several realistic ad-blocker client programs
written in JavaScript, using the program logic of [21].
Second, the specification in [24, 52] does not always allow local and

compositional client-side reasoning. In [24], the authors note that their
DOM axioms are not always local (that is, do not always have small
enough footprints), but fail to identify that, for the same reason, their
client reasoning is not always compositional. We demonstrate this by
presenting a simple client program which can be specified using a single
SSL specification that locally captures its intuitive footprint, compared to
six CL specifications that substantially over-approximate the footprint.
Finally, while the specification in [24] does not model live collections,

the specification in [52] makes simplifying choices with respect to live
collections and does not always remain faithful to the standard.
In §5.1, we present an intuitive overview of our DOM specifications in

SSL and its advantages over the existing approaches. In §5.2, we instan-
tiate the general theory of SSL presented in §3.1 in order to model the
DOM library DOM and to write assertions describing the DOM tree struc-
ture. In §5.3, we instantiate the general methodology described in §3.2 to
extend the JavaScript program logic of [21], JSLogic, to JSLogicDOM, in
order to specify the behaviour of DOM library operations. In §5.4, we use
JSLogicDOM in order to verify several realistic ad-blocker client programs
written in JavaScript.

5.1. Overview

There are currently four revisions of the DOM standard [2]. As with [24],
we focus on DOM Core Level 1 which defines the general shape of the
DOM tree and provides a set of operations for manipulating the tree
structure [1]. Later revisions are mostly concerned with event handling
and minor updates to the tree shape.
The W3C DOM Core Level 1 standard [1] is presented in an object-

oriented (OO) and language-independent fashion using IDL (Interface Def-
inition Language). It consists of a set of interfaces that describe the fields
and methods exposed by each DOM datatype. A DOM object is a tree
comprising a collection of node objects. DOM defines twelve specialised
node types. We focus on an expressive fragment of DOM Core Level 1

133

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

img 3

width 17

#text 23

800px

src 13

#text 1

goo.gl/K4S0d0

img 8

article 6

#text 11

ipsum
img 2

Rd

(a) A complete abstract DOM heap

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

x img 8

article 6

#text 11

ipsum
img 2

Rd x

img 3

width 17

#text 23

800px

src 13

#text 1

goo.gl/K4S0d0

(b) The heap in (a) after abstract allocation

Figure 5.1.: Abstract DOM heaps in SSL

that allows us to create, update, and traverse DOM documents. As such,
we model the four most commonly used node types: document, element,
text and attribute nodes. Additionally, we model live collections of nodes
such as the NodeList interface in DOM Core Levels 1-4. Our fragment
underpins DOM Core Levels 1-4. By focusing on this fragment, we can
direct our attention on the core difficulties of the reasoning without han-
dling the verbosity of the entire document. As demonstrated in [52], it
is straightforward to extend this fragment to the full DOM Core Level 1
without adding to the complexity of the underlying model. While it will
be necessary to expand the model as we consider additional features in
the higher levels of the standard (e.g. DOM events), the fragment spec-
ified here will remain largely unaffected, as these additional features are
independent of our fragment. We proceed with an overview of our DOM
fragment. In the remainder of this thesis we refer to our DOM fragment
simply as DOM.

DOM nodes A DOM object (e.g. the tree in Fig. 5.1a) is defined as a
tree comprising a collection of node objects. DOM nodes are the building
blocks of DOM data. Each node in DOM is associated with a type, a

134

name, an optional value, and information about its surroundings (e.g. its
parent, siblings, etc.). As well as this generic node type, DOM defines
twelve specialised node types, of which we model the four most commonly
used: text, element, attribute and document nodes. Given the OO nature
of the standard, each node object is uniquely identified by its reference.
To capture this more abstractly (and admit non-OO implementations),
we associate each node with a unique node identifier. We thus assume a
countably infinite set of node identifiers Id, as well as a designated doc-
ument identifier associated with the document object, d ∈ Id. Document
nodes represent entire DOM objects. Each DOM object contains exactly
one document node, named #document, with no value and at most a
single child, referred to as the document element. The document node is
the root of the DOM tree and provides primary access to the DOM data.
In Fig. 5.1a, the document node is the node with identifier 7. Element
nodes structure the content of a DOM object. They have arbitrary names
(not containing the ‘#’ character), no values and an arbitrary number of
text and element nodes as their children. In Fig. 5.1a, the node named
“html” with identifier 12 is an element node which has two children with
identifiers 10 and 4. Text nodes represent the textual content of the docu-
ment. Each text node has name “#text”, an arbitrary string value and no
children. In Fig. 5.1a, the node with identifier 5 is a text node with string
data “Lorem”. Attribute nodes store information about the element nodes
to which they are attached. They have arbitrary names (not containing
the ‘#’ character), arbitrary string values and an arbitrary number of text
nodes as their children. The attributes of an element must have unique
names. In Fig. 5.1a, the element node with identifier 3 has two attributes:
one with name “src”, value “goo.gl/K4S0d0”, and identifier 13; and another
with name “width”, value “800px”, and identifier 17.

DOM operations We present the complete set of DOM operations and
their axioms later in §5.2. Here, we describe the n.getAttribute(s) and
n.setAttribute(s,v) operations and their axioms to give an intuitive
account of SSL for DOM. The n.getAttribute(s) operation inspects the
attributes of element node n. It returns the value of the attribute named
s if it exists, or the empty string otherwise. For instance, given the
DOM tree of Fig. 5.1a, when variable n holds value 3 (the element node

135

named “img”, placed as the left child of node “ad”), and s holds “src”, then
r := n.getAttribute(s) yields r=“goo.gl/K4S0d0”.

Intuitively, the footprint of n.getAttribute(s) is limited to the element
node n and its “src” attribute. To describe this footprint minimally, we
need to split the element node at n away from the larger surrounding DOM
tree. To do this, we introduce abstract DOM heaps that store abstract tree
fragments. For instance, Fig. 5.1a contains an abstract DOM heap with
one cell at address Rd and a complete abstract DOM tree as its value. It is
abstract in that it hides the details of how a DOM tree might be concretely
represented in a machine. As before, abstract heaps allow for their data to
be split by imposing additional instrumentation using abstract addresses.
Such splitting is illustrated by the transition from Fig. 5.1a to Fig. 5.1b.
The heap in Fig. 5.1a contains a complete tree at address Rd. This tree can
be split using abstract allocation to obtain the heap in Fig. 5.1b with the
subtree at node 3 at a fresh, fictional abstract cell x, and an incomplete
tree at Rd with a context hole x indicating the position to which the
subtree will return. Since we are only interested in the attribute named
“src”, we can use abstract allocation again to split away the other unwanted
attribute (“width”) and place it at a fresh abstract cell y. After this second
abstract allocation at y, the subtree at node 3 and its “src” attribute
correspond to the intuitive footprint of n.getAttribute(s). Once the
getAttribute operation is complete, we can join the tree back together
through abstract deallocation, as in the transition from Fig. 5.1b to 5.1a.

Using SSL, we develop local specifications of DOM operations that only
touch the intuitive footprints of the operations. The assertion language
comprises DOM assertions that describe abstract DOM heaps. For in-
stance, the DOM assertion below describes the abstract heap cell at x in
Fig. 5.1b, where α denotes a logical variable corresponding to the abstract
address x:

α 7→ img3[width17[#text23[800px]] � src13[#text1[goo.gl/K4S0d0]],∅]

This assertion states that the heap cell at abstract logical address α holds
an “img” element with identifier 3, no children (∅) and a set of attributes
described by width17[#text23[800px]]�src13[#text1[goo.gl/K4S0d0]], which
contains a “src” attribute (with identifier 13 and value “goo.gl/K4S0d0”)

136

and a “width” attribute (with identifier 17 and value “800px”). The at-
tributes of a node are grouped by the commutative � operator.
Once the “width” attribute of element node 3 has been abstractly al-

located away at y, the abstract heap cell at x can be described by the
DOM assertion α 7→ img3[β� src13[#text1[goo.gl/K4S0d0]],∅] where α

and β denote logical variables corresponding to abstract addresses x and
y, respectively.. When we are only interested in the value of an attribute,
we can write an assertion that is agnostic to the shape of the text content
under the attribute. For instance, we can write:

α 7→ img3[β� src13[t],∅] ∗ val(t, goo.gl/K4S0d0)

to state that attribute 13 contains some text content described by logical
variable t, and that the value of t (i.e. the value of the attribute) is
“goo.gl/K4S0d0”. The val(t, goo.gl/K4S0d0) assertion is pure in that it
contains no resources and merely describes the string value of t.
Using SSL, we can now locally specify r := n.getAttribute(s) as1:
vars(n : n, s : s, r : −)

∗α 7→ s′n[β � sm[t], γ]

∗ val(t, s′′)

 r := n.getAttribute(s)

vars(n : n, s : s, r : s′′)

∗α 7→ s′n[β � sm[t], γ]

∗ val(t, s′′)

 (5.1)

{
vars(n : n, s : s, r : −)

∗α 7→ s′n[a,γ]∗outn(a,s)

}
r := n.getAttribute(s)

{
vars(n : n, s : s, r : “ ”)

∗α 7→ s′n[a,γ]∗outn(a,s)

}
(5.2)

Axiom (5.1) captures the case when n contains an attribute named s;
axiom (5.2) when n has no such attribute. The precondition of (5.1)
contains three assertions. As before, the vars(n : n,s : s,r : −) assertion
describes a variable store where program variables n, s and r have logical
values n, s and an arbitrary value (−), respectively. The α 7→ s′n[β �
sm[t], γ] assertion describes an abstract DOM heap cell at the abstract
address α containing the subtree described by assertion s′n[β � sm[t], γ].
This assertion describes a subtree with a single element node with identifier
n and name s′. Its children have been framed off, leaving behind the
context hole γ (using abstract allocation as in the transition from Fig. 5.1a
to 5.1b, then framing off the cell at γ). It has an attribute named s with

1It is possible to combine multiple cases into one by rewriting the pre- and postconditions
as a disjunction of the cases and using logical variables to track each case. For clarity,
we opt to write each case separately.

137

identifier m and text content t, plus (potentially) other attributes that
have been framed off, leaving behind the context hole β. This framing off
of the children and attributes other than s captures the intuition that the
footprint of n.getAttribute(s) is limited to element n and attribute s.
Lastly, the val(t, s′′) assertion states that the value of text content t is s′′.
The postcondition of (5.1) declares that the subtree remains the same and
that the value of r in the variable store is updated to s′′, i.e. the value of
the attribute named s.

The precondition of (5.2) contains the assertion α 7→ s′n[a, γ] where, this
time, the attributes of the element node identified by n are described by
the logical variable a. With the precondition of (5.1), all other attributes
can be framed off leaving context hole β. With the precondition of (5.2)
however, the attributes are part of the intuitive footprint since we must
check the absence of an attribute named s. This is captured by the
outn(a, s) assertion. The postcondition of (5.2) declares that the subtree
remains the same and the value of r in the variable store is updated to
the empty string “ ”, as mandated by the English specification.

The n.setAttribute(s,v) operation inspects the attributes of element
node n. It then sets the value of the attribute named s to v if such
an attribute exists (5.3). Otherwise, it creates a new attribute named s

with value v and attaches it to node n (5.4). We can specify this English
description as1:

vars(n : n, s : s, v : s′′)

∗α 7→ s′n[β � sm[t], γ]

∗ δ 7→ ∅g ∗ grove(t,g)

 n.setAttribute(s,v)

∃r. vars(n : n, s : s, v : s′′)

∗α 7→s′n[β�sm[#textr[s′′]],γ]

∗ δ 7→ g

(5.3)

{
vars(n : n, s : s, v : s′′)

∗α 7→s′n[a,γ]∗outn(a,s)

}
n.setAttribute(s,v)

{
∃m,r.vars(n : n, s : s, v : s′′)

∗α 7→s′n[a�sm[#textr[s′′]],γ]

}
(5.4)

Recall that attribute nodes may have an arbitrary number of text nodes
as their children where the concatenated values of the text nodes denotes
the value of the attribute. As such, when n contains an attribute named
s, its value is set to v by removing the existing children (text nodes) of
s, creating a new text node with value v and attaching it to s (axiom
5.3). What is then to happen to the removed children of s? In DOM,
nodes are not disposed of: whenever a node is removed, it is no longer
a part of the DOM tree but still exists in memory. To model this, we

138

associate the document object with a grove designating an unordered space
for the removed nodes. The δ 7→ ∅g assertion in the precondition of
(5.3) simply reserves an empty spot (∅g) in the grove. The grove(t,g)

predicate converts the children of s into an unordered set of nodes g. In
the postcondition the converted children of s (i.e. g) are moved to the
empty grove at δ. Similarly, when n does not contain an attribute named
s, a new attribute named s is created and attached to n. The value of s

is set to v by creating a new text node with value v and attaching it to s

(axiom 5.4).

Comparison to existing work (locality and compositionality) In
contrast to the commutative separating conjunction ∗ in SSL, context logic
(CL) and multi-holed context logic (MCL) use a non-commutative separat-
ing application • to split the DOM tree structure [7, 6]. For instance, the
C•αP formula describes a tree that can be split into a context tree C with
hole α and a subtree P to be applied to the context hole. The application
operator • is not commutative in that a context cannot be applied to a
tree. In [24, 52], the authors noted that the CL axioms for DOM oper-
ations such as appendChild were not local, as they required more than
the intuitive footprint of the operations. Later in §5.2 we demonstrate
that the SSL specifications of these operations are local and capture their
intuitive footprint accurately (see p. 159). What the authors in [24, 52]
did not observe was that their CL DOM specification does not provide
a compositional way of generating local specifications for client programs.
Consider the following client program that copies the value of the “src”
attribute of node p to that of q:

C , s := p.getAttribute("src"); q.setAttribute("src", s)

Let us assume that p contains a “src” attribute while q does not. Using
our SSL specifications, we can specify the behaviour of C locally as:{

α 7→ P ∗ β 7→ Q ∗ S
}
C
{
∃m,o, f′, f′′. α 7→ P ∗ β 7→ Q′ ∗ S′

}
(5.5)

with P , s1
p[a1 � srcn[t2]f2 ,t1]e1f1

139

Q , s′q[a,t]ef

S , vars(p : p, q : q, s : −) ∗ val(t2, s) ∗ outn(a, “src”)

Q′ , s′q[a� srcm[#texto[s]f′]f′′ ,t]ef

S′ , vars(p : p, q : q, s : s)

Observe that the element nodes identified by p and q may be in one of
three orientations with respect to one another: i) p and q are not related
and describe disjoint subtrees; ii) q is an ancestor of p; iii) p is an ancestor
of q. All three orientations are captured by the SSL specification in (5.5).

Using the specifications of [24, 52], we can specify the behaviour of C
as follows (in multi-holed context logic (MCL) adapted to our notation),
with (5.6)-(5.8) respectively describing orientations (i)-(iii) above:{(

(C •α P) •β Q
)
∗ S
}
C
{
∃m,o, f′, f′′.

(
(C •α P) •β Q′

)
∗ S′

}
(5.6){(

Q •α P
)
∗ S
}
C
{
∃m,o, f′, f′′.

(
Q′ •α P

)
∗ S′

}
(5.7){(

P •α Q
)
∗ S
}
C
{
∃m,o, f′, f′′.

(
P •α Q′

)
∗ S′

}
(5.8)

When the subtrees at p and q are not related (i), the precondition of (5.6)
states that the DOM tree can be split into a subtree with top node q,
and a tree context with hole variable β satisfying the C •α P formula.
This context itself can be split into a subcontext with top node p and a
context C with hole α. The postcondition of (5.6) states that q is extended
with a “src" attribute, and the context C •α P remains unchanged. This
specification is not local in that it is larger than the intuitive footprint of
C. The only parts of the tree required by C are the two elements p and
q. However, the precondition in (5.6) also requires the surrounding linking
context C: to assert that p and q are not related (p is not an ancestor
of q and vice versa), we must appeal to a linking context C that is an
ancestor of both p and q. This results in a significant overapproximation
of the footprint. As either C or P , but not both, may contain a context
hole named β, specification (5.6) includes the behaviour of (5.8), which
can thus be omitted. We have included it as it is more local.

More significantly however, we need to specify the orientations in (ii)
and (iii) separately. This is due to the non-commutativity of the compo-
sition operator • in context logic. That is, P•αQ 6=Q•αP , in contrast to

140

(5.5) where α 7→ P ∗ β 7→ Q = β 7→ Q ∗ α 7→ P . Therefore, the number of
specifications of a client program rapidly increases as its footprint grows.
For instance, consider the following program with a slightly larger foot-
print, copying the concatenated values of “src” attributes in nodes p and
r to that of q:

C′ , s : =p.getAttribute("src"); s’ : =r.getAttribute("src");

q.setAttribute("src", s+s’);

Let us assume that p, r both contain an attribute named “src” while q

does not. We can then specify C′ locally in SSL with one specification
similar to (5.5), as follows:{
α 7→ P ∗ β 7→ Q ∗ γ 7→ R ∗ S

}
C′
{
∃m,o, f′, f′′, s. α 7→ P ∗ β 7→ Q′ ∗ S′

}
with P , Q and Q′ as defined above, and R, S and S′ defined below:

R , s3
r[a3 � srcl[t4]f4 ,t3]e3f3

S , vars(p : p, q : q, r : r, s : −) ∗ val(t2, s2) ∗ val(t4, s4) ∗ outn(a, “src”)

S′ , vars(p : p, q : q, r : r, s : s) ∗ s=̇s2++s4

By contrast, when specifying C′ in MCL, not only is locality compromised
in cases analogous to (5.6) due to the linking context, we need to provide
eight separate triples to specify the behaviour of C′. Forgoing locality for
some cases as discussed above, we can describe C′ by no fewer than six
specifications!

Note that as an attempt at rectifying the non-compositionality of the
CL specifications for C above (respectively C′), one may instead turn to
first-order logic. For instance, we can specify the behaviour of C as follows:{(

reach(Rd, P) ∧ reach(Rd, Q)
)
∗ S
}

C{
∃m,o, f′, f′′.

(
reach(Rd, P) ∧ reach(Rd, Q

′)
)
∗ S′

} (5.9)

where reach(Rd, P) simply states that the element node described by P is
reachable from the root of the DOM tree Rd. However, the specification
in (5.9) is inaccurate. More concretely, the pre- and postcondition state

141

that the element nodes p and q are reachable from the DOM tree root Rd.
What this specification does not state is that with the exception of the
element node q, the remainder of the DOM tree remains unchanged. That
is, the context surrounding the element nodes p and q is not altered by
program C. This is because the assertions in the pre- and postcondition
are too weak in that they merely stipulate that the element nodes p and
q be reachable from the root Rd. As such, it is possible for C to alter the
DOM tree freely, so long as the reachability of p and q is preserved.
One may attempt to strengthen the specification in (5.9) by adding an

additional predicate, DOM(Rd,tdom), tracking the DOM tree as follows:{(
DOM(Rd,tdom) ∧ reach(Rd, P) ∧ reach(Rd, Q)

)
∗ S
}

C{
∃m,o, f′, f′′.

(
DOM(Rd,tdom) ∧ reach(Rd, P) ∧ reach(Rd, Q

′)
)
∗ S′

}
where DOM(Rd,tdom) describes the entire DOM tree at Rd. However,
not only is this specification not local in that it encompasses the entire
DOM tree at Rd (via the DOM(Rd,tdom) predicate), it is in fact incorrect.
This is because the above specification states that the DOM tree remains
completely unchanged by C: the contents of the tree are captured by the
same logical variable tdom in both the pre- and the postcondition. To
remedy this, one must split the DOM tree into elements p and q and the
context C surrounding them, so that one can assert that C is not altered
by C. This splitting of data into contexts and their sub-data is indeed the
key idea behind context logic which was later adopted by SSL.
This concludes the overview of our DOM specification in SSL and its

advantages over the existing approaches. In what follows, we instantiate
the general theory of SSL presented in §3.1 in order to model the DOM
library formally and to write assertions describing the DOM tree structure.

5.2. SSL Model and Assertions: Library DOM

Recall that the general theory of SSL is parametric and may be instan-
tiated for a particular library of structured data. In §3 we presented the
general theory of SSL with its parameters delineated in solid boxes la-
belled “SSL Parameter”. In what follows, we revisit the SSL parameters

142

and instantiate them for the DOM library DOM. As before, we present
these instances in dashed boxes labelled “SSL DOM Instance (Parameter
X)”, where X is the reference to the corresponding SSL parameter in §3.

DOM root addresses Recall that program heaps (e.g. the DOM pro-
gram heap in Fig. 5.1a) are mappings from root addresses to complete
program data with no context holes. For the DOM library, we define a
designated root address, Rd, denoting the location in the DOM heap where
the DOM object is stored.

SSL DOM Instance (Parameter 1)

Definition 55 (DOM root addresses). The set of DOM root ad-
dresses is RAddDOM , {Rd}.

DOM program data Recall that program data is library specific and
provides a high-level representation of the underlying data structure with-
out exposing how the data structure may be represented in the machine.
The program data for DOM describes the DOM object as a complete DOM
document node (e.g. the document node with identifier 7 in Fig. 5.1a). A
DOM document node in turn may contain text, element and attribute
nodes. We associate each node with a set of forest listeners, fs; we fur-
ther associate element and document nodes with a set of tag listeners, ts.
As we describe shortly, we use these listeners to model live collections.
Ignoring fs and ts for now, we write: i) #textn[s]fs for the text node
with identifier n and text data s; ii) sn[as, f]tsfs for the element node with
identifier n, tag name s, attribute set as, and child forest f; iii) sn[tf]ts for
the attribute node with identifier n, name s, and text forest tf; and iv)
#docd[e]tsfs & g for the document object with the designated identifier d,
document element e (or ∅e for no document element) and grove g.
DOM nodes may be grouped into forests, attribute sets, text forests and

groves, ranged over by f, as, tf and g, respectively. A forest represents the
child list of an element node, modelled as an ordered, possibly empty col-
lection of element and text nodes. An attribute set represents the attribute
nodes associated with an element node and is modelled as an unordered,
possibly empty collection of attribute nodes. A text forest describes the

143

child list of an attribute node, modelled as an ordered, possibly empty
collection of text nodes. A grove is where the orphaned nodes are stored.
In DOM, nodes are never discarded and whenever a node is removed from
the document, it is moved to the grove. The grove is also where newly
created nodes are placed. The document object is thus associated with a
grove, modelled as an unordered, possibly empty collection of forests, text
forest and attribute sets.

Live collections and tag/forest listeners The DOM API provides sev-
eral interfaces for traversing DOM trees based on live collections of nodes,
such as the NodeList interface in DOM Core Levels 1-4. DOM Core
Level 4 also introduces the HTMLCollection interface for live collections
of element nodes. We describe our model of live collections in terms of
NodeLists. However, our model is abstract and captures the behaviour of
both NodeLists and HTMLCollections.
The NodeList interface describes an ordered collection of nodes. Node-

Lists are live in that they dynamically reflect the changes to the doc-
ument. Several DOM operations return NodeLists. For instance, the
n.getElementsByTagName(s) operation returns a NodeList (using depth-
first, left-to-right search) containing the identifiers of those element nodes
under the tree rooted at n whose tag names match s. Given the DOM tree
of Fig. 5.1a, when n=4 and s=“img”, then r:=n.getElementsByTagName(s)

yields r=[3, 8, 2]. However, since NodeLists are live, if node 8 is later re-
moved from the document, then r=[3, 2]. This operation may be called
on both document and element nodes. We thus associate each such node
with a set of tag listeners, ts. Each tag listener is of the form (s,fid) where
s denotes the search string (e.g. “img” in the example above) and fid ∈ Id

denotes the identifier of the resulting NodeList.
The n.childNodes operation also returns a NodeList, containing the

identifiers of the immediate children of n. For instance, with the DOM
tree of Fig. 5.1a, when n=4, then r := n.childNodes returns r=[9, 6]. As
before, the value of r is live and dynamically reflects the changes to the
child forest of n. The n.childNodes operation may be called on any DOM
node (the call on text nodes always yields an empty list as they have no
children). We thus associate each DOM node with a set of forest listeners,
fs. Each forest listener, fid ∈ Id, denotes the identifier of a NodeList.

144

SSL DOM Instance (Parameter 2)

Definition 56 (DOM program data). Let Id denote a countably
infinite set of DOM identifiers and Char denote a set of characters.
The sets of DOM strings s ∈ S, text nodes t ∈ T, element nodes
e ∈ E, attribute nodes a ∈ A, document nodes doc ∈ D, forests
f ∈ F, attribute sets as ∈ AS, text forests tf ∈ TF and groves g ∈ G,
are defined by the following grammars where n ∈ Id, c ∈ Char,
fs ∈ P (Id) and ts ∈ P (S×Id):

s::=∅s | c | s1.s2 t::= #textn[s]fs e::= sn[as, f]tsfs a::= sn[tf]fs

doc ::= #docd[∅e]
ts
fs & g | #docd[e]tsfs & g

f ::= ∅f | t | e | f1 ⊗ f2 as ::= ∅a | a | as1 � as2

tf ::= ∅tf | t | tf1 � tf2 g ::= ∅g | e | t | a | g1 ⊕ g2

The ., ⊗, �, � and ⊕ operations are associative with identities
∅s, ∅f , ∅a, ∅tf and ∅g, respectively; the � and ⊕ operations are
commutative. All data are equal up to the properties of ., �, ⊗,
� and ⊕. DOM Data do not contain repeated identifiers; element
nodes contain attributes with distinct names.2

The set of DOM program data is d ∈ PDataDOM , D.

When the type of data is clear from the context, we drop the subscripts
and write e.g. ∅ for ∅f . For clarity, we drop the forest and tag listen-
ers when not relevant to the discussion and write e.g. sn[as, f] instead of
sn[as, f]tsfs .

DOM program values Recall that SSL assumes an abstract library to
define a set of library-specific program values that include root addresses.
Library-specific program values denote the set of values that may be ob-
served by the clients of the library (via program variables). For the DOM
library DOM, the program values include the DOM root address Rd, DOM
identifiers in Id and DOM strings in S (Def. 56).

2It is straightforward to formalise these restrictions.

145

SSL DOM Instance (Parameter 3)

Definition 57 (DOM program values). Given the set of DOM root
addresses RAddDOM (Def. 55) and the sets of DOM identifiers Id

and DOM strings S (Def. 56), the set of program values for DOM is
v ∈ PValDOM , RAddDOM ∪ Id ∪ S.

DOM logical data Recall that logical heaps (with context holes) such
as the logical DOM heap in Fig. 5.1b are mappings from addresses to log-
ical data. As with program data, logical data is library specific. However,
unlike DOM program data describing complete DOM objects (i.e. complete
document nodes only), logical DOM data describes incomplete data with
context holes, as well as DOM data fragments. More concretely, DOM
logical data comprises text, element, attribute and document nodes, as
well as DOM forests, attribute sets, text forests and groves. Moreover,
each of these DOM data may be incomplete with context holes.

SSL DOM Instance (Parameter 4)

Definition 58 (DOM logical data). The sets of logical text nodes t ∈
T, logical element nodes e ∈ E, logical attribute nodes a ∈ A, logical
document nodes doc ∈ D, logical forests f ∈ F, logical attribute sets
as ∈ AS, logical text forests tf ∈ TF and logical groves g ∈ G, are
defined by the following grammars where n ∈ Id, s ∈ S (Def. 56),
x ∈ AAdd (Def. 8), fs ∈ P (Id) and ts ∈ P (S×Id):

t::= #textn[s]fs e::= sn[as, f]tsfs a::= sn[tf]fs

doc ::= #docd[∅e]
ts
fs & g | #docd[e]tsfs & g | #docd[x]tsfs & g

f ::= ∅f | x | t | e | f1 ⊗ f2 as ::= ∅a | x | a | as1 � as2

tf ::= ∅tf | x | t | tf1 � tf2 g ::= ∅g | x | t | e | a | g1 ⊕ g2

The ., ⊗, �, � and ⊕ operations are associative with identities
∅s, ∅f , ∅a, ∅tf and ∅g, respectively; the � and ⊕ operations are
commutative. All logical data are equal up to the properties of
., �, ⊗, � and ⊕. DOM logical data does not contain repeated

146

identifiers and abstract addresses; element nodes contain attributes
with distinct names.3

The set of DOM logical data, d ∈ LDataDOM, is defined as follows:

LDataDOM , T ∪E ∪A ∪D ∪ F ∪AS ∪TF ∪G

The DOM address function, addr(.) : LDataDOM → P (AAdd), is de-
fined inductively over the structure of DOM logical data as follows,
where ∅† ∈ {∅f ,∅a,∅tf ,∅g} and ‡ ∈ {⊗,�,�,⊕}:

addr(#textn[s]fs) , ∅

addr(sn[as, f]tsfs) , addr(as)] addr(f)

addr(sn[tf]fs) , addr(tf)

addr(#docd[∅e]
ts
fs & g) , addr(g)

addr(#docd[e]tsfs & g) , addr(e)] addr(g)

addr(#docd[x]tsfs & g) , {x}] addr(g)

addr(x) , {x}

addr(∅†) , ∅

addr(d1 ‡ d2) , addr(d1)] addr(d2)

Definition 59 (DOM logical heaps). Given DOM logical data LDataDOM

(Def. 58), the separation algebra of DOM logical heaps is (LHeapDOM, •DOM,

0DOM), defined as the instantiation of the parametric separation algebra
(LHeap〈.〉, •〈.〉,0〈.〉) in Def. 14 with LDataDOM.

As before, when the type of data is clear from the context, we drop the
subscripts and write • for •DOM and write 0 for 0DOM.

DOM context application Recall that abstract data in SSL may be
combined via abstract deallocation (e.g. the transition from Fig. 5.1b to
5.1a) where the subdata at an abstract address is collapsed into its coun-
terpart context hole. Data collapsing is defined in terms of context applica-
tion. As with the tree data in §4.1, we define context application d1 �x d2

for DOM data in the standard way: it is undefined when x 6∈ addr(d1);
3It is straightforward to formalise these restrictions.

147

otherwise, it is defined as d1[d2/x], denoting the standard substitution of
d2 for x in d1, provided that the result is in LDataDOM.

SSL DOM Instance (Parameter 5)

Definition 60 (DOM application). The DOM context application
function, � : LDataDOM×AAdd×LDataDOM ⇀ LDataDOM, is defined
inductively over the structure of DOM logical data as follows, where
∅† ∈ {∅f ,∅a,∅tf ,∅g,∅e} and ‡ ∈ {⊗,�,�,⊕}:

#textn[s]fs �x d undefined

sn[as, f]tsfs �x d ,

sn[as′, f]tsfs if as �x d=as′

and sn[as′, f]tsfs ∈ LDataDOM

sn[as, f ′]tsfs if f �x d=f ′

and sn[as, f ′]tsfs ∈ LDataDOM

undefined otherwise

sn[tf]fs �x d ,

sn[tf ′]fs if tf �x d=tf ′ and sn[tf ′]fs ∈LDataDOM

undefined otherwise

(#docd[∅e]tsfs &g)�xd,

#docd[∅e]tsfs &g′ if g �x d = g′ and

#docd[∅e]tsfs &g′∈LDataDOM

undefined otherwise

(#docd[e]tsfs &g)�xd,

#docd[e′]tsfs &g if e �x d = e′ and

#docd[e′]tsfs &g∈LDataDOM

#docd[e]tsfs &g′ if g �x d = g′ and

#docd[e]tsfs &g′ ∈LDataDOM

undefined otherwise

148

(#docd[y]tsfs &g)�xd,

#docd[d′]tsfs &g if y �x d = d′ and

#docd[d′]tsfs &g∈LDataDOM

#docd[e]tsfs &g′ if g �x d = g′ and

#docd[e]tsfs &g′ ∈LDataDOM

undefined otherwise

∅† �x d undefined y �x d ,

d if x = y

undefined otherwise

(d1 ‡ d2) �x d ,

d′ ‡ d2 if d1 �x d = d′

and d′ ‡ d2 ∈ LDataDOM

d1 ‡ d′ if d2 �x d = d′

and d′ ‡ d2 ∈ LDataDOM

undefined otherwise

DOM operations For the DOM library DOM, the operations comprise
the DOM Core Level 1 operations associated with i) the generic Node
interface; ii) the text, element, attribute and document node interfaces;
and iii) the NodeList interface. Similar to the tree library studied in
§4, the DOM operations comprise “lookup” operations for inspecting the
DOM tree, as well as “update” operations manipulating the structure of
the DOM tree.

SSL DOM Instance (Parameter 6)

Definition 61 (DOM operations). The set of DOM operations,
CDOM ∈ OpDOM, is defined as follows:

OpDOM = NOp ∪ TOp ∪ EOp ∪ AOp ∪ DOp ∪ NLOp

with the node operations NOp, text node operations TOp, element

149

node operations EOp, attribute node operations AOp, document node
operations DOp and NodeList operations NLOp defined by the fol-
lowing grammars, where a, c, i, m, n, o, r, s, u ∈ PVar (Def. 1):

NOp 3 C ::= r:= n.nodeName | r:= n.nodeValue | r:= n.nodeType

| r:= n.parentNode | r:= n.childNodes

| r:= n.firstChild | r:= n.lastChild

| r:= n.previousSibling | r:= n.nextSibling

| r:= n.ownerDocument | r:= u.insertBefore(m,n)

| r:= u.replaceChild(n,o) | r:= u.removeChild(o)

| r:= u.appendChild(n) | r:= n.hasChildNodes()

TOp 3 C ::= r:= n.data | r:= n.length

| r:= n.substringData(o,c) | n.appendData(a)

| n.insertData(o,s) | n.deleteData(o,c)

| n.replaceData(o,c,s) | r:= n.splitText(o)

EOp 3 C ::= r:= n.tagName | r:= n.getAttribute(s)

| n.setAttribute(s,v) | n.removeAttribute(s)

| r:= n.getAttributeNode(s)

| r:= n.setAttributeNode(a)

| r:= n.removeAttributeNode(a)

| r:= n.getElementsByTagName(s)

AOp 3 C ::= r:= n.name | r:= n.value

DOp 3 C ::= r:= n.documentElement | r:= n.createElement(s)

| r:= n.createTextNode(s) |r:= n.createAttribute(s)

| r:= n.getElementsByTagName(s)

NLOp3C ::= r:= f.length() | r:= f.item(i)

A full description of the behaviour of DOM operations is given in §A.
We proceed with a description of a select number of DOM operations.
DOM operations can be categorised into three groups as follows:

1. Operations for reading the data associated with DOM nodes such as:

150

• r:= n.parentNode: when n identifies a DOM node, the identifier
of the parent node of n is returned in r when it exists; null

is returned if n is a document or attribute node (a document
node is the top-most node and has no parent; an attribute node
is associated with an element node, but is not the child of an
element node), or if n resides in the grove.

• r:= n.length: when n identifies a text node, the length of the
value (text contents) of n is returned in r (i.e. returns a non-
negative value corresponding to the number of characters in the
value of n).

• r:= n.getAttribute(s): when n identifies an element node and
s holds a string, the attributes of n are inspected and the value
of the attribute named s is returned in r if such an attribute
exists. If n has no attribute named s then the empty string is
returned.

• r := n.name: when n identifies an attribute node, the name of n
is returned in r.

• r:= n.documentElement: when n identifies a document node,
the identifier of the document element is returned in r when it
exists; otherwise null is returned.

2. Operations for modifying the data associated with DOM nodes such
as:

• u.appendChild(n): when u and n identify DOM nodes, this
operation appends n to the end of u’s child list and returns n.
It fails if i) the result of appending does not correspond to a
well-typed DOM node (e.g. when n is a document node); or ii)
n is an ancestor of u (otherwise it would introduce a cycle and
break the DOM structure).

• n.insertData(o,s): when n identifies a text node, o holds an
integer value and s holds a string, then s is inserted into the
text contents (value) of n at offset o (indexed from 0). This
operation fails if o is an invalid offset (i.e. negative or greater
than the length of the value of n). For instance, when the value

151

of n is “lorem”, o=1 and s=“ipsum”, then n.insertData(o,s)

updates the value of n to “lipsumorem”.

• n.setAttribute(s,v): when n identifies an element node and
s and v hold strings, the attributes of n are inspected and the
value of the attribute named s is set to v if such an attribute
exists. If n has no attribute named s then the attribute set of
n is extended with a new attribute with name s and value v.

• r:= n.createElement(s) :when n identifies a document node
and s holds a safe DOM string, the DOM grove is extended
with a new element node named s. The identifier of the new
element node is returned in r. A DOM string is safe if it does
not contain the invalid ‘#’ character. The new element has no
attributes and no children. This operation fails if s holds an
unsafe string (one containing the ‘#’ character).

3. Operations for creating or reading from NodeLists such as:

• r:= n.childNodes: when n identifies a DOM node, this op-
eration compiles a NodeList containing the identifiers of the
children of node n and returns its identifier in r.

• r:= n.getElementsByTagName(s): when n identifies an element
or document node and s holds a string, this operation searches
the child list of n (using depth-first, left-to-right search), com-
piles a NodeList containing the identifiers of those element
nodes whose names match s and returns the identifier of this
NodeList in r.

• r:= f.length(): when f identifies a NodeList, the length of f

is returned in r.

• r:= f.item(i): when f identifies a NodeList and i holds an
integer, the ith item of f (indexed from 0) is returned in r. If
i holds an out-of-bounds value (i.e. negative or greater than or
equal to the length of f) then null is returned.

DOM logical values Recall that SSL assumes a library to define a set
of library-specific logical values denoting the values associated with logical
variables. For the DOM library, the set of logical values is defined as

152

the extension of DOM program values (Def. 57) with abstract addresses
(Def. 8), DOM logical data (Def. 58) and lists of DOM identifiers (Def. 56).
We include the DOM logical data in the set of logical values to allow for
writing expressions that inspect the DOM tree structure. As we demon-
strate later, we appeal to lists of identifiers to specify the behaviour of
NodeList operations.

SSL DOM Instance (Parameter 7)

Definition 62 (DOM logical values). Given the DOM identifiers
Id (Def. 56), DOM program values PValDOM (Def. 57), abstract
addresses AAdd (Def. 8) and the DOM logical data LDataDOM

(Def. 58), the set of logical values for DOM is v ∈ LValDOM ,

PValDOM ∪ AAdd ∪ LDataDOM ∪ List〈Id〉.

DOM logical expressions Recall that libraries may specify a set of log-
ical expressions in order to assert certain properties about the underlying
data. As with the tree library T studied in §4, the logical expressions
for the DOM library include logical variables and are defined by a similar
grammar to that of DOM logical data (Def. 58). We further extend the
set of DOM logical expressions with |l| and |l|i expressions describing the
length of list l and the ith element of list l, respectively. When defining
the evaluation function for DOM logical expressions, given a mathematical
list L we write |L| for the length of L, and write |L|i for the ith element
of L. It is straightforward to give a formal inductive definition for these
constructs and we have omitted them here.

SSL T Instance (Parameter 8)

Definition 63 (DOM logical expressions). The set of DOM logical
expressions, e ∈ LExpDOM, is defined by the following grammar
where x, α, l,n,e, f, s ∈ LVar (Def. 2):

e ::= x Logical variables

| α Context holes

153

| |l| List length

| |l|i List element

| #textn[e]f | sn[e1, e2]ef Text and element nodes

| sn[e]f | #docn[e1]ef & e2 Attribute and document nodes

| ∅e Empty document element

| ∅s | e1.e2 Strings

| ∅f | e1 ⊗ e2 | ∅a | e1 � e2 Forests and attribute sets

| ∅tf | e1 � e2 | ∅g | e1 ⊕ e2 Text forests and groves

The evaluation function for DOM logical expressions, (|.|)(.)
DOM :

(LExpDOM × LEnv) ⇀ LValDOM, is defined inductively over the
structure of logical expressions as follows, where Γ ∈ LEnv, ∅† ∈
{∅e,∅s,∅f ,∅a,∅tf ,∅g} and ‡ ∈ {.,⊗,�,�,⊕}:

(|x|)Γ
DOM =Γ(x) (|α|)Γ

DOM =

Γ(α) if Γ(α) ∈ AAdd

undefined otherwise

(||l||)Γ
DOM =

n if ∃L ∈ List〈Id〉. Γ(l) ∈ L ∧ |L|=n

undefined otherwise

(∣∣|l|i∣∣)ΓDOM =

n if ∃L ∈ List〈Id〉, i. Γ(l)=L

∧Γ(i)=i ∧ 0 ≤ i < |L| ∧ |L|i =n

undefined otherwise

(|#textn[e]f|)Γ
DOM =

#textn[s]fs if ∃n, fs, s.

Γ(n)=n and Γ(f)=fs

and (|e|)Γ
DOM =s

undefined otherwise

(|sn[e1, e2]ef|)
Γ
DOM =

sn[as, f]tsfs if ∃s, n, fs, ts,as, f .
Γ(s)=s and Γ(n)=n

and Γ(f)=fs and Γ(e)=ts

and (|e1|)Γ
DOM =as

and (|e2|)Γ
DOM =f

undefined otherwise

154

(|sn[e]f|)Γ
DOM =

sn[tf]fs if ∃s, n, fs, tf .

Γ(s)=s and Γ(n)=n

and Γ(f)=fs and (|e|)Γ
DOM =tf

undefined otherwise

(|#docn[e1]ef & e2|)Γ
DOM =

#docn[d]tsfs & g if ∃n,fs,ts,d,g.Γ(n)=n

and Γ(f)=fs

and Γ(e)=ts

and (|e1|)Γ
DOM =d

and (|e2|)Γ
DOM =g

undefined otherwise

(|∅†|)Γ
DOM =∅†

(|e1 ‡ e2|)Γ
DOM =

d1 ‡ d2 if (|e1|)Γ
DOM =d1 and (|e2|)Γ

DOM =d2

undefined otherwise

DOM data assertions Recall that given a library A, the SSL assertions
for A comprise heap assertions describing abstract heaps in LHeapA. Heap
assertions in turn are defined via data assertions, describing the underly-
ing data in LDataA. Data assertions include generic (library-independent)
data assertions that include the standard connectives such as conjunction,
as well as library-specific assertions in LAstA. For the DOM library DOM,
the library-specific data assertions comprise assertions to describe DOM
nodes, forests, attribute sets, text forests and groves.

Definition 64 (DOM data assertions). Given the DOM-specific data asser-
tions LAstDOM (Def. 65), the set of DOM data assertions is ∆ ∈ DAstDOM,
defined as the instantiation of the parametric data assertions DAst〈.〉
(Def. 19) with LAstDOM.

Given the DOM logical values LValDOM (Def. 62), the logical environ-
ments LEnv 〈LValDOM〉 (Def. 2) and the DOM logical data LDataDOM

(Def. 58), the satisfiability relation for DOM data assertions, ||=DOM :

(LEnv 〈LValDOM〉 × LDataDOM) × DAstDOM, is defined as the instantia-

155

tion of the parametric satisfiability relation ||=〈.〉 (Def. 20) with LValDOM,
LDataDOM and DAstDOM.

SSL T Instance (Parameter 9)

Definition 65 (DOM-specific data assertions). The set of DOM-
specific data assertions, Λ ∈ LAstDOM, is defined by the follow-
ing grammar, where α,n, s,e, f ∈ LVar (Def. 2) and ∆,∆1,∆2 ∈
DAstDOM (Def. 64):

Λ ::= α Context hole

| #textn[∆]f | sn[∆1,∆2]ef Text and element nodes

| sn[∆]f | #docn[∆1]ef & ∆2 Attribute and document nodes

| ∅e Empty document element

| ∅s | s | ∆1.∆2 Strings

| ∅f | ∆1 ⊗∆2 | ∅a | ∆1 �∆2 Forests and attribute sets

| ∅tf | ∆1 �∆2 | ∅g | ∆1 ⊕∆2 Text forests and groves

Given the DOM logical values LValDOM (Def. 62), the logical
environments LEnv 〈LValDOM〉 (Def. 2), the DOM logical data
LDataDOM (Def. 58) and the DOM data assertion satisfiability rela-
tion ||=DOM (Def. 64), the satisfiability relation for DOM-specific data
assertions, |||=DOM: (LEnv 〈LValDOM〉 × LDataDOM) × LAstDOM, is
defined as follows, for all Γ ∈ LEnv 〈LValDOM〉 and d ∈ LDataDOM,
where ∅† ∈ {∅f ,∅a,∅tf ,∅g} and ‡ ∈ {⊗,�,�,⊕}:

Γ,d |||=DOM α iff Γ(α) = d ∧ d ∈ AAdd

Γ,d |||=DOM #textn[∆]f iff ∃s, n, fs. Γ(n)=n ∧ Γ(f)=fs

∧d=#textn[s]fs ∧ Γ, s ||=DOM ∆

Γ,d |||=DOM sn[∆1,∆2]ef iff ∃s,n,as,f ,fs,ts. Γ(s)=s ∧ Γ(n)=n

∧Γ(f)=fs ∧ Γ(e)=ts

∧d=sn[as, f]tsfs
∧Γ,as ||=DOM ∆1

∧Γ, f ||=DOM ∆2

156

Γ,d |||=DOM sn[∆]f iff ∃s, n, tf , fs. Γ(s)=s ∧ Γ(n)=n

∧Γ(f)=fs ∧ d=sn[tf]fs
∧Γ, tf ||=DOM ∆

Γ,d |||=DOM #docn[∆1]ef &∆2 iff ∃n,d′,g,fs,ts. Γ(n)=n ∧ Γ(f)=fs

∧Γ(e)=ts

∧d=#docn[d′]tsfs & g
∧Γ,d′ ||=DOM ∆1

∧Γ,g ||=DOM ∆2

Γ,d |||=DOM ∅† iff d = ∅†
Γ,d |||=DOM ∆1 ‡∆2 iff ∃d1,d2. d=d1 ‡ d2

∧Γ,d1 ||=DOM ∆1

∧Γ,d2 ||=DOM ∆2

We drop the tag and forest listeners when not relevant to the discussion
and write e.g. sn[∆1,∆2] for ∃f,e. sn[∆1,∆2]ef.

Definition 66 (DOM heap assertions). Given the DOM data assertions
DAstDOM (Def. 64), the set of DOM heap assertions is HAstDOM, defined
as the instantiation of the parametric heap assertions HAst〈.〉 (Def. 19)
with DAstDOM.

As before, when the type of data is clear from the context, we drop the
subscripts and write • for •DOM and write 0 for 0DOM.

DOM library specification We give a select number of DOM axioms
in Figs. 5.2-5.3, including those of the operations used in the client pro-
grams in §5.4. The behaviour of some of the operations is captured by
several axioms. We omit the analogous cases here and give the full DOM
axiomatisation of our fragment in §A.
As before, the assertions in the pre- and postconditions of axioms make

use of the ∗ connective as well as the vars(. . .) ∗ Θ where the vars predi-
cate describes the values associated with program variables, and Θ is an
SSL assertion that describes the operation footprint. However, recall that
the SSL assertion language does not include the ∗ connective or the vars

predicate for describing a variable store. As we aim to incorporate our
DOM SSL specification into JSLogic as an add-on, The ∗ connective and

157

the vars predicate used in the specifications of Figs. 5.2-5.3 are those of
JSLogic presented in the following section. We proceed with a description
of the axioms.

r := n.nodeValue: when n=n identifies a DOM node, the value of node
n is returned in r. The axiom in Fig. 5.2 shows the case for when n

identifies a text node with value s.

r := n.childNodes: when n=n, this operation returns the identifier of
a forest listener NodeList f associated with node n. Fig. 5.2 shows the
axiom for when n identifies an element node. When asked for a forest
listener NodeList, a node may either return an existing one, or generate a
fresh one and extend its set with it. This flexibility is due to an under-
specification in the standard. As such, in the postcondition the original
set f1 is extended to f2 (f1 ⊆ f2) with the return value f ∈ f2. Since
the operation footprint is limited to the child forest of n, the attributes
of n have been framed off leaving behind the context hole β. The pure
assertion TIDs(t, l) states that the top-level node identifiers (from left to
right) of the forest denoted by t correspond to the list l. For instance,
TIDs(t, [9, 6]) holds in Fig. 5.1a when t denotes the child forest of node
4 (named “body”). Note that TIDs(t, l) implies that there are no context
holes at the top level of t. As such, the TIDs(t, l) stipulates that the
forest t contain enough resource for compiling a list l of the immediate
children of n. The TIDs(t, l) is a derived assertion defined in Fig. 5.4.
It is defined inductively, following the structure of DOM forests (or text
forests).

r := n.firstChild: when n=n identifies a DOM node, the identifier of
the first child of n is returned in r. The axioms in Fig. 5.2 show the cases
for when n identifies a document node. In the first axiom the document
node has a child (i.e. the document element) with identifier m. In the
second axiom the document has no children (i.e. the document element is
empty) and thus null is returned. The operation footprint is limited to
node n and its child m. As such, the grove of n, as well as the child forest
and attributes of m have been framed off leaving behind the context holes
δ, β and γ, respectively.

r := n.nextSibling: when n=n identifies a DOM node, the identifier of
its right sibling is returned. Fig. 5.2 shows some of the cases for when n

identifies a text node. In the first axiom, n has a right sibling (r); in the

158

{
vars(n:n, r:r) ∗ α 7→#textn[s]f

}
r := n.nodeValue

{
vars(n:n, r:s) ∗ α 7→#textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β,t]ef1 ∗ TIDs(t, l)

}
r := n.childNodes{

∃f, f2. vars(n : n, r : f) ∗ α 7→ sn[β,t]ef2 ∗ f∈̇f2 ∗ f1⊆̇f2

}
{
vars(n : n, r : r) ∗ α 7→ #docn[sm[β,γ]e

′

f′]
e
f & δ

}
r := n.firstChild{

vars(n : n, r : m) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ #docn[∅e]ef & δ

}
r := n.firstChild{

vars(n : n, r : null) ∗ α 7→ #docn[∅e]ef & δ
}

{
vars(n : n, r : r) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′
}

{
vars(n : n, r : r) ∗ α 7→ su[β, γ ⊗#textn[s′]f]ef′

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ su[β, γ ⊗#textn[s′]f]ef′
}

{
vars(u : u, o : o, r : r) ∗ α 7→ su[β, γ1 ⊗#texto[s′]f′ ⊗ γ2]ef ∗ δ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ su[β, γ1 ⊗ γ2]ef ∗ δ 7→ #texto[s′]f′
}

{
vars(u : u, o : o, r : r) ∗ α 7→ su[β1 �#texto[s′]f′ � β2]f ∗ γ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ su[β1 � β2]f ∗ γ 7→ #texto[s′]f′
}

{
vars(u : u, n : n, r : r) ∗ α 7→ su[β, γ]e1

f1 ∗ δ 7→ s′n[ε,t]e2
f2 ∗ complete(t)

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ α 7→ su[β, γ ⊗ s′n[ε,t]e2
f2]e1

f1 ∗ δ 7→ (∅f ∨∅g)
}

{
vars(f : f, r : r) ∗ α 7→ sn[β,t]ef′ ∗ TIDs(t, l) ∗ f∈̇f′

}
r := f.length(){

∃r. vars(f : f, r : r) ∗ α 7→ sn[β,t]ef′ ∗ r=̇ |l|
}

{
vars(f : f, r : r) ∗ α 7→ sn[β,t]ef′ ∗ srch(t, s′, l) ∗ (s′, f)∈̇e

}
r := f.length(){

∃r. vars(f : f, r : r) ∗ α 7→ sn[β,t]ef′ ∗ r=̇ |l|
}

{
vars(f : f, i : i, r : r) ∗ α 7→ sn[t� γ]f′ ∗ TIDs(t, l) ∗ 0≤̇i<̇ |l| ∗ f∈̇f′

}
r := f.item(i){

∃r. vars(f : f, i : i, r : r) ∗ α 7→ sn[t� γ]f′ ∗ r=̇ |l|i
}

{
vars(f : f, i : i, r : r) ∗ α 7→ #docu[t]ef′ & β ∗ srch(t, s, l) ∗ (s, f)∈̇e ∗ 0≤̇i<̇ |l|

}
r := f.item(i){

∃r. vars(f : f, i : i, r : r) ∗ α 7→ #docu[t]ef′ & β ∗ r=̇ |l|i
}

Figure 5.2.: DOM Node and NodeList axioms (excerpt)

159

{
vars(n : n, o : o, c : c, r : r) ∗ α 7→ #textn[s1.s2.s3]f ∗ o=̇ |s1| ∗ c=̇ |s2|

}
r := n.substringData(o, c){

vars(n : n, o : o, c : c, r : s2) ∗ α 7→ #textn[s1.s2.s3]f
}

{
vars(n : n, o : o, c : c, r : r) ∗ α 7→ #textn[s1.s2]f ∗ o=̇ |s1| ∗ c≥̇ |s2|

}
r := n.substringData(o, c){

vars(n : n, o : o, c : c, r : s2) ∗ α 7→ #textn[s1.s2]f
}

{
vars(n : n, o : o, r : r) ∗ α 7→ #textn[s.s′]f ∗ o=̇ |s|

}
r := n.splitText(o){

∃r, f′. vars(n : n, o : o, r : r) ∗ α 7→ #textn[s]f ⊗#textr[s′]f′
}

{
vars(n : n, s : s′, r : r) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef ∗ val(t, s′′)

}
r := n.getAttribute(s){

vars(n : n, s : s′, r : s′′) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef
}

{
vars(n : n, s : s′, r : r) ∗ α 7→ sn[a, γ]ef ∗ outn(a, s′)

}
r := n.getAttribute(s){

vars(n : n, s : s′, r : “”) ∗ α 7→ sn[a, γ]ef
}

{
vars(n : n, s : s′, v : s′′) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef ∗ δ 7→ ∅g ∗ grove(t,g)

}
n.setAttribute(s, v){

∃r, f′′. vars(n : n, s : s′, v : s′′) ∗ α 7→ sn[β � s′m[#textr[s′′]f′′]f′ , γ]ef ∗ δ 7→ g
}

{
vars(n : n, s : s′, v : s′′) ∗ α 7→ sn[a, γ]ef ∗ outn(a, s′)

}
n.setAttribute(s, v){

∃r,m, f′, f′′. vars(n : n, s : s′, v : s′′) ∗ α 7→ sn[a� s′m[#textr[s′′]f′′]f′ , γ]ef
}

{
vars(n : n, a : a, r : r) ∗ α 7→ sn[β � s′a[s′′]f′ , γ]ef ∗ δ 7→ ∅g

}
r := n.removeAttributeNode(a){

vars(n : n, a : a, r : a) ∗ α 7→ sn[β, γ]ef ∗ δ 7→ s′a[s′′]f′
}

{
vars(n : n, s : s, r : r) ∗ α 7→ s′n[β,t]ef ∗ srch(t, s, l)

}
r := n.getElementsByTagName(s){

∃r,e′. vars(n : n, s : s, r : r) ∗ α 7→ s′n[β,t]e
′

f ∗ e⊆̇e′ ∗ (s,r) ∈ e′
}

{
vars(n : n, r : r) ∗ α 7→ sn[t]f ∗ val(t, s′)

}
r := n.value{

vars(n : n, r : s′) ∗ α 7→ sn[t]f
}

{
vars(n : n, r : r) ∗ α 7→ #docn[sm[β, γ]e

′

f′]
e
f & δ

}
r := n.documentElement{

vars(n : n, r : m) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, s : s, r : r) ∗ α 7→ #docn[β]ef & γ ∗ safe(s)

}
r := n.createAttribute(s){

∃r,f′. vars(n : n, s : s, r : r) ∗ α 7→ #docn[β]ef & γ ⊕ sr[∅tf]f′
}

Figure 5.3.: DOM text, element, attribute and document axioms (excerpt)

160

second, n has no right sibling and is the last child of its parent (u).

r := u.removeChild(o) : when u=u and o=o both identify DOM nodes,
this operation removes o from the child list of u, moves o to the document
grove (DOM nodes are never deleted; orphaned nodes are simply added to
the grove) and then returns o in r. Fig. 5.2 depicts the axiom for removing
a text node (o) from an element node (u). The δ 7→ ∅g assertion in the
precondition simply reserves an empty spot in the grove (denoted by ∅g).
In the postcondition, node o is removed from u and added to the grove.

r := u.appendChild(n): when u=u and n=n both identify DOM nodes,
this operation appends n to the end of u’s child list and returns n in r.
Recall that this operation fails if n is an ancestor of u (otherwise it would
introduce a cycle and break the DOM structure). Fig. 5.2 shows the axiom
for when n identifies an element node. As with the appendChild operation
of the tree library T studied in §4, to ensure that n is not an ancestor
of u, we require the entire subtree at o to be separate from the subtree
at n. This is achieved by the complete(t) assertion and the separating
conjunction ∗. The complete(t) is a derived assertion defined in Fig. 5.4
and describes DOM data with no context holes. The postcondition leaves
∅f ∨ ∅g in place of n once moved since we do not know if o has come
from a forest or grove position. The disjunction leaves the choice to the
frame.

r := f.length: when f=f identifies a NodeList, its length is returned
in r. The first axiom in Fig. 5.2 describes the case when f identifies
a forest listener NodeList on element node n; the return value is the
number of n’s immediate children. This is captured by the TIDs(t, l)

assertion (defined in Fig. 5.4) stating that list l contains the identifiers
of the immediate children of n. The return value is thus the length of l

(|l|). Analogously, the second axiom describes the case when f identifies
a tag listener NodeList on n, listening for tag name s′. The return value
in this case is the length of list l corresponding to a pre-order (depth-
first, left-to-right) search for string s′ on the child forest of n. The pure
assertion srch(t, s′, l) states that child forest t (underneath n) contains
enough resource for compiling a pre-order list l of elements named s. The
srch(t, s′, l) assertion holds when either i) s′=“*” denoting a wildcard and
l contains the identifiers of all element nodes in forest t; or ii) s′ 6=“*”

and l contains the identifiers of those element nodes in forest t whose

161

complete(t) , (t=̇∅f) ∨
(
∃n,t′. t=̇#textn[−] ⊗ t′ ∗ complete(t′)

)
∨
(
∃s′,n,f,t′,l′. t=̇s′n[−, f] ⊗ t′ ∗ complete(f) ∗ complete(t′)

)
∨ (t=̇∅tf) ∨ (∃n,t′.t=̇#textn[−] � t′∗ complete(t′)

)
TIDs(f, l) , (f=̇∅f ∗ l=̇[]) ∨ (∃n, f′, l′. f=̇#textn[−]⊗f′ ∗ TIDs(f′, l′) ∗ l=̇n:l′)

∨
(
∃s′,n,f′,l′. f=̇s′n[−,−]⊗f′ ∗ TIDs(f′, l′) ∗ l=̇n:l′)

∨ (f=̇∅tf ∗ l=̇[]) ∨ (∃n, f′,l′.f=̇#textn[−]�f′∗TIDs(f′, l′)∗l=̇n:l′)

srch(f, s, l) , (f=̇∅f ∗ l=̇[]) ∨ (∃n, f′. f=̇#textn[−]⊗f′ ∗ srch(f′, s, l))
∨
(
∃s′,n,f1,f2,l1,l2.f=̇s′n[−, f1]⊗f2 ∗ srch(f1, s, l1) ∗ srch(f2, s, l2)

∗(s=̇s′∨ s=̇“ * ” ⇒ l=̇n:(l1++l2))∗(s ˙6=s′∧ s ˙6=“ * ” ⇒ l=̇l1++l2)
)

val(t, s) , (t=̇∅tf ∗ s=̇“”)
∨ (∃n, s1, s2,t′. t=̇#textn[s1] � t′ ∗ val(t′, s2) ∗ s=̇s1.s2)

outn(a, s) , (a=̇∅a) ∨ (∃s′,n,a′. a=̇s′n[−] � a′ ∗ s ˙6=s′ ∗ outn(a′, s))

outid(a,n) , (a=̇∅a) ∨ (∃s,n′,a′. a=̇sn′ [−] � a′ ∗ n ˙6=n′ ∗ outid(a′,n))

grove(tf,g) , (tf=̇∅tf ∧ g=̇∅g)∨(
∃n,s,f,tf′,g′. tf=̇#textn[s]f�tf′∗ grove(t′,g′)∗g=̇#textn[s]f⊕g′

)
safe(s) ,¬∃s1, s2. s=s1.“#”.s2

Figure 5.4.: Derived assertions for DOM

names are equal to s. For instance, when t denotes the child forest of
node 9 (named “ad”) in Fig. 5.1a, then srch(t, img”, [3, 8]) holds. The
srch(t, s′, l) is a derived assertion defined in Fig. 5.4. This predicate is
defined inductively, following the structure of DOM forests.

r := f.item(i): when f=f identifies a NodeList, the ith element of
f is returned in r. The axioms in Fig. 5.2 are analogous to those of
r := f.length with |l|i denoting the ith item of list l.

r := n.substringData(o,c): when n=n identifies a text node with value
s and both o=o and c=c denote integer values, the substring of s between
index o (inclusive) and index o+c (exclusive) is returned in r. If o+c

exceeds the length of s, then the substring from index o (inclusive) to the
end of s is returned. The first axiom in Fig. 5.3 describes the case when
o+c does not exceed the length of s. The second axioms describes the
case when o+c does exceed the length of s.

r := n.splitText(o): when n=n identifies a text node and o=o denotes
an integer, the data of n is split into two text nodes at offset o (indexed
from 0), keeping both nodes in the tree as siblings and returning the

162

identifier of the new text node (i.e. r) in r.

r := n.getAttribute(s): when n=n identifies an element node and s=s′

denotes a string value, if the attribute set of n contains an attribute named
s′, then its value is returned in r; otherwise null is returned. The first
axiom in Fig. 5.3 shows the case when the attribute set of n contains an
attribute named s’ with its value captured by the text forest t. The pure
assertion val(t, s′′) in the precondition states that the value denoted by
text forest t (i.e. the concatenated values of the text nodes in t) is s”. The
val(t, s′′) is a derived assertion defined in Fig. 5.4. This predicate is defined
inductively, following the structure of DOM text forests. Analogously, the
second axiom in Fig. 5.3 shows the case when the attribute set of n

(namely a) does not contain an attribute named s’, as described by the
pure assertion outn(a, s). The outn(a, s) is also a derived assertion defined
inductively in Fig. 5.4, following the structure of DOM text forests. The
analogous pure assertion outid(a,n) in Fig. 5.4 states that the attribute set
a does not contain an attribute with identifier n. This assertion is used to
specify the behaviour of the analogous r := getAttributeNode operation
(see §A).

n.setAttribute(s, v): when n=n identifies an element node and s=s′

and v=s′′ denote string values, if the attribute set of n contains an at-
tribute named s′, then its value is set to s′′; otherwise a new attribute
with name s′ and value s′′ is added to the attribute set of n. Recall
that attribute nodes may have an arbitrary number of text nodes as their
children with the concatenated values of the text nodes denoting the value
of the attribute. As such, when n contains an attribute named s′ (first
axiom), its value is set to s′′ by removing its existing children, creating a
new text node with value s′′ and attaching it to s′. The δ 7→ ∅g assertion
in the precondition reserves an empty spot (∅g) in the grove for the chil-
dren of s′ which are to be removed. The pure assertion grove(tf,g) simply
coerces the ordered set of text nodes in the text forest tf to an unordered
set of nodes in the grove g. The grove(t,g) is a derived assertion defined
in Fig. 5.4. In the postcondition, the removed nodes in g are moved to
the empty grove spot at δ. On the other hand, when n does not contain
an attribute named s′ (second axiom), its attribute set (a) is extended
with a new attribute named s′. The value of s′ in turn is set to s′′ by
creating a new text node with value s′′ and attaching it to s′.

163

r := n.removeAttributeNode(a): when n=n identifies an element node
and a=a denotes an attribute node, this operation removes a from the
attribute set of n, moves a to the document grove and then returns a in
r. As before, the δ 7→ ∅g assertion in the precondition reserves an empty
spot (∅g) in the grove. In the postcondition, node a is removed from the
attribute set of n and moved to the grove.
r := n.getElementsByTagName(s): when n=n identifies an element or

document node and s=s denotes a string value, this operation returns
a tag listener NodeList listening on the forest underneath n for element
nodes named s. The axiom in Fig. 5.3 describes the case when n identifies
an element node. As with the r := n.childNodes operation described
above, due to an under-specification in the standard, when asked for a tag
listener NodeList a node may either return an existing one, or generate
a fresh one and extend its set with it. Thus, in the postcondition the
original set e is extended to e′ (e ⊆ e′). The return value is a NodeList
identified by some r such that (s,r) ∈ e′.
r := n.value: when n=n identifies an attribute node, the value of node

n is returned in r.
r := n.documentElement: when n=n identifies a document node, the

identifier of its document element is returned in r when it exists; otherwise
null is returned. The axiom in Fig. 5.3 shows the case when the document
element of node n is not empty.
r := n.createAttribute(s): when n=n identifies a document node and

s=s denotes a safe string value (one not containing the invalid character
‘#’), then a new attribute node named s is created (in the grove) and
its identifier is returned in r. The new attribute has no children (i.e. its
text forest is empty) and resides in the grove. The original grove in the
precondition (γ) is thus extended with the new node in the postcondition.
The pure assertion safe(s) is defined in Fig. 5.4 and states that the name
s is safe.

Comparison to existing work (locality) The DOM specification in
the existing work [24, 52] does not provide small enough axioms for all
operations. In particular, the axioms of the insertBefore, replaceChild
and appendChild operations require substantial over-approximations of
their respective footprints. This was indeed noted by the authors at the

164

time. Consider the axiom of the u.appendChild(n) operation given below
using multi-holed context logic [6] (adapted to our notation)4:

{
vars(u : u, n : n, r : r) ∗ (C •α su[a, γ]ef) •β s′n[a′,t]e

′
f′

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ (C •α su[a, γ ⊗ s′n[a′,t]e
′

f′]
e
f) •β ∅f

}
The precondition specifies that the DOM tree can be split into a subtree
with top element node n, and a tree context with context hole variable β
satisfying the C •α su[a, γ]ef formula. This formula states that the context
can be further split into a subcontext with top element node u and a
context C with hole α. In the postcondition the tree at n is moved to
be the last child of u and its place holder (β) is replaced by the empty
forest. The surrounding context, C, remains the same. This axiom is
not small enough in that it does not capture the intuitive footprint of
appendChild. The only part of the tree that appendChild requires is the
tree at n which is being moved, and the element node u whose children
are being extended by n. However, the precondition above also requires
the surrounding linking context C. This context is needed to describe
the entire sub-tree containing both node u and n (provided that n is not
an ancestor of u). This results in a significant overapproximation of the
footprint. It is possible to put additional constraints on C to insist that
it is minimal. But this would still not be small enough.

Comparison to existing work (live collections) In [24, 52] an axiom
for r := n.childNodes is given as follows (adapted to our notation):{
vars(n:n,r:r)∗α 7→sn[β,γ]ef

}
r:=n.childNodes

{
vars(n:n,r:f)∗α 7→sn[β,γ]ef

}
where f is a single forest listener. This axiom is too strong. In particular,
we can verify the following specification, stating that when the program

4The axiom in [24, 52] is given using single-holed context logic [7]. The multi-holed
axiom is simpler and smaller, but still not small enough.

165

terminates we have x=y=f.{
vars(n : n, x : x, y : y) ∗ α 7→ sn[β, γ]ef

}
x := n.childNodes; y := n.childNodes{
vars(n : n, x : f, y : f) ∗ α 7→ sn[β, γ]ef

}
However, this behaviour is not guaranteed by the DOM standard.
We correct this in the axiom of Fig. 5.2 by associating each node with

a set of forest listeners.

Recall from §3.2 that given a programming language PL with an SL-
based program logic PLogic, we extend PLogic with SSL in order to
reason about client programs written in PL. In what follows we instanti-
ate the methodology presented in §3.2 to extend the SL-based JavaScript
program logic of [21] in order to reason about several DOM client programs
written in JavaScript.

5.3. JSLogicDOM Reasoning Framework

In order to reason about the client programs of DOM, we appeal to the
SL-based JavaScript (JS) program logic presented in [21], hereafter referred
to as JSLogic. In §3.2 we presented a general methodology for extending
an SL-based program logic PLogic to PLogicA in order to enable A client
reasoning, provided that PLogic meets certain assumptions delineated in
grey boxes labelled “PLogic Parameter”. We describe how we instantiate
this methodology in order to extend JSLogic to JSLogicDOM and use it
to reason about the client programs of the DOM library. As before, we
present the various JSLogic components enclosed in dashed boxes labelled
“JSLogic Instance (Parameter X)”, where X is the reference to the corre-
sponding PLogic parameter. We then use JSLogicDOM to reason about
two ad-blocker programs that call DOM operations.
Recall that PLogic requires several of its components to be defined by

generic constructors parametric in the choice of their primitive building
blocks. For instance, Par. 12 stipulates that the PL operations be defined
by a parametric set Op 〈O〉, where O denotes a set of primitive opera-
tions such that O ⊆ Op 〈O〉. As we demonstrated for WLogic in §3.2,

166

we can typically meet these stipulations by defining the required generic
constructor via an inductive grammar where the primitive building blocks
correspond to the base cases of the grammar. For instance, we define the
generic WL operation set WOp 〈O〉 (Def. 27) by an inductive grammar
of the form C ::= o | C1;C2 | . . . , where o ∈ O and C ∈ WOp 〈O〉. We
then identify the WL operations as either primitive (i.e. a base case of the
grammar and thus in O, e.g. x = e), or composite (i.e. an inductive case of
the grammar and thus in WOp 〈O〉, e.g. C1; C2).

It is straightforward to follow the same pattern for JSLogic: we can de-
fine the sundry generic constructors by parametric inductive grammars and
then categorise their constituents as either primitive or composite. We be-
lieve this format to be familiar to the reader by now. As such, rather than
defining parametric inductive grammars and then distinguishing primitive
constituents from composite ones, we opt for simple (non-parametric) in-
ductive grammars to keep the definitions concise. Note that in order to
lift a simple inductive grammar to a parametric one, it suffices to replace
the base cases of the grammar with o ∈ O, where O denotes a superset of
the base cases (e.g. O ⊇ PrimWOp for the WL operations in Def. 27).

JS program values The set of JS program values comprises basic values,
memory locations, and lambda abstractions. Basic values include numbers,
strings, the special constant undefined and the null location. Lambda
abstractions are used to represent the values of JavaScript functions in the
heap and are of the form λx1 · · · xn.e.

JSLogic Instance (Parameter 10)

Definition 67 (JS program values). The set of JS basic values, v ∈
JSBasicVal, is defined by the following grammar where n denotes
a number and s denotes a string:

v ::= n | s | null | undefined

The set of JS locations is l ∈ L ⊆ N+. The set of JS program
values, v ∈ JSPVal, is defined by the following grammar where

167

v ∈ JSBasicVal, x1 · · · xn ∈ PVar (Def. 1) and e ∈ JSOp (Def. 69).

v ::= v | l | λx1 · · · xn.e

JS program states The JS program states are JavaScript heaps. A
JavaScript heap is a partial function mapping references, which are pairs
of memory locations and field names, to values. Field names are a subset
of program variable names, and do not include keywords such as var, or
the reserved internal names @scope, @body, @proto and @this(described in
due course). A heap cell is written (l, x) 7→ 7, stating that the object at l
has a field named x and holds value 7.

JSLogic Instance (Parameter 11)

Definition 68 (JS program heaps). Given the set of program vari-
ables PVar (Def. 1), the set of JS field names is x ∈ X ⊂ PVar.
Given the set of JS locations L (Def. 67), the set of JS references
is r ∈ JSRef , L× X.
Let V ⊇ JSPVal denote an extension of JS program values (Def. 67).
The set of parametric program heaps is:

h ∈ JSPHeap 〈V〉 , JSRef
fin
⇀ V

Programming language The JS operations, e ∈ JSOp, comprise vari-
able lookup (x), basic values (v), this, local variable declaration (var
x), sequential composition (e1;e2), object property lookup (e.x), com-
puted access (e[e’]), assignment (e1 = e2), arithmetic and boolean ex-
pressions (e1	 e2 where 	 ∈ {+,−, ∗, /,&&, ||,==}), string concatena-
tion (e1.e2), conditional expressions (if (e) then {e1} else {e2}), loops
(while (e) {e’}), function call (e(e’)), anonymous function declaration
(function (x){e}), function declaration (function f(x){e}), the with
statement (with (e) {e’}), constructors (new e1(e2)), literal object dec-
laration ({x1:e1...xn:en}), and deletion (delete e).
We define the JS operations by an inductive grammar where x, v, this,

and var x constitute the base cases, and the remaining operations form

168

the inductive cases. As discussed above, it is straightforward to lift this
grammar to a generic one parametric in the choice of its primitive opera-
tions O (where O ⊇ {x, v, this, var x} denotes an extension of the bases
cases), by replacing the base cases with o ∈ O.

JSLogic Instance (Parameter 12)

Definition 69 (JS operations). The set of JS operations, e ∈ JSOp,
is defined by the following grammar where x, f ∈ PVar (Def. 1),
v ∈ JSBasicVal (Def. 67) and 	 ∈ {+,−, ∗, /,&&, ||,==}:

e ::= x | v | this | var x | e1;e2 | e.x | e[e’] | e1 = e2 | e1	 e2

| e1.e2 | if (e) then {e1} else {e2} | while(e){e’}
| e(e’) | function (x){e} | function f(x){e} | with(e){e’}
| new e1(e2) | {x1:e1...xn:en} | delete e

Definition 70 (JSDOM operations). Given the JS operations JSOp (Def. 69),
and the DOM operations OpDOM (Def. 61), the set of JSDOM operations,
JSOpDOM, is constructed from JSOp and OpDOM as described in Def. 26.

JS semantics The JS semantics is defined via a big-step operational
semantics relation. In JSDOM we extend the JS operational semantics to a
generic semantics function and extend it with the semantics of the DOM li-
brary as described in §3 (Def. 28). As we demonstrated in §3 for WLogic,
it is straightforward to lift a big-step operational semantics relation to
a generic semantics function. Lifting the JS operational semantics to a
generic semantics function is in the same vein and requires no additional
machinery. We thus omit the JS semantics here; the detailed operational
semantics of JS is given in [21, 22].
Recall that as per the methodology described in §3.2, in JSDOM the

semantics of JS is extend to incorporate the low-level semantics of the
DOM operations. In keeping with the axiomatic spirit of the DOM stan-
dard [44], we do not devise a low-level DOM semantics and opt instead
for the default semantics provided by Par. 20 in §3. As we mentioned
earlier, often when the low-level semantics of a library is not provided, the
axiomatic specification of the library operations is justified with respect

169

to an implementation of the library operations. In §7 we provide an im-
plementation of the operations of our DOM fragment and describe how
to justify the correctness of our axiomatic DOM specification against this
implementation.

JSLogic logical values The set of logical values for JSLogic is defined
as the extension of JS program values (Def. 57) with lists, sets, JS op-
erations (expressions) in Def. 69, and a special value � (read none). As
we describe shortly, the � value is used to describe the absence of a field
from an object in the JavaScript heap.

JSLogic Instance (Parameter 14)

Definition 71 (JSLogic logical values). The set of JavaScript logical
values, v ∈ JSLVal, is defined by the following grammar where
w ∈ JSPVal (Def. 67), L ∈ List〈JSLVal〉, S ∈ P (JSLVal) and
e ∈ JSOp (Def. 69):

v ::= w | L | S | e | �

JSLogic logical states The JSLogic logical states are logical JS heaps.
A logical JS heap is a program heap which may additionally contain the
special � value (read none) in its range. That is, a logical JS heap is a
partial function mapping references (Def. 68) to program values (Def. 67)
or the � value. As with program heaps, a logical heap cell is written
(l, x) 7→ 7, stating that the object at l has a field named x and holds value
7. Additionally, the absence of a field is denoted by the special � value.
That is, we write (l, y) 7→ � to state that the object at l has no field
named y. Logical heap composition, ◦, is defined as the standard disjoint
function union. An empty logical heap is defined as the function with an
empty domain. For brevity, (l, x1) 7→ v1 ◦ . . . ◦ (l, xn) 7→ vn is written as
l 7→ {x1 : v1, . . . , xn : vn}.

170

JSLogic Instance (Parameter 15)

Definition 72 (JSLogic partial commutative monoid). Let V ⊇
JSPVal] {�} denote an extension of JS program values (Def. 67)
combined with �.
Given the set of JS references JSRef (Def. 68), the set of parametric
logical heaps is h ∈ JSLHeap 〈V〉 , JSRef

fin
⇀ V.

The parametric logical heap composition, ◦〈V〉 : JSLHeap 〈V〉 ×
JSLHeap 〈V〉 ⇀ JSLHeap 〈V〉, is defined as the standard disjoint
function union].
The parametric unit set, JSUnit 〈V〉 ∈ P (JSLHeap 〈V〉), is defined
as JSUnit 〈V〉 , {0}, where 0 denotes a function with an empty
domain.
The parametric JSLogic PCM is JSPCM 〈V〉 ,

(JSLHeap 〈V〉 , ◦〈V〉, JSUnit 〈V〉).
The JSLogic PCM is (JSLHeap, ◦, JSUnit) , JSPCM 〈JSPVal〉.

Definition 73 (JSLogicDOM partial commutative monoid). Given the sep-
aration algebra of DOM logical heaps (LHeapDOM, •,0) in Def. 59, the
parametric JS heaps JSLHeap 〈.〉 (Def. 72), the JS program values JSPVal

(Def. 67) and the DOM program values PValDOM (Def. 57), the set of
JSLogicDOM logical states is:

JSLHeapDOM , JSLHeap 〈JSPVal ∪ PValDOM〉 × LHeapDOM

Given the parametric JS heap composition ◦〈.〉 (Def. 72), the state com-
position for JSLogicDOM is defined component-wise as + , (◦〈PValDOM〉, •)
and is not defined when the composition on either component is undefined.
Given the parametric JS heap unit set JSUnit 〈.〉 (Def. 72), the unit set

for JSLogicDOM is JSUnitDOM , {(h,0) | h ∈ JSUnit 〈PValDOM〉}.
The JSLogicDOM partial commutative monoid of is (JSLHeapDOM,+,

JSUnitDOM).

JavaScript variable store Unlike most languages, JavaScript does not
have a standard notion of variable store. Instead, JavaScript variables are
stored in the heap, in a structure that emulates a variable store. This
structure comprises a list of scope objects, referred to as the scope chain,

171

analogous to stack frames in other languages. The standard list notation
is used to describe scope chains (e.g. [], l:L, L1++L2). Every object in the
scope chain has a pointer to a list of prototypes, referred to as the proto-
type chain, providing prototype-based inheritance. Prototype chains either
end with the designated object lop or are empty. The lop denotes the
designated JavaScript object prototype, describing the universal object akin
to the Java universal superclass “Object”. Scope objects inherit properties
from their prototypes. As such, the value of a variable cannot be resolved
by traversing the objects in the scope chain alone. Instead, variable res-
olution is carried out with respect to the scope chain and the prototype
chains of its constituent scope objects. A variable x is then resolved as
the property named “x” of the first object in the scope chain whose pro-
totype chain defines “x”. That is, given a scope chain L=[l1 . . . ln], if any
of the objects in the prototype chain of l1 contain a property named “x”,
then the resolution of x yields l1; otherwise x is resolved with respect to
[l2 . . . ln]. If L is exhausted (i.e. none of the objects in the prototype chains
of the objects in L contain an “x” property), then the resolution of x yields
null. This process is described by the scope function σ(h, L, x) defined in
Fig. 5.5, which inspects heap h and returns the location of the first object
in the scope chain L that defines variable x. The scope function is defined
via the prototype function π(h, l, x), which similarly inspects h and returns
the location of the first object in the prototype chain of l that defines x.
Lastly, the evaluation of a variable x does not return its value, but rather
the reference l.x where l is obtained using the σ predicate. When the
value of a variable x is required, the semantics implicitly calls the lookup
(get-value) function γ, defined in Fig. 5.5, which returns the value denoted
by the reference l.x. In general, the return values in JavaScript may be
program values v ∈ JSPVal (Def. 67) or references r ∈ JSRef (Def. 68).
When a return value is to be inspected, the semantics calls the γ function.
In case of a program value v, the γ function simply returns the value v
itself. In case of a reference r, the γ returns the value denoted by r.
All programs are evaluated starting from the default scope chain [lg],

where lg denotes the location of the global JavaScript object. The final
object in any scope chain is always lg, but duplicates in a scope chain
are allowed. Scope chains may change during program execution. In par-
ticular, scoping constructs such as function calls and the with statement

172

σ(h, [], x) , null

π(h, l, x) 6= null

σ(h, l : L, x) , l

π(h, l, x) = null

σ(h, l : L, x) , σ(h, L, x)

π(h, null, x) , null

(l, x)∈dom(h) h(l, x)6=�
π(h, l, x) , l

h(l, x)=� h(l,@proto)=l′

π(h, l, x) , π(h, l′, x)

v ∈ JSPVal

γ(h, v) , v

l 6=null π(h, l, x)=l′

γ(h, l.x) , h(l′, x)

l 6=null π(h, l, x)=null

γ(h, l.x) , undefined

Figure 5.5.: JavaScript scope chain, prototype chain and lookup functions

cause sub-expressions to be evaluated with respect to a local scope object,
by putting the relevant local scope object at the beginning of the scope
chain and then removing it after the sub-expressions have been evaluated.
For convenience, JSLogic designates a global logical expression l denoting
the current scope chain.

JSLogic logical expressions The logical expressions of JSLogic com-
prise logical values and variables, the scope chain expression l, arithmetic
and boolean expressions, string concatenation, list and set expressions,
reference constructions and lambda values. JSLogic expressions are evalu-
ated with respect to an evaluation environment comprising a logical envi-
ronment and a scope chain. The latter component is necessary to ensure
the correct evaluation of the scope chain expression l.

JSLogic Instance (Parameter 16)

Definition 74 (JSLogic logical expressions). The set of JSLogic

logical expressions, E ∈ JSLExp, is defined by the following gram-
mar, where v ∈ JSLVal (Def. 71), x ∈ LVar (Def. 2), 	 ∈
{+,−, ∗, /,&&, ||,==} and ⊕ ∈ {∪,],∩, \}:

E ::=v Logical value
| x Logical variable
| l Scope chain

173

| E1 	 E2 Arithmetic and boolean expressions
| E1.E2 String concatenation
| E1 : E2 List cons
| E1 ⊕ E2 Set expressions
| E1.E2 Reference construction
| λE1 · · ·En.E Lambda values

Given the JS locations L (Def. 68), the set of JSLogic scope chains
is L ∈ Scope , List〈L] {null}〉.
Given the JSLogic logical values JSLVal (Def. 71) and the logical
environments LEnv 〈JSLVal〉 (Def. 3), the set of JSLogic evaluation
environments is ε ∈ Env , LEnv 〈JSLVal〉 × Scope.
The JSLogic expression evaluation function, (|.|)(.) : (JSLExp ×
Env) ⇀ JSLVal, is defined as follows, for all ε, (Γ, L) ∈ Env:

(|v|)ε , v (|x|)(Γ,L) ,

v if Γ(x)=v

undefined otherwise
(|l|)(Γ,L) , L

(|E1 	 E2|)ε ,

v1 	 v2 if (|E1|)Γ=v1 and (|E2|)Γ=v2

undefined otherwise

(|E1.E2|)ε ,

s1.s2 if (|E1|)ε=s1 and (|E2|)ε=ss2

undefined otherwise

(|E1 : E2|)ε ,

v : L if (|E1|)ε=v and (|E2|)ε=L

undefined otherwise

(|E1 ⊕ E2|)ε ,

S1 ⊕ S2 if (|E1|)ε=S1 and (|E2|)ε=S2

undefined otherwise

(|E1.E2|)ε ,

l.x if (|E1|)ε=l and (|E2|)ε=x

undefined otherwise

(|λE1 · · ·En.E|)ε ,

λx.e if (|E1|)ε =x1 · · · (|En|)ε =xn

and (|E|)ε =e

undefined otherwise

174

JSLogic assertions and their semantics The assertions of JSLogic

comprise the standard classical and boolean assertions, JavaScript heap
assertions of the form (E1, E2) 7→ E, standard SL assertions comprising
emp and the ∗ and −−∗ connectives, and the overlapping conjunction con-
nective ∪∗ (also referred to as “sepish”). JSLogic assertions are interpreted
over sets of JavaScript heaps, with the classical, boolean and SL assertions
interpreted in the standard way. The (E1, E2) 7→ E assertion describes a
JavaScript heap cell. When E describes a concrete value (i.e not �), this
assertion states that the object at location E1 has a field named E2 and
holds value E. Analogously, when E evaluates to �, this assertion states
that the object at location E1 has no field named E2. The P ∪∗ Q asser-
tion describes a JavaScript heap comprising two (potentially) overlapping
sub-heaps described by P and Q, respectively. That is, P ∪∗ Q describes
a heap that can be split into three sub-heaps, such that the composition
of the first two sub-heaps satisfies P and the composition of the last two
satisfies Q. Note that P ∧Q⇒ P ∪∗ Q and P ∗Q⇒ P ∪∗ Q, but neither of
the reverse implications hold.

JSLogic Instance (Parameter 17)

Definition 75 (JSLogic assertions and their semantics). The set
of JSLogic assertions, P,Q ∈ JSAst, is defined by the following
grammar where x ∈ LVar (Def. 2), E1, E2 ∈ JSLExp (Def. 74) and
	 ∈ {=, <,∈,⊂}:

P,Q ::= false | P ⇒ Q | ∃x. P | E1 	 E2

| emp | (E1, E2) 7→ E | P ∗Q | P −−∗ Q | P ∪∗ Q

The ordering relation on JSLHeap is id ⊆ JSLHeap×JSLHeap, where
id denotes the identity relation.
The JSLogic satisfaction relation, |=JS: (Env×JSLHeap)×JSAst, is
defined as follows, for all ε, (Γ, L) ∈ Env (Def. 74) and h ∈ JSLHeap

(Def. 72):

(ε, h) |=JS false never

(ε, h) |=JS (P ⇒ Q) iff (ε, h) |=JS P ⇒ (ε, h) |=JS Q

175

((Γ, L), h) |=JS (∃x. P) iff ∃v. ((Γ[x 7→ v], L), h) |=JS P

(ε, h) |=JS E1 	 E2 iff (|E1|)ε 	 (|E2|)ε

(ε, h) |=JS emp iff h ∈ JSUnit

(ε, h) |=JS (E1, E2) 7→ E iff ∃l, x, v. dom(h)=(l, x) ∧ h(l, x)=v

∧ (|E1|)ε =l ∧ (|E2|)ε =x ∧ (|E|)ε =v

(ε, h) |=JS (P ∗Q) iff ∃h1, h2. h=h1 ◦ h2

∧ (ε, h1) |=JS P ∧ (ε, h2) |=JS Q

(ε, h) |=JS (P −−∗ Q) iff ∀h′. (ε, h′) |=JS P ⇒ (ε, h ◦ h′) |=JS Q

(ε, h) |=JS (P ∪∗ Q) iff ∃h1, h2, h3. h=h1 ◦ h2 ◦ h3

∧ (ε, h1 ◦ h2) |=JS P

∧ (ε, h2 ◦ h3) |=JS Q

As before, we write E1	̇E2 for E1 	 E2 ∧ emp.

To streamline client reasoning and handle the complexity of variable
resolution in JavaScript, the authors in [21] define an abstract predicate
store that describes the values associated with program variables. The
storel(y1 . . . ym | x1 : v1 . . . xn : vn) predicate describes a heap emulating a
variable store given by the scope chain described by l, in which the vari-
ables y1 . . . ym are not present (have value �), and variables x1 . . . xn have
values v1 . . . vn, respectively. The variables y1 . . . ym can be re-ordered, as
can the variables x1 . . . xn. The definition of the store predicate uses the
σ, π and γ functions (in Fig. 5.5) to assert the absence of y1 . . . ym as
well as the presence and values of x1 . . . xn. The exact structure of the
emulated store and the locations of variables are hidden as they are of
no concern at this level of abstraction. The definition of store includes
the resources needed for traversing the scope chain l and their respective
prototype chains. In particular, since the prototype chains of scope objects
may arbitrarily overlap, the definition of the store predicate appeals to the
overlapping conjunction connective ∪∗. We omit the definition of store here
as we carry out all our client reasoning abstractly, by appealing to the
store predicate. The full definition of store is given in [21].

The vars(xi : vii=1...n) assertion is a derived assertion in JSLogic defined

176

as store in the current scope chain l:

vars(s) , storel(|s)

Definition 76 (JSDOM assertions). Given the JSLogic logical values JSLVal

(Def. 71) and the DOM logical values LValDOM (Def. 58), the set of logical
values for JSLogicDOM, denoted JSLValDOM, is constructed as described
in Def. 30, defined as JSLValDOM , JSLVal ∪ LValDOM.

Given the JSLogic assertions JSAst (Def. 75) and the DOM heap asser-
tions AstDOM (Def. 66), the set of JSLogicDOM assertions, JSAstDOM, is
constructed from JSAst and AstDOM as described in Def. 36.

SSL T Instance (Parameter 18)

Definition 77 (DOM axioms). The axioms of DOM operation,
AxiomDOM, are given in §A.

Machine states and reification Recall that a JS logical heap (Def. 72)
is a JS program heap (Def. 68) that may additionally include the special
� value in its range. In other words, a JS program heap is a JS logical
heap without the � value in its range. As such, the reification of a JS

logical heap h is a program heap h′ such that for all references r in the
domain of h, the values of h(r) and h′(r) agree if and only if h(r)6=�;
otherwise, h′(r) is undefined.

JSLogic Instance (Parameter 19)

Definition 78 (JSLogic reification). The JSLogic reification func-
tion, b.cJS : JSLHeap→ P (JSPHeap), is defined as follows:

bhcJS , {h}

177

where for all (l, x) ∈ JSRef:

h(l, x) ,

h(l, x) if (l, x) ∈ dom(h) ∧ h(l, x) 6= �

undefined otherwise

Proof rules and soundness The full set of JSLogic triples are given
in [21, 22] and include the standard rules of frame, existential elimina-
tion, disjunction, consequence and so forth. In JSLogicDOM we lift the
JSLogic triples to a set of parametric triples and extend them with the
DOM axioms (Def. 77). Lifting the JSLogic triples to parametric ones is
straightforward.
In Fig. 5.6 we present a select number of JSLogicDOM triples including

those used in our client reasoning in the upcoming section.
Note that the postcondition for each of the assignment rules (x = v, x = y,

x = y ⊕ z, x = y.f and x.f = v) includes true. This is because overriding a
variable may render a portion of the emulated variable store superfluous.
As it is not sound to simply forget parts of the heap, this redundant
portion is hidden in the weak assertion true.
The postcondition of each rule contains an assertion of the form r=̇ · · · ,

recording the return value of the operation in the designated variable r.
For instance, in the cases of assignment rules, the return value corresponds
to the value of the right-hand-side of the assignment. In the case of the
while statement, the return value is undefined. In the remaining rules,
bar that of DOM axioms, the return value is hidden in the postcondition
Q (or Q1 ∨ Q2 in the disjunction rule). In the case of DOM axioms, the
return value depends on the DOM operation C being considered and is ex-
tracted from the postcondition Q via the ret function, defined shortly. The
DOM operations fall into one of two categories: i) those with an explicit
return value which are of the form r := · · · (e.g. r := n.getAttribbute(s));
and ii) those without a return value which do not contain ‘r :=’ on the
left-hand-side (e.g. n.setAttribute(s, v)). Intuitively, for all DOM op-
erations of the form r := · · · , the return value corresponds to the value
of r in the variable store. Conversely, for those DOM operations without
a return value, the return value is undefined. The definition of the ret

178

{
vars(x : x, xi :xi)

}
x = v

{
vars(x : v, xi :xi) ∗ r=̇v ∗ true

}{
vars(x : x, y : y, xi :xi)

}
x = y

{
vars(x : y, y : y, xi :xi) ∗ r=̇y ∗ true

}{
vars(x : x, y : y, xi :xi)
∗ (y, f) 7→ v

}
x = y.f

{
vars(x : v, y : y, xi :xi)
∗ (y, f) 7→ v ∗ r=̇v ∗ true

}
{
vars(x : x, y : y, z : z, xi :xi)

}
x = y ⊕ z

{
∃r.vars(x : r, y : y, z : z, xi :xi)
∗r=̇y⊕ z ∗ r=̇r ∗ true

}
{
vars(x : x, xi :xi) ∗ (x, f) 7→ v

}
x.f = v

{
vars(x : x, xi :xi) ∗ (x, f) 7→ v
∗ r=̇v ∗ true

}
(P, C, Q) ∈ AxiomDOM{

P
}
C
{
Q ∗ r=̇ret(P, C, Q) ∗ true

} P `P ′
{
P ′
}
e
{
Q′
}

Q′ `Q{
P
}
e
{
Q
}

P ≡ vars(x : x, xi :xi) ∗ P ′{
P ∗ True(x)

}
e1
{
Q
}{

P ∗ False(x)
}
e2
{
Q
}{

P
}
if (x) then {e1} else {e2}

{
Q
} {

P1

}
e
{
Q1

} {
P2

}
e
{
Q2

}{
P1 ∨ P2

}
e
{
Q1 ∨Q2

}
P ≡ vars(x : x, xi :xi) ∗ P ′{
P ∗ True(x)

}
e
{
P
}

r ˙6∈ fv(P){
P
}
while(x){e}

{
P ∗False(x)∗r=̇undefined

} {
P
}
e
{
Q
}{

∃x.P
}
e
{
∃x.Q

}
{
P
}
e1
{
R
} {

R
}
e2
{
Q
}{

P
}
e1; e2

{
Q
} {

P
}
e
{
Q
}

r ˙6∈ fv(R){
P ∗R

}
e
{
Q ∗R

}
where

False(v) , v∈̇{0, null, undefined, “”} True(v) , ¬False(v)

Figure 5.6.: Selected JSLogicDOM proof rules

179

function is given by induction over the structure of DOM axioms, with
each case falling into one of the two categories described above. The full
definition of ret is rather verbose, albeit straightforward, due to the large
number of DOM operations and their axioms. As such, rather than giving
the full definition of ret, we define it semi-formally as follows:

ret(P, C, Q) ,

r C = r := · · · and Q = vars(r : r, · · ·) ∗ · · ·

undefined otherwise

Note that the proof rules presented in Fig. 5.6 are a specialised subset of
those in [21, 22]. For instance, the assignment rule given in [21, 22] is for
the general assignment of the form e1 = e2. In order to tackle the intricacies
of JavaScript assignment and its interaction with the emulated variable
store, the premise of this generalised rule appeals to the lookup (get-value)
function γ given in Fig. 5.5. That is, in this general case, one cannot
reason about assignment using the high-level abstract predicate vars, and
must instead turn into low-level JavaScript heap reasoning. Analogously,
the while rule in Fig. 5.6 is simplified from that of [21, 22] given below:

{P} e1 {R ∗ r=̇v1} R ≡ S ∗ γ(−,v1,v2)

{R ∗ True(v2)} e2 {P} r ˙6∈ fv(R)

{P} while(e1){e2} {R ∗ False(v2) ∗ r=̇undefined}

The γ(−,v1,v2) predicate in the premise is the logical counterpart of the
get-value function γ in Fig. 5.5 and asserts that the return value of e1

(namely v1) amounts to v2 when inspected (informally, in the underlying
heap h we have γ(h,v1)=v2). Once again, we must look into the low-level
JavaScript heap and the emulated variable store therein.

As such, we opt for the simpler specialised rules of Fig. 5.6, in lieu of
the general proof rules in [21, 22]. These simplified rules are sufficient
for reasoning about our client programs in the proceeding section, and the
vars predicate allows us to escape the complexities of the emulated variable
store. Later in §7, we present a JavaScript implementation of our DOM
fragment and establish its correctness with respect to the axiomatic DOM
specification presented here. To do this, we appeal to the general JSLogic

proof rules of [21, 22].

180

The JSLogic triples have a partial fault-avoiding interpretation. The
soundness of JSLogic triples are established with respect to the big-
step operational semantics of JSLogic, the JSLogic reification function
(Def. 78) and the JSLogic satisfaction relation (Def. 75). The full proof
of JSLogic soundness is given in [22]. This proof is by induction over the
structure of JSLogic triples. As we demonstrated in §4 for WLogic, it
is straightforward to lift the soundness proof of JSLogic triples and es-
tablish the soundness of JSLogicDOM triples. In particular, the soundness
of primitive JSLogicDOM triples follows from Lemma 2. The soundness of
inductive triples in each case follows from the (lifted) inductive hypotheses.

5.4. Reasoning about DOM Client Programs

We demonstrate how to use our DOM specification and the JSLogicDOM

program logic to reason about JavaScript client programs that call the
DOM. We first study a JavaScript image sanitiser subprogram in §5.4.1
that sanitises an attribute node when its value is black-listed. Our image
sanitiser program is rather simple and we present it as a didactic example
in order to demonstrate our DOM client reasoning techniques. Later in
§5.4.2, we use this image sanitiser code to implement an ad blocker to filter
untrusted contents of a web page by sanitising them. Finally, in §5.4.3 we
study an additional ad blocker that filters untrusted contents of a web
page by removing them.

5.4.1. The santiseImg Client Program

We study a JavaScript image sanitiser that sanitises the “src” attribute of
an element node (if it exists) by replacing its value with a trusted URL
when the value is black-listed. To determine whether a value is black-
listed, a remote database is queried. The results of successful lookups are
stored in a local cache to minimise the number of queries. Later in §5.4.2
we use this sanitiser to implement an ad blocker that filters untrusted
contents of a web page. The code of this sanitiser, sanitiseImg, is given
in Fig. 5.7. It inspects the img element node for its “src” attribute (line 1).
When such an attribute exists (line 2), it consults the local cache (cache)
to check whether or not its value (url) is black-listed (line 3). If so, it

181

sanitiseImg ,

1. url := img.getAttribute("src");
2. if (url){ // img has an attribute named “src”
3. isB = cache.url;
4. if (isB){ // url is in cache (and thus black-listed)
5. img.setAttribute("src",cat)
6. } else { // url is not in cache
7. isB := isBlackListed(url);
8. if (isB){ // url is black-listed
9. img.setAttribute("src", cat);

10. cache.url = 1
11. } } }

{
st ∗ Pout

}
sanitiseImg

{
st′ ∗ Pout

}
(5.10){

st ∗ P ∗ (c, s1) 7→1 ∗ isB(s1)
}
sanitiseImg

{
st′ ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)

}
(5.11){

st ∗P ∗(c, s1) 7→0 ∗ isB(s1)
}

sanitiseImg
{
st′ ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)

}
(5.12){

st∗ P ∗ (c, s1) 7→0∗ ¬isB(s1)
}
sanitiseImg

{
st′∗ P ∗ (c, s1) 7→0∗ ¬isB(s1)

}
(5.13)

where

st , vars(img:n, cat:s2, cache:c, url:−, isB:−) st′ , st ∗ true
Pout , α 7→ sn[a, γ]ef ∗ outn(a, “src”) ∗ δ 7→ ∅g
P , α 7→ sn[β � srcm[t]f′ , γ]ef ∗ val(t, s1) ∗ δ 7→ ∅g
Q , ∃r, f′′. α 7→ sn[β � srcm[#textr[s2]f′′]f′ , γ]ef ∗ δ 7→ t

and{
vars(url:s1, isB:−)
∗ isB(s1)

}
isB := isBlackListed(url)

{
vars(url:s1, isB:true)
∗ isB(s1)

}
{
vars(url:s1,isB:−)
∗¬isB(s1)

}
isB := isBlackListed(url)

{
vars(url:s1,isB:false)
∗¬isB(s1)

}

Figure 5.7.: The sanitiseImg program (above) and its specification (below)

changes its value to the trusted cat value. If the local cache lookup is
unsuccessful (line 6), the database is queried by the isBlackListed library
call (line 7). If the value is deemed black-listed (line 8), the value of “src”
is set to the trusted cat value (line 9), and the local cache is updated to
store the lookup result (line 10).

The sanitiseImg program uses a combination of DOM operations and

182

JavaScript code to update the DOM web contents (e.g. line 9) and modify
local data in the JavaScript heap (e.g. line 10).
The behaviour of sanitiseImg is specified in Fig. 5.7. The specifications

in (5.10)-(5.13) capture different cases of the code as follows: in (5.10) img
has no “src” attribute; in (5.11) the value of “src” is black-listed in the
local cache; in (5.12) the value is black-listed and the cache has no record
of it; and in (5.13) the value is not black-listed and the cache has no
record of it. We focus on (5.12) here as it is the most interesting case and
the remaining ones are analogous.
The precondition of (5.12) consists of four assertions: the variable store

assertion st describing the values associated with the program variables
used in the program; the P assertion describes an element node with an
attribute named “src” and value s1; the (c, s1) 7→ 0 asserts that there is
no record of value s1 in the cache (c); and isB(s1) states that the value
s1 is black-listed. This assertion will be used in the isB := isBlackListed

library call of line 7 with its behaviour as specified in Fig. 5.7.
A proof sketch of (5.12) is given in Fig. 5.8. At each proof point, we

have highlighted the effect of the preceding command, where applicable.

5.4.2. The adblocker1 Client Program

We use JSLogicDOM to reason about a JavaScript ad blocker script block-
ing images from untrusted sources in a DOM tree. The adblocker1

program in Fig. 5.9 compiles a NodeList containing all “img” elements
in the tree rooted at n by calling the getElementsByTagName operation.
It then iterates over this NodeList, sanitising each image by running the
sanitiseImg code studied in §5.4.1 (Fig. 5.7) and replacing each untrusted
“src” attribute value with the trusted cat value.
The specification of adblocker1 is given in Fig. 5.9.5,6

Observe that as per interpretation of Hoare triples, all free logical vari-
ables included in the definitions of P and Q are universally quantified
outside the triple {P} adblocker1 {Q}. This is to ensure that the tree un-

5We write e.g. xl to denote a list of logical variables of size |l|. We use a suggestive
notation and write xj for the jth variable in x (i.e. |x|j.)

6 All free logical variables in P and Q are universally quantified outside the triple as
they do not change throughout the execution. By contrast, the iteration number i,
and the tag listeners e associated with element node n may change (the latter may
grow by getElementsByTagName) and are explicitly parameterised when relevant.

183

{
vars(img:n, cat:s2, cache:c.url;−, isB;−) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1)

}
1. url := img.getAttribute("src");{

vars(img:n, cat:s2, cache :c, url:s1 , isB:−) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true
}

2. if (url){ // img has an attribute named “src”
3. isB = cache.url;{

vars(img:n, cat:s2, cache:c, url:s1,isB:0) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true
}

4. if (isB){
5. img.setAttribute("src",cat)
6. } else {{

vars(img:n, cat:s2, cache:c, url:s1, isB:0) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true
}

7. isB := isBlackListed(url);{
vars(img:n, cat:s2, cache:c, url:s1, isB:1) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true

}
8. if (isB){{

vars(img:n, cat:s2, cache:c, url:s1, isB:1) ∗ P ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true
}

9. img.setAttribute("src", cat);{
vars(img:n,cat:s2,cache:c,url:s1,isB:1) ∗ Q ∗ (c, s1) 7→ 0 ∗ isB(s1) ∗ true

}
10. cache.url = 1{

vars(img :n,cat :s2,cache :c, url :s1, isB :1) ∗Q ∗ (c, s1) 7→ 1 ∗ isB(s1) ∗ true
}

11. } } }{
vars(img :n, cat :s2, cache :c, url :−,isB :−)∗Q∗(c, s1) 7→ 1∗isB(s1)∗true

}
Figure 5.8.: A proof sketch of specification (5.12)

derneath n remains unchanged by adblocker1 except for the values of its
untrusted “src” attributes. More concretely, when n=n, c=c and cat=s,
we use the following universally quantified logical variables to track the
various components of the tree at n:

• f and e for the initial forest and tag listeners of n;

• l for the list of “img” elements underneath n (i.e. the contents of the
NodeList resulting from getElementsByTagName("img"));

• se for the set of empty nodes in l (those without a “src” attribute);

• su for the set of untrusted nodes in l;

• st for the set of trusted nodes in l;

• t0 for the initial tree underneath n, tl for the trees resulting from
the subsequent iterations with ti denoting the tree at iteration i (see
footnote 5);

184

adblocker1 ,

1. imgs := n.getElementsByTagName("img");
2. len := imgs.length();
3. i = 0;
4. while(i < len){
5. img := imgs.item(i);
6. sanitiseImg;
7. i = i+1;
8. }

{
P
}
adblocker1

{
Q
}

where

P , varsab1 ∗ ¬isB(s) ∗ cache(c) ∗ fld(0,e) ∗ rem(0)

Q , ∃e′,r. varsab1 ∗ ¬isB(s) ∗ cache(c) ∗ fld(|l| ,e′) ∗ rem(|l|)
∗e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ true

varsab1 , vars(n:n, cache:c, imgs:−, len:−, i:−, img:−, cat:s, url:−, isB:−)

cache(c) , CF(c,X)

CF(c, s) , (s=̇∅) ∨
(
∃f, s′. s=̇{f}] s′ ∗

(
(c, f) 7→ 1 ∨ (c, f) 7→ 0

)
∗ CF(c, s′)

)
fld(i,e) , tree(i,e) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp)

tree(i,e) , α 7→ sn[a,ti]
e
f ∗ srch(ti, “img”, l)

unfld(i,e) , ∃α, β, γl
. partition(i) ∗ (∀i′. partition(i′)−−∗ tree(i′,e))

partition(i) , l ≡̇ se] su] st ∗ ∃ss. ss=̇su ∩ {|l|j | j < i}
~
j∈se

(
αj 7→ imgj[aj, γj]

ej
fj ∗ outn(aj, src)

)
~

j∈su\ss

(
αj 7→ imgj[βj � srcmj [aj]f′j , γj]

ej
fj ∗ val(aj,vj) ∗ isB(vj)

)
~
j∈st

(
αj 7→ imgj[βj � srcmj [aj]f′j , γj]

ej
fj ∗ val(aj,vj) ∗ ¬isB(vj)

)
~
j∈ss

(
αj 7→ imgj[βj � srcmj [#text−[s]]f′j , γj]

ej
fj

)
rem(i) , ∃ss. ss=̇su ∩ {|l|j | j < i} ∗ β 7→ ∅g

⊕
j∈ss

aj

Figure 5.9.: The adBlocker1 client program and its specification

• fl and el for the forest and tag listeners of nodes in l;

• ml for the “src” attribute identifiers of nodes in l;

• f′
l for the forest listeners of nodes in ml;

185

• al for either the text forests of nodes ml, or for the attribute sets
of nodes in l.

Lastly, observe that in the definitions of partition and rem predicates we
use the set comprehension expression, ss=̇su ∩ {|l|j | j < i}. Although set
comprehension is not included in the JSLogicDOM assertion language, we
can rewrite the above in JSLogicDOM as follows. However, for brevity and
clarity we opt for set the comprehension notation instead.

ss⊆̇su ∗ (∀j. j<̇i ∗ |l|j ∈ su ⇒ |l|j ∈̇ss)

The precondition of adblocker1, P , comprises four assertions. The
first assertion, varsab1, describes the values associated with the program
variables and further asserts that the value of cat (i.e. s) is trusted. The
second assertion, cache(c), describes the cached results of URL inspections.
Recall that sanitiseImg (Fig. 5.7) maintains a local cache of blacklisted
URLs, implemented as an object at c with one field per URL (where
(c, f) 7→ 1 asserts that the URL f is blacklisted in the cache, and (c, f) 7→
0 asserts that the URL f is not blacklisted in the cache). We thus define
the cache as the collection of all valid field s in X (Def. 68) on c, with
value 1 or 0 as defined in Fig. 5.9. The third and fourth assertions,
fld(0,e)∗rem(i), describe the DOM footprint of adblocker1 (i.e. the DOM
resources needed for running adblocker1). Let us turn our focus to the
DOM footprint of adblocker1.

Since adblocker1 calls the NodeList operation item at each iteration
i (line 5), to compile a list l of all “img” elements below node n, the
footprint must contain enough resources to allow this DOM call. When
n=n, as a first attempt we can describe the DOM resources needed at
iteration i as follows with the srch predicate as defined in Fig. 5.4:

tree(i,e) , α 7→ sn[a,ti]
e
f ∗ srch(ti, img, l)

where e denotes the tag listener set associated with n and ti denotes
the child forest of node n at iteration i. However, this is not enough.
Consider the following assertions where (5.14) describes the subtree rooted
at element node named “ad” in Fig. 5.1a, and (5.15) describes the same

186

subtree with the attributes of its descendants framed off (β and γ):

α 7→ ad9

∅,
img3

[(
src13[#text−[goo.gl/K4S0d0]]

� width17[#text−[800px]]

)
,∅

]
⊗ img8[∅,∅]

 (5.14)

α 7→ ad9[∅, (img3[β,∅] ⊗ img8[γ,∅])] (5.15)

While both assertions imply tree(−,−), neither contain enough informa-
tion. Since the program iterates over the element nodes in l and inspects
their attributes, for each element in l, either we need to know the value
of its “src” attribute if it exists (so that we can sanitise it if necessary),
or we need to know that it has no such attribute. However, in (5.15) the
attributes of “img” elements have been framed off and thus (5.15) does
not contain the necessary resources. As for (5.14), we need to transform
it to the following form with the “img” elements unfolded so that we can
inspect them individually at each iteration (as per the precondition of
sanitiseImg):

α 7→ ad9[∅, (β ⊗ γ)] ∗ β 7→ img3[−"−] ∗ γ 7→ img8[−"−] (5.16)

More concretely, the footprint needs to unfold all “img” elements in the
tree at n and partition them into three categories: i) empty : without a
“src” attribute; ii) untrusted : with a “src” attribute and a blacklisted value;
iii) trusted : with a “src” attribute and a trusted value. At each iteration
i, if the node considered is untrusted, it is sanitised and removed from the
untrusted category. We thus define a fourth category, sanitised, including
those “img” elements whose value were initially blacklisted and have now
been sanitised. This partitioning of “img” element nodes at iteration i is
described by the partition(i) predicate defined in Fig. 5.9, with out and val
as defined in Fig. 5.4 and isB as described in §5.4.1.

The first part of partition(i) states that the list of “img” elements l can
be partitioned into the three categories described above where l≡ s states
that set s is a permutation of list l (l≡ s iff ∀k. k ∈ l ⇔ k ∈ S;
note that l has no duplicates). The second part states that list l has
been processed up to index i; i.e. the sanitised category ss includes all the
untrusted elements in l up to index i. The last four parts describe the

187

“img” elements according to their category. Observe that in the “sanitised”
category (i.e. those in ss) the text forest of the node has been replaced by
a new text node containing the trusted value s where ¬isB(s) holds (see
the definition of varsab1).

The partition predicate describes the “img” elements in l only and does
not include the remainder of the subtree at n. At every iteration, this
remainder is untouched and the modified parts are contained in the par-
titions. We thus describe the remainder for an arbitrary iteration i′ as
∀i′. partition(i′) −−∗ tree(i′,e); that is, the entire tree for that iteration,
tree(i′,e), minus its partitions. The unfolded tree (with “img” elements
singled out) at iteration i thus consists of the partitions at i and the
remainder. This is described by the unfld(i,e) predicate in Fig. 5.9.

Observe that for Nodelist operations such as item (line 5), we need the
folded tree (i.e. tree(i,e)) with the entire subtree containing the “img” list
l, as required by their axioms (Fig. 5.2). Conversely, for the sanitiseImg

program (line 6), we need the unfolded “img” elements (i.e. partition(i)) so
that we can access the relevant “img” node at each iteration. We thus need
to move between the folded and unfolded tree depending on the operation
considered.

The fld(i,e) predicate defined in Fig. 5.9 describes the folded tree at
iteration i. The first part, tree(i,e), describes the resources of the folded
tree at iteration i, as described above. The second part contains no re-
sources (emp); it simply states that at any iteration i′, the folded tree
tree(i′,e′), can be exchanged for the unfolded tree unfld(i′,e′). That is,
as shown in the derivation below, the second part provides a mechanism
for shifting from folded to unfolded resources (5.17-5.19) and vice versa
(5.19-5.22), for arbitrary i′ and e′. We use this derivation in the proof
sketch of Fig. 5.10.

The bi-implication of (5.17) follows from the definition of fld and the
fact that empty resources (emp) can be freely duplicated. In (5.18) we
simply eliminate the first universal quantifier. We then apply the adjunct
elimination rule (P ∗ (P −−∗ Q) ⇒ Q) to arrive at (5.19). The implication
of (5.20) follows from the definition of unfld and the elimination of the
first universal quantifier. In (5.21) we apply the adjunct elimination rule
and eliminate the existential quantifiers. Finally in (5.22) we wrap the

188

definition of fld.

fld(i,e)⇔ tree(i,e) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp)

∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp) (5.17)

⇒ tree(i,e) ∗ (tree(i,e) −−∗ unfld(i,e))

∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp) (5.18)

⇒ unfld(i,e) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp) (5.19)

⇒ ∃α, β, γl
. partition(i) ∗ (partition(i) −−∗ tree(i,e))

∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp) (5.20)

⇒ tree(i,e) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp) (5.21)

⇔ fld(i,e) (5.22)

Recall that when the value of an attribute node n is updated via the
n.setAttribute operation, the text forest of n is replaced with a new
text node containing the new value, and the old text forest of n is added
to the grove (see Fig. 5.3). As such, at each iteration i if we sanitise the
value of the ith node in l, then the old text forest of the node is moved to
the grove. This is described by the rem(i) assertion in Fig. 5.9 asserting
that for each sanitised attribute node in ss, the old text forest (aj) has
been added to the grove.
We give a proof sketch of adBlocker1 in Fig. 5.10. The precondition

(defined as P in Fig. 5.9) comprises the variable store, the cache, the folded
unprocessed (iteration 0) tree, and an empty spot in the grove reserved
for the text forests of nodes to be sanitised. Similarly, the postcondition
comprises the variable store, the cache, the folded, fully processed (iteration
|l|) tree with its tag listeners extended with a new listener for “img”, and
the grove extended with the text forests of all sanitised nodes.

5.4.3. The adblocker2 Client Program

The adblocker2 program in Fig. 5.11 compiles a NodeList containing all
“img” elements of the tree rooted at n by calling the getElementsByTagName
operation. It then iterates over this NodeList, inspecting each element in
order. At each iteration, if the element has no “src” attribute or if the
value of its “src” attribute is not blacklisted, then the element is left un-
changed. On the other hand, if the value of “src” attribute is blacklisted,

189

{
vars(n:n, cache:c, imgs:−, len:−, i:−, img:−, cat:s, url:−, isB:−)
∗¬isB(s) ∗ cache(c) ∗ fld(0,e) ∗ rem(0)

}
1. imgs := n.getElementsByTagName("img");{

∃e′,r. vars(n:n, cache:c, imgs:r , len:−, i:−, img:−, cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(0,e′) ∗ rem(0) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ true

}
2. len := imgs.length();{

∃e′,r. vars(n:n, cache:c, imgs:r, len: |l| , i:−, img:−, cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(0,e′) ∗ rem(0) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ true

}
3. i = 0;{

∃e′,r. vars(n:n, cache:c, imgs:r, len: |l| , i:0 , img:−, cat:s, url:−, isB:−)
∗¬isB(s) ∗ cache(c) ∗ fld(0,e′) ∗ rem(0) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ true

}
{
∃e′,r, i . vars(n:n, cache:c, imgs:r, len: |l| , i:i , img:−, cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(i,e′) ∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i≤̇ |l| ∗ true

}
4. while(i<len){{

∃e′,r, i. vars(n:n, cache:c, imgs:r, len: |l| , i:i, img:−, cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(i,e′) ∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i<̇ |l| ∗ true

}
5. img := imgs.item(i);{

∃e′,r, i. vars(n:n, cache:c, imgs:r, len: |l| , i:i, img: |l|i , cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(i,e′) ∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i<̇ |l| ∗ true

}
// Apply steps in (5.17)-(5.19); abstract allocation at ε

∃e′,r, i, ε .vars(n:n,cache:c,imgs:r,len: |l| ,i:i,img: |l|i ,cat:s, url:−, isB:−)
∗¬isB(s) ∗ cache(c) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i<̇ |l| ∗ true

∗ δ 7→

(
ε

⊕
j∈su∩{|l|j|j<i}

aj

)
∗ ε 7→ ∅g

∗ unfld(i,e′) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp)

6. sanitiseImg

∃e′,r, i, ε.vars(n:n,cache:c,imgs:r,len: |l| ,i:i,img: |l|i ,cat:s, url:−, isB:−)
∗¬isB(s) ∗ cache(c) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i<̇ |l| ∗ true

∗ δ 7→

(
ε

⊕
j∈su∩{|l|j|j<i}

aj

)
∗ ε 7→

(
∅g

⊕
j∈su∩{|l|i}

aj

)
∗ unfld(i+1,e′) ∗ ((∀i′,e′. tree(i′,e′) −−∗ unfld(i′,e′)) ∧ emp)

// Apply steps in (5.19)-(5.22); abstract deallocation at ε{
∃e′,r, i. vars(n:n, cache:c, imgs:r, len: |l| , i:i, img: |l|i , cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(i+1,e′) ∗ rem(i+1) ∗e⊆̇e′∗(“img”,r)∈̇e′∗0≤̇i<̇ |l|∗true

}
7. i = i+1;{

∃e′,r, i. vars(n:n,cache:c,imgs:r,len: |l| , i:i , img: |l|i , cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(i,e′) ∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ 0≤̇i≤̇ |l| ∗ true

}
8. }{
∃e′,r. vars(n:n, cache:c, imgs:−,len:−, i:−, img:−, cat:s, url:−, isB:−)

∗¬isB(s) ∗ cache(c) ∗ fld(|l| ,e′) ∗ rem(|l|) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ true

}
Figure 5.10.: A proof sketch of the adblocker1 program

190

then the entire subtree at that element is removed from the DOM tree.

Observe that when an “img” element is removed from the tree (i.e. when
its “src” attribute holds a blacklisted value), the iteration counter i is not
increased. This is because DOM NodeLists are live and dynamically reflect
the changes to the DOM tree. Consider executing adblocker2 with n=4

denoting the identifier of the element named “body” in Fig. 5.1a. Calling
n.getElementsByTagName("img") on line 1 then yields imgs=[3, 8, 2]. Let
us suppose that the value of the “src” attribute on node 3 is blacklisted.
At iteration i=0, node 3 is removed and the imgs NodeList is accordingly
updated to imgs=[8, 2]. Were we to increment i to 1, we would proceed
with inspecting element node 2 and would erroneously skip inspecting
element 8. As such, unlike adblocker1, the progress of the loop cannot
be measured by the iteration index i alone, rather a combination of the
iteration index i and the removal index j, denoting the number of “img”
elements removed so far (i.e. the number of times line 9 is executed).
That is, initially i=j=0, and at each iteration either i is incremented by
1, or j is incremented by 1. Both i and j are non-negative; we omit this
assumption from our predicates for better readability. At the end of the
program, the i denotes the number of (safe) “img” elements (those with
either no “src” attribute or a whitelisted “src” attribute) remaining in the
tree. Analogously, the j denotes the number of (unsafe) “img” elements
removed from the tree (those with a blacklisted “src” attribute).

Since the imgs NodeList evolves each time an “img” element is re-
moved, we enumerate the lists describing the value of imgs after each
removal. That is, when there are n elements to be removed, we define
l=[l0, l1, . . . , ln] where l0 denotes the initial value of imgs, and lk de-
notes the value of imgs after k removals. In other words, since j denotes
the removal index, the |l|j describes the value of imgs after j elements are
removed. As before, for any given index m, we use a suggestive notation
and write lm as a shorthand for |l|m (see footnote 5).

Note that r= |l| −1 denotes the total number of unsafe “img” elements
(those to be removed). For brevity we write r for |l| −1 in our predicates.
Similarly, the last list in l, namely lr, comprises only safe “img” elements
under the tree (otherwise lr must evolve to yet another list lr+1 excluding
the unsafe elements). Recall that at the end of the program the i denotes
the number of (safe) “img” elements remaining in the tree and j denotes

191

the number of (unsafe) “img” elements removed. Consequently, at the end
of the program i= |lr| and j=r.
The specification of adblocker2 is given in Fig. 5.11 and is similar

to that of adblocker1. The precondition P comprises three assertions.
The varsab2 assertion describes the values associated with the program
variables. The fld assertion describes the DOM footprint of the operation.
The ζ 7→ ∅g reserves an empty spot in the grove where the removed
elements (those with blacklisted “src” attributes) may be moved.
Similar to the fld assertion in adblocker1, the fld(i, j,e) assertion de-

scribes the DOM footprint of the program for iteration i with j elements
removed (i.e. (i, j) tracks the progress of the loop). As before, the fld as-
sertion comprises two parts, with the first part describing the folded DOM
footprint (the tree assertion), and the second part providing an unfolding
mechanism to get at the target element node at each iteration.
The unfld(i, j,e) assertion describes the unfolded tree resources at step

(i, j) and comprises three parts. The first part, S(i, j), describes the safe
“img” elements inspected so far (those that have been processed at previous
iterations and have been deemed safe). The second part, t(i, j), describes
the next “img” element c to be inspected. The third part, ((· · · ∗ p(i, j) −−∗
. . .) ∧ (· · · ∗ r(i, j) −−∗ . . .)), describes the remainder of the tree such that
i) if combined with the previous safe elements and the processed element
p(i, j) (where c is left untouched), then it produces the unfolded tree with
the iteration index i incremented; and ii) if combined with the previous
safe elements and the modified tree r(i, j) (where c is removed), then it
results in the unfolded tree with the removal index j incremented. That
is, this third part allows us to advance the progress of the loop depending
on the result of inspecting the current “img” element.
As described above, the t(i, j), describes the “img” element c to be

inspected at step i+j (i.e. c= |lj|i, the ith item in the current NodeList
lj). Either element c has no “src” attribute, or the “src” attribute is
included in the footprint and its value may or may not be blacklisted.
Recall that if the value of “src” on c is blacklisted, then c is removed from
the tree. As such, the parent of c, namely pc, is also included in the
footprint to allow for the removal of c from the child list of pc (as per
the precondition of removeChild operation - see Fig. 5.2).
The p(i, j) describes the result of inspecting c when c either has no

192

“src” attribute, or the value of its “src” attribute is not blacklisted: both
c and its parent pc remain unchanged. Analogously, the r(i, j) describes
the result of inspecting c when it has a “src” attribute with a blacklisted
value: c is removed from the child forest of its parent pc.
We give a proof sketch of adBlocker2 in Figs. 5.12-5.13. The precon-

dition (defined as P in Fig. 5.11) comprises the variable store, the folded
unprocessed (i=j=0) tree, and an empty spot in the grove for the removed
“img” elements. Similarly, the postcondition comprises the variable store,
the folded, fully processed (i= |lr| and j=r= |l| −1) tree with its tag lis-
teners extended with a new listener for “img” and the grove extended with
the removed “img” elements. Observe that rather than explicitly track-
ing the removed “img” elements in the grove, we describe them by the
weaker assertion true. However, as we demonstrated in the specification of
adblocker1 (Fig. 5.9), it is straightforward to track the removed elements
in the grove. We opt for the weaker specification to keep the proof less
verbose.

193

adblocker2 ,

1. imgs := n.getElementsByTagName("img");
2. len := imgs.length(); i = 0;
3. while(i < len){
4. c := imgs.item(i);
5. url := c.getAttribute("src");
6. isB := isBlackListed(url);
7. if(url && isB){
8. p := c.parentNode;
9. p.removeChild(c);
10. len := imgs.length();
11. } else {
12. i = i+1;
13. } }

{
P
}
adblocker2

{
Q
}

where

P , varsab2 ∗ fld(0, 0,e) ∗ ζ 7→ ∅g
Q , ∃e′,r′. varsab1∗ fld(|lr| ,r,e′) ∗ ζ 7→ ∅g ⊕ true

∗e⊆̇e′ ∗ (“img”,r′)∈̇e′ ∗ true
varsab2 , vars(n:n, imgs:−, len:−, i:−, c:−, url:−, isB:−, p:−)

fld(i, j,e) , tree(i, j,e) ∗ ((∀i′, j′,e′. tree(i′, j′,e′) −−∗ unfld(i′, j′,e′)) ∧ emp)

tree(i, j,e) , α 7→ sn[η,tj]
e
f ∗ srch(tj, “img”, lj)

unfld(i,j,e) , ∃β, γ, δ, δ1, δ2, ε
lj
. S(i, j) ∗ t(i, j)

∗
(
(S(i,j) ∗ p(i,j)−−∗ tree(i+1,j,e))∧(S(i,j) ∗ r(i,j)−−∗ tree(i,j+1,e))

)
t(i, j) , ∃c. c=̇ |lj|i ∗ βc 7→ (sc)pc [γc, δ

1
c ⊗ imgc[ac, δc]ec

fc ⊗ δ
2
c]

e′
c

f′c
∗
(
outn(ac, “src”) ∨ (ac=̇εc � srcmc [tc]f′′c ∗ val(tc,vc))

)
p(i, j) , ∃c. c=̇ |lj|i ∗ βc 7→ (sc)pc [γc, δ

1
c ⊗ imgc[ac, δc]ec

fc ⊗ δ
2
c]

e′
c

f′c
∗
(
outn(ac, “src”) ∨ (ac=̇εc � srcmc [tc]f′′c ∗ val(tc,vc) ∗ ¬isB(vc))

)
r(i, j) , ∃c. c=̇ |lj|i ∗ βc 7→ (sc)pc [γc, δ

1
c ⊗ δ2c]

e′
c

f′c
∗ac=̇εc � srcmc [tc]f′′c ∗ val(tc,vc) ∗ isB(vc)

S(i, j) , ∃ss. ss=̇{(n,k) | n= |lj|k ∧ k < i}

~
(c,k)∈ss

(
βk 7→ (sc)pc [γk, δ

1
k ⊗ imgc[ac, δk]ec

fc ⊗ δ
2
k]

e′
c

f′c
∗(

outn(ac,“src”)∨(ac=̇εk�srcmc [tc]f′′c ∗val(tc,vc)∗¬isB(vc))
))

Figure 5.11.: The adBlocker2 client program and its specification

194

{
vars(n:n, imgs:−, len:−, i:−, c:−, url:−, isB:−, p:−)∗fld(0, 0,e)∗ζ 7→∅g

}
1. imgs := n.getElementsByTagName("img");

∃r′,e′. vars(n:n, imgs:r′ , len:−, i:−, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true

∗α 7→ sn[η,t0]
e′
f ∗ srch(t0, “img”, l0)∗((∀i,j,e. tree(i,j,e)−−∗ unfld(i,j,e)) ∧ emp)

2. len := imgs.length; i = 0;

∃r′,e′. vars(n:n, imgs:r′, len: |l0| , i:0 , c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true
∗α 7→ sn[η,t0]e

′
f ∗ srch(t0, “img”, l0)∗((∀i,j,e. tree(i,j,e)−−∗ unfld(i,j,e)) ∧ emp)

{
∃r′,e′. vars(n:n, imgs:r′, len: |l0| , i:0, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(0, 0,e′) ∗ true

}
{
∃r′,e′, i, j . vars(n:n, imgs:r′, len: |lj| , i:i , c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j,e′) ∗ true

}
3. while(i<len) {{

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j,e′) ∗ i<̇ |lj| ∗ true

}

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c:−, url:−, isB:−, p:−)
∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ i<̇ |lj| ∗ true
∗ α 7→ sn[η,tj]

e′
f ∗ srch(tj, “img”, lj)∗((∀i,j,e. tree(i,j,e)−−∗ unfld(i,j,e)) ∧ emp)

4. c := imgs.item(i);

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ i<̇ |lj| ∗ true
∗α 7→ sn[η,tj]

e′
f ∗ srch(tj, “img”, lj)∗((∀i,j,e. tree(i,j,e)−−∗ unfld(i,j,e)) ∧ emp)

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true∗ ∃β, γ, δ, δ1, δ2, ε
lj
. S(i, j) ∗ t(i, j)

∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

5. url := c.getAttribute("src");
6. isB := isBlackListed(url)

∃r′,e′, i, j, u,b . vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:u, isB:b , p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true ∗ ∃β, γ, δ, δ1, δ2, ε
lj
. S(i, j)

∗
((

p(i, j) ∗ (u=̇“” ∨ (b=̇0)
)
∨ (t(i, j) ∗ u=̇vc ∗ b=̇1)

)
∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

Figure 5.12.: A proof sketch of the adBlocker2 program

195

∃r′,e′, i, j, u,b . vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:u, isB:b , p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true ∗ ∃β, γ, δ, δ1, δ2, ε
lj
. S(i, j)

∗
((

p(i, j) ∗ (u=̇“” ∨ (b=̇0)
)
∨ (t(i, j) ∗ u=̇vc ∗ b=̇1)

)
∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

7. if (url && isB) {

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:vc, isB:1, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true ∗ ∃β, γ, δ, δ1, δ2, ε
lj
. S(i, j) ∗ t(i, j)

∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

8. p := c.parentNode;
9. p.removeChild(c);

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:vc, isB:1, p:pc)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true ∗ ∃β, γ, δ, δ1, δ2, ε
lj
.S(i, j)∗ r(i, j)

∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

{
∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c:−, url:−, isB:−, p:−)
∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j+1,e′) ∗ true

}
10. len := imgs.length;{

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj+1| , i:i, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j+1,e′) ∗ true

}
{
∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j,e′) ∗ true

}
11. } else {

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c: |lj|i , url:u, isB:b, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ true ∗ ∃β, γ, δ, δ1, δ2, ε
lj
.S(i, j) ∗ p(i, j)

∗
(
(S(i, j) ∗ p(i, j)−−∗ tree(i+1, j,e))∧(S(i, j) ∗ r(i, j)−−∗ tree(i, j+1,e))

)
∗ ((∀i, j,e. tree(i, j,e)−−∗ unfld(i, j,e)) ∧ emp)

{
∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i, c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i+1, j,e′) ∗ true

}
12. i = i+1{

∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i+1 , c:−, url:−, isB:−, p:−)
∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i+1, j,e′) ∗ true

}
{
∃r′,e′, i, j. vars(n:n, imgs:r′, len: |lj| , i:i , c:−, url:−, isB:−, p:−)

∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(i, j,e′) ∗ true

}
13. } }{
∃r′,e′. vars(n:n, imgs:r′, len:−, i:−, c:−, url:−, isB:−, p:−)
∗ ζ 7→ ∅g ⊕ true ∗ e′⊆̇e ∗ (“img”,r′)∈̇e′ ∗ fld(|lr| ,r,e′) ∗ true

}

Figure 5.13.: A proof sketch of the adBlocker2 program (continued)

196

6. Technical Background:Refinement

In what preceded we discussed abstraction and explored its benefits for
library specification and client reasoning. While abstraction is crucial for
simpler and more modular specification and client-side reasoning, it is as
important to refine the abstraction in order to move closer to the imple-
mentation level. In particular, it is important to verify that a particular
implementation does indeed satisfy the abstract specification provided to
the clients of a library. Given an abstract specification of a library, tradi-
tional refinement techniques [30, 3] produce a correct implementation that
meets that specification.

Filipović, O’Hearn, Torp-Smith and Yang have studied data refinement
for local reasoning [20], by considering modules built on top of the stan-
dard separation logic heap model. They observed that a module client
can break the refinement between an abstract module and its concrete im-
plementation by dereferencing pointers into its internal state, and thereby
violating the abstract boundary of the module. In particular, they stud-
ied a simple memory allocator maintaining a set of available free cells.
They noted that at the concrete level a client may violate the free cell
set via memory pointers that have been previously deallocated, whereas
at the abstract level the free cell set is unaffected by such accesses. To
rectify this, they introduced a modified operational semantics that treats
such memory accesses as faulting executions, thereby “blaming the client”
for breaking the abstraction boundary. This in turn meant that both the
module and its client must use the same state (data) model which is not
always feasible.

In [16], Dinsdale-Young, Gardner and Wheelhouse apply data refinement
to local reasoning in order to show the soundness of implementations of
library modules specified in context logic. In contrast to [20], they worked
with the axiomatic, rather than operational semantics of the language
and defined proof transformations to show that concrete implementations

197

simulate abstract specifications. This way, they did not need to consider
badly behaved client programs as the proof system only makes guarantees
about well-behaved client programs. They developed general techniques for
verifying the correctness of library implementations with respect to their
specifications by defining translation functions that relate abstract (high-
level) states to concrete (low-level) states. Their translation functions fell
in one of two categories described shortly: locality-breaking translations or
locality-preserving translations.

The correctness of both approaches relies on the data refinement tech-
nique known as forward simulation (also known as L-simulation) [3]. Sim-
ulations relate abstract states and library operations to concrete states
and the implementations of operations. Using forward simulation, one
must show that the result of transforming an abstract state to another
via a library operation and subsequently refining the result is the same
as refining the same initial abstract state and then transforming it via
the implementation of the same library operation. More concretely, let
τ , (bb.cc , [[[.]]]) denote a translation function comprising a state translation
function bb.cc relating sets of abstract states to sets of concrete states, and
an implementation function [[[.]]] mapping library operations onto their im-
plementations. Given any two sets of states p and q and a library client
program C we must then have:

{p} C {q} =⇒ τ : {p} C {q}
where τ : {p} C {q} def⇐⇒ {bbpcc} [[[C]]] {bbqcc}

(6.1)

In [16, 59], the authors applied this forward simulation technique in or-
der to show the implementation soundness of several pedagogical libraries.
Later in [33], Jensen and Birkedal further studied the locality-breaking
translations for the refinement of libraries specified in separation logic.
The works in all three of [16], [59] and [33] study the refinement of li-
braries in sequential settings. In [23], we revised the results from [16, 59]
for the refinement of SSL-specified libraries in concurrent settings.

To better understand the two varieties of translations, in §6.1 we present
a sequential implementation of the list module studied in §2.1.2 and de-
scribe how we establish its correctness using a locality-breaking trans-
lation. We highlight the limitations of locality-breaking translations in

198

scalability and concurrency, motivating the need for locality-preserving
translations. In §6.2 we present an overview of locality-preserving transla-
tions and describe how they overcome the limitations of locality-breaking
translations in scalability and concurrency. We demonstrate a limitation
of locality-preserving translations, namely their complexity, especially in
sequential settings. In §6.3 we introduce hybrid translations that combine
the strengths of both locality-breaking and locality-preserving translations
for simple, scalable refinement of sequential libraries.

6.1. Locality-breaking Translations

Consider the sequential implementation of the list operations in Fig. 6.1
where an abstract list is implemented as a singly-linked list in the heap,
with a sentinel node at the head of the list. Each list node comprises two
adjacent cells, respectively recording its value and the next pointer. The
designated sentinel node similarly comprises two adjacent cells, respectively
recording an arbitrary value and the location of the first list node (or null
when the list is empty). For instance, the abstract list depicted in Fig. 2.1a
is implemented as follows where the cell at Rl denotes the sentinel node,
the → arrows denote “next” pointers, and a denotes a null pointer:

Rl
a b c (6.2)

The list implementation in Fig. 6.1 is given in the while language WL

presented in §3, where we write n.value for n and write n.next for n+1.
We assume that this implementation is used in sequential settings. That
is, we remove the parallel composition construct (C1||C2) from the WL

language and thus assume that at any given time no client program written
in WL may run two list operations in parallel by two distinct threads.
Later, we will discuss library implementations in concurrent settings.

As described above, in order to establish the correctness of the list op-
erations in Fig. 6.1, we provide a refinement proof demonstrating that
everything one can prove about the client programs calling the list library
operations specified in Fig. 2.2, can also be proved about the same pro-
grams calling the implementation of the list operations in Fig. 6.1 instead.

199

x.add(n) ,
var c, m in {
c = x;
while([c.next]!= null){
c = [c.next]

}
m = alloc(2);
[m.value] = n;
[m.next] = null;
[c.next] = m

}

x.remove(n) ,
var c, p, next in {
p = x; c = [x.next];
while(c!= null && [c.value]!= n){
p = c; c = [p.next]

}
if (c != null){
next = [c.next];
[p.next] = next;
free(c, 2)

} }

r := x.item(i) ,
if(i >= 0){
var j, c in {
j = 0; c = [x.next];
while(c!= null && i != j){
j++; c = [c.next]

}
r = c

} }

Figure 6.1.: A sequential implementation of the list operations

To this end, we first define a state translation function, bb.cc, mapping
abstract list states at the specification level onto concrete list states at
the implementation level. We then define a substitutive implementation
function, [[[.]]], that replaces each call to a list library operation in C with
the correspondingly named program given in Fig. 6.1. For instance, the
[[[x.add(n)]]] is defined as the x.add(n) program in Fig. 6.1 and [[[C1;C2]]] ,

[[[C1]]] ; [[[C2]]].

We must next show that given the translation τ , (bb.cc , [[[.]]]), every
triple of the form {p} C {q} one can prove at the specification level is
refined correctly, written τ : {p} C {q}, and can also be proved at the
implementation level:

{p} C {q} =⇒ τ : {p} C {q} (CorrRef)

Finally, we must formulate the definition of τ : {p} C {q} describing what

200

it means to refine a triple correctly.

We begin by defining the logical state translation function, bb.cc, that given
an abstract state of the form ((σ, h),h) – where (σ, h) denotes a WLogic

logical state comprising a stack and a heap (Def. 33), and h denotes a
logical list heap such as the ones in Fig. 2.1) – it maps the logical list
heap h onto sets of concrete singly-linked lists such as the one depicted in
(6.2), while leaving the stack and the heap (σ, h) unchanged.

Recall that the footprint of x.add(n) at the abstract level is limited to
the last position of the list, as described by Rl 7→ α in the precondition of
add in Fig. 2.2, repeated below:{

vars(x:Rl, n:n) ∗ Rl 7→ α
}
x.add(n)

{
vars(x:Rl, n:n) ∗ Rl 7→ α++[n]

}
By contrast, the implementation of x.add(n) in Fig. 6.1 proceeds by
traversing the list from the beginning until it reaches the last element
in the list (p where p.next is null). It then extends the list with n

by redirecting the “next” pointer of the last node (p) to n. That is,
the footprint of x.add(n) at the concrete level encompasses the entire
list. This results in a locality mismatch between the abstract and concrete
levels, and our translation function must thus account for the additional
resources required by the larger footprint of the implementation.

As such, the translation function must map both incomplete list heaps
(e.g. h=Rl 7→ [a]++x++[b]) and complete list heaps (e.g. h′=Rl 7→ [a, b, c]),
onto complete concrete lists. We thus define a completing translation func-
tion that first extends an incomplete abstract list into a set of complete
abstract lists, and then translates them to complete concrete lists. For in-
stance, given the incomplete abstract list h=Rl 7→ [a]++x++[b] in Fig. 6.2a,
Fig. 6.2b depicts three possible completions of h, with their concrete rep-
resentations in Fig. 6.2c. The intuition behind completing translations
is that incomplete list fragments are purely abstract notions, providing a
means for reasoning about lists in a local and compositional manner. At
the abstract level, the list library itself does not provide operations for
creating or destroying partial lists and thus we never need to reason about
full client programs that concern incomplete lists. As such, it suffices
to demonstrate that any specification that we can prove about full client
programs at the abstract level, can also be proved about the same full

201

Rl

a x b[]

(a)

Rl

a b[]

Rl

a c b[]

Rl

a d e b[]
(b)

Rl
a b

Rl
a c b

Rl
a d e b

(c)

Figure 6.2.: An incomplete abstract list; several completions of (a); imple-
mentations of complete lists in (b)

programs at the implementation level. That is, our implementation need
not consider incomplete lists and may solely focus on complete lists.

We next formulate the definition of τ : {p} C {q} used in (CorrRef),
describing what it means to refine a triple correctly. Since our translation
function bb.cc extends the incomplete list heaps into complete ones intro-
ducing additional resources, to ensure the translation correctness we must
show that the inclusion of these additional resources does not break frame
preservation and that the translation function preserves all frames. That
is, any compatible frame at the abstract level, remains compatible after
translation to the concrete level. As such, we bake this frame preserva-
tion requirement into the definition of correct refinement τ : {p} C {q} as
follows:

τ : {p} C {q} def⇐⇒ ∀r. {bbp ∗ rcc} [[[C]]] {bbq ∗ rcc} (Ref)

The above states that abstract specifications are preserved by the trans-
lation in all larger states: all triples {p} C {q} that we can prove at the
abstract level, are preserved by the translation, while also preserving all

202

compatible frames r.

Lastly, given the definition of refinement in (Ref), we must prove that
(CorrRef) holds. The proof of (CorrRef) is by induction on the struc-
ture of triples (excluding the parallel composition rule for C1||C2 as we
do not consider concurrency in this section). The proof of inductive cases
follow from the inductive hypotheses. For instance, we can prove the
sequential composition case (Seq) by the following derivation:

τ : {p} C1 {r}
(I.H.)

∀s. {bbp ∗ scc} [[[C1]]] {bbr ∗ scc} (Ref)
τ : {r} C2 {q}

(I.H.)

∀s. {bbr ∗ scc} [[[C2]]] {bbq ∗ scc} (Ref)

∀s. {bbp ∗ scc} [[[C1]]] ; [[[C2]]] {bbq ∗ scc} (Seq)

∀s. {bbp ∗ scc} [[[C1;C2]]] {bbq ∗ scc} ([[[.]]] def.)

τ : {p} C1;C2 {q}
(Ref)

(6.3)

For the base cases, namely those of list axioms in AxiomL (Def. 38), we
must show the correctness of our sequential implementation in Fig. 6.1.
More concretely, we must show that for all list operations C and all list
axioms (p, C, q) in AxiomL (Def. 38), the following holds:

∀r. {bbp ∗ rcc} [[[C]]] {bbq ∗ rcc}

where [[[C]]] denotes the implementation of C given in Fig. 6.1 and bb.cc de-
notes the completing translation function described above. This is straight-
forward to establish for our simple list implementation and we omit the
proof here. Instead, later in §7 we present an implementation of the DOM
fragment studied in §5 and establish its correctness with respect to our
axiomatic DOM specification by proving an analogous result to that of
(CorrRef).

Locality-breaking (completing) translations are simple in that they do
not require locality at the concrete level to match the locality at the ab-
stract level. However, whilst defining completing translations of locality-
breaking translations is simple, the correctness proof may be rather dif-
ficult as we have to show that the axioms are preserved for all possible
frames and all possible completions. In particular, as we demonstrate
shortly, the number of proof obligations increases as we consider more

203

complex libraries where the completion of partial data is not straightfor-
ward. Moreover, as we demonstrate below, locality-breaking translations
are not suitable for the refinement of concurrent libraries as they involve
non-trivial linearisability proofs.

6.1.1. Locality-breaking Limitations: Scalability

The completing locality-breaking translation considered above for the list
library is rather simple. In particular, the correctness of the inductive
cases follows from the inductive hypotheses whilst the correctness of each
list library axiom can be established by a single proof per axiom. More
concretely, for each of the list axioms, the translation function is required
to complete the partial lists in the pre- and postconditions by describing
the data associated with at most a single abstract address α. For instance,
in the case of the x.add(n) axiom given in Fig. 2.2 (p. 51) and repeated
on p. 201, the completing translation must describe the list data associated
with the single context hole α. In other words, for each axiom of the list
library, it suffices to consider a single arbitrary completion of the list data
in its specification (by associating an arbitrary list fragment with α when
applicable). As such, we can prove the correctness of our implementation
by providing a single proof per library axiom.
In general, it is not always possible to capture all possible completions

of the data in library axioms succinctly with a single arbitrary completion.
For instance, consider providing a (completing) locality-breaking transla-
tion of our tree library T in §4, with its operations axiomatised in Fig. 4.2.
Regardless of how the tree library operations are implemented, establish-

ing the correctness of the appendChild(n, m) operation is going to pose
a challenge. Consider the specification of appendChild(n, m) in Fig. 4.2,
repeated below:{

vars(n :n, m :m) ∗ α 7→ n[β] ∗ γ 7→ m[t] ∗ complete(t)
}

appendChild(n, m){
vars(n :n, m :m) ∗ α 7→ n[β ⊗m[t]] ∗ γ 7→ ∅

}
Let us assume that the values associated with the logical variables n and

m are as follows: n=n and m=m. As depicted in Fig. 6.3, there are three
possible ways in which the incomplete tree data in the precondition of

204

n m m n

n

m

Figure 6.3.: The possible completions of the appendChild(n, m) resources

the axiom can be completed. That is, n and m may be in one of three
possible orientations with respect to one another. Either the subtree at n
is somewhere to the left of m; or the subtree at n is somewhere to the
right of m; or the subtree at m is somewhere underneath n.

A particular implementation of appendChild(n, m) may depend on the
relation between n and m, varying from one orientation to another. For in-
stance, consider an implementation in which each node maintains a pointer
to its parent. When n and m are in one of the first two orientations de-
picted, the implementation of appendChild(n, m) must accordingly update
the parent pointer of m, redirecting it to n. Let us assume that when m

is an immediate child of n, our implementation does not overwrite the
parent pointer of m for efficiency (since doing so is an idempotent opera-
tion). As such, in those completions of the third orientation in which m is
an immediate child of n, the implementation of appendChild(n, m) varies
subtly.

In order to prove that the implementation of appendChild(n, m) is cor-
rect with respect to its abstract specification, we must verify the im-
plementation in each of these three orientations. In other words, we
need to provide three separate proof sketches for the single axiom of
appendChild(n, m). Ideally, we would like to verify the implementation
of each operation once and for all: one proof sketch per axiom. That is,
we would like to establish the correctness of an implementation regardless
of the set of possible completions (frames). This leads us on to locality-
preserving translations that by definition preserve all frames. This in turn
allows us to show the correctness of an implementation independently of
the set of possible completions.

205

6.1.2. Locality-breaking Limitations: Concurrency

Locality-breaking translations are not suitable for refinement in concurrent
settings. Let us suppose that we have a concurrent implementation of the
list library L operations. As before, in order to show that our implemen-
tation correctly refines the list specification given by AxiomL (Def. 38),
we must establish the correct refinement condition in (CorrRef), with
the definition of τ : {p} C {q} given in (Ref).

As described in §6.1, the proof of (CorrRef) is by induction over the
structure of WLogicL triples. The proofs of all cases, with the exception of
the parallel rule {p1 ∗ p2} C1||C2 {q1 ∗ q2}, are straightforward and in most
cases follow from the inductive hypotheses as shown in the derivations
above (see e.g. derivation 6.3). Let us turn our focus to the parallel
composition rule. Our first attempt at a derivation similar to that of
(6.3) fails as we cannot connect the top part of the derivation tree to the
bottom part:

τ : {p1} C1 {q1}
(I.H.)

∀r.{bbp1∗ rcc} [[[C1]]] {bbq1∗ rcc}
(Ref)

(???)
(???)

τ : {p2} C2 {q2}
(I.H.)

∀r.{bbp2∗ rcc} [[[C2]]] {bbq2∗ rcc}
(Ref)

(???)
(???)

∀r. {bbp1 ∗ p2 ∗ rcc} [[[C1]]] || [[[C2]]] {bbq1 ∗ q2 ∗ rcc}
(???)

∀r. {bbp1 ∗ p2 ∗ rcc} [[[C1||C2]]] {bbq1 ∗ q2 ∗ rcc}
([[[.]]] def.)

τ : {p1 ∗ p2} C1||C2 {q1 ∗ q2}
(Ref)

Intuitively, this is because given a frame r, although each thread in iso-
lation preserves r, their interleaving with one another may not. That is,
while executing each of [[[C1]]] and [[[C2]]] in isolation preserves r, interleaving
the execution of [[[C1]]] with that of [[[C2]]], namely executing [[[C1||C2]]], may
not.

Following our failed attempt at an inductive proof, we can alternatively
proceed as follows. First, we show that all triples involving sequential
programs are refined correctly. That is, for all p, q and for all sequential
programs C (where C does not include the parallel composition construct
|| and is not interleaved with another thread) we have:

{p} C {q} =⇒ τ : {p} C {q} (CorrSeqRef)

206

Second, we show that the concurrent program C1||C2 is equivalent to a
sequential program C, and show τ : {p} C {q} instead, which follows
immediately from (CorrSeqRef) above.

We must next define what it means for the concurrent program C1||C2

to be equivalent to a sequential program C. The obvious first candidate is
to require that our list library implementation be linearisable [27, 56]. A
library implementation is linearisable if and only if given any two library
operations C1 and C2, no matter how C1 and C2 are interleaved, it appears
as if C1 was called before C2 (i.e. C1;C2) or vice versa (i.e. C2;C1). In other
words, the library operations behave atomically : the observable effect of
each library operation is carried out instantaneously.

In order to establish the correctness of a concurrent implementation with
a locality-breaking translation, we must show that our implementation is
linearisable. However, constructing linearisability proofs is known to be
non-trivial and non-modular. As we demonstrate shortly in the following
section, locality-preserving translations provide a simple alternative to lin-
earisability for establishing the implementation correctness of concurrent
libraries.

6.2. Locality-preserving Translations

Locality-breaking (completing) translations do not always scale to the re-
finement of complex sequential libraries as they result in several proof
obligations per library axiom. Moreover, the locality-breaking approach
is not suitable for the refinement of concurrent libraries as they require
linearisability proofs which are non-trivial and non-modular. As such, it is
often more desirable to appeal to locality-preserving translations that by
definition preserve all frames. In short, given sets of states denoted by p

and q, a state translation function bb.cc is locality-preserving if and only if
it satisfies the following property:

∀p, q. bbp ∗ qcc = bbpcc ∗ bbqcc (FP)

The property above stipulates that locality at the abstract level match
the locality at the concrete level. That is, if two sets of states p and
q are compatible at the abstract level (if p ∗ q is defined), they remain

207

compatible after translation (then bbpcc ∗ bbqcc is also defined), thus ensuring
frame preservation.

Equipped with the (FP) property, we can now weaken the refinement
correctness definition in (Ref) and thus simplify the proof obligation as:

τ : {p} C {q} def⇐⇒ {bbpcc} [[[C]]] {bbqcc} (SimpRef)

In other words, since the frame preservation property is maintained by
the translation, it is no longer required to be established explicitly for
each axiom as stipulated by (Ref), and it suffices to prove the simpler
refinement condition in (SimpRef). That is, as shown in the derivation
below, the frame preservation property in (FP) together with (SimpRef)
imply the stronger condition outlined in (Ref).

{bbpcc} [[[C]]] {bbqcc} (SimpRef)

∀r. {bbpcc ∗ bbrcc} [[[C]]] {bbqcc ∗ bbrcc} (Frame)

∀r. {bbp ∗ rcc} [[[C]]] {bbq ∗ rcc} (FP)

We now revisit the shortcomings of locality-breaking translations dis-
cussed in the preceding section and describe how they are addressed by
locality-preserving translations.

Concurrency Recall that locality-breaking translations are not suitable
for the refinement of concurrent libraries as they require non-trivial and
non-modular linearisability proofs. As we demonstrate shortly, locality-
preserving translations are more suitable in concurrent settings as the
frame preservation property (FP) maintained by the translation ensures
the preservation of all frames regardless of how the library operations may
be interleaved with one another, eliminating the need for a linearisability
proof.
In other words, rather than proving the refinement correctness for se-

quential programs and then establishing the correctness of concurrent pro-
grams via a linearisability proof, we can demonstrate the correct refinement
of concurrent programs directly by establishing the refinement condition
for the parallel composition rule. More concretely, equipped with the sim-
pler proof obligation of (SimpRef) and the frame preservation property in

208

(FP), we can revisit the failed proof attempt for the parallel composition
rule (Par) in the previous section and prove it as follows:

τ : {p1} C1 {q1}
(I.H.)

{bbp1cc} [[[C1]]] {bbq1cc}
(SimpRef)

τ : {p2} C2 {q2}
(I.H.)

{bbp2cc} [[[C2]]] {bbq2cc}
(SimpRef)

{bbp1cc ∗ bbp2cc} [[[C1]]] || [[[C2]]] {bbq1cc ∗ bbq2cc}
(Par)

{bbp1 ∗ p2cc} [[[C1]]] || [[[C2]]] {bbq1 ∗ q2cc}
(FP)

{bbp1 ∗ p2cc} [[[C1||C2]]] {bbq1 ∗ q2cc}
([[[.]]] def.)

τ : {p1 ∗ p2} C1||C2 {q1 ∗ q2}
(SimpRef)

Although locality-preserving translations are more complex in that they
require locality at the concrete level to match the locality at the abstract
level, they are more suitable for the refinement of concurrent libraries.
This is because locality-preserving translations preserve the correctness
of concurrent client programs without the need for linearisability proofs.
Moreover, unlike linearisability proofs, the refinement proofs of locality-
preserving translations are modular and extending the library with addi-
tional operations does not affect the existing proofs.

Scalability Recall that when using locality-breaking translations, the
number of proof obligations increases as we consider more complex li-
braries. This is because due to the footprint mismatch between the spec-
ification and implementation, we must provide a completing translation
that extends incomplete data fragments, providing the additional resources
needed. Consequently, we must consider all possible completions of incom-
plete data as the implementation behaviour may vary in each case. This
in turn leads to several proof sketches per library axiom, hindering the
scalability of locality-breaking translations.

To remedy this, locality-preserving translations abandon the notion of
completing translations altogether, thus eliminating the need for consider-
ing the completions of incomplete data. In other words, locality-preserving
translations yield only those resources that are required by the operation
at the implementation level (rather than the complete data structure),
whilst maintaining the the frame preservation property in (FP). More
concretely, given an abstract triple {p} C {q}, the translation of p (bbpcc)

209

may produce all resources required by the implementation of C, provided
that the frame preservation property in (FP) is maintained. That is, any
frame r compatible with p and q remains compatible after the translation:

∀r. bbp ∗ rcc= bbpcc ∗ bbrcc and bbq ∗ rcc= bbqcc ∗ bbrcc

However, as we demonstrated in the preceding section for the x.add(n)

operation, the footprint of a library operation at the implementation level
may be larger than its footprint at the specification level, potentially in-
validating the frame preservation property. When this is the case, in order
to maintain the frame preservation property, we appeal to an additional
concept: the implementation crust. We then motivate the need for an ad-
ditional piece of information required by locality-preserving translations,
interfaces, facilitating the translation of incomplete abstract heaps.

Crust The crust of an implementation denotes those additional resources
required by the library operations at the implementation level that are
not contained in the footprint at the specification level. For instance, in
the case of the list library implementation studied in the previous section
(Fig. 6.1), the footprint of the x.add(n) implementation spans the entire
list which is not included in its footprint at the abstract level. As such,
the crust of this implementation encompasses the entire list.
In general, the crust of an implementation may be far more fine-grained

than the entire data structure. For instance, consider the tree library T
studied in §4 with its appendChild(n, m) axiom in Fig. 4.2 repeated on
p. 204. When n=n and m=m, the abstract footprint of appendChild(n, m)
is limited to the tree node n and the subtree at m. Consider an imple-
mentation of the tree library where each node maintains a pointer to its
parent and each parent node tracks its immediate children via a linked
list. Let us assume that the implementation of appendChild(n, m) pro-
ceeds as follows: i) it looks up the parent of m, iterates over the child list
of the parent until it reaches m, removes m from the child array; and ii)
iterates over the child list of n until it reaches the end and then appends
m to it. As such, the footprint of appendChild(n, m) at the implemen-
tation level contains the tree nodes n and m (which are included in the
specification footprint) as well as the resources associated with the child
list of m’s parent and the child list of n (which are not included in the

210

specification footprint). In other words, the crust of this implementation
comprises the child list of m’s parent and the child list of n. More con-
cretely, for every abstract address x in the domain of an abstract tree
heap (e.g. the addresses associated with α and γ in the heap described
by the precondition of appendChild), the crust includes the child list of
the node directly above x (e.g. the child list of the parent nodes of n and
m). Analogously, for every context hole x in the range of an abstract tree
heap (e.g. the context hole associated with β in the heap described by the
precondition of appendChild), the crust includes the child list of the node
directly above x (e.g. the child list of n).
Let us write TCrust(P) for the crust of the tree heap described by P

and let us define the tree resources P0, P1 and P2 as follows:

Rt 7→ u[l[∅]⊗ r[∅]]⇔ ∃α1, α2. P0 ∗ P1 ∗ P2

with P0 , Rt 7→u[α1⊗α2] P1 , α1 7→l[∅] P2 , α2 7→r[∅]

(6.4)

Since crust denotes the resources required by the implementation of the
library operations, the translation function mapping abstract resources
onto concrete ones must include the crust in the translation. For in-
stance, the translation of P1, namely bbP1cc, must include the crust resource
TCrust(P1). That is, the translation of P1 must be of the following form:

bbP1cc , · · · ∗ TCrust(P1)

where TCrust(P1) denotes the crust of P1, namely the child list of u.
Analogously, the bbP2cc must include TCrust(P2) : bbP2cc , · · · ∗TCrust(P2),
where TCrust(P2) also corresponds the child list of u. Note that at the
abstract level the resources described by P1 and P2 are compatible in that
P1 ∗ P2 is defined. In order to maintain the frame preservation property
of (FP), we must ensure that the translations of these resources remain
compatible at the concrete level. That is, we must show:

bbP1 ∗ P2cc = bbP1cc ∗ bbP2cc

= TCrust(P1) ∗ · · · ∗ TCrust(P2) ∗ · · ·

However, observe that the resources of TCrust(P1) and TCrust(P2) are

211

incompatible in that they both contain the child list of u, rendering
TCrust(P1) ∗ TCrust(P2) undefined. To remedy this, we can declare the
crust resources produced by the translation as shared resources which may
be freely duplicated and are accessible by all threads. For instance, we
can use similar techniques to the concurrent abstract predicates (CAP)
logic [15] and redefine the translation above as follows:

bbP1cc , · · · ∗ TCrust(P1)
U

bbP2cc , · · · ∗ TCrust(P2)
U

where P U ∗ Q U
⇔ P ∧Q

U
for all P , Q and U

The boxed assertion TCrust(P1)
U

states that TCrust(P1) is a shared
resource accessible by all threads and may be freely duplicated. The
U describes how the shared resources of TCrust(P1) may be updated
by each thread, provided that it holds the sufficient permissions. As
part of the translation, we can then provide each thread with the nec-
essary permissions (ghost resources) to ensure that they can carry out
the necessary changes. For instance, translating the precondition of the
appendChild(n , m) operation may yield the permission required for ap-
pending node m to the end of the child list of n. Moreover, since boxed
resources are shared, the may be combined using the ∗ connective as shown
above. In particular, we have:

TCrust(P1)
U
∗ TCrust(P2)

U
⇔ TCrust(P1) ∧ TCrust(P2)

U

By describing the crust as a shared resource, we maintain the frame
preservation property of (FP). As discussed above, this liberates us from
having to consider all possible completions and thus the need for multiple
proof sketches per axiom. We omit the details of our locality-preserving
translation for the tree library T. We refer the reader instead to [23] where
we present a concurrent implementation of the tree library T and establish
its correctness by providing a locality-preserving translation.

Interfaces Recall that when defining a locality-breaking translation, in-
complete heaps (containing abstract addresses) are not translated directly.
Rather, incomplete heaps are first extended into complete ones and only
then are they translated into concrete resources at the implementation

212

level. As such, the translation function need not account for incomplete
abstract heaps. On the other hand, as mentioned above, locality-preserving
translations desert the concept of completion altogether and must thus ac-
commodate the translation of incomplete heaps.
Observe that incomplete heaps are agnostic to the shapes of the data

associated with the abstract addresses in their domain and range. For
instance, given the P0, P1 and P2 assertions in (6.4) above, let the values
associated with the logical variables be as follows: α1=x1, α2=x2, u=u,
l=l and r=r. The P0, P1 and P2 assertions then describe the tree heaps
h0 , Rt 7→ u[x1 ⊗ x2], h1 , x1 7→ l, h2 , x2 7→ r, respectively. Observe
that the incomplete heap h0 has no knowledge of the forests placed within
x1 and x2, namely the shapes of h1 and h2. Analogously, the incomplete
heaps h1 and h2 have no knowledge of the forest containing the x1 and
x2 context holes, namely the shape of h0. This however may not the
case at the implementation level. Consider the implementation described
above where each node maintains a pointer to its parent and each parent
node tracks its children via a linked list. The concrete representation of
h1 (respectively h2) then includes a pointer from l (respectively r) to its
parent (u in h0) and thus relies on some information from h0. Similarly,
the concrete representation of h0 includes a linked list of the immediate
children of u (namely l in h1 and r in h2) and hence relies on some infor-
mation from h1 and h2. As such, when translating incomplete tree heaps
with abstract addresses, we require auxiliary information describing how
the abstract addresses and context holes connect together. We track this
additional information associated with each abstract address x through an
interface function, associating each abstract address with the necessary
contextual information. To translate the incomplete heaps correctly, we
thus parameterise the translation function with an interface function that
records the interfaces associated with abstract addresses.

6.2.1. Locality-preserving Limitations: Complexity

We have briefly presented locality-preserving translations and demonstrated
how they improve on locality-breaking translations for scalable refinement
of both sequential and concurrent libraries. However, compared to locality-
breaking translations, locality-preserving translations are more complex in

213

that they require locality at the concrete level to match the locality at the
abstract level, by requiring the frame preservation property (FP). In gen-
eral, it may not be trivial to devise a translation function that maintains
the (FP) property and achieves the desired locality parity.
More concretely, recall that in order to maintain the (FP) property, we

must declare the crust as a shared resource TCrust(· · ·)
U
. The U denotes

an interference relation describing how the shared resource TCrust(· · ·)
may be manipulated by each thread, given a suitable distribution of per-
missions amongst threads. Describing the shared resources of crust and
their interference may be rather involved, making locality-preserving trans-
lations more complex than their locality-breaking cousins. This complexity
is justified in concurrent settings, especially when the library implementa-
tion employs fine-grained synchronisation mechanisms. This is because the
complexity of locality-preserving translations is offset by the even more
complex linearisability proofs required by locality-breaking translations.
On the other hand, it is harder to justify this complexity in sequential
settings where the rival locality-breaking translations offer simpler trans-
lations, albeit unscalable.
In what follows, we present a hybrid translation approach for the re-

finement of libraries in sequential settings, combining the strengths of the
locality-breaking and locality-preserving approaches.

6.3. Hybrid Translations

We have briefly demonstrated how to refine abstract libraries as an al-
ternative justification for the soundness of SSL specifications. As with
previous work [16, 59], we have reported on two approaches for proving
the refinement correctness of an implementation with respect to an ab-
stract specification: locality-breaking and locality-preserving translations.
The main difference in the two approaches is the burden of the proof

of a correct translation. Locality-breaking translations are simple in that
they do not require locality at the concrete level to match the locality at
the abstract level. However, when refining the libraries of complex data,
the number of proof obligations increases rapidly as we must provide sev-
eral proof sketches per library axiom. Moreover, they are not suitable
for the refinement of concurrent modules: the burden of proof significantly

214

increases as one must additionally establish that each operation implemen-
tation is linearisable. On the other hand, locality-preserving translations
allow us to refine libraries of complex data by providing one proof sketch
per library axiom. Moreover, they are more suitable for the refinement
of concurrent libraries since the (FP) property significantly simplifies the
proof obligation by eliminating the need for non-modular linearisability
proofs. However, they are more complex in that they require locality at
the concrete level to match the locality at the abstract level, and it may
be non-trivial to devise a translation function that achieves this.
We present a hybrid translation approach for the refinement of libraries

in sequential settings, borrowing ideas from both locality-breaking and
locality-preserving translations. More concretely, as with the locality-
preserving approach, we do not provide a completing translation and in-
stead provide each operation with its required resources by identifying the
implementation crust. This then enables us to verify the correctness of
each operation with a single proof sketch per axiom, allowing for scalable
proofs. However, unlike locality-preserving translations, we do not declare
the crust as a shared (duplicable) resource. Rather, we treat the crust as
an extension of the footprint, much like the additional resources yielded by
the completions of the locality-breaking translations. This of course invali-
dates the frame preservation property (FP) required by locality-preserving
translations. However, whilst the (FP) property is crucial for establishing
the correctness of concurrent implementations (it eliminates the need for
non-trivial linearisability proofs), it is not of import in sequential settings.
As such, since we only consider sequential library implementations, losing
the (FP) property is of no consequence.
In the following chapter, we present a sequential JavaScript implemen-

tation of the DOM library specified in §5 and establish its correctness by
providing a hybrid translation as described above. That is, we identify the
crust of our implementation and subsequently define a translation function
that maps abstract DOM heaps onto corresponding concrete JavaScript
heaps extended with the necessary crust resources. As we demonstrate in
§7.2, our implementation crust comprises DOM tree resources analogous
to that explained above (e.g. the child list of a parent node), as well as
additional resources needed for the correct initialisation of our JavaScript
implementation.

215

7. Refinement for DOM

Previously in §5, we presented a formal specification of a fragment of
the DOM library [2]. In keeping with the axiomatic style of the DOM
standard [1], we specified the behaviour of DOM operations axiomati-
cally rather than operationally. In this chapter, we further justify our
axiomatic DOM specification with respect to a reference implementation
in JavaScript [44]. In §7.1 we present the JavaScript implementation of
our DOM fragment. Later in §7.2 we establish the correctness of this
implementation with respect to its specification in §5, by using a hybrid
translation as described briefly in the previous chapter.

7.1. A DOM Implementation in JavaScript

Recall from §5 that the DOM API is specified in an object-oriented fash-
ion. However, unlike standard object-oriented languages (e.g. JAVA),
JavaScript does not have classes. It is thus not possible to statically
specify that an object created with a given constructor is of a certain
type, exposing certain fields and methods. Instead, in JavaScript every
object has a prototype to which it dynamically delegates the requests it
cannot handle. For instance, when running o.f(), if o does not define
the method f, the interpreter will check if its prototype does, in which
case method f of o’s prototype is executed. As such, method sharing
in JavaScript is accomplished via prototype-based inheritance described
above. We thus implement the DOM data types (namely the Node, Ele-
ment, Text, Document, Attribute and NodeList interfaces) as JavaScript
prototype objects and their operations as JavaScript functions. For in-
stance, for each node type (e.g. element nodes) we define a prototype that
defines the methods corresponding to the operations exposed by the nodes
of that type (e.g. getAttribute). We proceed with a high-level description
of our DOM implementation in [44].

216

getAttribute : · · ·
setAttribute : · · ·

. . .

le

name : “ ”
· · ·

removeChild :
· · ·

ln

· · ·

lop

@proto

@body : λn.erm
· · ·

lrm

@proto

· · ·

lfp

@proto

@proto

· · · value : · · ·
. . .

la
@proto

Figure 7.1.: A partial representation of our DOM implementation

DOM Interfaces as JavaScript Prototypes

We implement four special JavaScript prototypes, DProto, EProto, TProto
and AProto to represent the interfaces of Document, Element, Text, and
Attribute nodes, respectively. Each one of these prototypes defines the
methods provided by the nodes of its corresponding type. For instance,
EProto defines the element-specific methods such as getAttribute and
setAttribute. Recall that these specialised interfaces all implement the
Node interface which provides the common node methods such as ap-

pendChild and removeChild. We thus implement a JavaScript proto-
type, NProto, that represents the DOM Node interface and implements
the common node methods. The NProto serves as the prototype of the
four specialised node prototypes above.

For the NodeList interface, we implement two prototypes, FLProto and
TLProto, to represent the forest listener and tag listener NodeLists, re-
spectively. Each one of these prototypes defines the methods exposed by
the NodeList interface, namely the length and item methods. Lastly, we
implement a common prototype to these two objects, NLProto.

Each of these JavaScript prototype objects describe JavaScript heaps
(Def. 72). A partial pictorial representation of these prototype objects
in the heap is given in Fig. 7.1. The formal heap representations of
these objects are given in Figs. 7.2-7.3. We first describe the notation

217

used in Figs. 7.2-7.3 and then proceed with a description of the heap
representations.

Notation Given the JavaScript monoid (JSLHeap, ◦, JSUnit) of Def. 72,
we adopt the following assertion-like shorthand to increase readability,
where p, q ∈ P (JSLHeap), X,Y are values, V is a carrier set and X

denotes the set of all valid JavaScript field names (Def. 68):

p ∧ q for p ∩ q p ∨ q for p ∪ q true for {h | h ∈ JSLHeap}

emp for {h | h ∈ JSUnit} p ∗ q for {h1 ◦ h2 | h1 ∈ p ∧ h2 ∈ q}

X=̇Y for

emp if X = Y

∅ otherwise
∃v ∈ V. p for {h |v ∈ V ∧ h ∈ p}

~
v∈{v1,...,vn}

p(v) for {h | h ∈ p(v1)} ∗ · · · ∗ {h | h ∈ p(vn)}

only (l, S) for ~
f∈X\S

(l, f) 7→ �

l Z⇒{f1 :v1 . . . fn :vn} for l 7→ {f1 :v1 . . . fn :vn} ∗ only (l, {f1 . . . fn})

The only (l, S) shorthand states that the field names on the object at
location l are limited to those in the set S and thus for any other field
name the value is � (none). For brevity, we write h for the singleton set
{h} (e.g. (l, f) 7→ � for {(l, f) 7→ �} in the definition of only (l, S)). The
l Z⇒{f1 :v1 . . . fn :vn} shorthand states that the object at location l only
contains the fields f1 . . . fn with values v1 . . . vn, respectively.

Let us turn our focus to the JavaScript heap representation of our im-
plementation in Figs. 7.2-7.3. Let ln denote the location of the node
prototype object NProto in the JavaScript heap. To avoid cluttering the
definitions with additional arguments, we assume ln to be an implicit ar-
gument to the definitions in Fig. 7.2 when relevant. For instance, the
definitions of NProto and DProto in Fig. 7.2 both refer to ln on the right
hand side (via ln Z⇒ . . . and @proto : ln, respectively) and we thus assume
ln to be an implicit argument to both definitions. Similarly, we assume
ld, le, lt and la to denote the locations of DProto, EProto, TProto and
AProto, respectively, and treat them as implicit arguments in the defini-
tions of Fig. 7.2, as described above. As we demonstrate later in Def. 79,
we existentially quantify these locations outside the definition of our JS

218

NProto , ∃lhc, lfc, llc, lps, lns, lib, lrp, lrm, lac.

ln Z⇒

@proto : lop ,
ELEMENT_NODE : 1,ATTRIBUTE_NODE : 2,
TEXT_NODE : 3,DOCUMENT_NODE : 9,
nodeName : “ ”, nodeValue : null, nodeType : null,
parentNode : null, childNodes : null,
ownerDocument : null, hasChildNodes : lhc,
firstChild : lfc, lastChild : llc,
previousSibling : lps, nextSibling : lns,
insertBefore : lib, replaceChild : lrp,
removeChild : lrm, appendChild : lac

∗ func(lhc, l, [], ehc) ∗ func(lfc, l, [], efc) ∗ func(llc, l, [], elc)
∗ func(lps, l, [], eps) ∗ func(lns, l, [], ens) ∗ func(lib, l, [n, o], eib)
∗ func(lrp, l, [n,o], erp)∗func(lrm, l, [n], erm)∗func(lac, l, [n], eac)

DProto , ∃lce, lct, lca, ldtn.

ld Z⇒

@proto : ln, nodeType : ln.DOCUMENT_NODE,
nodeName : “#document”, createElement : lce,
createTextNode : lct, createAttribute : lca,
getElementsByTagName : ldtn

∗ func(lce, l, [s], ece) ∗ func(lct, l, [s], ect)
∗ func(lca, l, [s], eca) ∗ func(ldtn, l, [s], edtn)

EProto , ∃lga, lsa, lra, lgan, lsan, lran, letn.

le Z⇒

@proto : ln, nodeType : ln.ELEMENT_NODE,
getAttribute : lga, setAttribute : lsa,
removeAttribute : lra, getAttributeNode : lgan,
setAttributeNode : lsan, removeAttributeNode : lran,
getElementsByTagName : letn, __attributes__ : null

∗ func(lga, l, [s], ega) ∗ func(lsa, l, [s1, s2], esa) ∗ func(lra, l, [s], era)
∗ func(lgan, l, [s], egan) ∗ func(lsan, l, [a], esan)
∗ func(lran, l, [a], eran) ∗ func(letn, l, [s], eetn)

TProto , ∃ldlen, lst, lsd, lad, lid, ldd, lrd.

lt Z⇒

@proto : ln, nodeType : ln.TEXT_NODE,
nodeName : “#text”, data : null, length : ldlen
splitText : lst, substringData : lsd, appendData : lad,
insertData : lid, deleteData : ldd, replaceData : lrd

∗ func(ldlen, l, [], edlen)∗func(lst, l, [o], est)∗func(lsd, l, [o, c], esd)
∗ func(lad, l, [s], ead) ∗ func(lid, l, [o, s], eid)
∗ func(ldd, l, [o, c], edd) ∗ func(lrd, l, [o, c, s], erd)

AProto , la Z⇒
{

@proto : ln, nodeType : ln.ATTRIBUTE_NODE
name : null, value : lv, nodeValue : lv

}
∗ func(lv,l, [],ev)

where func(l, L, x̄, e) , l Z⇒{@proto : lfp ,@scope : L,@body : λx̄.e}

Figure 7.2.: DOM node interfaces as JavaScript prototypes

219

NLProto , lnl Z⇒{@proto : lop , length : null, item : null}

FLProto , ∃llen, litem, lfc, llc, lps, lns, lib, lrp, lrm, lac.

lfl Z⇒

@proto : lnl, length : llen, item : litem,
__contents__ : null, __thisNode__ : null,
__firstChild__ : lfc, __lastChild__ : llc,
__previousSibling__ : lps, __nextSibling__ : lns,
__insertBefore__ : lib, __replaceChild__ : lrp,
__removeChild__ : lrm, __appendChild__ : lac

∗ func(llen, l, [], elen) ∗ func(litem, l, [i], eitem) ∗ func(lfc, l, [], efc)
∗ func(llc, l, [], elc) ∗ func(lps, l, [], eps) ∗ func(lns, l, [], ens)
∗ func(lib, l, [n, o], eib) ∗ func(lrp, l, [n, o], erp)
∗ func(lrm, l, [n], erm) ∗ func(lac, l, [n], eac)

TLProto , ∃l′len, l′item.

ltl Z⇒
{

@proto : lnl, length : l′len, item : l′item,
__startPoint__ : null, __pattern__ : null,

}
∗ func(l′len, l, [], e′len) ∗ func(l′item, l, [i], e′item)

Figure 7.3.: The DOM NodeList interfaces as JavaScript prototypes

heap representation. By treating these existentially quantified variables
as implicit arguments when relevant, we keep our definitions cleaner and
improve readability.

A partial JavaScript representation of our implementation is depicted in
Fig. 7.1, where the objects at locations ln, le and la respectively denote
the NProto, EProto and AProto prototypes, while the representation of
other prototype objects are left out for brevity.

The NProto describes the Node prototype object at location ln and
states that the prototype of ln (from which it inherits) is stored at ad-
dress lop (via the @proto field). Recall that the lop denotes the desig-
nated JavaScript object prototype.1 The object prototype at lop describes
the universal object at the end of all JavaScript prototype chains and is
akin to the Java universal superclass “Object”. The ELEMENT_NODE,
ATTRIBUTE_NODE, TEXT_NODE and DOCUMENT_NODE denote

1 The @proto field denotes an internal JavaScript field used to determine the prototype
chain of an object dynamically. Given an object at location l, the l.@proto records the
location of l’s prototype; that is„ i.e. the object from which l inherits. To distinguish
internal fields from regular ones, they are written in italics prefixed with the @ symbol,
whereas regular fields are written in the typewriter style.

220

integer constants describing node types. The NProto prototype describes
an abstract prototype (similar to an abstract class in Java that may not be
instantiated) from which all other DOM node prototypes inherit. As such,
the values of the fields nodeValue, nodeType, parentNode, childNodes

and ownerDocument are all null. Analogously, the value of the nodeName

field is the empty string “ ”. The remainder of the NProto definition de-
scribes the DOM methods exposed by the Node interface as JavaScript
functions. A JavaScript function is stored in the heap as a function object
with the function body stored as a lambda abstraction (Def. 67). For
instance, the insertBefore function is stored as a function object at lo-
cation lib. The func(lib, l, [n, o], eib) predicate (defined at the bottom of
Fig. 7.2) states that the function object at lib inherits from the designated
JavaScript function prototype at lfp (via the internal field @proto), that
this function is to be executed in the current scope chain l (Def. 74), that
this method has two arguments (n and o), and that the method body
is given by the JavaScript expression eib. The eib describes the code of
the insertBefore function as implemented in [44]. We have omitted the
code here for brevity. The implementation of the r := n.firstChild and
n.removeChild(o) and operations are given in §B. The implementation of
the remaining operations can be found in [44].

The remaining definitions describe the JavaScript heap representations
of the specialised DOM node prototypes. Note that each specialised pro-
totype inherits from the NProto prototype at ln (via the @proto field). As
such, each specialised node prototype only implements the methods spe-
cific to that node (e.g. getAttribute on the element prototype EProto)
and does not implement the common node methods (e.g. removeChild) as
these are inherited from the Node prototype NProto. The __attributes__

field on EProto tracks the attributes associated with the element node as
an object with one correspondingly-named field per attribute. The __at-

tributes__ field is not part of the DOM Element interface and is a feature
of our element node implementation. Another implementation may choose
to record the element attributes as e.g. an array or a linked list under
another name. As a convention, to distinguish the implementation-specific
fields from those provided by the DOM interface, we prefix and suffix their
names with __.

The NodeList prototypes are given in Fig. 7.3. As before, we assume

221

lnl, lfl and ltl to denote the locations of NLProto, FLProto and TLProto,
respectively. We then assume lnl, lfl and ltl to be implicit arguments
to the definitions in Fig. 7.3, when relevant. As mentioned earlier, the
NLProto serves as a common prototype for the forest listener NodeList
prototype (FLProto) and the tag listener NodeList prototype (TLProto).
Recall that the NodeList interface provides two methods: length and
item. The implementations of length and item for forest listeners dif-
fer from those of tag listeners. Forest listener NodeLists are maintained
eagerly : upon each insertion and removal from the NodeList the associ-
ated contents array (__contents__) is updated accordingly. By contrast,
tag listener NodeLists are maintained lazily : the contents of the NodeList
are computed on demand upon each inspection via the length and item

methods. As such, each of the FLProto and TLProto prototypes define
their own implementations rather than inheriting them from the common
NLProto prototype. Therefore, the NLProto prototype provides no imple-
mentation of these methods (declared simply as null).

The FLProto describes the forest listener NodeList prototype at address
lfl, inheriting from the NLProto at address lnl (via the @proto field). The
length and item fields record the locations of the function objects im-
plementing the length and item methods for forest listeners, respectively.
The remaining fields track implementation-specific values that are not part
of the DOM interface. The __contents__ tracks the contents of the child
list as a JavaScript array. The __thisNode__ field tracks the location of
the node object with which this forest listener NodeList is associated. The
remaining fields describe auxiliary functions used in the implementations
of the correspondingly-named functions in the Node prototype NProto.
For instance, the implementation of the removeChild function in NProto

removes the specified node from the child list by calling __removeChild__

on the child list.

Analogously, the TLProto describes the tag listener NodeList prototype
at address ltl, inheriting from the NLProto at address lnl. The length

and item fields record the locations of the function objects implement-
ing the length and item methods for tag listeners, respectively. The
__startPoint__ records the location of the node object with which this
tag listener is associated, i.e. the starting point for the tag search. The
__pattern__ field records the search string for this tag listener.

222

We can now define the JavaScript heap representation of our implemen-
tation as a collection of the prototype objects defined in Figs. 7.2-7.3. As
mentioned earlier, we existentially quantify the implicit arguments used
in the definitions of Figs. 7.2-7.3 denoting the locations of the prototype
objects (e.g. ln, ld, etc.).

Definition 79 (DOM prototypes). The JavaScript heap representation of
the DOM interfaces is defined as follows:

Protos , ∃ln, ld, le, lt, la, lnl, lfl, ltl.

NProto ∗ DProto ∗ EProto ∗ TProto ∗ AProto
∗ NLProto ∗ FLProto ∗ TLProto

DOM Objects as JavaScript Objects

A DOM object in our JavaScript implementation is an instance of the
corresponding prototype. For instance, a partial JavaScript representation
of the “img” element with identifier 3 in Fig. 5.1a is depicted in Fig. 7.4.
The objects above the dashed line represent prototype objects given in
Figs. 7.2-7.3, as described in the previous section.
Let us look at the JavaScript heap representation of the “img” element

with identifier 3 in more detail. This element node is represented in the
JavaScript heap as:

ENode (3, “img”, la,fid , 9) ∗ FL (fid , 3, []) ∗ la Z⇒
{

@proto : lop ,
src :13, width :17

}
∗ANode (13, “src”,fid1) ∗ FL (fid1, 13, [1])

∗ANode (17, “width”,fid2) ∗ FL (fid2, 17, [23])

∗TNode (1, “goo.gl/K4S0d0”,fid3, 13) ∗ FL (fid3, 1, [])

∗TNode (23, “800px”,fid4, 13) ∗ FL (fid4, 23, [])

(7.1)

with the definitions of ENode, ANode, TNode and FL given in Fig. 7.5.
As before, we assume ln, ld, le, lt, la, lnl, lfl and ltl to denote the
locations of NProto, DProto, EProto, TProto, AProto, NLProto, FLProto
and TLProto, respectively, and treat them as implicit arguments in the
definitions of Fig. 7.5, when relevant.
The first component, ENode (3, “img”, la,fid , 9), implements the “img” el-

ement with identifier 3 as an instance of the EProto prototype at address

223

getAttribute : · · ·
setAttribute : · · ·

. . .

le

name : “ ”
· · ·

removeChild :
· · ·

ln

· · ·

lop

@proto

@body : λn.erm
· · ·

lrm

@proto

· · ·

lfp

@proto

@proto

· · · value : · · ·
. . .

la
@proto

tagName : “img”
__attributes__ :
parentNode :

. . .

3 @proto

· · ·
src :
width :

la

9
name : “src”

. . .

13
@proto

name : “width”
. . .

17
@proto

Figure 7.4.: A partial representation of “img” element 3 from Fig. 5.1a

3 with fields: i) @proto, storing the address of the EProto prototype le
(captured by the arrow labelled @proto in Fig. 7.4); ii) tagName, storing
its tag name (“img”); iii) nodeName, the same as the tag name; iv) __at-

tributes__, storing the address of an object (la) that maps the names
of the attributes on the node to their corresponding attribute objects; v)
childNodes, storing the address of a FLProto object containing the child
nodes of the node; vi) parentNode, storing the address of the parent node
(i.e. node 9); and vii) ownerDocument, storing the address of the docu-
ment object (with the designated identifier d). An element node has no
other fields and inherits all methods of the EProto prototype (e.g. getAt-
tribute).

The second component, FL (fid , 3, []), implements the forest listeners of
node 3 as a single FLProto object at address fid with fields: i) @proto,
storing the address of the FLProto prototype lfl; ii) __thisNode__, storing
the address of the node with which the child list is associated, i.e. 3; and
iii) __contents__, storing the location of the contents array. The contents
(in this case []) are represented as a JavaScript array captured by the

224

DNode (l,fid , e) , l Z⇒
{

@proto : ld, childNodes : fid ,
documentElement : e

}

ENode (l, s, la,fid , u) , l Z⇒

@proto : le, nodeName : s, tagName : s,
__attributes__ : la, childNodes : fid ,
parentNode : u, ownerDocument : d

TNode (l, s,fid , u) , l Z⇒

{
@proto : lt, nodeValue : s, childNodes : fid ,
parentNode : u, ownerDocument : d

}
ANode (l, s,fid) , l Z⇒

{
@proto : la, nodeName : s, name : s,
childNodes : fid , ownerDocument : d

}

FL (l, n, L) , ∃lc. l Z⇒
{

@proto : lfl, __thisNode__ : n,
__contents__ : lc

}
∗ array(lc, L)

TL (l, s, n) , l Z⇒{@proto : ltl, __pattern__ :s, __startPoint__ :n}

TLs (n, ts) , ~
(s,fid)∈ts

TL (fid , s, n)

Figure 7.5.: DOM Node and NodeList instances as JavaScript objects

abstract predicate array. A child list has no other fields and inherits all
methods of the FLProto object for manipulating the child list (e.g. length,
item).

The third component, la Z⇒{@proto : lop , src :13, width :17}, implements
the attributes of node 3 as an object at la, with its @proto field pointing
to the object prototype at lop . For each attribute of node 3 (e.g. “src”),
la has a field of the same name storing the corresponding attribute node.
In this case, the fields named src and width store 13 and 17, namely the
addresses of the respective attribute nodes.

The next two components, ANode (13, “src”,fid1) and FL (fid1, 13, [1]),
respectively implement the attribute node with identifier 13 and its forest
listener (where the underlying text forest contains a single text node with
identifier 1). The definition of ANode is analogous to that of ENode and
is given in Fig. 7.5. Similarly, the next line describes the attribute with
identifier 17 and its forest listener.

The next line, TNode (1, “goo.gl/K4S0d0”,fid3, 13) ∗ FL (fid3, 1, []), de-
scribes the text node with identifier 1 and value “goo.gl/K4S0d0” (i.e. the
only child of the “src” attribute with identifier 13), together with its for-
est listener at location fid3 (where the underlying forest is empty as text
nodes have no children). Similarly, the last line describes the text node

225

with identifier 23 and its forest listener.

The last definition in Fig. 7.5, TLs (n, ts), describes the tag listeners
associated with node n where ltl denotes the location of the tag listener
NodeList prototype (TLProto). Each listener object at location fid (where
(s,fid) ∈ ts) is an instance of TLProto with fields: i) @proto, storing
the address of the TLProto prototype ltl; ii) __pattern__, storing the tag
name that is searched for (s); and iii) __startPoint__, storing the address
of the node with which it is associated (n).

This concludes the description of our DOM implementation in JavaScript.
In what follows we show that this implementation is correct with respect
to the DOM specification given in §5.

7.2. DOM Implementation Correctness

We define what it means to correctly implement the DOM library and
then show that our DOM implementation sketched in §7.1 (with more
details in [44]) is correct with respect to our specification in §5, by means
of a hybrid translation as outlined in §6.

Our goal is to show that everything we can prove about JavaScript
programs calling the DOM can also be proved about the same programs
calling our DOM implementation instead. We do this via a refinement
proof using a hybrid translation function that relates DOM heaps onto
JavaScript heaps.

Recall from our DOM axioms (Figs. 5.2-5.3) that many DOM operations,
such as nextSibling, are specified through incomplete DOM heaps. To
understand the translation of these incomplete heaps, we consider the
DOM heap h0 defined in (7.2) below.

h0 , Rd 7→#docd[su[∅,#textl[s1] ⊗#textn[s2]]]&∅ (7.2)

The h0 describes a complete DOM heap at address Rd, containing the
document node (with identifier d) with an empty grove (∅) and a non-
empty document element (with identifier u). Moreover, the element node
u itself contains no attributes (∅) and its child forest comprises two text
nodes (with identifiers l and n). Using abstract allocation (Def. 15), this

226

heap can be split as h1 • h2 with h1 and h2 defined in (7.3) below:

h1 ,Rd 7→ #docd[su[∅,x]] & ∅
h2 , x 7→ #textl[s1] ⊗#textn[s2]

(7.3)

To translate these incomplete heaps correctly, we introduce two additional
concepts: interfaces and crust.

Interfaces When a DOM heap is split through abstract allocation, the
constituent heaps are agnostic to one-another’s shapes. For instance, the
DOM heap h1 in (7.3) has no knowledge of the forest placed within x;
mutatis mutandis for h2. This is however not the case for the implemen-
tation: the concrete representation of h2 relies on information from the
concrete representation of h1 and vice versa. For instance, the represen-
tation of the text node with identifier n includes a pointer to its parent
(the element node u). Similarly, the representation of the element node
u includes an array of pointers to its immediate children, i.e. l and n.
Thus, when translating a DOM heap with abstract addresses, we require
auxiliary information describing how the abstract addresses and context
holes connect together. We track this additional piece of information as-
sociated with each abstract address x ∈ AAdd through an interface. In
particular, an in-interface records the list of identifiers of the nodes that
form the data (in this case a forest) pointed to by x. In (7.3) above, the
in-interface of x is L , [l, n]. An out-interface records the identifier of the
parent node of the context hole x. In (7.3) above the out-interface of x is
u. The interface associated with x is (L, u).
In general, the out-interface for all DOM data (Def. 58) comprises a

single node identifier denoting the identifier of the parent as described
above. The in-interface for all DOM data, bar attribute sets, is captured
by a list of identifiers of the nodes that form the data. The in-interface for
attribute sets records additional information. Consider the partial heap h′

below which describes an element node (with identifier p) with no children
(∅) and two attributes: one with name s′ and identifier a, another with
name s′′ and identifier b. Using abstract allocation, the h′ heap can be
split into h′1 • h′2 as shown below:

h′ , y 7→ sp[s′a[∅] � s′′b [∅],∅]

227

h′1 , y 7→ sp[z,∅] h′2 , z 7→ s′a[∅] � s′′b [∅]

As before, the DOM heap h′1 has no knowledge of the attribute set
placed within z. However, recall from the JavaScript presentation of
an element node (ENode in Fig. 7.5) that each element tracks its asso-
ciated attributes via the __attributes__ field. The value of the __at-

tributes__ field (la) denotes the address of an object that maps each
attribute name to the corresponding attribute object. For instance, the
representation of the element node p above contains an object of the form
la Z⇒ {@proto : lop , s′ : a, s′′ : b}. As such, the in-interface of z must not
only record the identifiers of the attributes placed within it ([a, b]), but
also their names ([s′, s′′]). In the example above, the in-interface of z is
L′=[(s′, a), (s′′, b)]. As before, the out-interface of z is p and the interface
of z is (L′, p).

To translate the incomplete heaps correctly, we thus parameterise the
translation function with an interface function that records the interfaces
associated with abstract addresses.

Definition 80 (Interfaces). Given the sets of DOM identifiers Id and
DOM strings S (Def. 56), the set of in-interfaces, In, and the set of out-
interfaces, Out, are defined as follows, where Id∅ , Id] {null}:

In , List〈Id〉 ∪ List〈S× Id〉 Out , Id∅

The set of interfaces is ι ∈ Inter , In×Out. For an interface ι, ιin and
ιout denote its first and second projections respectively.

Given the set of abstract addresses AAdd (Def. 8), the set of in-interface
functions, Iin, and the set of out-interface functions, Iout, are defined as
follows:

Iin , AAdd ⇀ In Iout , AAdd ⇀ Out

The set of interface functions is I ∈ I , Iin×Iout. For an interface function
I, the I in and Iout denote its first and second projections, respectively.

Given an interface function I ∈ I, and an abstract address x ∈ AAdd, we
write I(x)=(L, u) when I in(x)=L and Iout(x)=u.

228

Crust When translating incomplete DOM heaps to JavaScript heaps,
their footprints may not match. For instance, consider the first axiom of
the nextSibling operation in Fig. 5.2, repeated below:{

vars(n : n, r : r) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′

}
When h1 and h2 are the incomplete heaps defined in (7.3) above and n=l,
then h2 sufficiently captures the footprint of n.nextSibling. However,
this is not the case at the implementation level. Our implementation of
nextSibling looks up the parent of l (i.e. u in h1), iterates over the child
list of u until it reaches l and then returns the next node in the list (n).
As such, when n=l, the footprint of n.nextSibling at the implementation
level contains nodes l and n as well as the resources associated with
the child list of l’s parent (u). Therefore, the concrete representation
of h2 must include not only the resources of h2, but also the resources
needed for accessing the child list of u, which lies outside the scope of
h2. This results in a locality mismatch between the abstract heap h2 and
its concrete representation. We refer to this additional resource required
(i.e. the resources associated with u’s child list) as the crust of h2. That
is, the crust of an incomplete DOM heap (e.g. h2) comprises the resources
associated with the child lists of those parent nodes (e.g. u) that are not
included in the heap but fragments of their descendants are (e.g. [l, n]).
Given an abstract heap h, we refer to the set of such parent nodes in
h and their associated descendant fragments as the crust set of h. For
instance, the crust set of h2 is {([l, n], u)}. Note that ([l, n], u) denotes the
interface of x, i.e. the address at which the deallocated fragment resides.
Let ids(h), defined shortly, denote the set of node identifiers present in

h. For instance, with h1 and h2 in (7.3), we have ids(h1)={d, u} and
ids(h2)={l, n}. Observe that in general the crust set comprises entries of
the form (L, u) where i) the parent u is not included in the heap (since
otherwise the parent and its child list will already be included in the
concrete resources produced by the translation); and ii) the fragment L
is abstractly deallocated from the child list of u and now resides at an
abstract address x, where (L, u) denotes the interface of x. Given an

229

interface function I, we thus define the crust set of a heap h, written
cset (h, I), as a set comprising pairs of the form (L, u) where i) u 6∈
ids(h); and ii) (L, u)=I(x) for some abstract address x such that x ∈
dom(h). For instance, for h1 and h2 in (7.3), we have cset (h1, I) =∅ and
cset (h2, I) ={([l, n], u)}, where I(x)=([l, n], u).

Definition 81 (Crust set). Given the set of DOM logical heaps LHeapDOM

(Def. 59) and the sets of interfaces Inter and interface functions I (Def. 80),
the crust set function, cset (., .) : LHeapDOM× I→ Inter, is defined as fol-
lows, for all h ∈ LHeapDOM and I ∈ I, with ids(h) defined in Def. 82:

cset (h, I) ,
{

(L, u) x ∈ dom(h) ∧ I(x) = (L, u) ∧ u 6∈ ids(h)
}

Definition 82 (Identifier function). Given the set of DOM logical data
LDataDOM (Def. 58) and the set of DOM node identifiers Id (Def. 56),
the DOM data identifier function, idsD(.) : LDataDOM → P (Id), is defined
inductively over the structure of DOM logical data as follows, where ∅† ∈
{∅e,∅f ,∅a,∅tf ,∅g} and ‡ ∈ {⊗,�,�,⊕}:

idsD(∅†) , ∅ idsD(x) , ∅ idsD(d1 ‡ d2) , idsD(d1)] idsD(d2)

idsD(#textn[s]fs) , {n} idsD(sn[as, f]tsfs) , {n}] idsD(as)] idsD(f)

idsD(sn[tf]fs) , {n}] idsD(tf)

idsD(#docn[d]tsfs & g) , {n}] idsD(d)] idsD(g)

Given the set of DOM logical heaps LHeapDOM (Def. 59), the DOM iden-
tifier function, ids(.) : LHeapDOM → P (Id), is defined as follows, for all
h ∈ LHeapDOM:

ids(h) ,
⊎

a∈dom(h)

idsD(h(a))

Recall that the crust of a heap h describes the resources associated with
the child lists of the parent nodes in the crust set cset (h, I). Observe
that when calculating the crust of an incomplete heap, we have partial
information about the child list of those nodes in the crust set. For
instance, when calculating the crust of h2 in (7.3) above, we only know
that the child list of its parent (u) contains the list fragment [l, n] and
know nothing of the remaining elements in its child list. More concretely,

230

we know that the child list of u is of the form L1++[l, n]++L2 for some
list fragments L1 and L2. We write clist(h, I, u), defined shortly, for the
set of all possible child lists associated with u.

When defining clist, additional care is required to ensure that we preserve
all parent-child relations between nodes. For instance, given the DOM
heap h0 in (7.3) above, let us now split it as h3 • h4 with h3 and h4

defined in (7.4) below.

h3 , Rd 7→ #docd[su[∅,x⊗ y]] & ∅
h4 , x 7→ #textl[s1] • y 7→ #textn[s2]

(7.4)

We then have I(x)=([l], u), I(y)=([n], u) and cset (h4, I) ={([l], u), ([n], u)}.
Since both l and r have u as their parents, we must ensure that the possi-
ble child lists of u contain both l and r. That is, for all L ∈ clist(h4, I, u),
we must guarantee that there exist some some L1, L2, L3 and L4 such
that L = L1++[l]++L2 = L3++[n]++L4. We thus define clist as follows.

Definition 83 (Crust child lists). Given the sets of DOM logical heaps
LHeapDOM (59), interface functions I (Def. 80) and DOM node identifiers
Id (Def. 56), the crust child list function, clist(., ., .) : LHeapDOM×I× Id→
List〈Id〉, is defined as follows, for all h ∈ LHeapDOM, I ∈ I and u ∈ Id:

clist(h, I, u) ,

{
L

(−, u) ∈ cset (h, I) ∧ ∀L0.

(L0, u) ∈ cset (h, I)⇒ ∃L1, L2. L=L1++L0++L2

}

with the definition of cset as given in Def. 81.

We can now formulate the definition of crust as the resources asso-
ciated with the child lists of the parent nodes in the crust set. For
every parent node u in the crust set (i.e. (−, u) ∈ cset (h, I)) and its
child list L ∈ clist(h, I, u), the crust includes the pointer of u to its child
list, (u, childNodes) 7→ lc, as well as the child list itself (denoted by
FL (lc, u, L)).

Definition 84 (Crust). Given the sets of DOM logical heaps LHeapDOM

(Def. 59), interface functions I (Def. 80) and JavaScript logical heaps
JSLHeap (Def. 72), the crust function, Crust (., .) : LHeapDOM × I →

231

P (JSLHeap), is defined as follows, for all h ∈ LHeapDOM and I ∈ I:

Crust (h, I) , ~
{u|(−,u)∈cset(h,I)}

(
∃lc, L.L ∈̇ clist(h, I, u)

∗ (u, childNodes) 7→ lc ∗ FL (lc, u, L)

)

where FL is as defined in Fig. 7.5, and the definition of cset and clist are
as given in Defs. 81 and 83, respectively.

We now have all the ingredients for translating DOM heaps. Given an
interface function I, the translation of a DOM heap h, written 〈〈h〉〉Idom,
includes i) the JavaScript prototypes given by Protos (Def. 79) describing
the JavaScript heap representation of the DOM objects; ii) the crust of h,
i.e. Crust (h, I) (Def. 84); and iii) the translation of the DOM resources in
h defined via an auxiliary function H (h, I), defined shortly.
Observe that as well as the additional resources of Crust (h, I), our

translation requires the resources given by Protos, recording our imple-
mentation of the DOM operations in the JavaScript heap. The need for
the additional resources of Protos is due to JavaScript: in JavaScript
function bodies are stored in the heap and are treated as a resource. As
such, in order to ensure the correct despatch of DOM function calls in our
implementation, we must hold the necessary resources in the JavaScript
heap.

Definition 85 (DOM heap translation). Given the JavaScript representa-
tion of DOM objects Protos (Def. 79), the crust function Crust (Def. 84),
the set of DOM logical heaps LHeapDOM (Def. 59), the set of interface
functions I (Def. 80) and the set of JavaScript heaps JSLHeap (Def. 72),
the DOM heap translation function, 〈〈.〉〉(.)dom : LHeapDOM×I→ P (JSLHeap),
is defined as follows, for all h ∈ LHeapDOM and I ∈ I:

〈〈h〉〉Idom , Protos ∗ Crust (h, I) ∗ H (h, I) ∗ true

where, given the separation algebra of DOM logical heaps (LHeapDOM, •,
{0}) in Def. 59, the auxiliary DOM heap translation function, H (., .) :

LHeapDOM × I→ P (JSLHeap), is defined as follows:

H (0, I) , emp H (Rd 7→ d, I) , D (d)
([d],null)
I

H (x 7→ d, I),D (d)
I(x)
I H (h1 • h2, I),H (h1, I) ∗ H (h2, I)

232

with the data translation function, D (.)
(.)
(.), given in Def. 86.

Observe that when translating a DOM heap h, as well as the resources
associated with the prototypes Protos, the crust Crust (h, I) and the DOM
heap itself H (h, I), the translation includes additional arbitrary resources
described by true. This is because our JavaScript implementation may al-
locate additional resources that are not subsequently deallocated explicitly
as this is carried out by the JavaScript garbage collector. For instance,
a function call in JavaScript alters the current scope chain by allocating
a new scope object lf and prepending it to the current scope chain, thus
causing the function body to be evaluated in the local scope lf . Upon
returning from the function call, the original scope is recovered by remov-
ing the newly allocated scope object lf from the scope chain. However,
although lf is rendered superfluous thereafter, it is not explicitly deallo-
cated and is left to the garbage collector to be freed in due course. As
such, the footprint of our implementation may include arbitrary redundant
resources such as lf . As it is not sound to simply forget parts of the heap,
this residual portion is hidden in true.
The H (h, I) function provides a mapping from a DOM heap h to

JavaScript heaps. For an empty heap, 0, this mapping is defined simply
as emp. For a composite heap, h1 •h2, the mapping is defined as the com-
position of the mapped constituent heaps. For an address a ∈ AddDOM

(Def. 9), the H (a 7→ d, I) is defined via the data translation function
D (.)

(.)
I indexed by appropriate interfaces. For the document address Rd,

the out-interface is null (the document node has no parent); while the
in-interface is [d] (the only node at address Rd is the document node with
the designated identifier d). For an abstract address x, the interfaces are
determined by the interface function as I(x).
We proceed with the formal definition of the data translation function

D (.)
(.)
(.), followed by a description of the definition.

Definition 86 (DOM data translation). Given the set of DOM logical data
LDataDOM (Def. 58), the sets of interfaces Inter and interface functions
I (Def. 80) and the set of JavaScript logical heaps JSLHeap (Def. 72),
the DOM data translation function, D (.)

(.)
(.) : LDataDOM × Inter × I →

P (JSLHeap), is defined inductively over the structure of DOM data as
given in Fig. 7.6, where ∅†∈{∅e,∅f ,∅a,∅tf ,∅g} and ‡∈{⊗,�,�,⊕}.

233

D (∅†)(L,u)I , L=̇[] D (x)
(L,u)
I , I(x)=̇(L, u)

D (d1 ‡ d2)
(L,u)
I , ∃L1, L2.L=̇L1++L2 ∗ D (d1)

(L1,u)
I ∗ D (d2)

(L2,u)
I

D
(

#docd[d]tsfs & g
)(L,u)
I

,L=̇[d] ∗ u=̇null ∗ ∃fid , Le. fs=̇{fid}
∗
[
(Le=̇[] ∗ DNode (d, null,fid))
∨(∃e. Le=̇[e] ∗ DNode (d, e,fid))

]
∗FL (fid , d, Le) ∗ TLs (d, ts) ∗ D (d)

(Le,d)
I ∗ D (g)

(−,null)
I

D
(
sn[as, f]tsfs

)(L,u)
I

,L=̇[n] ∗ ∃fid , la, La, Lf . fs=̇{fid} ∗ ENode (n, s, la,fid , u)

∗FL (fid , n, Lf) ∗ TLs (n, ts) ∗ D (as)
(La,null)
I ∗ D (f)

(Lf ,n)
I

∗ la Z⇒{@proto : lop , s′ : m | (s′,m) ∈ La}

D (#textn[s]fs)
(L,u)
I ,L=̇[n] ∗ ∃fid . fs=̇{fid} ∗ TNode (n, s,fid , u)

∗FL (fid , n, [])

D (sn[tf]fs)
(L,u)
I ,L=̇[n] ∗ ∃fid , Ltf. fs=̇{fid} ∗ ANode (n, s,fid)

∗FL (fid , n, Ltf) ∗ D (tf)
(Ltf,n)
I

Figure 7.6.: DOM data translation function

We now describe D (.)
(L,u)
I with the explicit in- and out-interface argu-

ments L and u, following the cases of the inductive definition.
D (∅†): There are no resource in the concrete representations; the L=̇[]

simply states that there are no nodes in this data. This is to ensure the
correct translation of data such as f ⊗∅f .

D (x): There are no resources in the concrete representation of a con-
text hole, simply the appropriate connection between the interface passed,
(L, u), and the interface of x given by I.

D (d1 ‡ d2): The result is the ∗-composition of the constituent data trans-
lated, given an appropriate choice of interfaces.

D
(

#docd[d]tsfs & g
)
. . .D (sn[tf]fs): The representation of each node stipu-

lates L=̇[n] (or L=̇[d] in case of a document node) since there is only one
node in the list denoted by L; as well as fs=̇{fid} asserting that the set
of forest listeners is represented as a singleton set with fid denoting the
address of the node’s child list.

234

The child list in turn is captured by FL as defined in Fig. 7.5, with the
second and third arguments denoting the parent of the child list and its
contents, respectively. In the case of a text node, the contents are empty
as text nodes have no children. For a document node, the contents are
either Le=[] when the document element is empty, or Le=[e] where e is
the identifier of the document element. For an element node, the contents
is the list Lf ; for an attribute node, the contents is the list Ltf. All three of
Le, Lf and Ltf are unknown at this point and are existentially quantified.
Their values are later bound when translating the underlying child forests
(d for Le, f for Lf , tf for Ltf) with the appropriate interfaces. The in-
interfaces are the child list contents, i.e. Le, Lf and Ltf ; the out-interfaces
are the identifier of their respective parent nodes, i.e. d and n.
Each node is described by the correspondingly-named JavaScript node

definition with DNode, ENode, TNode and ANode as defined in Fig. 7.5.
The translations of the document and element nodes additionally include
the representation of their tag listeners ts via TLs defined in Fig. 7.5.
The translation of a document node also includes the translation of its

associated grove g. Observe that since the nodes in the grove are or-
phaned (have no parents) the out-interface (the parent component) passed
to the translation of g is null. Moreover, since the nodes in the grove
are of no import to the representation of the document node itself, the
in-interface passed to the grove translation is existentially quantified as −.
This is because the JavaScript representation of a document node does
not track the orphaned nodes in the grove. Rather, the nodes in the grove
reside somewhere in the memory and may be garbage-collected if not in
use (i.e. when no longer referenced). Were we to explicitly track the grove
via the document node, all nodes in the grove would persist indefinitely,
which is not a behaviour guaranteed by the DOM standard.
The translation of an element node also includes the translation of its

associated attribute set as. As attribute nodes have no parents (an at-
tribute is not the child of the element node with which it is associated),
the out-interface (the parent component) passed to the translation of as
is null. As with the child list of the element Lf , the attribute set La is
unknown at this point and is existentially quantified. Its value is deter-
mined later by D (as)(La,null)

I . Recall that the JavaScript representation
of an element node also includes an object tracking the location of each

235

attribute node associated with the element. For instance, as we demon-
strated on p. 223, the representation of the element in (7.1) includes the
object at la tracking attributes associated with element 3. This is captured
by la Z⇒{. . .} in the translation of an element node. As described earlier,
the list of attributes associated with the element node and their names is
determined by La.

Implementation Correctness

We show that our implementation of the DOM library presented in §7.1
is correct with respect to its abstract specification in §5. To this end, we
give a refinement proof that transforms triples of the form {p}C{q} with
p, q ∈ JSLHeapDOM and C ∈ JSOpDOM, to corresponding triples of the form
{p′}C′{q′} with p′, q′ ∈ P (JSLHeap) and C′ ∈ JSOp. To do this, we first
define a substitutive implementation function, [[[.]]], that maps a program
C ∈ JSOpDOM onto a program C′ ∈ JSOp, by replacing the calls to DOM
operations in C with calls to their JavaScript implementations. We next
define a state translation function that maps a state (h,h) ∈ JSLHeapDOM

to JavaScript heaps. We proceed with the definition of the implementation
function.

Definition 87 (Implementation function). Given the JS operations JSOp

(Def. 69), the DOM operations OpDOM (Def. 61) and the JSDOM operations
JSOpDOM (70), the substitutive implementation function, [[[.]]] : JSOpDOM →
JSOp, is defined inductively over the structure of JSDOM operations as
follows, for all CDOM ∈ OpDOM, where imp(CDOM) denotes the JavaScript
implementation of CDOM in [44]:

[[[CDOM]]] , imp(CDOM) [[[x]]] , x [[[v]]] , v [[[this]]] , this

[[[var x]]] , var x [[[e1;e2]]] , [[[e1]]];[[[e2]]] [[[e1.x]]] , [[[e1]]].x

[[[e[e’]]]] , [[[e]]][[[[e’]]]] [[[e1 = e2]]] , [[[e1]]] = [[[e2]]]

[[[e1	 e2]]] , [[[e1]]]	 [[[e2]]] [[[e1.e2]]] , [[[e1]]] . [[[e2]]]

[[[while(e){e’}]]] , while([[[e]]]){[[[e’]]]} [[[e(e’)]]] , [[[e]]]([[[e’]]])

[[[function (x){e}]]] , function (x){[[[e]]]}

236

[[[function f(x){e}]]] , function f(x){[[[e]]]}

[[[with(e){e’}]]] , with([[[e]]]){[[[e’]]]} [[[new e(e’)]]] , new [[[e]]]([[[e’]]])

[[[{x1:e1. . . xn:en}]]] , {x1:[[[e1]]]. . . xn:[[[en]]]}

[[[delete e]]] , delete [[[e]]]

We must next define a translation function that maps a JSLogicDOM

state (h,h) ∈ JSLHeapDOM (Def. 73) to JavaScript heaps in JSLHeap

(Def. 72). The first component of a JSLogicDOM state, h, denotes a
JavaScript heap in JSLHeap and its translation is thus simple. Recall that
a JavaScript heap h is a mapping from references to values (Def. 72) where
values contain lambda abstractions of the form λx.e, representing function
bodies. To translate h, it suffices to translate the lambda abstractions
in its range by replacing each λx.e with λx. [[[e]]] where [[[.]]] denotes the
implementation function in Def. 87. That is, since our implementation
function [[[.]]] replaces each DOM library call in the function bodies with a
call to our implementation of the DOM operation instead, we must ensure
that the heap representation of the functions are accordingly adjusted.
The second component of a JSLogicDOM, h, denotes a DOM heap

(Def. 73) which is translated via the DOM heap translation function in
Def. 85, namely 〈〈h〉〉···dom, with an appropriate choice of interface function.
We justify the choice of interface functions through an example.
Consider the axiom of n.splitText(o) in Fig. 5.2, repeated below:{

vars(n : n, o : o, r : r) ∗ α 7→ #textn[s.s′]f ∗ o=̇ |s|
}

r := n.splitText(o){
∃r, f′. vars(n : n, o : o, r : r) ∗ α 7→ #textn[s]f ⊗#textr[s′]f′

}
When n=n, α=x, s=s and s′=s′, the precondition contains a single text
node n at abstract address x with its text data described by the composite
string s.s′. Observe that the in-interface of the abstract address x is [n].
Later in the postcondition, when r=r, the first substring (s) remains with
node n and the second (s′) forms a new text node r which is added as
the right sibling of n. Observe that in doing so, the in-interface of x

is changed from [n] to [n, r]. As such, our choice of interface function

237

must afford us the freedom to alter the in-interface of x. On the other
hand, the control over the out-interface of x, as well as the interfaces of
other abstract addresses, is beyond the reach of this DOM heap and lies
with the context (frame). Therefore, our choice of interface function must
be agnostic to these interfaces so that we can show our implementation
correct for all valid choices of context interfaces. More generally, given a
DOM heap h and an abstract address x in the domain of h, our choice
of interface function must allow us to modify the in-interfaces of x, while
prohibiting the manipulation of the out-interface of x. Conversely, given
an abstract address x in the range of h (i.e. when x is a context hole in h),
our choice of interface function must allow us to modify the out-interfaces
of x, while prohibiting the manipulation of the in-interface of x.
We proceed with the definition of JavaScript heap translation followed

by the state translation function with the appropriate choice of interface
functions.

Definition 88 (JavaScript heap translation). Given the set of JavaScript
heaps JSLHeap (Def. 72), the JavaScript heap translation function, 〈〈.〉〉js :

JSLHeap→ JSLHeap, is defined as follows, for all h ∈ JSLHeap:

〈〈h〉〉js (l, f) ,

λx. [[[e]]] if ∃x, e. h(l, f)=λx.e

h(l, f) otherwsie

We now formulate the JSLogicDOM state translation function and define
what it means to refine a JSLogicDOM triple correctly. In what follows,
given a DOM heap h, we write hin and hout for the set of abstract ad-
dresses in its domain and range, respectively as follows, where AAdd de-
notes the set of abstract addresses (Def. 8) and addr(.) denotes the DOM
address function (Def. 58):

hin , AAdd ∩ dom(h) hout ,
⋃

d∈rng(h)

addr(d)

Definition 89 (Correct refinement). Given the JSLogicDOM logical states
JSLHeapDOM (Def. 73), interface functions I (Def. 80), JavaScript heaps
JSLHeap (Def. 72), the DOM heap translation function 〈〈.〉〉(.)dom (Def. 85)
and the JavaScript heap translation function 〈〈.〉〉js (Def. 88), the state

238

translation function, bb.cc(.) : P (JSLHeapDOM)×I→ P (JSLHeap), is defined
as follows, for all p ∈ JSLHeapDOM and I ∈ I:

bbpccIc ,

{
(h1 ◦ h2)

∃h,h, Id.(h,h) ∈ p ∧ h1= 〈〈h〉〉js ∧ h2 ∈ 〈〈h〉〉Ic]Iddom

∧ dom(I in
d)=hin ∧ dom(Iout

d)=hout

}

where Ic] Id , (I in
c] I in

d , I
out
c] Iout

d) with] denoting the standard disjoint
function union.
Given the implementation function [[[.]]] (Def. 87), the translation function

is defined as τ , (bb.cc(.) , [[[.]]]).
A JSLogicDOM triple {P} C {Q} is refined correctly by τ , written τ :

{P} C {Q}, if and only if it satisfies the following property, where ε ∈ Env

denotes a JSLogic evaluation environment (Def. 74) and |P |ε , {(h,h) |
ε, (h,h) |= P} (Def. 76).

τ : {P} C {Q} def⇐⇒ ∀ε. ∀Ic ∈ I. ∀r ∈ P (JSLHeapDOM) .{
bb |P |ε ∗ r cc

Ic
}

[[[C]]]
{
bb |Q|ε ∗ r cc

Ic
}

A triple is translated correctly, if and only if for all possible frames r
and all interface functions Ic, the triple holds for the translated states. As
we described above, in the transition from the pre- to the postcondition,
the interfaces of some abstract addresses may change. This is realised by
the existential quantification of Id in both pre- and postconditions (in the
definition of state translation bb.cc(.)) with the domain of Id comprising the
abstract addresses that are within the control of h and may be modified.
Dually, Ic captures the interfaces of abstract addresses outside the control
of h and (unlike Id) does not change from the pre- to postcondition. This
is captured by the universal quantification of Ic outside the triple.

Theorem 3 (Correct refinement). For all P,Q ∈ JSAstDOM (Def. 76) and
C ∈ JSOpDOM (Def. 70):

{P} C {Q} =⇒ τ : {P} C {Q}

Proof. By induction on the structure of triples {P} C {Q}. The full proof
is given in §B.

239

Part II.

CoLoSL: Concurrent Local
Subjective Logic

240

8. Technical Background: CoLoSL

The verification of fine-grained concurrent algorithms is nontrivial. There
has been much recent progress verifying such algorithms modularly using
variants of concurrent separation logic [57, 19, 15, 55, 54, 53, 38, 10, 36,
9]. A key difficulty in verifying properties of shared-memory concurrent
programs is to be able to reason compositionally about each thread in
isolation, even though in reality the correctness of the whole system is the
collaborative result of intricately intertwined actions of the threads. Such
compositional reasoning is essential for verifying large concurrent systems,
library code and more generally incomplete programs, and for replicating
a programmer’s intuition about why their implementations are correct.

Rely-guarantee (RG) reasoning [34] is a well-known technique for ver-
ifying shared-memory concurrent programs. In this method, each thread
specifies its expectations (the rely condition R) of the transitions made
by the environment as well as the transitions made by the thread itself
(the guarantee condition G) where R;G constitutes the overall interference
between the current thread and the environment. However, in practice,
formulating the rely and guarantee conditions is difficult: the entire pro-
gram state is treated as a shared resource (accessible by all threads) where
rely and guarantee conditions globally specify the behaviour of threads over
the whole shared state and need to be checked throughout the execution
of the thread. We proceed with a brief overview of the shortcomings of
RG reasoning and how the existing approaches tackle some of these limi-
tations. The global nature of RG reasoning limits its compositionality and
practicality in the following ways:

1. Even when parts of the state are owned by a single thread, they
are exposed to all other threads in the R;G conditions. Simply put,
the boundary between private (thread-local) and shared resources is
blurred.

241

2. Since the shared resources are globally known, sharing of dynamically
allocated resources is difficult. That is, extending the shared state is
not easy.

3. When parts of the shared state are accessible by only a subset of
threads, it is not possible to hide either the resources or their asso-
ciated interference (R;G conditions) from the unconcerned threads.
In short, reasoning locally about threads with disjoint footprints is
not possible.

4. Similarly, when different threads access different but overlapping
parts of the shared state, it is not possible to hide either the re-
sources or their associated interference from the unconcerned threads.
In brief, reasoning locally about threads with overlapping footprints
is not possible. As we will demonstrate, this issue is particularly
pertinent when reasoning about concurrent operations on data struc-
tures with unspecified sharing such as graphs.

5. When describing the specification of a program module, the R;G

conditions need to reflect the entire shared state even when the
module accesses only parts of it. This limits the modularity of ver-
ification since the module specification becomes context-dependent
and it may not always be reusable.

6. Since the R;G conditions are defined statically and cannot evolve, in
order to temporarily disable or enable certain operations by certain
threads (e.g. allowing a lock to be released only by the thread who
has acquired it) one must appeal to complex (unscalable) techniques
such as auxiliary states.

7. As a program executes, its footprint grows and shrinks in tandem
with the resources it accesses. It is thus valuable for the reasoning
to mimic the programmer’s intuition by reflecting the changes in the
footprint. This calls for appropriate (de)composition of the shared
state as well as its associated interference which cannot be achieved
with a global view of the shared state.

Recent work on RGSep [57] has combined the compositionality of sepa-
ration logic [40, 32, 39] with the concurrent techniques of RG reasoning.

242

In RGSep reasoning, the program state is split into private (thread-local)
and shared parts ensuring that the private resources of each thread are
untouched by others, with the R;G conditions specified over the shared
state only. However, since the shared state itself remains globally specified
and is visible to all threads in its entirety, this separation only addresses
the first problem outlined above.

Setting out to overcome the limitations of both RG and RGSep reason-
ing, Feng introduced local rely-guarantee (LRG) reasoning in [19]. As in
RG and unlike RGSep, in LRG reasoning the program state is treated as a
single shared resource accessible by all threads. Moreover, the composition-
ality afforded by the separating conjunction of separation logic ∗ is applied
to both resources of the shared state and the R;G conditions. This way,
threads can hide (frame off) irrelevant parts of the shared state and their
interference (resolving 1-3, 5 above) allowing for more local reasoning pro-
vided that they operate on completely disjoint resources. However, when
reasoning about data structures with intricate and unspecified sharing (e.g.
graphs), since decomposition of overlapping resources is not possible in a
disjoint manner, LRG reasoning enforces a global treatment of the shared
state, thus betraying its very objective of locality (issue 4). Furthermore,
as with RG reasoning, the R;G conditions are specified statically (albeit in
a decomposable manner); hence temporary (un)blocking of certain actions
by certain threads is not easy (issue 6). Finally, while LRG succeeds to
capture the programmer’s intuition of the program state by dynamically
growing and shrinking the footprint when dealing with disjoint resources,
it fails to achieve this level of fine-grained locality when dealing with over-
lapping (entangled) resources (issue 7).
Much like LRG reasoning, the reasoning framework of concurrent ab-

stract predicates (CAP) [15] and its extended variants [54, 53, 10, 9] ap-
ply the compositionality of separation logic to concurrent reasoning. In
these techniques, the state is split into private (exclusive to each thread)
and shared parts where the shared state itself is divided into an arbitrary
number of regions disjoint from one another. Each region is governed by
an interference relation I that encompasses both the R and G conditions:
the transitions in I are enabled by capabilities and a thread holding the
relevant capability locally (in its private state) may perform the associated
transition. As with LRG, this fine-grained division of the shared state into

243

regions, allows for more local reasoning with the constraint that the regions
are pairwise disjoint (addressing 1, 3 and 5 above). Dynamically allocated
resources can be shared through creation of new regions (resolving 2).
Moreover, since CAP is built on top of deny-guarantee reasoning [18] (an
extension to rely-guarantee reasoning where deny permissions are used to
block certain behaviour over a period of time) dynamic manipulation of
interference transitions is straightforward (resolving 6). However, since the
contents of regions must be disjoint from one another, when tackling data
structures with complex and unspecified patterns of sharing that do not
lend themselves to a clean decomposition, the entire data structure along
with its interference must be confined to a single region, forgoing the no-
tion of locality once again (issue 4). Furthermore, since the capabilities
and interference associated with each region are defined upon its creation
and remain unchanged throughout its lifetime, it is often necessary to fore-
see all possible extensions to the region (including dynamically allocated
resources and their interference). This not only limits the locality of rea-
soning, but also gives way to unnatural specifications that contrast with
the program footprint (issue 7).
In what follows, we present an overview of the key ideas behind the

program logic of CoLoSL by means of a simple example. We then proceed
by comparing CoLoSL to the logic of CAP [15] and other contemporary
program logics, most notably Iris [36, 35].

8.1. CoLoSL: Overview

We introduce the program logic of CoLoSL, where threads access one
global shared state and are verified with respect to their subjective views
of this state. Each subjective view is an assertion which provides a thread-
specific description of parts of the shared state. It describes the partial
shared resources necessary for the thread to run and the thread-specific
interference describing how the thread and the environment may affect
these shared resources. Subjective views may arbitrarily overlap with each
other, and subtly expand and contract to the resources and the interfer-
ence required by the current thread. This flexibility provides compositional
reasoning for shared-memory concurrency.
A subjective view

�� ��P I comprises an assertion P which describes parts

244

of the global shared state, and an interference assertion I which charac-
terises how this partial shared state may be changed by the thread or
the environment. Similar to interference assertions of CAP, the I declares
transitions of the form [a]t : Q R, where a thread in possession of
the [a]t capability (in its private state) may carry out its transition and
update parts of the shared state described by Q to those of R. Assertions
of subjective views must be stable; that is, robust with respect to the
interference from the environment (as prescribed in I).

Subjective views can always be duplicated using the Copy principle:

�� ��P I ⇒
�� ��P I ∗

�� ��P I (Copy)

This is because subjective views describe parts of the global shared state
and thus a thread may choose to duplicate this view of the shared state
and pass it on to other threads. In other words, in combination with the
usual law of parallel composition (Par) of separation logic [39], the Copy

principle yields a mechanism to distribute the shared state between several
threads:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1||C2 {Q1 ∗Q2}

(Par)

As we demonstrate shortly, subsequent threads may choose to customise
the subjective views passed on to them in order to describe those parts of
the shared state relevant to them. To do this, we introduce several novel
reasoning principles which allow us to expand and contract subjective
views. The subjective views of each thread will be typically too strong,
describing resources that are not being used by the thread. However, as
we demonstrate in §8.2 below, before weakening the view, it is sometimes
useful to strengthen some of the interference transitions to preserve global
knowledge. We achieve this using the Shift principle:

if I vP I ′

then
�� ��P I ⇒

�� ��P I′
(Shift)

This principle states that an interference assertion I can be exchanged
for another interference assertion I ′ that has the same projected effect
on the subjective state P . That is, as far as the resources described by
P are concerned, the interference assertions I ′ adequately captures the

245

interference prescribed by I and may thus replace it. When this is the
case, we write I vP I ′ and say that the actions of I have been shifted to
I ′. The Shift principle can be used to forget (frame off) actions which are
irrelevant to P . For instance, when P , x 7→ 1 and I , {y 7→ 2 y 7→ 3},
then I can be shifted to ∅ as I vP ∅ holds. The I vP ∅ states that the
(only) action y 7→ 2 y 7→ 3 in I is of no consequence to the resources of
P and may be simply forgotten by replacing it with the empty interference
∅. This is because the effect of the y 7→ 2 y 7→ 3 action lies outside the
resources described by P in that its precondition y 7→ 2 does not overlap
with P .

The Shift principle can also be used to to strengthen actions with
knowledge of the global shared state arising form the combination of I
and P . We present an example of this application of the Shift principle
in the upcoming section (§8.2). The Shift principle provides a flexible
mechanism for interference manipulation and is in marked contrast with
most existing formalisms, where interference is fixed throughout the veri-
fication.

With a possibly strengthened interference assertion, we can then frame
off parts of the shared state and zoom on resources required by the current
thread using the Forget principle:

�� ��P ∪∗ Q
I
⇒

�� ��P I (Forget)

At this point, the Shift principle may be applied again to forget those
actions that are no longer relevant to the new subjective view captured
by P . However, a stable subjective view may no longer be stable after
forgetting parts of the shared state. This is often due to the combined
knowledge of P and I being too weak and can be avoided by strengthening
I (through Shift) prior to forgetting.

These reasoning principles enable us to provide subjective views for
the threads which are just right. We can proceed to verify the threads,
knowing that their subjective views describe personalised preconditions
which only describe the resource relevant to the individual threads. The
resulting postconditions naturally describe overlapping parts of the shared
state, which are then joined together using the disjoint concurrency rule

246

and the Merge principle:

�� ��P I1 ∗
�� ��Q I2

⇒
�� ��P ∪∗ Q

I1∪I2
(Merge)

The P ∪∗ Q assertion describes the overlapping of the states described
by P and Q, using the overlapping conjunction ∪∗ [21, 31]. The new
interference is simply the union of previous interferences. Using the Shift

principle, we can once again simplify the interference assertion with respect
to this new larger subjective view.

Lastly, locally owned resources (described by P) can be shared using
the Extend principle:

if P c© I and sat(C1,C2)

then P V ∃t. [C1]t ∗
�� ��P ∗ [C2]t

I

(Extend)

where t denotes a logical variable distinct from the unbound variables in
P , C1 and C2. That is, t 6∈ fv(P,C1,C2). The side condition P c© I

ensures that the actions of the new interference assertion I are confined
to P (more in §9), so as not to invalidate other threads’ existing views
of the shared state. Upon extending the shared state with P , one may
additionally generate fresh capabilities, as described by the user-defined
capability assertions C1 and C2, and distribute them between its local
state (C1) and the shared state (C2). To ensure the freshness of the new
capabilities, they are associated with a fresh ticket (identifier) t that is
distinct from existing tickets. As C1 and C2 denote user-specified capability
assertions, we require that these assertions are satisfiable, as stipulated
by sat(C1,C2). The V connective denotes state repartitioning [15] or view
shift [14]. More concretely, the P V Q states that a logical state satisfying
P may be changed to one satisfying Q, so long as the underlying machine
state does not change. In particular, the (P ⇒ Q) implies (P V Q).

As we demonstrate later in §8.3, the main novelty of the Extend rule
is that the new actions in I may refer to existing shared resources, unlike
CAP where all possible futures of the region must be accounted for upon
its creation.

With these reasoning principles, we are able to expand and contract
subjective views to provide just the resources required by a thread. In
essence, we provide a framing mechanism both on shared resources as well

247

as their interferences even in the presence of overlapping footprints and
entangled resources. In what follows, we illustrate our CoLoSL reasoning
principles by sketching a proof of a variation of Dijkstra’s token ring
mutual exclusion algorithm [11].

8.2. Dijkstra’s Token Ring Algorithm

Consider the program INC defined in Fig. 8.1, ignoring the assertions
for now, with the Px, Py, and Pz programs given in Fig. 8.2. This pro-
gram is written in pseudo-code resembling C with additional constructs for
concurrency. The statements between angle brackets <.> denote atomic in-
structions that cannot be interrupted by other threads. We write C1 || C2

(e.g. line 5) for the parallel computation of C1 and C2 . This corresponds
to the standard fork-join parallelism. In this example, after initialisation
of the variables to 0, three threads are spawned to increment each variable
in a lock-step fashion by executing Px, Py and Pz (Fig. 8.2), respectively.
The Px is the first thread to run its increment operation, followed by Py

and finally Pz. This process repeats until x = y = z = 10. This example
code is interesting because the threads are intricately intertwined. In the
case of the Py thread, the programmer knows that the code depends on
the values of variables x and y and that it can increment y so long as its
value is less than that of x. The Py thread is further aware of a much
more complex behaviour: given the initial setting where all variables have
value 0, the thread may only increase the value of y by 1 if x is one more
than y, and the environment may only increase x by one if x and z (and
in fact y) have the same value. Finally, the programmer knows that at
the end all the variables will have value 10.
In CoLoSL we can simply specify this complex behaviour of the re-

sources associated with thread Py. Consider the CoLoSL assertions ac-
companying INC. After initialisation, line 3 of INC provides a stan-
dard assertion from separation logic [40, 32] with the variables-as-resource
model [5]. The assertion declares that the variable cells addressed by
x, y and z all have value 0. This variable resource in the thread-local
state is fully owned by the thread. Using the Extend principle, the
thread is able to give up this local resource and transfer it to the global
shared state. For example, line 4 demonstrates the creation of the subjec-

248

INC:
1 //{x 7→ − ∗ y 7→ − ∗ z 7→ −}
2 x = 0; y = 0; z = 0;
3 //{x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0}

4 //

{
∃t.

�� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0
I

∗ [ax]
t ∗ [ay]

t ∗ [az]
t

}
5 (Px || Py || Pz)

6 //

{
∃t.

�� ��x 7→10 ∗ y 7→10 ∗ z 7→10
I

∗ [ax]
t ∗ [ay]

t ∗ [az]
t

}
I ,

[ax]
t : ∃v∈{0..9}.z 7→v ∗ x 7→v

 z 7→v ∗ x 7→v+1[
ay
]t

: ∃v∈{0..9}.x 7→v+1 ∗ y 7→v
 x 7→v+1 ∗ y 7→v+1

[az]
t : ∃v∈{0..9}.y 7→v+1 ∗ z 7→v

 y 7→v+1 ∗ z 7→v+1

Figure 8.1.: The concurrent increment program together with a CoLoSL
proof sketch. Lines starting with // contain assertions that
describe the local state and the subjective shared state at the
relevant program point. The codes of Px, Py and Pz programs
and their proof sketches are provided in Fig. 8.2.

tive view
�� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

I
, where part of the underlying global

shared state now contains the three variable cells. In doing so, the thread
also creates the fresh capabilities described by the [ax]

t ∗
[
ay
]t ∗ [az]

t asser-
tion on line 4. Note that these newly generated capabilities are associated
with a fresh ticket t which ensures their distinctness. The interference as-
sertion I describes how this part of the shared state may be manipulated.
For instance, the action below states that y may be incremented when its
value is below 10 and is one less than that of x:

[
ay
]t

: ∃v∈{0..9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

This update is only possible when the local state of a thread owns the
capability described by

[
ay
]t locally. In this example, all three capabilities

are owned locally by the thread as described by the [ax]
t ∗
[
ay
]t ∗ [az]

t

assertion (line 4). In general, capabilities can be buried inside boxes,
only to emerge as a consequence of an action (see §10). Moreover, the
actions in I may be associated with capabilities other than those newly
generated, including pre-existing capabilities as well as those not existing
at the time of extension. For instance, we may write an action of the form[
ay
]−

: P Q, asserting that for all tickets t, the thread in possession
of
[
ay
]t may update parts of the shared state described by P to those

of Q. In general, an action of the form P Q may perform three types

249

Px:
//
{�� ��z 7→ 0 ∗ x 7→ 0

Ix
∗ [ax]

t
}

while(x < 10){

//

{�

�
	∃v∈{0..9}. z 7→v ∗ x 7→v

∨ z 7→ v−1 ∗ x 7→ v
Ix

∗ [ax]
t

}
if (x == z) { <x++> }

}

//

{�

�
	z 7→ 10 ∗ x 7→ 10

∨ z 7→ 9 ∗ x 7→ 10
Ix

∗ [ax]
t

}
Ix,

[ax]

t
:∃v∈{0..9}.z 7→ v ∗ x 7→ v

 z 7→ v ∗ x 7→ v+1
[az]

t
:∃v∈{0..9}.x 7→v+1∗y 7→v+1∗z 7→v

 x 7→v+1∗y 7→v+1∗z 7→v+1

Py:

//

{�

�
	x 7→ 0 ∗ y 7→ 0

∨ x 7→ 1 ∗ y 7→ 0
Iy

∗
[
ay
]t}

while(y < 10){

//

{�

�
	∃v∈{0..9}. x 7→v ∗ y 7→v

∨ x 7→ v+1 ∗ y 7→ v
Iy

∗
[
ay
]t}

if (y < x) { <y++> }
}

//

{�

�
	x 7→ 10 ∗ y 7→ 10

∨ x 7→ 11 ∗ y 7→ 10
Iy

∗
[
ay
]t}

Iy,

[ax]

t
: ∃v∈{0..9}.x 7→ v ∗ y 7→ v ∗ z 7→ v

 x 7→ v+1 ∗ y 7→ v ∗ z 7→ v[
ay
]t

:∃v∈{0..9}.x 7→ v+1 ∗ y 7→ v
 x 7→ v+1 ∗ y 7→ v+1

Pz:

//

{�

�
	y 7→ 0 ∗ z 7→ 0

∨ y 7→ 1 ∗ z 7→ 0
Iz

∗ [az]
t

}
while(z < 10){

//

{�

�
	∃v∈{0..9}. y 7→v ∗ z 7→v

∨ y 7→ v+1 ∗ z 7→ v
Iz

∗ [az]
t

}
if (z < y) { <z++> }

}

//

{�

�
	y 7→ 10 ∗ z 7→ 10

∨ y 7→ 11 ∗ z 7→ 10
Iz

∗ [az]
t

}
Iz,

[
ay
]t

:∃v∈{0..9}.x 7→v+1 ∗ y 7→v ∗ z 7→v
 x 7→v+1 ∗ y 7→v+1 ∗ z 7→v

[az]
t
: ∃v∈{0..9}.y 7→ v+1 ∗ z 7→ v

 y 7→ v+1 ∗ z 7→ v+1

Figure 8.2.: The Px, Py and Pz and their CoLoSL proof sketches

250

of actions: i) modify resources: the P and Q contain the same amount
of resource with different values (e.g. action of

[
ay
]t above); ii) remove

resources from the shared state and transfer them into the local state of
the thread performing the action (e.g. when P , Q ∗R for some resource
R to be removed); and iii) add resources from the local state of the thread
into the shared state (e.g. when Q , P ∗ R for some resources R to be
added). These three behaviours are not mutually exclusive and an action
may exhibit any combination of them.
Using the Copy principle for subjective views and the disjoint concur-

rency rule (Par), we obtain the following precondition for thread Py:�� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0
I
∗
[
ay
]t

However, this precondition is more complicated than we need. Intu-
itively, the specification of each thread should only use the variable re-
source relevant to that thread and need only consider actions that affect
that resource. In this example, the extraneous piece of state is the variable
cell z. This additional resource might seem an acceptable price to pay, but
straightforward generalisations to n participants yields extra state of n−2

variable cells with their associated interferences which are of no interest
to the particular thread. Fundamentally, for large systems, the burden of
carrying the whole shared state around to analyse all threads, can lead to
intractable proofs.1

As a first try at simplifying the precondition, consider the following
implication using the Forget and Shift principles given earlier, where
I\az denotes the interference obtained by removing the action of az from
I: �� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

I
∗
[
ay
]t

(Forget)⇒
�� ��x 7→ 0 ∗ y 7→ 0

I
∗
[
ay
]t

(Shift)⇒
�� ��x 7→ 0 ∗ y 7→ 0

I\az
∗
[
ay
]t

(stabilise)⇒
�� ��∃v,v′.(x 7→ v ∗ y 7→ v′) ∧ v ≥ v′

I\az
∗
[
ay
]t

1 We refer the reader to [47, 48], where we generalise the token ring algorithm of INC
in Fig. 8.1 to n threads (P1 ||P2 || · · · ||Pn), demonstrating that the specification of
each thread and its proof sketch remain unchanged.

251

The thread Py does not modify z and we can thus forget the variable
assertion z 7→ 0. The variable cell z is no longer visible to Py and thus
the action of [az]

t does not affect the resources described by the assertion
of the subjective view neither in its current state nor at any point during
its lifetime. That is, the current subjective view is unaffected by this
action, and after undergoing any number of actions from I, the resulting
subjective view remains unaffected by it. Using the Shift principle, we
can therefore forget the action of [az]

t.

Finally, we stabilise the resulting subjective view such that it is invariant
under all possible actions by the environment. However, since we no
longer know the value of z, after stabilising against the action of [ax]

t,
the resulting assertion is too weak. Intuitively, we know that x can only
be incremented when its value is equal to z and y. However, this is not
reflected in the action of [ax]

t. Since we have forgotten z, there is nothing
to constrain the increment on x. Hence, we can only stabilise in a general
way as given, losing information about how the values of x and y are
connected together through z.

It is however possible to give a stronger specification as follows, with Iy
as defined in Fig. 8.2 and I ′y defined shortly:�� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

I
∗
[
ay
]t

(Shift)⇒
�� ��x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

I′y
∗
[
ay
]t

(Forget)⇒
�� ��x 7→ 0 ∗ y 7→ 0

I′y
∗
[
ay
]t

(Shift)⇒
�� ��x 7→ 0 ∗ y 7→ 0

Iy
∗
[
ay
]t

(stabilise)⇒
�� ��x 7→ 0 ∗ y 7→ 0 ∨ x 7→ 1 ∗ y 7→ 0

Iy
∗
[
ay
]t (8.1)

where Iy is as defined in Fig. 8.2 and I ′y is obtained by rewriting the action
of [ax]

t in I as follows:

I ′y ,

[ax]

t
: ∃v∈{0..9}. x 7→ v ∗ y 7→ v ∗ z 7→ v x 7→ v+1 ∗ y 7→ v ∗ z 7→ v[

ay
]t

: ∃v∈{0..9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

[az]
t

: ∃v∈{0..9}. y 7→ v+1 ∗ z 7→ v y 7→ v+1 ∗ z 7→ v+1

The derivation in (8.1) involves a subtle interaction between the resources

252

of the subjective view and its interference relation. In order to capture
the interaction between the resources of the shared state (x 7→ 0 ∗ y 7→
0 ∗ z 7→ 0) and their interference relation I, we apply the Shift principle
to strengthen the actions with relevant knowledge of the shared state as
follows. Consider the action of [ax]

t in I and the initial state with value
0 in all the cells. This action can be replaced by:

[ax]
t : ∃v∈{0..9}. x 7→ v ∗ y 7→ v ∗ z 7→ v x 7→ v+1 ∗ y 7→ v ∗ z 7→ v

This is possible because, as the programmer knows, whenever x and z

have the same value, then y also has the same value which, under these
conditions, is not changed by the actions in I. This amended action
reflects stronger knowledge about when x can be incremented and how its
value is related to those of y and z. As we justify formally in §9, by using
the judgement I vP0 I ′y with P0 , x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0, we can apply
Shift to rewrite I as I ′y. In order to establish the validity of the I vP0 I ′y

shifting judgement, we appeal to a number of syntactic rules that reduce
shifting judgements to standard separation logic entailments (see §9.5).

With the interference assertion rewritten to I ′y, using the Forget prin-
ciple it is now safe to lose the z assertion to obtain the subjective view�� ��x 7→ 0 ∗ y 7→ 0

I′y
. This is because the new action of [ax]

t in I ′y retains

enough information about how x, y and z are related. Since the action
of [az]

t only affects the z cell (now forgotten) leaving the cells x and y

unaltered, we can use the Shift principle again to change the interference
relation to Iy , I ′y\az, removing the action of [az]

t from I ′y. As we formally
justify in §9, by using the judgement I ′y vQ0 Iy with Q0 , x 7→ 0 ∗ y 7→ 0,
we can use the Shift principle to simplify I ′y to Iy.

The interference assertion is now as simple as it can get, whilst retaining
enough information about the connection between x, y and z. Finally,
we stabilise the subjective view with respect to Iy and obtain our final
precondition of Py. To do this, we make critical use of the fact that the
current thread locally holds the

[
ay
]t capability. That is, since the current

thread owns
[
ay
]t, no other thread in the environment may hold

[
ay
]t and

thus the environment cannot perform the action of
[
ay
]t. By contrast, the

current thread does not hold the [ax]
t capability. As such, another thread

in the environment may own [ax]
t and may perform its action.

253

Observe that the precondition of the
[
ay
]t action only requires requires

the resources described by the subjective view. However, the precondition
of the [ax]

t action depends on z, which is no longer included in the sub-
jective view of the thread. If another thread in the environment owns the
[ax]

t capability, it may perform its action whenever its subjective view is
compatible with the precondition of the action. When that is the case,
the piece of the state corresponding to the overlap between the state and
the precondition of the action is removed, and the entire postcondition
of the action is added in its place. Diagrammatically, a subjective state
(represented by the circle) is affected as follows by an action P Q:

(
where |= P and |= Q

)
This is because a subjective view describes a thread’s partial knowledge
about the shared state, while the environment may have additional knowl-
edge to what the thread knows. In this case, while the thread does not
have the capability to do the action of [ax]

t, the environment might.

The proof of the specification of the thread Py is straightforward. By
inspection, the invariant of the while loop is stable with respect to Iy. The
atomic section allows safe manipulation of the contents of the subjective
view. The final postcondition of Py follows from the invariant and the
boolean expression of the while loop. We join up the postconditions of
the threads using the Merge principle. Since ∨ distributes over ∪∗, the
subjective view simplifies to

�� ��x 7→ 10 ∗ y 7→ 10 ∗ z 7→ 10
Ix∪Iy∪Iz

. Finally,

since Ix ∪ Iy ∪ Iz vP10 I when P10 , x 7→ 10 ∗ y 7→ 10 ∗ z 7→ 10, using the
Shift principle, we get the postcondition of INC.

This concludes our CoLoSL proof of INC. Our expansion and contrac-
tion of subjective views, in particular with shifting of interference asser-
tions in key places, enables us to confine the specification and verification
of each thread to just the resources they need. Such small specifications
make proofs robust against changes to the environment of each thread,
and thus provide more opportunities for proof reuse. We refer the reader
to [47, 48] for two general variants of the INC program in Fig. 8.1. In the
first instance, we generalise the INC program to a token ring comprising
n threads. In the second instance, we consider a variant where the token

254

ring may dynamically grow by spawning additional threads and appending
them into the end of the ring. We then demonstrate that in contrast to
existing CAP-like approaches [15, 10], the proof of the existing threads
remain unchanged even in the face of such dynamic extension.

8.3. Comparison to CAP

CoLoSL is closely inspired by the program logic of CAP [15], improving
on its formalism in several ways. To demonstrate this, we proceed with a
pictorial description of our reasoning about a concurrent set module. We
compare our CoLoSL reasoning with the original CAP reasoning in [15],
demonstrating that our CoLoSL reasoning provides more concise proofs
using our local reasoning about the shared state.

Consider the following illustration of the CAP set predicate in [15]:

v1 v2 v3 . . .
x y z ~

(x,y)/∈S

(
~
v

[U(x,y,v)]

)
∗ ~

(x,y)∈S

(
∃w.~

v 6=w
[U(x,y,v)]

) s

Ix∪Iy∪Iz∪···

The set is represented as a sorted singly-linked list with no duplicate
elements. The list starts at address x with value v1, points to the next
element at address y with value v2, and so forth. Hereafter, we write
node (x, v, y) to denote a node at address x, with value v and successor y.

All nodes of the list reside in a single shared region labelled s and the
interference on the list is the combined interference associated with each
constituent node. Each node at a given address x is associated with a
set of update capabilities of the form [U(x, y, v)] for all possible addresses
y and all possible values v. This is to capture all potential successor
addresses y and all potential values v that may be stored at address x. In
order to modify a node, a thread can acquire the lock associated with the
node and subsequently claim the relevant update capability.

Since in CAP the capabilities associated with a region can only be gen-
erated upon its creation, the shared region is required to keep track of
all possible update capabilities [U(x, y, v)] associated with all addresses x
(including those not currently in the domain of the list), all addresses y
and all values v. At any one point, given node (x, v, y), the only update
capability that can be claimed by a thread (through locking) is the one

255

that reflects its current status, namely [U(x, y, v)]. As a result, an auxil-
iary mathematical set S is used to track those nodes of the list that are
currently locked and thus infer which [U] capabilities have been claimed.
The distribution of update capabilities is captured by the two assertions
written as the infinite multiplicative star operator ~. The first part of

the assertion states that given any node at address x with successor y, if
it is not locked (i.e. (x, y) 6∈ S), then all of its update capabilities of the
form [U(x, y, v)] lie in the shared region for all values v. Dually, if it is
locked (i.e. (x, y) ∈ S), then the update capabilities for all values v but
one (w 6= v) are in the shared region.
This CAP set predicate is unnecessarily complicated. It is counter-

intuitive to have to account for the capabilities associated with addresses
not in the domain of the list. Moreover, each thread observes all nodes in
the list and thus needs to account for their associated interference.
The TaDA logic [10] took the first steps towards addressing the above

shortcomings of CAP. TaDA regions are parametric in the PCM (partial
commutative monoid) of capabilities (known as guards in TaDA). As such,
one can choose a more suitable PCM to axiomatise the desired behaviour
of capabilities. Later logics such as Iris [36] followed suit and allowed for
the parameterisation of the capability (ghost resource) PCMs.
While the TaDA approach is much cleaner than that of CAP, it never-

theless requires the foresight of specifying all interference associated with
the region upon its creation. As such, interference specifications are static
and cannot be extended with new behaviour even when the existing re-
sources are left untouched. By contrast, as well as being parametric in its
capability PCM, interference specifications in CoLoSL are dynamic in that
they may be extended with new behaviour using the Extend principle.
We proceed with the CoLoSL proof of the set implementation. As we

demonstrate in §9, CoLoSL is parametric in the PCM of capabilities. We
thus instantiate it with a heap-like capability separation algebra that is
stateful and demonstrate that this allows for a more concise proof.
We specify the set predicate as the ∗-composition of the subjective views

associated with each node in the singly-linked list as illustrated below:

[x.N 7→y]∗ v1
x

Ix

∗ [y.N 7→z]∗ v2
y

Iy

∗ [z.N 7→· · ·]∗ v3
z

Iz

∗ · · ·

256

The interference on each subjective view is limited to the node in question.
Associated with each node at address x is a “next” capability, [x.N 7→ y],
tracking its successor y. This is analogous to the [U(x, y, v)] capability of
CAP and we shortly demonstrate how it is utilised in our reasoning.
Since CoLoSL allows for the dynamic extension of the shared state, we

need not account for capabilities associated with all addresses. Instead,
fresh capabilities are generated dynamically as needed. We demonstrate
this by giving a reasoning outline of the add(v′) method that adds value v′

to the set by inserting it in the sorted list. Suppose v2 < v′ < v3 and thus
a new node w with value v′ is to be inserted after node y. The operating
thread proceeds by traversing the list by hand-over-hand locking until it
reaches node y. It then locks y and claims its next pointer and moves
it to its local state, as allowed by Iy. Subsequently, the shared state is
extended by the resources associated with the new node and its associated
capabilities ([w.N 7→z]) are generated on the fly as illustrated below:

[x.N 7→y]∗ v1
x

Ix

∗ [y.N 7→z]∗ v2
y

Iy

∗ [w.N 7→z]∗ v′
w

Iw

∗ [z.N 7→· · ·]∗ v3
z

Iz

∗ · · ·

Since the locking thread holds the next pointer of y in its local state, it
modifies it to point to the new node w. It then unlocks y and returns
its next pointer to the shared state. When inserting a new node between
y and z, the associated interference assertion Iy allows y to be unlocked
only if it has been directed to a new node whose successor is z. As such,
the unlocking thread must demonstrate that the new node w does indeed
point to z. In order to establish this, we use the Merge principle to
combine the subjective views of y and w as follows:

[x.N 7→y]∗ v1
x

Ix

∗ [y.N 7→z]∗ v2
y
∗[w.N 7→z]∗ v′

w

Iy∪Iw
∗ [z.N 7→· · ·]∗ v3

z

Iz

∗ · · ·

Finally, node y is unlocked; its next pointer is returned to the shared state
and its next capability is modified to reflect its new successor. Using the
Copy, Forget and Shift principles in order, we obtain the set predicate
with node w inserted into it:

[x.N 7→y]∗ v1
x

Ix

∗ [y.N 7→w]∗ v2
y

Iy

∗ [w.N 7→z]∗ v′
w

Iw

∗ [z.N 7→· · ·]∗ v3
z

Iz

∗ · · ·

257

We can reason about the set remove operation in a similar fashion. The
dynamic extension afforded by the Extend principle allows us to generate
new capabilities only when needed, resulting in a more concise specification
and proof. Moreover, rather than having a distinct capability to modify
the element at address x, for each possible successor address y (as with
[U(x, y, v)] in CAP), we appeal to a single capability of the form [x.N 7→y]

which is accordingly modified to [x.N 7→ y′] whenever the successor of x
changes from y to y′. Lastly, using the reasoning principles of Merge,
Forget, Shift and Copy, we can grow and shrink our subjective views
as needed. Consequently, at any one point we only view the relevant parts
of the shared state. We refer the reader to [47] for the full specification of
the set operations as well as their respective proof sketches.

8.4. Comparison to Iris and Contemporary Logics

In comparison to contemporary program logics of [15, 54, 53, 38, 10, 36,
35], CoLoSL lacks several features such as abstract predicates [15, 54,
53, 38, 10, 36, 35], higher-order reasoning [54, 53, 36, 35] and abstract
atomicity [10, 36]. These ideas suggest interesting directions and warrant
further investigation.
Unlike CoLoSL however, the program logics of [19, 15, 54, 53, 10, 38]

do not support the generalised interference manipulation afforded by the
Shift principle for composing, framing and rewriting interference relations.
In the program logic of Iris [36, 35], one can use logical view shifts

(analogous to that of the V repartitioning implication in CoLoSL) to ma-
nipulate the interference relations on a per-example basis. That is, using
the view shifts in Iris, one can manipulate the interference relation for
each program being verified (e.g. Dijkstra’s token ring algorithm in §8.2).
However, Iris does not feature a generalised view shift notion for inter-
ference manipulation as the necessary conditions for interference rewriting
and framing have not been identified. By contrast, in CoLoSL we propose
a generalised Shift principle where the conditions for rewriting and fram-
ing interference relations have been formalised via the I vP I ′, providing
an insight into the settings in which interference manipulation may be
possible and beneficial.

258

9. Concurrent Local Subjective Logic

Concurrent local subjective logic (CoLoSL) is a general program logic
for compositional reasoning about fine-grained concurrent algorithms. We
present the general theory of CoLoSL and its various ingredients necessary
for reasoning about concurrent algorithms.
In §9.1 we formally describe the underlying model of CoLoSL. We

present the various ingredients necessary for defining the CoLoSL worlds:
the building blocks of CoLoSL that track the resources held by each thread,
the shared resources accessible to all threads, as well as the ways in which
these shared resources may be manipulated by each thread.
In §9.2 we present the CoLoSL assertions and describe their semantics

by relating them to sets of worlds. We then establish the validity of Copy,
Forget and Merge principles introduced in the preceding chapters by
establishing their truth for all possible worlds and interpretations.
In §9.3 we formally define the notion of interference confinement (P c©

I) necessary for extending the interference assertions via the Extend

principle. Similarly, we formulate the definition of interference shifting
(I vP I ′) used for rewriting interference assertions. We then demonstrate
the validity of the Shift principle by establishing its truth for all possible
worlds and interpretations.
In §9.4 we present the CoLoSL rely and guarantee relations, describing

how the shared state may be manipulated by the environment and the cur-
rent thread, respectively. We then formulate the definition of the semantic
implication V and subsequently demonstrate the validity of the Extend

principle. We further formulate the definition of assertion stability defined
in terms of the rely relation, namely, the possible actions taken by the
environment.
In §9.5 we present several judgements that reduce the semantic checks

needed for stability, interference confinement and interference shifting to
separation logic entailments. These judgements do not contain subjec-

259

tive (boxed) assertions and solely include local assertions. As such, these
judgements involve the familiar entailments of standard separation logic.
In §9.6 we present the programming language of CoLoSL. We build

CoLoSL as an instance of the Views framework [14] and thus our pro-
gramming language is that of Views, instantiated with an appropriate
(parametric) choice of atomic operations. We then present the proof rules
of CoLoSL, namely those of Views instantiated with the axiomatisation of
the CoLoSL atomic operations.
In §9.7 we present the CoLoSL operational semantics via the small-

step transition system of the Views framework [14], instantiated with the
semantics of the atomic operations. We then demonstrate the soundness
of the CoLoSL proof rules with respect to their operational semantics. As
CoLoSL is built as an instance of Views, it suffices to demonstrate the
soundness of its atomic operations with respect to their semantics.
The general theory of CoLoSL is parametric in several of its components

which allows for its suitable instantiation depending on the concurrent
program being verified. Following a similar style to that of preceding
chapters, we delineate the parameters of CoLoSL enclosed in solid boxes
labelled “CoLoSL Parameter”.

9.1. CoLoSL Model

Worlds A CoLoSL world represents the underlying logical state tracking
the resources held by each thread, the shared resources accessible to all
threads, and the ways in which the shared resources may be manipulated
by each thread. A world is a triple of the form (l, g, I) where l and g

are instrumented states and I is an action model. Let us explain the role
of each component informally. The local instrumented state (or simply
local state), l, represents the locally owned resources of a thread. The
shared instrumented state (or simply shared state), g, represents the entire
(global) shared state, accessible to all threads, subject to the interference
described by the action model I.
An action model is a partial function from capabilities to sets of actions.

An action is a triple (p, q, c) of logical states where p and q are the pre- and
post-states of the action, respectively, and c is the action condition. That
is, the c acts as a mere catalyst for the action: it has to be present for the

260

action to take effect, but is left unchanged by the action. Alternatively,
the catalyst could be computed a posteriori for each action. However, we
often need to isolate the part of the state that is modified by an action,
hence our technical choice of recording the catalyst in the model. The
action model I corresponds directly to the (semantic interpretation of) an
interference assertion I. Although worlds do not put further constraints
on the relationship between I and g, they are linked more tightly in the
semantics of assertions (§9.2).

The composition of two worlds is defined whenever their local states
are compatible and they agree on the other two components, hence have
identical knowledge of the shared state and possible interferences.

We proceed by defining instrumented states, which constitute the no-
tion of resource in CoLoSL, in the standard separation logic sense. Instru-
mented states have two components: one describes logical states (e.g. stacks
and heaps); the other represents capabilities. The latter are inspired by
the capabilities in deny-guarantee reasoning [18, 15]: a thread in posses-
sion of a given capability is allowed to perform its associated actions (as
prescribed by the action model components of each world, defined below),
whereas the actions of the capabilities not fully owned by a thread may
be performed by the environment.

CoLoSL is parametric in the choice of the partial commutative monoid
(hereafter simply monoid) representing the logical states and capabilities.
This allows for suitable instantiation of CoLoSL depending on the pro-
grams being verified. For instance, in the token ring example INC of
§8.2, the monoid of logical states is the standard variable stack of the
variables-as-resource model [5], and the capabilities are captured by the
(P (T) ,], {∅}) monoid where T , {ax, ay, az} denotes a set of tokens. How-
ever, as we demonstrate in the examples of §10, our programs often call
for a more complex model of logical states and capabilities. For instance,
we may need our capabilities to be fractionally owned, where ownership of
a fraction of a capability grants the right to perform the action to both
the thread and the environment, whereas a fully-owned capability by the
thread denies the environment the right to perform the associated action.

In general, logical states and capabilities can be instantiated as any par-
tial commutative monoid [8] that satisfies the cross-split property [17]. We
require the cross-split property to ensure the associativity of the overlap-

261

ping conjunction connective ∪∗. The cross-split property is a sufficient (but
not necessary) condition for maintaining the associativity of ∪∗.

Property 1 (Cross-split). A partial commutative monoid (M, •M,UnitM)

satisfies the cross-split property if and only if:

∀ma,mb,mc,md ∈M. ma •M mb = mc •M md =⇒
∃mac,mad,mbc,mbd. ma = mac •M mad ∧mb = mbc •M mbd

∧mc = mac •M mbc ∧md = mad •M mbd

CoLoSL Parameter

Parameter 22 (Logical state partial commutative monoid). Assume
a set of logical states h ∈ LState.
Assume a partial commutative monoid for logical states, PCMl ,

(LState, •l,Unitl), satisfying the cross-split property (Prop. 1).

CoLoSL Parameter

Parameter 23 (Primitive capability partial commutative monoid).
Assume a set of primitive capabilities c ∈ Cap.
Assume a partial commutative monoid for primitive capabilities,
PCMc,(Cap, •c,Unitc), satisfying the cross-split property (Prop.
1).

Recall that capabilities enable the manipulation of the shared state
through their associated actions in the action models. At any one point
a thread may unilaterally extend the shared state with some of its locally
held resources (by the Extend principle). In doing so, it may also in-
troduce new capabilities and actions that describe how the newly shared
resources may be manipulated. In order to ensure the creation of fresh
capabilities upon extension, the set of capabilities must be extensible. For
instance, consider the following monoid where each element is a subset of
the set N , {1, 2, 3}, with composition defined as disjoint set union and a
singleton unit set comprising the empty set.

PCMN , (P ({1, 2, 3}) ,], {∅})

262

The above monoid satisfies the cross-split property and thus meets the
conditions stipulated in Par. 23. However, observe that since the carrier
set P (N) is finite, it is possible to exhaust it to the point where no more
fresh primitive capabilities can be allocated. For instance, when a thread
holds the maximal primitive capability c={1, 2, 3}, it is not possible to
allocate further non-unit capabilities as no non-unit element is compatible
with c. To remedy this, given the set of primitive capabilities Cap in Par.
23, we define an extensible set of capabilities, κ ∈ Kap , N fin

⇀ Cap, defined
as the set of finite functions from natural numbers to primitive capabilities
in Cap. This way, since the domain of functions in Kap are finite, we can
always allocate fresh capabilities by picking a fresh ticket t not previously
allocated. In the example above, we may initially generate the capability
κ=0 7→ {1, 2, 3} with ticket 0. Later when fresh capabilities are required,
we can generate a fresh capability κ′=1 7→{1, 2} with ticket 1 and so forth.
We define the composition of extensible capabilities •k as function union
with the values of tickets combined using the composition •c on primitive
capabilities. For instance, the κ=0 7→ {1, 2, 3} in the example above can
be split as κ1 •k κ2 with κ1=0 7→{1, 2} and κ2=0 7→{3}.
Observe that this workaround is similar to the way in which allocation of

fresh locations in a heap are ensured via the alloc operation. In the same
way that heaps are modelled as finite functions from locations (normally
modelled as natural numbers) to values, we model our extensible capa-
bilities as finite functions from natural numbers to capabilities. However,
while composition on heaps is defined as disjoint function union on the
domain of heaps, we define our composition as function union on their do-
mains with their ranges combined using the custom capability composition
•c.
Note that in similar logics such as CAP [15] and iCAP [53], the fresh-

ness of new capabilities is ensured by generating a fresh region identifier
r (generally modelled as natural numbers) upon region creation and as-
sociating the newly created capabilities with the fresh region identifier r.

Definition 90 (Capability monoid). Given the partial commutative monoid
of primitive capabilities (Cap, •c,Unitc) in Par. 23, the set of capabilities
is κ ∈ Kap , N fin

⇀ Cap.

263

The capability composition, •k : Kap × Kap ⇀ Kap, is defined as follows,
for all κ1, κ2 ∈ Kap and t ∈ N:

(κ1 •k κ2)(t) ,

κ1(t) •c κ2(t) if t ∈ dom(κ1) and t ∈ dom(κ2)

κ1(t) if t ∈ dom(κ1) and t 6∈ dom(κ2)

κ2(t) if t ∈ dom(κ2) and t 6∈ dom(κ1)

undefined otherwise

The capability unit set is Unitk , {0} where 0 denotes a function with
empty domain. The partial commutative monoid of capabilities is PCMk ,

(Kap, •k,Unitk).

Note that to distinguish the user-defined capabilities Cap (supplied as
a parameter in Par. 23) from the extensible capabilities Kap (Def. 90),
we refer to the former as primitive capabilities and the latter simply as
capabilities.
We can now formalise the notion of instrumented states. As described

above, an instrumented state is a pair comprising a logical state and a
capability resource.

Definition 91 (Instrumented states). Given the partial commutative monoid
of logical states (LState, •l,Unitl) in Par. 22 and the partial commutative
monoid of capabilities (Kap, •k,Unitk) in Def. 90, the set of instrumented
states is: l, g ∈ IState , LState×Kap.
Instrumented state composition, ◦ : IState× IState ⇀ IState, is defined

component-wise as ◦ , (•l, •k) and is not defined when the composition
on either component is undefined.
The instrumented state unit set is:

UnitIns , {(h, κ) | h ∈ Unitl ∧ κ ∈ Unitk}

The partial commutative monoid of instrumented states is: PCMIns ,

(IState, ◦,UnitIns).

Notationally, we write l (and its variants l′, l1, etc.) to range over either
arbitrary instrumented states or those representing the local instrumented
state. Similarly, we write g (and its variants g′, g1, etc.) to range over
instrumented states when representing the shared (global) state. Given an

264

instrumented state l, we write ll and lk for its first and second projections,
respectively.
We often need to compare two instrumented states l1 ≤ l2 (or their

constituents: h1 ≤ h2, κ1 ≤ κ2) defined when there exists l such that
l ◦ l1 = l2. This is captured in the following definition.

Definition 92 (Ordering). Given a partial commutative monoid (M, •M,
UnitM), the ordering relation, ≤: M×M, is defined as follows:

≤ , {(m1,m2) | ∃m. m1 •M m = m2}

We write m1 ≤ m2 for (m1,m2) ∈ ≤.
Given a monoid (M, •M,UnitM), in our formalisms we occasionally need

to quantify over compatible elements of a monoid; that is, those elements
that can be composed together by •M. Similarly, we describe two elements
of a monoid as disjoint when they do not overlap. We formulate these
definitions below.

Definition 93 (Compatibility and disjointness). Given a partial commuta-
tive monoid (M, •M,UnitM), the compatibility relation,]: M×M, is defined
as follows:

] , {(m1,m2) | ∃m. m1 •M m2 = m}

Given the ordering relation ≤ (Def. 92), the disjointness relation, ⊥: M×
M, is defined as follows:

⊥, {(m1,m2) | ∀m ∈M. m ≤ m1 ∧m ≤ m2 ⇒ m ∈ UnitM}

We write m1] m2 for (m1,m2) ∈] and write m1 ⊥ m2 for (m1,m2) ∈⊥.
We proceed with the next ingredient of a CoLoSL world, action models.

Recall that an action is simply a triple of instrumented states describing
the pre- and post-states of the action, as well as the action condition
(catalyst). Given an action (p, q, c) where p and q denote the action pre-
and post-states and c denotes the catalyst, we require that c be maximal
with respect to p and q in that p and q must not overlap: p ⊥ q. That is,
the common parts between an action pre- and postcondition are captured
by the catalyst c ensuring that p and q are disjoint.
An action model describes the set of actions associated with each capa-

265

bility. To ensure the generation of fresh capabilities upon extension, we
additionally track the tickets allocated so far as part of the action model.

Definition 94 (Actions, action models). Given the set of instrumented
states IState (Def. 91), the set of actions is:

a ∈ Action ,
{

(p, q, c) p, q, c ∈ IState ∧ p ⊥ q
}

Given the set of capabilities Kap (Def. 90), the set of action models is:

I ∈ AMod ,
(
Kap→ P (Action)

)
× (N fin

⇀ {1})

Action model composition, ∪ : AMod × AMod ⇀ AMod, is defined as
follows, for all I, I′ ∈ AMod, and κ ∈ Kap:

I ∪ I′ ,

(
(Ia ∪ I′a), It

)
if It=I′t

undefined otherwise
where (Ia ∪ I′a)(κ) , Ia(κ) ∪ I′a(κ)

The first component of an action model tracks the actions associated
with capabilities; the second component tracks the tickets allocated so
far. Given an action model I, we write Ia and It for its first and second
projections, respectively. For brevity, given a capability κ we write I(κ)

for Ia(κ). We write 0 for an action model I with an empty domain in its
first component (i.e. when dom(Ia) = ∅).

The Effect of Actions Given a world (l, g, I), since g represents the
entire shared state, for (l, g, I) to be well-formed, the actions in I must
be confined to g. Let us elaborate on the necessity of the confinement
condition.
Recall that a thread may unilaterally decide to introduce part of its lo-

cal state into the shared state at any point (using the Extend principle).
As such, confinement ensures that existing actions cannot affect future ex-
tensions of the shared state. Analogously, we require that the new actions
introduced by the extension be confined to the extension in the same vein.
This way, we ensure that extending the shared state cannot retroactively
invalidate the views of other threads. However, as we demonstrate shortly,
confinement does not prohibit referring to existing parts of the shared

266

state in the new actions; rather, it only safeguards against mutation of the
already shared resources through new actions.

Through confinement, we ensure that the effect of actions in the action
models are contained to the shared state. In other words, given an action
a = (p, q, c) and a shared state g, whenever p◦c agrees with g, then p (the
part of the state mutated by the action) is contained in g. Agreement of
p◦ c and g merely means that p◦ c and g agree on the resources they have
in common. Note that g only needs to contain p (and not p ◦ c) for a
to take effect. This relaxation is due to the fact that other threads may
extend the shared state at a future point thus enabling the action. That
is, the extension may provide the missing resources for p◦c to be contained
in the shared state, thus allowing the extending thread to perform action
a. Crucially, however, the part of the shared state mutated by the action,
namely p, must be contained in g so that extensions of the shared state
need not worry about existing actions interfering with new resources that
were never shared beforehand.

Two elements of a monoid agree if they can be extended (via composi-
tion) to the same element. For instance the stack σ1=[x 7→0] agrees with
both σ2=[y 7→1] and σ3=[x 7→0]] [y 7→1] as they can all be extended to
σ3 (trivial extension in case of σ3 itself). On the other hand, the σ1 does
not agree with σ4=[x 7→ 1] as no common super-stack can be found; that
is, ¬∃σ. σ1 ≤ σ ∧ σ4 ≤ σ.

Definition 95 (Agreement). Given a partial commutative monoid (M, •M,
UnitM) and the ordering relation ≤ (Def. 92), two elements m1,m2 ∈ M

agree, written agree(m1,m2), if and only if:

agree(m1,m2)
def⇐⇒ ∃m ∈M. m1 ≤ m ∧m2 ≤ m

Definition 96 (Action confinement). Given the set of actions Action

(Def. 94) and the set of instrumented states IState (Def. 91), an ac-
tion a=(p, q, c) ∈ Action is confined to an instrumented state g, written
g c© a, if and only if the following property is satisfied:

g c© a
def⇐⇒ ∀r. g] r ∧ agree(p ◦ c, g)⇒ p ≤ g ∧ p ⊥ r

where] and ⊥ respectively denote the compatibility and disjointness rela-

267

tions (Def. 93) and agree denotes the agreement relation (Def. 95).

As discussed earlier, only the action pre-state p (the part mutated by
the action) is required to be contained in g and must be disjoint from
all potential extensions (r) of the instrumented state g. That is, future
extensions of g need not account for existing actions interfering with new
resources.

Given a shared state g and an action model I, we require that all
actions of I be confined in all possible futures of g; that is, all shared
states resulting from g after any number of applications of actions in I.
To this end, we define action application describing the effect of an action
on an instrumented state. Observe that given an action a in I, the g may
not be affected by a when the intersection of g and the pre-state of a
is an empty state in UnitIns. When this is the case, even though that
action may potentially take place, it need not be accounted for as it leaves
g unchanged. We thus introduce the notion of visible actions to describe
those actions that affect (mutate) g.

Definition 97 (Action application). Given the set of actions Action

(Def. 94) and the set of instrumented states IState (Def. 91), the applica-
tion of an action a=(p, q, c) ∈ Action on an instrumented state g ∈ IState,
written a[g], is defined as follows:

a[g] ,
{
q ◦ l agree(p ◦ c, g) ∧ g=p ◦ l ∧ q] l

}
where] denotes the compatibility relation (Def. 93) and agree denotes the
agreement relation (Def. 95).
An action a ∈ Action is a potential action on an instrumented state g,

written potential(a, g), if and only if a[g] is not empty:

potential(a, g)
def⇐⇒ a[g] 6= ∅

The potential(a, g) states that the action a may potentially take place
on g (provided that g holds all the resources in the pre-state of a).

Definition 98 (Visible actions). Given the set of actions Action (Def. 94)
and the set of instrumented states IState (Def. 91), an action a=(p, q, c) ∈

268

Action is visible in g, written visible(a, g), if and only if:

visible(a, g)
def⇐⇒ ∃l. l ≤ p ∧ l ≤ g ∧ l 6∈ UnitIns

We are now ready to define our confinement condition on action models.
Inspired by Local RG [19], we introduce the concept of locally fenced
action models to capture all possible states reachable from the current
state via a number of action applications. A set of states F locally fences
an action model I if it is invariant under the interference perpetrated by
the actions in I. An action model is then confined to a logical state l if it
can be fenced by a set of states that includes l. In the following we write
rng(f) to denote the range of a function f .

Definition 99 (Locally-fenced action model). Given the set of action mod-
els AMod (Def. 94) and the set of instrumented states IState (Def. 91),
an action model I ∈ AMod is locally fenced by F ∈ P (IState), written
F � I, if and only if:

F � I
def⇐⇒ ∀g ∈ F. ∀a ∈ rng(Ia). g c© a ∧ (a[g] ⊆ F)

where c© denotes action confinement (Def. 96) and a[g] and potential(a, g)

are as defined in Def. 97.

Definition 100 (Action model confinement). Given the set of instru-
mented states IState (Def. 91) and the set of action models AMod (Def. 94),
an action model I ∈ AMod is confined to an instrumented state g ∈ IState,
written g c© I, if and only if:

g c© I
def⇐⇒ ∃F ∈ P (IState) . gl ∈ F ∧ F � I

where � denotes the local fencing relation (Def. 99).
Action model confinement is lifted to sets of instrumented states where

given a set of instrumented states S ∈ P (IState), an action model I ∈
AMod is confined to the set of states S, written S c© I, if and only if:

∃F ∈ P (IState) . S ⊆ F ∧ F � I

An important property of the confinement relation is that it is preserved
under composition. That is, whenever the confinement relation holds for

269

two different states under two different action models (i.e. g1 c© I1 and
g2 c© I2 hold), then the confinement relation also holds for the combined
states under the combined action models (i.e. g1 ◦ g2 c© I1 ∪ I2 also hold).
This is captured in the following lemma. Later, we appeal to this lemma
to establish the validity of the Extend principle.

Lemma 3 (Confinement monotonicity). For all g1, g2 ∈ IState (Def. 91)
and I1, I2 ∈ AMod (Def. 94):

g1 c© I1 ∧ g2 c© I2 =⇒ g1 ◦ g2 c© I1 ∪ I2

Proof. The full proof is given in §C (Lemma 32)

We are almost in a position to define well-formedness of worlds. Recall
that a thread may independently extend the shared state with its locally
held resources and introduce new actions and capabilities by claiming a
fresh capability ticket t. In order to ensure the freshness of the ticket
t, as part of the well-formedness of a world w=(l, g, I), we require that
the capability tickets found in the local state l and the shared state g be
accounted for in I. That is, dom

(
(l ◦ g)k

)
⊆ dom(It).

We can now formalise the notion of well-formedness. A world (l, g, I)

is well-formed if l and g are compatible, the I is confined to g, and the
capability tickets of l and g are contained in I.

Definition 101 (Well-formedness). Given the set of instrumented states
IState (Def. 91) and the set of action models AMod (Def. 94), a triple
(l, g, I) ∈ IState× IState×AMod is well-formed, written wf (l, g, I), if and
only if:

wf (l, g, I)
def⇐⇒ l] g ∧ g c© I ∧ dom

(
(l ◦ g)k

)
⊆ dom(It)

where] denotes the compatibility relation (Def. 93) and c© denotes action
model confinement (Def. 100).

Definition 102 (Worlds). Given the set of instrumented states IState

(Def. 91) and the set of action models AMod (Def. 94), the set of worlds,
w ∈World, is defined as follows:

World , {w ∈ IState× IState× AMod | wf (w)}

270

where wf (.) is as given in Def. 101.

World composition, • : World×World ⇀ World, is defined as follows:

(l, g, I) • (l′, g′, I′) ,

(l ◦ l′, g, I) if g = g′, and I = I′

and wf (l ◦ l′, g, I)

undefined otherwise

The world unit set is defined as follows:

Unitw ,
{

(l, g, I) (l, g, I) ∈World ∧ l ∈ UnitIns

}
The partial commutative monoid of worlds is: PCMw , (World, •,Unitw).

9.2. CoLoSL Assertions

Our assertions extend standard assertions from separation logic with sub-
jective views and capability assertions. We assume an infinite set of logical
variables, LVar, and a set of logical environments, LEnv, mapping logical
variables onto their values.

Recall that CoLoSL is parametric with respect to the logical states (Par.
22) and primitive capabilities (Par. 23). As such, CoLoSL is also para-
metric in the logical states assertions and primitive capability assertions
which may be instantiated with any assertion language interpreted over
logical states LState and primitive capabilities Cap, respectively. We thus
require that CoLoSL be supplied with the satisfiability relations for logical
states assertions and primitive capability assertions. This is captured by
the parameters below.

Recall from 8 that we write sat(C1,C2) to denote that the primitive
capability assertions C1 and C2 are always satisfiable. That is, there exist
primitive capabilities c1 and c2 such that c1 satisfies C1, the c2 satisfies
C2 and the composition of c1 and c2 is defined (i.e. ∃c. c1 •c c2=c).

CoLoSL Parameter

Parameter 24 (Logical state assertions). Assume a set of primitive
logical state assertions H ∈ LSAst.

271

Given the set of logical environments and the set of logical states
LState (Par. 22), assume a satisfiability relation for the primitive
logical state assertions:

|=l: (LEnv× LState)× LSAst

CoLoSL Parameter

Parameter 25 (Primitive capability assertions). Assume a set of
primitive capability assertions C ∈ CAst.
Given the set of logical environments and the set of primitive capa-
bilities Cap (Par. 23), assume a satisfiability relation for the primi-
tive capability assertions:

|=c: (LEnv× Cap)× CAst

Given the partial commutative monoid of primitive capabilities
(Cap, •c,Unitc) in Par. 23, the primitive capability assertions C1

and C2 are always satisfiable, written sat(C1,C2), if and only if:

sat(C1,C2)
def⇐⇒ ∀Γ ∈ LEnv. ∃c,c1,c2 ∈ Cap.

c=c1 •c c2 ∧ Γ,c1 |=c C1 ∧ Γ,c2 |=c C2

Definition 103 (CoLoSL assertions). Given the logical state assertions
LSAst (Par. 24) and the primitive capability assertions CAst (Par. 25),
the local CoLoSL assertions, p, q ∈ LAst, are defined by the following
grammar, where H ∈ LSAst, C ∈ CAst and x,t ∈ LVar denote logical
variables:

p, q ::= false | p⇒ q | ∃x. p | emp | H | [C]t

| p ∗ q | p −−∗ q | p ∪∗ q | p−−#∗ q

The CoLoSL assertions, P,Q ∈ Ast, and the interference assertions, I ∈
IAst, are defined by the following grammars, where p, q, r ∈ LAst and
x, ȳ ∈ LVar denote logical variables:

P,Q ::= p | ∃x. P | P ∨Q | P ∗Q | P ∪∗ Q |
�� ��P I

I ::= ∅ | {r : ∃ȳ. p q} ∪ I

272

The syntax of local assertions (p, q ∈ LAst) is that of standard sepa-
ration logic, extended with the ∪∗ and −−#∗ connectives, described shortly.
Local assertions are interpreted over the partial commutative monoid of
instrumented states (IState, ◦,UnitIns) in Def. 91. The classical assertions
are interpreted in the usual way. Other classical connectives (e.g. ∧,∨,¬, ∀)
can be derived in the standard way. The emp is true for the units of
instrumented states in UnitIns. A logical state assertion H describes in-
strumented states of the form (h, κ) where h satisfies H (as described by
the |=l relation in Par. 24) and κ ∈ Unitk (Def. 90). Analogously, a
capability assertions [C]t describes instrumented states of the form (h, κ)

where h ∈ Unitl (Par. 22), and κ describes a capability where its ticket is
denoted by t and its value satisfies C (as described by the |=c relation in
Par. 25). Often in our examples, when we do not extend the shared state
and do not generate additional capabilities, we drop the ticket component
of capability assertions for brevity and write e.g. [C] instead. This may be
interpreted as the capability assertion C with the default (initial) ticket 0.

The p ∗ q describes an instrumented state that can be split (via the
instrumented state composition operator ◦) into two substates satisfying
p and q. The −−∗ connective is the right adjunct of ∗ and thus we have
p ∗ (p −−∗ q) ⇒ q. An instrumented state l satisfies p −−∗ q if and only if
for any state l′ satisfying p, the combined state l ◦ l′ satisfies q. The ∪∗
connective is the overlapping conjunction or “sepish” [21, 50]. An instru-
mented state satisfies p∪∗ q if and only if it can be split into three substates
(via the ◦ composition) such that the composition of the first two states
satisfies p and the composition of the last two satisfies q. Lastly, the −−#∗
is the existential magic wand or “septraction” [57]. An instrumented state
l satisfies p −−#∗ q if and only if there exists a state l′ satisfying p, such
that the combined state l ◦ l′ satisfies q.
The syntax of assertions (P,Q ∈ Ast) is that of standard separation

logic, with the exception of the subjective views
�� ��P I . Assertions are

interpreted over the separation algebra of worlds (World, •,Unitw) in
Def. 102. The local assertion p describes worlds of the form (l, g, I) where
l satisfies the local assertion p as described above. The classical assertions
are interpreted in the usual way. The P ∗ Q and P ∪∗ Q assertions are
interpreted over worlds in an analogous manner to that described above.
That is, a world w satisfies P ∗ Q if and only if it can be split into two

273

worlds (via the • operator) satisfying P and Q. Mutatis mutandis for
P ∪∗ Q. We have omitted the −−∗ and −−#∗ connectives from the syntax of
assertions in Ast (we have −−∗ and −−#∗ at the level of local assertions and
not the top-level assertions) as we do not need them in our examples.
It is however straightforward to extend the syntax of Ast with these
connectives, interpreted in an analogous manner to that of local assertions.
A subjective view

�� ��P I describes worlds of the form (l, g, I) where l ∈
UnitIns and a state s can be found such that i) g = s ◦ r for some context
(frame) r; ii) s satisfies P in the standard separation logic sense; and iii)
I and I agree given the decomposition s ◦ r, in the following sense:

(1) every action in I is empreflected in I (defined shortly);

(2) every action in I that is potentially enabled in g and has a visible
effect on s is reflected in I;

(3) the above hold after any number of I action applications on g.

These conditions will be captured by the action model closure relation
I ↓ (s, r, I′) given by the upcoming Def. 107 (where I′ denotes the inter-
pretation of the interference assertion I). When the above conditions are
met, we refer to s as a subjective state.
The semantics of CoLoSL assertions is given by a satisfiability relation

Γ, w |= P between a logical environment Γ ∈ LEnv, a world w=(l, g, I)

and an assertion P . We use two auxiliary satisfiability relations. The first
one Γ, l �sl P interprets assertions in the usual separation logic sense over
an instrumented state l. We use this relation when we are only concerned
with the local component of a world (l) and wish to ignore the shared
component (g) and the action model (I). The second one Γ, s |=g,I P

interprets assertions over a subjective state s that is part of the global
shared state g, subject to action model I. This third form of satisfaction
is needed to deal with nesting of subjective views. We often write |=†
as a shorthand for |=g,I when we do not need to refer to the individual
components g and I.
Note that this presentation with several satisfiability relations differs

from the usual CAP presentation [15], where assertions are first interpreted
over worlds that are not necessarily well-formed and are then cut down
to well-formed ones. The CAP presentation strays from separation logic

274

models in some respects. For instance, in CAP, the −−∗ is not the right
adjunct of ∗. Although we have omitted −−∗ from the syntax of top-level
assertions in Ast, its semantics in CoLoSL would be standard and would
satisfy the adjunction with ∗.

Interference assertions are interpreted component-wise with each action
interpreted as a set of actions of the form (lp, lq, lc) ∈ Action with pre- and
post-states lp and lq and catalyst lc. Note that the definition of actions
(Def. 94) stipulates that lc be maximal and that lp and lq not overlap.
Lastly, observe that an interference assertion is of the form {r : ∃ȳ. p q}
where r ∈ LAst. This is to allow for more expressive interference assertions
such as when r , [C1]t1 ∗ [C2]t2 or r , [C1]t1 ∨ [C2]t2 . However, as we
stipulate in the following definition, an interference assertion I , {r :

∃ȳ. p q} is only meaningful when the interpretation of r describes a
capability κ in Kap; otherwise the semantics of I is empty (equivalent to
false).

Definition 104 (Assertion semantics). Given the logical environments
LEnv, the instrumented states IState (Def. 91) and the assertions Ast

(Def. 103), the local satisfiability relation, �sl: (LEnv × IState) × Ast, is
defined as follows, for all Γ ∈ LEnv and l ∈ IState:

Γ, l �sl false never

Γ, l �sl p⇒ q iff Γ, l �sl p implies Γ, l �sl q

Γ, l �sl ∃x. P iff ∃v. [Γ | x : v], l |= P

Γ, l �sl emp iff l ∈ UnitIns

Γ, l �sl H iff ∃h, κ. l=(h, κ) and Γ, h |=l H and κ ∈ Unitk

Γ, l �sl [C]t iff ∃h, κ, t. l=(h, κ) and h ∈ Unitl and

Γ(t)=t and dom(κ)={t} and Γ, κ(t) |=c C

Γ, l �sl p −−∗ q iff ∀l′. Γ, l′ �sl p and l] l′

implies Γ, l ◦ l′ �sl q

Γ, l �sl p −−#∗ q iff ∃l′. Γ, l′ �sl p and Γ, l ◦ l′ �sl q

Γ, l �sl P1 ∗ P2 iff ∃l1, l2. l=l1 ◦ l2 and

Γ, l1 �sl P1 and Γ, l2 �sl P2

275

Γ, l �sl P1 ∪∗ P2 iff ∃l′, l1, l2. l=l′ ◦ l1 ◦ l2 and

Γ, l′ ◦ l1 �sl P1 and Γ, l′ ◦ l2 �sl P2

Γ, l �sl P ∨Q iff Γ, l �sl P or Γ, l �sl Q

Γ, l �sl
�� ��P I iff l ∈ UnitIns

Given the set of worlds World (Def. 102) and assertions Ast (Def. 103),
the satisfiability relation, |=: (LEnv × World) × Ast, is defined as fol-
lows, where 〈|I|〉Γ denotes the interpretation of I defined below, and the
definition of I↓ (s, r, I′) is given in Def. 107:

Γ, (l, g, I) |= p iff Γ, l �sl p

Γ, w |= ∃x. P iff ∃v. [Γ | x : v], w |= P

Γ, w |= P ∨Q iff Γ, w |= P or Γ, w |= Q

Γ, w |= P1 ∗ P2 iff ∃w1, w2. w=w1 • w2 and

Γ, w1 |= P1 and Γ, w2 |= P2

Γ, w |= P1 ∪∗ P2 iff ∃w′, w1, w2. w=w′ • w1 • w2 and

Γ, w′ • w1 |= P1 and Γ, w′ • w2 |= P2

Γ, (l, g, I) |=
�� ��P I iff l ∈ Unitl and ∃s, r, I′. g=s ◦ r and I′a= 〈|I|〉Γ

and Γ, s |=g,I P and I↓
(
s, r, I′

)
where

Γ, s |=g,I p iff Γ, s �sl p

Γ, s |=† ∃x. P iff ∃v. [Γ | x : v], s |=† P

Γ, s |=† P ∨Q iff Γ, s |=† P or Γ, s |=† Q

Γ, s |=† P1 ∗ P2 iff ∃s1, s2. s=s1 ◦ s2 and

Γ, s1 |=† P1 and Γ, s2 |=† P2

Γ, s |=† P1 ∪∗ P2 iff ∃s′, s1, s2. s=s
′ ◦ s1 ◦ s2 and

Γ, s′ ◦ s1 |=† P1 and Γ, s′ ◦ s2 |=† P2

Γ, s |=g,I

�� ��P I iff Γ, (s, g, I) |=
�� ��P I

Given the set of interference assertions IAst (Def. 103), the set of capabili-
ties Kap (Def. 90) and the set of actions Action (Def. 94), the interference

276

interpretation function, 〈|.|〉(.) : IAst× LEnv→ (Kap→ P (Action)), is de-
fined as follows, for all κ ∈ Kap:

〈|∅|〉Γ (κ) , ∅

〈|{r : ∃ȳ.p q}∪I|〉Γ (κ),

(lp, lq, lc)

(lp, lq, lc) ∈ Action

∧Γ, κ �sl r ∧ ∃v̄.
[Γ | ȳ:v̄], lp ◦ lc �sl p
∧ [Γ | ȳ:v̄], lq ◦ lc �sl q

∪ 〈|I|〉Γ(κ)

The �sl is the weakest of all three satisfiability relations. More con-
cretely, if Γ, (l, g, I) |= P then Γ, l �sl P . Similarly, if Γ, l |=g,I P then
Γ, l �sl P . This is formalised in the following lemma.

Lemma 4 (satisfiability relations). Given the instrumented states IState

(Def. 91), action models AMod (Def. 94), assertions Ast (Def. 103) and the
satisfiability relations �sl, |=† and |= (Def. 104), for all P ∈ Ast, Γ ∈ LEnv,
l, g ∈ IState and I ∈ AMod (Def. 94):

if Γ, l |=g,I P then Γ, l �sl P (9.1)

if Γ, l |= P then Γ, l �sl P (9.2)

Proof. The full proof is given in §C (in Lemmata 24 and 25, respectively).

Action Model Closure Let us now turn to the definition of action
model closure, as informally introduced at the beginning of this section.
First, we need to revisit the effect of actions to take into account the
splitting of the global shared state into a subjective state s and a context
r.

Definition 105 (Combined action application). Given the set of instru-
mented states IState (Def. 91) and the set of actions Action (Def. 94),
the combined application of an action a=(p, q, c) ∈ Action on an instru-
mented subjective state s ∈ IState and context r ∈ IState, written a[s, r],
is defined as follows:{

(q ◦ s′, r′)
agree(s ◦ r, p ◦ c) ∧ ∃ps, pr.
p=ps ◦ pr ∧ ps 6∈UnitIns ∧ s=ps ◦ s′ ∧ r=pr ◦ r′ ∧ q] s′ ◦ r′

}
∪
{

(s, q ◦ r′) agree(s ◦ r, p ◦ c) ∧ r=p ◦ r′ ∧ q] s ◦ r′
}

277

where] denotes the compatibility relation (Def. 93) and agree denotes the
agreement relation (Def. 95).

Observe that the combined action application a[s, r] and action applica-
tion a[s ◦ r] (Def. 97) are linked in the following way:

∀(s′, r′) ∈ a[s, r]. s′ ◦ r′ ∈ a[s ◦ r]

In our informal description of action model closure on p. 274 we stated
that a set of actions must be reflected in an action model. Intuitively, an
action is reflected in an action model if for every state in which the action
can take place, the action model includes an action with a similar effect
that can also occur in that state. In other words, an action a=(p, q, c)

is reflected in I from a state l if whenever a is enabled in an extension
of l (i.e. p ◦ c ≤ l ◦ r for some extension r), then there exists an action
a′=(p, q, c′) ∈ I (with the same pre- and post states p and q) that is also
enabled in the same extension of l (i.e. p ◦ c′ ≤ l ◦ r). We proceed with the
definition of action reflection.

Definition 106 (Action reflection). Given the set of instrumented states
IState (Def. 91) and the set of actions Action (Def. 94), an action
a=(p, q, c) ∈ Action is reflected in a set of actions A ∈ P (Action) from
an instrumented state l ∈ IState, written reflected(a, l, A), if and only if:

∀r. p ◦ c ≤ l ◦ r ⇒ ∃c′. (p, q, c′) ∈ A ∧ p ◦ c′ ≤ l ◦ r

We now formally define action model closure. Action model closure
constitutes the crux of the Shift principle. For each condition outlined
on p. 274, we annotate which part of the definition implements them.

Definition 107 (Action model closure). Given the set of instrumented
states IState (Def. 91) and the set of action models AMod (Def. 94), an
action model I ∈ AMod is closed under a subjective state s ∈ IState,
context r ∈ IState, and action model I′ ∈ AMod, written I ↓ (s, r, I′), if
and only if:

∀n ∈ N. I↓n
(
s, r, I′

)

278

where

I↓0
(
s, r, I′

) def⇐⇒ true

I↓n+1

(
s, r, I′

) def⇐⇒ ∀κ. ∀a ∈ I′(κ). reflected(a, s ◦ r, I(κ))∧ (1)

∀κ. ∀a ∈ I(κ). potential(a, s ◦ r)⇒(
reflected(a, s ◦ r, I′(κ)) ∨ ¬visible(a, s)

)
(2)

∧ ∀(s′, r′) ∈ a[s, r]. I↓n
(
s′, r′, I′

)
(3)

and the definitions of potential, visible and reflected are as given in Def. 97,
Def. 98 and Def. 106, respectively.

Informally, given a global shared state g , s ◦ r comprising a subjective
state s and a context r, the I ↓ (s, r, I′) states that the actions of I′

simulate those of I starting from the shared state g. More concretely, the
I↓ (s, r, I′) states that the I is closed under (s, r, I′) if the closure relation
holds for any number of steps n ∈ N where

• s denotes the subjective view of the shared state;

• r denotes the context;

• s ◦ r captures the entire shared state;

• a step corresponds to the occurrence of an action as prescribed in I

which may or may not be found in I′.

The indexed closure relation is satisfied trivially for no steps (n=0). On
the other hand, for an arbitrary n ∈ N the relation holds if and only if for
any action a in I, where a is potentially enabled in s ◦ r, then:

1. every action in I′ is reflected in I (cf. item (1) on p. 274); and

2. for every action a in I, where a is potentially enabled in s ◦ r, then

a) either a is reflected in I′ (a is known to the subjective view);

b) or a does not affect the subjective state s; that is, a is not
visible in s (cf. item (2) on p. 274); and

3. I is closed under any subjective state s′ and context r′ resulting from
the application of a; that is, (s′, r′) ∈ a[s, r] (cf. item (3) on p. 274)

279

Note that when a is not visible in s (2b), given any (s′, r′) ∈ a[s, r], from
the definition of action application we then know s′ = s.

Recall from the semantics of assertions (Def. 104) that the actions in I′

correspond to the interpretation of an interference assertion I on a sub-
jective view (i.e. 〈|I|〉Γ given a logical environment Γ). The first condition
ensures that the subjective actions in I′ are contained in those of I. As
such, from the semantics of subjective assertions, the actions in I represent
the superset of all interferences known to subjective views.

We make further observations about this definition. First, item (3)
makes our assertions robust with respect to future extensions of the shared
state, where potential actions may become enabled using additional cata-
lyst that is not immediately present. Second, the I′ (and thus interference
assertions) need not reflect actions that have no visible effect on the sub-
jective state.

Third, if an action model is closed under a subjective state s1 ◦ s2 and
context r, then it is also closed under the smaller subjective state s1,
and the larger context extended with the forgotten state (s2 ◦ r). This
is formalised in the lemma below (part a). We appeal to this lemma in
establishing the validity of the Forget principle.

Fourth, whenever an action model closure relation holds for two differ-
ent subjective states (that may overlap), subject to two different action
models, then the closure relation also holds for the combined subjective
states and their associated action models. This is captured in the following
lemma (part b). We appeal to this lemma in establishing the validity of
the Merge principle.

Lastly, given an existing action model I and an extension action model
Ie, whenever i) the actions of the existing I are confined to an existing
global state g (i.e. g c© I holds); and ii) the actions of the extension Ie are
confined to an extension state se (i.e. se c© Ie holds), then the combined
action model I ∪ Ie is closed under the extended state se, the global state
g and the extension action model Ie (i.e. I∪Ie ↓ (se, g, Ie) also holds). This
is formalised in the lemma below (part c). We appeal to this lemma in
establishing the validity of the Extend principle.

Lemma 5 (Forget, Merge and Extend closure). For all s1, s2, r ∈

280

IState (Def. 91) and I, I′ ∈ AMod (Def. 94):

I↓
(
s1 ◦ s2, r, I

′) =⇒ I↓
(
s1, s2 ◦ r, I′

)
(a)

For all sp, sc, sq, r ∈ IState (Def. 91) and I, I1, I2 ∈ AMod (Def. 94):

I↓ (sp ◦ sc, sq ◦ r, I1) ∧ I↓ (sq ◦ sc, sp ◦ r, I2) =⇒
I↓ (sp ◦ sc ◦ sq, r, I1 ∪ I2)

(b)

For all g, se ∈ IState (Def. 91) and I, I, Ie ∈ AMod (Def. 94):

g c© I ∧ se c© Ie =⇒ I ∪ Ie ↓ (se, g, Ie) (c)

Proof. The proof of all three parts are given in §C (Lemma 28, Lemma 29
and Lemma 33, respectively).

This completes the definition of assertion semantics. We can now show
that the logical principles of CoLoSL are valid. The proofs of the Shift

and Extend principles are delayed until §9.3 and §9.4, where we formalise
the definitions of v and V.

Lemma 6 (Copy, Forget and Merge validity). For all P,Q ∈ Ast and
I, I ′ ∈ IAst (Def. 103):

`
�� ��P I

Copy
=⇒

�� ��P I ∗
�� ��P I (9.3)

`
�� ��P ∗Q

I

Forget
=⇒

�� ��P I (9.4)

`
�� ��P I1 ∗

�� ��Q I2

Merge
=⇒

�� ��P ∪∗ Q
I1∪I2

(9.5)

Proof (9.3). This is immediate from the semantics of CoLoSL assertions
(Def. 104).

Proof (9.4). It suffices to show that for all Γ ∈ LEnv:

{
w | Γ, w |=

�� ��P ∪∗ Q
I

}
⊆
{
w | Γ, w |=

�� ��P I

}
We proceed as follows:{

w Γ, w |=
�� ��P ∪∗ Q

I

}

281

=

(l, (s ◦ r), I)

l ∈ UnitIns ∧ ∃I′. I′=(〈|I|〉Γ , It)

∧∃sp, sc, sq. s=sp ◦ sc ◦ sq
∧Γ, (sp ◦ sc) |=(s◦r),I P

∧Γ, (sq ◦ sc) |=(s◦r),I Q

∧ I↓ (sp ◦ sc ◦ sq, r, I′)

(Lemma 5(a)) ⊆

(l, (s ◦ r), I)

l ∈ UnitIns ∧ ∃I′. I′=(〈|I|〉Γ , It)

∧∃sp, sc, sq. s=sp ◦ sc ◦ sq
∧Γ, (sp ◦ sc) |=(s◦r),I P

∧Γ, (sq ◦ sc) |=(s◦r),I Q

∧ I↓ (sp ◦ sc, sq ◦ r, I′)

⊆

{
(l, (sp ◦ r), I)

l ∈ UnitIns ∧ ∃I′. I′=(〈|I|〉Γ , It)

∧Γ, sp |=(sp◦r),I P ∧ I↓ (sp, r, I
′)

}
=
{
w Γ, w |=

�� ��P I

}
as required.

Proof (9.5). It suffices to show that for all Γ ∈ LEnv:{
w | Γ, w |=

�� ��P I1 ∗
�� ��Q I2

}
⊆
{
w | Γ, w |=

�� ��P ∪∗ Q
I1∪I2

}
We then proceed as follows:{

w | Γ, w |=
�� ��P

I1
∗
�� ��Q

I2

}

=

(l, (s ◦ r), I)

l ∈ UnitIns ∧ ∃ I1, I2, sp, sc, sq.

I1=(〈|I1|〉Γ , It) ∧ I2=(〈|I2|〉Γ , It)

∧ s=sp ◦ sc ◦ sq
∧Γ, (sp ◦ sc) |=(s◦r),I P

∧Γ, (sq ◦ sc) |=(s◦r),I Q

∧ I↓ (sp ◦ sc, sq ◦ r, I1)

∧ I↓ (sc ◦ sq, sp ◦ r, I2)

(Lemma 5(b)) ⊆

(l, (s ◦ r), I)

l ∈ UnitIns ∧ ∃ I1, I2, sp, sc, sq.

I1=(〈|I1|〉Γ , It) ∧ I2=(〈|I2|〉Γ , It)

∧ s=sp ◦ sc ◦ sq
∧Γ, (sp ◦ sc) |=(s◦r),I P

∧Γ, (sq ◦ sc) |=(s◦r),I Q

∧ I↓ (sp ◦ sc ◦ sq, r, I1 ∪ I2)

282

=

(l, (s ◦ r), I)

l ∈ UnitIns ∧ ∃ I′, sp, sc, sq.
I′=(〈|I1 ∪ I2|〉Γ , It)

∧ s=sp ◦ sc ◦ sq
∧Γ, (sp ◦ sc) |=(s◦r),I P

∧Γ, (sq ◦ sc) |=(s◦r),I Q

∧ I↓ (sp ◦ sc ◦ sq, r, I′)

=
{
w | Γ, w |=

�� ��P ∪∗ Q
I1∪I2

}
as required.

Note that as shown below, the version of Forget where P and Q

predicates are conjoined using ∪∗ (rather than ∗) is also valid for all P , Q,
and I, where the first implication follows from the semantics of ∪∗.�� ��P ∪∗ Q

I
⇒

�� ��P ∗ true
I

Forget⇒
�� ��P

I

9.3. Interference Manipulations

We now proceed with formalising the requirements of the Extend and
Shift principles.

Shared State Extension When extending the shared state with locally
owned resources, one may specify a new interference assertion over these
newly shared resources. While in CoLoSL the new interference may refer to
parts of the shared state beyond the newly added resources (in particular
the existing shared state), they must not allow visible updates to those
parts, so as not to invalidate other threads’ views of existing resources.
We thus require that the actions of the newly introduced interference be
confined (Def. 96) to the extension and not interfere with the existing
shared resources. We first motivate this constraint with an example.

Example 11. Let P defined below describe the view of the current thread.
Since the current thread owns the location addressed by x locally, it may
extend the shared state with x as described by Q. In extending the
shared state, the current thread also extended the interference allowed
on the shared state by adding a new action associated with the newly
generated capability resource [a], as given in I ′, which updates the value

283

of location x.

P , x 7→ 1 ∗
�� ��y 7→ 1 ∨ y 7→ 2

I
I , ([b]− : y 7→ 1 y 7→ 2)

Q , ∃t. [a]t ∗
�� ��(y 7→ 1 ∨ y 7→ 2) ∗ x 7→ 1

I∪I′
I ′ , ([a]t : x 7→ 1 x 7→ 2)

Since location x was previously held locally by the current thread and was
hence not visible to other threads, this new action will not invalidate their
view of the shared state and thus this extension is valid. On the other
hand, if I ′ is replaced with I ′′ , ([a]t : y 7→ 1 y 7→ 3), allowing for
the mutation of location y, this would potentially invalidate the views of
other threads. Indeed, other threads may rely on the fact that the only
updates allowed on location y are done through some [b]− capability as
specified in I. As such, this new behaviour would invalidate their view of
the shared state.

In order to ensure sound extension of the shared state, we require in
Extend that the newly introduced interferences be confined to the locally
owned resources (e.g. in Example 11 above we require x 7→ 1 c© I ′).

Definition 108 (Interference confinement). Given the action model con-
finement relation c© (Def. 96), the set of logical environments LEnv, the
sets of assertions Ast and interference assertions IAst (Def. 103), the �sl
satisfiability relation and the 〈|.|〉(.) interpretation function (Def. 104), an
interference assertion I ∈ IAst is confined to an assertion P ∈ Ast, written
P c© I, if and only if:

∀Γ ∈ LEnv. {l | Γ, l �sl P} c© 〈|I|〉Γ

The P c© I states that the actions in the interference assertion I are
confined to the states described by P , defined as a straightforward lift of
action model confinement (Def. 96) to assertions. For instance, consider
the interference assertion I from Fig. 8.1 in §8, repeated below:

I ,

[ax]t : ∃v∈{0 · · · 9}. x 7→ v ∗ z 7→ v x 7→ v+1 ∗ z 7→ v[
ay
]t

: ∃v∈{0 · · · 9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

[az]
t : ∃v∈{0 · · · 9}. y 7→ v+1 ∗ z 7→ v y 7→ v+1 ∗ z 7→ v+1

We then have P0 c© I with P0 , x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0. Observe that
establishing P0 c© I requires a semantic (model-level) check. However, as

284

we demonstrate later in §9.5, rather than checking interference confinement
semantically, we present a number of syntactic judgements that reduce
interference confinement to logical entailments. Using these judgements,
we then demonstrate that P0 c© I holds (see Example 12 on p. 299).
We delay the proof of the Extend principle until §9.4 where we for-

malise the definition of V.

Action Shifting Recall from §8 that interference assertions may shrink
over time by forgetting actions that are either redundant or not relevant to
the current subjective view via shifting. In order to ensure the soundness
of interference shifting, we must ensure that the forgotten actions are
irrelevant not only for the current subjective view, but also for all possible
futures of the subjective view under all potential actions, both from the
thread and the environment. To capture this set of possible futures, we
refine our notion of local fences (Def. 99), which is defined in the context
of the global shared state, to consider a subjective state within the global
shared state instead. To do this, we also need to refine our notion of action
application from Def. 105 to ignore the context of a subjective state, which
as far as a subjective view is concerned could be anything.

Definition 109 (Subjective action application). Given the set of instru-
mented states IState (Def. 91) and the set of actions Action (Def. 94),
the subjective application of an action a ∈ Action on an instrumented
state s ∈ IState, written a(s), is defined as follows:

a(s) ,
{

(s′, r′) ∃r ∈ IState. s] r ∧ (s′, r′) ∈ a[s, r]
}

where] denotes the compatibility relation (Def. 93) and a[s, r] denotes the
combined action application (Def. 105).

Note that in contrast with global action application a[g] in Def. 97, only
parts of the action pre-state has to intersect with the subjective view s for
a(s) to apply. Thus, we fabricate a context r that is compatible with the
subjective view and satisfies the rest of the pre-state.

Definition 110 (Fenced action model). Given the set of instrumented
states IState (Def. 91) and the set of action models AMod (Def. 94), an
action model I ∈ AMod is fenced by F ∈ P (IState), written F � I, if and

285

only if:

∀l ∈ F. ∀a ∈ rng(I). ∀(s, r) ∈ a(l). ∃r′ ≤ r. s ◦ r′ ∈ F

Given the set of logical environments LEnv, the sets of assertions Ast

and interference assertions IAst (Def. 103), the �sl satisfiability relation
and the 〈|.|〉(.) interpretation function (Def. 104), an interference assertion
I ∈ IAst is fenced by an assertion P ∈ Ast, written P � I, if and only if:

∀Γ ∈ LEnv. {l | Γ, l �sl P} � 〈|I|〉Γ

Observe that the definition of fencing is subsumed by that of local
fencing (Def. 99). That is, for all fences F and action models I, the F � I

implies F � I. In particular, note that in contrast with local fences, fences
do not require that actions be confined inside the subjective state. The
P � I states that the interference assertion I is fenced by assertion P ,
defined simply as the lifting of the fencing relation � to assertions. For
instance, consider the interference assertion I ′y from §8, repeated below:

I ′y ,

[ax]

t
: ∃v∈{0 · · · 9}. x 7→ v ∗ y 7→ v ∗ z 7→ v x 7→ v+1 ∗ y 7→ v ∗ z 7→ v[

ay
]t

: ∃v∈{0 · · · 9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

[az]
t

: ∃v∈{0 · · · 9}. y 7→ v+1 ∗ z 7→ v y 7→ v+1 ∗ z 7→ v+1

A possible fence for I ′y is denoted by the local assertion Fy below (Fy � I ′y):

Fy ,
10∨

w=0

(x 7→ w ∗ y 7→ w) ∨ (x 7→ w+1 ∗ y 7→ w)

Note that establishing Fy � I ′y requires a semantic check. Later in §9.5
we present a number of syntactic judgements that reduce fencing checks
to logical entailments. Using these judgements, we then demonstrate that
Fy � I ′y holds (see Example 14 on p. 307).

Fencing vs. Stability The keen-eyed reader may have noticed that the
definition of fencing is rather similar to the well-known notion of stability
under an interference. However, as we demonstrate later, the definition of
stability in CoLoSL is slightly weaker than that of fencing.That is, given
a set of states F and an action model I, if I is fenced by F (i.e. F � I

holds), then F is also stable with respect to the actions of I. However, the

286

other direction does not generally hold. We refer the reader to §9.5 where
we illustrate this with an example on page 312.

Definition 111 (Action model shifting). Given the set of instrumented
states IState (Def. 91) and the set of action models AMod (Def. 94),
an action model I′ ∈ AMod is a shifting of I ∈ AMod with respect to
S ∈ P (IState), written I vS I′, if and only if there exists a fence F ∈
P (IState) such that:

It=I′t ∧ S ⊆ F ∧ F � I ∧ ∀l ∈ F. ∀κ.
∀a ∈ I′(κ). reflected(a, l, I(κ))

∧ ∀a ∈ I(κ). a(l) 6= ∅ ⇒ (¬visible(a, l) ∨ reflected(a, l, I′(κ)))

where reflected and visible are as defined in Defs. 106 and 98, the a(l) de-
notes subjective action application (Def. 109) and � is the fencing relation
(Def. 110).
An important property of the action model shifting is that it preserves

action model closure (Def. 107). That is, if an action model I is closed
under a subjective state s, context r and action model I1 (i.e. I↓ (s, r, I1)

holds), and I1 is shifted to I2 with respect to a set of states containing
s (i.e. I1 v{s} I2 holds), then I is also closed under s, r and I2 (i.e. I ↓
(s, r, I2) also holds). This is formalised in the following lemma. Later, we
appeal to this lemma to establish the validity of the Shift principle.

Lemma 7 (Shift closure). For all s, r ∈ IState (Def. 91) and I, I1, I2 ∈
AMod (Def. 94):

I↓ (s, r, I1) ∧ I1 v{s} I2 ⇒ I↓ (s, r, I2)

Proof. The full proof is given §C (Lemma 31).

Given the set of logical environments LEnv, the sets of assertions Ast

and interference assertions IAst (Def. 103), the �sl satisfiability relation
and the 〈|.|〉(.) interpretation function (Def. 104), an interference assertion
I ′ ∈ IAst is a shifting of I ∈ IAst with respect to P ∈ Ast, written
I vP I ′, if and only if:

∀Γ ∈ LEnv, n ∈ N. (〈|I|〉Γ , n) v{l|Γ,l�slP} (
〈∣∣I ′∣∣〉

Γ
, n)

287

The second line of the I vS I′ definition requires that the new action
model I′ not introduce new actions (i.e. actions not present in I). The
last line of the definition stipulates that the new action model I′ include
all visible potential actions of I. The I vP I ′ states that the interference
assertion I ′ is the shifting of I under assertion P , defined simply as the
lifting of the shifting relation v to assertions.
For instance, consider the interference assertion I ′y from §8, repeated

above (p. 286), and the interference assertion Iy from Fig. 8.2, repeated
below:

Iy ,

{
[ax]

t
: ∃v. x 7→ v ∗ y 7→ v ∗ z 7→ v ∗ v<̇10 x 7→ v+1 ∗ y 7→ v ∗ z 7→ v[

ay
]t

: ∃v. x 7→ v+1 ∗ y 7→ v ∗ v<̇10 x 7→ v+1 ∗ y 7→ v+1

We then have I ′y vQ0 Iy with Q0 , x 7→ 0 ∗ y 7→ 0. Observe that es-
tablishing I ′y vQ0 Iy requires a semantic (model-level) check. However,
as we demonstrate later in §9.5, rather than checking interference shifting
semantically, we present a number of syntactic judgements that reduce in-
terference shifting to logical entailments. Using these judgements, we then
demonstrate that I ′y vQ0 Iy holds (see Example 14 on p. 307).
We can now show that the Shift principle is valid.

Lemma 8 (Shift validity). For all P ∈ Ast and I, I ′ ∈ IAst (Def. 103):

`
�� ��P I ∧ I vP I ′

Shift
=⇒

�� ��P I′

Proof. Pick arbitrary P ∈ Ast, I, I ′ ∈ IAst, Γ ∈ LEnv, and w=(l, g, I) ∈
World such that:

Γ, w |=
�� ��P I (9.6)

I vP I ′ (9.7)

It then suffices to show that:

Γ, w |=
�� ��P I′ (9.8)

From (9.6) and definition of |= we know that there exist s, r ∈ IState such
that:

l ∈ UnitIns ∧ g=s ◦ r ∧ Γ, s |=g,I P ∧ I↓ (s, r, (〈|I|〉Γ , It)) (9.9)

288

From Lemma 4 (9.1) above and (9.9) we know Γ, s �sl P and consequently
from (9.9) and the definition of vP we have:

(〈|I|〉Γ , It) v{s} (
〈∣∣I ′∣∣〉

Γ
, It) (9.10)

and thus from (9.9), (9.10) and Lemma 7 we have:

I↓
(
s, r, (

〈∣∣I ′∣∣〉
Γ
, It)

)
(9.11)

Consequently, from (9.9), (9.11) and the definition of |= we have:

Γ, w |=
�� ��P I′

and can discharge the obligation in (9.8) as required.

9.4. Rely and Guarantee

We define the rely and guarantee conditions of each thread in terms of
their action models. This allows us to define stability against rely condi-
tions, repartitioning, which logically represents a thread’s atomic actions
(and have to be in the guarantee condition), and semantic implication.
Equipped with these notions, we can justify the Extend principle.

Rely The rely relation represents the potential interference from the
environment. Although the rely will be different for every program (and
indeed, every thread), it is always defined in the same way, which can be
distilled into two relations.
The first relation, Re, transforms a world (l, g, I) to (l, g ◦ g′, I′′ ∪ I′),

extending the shared state g with the new resources in g′, modifying the
action model I to I′′ (by extending its ticket component with a fresh
ticket), while simultaneously extending it with I′ describing how the new
resources in g′ may be manipulated. In order to ensure that the newly
introduced actions do not interfere with existing shared resources and
thus do not invalidate other threads’ views of the shared state, these
new actions must be confined to the extension (i.e. g′ c© I′). Recall
that when extending the shared state, a thread may also introduce fresh
capabilities to enable the new actions. To ensure the freshness of the

289

newly generated capabilities, the ticket component of the action model I
is extended with a fresh ticket t not previously claimed (t 6∈ dom(It)).
That is, I is transformed to I′′ by extending its ticket component with a
fresh ticket t, while leaving its action component unchanged (i.e. I′′a=Ia).
The second relation, Ru, transforms a world (l, g, I) to (l, g′, I) by up-

dating the shared state g to g′ according to the actions in the action model
I. That is, at any one point the environment may update the shared state
g by performing an action for which it has the sufficient capability (κ).
For this to be possible, the thread performing the action must have the
κ capability in its own local state and thus κ must be compatible with
the capabilities contained in both the shared state g and the local states
l (i.e. κ] (l ◦ g)k).

Definition 112 (Rely). Given the set of worlds World (Def. 102), the
extension rely relation, Re : P (World×World), is defined as follows:

Re ,

{(
(l, g, I),

(l, g ◦ g′, I′′ ∪ I′)

) (
I′′=I ∨ ∃t. t 6∈dom(It) ∧ I′′=(Ia, It] [t 7→1])

)
∧ g′ c© I′

}

where c© denotes the confinement relation (Def. 100) and] denotes the
standard disjoint function union.
The update rely relation, Ru : P (World×World), is defined as follows:

Ru ,
{(

(l, g, I), (l, g′, I)
)
∃κ. κ] (l ◦ g)k ∧ (g, g′) ∈ dIe (κ)

}
where] denotes the compatibility relation (Def. 93), and

dIe (κ) , {(p ◦ c ◦ r, q ◦ c ◦ r) | (p, q, c) ∈ I(κ) ∧ r ∈ IState}

The rely relation, R : P (World×World) is defined as follows, where ∗
denotes the reflexive transitive closure of the relation:

R , (Ru ∪Re)∗

The rely relation enables us to define the stability of assertions with
respect to the environment actions.

Definition 113 (Stability). Given the set of logical environments LEnv,
the set of worlds World (Def. 102), the set of assertions Ast (Def. 103),

290

the assertion satisfiability relation |= (Def. 104) and the rely relation R

(Def. 112), an assertion P ∈ Ast is stable, written stable (P), if and only
if:

stable (P)
def⇐⇒ stable (P,R)

where for all relations R ∈ P (World×World), the stable (P,R) is defined
as follows:

stable (P,R)
def⇐⇒ ∀Γ ∈ LEnv. ∀w,w′ ∈World.

Γ, w |= P ∧ (w,w′) ∈ R⇒ Γ, w′ |= P

Proving that an assertion is stable is not always obvious, in particular
when there are numerous transitions to consider (all those in the reflexive
transitive closure of Re and Ru). As we demonstrate in the following
lemma, it suffices to check stability against the update actions in Ru.

Lemma 9 (Assertion stability). Given the extend rely Re (Def. 112), for all
Γ ∈ LEnv, w,w′ ∈World (Def. 102) and P ∈ Ast (Def. 103), stable (P,Re)

holds:

Γ, w |= P ∧ (w,w′) ∈ Re =⇒ Γ, w′ |= P (a)

Given the update rely Ru (Def. 112), for all P ∈ Ast (Def. 103), if P is
stable with respect to the actions in Ru (Def. 112), then it is stable:

stable (P,Ru)⇒ stable (P) (b)

Proof. The full proof of both parts is given in §C (Lemma 37 and Lemma
38, respectively).

Observe that establishing stable (P,Ru) requires a semantic (model-level)
check. However, as we demonstrate later in §9.5, rather than checking
stability semantically, we present a number of syntactic judgements that
reduce stability to logical entailments.

Guarantee We now define the guarantee relation that describes all pos-
sible updates the current thread may perform. The guarantee relation is
the dual of the rely relation: the actions in the guarantee of one thread are
included in the rely of concurrently running threads. As such, it should

291

come as no surprise that transitions in the guarantee can be similarly
categorised into two relations resonating with those of the rely.

The extension guarantee relation, Ge, transforms a world (l ◦ l′, g, I) to
(l◦(h1, κ1), g◦g′, I′′∪I′), where g′=l′ ◦(h2, κ2) and h1, h2 ∈ Unitl. As with
the rely extension Re, the action model I is updated to I′′ (by extending it
with a fresh ticket t), and is similarly extended with I′ describing how the
new resources in g′ may be manipulated provided that g′ c© I′. Moreover,
the extension g′ contains the locally held resources in l′, as well as the
freshly generated capability κ2 (with ticket t). Similarly, the local state l
is extended with the freshly generated capability κ1 (with ticket t).

Similar to its rely counterpart, the update guarantee relation, Gu, trans-
forms a world (l, g, I) to (l, g′, I) by updating the shared state g to g′

according to the actions in the action model I, provided that the associ-
ated capability is held locally (i.e. contained in l). The guarantee extension
is more involved than its Ru counterpart, because updates in the guarantee
may move resources from the local state into the shared state while si-
multaneously mutating the shared state as prescribed by the action model.
When updating the shared state, threads are not allowed to introduce new
capabilities, as this can only be achieved when extending the shared state
(through Ge). Intuitively, we must ensure that resources are not created
“out of thin air” in the process. This can be expressed as preserving the
orthogonal set of the combined local and shared states; that is, the set
of states compatible with that combination. Given a partial commutative
monoid (M, •M, UnitM), the orthogonal set of an element m is defined as
the set of all elements in M that are compatible with it.

Definition 114 (Orthogonal set). Given a partial commutative monoid
(M, •M, UnitM), the orthogonal set function (.)] : M → P (M), is defined
as follows, for all m ∈M:

(m)] ,
{
m′ | m] m′

}
Definition 115 (Guarantee). Given the set of worlds World (Def. 102),
the extension guarantee relation, Ge : P (World×World), is defined as

292

follows:

Ge ,

(

(l ◦ l′, g, I),
(l ◦ (h1, κ1), g ◦ g′, I′′ ∪ I′)

) ∃t, h2, κ2. h1, h2 ∈ Unitl

∧ dom(κ1) ∪ dom(κ2) ⊆ {t}
∧ I′′=(Ia, It] [t 7→1])

∧ g′=l′ ◦ (h2, κ2) ∧ g′ c© I′

where c© denotes the confinement relation (Def. 100) and] denotes the
standard disjoint function union.
The update guarantee relation, Gu : P (World×World), is defined as
follows:

Gu ,

(
(l, g, I), (l′, g′, I)

) ((l′ ◦ g′)k)] = ((l ◦ g)k)] ∧g = g′ ∨ ∃κ ≤ lk.
(g, g′) ∈ dIe (κ)

∧ ((l ◦ g)l)] = ((l′ ◦ g′)l)]

where (.)] denotes the orthogonal function (Def. 114), the ≤ denotes the
ordering relation (Def. 92) and dIe is as given in Def. 112.
The guarantee relation, G : P (World×World) is defined as follows,
where ∗ denotes the reflexive transitive closure of the relation:

G , (Gu ∪Ge)∗

Using the guarantee relation, we introduce the notion of repartitioning
P V{p}{q} Q. This relation holds whenever, from any world satisfying P ,
if whenever parts of the composition of its local and shared states that
satisfies p is exchanged for one satisfying q, it is possible to split the
resulting logical state into a local and shared part again, in such a way
that the resulting transition is in G, and the resulting world satisfies Q.

Definition 116 (Repartitioning). Given the sets of logical states LState

(Par. 22), worlds World (Def. 102), capabilities Kap (Def. 90) and the
guarantee relation G (Def. 115), the repartitioning relation, V: (P (World)×
P (LState)) × (P (World) × P (LState)), contains ((W1, L1), (W2, L2)) if
and only if:
for all worlds w1=(l1, g1, I1) ∈W1, there exist h1, h

′ ∈ LState such that:

1. h1 ∈ L1; and

293

2. h1 •l h′ = (l1 ◦ g1)l; and

3. for all h2 ∈ L2, there exists a world w2=(l2, g2, I2) such that:

a) w2 ∈W2; and

b) h2 •l h′ = (l2 ◦ g2)l; and

c) (w1, w2) ∈ G

Given the set of logical environments LEnv, assertions Ast and local asser-
tions LAst (Def. 103) and the �sl and |= satisfiability relations (Def. 104),
the repartitioning relation V is lifted to assertions as follows, for all
P,Q ∈ Ast and p, q ∈ LAst:(

(P, p), (Q, q)
)
∈V def⇐⇒ ∀Γ ∈ LEnv.

(
(W1, L1), (W2, L2)

)
∈V

where
W1 , {w | Γ, w |= P} W2 ,

{
w | Γ, w |= Q

}
L1 ,

{
h | ∃κ ∈ Unitk. Γ, (h, κ) �sl p

}
L2 ,

{
h | ∃κ ∈ Unitk. Γ, (h, κ) �sl q

}
We write P V{p}{q} Q for ((P, p), (Q, q)) ∈V, and write P V Q for

P V{emp}{emp} Q, in which case the repartitioning has no “side effect” and
simply shuffles resources around between the local and shared state or
modifies the action models (i.e. via transitions in Ge).

We can now show that the Extend principle is valid.

Lemma 10 (Extend validity). For all P ∈ Ast and I ∈ IAst (Def. 103):

if P ∗ [C2]t c© I and t 6∈ fv(P,C1,C2) and sat(C1,C2)

then ` P
Extend
V ∃t. [C1]t ∗

�� ��P ∗ [C2]t
I

Proof. Pick an arbitrary Γ ∈ LEnv and w1 = (l, g, I) ∈World such that

P ∗ [C2]t c© I (9.12)

t 6∈ fv(P,C1,C2) and sat(C1,C2) (9.13)

Γ, w1 |= P (9.14)

From (9.13) and the definition of sat (Par. 25) we know that there exist

294

c,c1,c2 ∈ Cap such that:

c=c1 •c c2 ∧ Γ,c1 |=c C1 ∧ Γ,c2 |=c C2 (9.15)

Pick a ticket t ∈ N such that t 6∈ dom(It). It is always possible to pick
such t since the domain of It is finite. Pick I′, I′′, κ1, κ2, h1, h2, l

′, g′, w2

such that:

I′′=(Ia, It] [t 7→ 1]) (9.16)

κ1=[t 7→ c1] and κ2=[t 7→ c2] (9.17)

h1, h2 ∈ Unitl and l′=(h1, κ1) and g′=g ◦ l ◦ (h2, κ2) (9.18)

I′=(〈|I|〉[Γ|t:t] , I
′′
t) and w2=(l′, g′, I′′ ∪ I′) (9.19)

From the definition of V it then suffices to show:

(l ◦ g)l=(l′ ◦ g′)l (9.20)

(w1, w2) ∈ G (9.21)

wf (w2) (9.22)

Γ, w2 |= ∃t. [C1]t ∗
�� ��P ∗ [C2]t

I
(9.23)

RTS. (9.20)
This follows immediately from the definitions of l′ and g′ in (9.18).

RTS. (9.21)
From (9.14) and Lemma 4 (9.2) we have Γ, l �sl P . Since t 6∈ fv(P),
we then have [Γ | t:t], l �sl P . Similarly, since t 6∈ fv(C2), from (9.15),
(9.17), (9.18) and the definition of �sl we have [Γ |t:t], (h2, κ2) �sl [C2]t.
Consequently we have:

[Γ |t:t], l ◦ (h2, κ2) �sl P ∗ [C2]t (9.24)

From (9.12), (9.19) and the definition of c© we know there exist F′ such
that:

{l | [Γ |t:t], l �sl P ∗ [C2]t} ⊆ F′ ∧ F′ � I′ (9.25)

295

From (9.24), (9.25) and the definition of � we have:

l ◦ (h2, κ2) c© I′ (9.26)

Consequently, from the definition of w2 (9.19) we have (w1, w2) ∈ Ge and
thus (w1, w2) ∈ G, as required.

RTS. (9.22)
From the well-formedness of w1 we know dom((l ◦ g)k) ⊆ dom(It). From
the definition of I′′ ∪ I′ we know dom((I′′ ∪ I′)t)=dom(It)] {t}. From the
definition of l′ and g′ we know dom((l′ ◦g′)k)=dom((l ◦g)k)]{t}. As such
we have:

dom((l′ ◦ g′)k) ⊆ dom((I′′ ∪ I′)t) (9.27)

From well-formedness of w1 we know g c© I. From the definition of I′′

and the definition of c© we then have g c© I′′. Consequently, from the
definition of g′ in (9.18), (9.26) and Lemma 3 we have:

g′ c© I′′ ∪ I′ (9.28)

From the well-formedness of w1 we know l] g and dom((l◦g)k) ⊆ dom(It).
Since t is a fresh ticket (not in dom(It)), from the definition of l′ and g′

we then trivially have l′] g′. As such, from (9.27), (9.28) and the defini-
tions of wf and w2 we have wf (w2) as required.

RTS. (9.23)
Since t 6∈ fv(C1), from (9.15), (9.17), (9.18) and the definition of �sl we
have [Γ |t:t], (h1, κ1) �sl [C1]t. Consequently, from the definition of |= we
have:

[Γ |t:t],
(
(h1, κ1), g′, I′′ ∪ I′

)
|= [C1]t (9.29)

Since t 6∈ fv(P), from (9.14) and the definitions of |= and w1 we have [Γ |
t:t],

(
l, g, I

)
|= P . Consequently, from the semantics of assertions we have

[Γ | t:t],
(
l, g, I′′

)
|= P . On the other hand, since t 6∈ fv(C2), from (9.15),

(9.17), (9.18) and the definition of |= we have [Γ | t:t],
(
(h2, κ2), g, I′′

)
|=

296

[C2]t. Consequently we have:

[Γ |t:t],
(
l ◦ (h2, κ2), g, I′′

)
|= P ∗ [C2]t (9.30)

Thus from (9.26), (9.30), the definition of g′ (9.18) and Lemma 36 (in §C)
we have:

[Γ |t:t], l ◦ (h2, κ2) |=g′,I′′∪I′ P ∗ [C2]t (9.31)

From well-formedness of w1 we know g c© I. From the definition of I′′

and the definition of c© we then have g c© I′′. As such, from (9.26) and
Lemma 5(c) we have:

I′′ ∪ I′ ↓
(
l ◦ (h2, κ2), g, I′

)
(9.32)

From (9.29), (9.31), (9.32), the definition of g′ (9.18) and the definitions
of w2 and |= we have:

[Γ |t:t], w2 |= [C1]t ∗
�� ��P ∗ [C2]t

I

and thus from the definition of |= we have:

Γ, w2 |= ∃t. [C1]t ∗
�� ��P ∗ [C2]t

I

as required.

9.5. CoLoSL Judgements as SL Entailments

Observe that the semantic definitions of interference confinement P c© I

(Def. 108) and interference shifting I vP I ′ (Def. 111) are defined by
interpreting P via the (standard) separation logic satisfiability relation
�sl (Def. 104) which ignores the subjective boxed assertions (that is, any
empty instrumented state in UnitIns satisfies a boxed assertion via �sl). In
other words, in order to check P c© I, it suffices to check the confinement
of I (interpreted) with respect to the local states described by P , ignoring
the shared states. As such, we define a simple mechanism for weakening
an assertion P , written �P , by erasing the subjective views. That is, for a
local assertion p we have �p = p, whereas �

�� ��P I = emp. The weakening of

297

other assertions is defined inductively following the assertion syntax. As we
demonstrate shortly, for all CoLoSL assertions we have P `�P . Intuitively,
this is because

�� ��P I ` emp. That is, both
�� ��P I and emp describe worlds of

the form (l, g, I) where l is in the unit set. Moreover, whilst emp places
no further constraints on g and I, the semantics of

�� ��P I stipulates certain
conditions on g and I.

Definition 117 (Weakening). Given the set of assertions Ast and local
assertions LAst (Def. 103), the assertion weakening function, �(.) : Ast→
LAst, is defined inductively over the structure of assertions as follows, for
all p ∈ LAst, P,Q ∈ Ast with � ∈ {∨, ∗,∪∗}:

�p , p �(∃x. P) , ∃x. �P �(P �Q) ,�P � �Q �
�� ��P I , emp

Lemma 11 (Weakening). For all P ∈ Ast (Def. 103):

P `�P

Proof. By induction on the structure of assertions. The full proof is given
in §C (Lemma 39).

Interference confinement and local fencing judgements We present
a number of judgements that reduce the interference confinement condition
P c© I and local fencing conditions to separation logic entailments in
Fig. 9.1. In the judgements presented we assume that the logical variables
x̄ do not appear free in f and fj for all j. Furthermore, for the judgements
presented in Fig. 9.1 we assume that the underlying partial commutative
monoid of logical states (Par. 22) satisfies the disjointness property [17]1.
As expressed by the top-left rule (c©-Intro), the P c© I holds if there

is a weaker assertion P ′ (P ` P ′) that acts as a local fence for I (P ′ � I).
The remaining judgements are those of local fencing of the form f � I

where f ∈ LAst (Def. 103) is a local assertion without subjective views. As
such, since for all assertions P we have P `�P (Lemma 11) and �P ∈ LAst,
in order to ascertain P c© I, applying the (c©-Intro) rule it suffices to
check the validity of �P � I using the local fencing judgements of Fig. 9.1.
The premises of the local fencing judgements involve entailments of the

1∀h, h′. h •l h = h′ =⇒ h = h′ ∧ h ∈ Unitl

298

form p `SL p′ where p, p′ ∈ LAst are local assertions. Pleasantly, since
local assertions do not contain subjective (boxed) assertions, entailments
of the form p `SL p

′ are the familiar entailments of standard separation
logic.

Recall that the local fencing judgement f � I states that f must be
invariant under all actions of I and must confine the actions in f . The
fencing condition is checked for each action in I (the �-Empty and �-

Comp rules). For each action of the form r : ∃x̄. p q in I, the five
remaining rules of Fig. 9.1 may apply. The (�-AWeak) rule simply allows
us to check local fencing for the weaker actions denoted by r : ∃x̄. p′ q′

which contain the actions of r : ∃x̄. p q. Similarly, the (�-Equiv)
rule allows us to check local fencing for an equivalent set of actions. In
the (�-False) rule, the action of r : ∃x̄. p q cannot possibly fire as its
precondition does not agree with f (see Def. 95): no state satisfying f may
be extended such that a subpart satisfies p. The (�-Exact) rule allows
us to trim a neutral part r′ of the action (corresponding to a part of the
catalyst in the interpretation of the action) appearing both in p and q.
This may only be applied when r′ is exact ; that is, satisfied by at most one
instrumented state.2 When this is the case, the part of the state denoted
by r′ is then uniquely determined and left unchanged by the action. The
last rule (�-Inv) reduces local fencing to entailment checking, provided
that the fence f can be expressed as a disjunction of precise assertions
(second premise). An assertion is precise if its is satisfied by at most one
substate of each instrumented state.3 The first premise states that f is
invariant under the action r : ∃x̄. p q, akin to the RGSep encoding of
stability checks as separation logic entailments [57]. Informally, it asserts
that for any state in f , when a part satisfying p is removed and a state
satisfying q is added instead, the result must still be in f . The third
premise checks the confinement condition: given a state l1 ◦ l2 in the local
assertion fj (l1◦ l2 �sl fj), and a state l2◦ l3 in p (l2◦ l3 |= p where l1◦ l2◦ l3
is defined), then the combined state l1 ◦ l2 ◦ l3 must also be in fj . Hence,
by the precision of fj we have l1 ◦ l2 ◦ l3=l1 ◦ l2. That is, l1 ◦ l3 ≤ l1 ◦ l2 as
required by the definition of local fencing �.

2 exact (p) , ∀Γ, l1, l2. Γ, l1 �sl p ∧ Γ, l2 �sl p =⇒ l1=l2
3 precise (p) , ∀Γ, l, l1, l2. l1 ≤ l ∧ l2 ≤ l ∧ Γ, l1 �sl p ∧ Γ, l2 �sl p =⇒ l1=l2

299

P ` P ′ P ′ � I
P c© I

c©-Intro
f � ∅ �-Empty

f � I1 f � I2

f � I1 ∪ I2
�-Comp

p `SL p
′ q `SL q

′

f � {r : ∃x̄. p′ q′}
f � {r : ∃x̄. p q} �-AWeak

f �
⋃

x∈J
{r : ∃ȳ. p q}

f � {r : ∃x∈J. ∃ȳ. p q}
�-AEquiv

f ∪∗ p `SL false
f � {r : ∃x̄. p q} �-False

exact (r′) f � {r : ∃x̄. p q}
f � {r : ∃x̄. p ∗ r′ q ∗ r′}

�-Exact

(p −−#∗ f) ∗ q `SL f f⇔
∨
j∈J

fj

precise (fj) and fj ∪∗ p `SL fj for all j ∈ J
f � {r : ∃x̄. p q} �-Inv

Figure 9.1.: Interference confinement and local fencing judgements

Example 12 (Confinement and local fencing judgements). Using the con-
finement and local fencing rules in Fig. 9.1, we can now establish the
P0 c© I judgement used in §8, with P0, and I repeated below as defined
in §8:

P0 , x 7→ 0 ∗ y 7→ 0 ∗ x 7→ 0 I , I1 ∪ I2 ∪ I3

where

I1 ,
{

[ax]
t

: ∃v∈{0 · · · 9}. x 7→ v ∗ z 7→ v x 7→ v+1 ∗ z 7→ v

I2 ,
{ [

ay
]t

: ∃v∈{0 · · · 9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

I3 ,
{

[az]
t

: ∃v∈{0 · · · 9}. y 7→ v+1 ∗ z 7→ v y 7→ v+1 ∗ z 7→ v+1

Let us define the local fence assertion F and the interference assertions
I ′1, I

′
2, I
′
3 as follows:

F ,
(10∨

w=0

F 1
w
)
∨
(9∨

w=0

F 2
w
)
∨
(9∨

w=0

F 3
w
)

F 1
w ,x 7→ w ∗ y 7→ w ∗ z 7→ w

F 2
w ,x 7→ w+1 ∗ y 7→ w ∗ z 7→ w

F 3
w ,x 7→ w+1 ∗ y 7→ w+1 ∗ z 7→ w

300

I ′1 ,
9⋃
j=0

Ixj Ixj ,
{

[ax]
t

: x 7→ j ∗ z 7→ j x 7→ j+1 ∗ z 7→ j
}

I ′2 ,
9⋃
j=0

Iyj Iyj ,
{ [

ay
]t

: x 7→ j+1 ∗ y 7→ j x 7→ j+1 ∗ y 7→ j+1
}

I ′3 ,
9⋃
j=0

Izj Izj ,
{

[az]
t

: y 7→ j+1 ∗ z 7→ j y 7→ j+1 ∗ z 7→ j+1
}

We can then establish the validity of the P0 c© I judgement as shown in
the derivation below:

P0 ` F

(†)
F � I ′1
F � I1

�-Equiv

(‡)
F � I ′2
F � I2

�-Equiv

(††)
F � I ′3
F � I3

�-Equiv

F � I
�-Comp

P0 c© I
c©-Intro

with

(∗)
i∈{1..3} j∈{0..9}

F ij ∪∗ (x 7→j ∗ z 7→j) `SL F
i
j

j∈{0..9}((
(x 7→j ∗ z 7→j)−−#∗F

)
∗ x 7→j+1 ∗ z 7→j

)
`SLF

F � Ixj for all j∈{0..9} �-Inv

(†) �-Comp

(∗)
i∈{1..3} j∈{0..9}

F ij ∪∗ (x 7→j+1∗y 7→j) `SLF
i
j

j∈{0..9}((
(x 7→j+1∗y 7→j)−−#∗F

)
∗ x 7→j+1 ∗ y 7→j+1

)
`SLF

F � I
y
j for all j∈{0..9}

�-Inv

(‡) �-Comp

(∗)
i∈{1..3} j∈{0..9}

F ij ∪∗ (y 7→j+1∗z 7→j) `SLF
i
j

j∈{0..9}((
(y 7→j+1∗z 7→j)−−#∗F

)
∗ y 7→j+1 ∗ z 7→j+1

)
`SLF

F � Izj for all j∈{0..9} �-Inv

(††) �-Comp

301

and
i∈{1..3} j∈{0..9}

precise
(
F ij

)
(∗)

Interference shifting and fencing judgements We present several
judgements for the interference shifting condition I vP I ′ required by
the Shift principle in the top part of Fig. 9.2. As before, we assume that
the logical variables x̄ do not appear free in f and rj for all j. Given an
assertion P , we write I ≡P I ′ as a shorthand for I vP I ′ ∧ I ′ vP I.
Recall that intuitively, the I vP I ′ states that the interference assertion

I may be replaced by I ′, as I and I ′ both describe the same interference
with respect to the states described by P . The (v-Weak) rule weakens
the shifting assertion P to P ′. The remaining shifting judgements are
all of the form I vf I ′ where f ∈ LAst is a local assertion (Def. 103)
without boxed assertions. As before, since for all assertions P we have
P `�P (Lemma 11) and �P ∈ LAst, in order to ascertain I vP I, applying
the (v-Weak) rule it suffices to check the validity of I v�P I ′ using the
remaining shifting judgements. Once again, the premises of the remaining
judgements involve entailments of the form p `SL p

′ where p, p′ ∈ LAst are
local assertions. As such, these entailments are the familiar entailments of
standard separation logic.
The next two rules (v-Refl and v-Tran) state that the shifting re-

lation is vf is reflexive and transitive, respectively. The (v-Comp) rule
checks the shifting judgement component-wise, provided that f is invariant
with respect to I1 ∪ I2; that is, I1 ∪ I2 is fenced by f as stated by the
f � I1 ∪ I2 premise (see Def. 111). This bigger fencing condition is nec-
essary: the I1 vf I ′1 only states that I1 and I ′1 have the same effect with
respect to f . Similarly for I2 vf I ′2. We thus need f � I1 ∪ I2 ensuring
that f is an invariant of the shared state under the combined interferences
of I1 and I2.
The (v-AWeak) rule simply states that if the weaker actions denoted

by r : ∃x̄. p′ q′ may be ignored under f, then the stronger actions of
r : ∃x̄. p q (contained in those of r : ∃x̄. p′ q′) may also be ignored.
The next three rules capture situations where it is not possible to ap-

ply the action to f . The (v-LFalse) rule describes the case when the

302

P ` P ′ I vP ′ I ′

I vP I ′
v-Weak

I vf I
v-Refl

I vf I ′′ I ′′ vf I ′

I vf I ′
v-Tran

f � I1∪I2 I1 vf I ′1 I2 vf I ′2
I1 ∪ I2 vf I ′1 ∪ I ′2

v-Comp

p `SL p
′ q `SL q

′

{r : ∃x̄. p′ q′} vf ∅
{r : ∃x̄. p q} vf ∅

v-AWeak

f ∪∗ p `SL false
{r : ∃x̄. p q} vf ∅

v-LFalse
(p −−#∗ (p ∪∗ f)) ∗ q `SL false
{r : ∃x̄. p q} vf ∅

v-RFalse

exact (r′) f ⊥ p
{r : ∃x̄. p ∗ r′ q ∗ r′} vf ∅

v-Exact

f ∪∗ p `SL
∨
j∈J f ∪∗ (p ∗ rj) exact (rj) for all j ∈ J

{r : ∃x̄. p q} ≡f
⋃
j∈J {r : ∃x̄. p ∗ rj q ∗ rj}

v-Catalyst

x 6∈ fv(r)

{r : ∃x∈J. ∃ȳ. p q} ≡true ⋃
x∈J
{r : ∃ȳ. p q}

v-AEquiv

⋃
j∈J, k∈K

{r : ∃x̄. pj qk} ≡true
{
r : ∃x̄.

∨
j∈J

pj
∨
k∈K

qk

} v-ADisj

true � I
�-True

f � I1 f � I2

f � I1 ∪ I2
�-Comp

f � I

f � I
�-�

f � I ′ I ′ vf I
f � I

�-Mon
p `SL p

′ q `SL q
′ f�{r : ∃x̄.p′ q′}

f � {r : ∃x̄. p q} �-AWeak

f�
⋃

x∈J
{r : ∃ȳ.p q} x6∈fv(r)

f � {r : ∃x∈J. ∃ȳ. p q}
�-AEquiv

f ⊥ p
f � {r : ∃x̄. p q} �-Disjoint

exact (r′) f�{r : ∃x̄. p q}
f � {r : ∃x̄. p ∗ r′ q ∗ r′}

�-Exact
(p −−#∗ (f ∪∗ p)) ∗ q `SL f

f � {r : ∃x̄. p q} �-Inv

Figure 9.2.: Interference shifting (above) and fencing judgements (below)

303

precondition of the action is not compatible with f. Analogously, the (v-

RFalse) rule describes the case when the postcondition is incompatible
with f. Lastly, the (v-Exact) rule describes the case when the precondi-
tion of the action is entirely outside f . The notation p ⊥ q is the assertion
counterpart of the disjointness relation (Def. 93) and ensures that the
states described by p and q are disjoint. That is, whenever Γ, l1 �sl p and
Γ, l2 �sl q, then l1 ⊥ l2 as defined in Def. 93. The p ⊥ q can be expressed
in separation logic as follows:

p ⊥ q ⇔ p `SL ¬ (true ∗ (¬emp ∧ (true −−#∗ q)))

Recall that the states described by a fence assertion f captures the set of
all possible states the subjective shared state may be in and thus denotes
an invariant of the subjective view. The (v-Catalyst) rule is a shifting
equivalence that uses the knowledge embodied by the invariant f to rewrite
actions into equivalent ones. More precisely, if whenever the precondition
p of the action agrees with f , then a catalyst rj is also true, then adding
rj as a neutral part of the action does not alter the action behaviour. We
can use this rule (with the single r0 = x 7→ v) to justify the shiftings of
the token ring algorithm in §8. The exactness of each rj ensures that no
piece of the state in rj is mutated by the action. In general, it may not be
the case that a single exact assertion can be added, but it may be the case
that a disjunction of exact facts holds. The last two shifting equivalences
(v-AEquiv and v-ADisj) are straightforward.

The bottom part of Fig. 9.2 presents judgements that partially axioma-
tise the fencing relation f � I. Most of these rules are similar to those for
local fencing f � I in Fig. 9.1. The (�-True) rule states that true fences
any interference assertion. The (�-Comp) rule states that fencing can be
checked per action. The next two judgements allow for proof reuse. Recall
that the semantic definition of the fencing relation � is subsumed by that
of local fencing �. The (�-�) rule thus states that once the local fencing
judgement f � I is established, it immediately establishes the weaker fenc-
ing judgement f � I. Note that the other direction is not valid in general
as fencing lacks the confinement condition required by local fencing. The
(�-Mon) rule states that the fencing relation is preserved by interference
shifting. Similarly, the other direction of this judgement is not valid in

304

general since a fence f for a smaller interference assertion need not be a
fence for a larger interference assertion.

As with the analogous local fencing judgement in Fig. 9.1, the (�-

AWeak) rule simply allows us to check fencing for the weaker action of
r : ∃x̄. p′ q′ which contain the action of r : ∃x̄. p q. Similarly, the (�-

AEquiv) rule allows us to check fencing for an equivalent set of actions.
The (�-Disjoint) rule states that contrarily to local fencing, actions may
have effects outside of the fence. If the action precondition does not
intersect with the fence (i.e. f ⊥ p), then its effect is entirely outside the
fence and the action may be ignored. The (�-Exact) judgement states
that, as for local fencing, neutral parts of actions may be ignored.

Let us now focus on the (�-Inv) judgement which states that whenever
p and q are disjoint in an action r :∃x̄. p q (e.g. when their common
parts have been removed using the previous rule), then applying the action
must preserve the fence f . Contrarily to the case of local fencing, the
action is allowed to act partly outside of f , hence the state on which the
action is applied is f∪∗p. However, the whole of the postcondition q is then
added, and the resulting state must still be in f . One might instead have
expected that only parts of the resulting state need to be represented in
f , to mimic the relationship between f and p (and indeed, this is all that
is required for stability, as we shall see shortly). However, we do need the
full q. Recall from Def. 111 that the shifting judgement I vf I ′ requires
that the two interference assertions I and I ′ have the same effect even
after an arbitrary number of steps. Ignoring parts of q would be unsound
as there would be no guarantee that I accounts for all possible actions on
those discarded parts of q, since it would not be a part of f . Hence, we
may end up with a new interference assertion I ′ that breaks the original
action model closure property.

Example 13 (Shifting and fencing judgements). Using the shifting and
fencing rules in Fig. 9.2, we can now establish the I vP0 I ′y judgement
used in §8, with P0, I and I ′y defined below (repeated from §8):

P0 , x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0 I , I0 ∪ I2 ∪ I3 I ′y , I1 ∪ I2 ∪ I3

I0 ,
{

[ax]
t

: ∃v∈{0 · · · 9}. x 7→ v ∗ z 7→ v x 7→ v+1 ∗ z 7→ v

305

I1 ,
{

[ax]
t

: ∃v∈{0 · · · 9}. x 7→ v ∗ y 7→ v ∗ z 7→ v x 7→ v+1 ∗ y 7→ v ∗ z 7→ v

I2 ,
{ [

ay
]t

: ∃v∈{0 · · · 9}. x 7→ v+1 ∗ y 7→ v x 7→ v+1 ∗ y 7→ v+1

I3 ,
{

[az]
t

: ∃v∈{0 · · · 9}. y 7→ v+1 ∗ z 7→ v y 7→ v+1 ∗ z 7→ v+1

Let us define the fence assertion F and interference assertions I ′1, I ′2, I ′3,K:

F ,
10∨

w=0

 (x 7→ w ∗ y 7→ w ∗ z 7→ w)

∨ (x 7→ w+1 ∗ y 7→ w ∗ z 7→ w)

∨ (x 7→ w+1 ∗ y 7→ w+1 ∗ z 7→ w)

I ′0 ,

9⋃
j=0

Ixj Ixj ,
{

[ax]
t

: x 7→ j ∗ z 7→ j x 7→ j+1 ∗ z 7→ j
}

I ′2 ,
9⋃
j=0

Iyj Iyj ,
{ [

ay
]t

: x 7→ j+1 ∗ y 7→ j x 7→ j+1 ∗ y 7→ j+1
}

I ′3 ,
9⋃
j=0

Izj Izj ,
{

[az]
t

: y 7→ j+1 ∗ z 7→ j y 7→ j+1 ∗ z 7→ j+1
}

K ,
9⋃
j=0

Kj Kj ,
{

[ax]
t

: x 7→ j ∗ y 7→ j ∗ z 7→ j x 7→ j+1 ∗ y 7→ j ∗ z 7→ j
}

We can then establish the validity of I vP0 I ′y as shown below:

P0 ` F
(†)

I0 vF I ′0
v-AEquiv

(††)
I ′0 vF I1

v-Tran

I0 vF I1

v-Tran
(‡)

I vF I ′y
v-Comp

I vP0 I ′y
v-Weak

with
(1) (2) (3)

F � I
�-Comp

(†)
I2 ∪ I3 vF I2 ∪ I3

v-Refl

(‡)

j∈{0..9}[
x 7→j ∗ z 7→j−−#∗

(
F ∪∗ (x 7→j ∗ z 7→j)

)]
∗ x 7→j+1 ∗ z 7→j `SL F

F � Ixj for all j∈{0..9} �-Inv

F � I ′0
�-Comp

F � I0
�-Equiv

(1)

306

j∈{0..9}([
x 7→j+1 ∗ y 7→j−−#∗

(
F ∪∗ (x 7→j+1 ∗ y 7→j)

)]
∗ x 7→j+1 ∗ y 7→j+1

)
`SL F

F � I
y
j for all j∈{0..9}

�-Inv

F � I ′2
�-Comp

F � I2
�-Equiv

(2)

j∈{0..9}([
y 7→j+1 ∗ z 7→j−−#∗

(
F ∪∗ (y 7→j+1 ∗ z 7→j)

)]
∗ y 7→j+1 ∗ z 7→j+1

)
`SL F

F � Izj for all j∈{0..9} �-Inv

F � I ′3
�-Comp

F � I3
�-Equiv

(3)

(†)
F � I
F � I0

�-Comp
I0 vF I ′0

v-AEquiv

F � I ′0
�-Mon

(‡‡)
I ′0 vF K

v-Comp
K vF I1

v-AEquiv

(††)

and

j∈{0..9}
F∪∗ (x 7→j∗z 7→j) `SL F∪∗ (x 7→j∗z 7→j∗y 7→j)

j∈{0..9}
exact (y 7→j)

Ixj vF Kj for all j∈{0..9}
v-Catalyst

(‡‡)

Example 14 (Shifting and fencing judgements (continued)). Using the
shifting and fencing rules in Fig. 9.2, we can now establish the I ′y vQ0 Iy

judgement used in §8, where Q0 and Iy are as defined below (repeated
from §8) and I ′y, I1, I2, I3 are as defined above in Example 13:

Q0 , x 7→ 0 ∗ y 7→ 0 Iy , I1 ∪ I2

307

Let I ′2 and I ′3 be as defined above in Example 13 and let us define the
fence assertion Fy and the interference assertion I ′1 as follows:

Fy ,
∨10

w=0(x 7→ w ∗ y 7→ w) ∨ (x 7→ w+1 ∗ y 7→ w)

I ′1 ,
9⋃
j=0

Ixj Ixj ,
{

[ax]
t

: x 7→ j ∗ y 7→ j ∗ z 7→ j x 7→ j+1 ∗ y 7→ j ∗ z 7→ j
}

We can then establish the validity of the I ′y vQ0 Iy judgement as shown
in the derivation below:

Q0 ` Fy
(†)

exact (y 7→v+1) Fy ⊥ z 7→v

I3 vFy ∅
v-Exact

(‡)
I ′y vFy Iy

v-Comp

I ′y vQ0 Iy
v-Weak

with

(1) (2) (3)

Fy � I
v-Comp

(†)
I1 ∪ I2 vFy I1 ∪ I2

v-Refl

(‡)

j∈{0..9}
exact (z 7→j)

j∈{0..9}([
x 7→j ∗ y 7→j−−#∗

(
Fy ∪∗ (x 7→j ∗ y 7→j)

)]
∗ x 7→j+1 ∗ y 7→j

)
`SL Fy

Fy�
{

[ax]t:x 7→j ∗ y 7→j x 7→j+1 ∗ y 7→j
} �-Inv

Fy � Ixj for all j∈{0..9} �-Exact

Fy � I ′1
�-Comp

Fy � I1
�-Equiv

(1)

j∈{0..9}([
x 7→j+1 ∗ y 7→j−−#∗

(
Fy ∪∗ (x 7→j+1 ∗ y 7→j)

)]
∗ x 7→j+1 ∗ y 7→j+1

)
`SL Fy

Fy � I
y
j for all j∈{0..9}

�-Inv

Fy � I ′2
�-Comp

Fy � I2
�-Equiv

(2)

308

and

j∈{0..9}
exact (y 7→j+1)

j∈{0..9}
Fy ⊥ z 7→ j

Fy �
{

[az]
t : z 7→j z 7→j+1

} �-Disjoint

Fy � Izj for all j∈{0..9} �-Exact

Fy � I ′3
�-Comp

Fy � I3
�-Equiv

(3)

Stability We shortly present a number of judgements that reduce sta-
bility checks to standard separation logic entailments similar to those of
interference confinement, shifting and fencing. Unlike the previous judge-
ments studied so far where the boxed assertions were ignored, the boxed
assertions are at the core of stability checks as they are the only source of
interference from the environment and local assertions are always stable.
Our stability judgements must thus account for subjective assertions which
may include nested boxed assertions such as

�� ��P ∗
�� ��Q I′ I

. Although CoLoSL
allows for such nested subjective assertions, it is often simpler to flatten
them into equivalent assertions with no nested boxes. We thus introduce
normalised flat assertions, NFAst ⊂ Ast, to capture the subset of CoLoSL
assertions that i) contain no nested subjected views; and ii) exclude the
overlapping conjunction connective ∪∗ from the top-level assertions. More
precisely, the set of flat assertions may include the ∪∗ connective at the level
of local assertions LAst, but not at the top-level assertion language. This
is because while ∪∗ between local assertions describes overlapping states,
its behaviour at the top-level may be equivalently captured by ∗. More
concretely, an assertion of the form p ∪∗

�� ��P I (where p is a local assertion)
is equivalent to p ∗

�� ��P I . Similarly, an assertion of the form
�� ��P I ∪∗

�� ��Q I′
is

equivalent to
�� ��P I ∗

�� ��Q I′
.

An assertion is in a (flat) normalised form if it comprises a disjunction of
∗-separated local and boxed assertions, where the boxed assertions contain
local assertions only. More concretely, a normalised assertion is of the

form
∨
j∈J

(
pj ∗

�� ��q1
j I1j
∗ · · · ∗

�� ��qnj Inj

)
where pj , q

1
j , . . . , q

n
j ∈ LAst are local

assertions. We provide a flattening mechanism in order to rewrite a given
CoLoSL assertion as an equivalent normalised flat assertion. Our flattening

309

mechanism assumes that the given assertion is in prenex normal form [28].
An assertion is in the prenex normal form if it is written as a string
of quantifiers (referred to as the prefix) followed by a quantifier-free part
(referred to as the matrix). With the exception of the parametric assertions
provided by the user (i.e. the logical state assertions LSAst in Par. 24 and
user-defined capability assertions CAst in Par. 25), it is straightforward
to transform CoLoSL assertions to equivalent assertions in the prenex
normal form. In particular, as the CoLoSL assertion language includes the
existential quantifier ∃ only (and thus the reordering of quantifiers does not
alter the assertion semantics), a CoLoSL assertion may be transformed into
the prenex formal form by i) renaming the repeated logical variables by
capture-avoiding substitution; and ii) promoting all existential quantifiers
to the beginning of the assertion using the standard prenex conversion
rules [28]. We write Q©P for an assertion in the prenex normal form with
prefix Q© and matrix P .

Definition 118 (Normalised flat assertions). Given the CoLoSL assertions
Ast, local assertions LAst and interference assertions IAst (Def. 103), the
set of normalised flat assertions, NFAst ⊂ Ast, is defined by the following
grammar, where p6 Q© ∈ LAst denotes a quantifier-free local assertion, I ∈
IAst, and ‡ denotes a parametric quantifier included in the grammar of
logical state assertions (Par. 24) or user-defined capability assertions (Par.
25):

NFAst 3 P n, Qn ::= P 6 Q© | ∃x. P n | ‡P n

QFAst3P 6 Q©,Q6 Q© ::= p 6 Q© ∗ P b | P 6 Q© ∨Q6 Q©

BAst3P b, Qb ::= emp |
�� ��p6 Q©

I
| P b ∗Qb

The flattening normalisation function, nf (.) : Ast→ NFAst, for assertions
in the prenex normal form is defined as follows:

nf (Q©P) , Q© nf (P)

with nf (.) defined inductively over the structure of quantifier-free CoLoSL
assertions in Ast as follows:

nf
(
p 6 Q©
)
, p 6 Q© nf (P ∨Q) , nf (P) ∨ nf (Q)

310

nf (P ∗Q) ,
∨

j∈J, k∈K

(
p6

Q©
j ∗ q

6 Q©
k ∗ P

b
j ∗Qb

k

)
where nf (P) ,

∨
j∈J

(
p6

Q©
j ∗ P b

j

)
and nf (Q) ,

∨
k∈K

(
q 6

Q©
k ∗Q

b
k

)
nf (P ∪∗ Q) ,

∨
j∈J, k∈K

(
(p 6

Q©
j ∪∗ q

6 Q©
k) ∗ P b

j ∗Qb
k

)
where nf (P) ,

∨
j∈J

(
p6

Q©
j ∗ P b

j

)
and nf (Q) ,

∨
k∈K

(
q 6

Q©
k ∗Q

b
k

)
nf
(�� ��P I

)
,
∨
j∈J

(�� ��p 6
Q©
j I
∗ P b

j

)
where nf (P) ,

∨
j∈J

(
p 6

Q©
j ∗ P b

j

)

Lemma 12 (Flattening normalisation). For all assertions P ∈ Ast (Def. 103)
in the prenex normal form:

` P ⇔ nf (P)

where nf (.) denotes the flattening normalisation function in Def. 118.

Proof. The full proof is given in §C (Lemma 43).

We now present a number of syntactic judgements in Fig. 9.3 that al-
lows us to ascertain the stability of normalised flat assertions without
performing the necessary semantic checks. These judgements reduce sta-
bility checks to standard separation logical entailments. We assume that
the logical variables x̄ do not appear free in p, q and r.
The (st- Q©) rule states that the quantifiers can be eliminated; the (st-

Local) rule states that local assertions are always stable. The (st-∨)
judgement states that the stability of disjunctions can be checked piece-
meal.
The (st-�) rule allows for proof reuse: once the fencing judgement p � I

is established, it immediately implies that p is stable under I. The other
direction depicted below is not valid in general:

stable
(�� ��p I

)
——��———

p � I

This is because the stability of p under I may omit part of the state
resulting from an action application to re-establish p, which is not allowed

311

stable (P)

stable (Q©P)
st- Q©

stable
(
p6 Q©
) st-Local

stable
(
P 6 Q©
)

stable
(
Q6 Q©
)

stable
(
P 6 Q© ∨Q6 Q©

) st-∨

p � I

stable
(�� ��p I

) st-�

∀j∈J.stable

(
p 6

Q©
j , Ij , q

6 Q©, ∗
⋃
j∈J

p6
Q©
j

)

stable
(
q 6 Q© ∗

(
~
j∈J

�� ��p 6
Q©
j Ij

)) st-Box

stable (p, ∅, q, r) st-Empty
stable (p, I1, q, r) stable (p, I2, q, r)

stable (p, I1 ∪ I2, q, r)
st-Comp

stable (p, I, q, r)

stable (p, I, q, r ∗ r′) st-Weak
q ∗ r ∗ r′ `SL false

stable (p, {r′ : ∃x̄. p′ q′} , q, r) st-CapFalse

q ∗ (r ∪∗ p′) `SL false
stable (p, {r′ : ∃x̄. p′ q′} , q, r) st-LFalse

q ∗ (p′ −−#∗ (r ∪∗ p′)) ∗ q′ `SL false
stable (p, {r′ : ∃x̄. p′ q′} , q, r) st-RFalse

(p′ −−#∗ (p ∪∗ p′)) ∗ q′ `SL p ∗ true
stable (p, {r′ : ∃x̄. p′ q′} , q, r) st-Inv

Figure 9.3.: CoLoSL stability judgements

in fencing. For instance, let p and I be defined as follows:

p , x 7→ 1 ∨ x 7→ 2 I , {true : x 7→ 1 x 7→ 2 ∗ y 7→ 2}

Note that while stable
(�� ��p I

)
holds, the p does not fence I: p 6� I.

The (st-Box) rule states that the stability of q 6 Q©∗~
i∈J

�� ��p6
Q©
j Ij

is distilled

to establishing for each j ∈ J that the four-place predicate stable(p 6 Q©j , Ij , q
6 Q©, ∗
⋃
j∈J

p 6
Q©
j) holds. Each four-place predicate states that the subjective assertion
p 6

Q©
j is stable under the associated interference assertion Ij , a local context
q 6 Q©, and a shared context made of the ∪∗-combination of all the subjec-
tive assertions (including p6 Q©j itself). The next two rules, (st-Empty) and
(st-Comp), state that checking the four-place predicate in turn reduces to
checking the stability under each action of Ij . The (st-Weak) rule states

312

that the context resources with respect to which stability is established
may be weakened. The last four rules deal with checking stability for a
single action, in a similar way to the fencing rules above.
The first of these rules (st-CapFalse) is unfamiliar. Unlike fencing,

we must establish the assertion stability only against those actions for
which the environment may have the associated capability. If the capa-
bility required by the action cannot exist separately from those held by
the assertion (that is, the required capability is not compatible with the
resources of the context q ∗ r) then the environment cannot possibly own
the capability to perform the action and thus the assertion is immediately
stable with respect to that action. The (st-LFalse) states that an action
whose precondition is incompatible with the context resources q ∗ r cannot
possibly fire and thus the assertion p is trivially stable under this action.
Similarly, the (st-RFalse) rule states that an action whose postcondition
is incompatible with the context resources cannot fire and thus the asser-
tion p is trivially stable under this action. The last rule (st-Inv) checks
that the assertion p is preserved by the effect of an action (and is thus
stable under that action). Again, there is a crucial difference with the
corresponding check for fencing: through the action postcondition q′, the
action may bring in newly-shared resources not previously in p, hence the
result p ∗ true (rather than p); however, the Forget principle allows us to
immediately discard it, if necessary.

9.6. Programming Language and Proof Rules

We define the CoLoSL proof system for deriving local Hoare triples for
a simple concurrent imperative programming language. The proof system
and programming language of CoLoSL are defined as an instantiation of
the Views framework [14].

Programming Language The CoLoSL programming language is the
concurrent imperative language of the Views framework [14], instantiated
with a set of atomic operations. This language comprises skip, sequential
composition (C1; C2), non-deterministic choice (C1 + C2), loops (C∗) and
parallel composition (C1||C2). The set of CoLoSL atomic commands com-
prises an atomic construct <.> enforcing an atomic behaviour when used

313

with a sequential operation. The sequential operations of CoLoSL com-
prise primitive operations, skip, sequential composition, non-deterministic
choice and loops, excluding atomic constructs and parallel composition.
That is, atomic operations cannot be nested or contain parallel composi-
tion. CoLoSL is parametric in the choice of primitive operations allowing
for its suitable instantiation depending on the programs being verified. For
instance, in the token ring example of §8.2, the set of primitive operations
comprises variable lookup and assignment. We proceed with the formali-
sation of CoLoSL programming language.

CoLoSL Parameter

Parameter 26 (Primitive operations). Assume a set of primitive
operations, Cp ∈ Prim.
Given the set of logical states LState (Par. 22), assume a set of
axioms associated with primitive operations:

Axp : P (P (LState)× Prim× P (LState))

Definition 119 (Sequential operations). Given the set of primitive opera-
tions Prim (Def. 26), the set of sequential operations, Cs ∈ Seq, are defined
by the following grammar, where Cp ∈ Prim:

Cs ::= Cp | skip | Cs
1;C

s
2 | Cs

1 + Cs
2 | (Cs)∗

Definition 120 (Sequential command axioms). Given the set of logi-
cal states LState (Par. 22) and the axiomatisation of primitive opera-
tions Axp (Par. 26), the set of axioms for sequential operations, Axs :

P (P (LState)× Seq× P (LState)) is defined as follows:

Axs ,Axp ∪Askip ∪A; ∪A+ ∪A∗

Askip ,
{

(L, skip, L) L ∈ P (LState)
}

A; ,
{

(L, Cs
1;C

s
2, L

′) (L, Cs
1, L

′′) ∈ Axs ∧ (L′′, Cs
2, L

′) ∈ Axs

}
A+ ,

{
(L, Cs

1 + Cs
2, L

′) (L, Cs
1, L

′) ∈ Axs ∧ (L, Cs
2, L

′) ∈ Axs

}
A∗ ,

{
(L, (Cs)∗, L) (L, Cs, L) ∈ Axs

}

314

Definition 121 (Atomic operations). Given the set of sequential opera-
tions Seq (Def. 119), the set of atomic operations, Ca ∈ Atom, is defined
by the folllowing grammar, where Cs ∈ Seq:

Ca ::= <Cs>

Definition 122 (Atomic axioms). Given the set of CoLoSL worlds (Def. 102)
and the rely relation R (Def. 112), a set of worlds W ⊆ World is stable,
written stable (W), if and only if:

stable (W)
def⇐⇒ ∀w,w′ ∈World. w ∈W ∧ (w,w′) ∈ R⇒ w′ ∈W

The set of stable world sets, World
∧

⊂ P (World), is defined as follows:

World
∧

, {W |W ∈ P (World) ∧ stable (W)}

Given the partitioning relation V (Def. 116) and the axioms of sequen-
tial commands Axs (Def. 120), the set of axioms for atomic operations,
Axa : P

(
World
∧

× Atom×World
∧)

, is defined as follows where W1,W2 ∈
World
∧

:

Axa ,
{

(W1, <Cs>,W2) ∃L1, L2. (L1, Cs, L2) ∈ Axs ∧W1 V{L1}{L2} W2

}
Definition 123 (Programming language). Given the set of atomic opera-
tions Atom (Def. 121), the set of CoLoSL operations, C ∈ Op, is defined
by the following grammar:

C ::= Ca | skip | C1;C2 | C1 + C2 | C1||C2 | C∗

Proof Rules Our proof rules are of the form ` {P} C {Q} where
P,Q ∈ Ast (Def. 103) and C ∈ Op (Def. 123). Our triples carry an
implicit assumption that the pre- and postconditions of their judgements
are stable. Since we build CoLoSL as an instance of the Views frame-
work [14], our proof rules correspond to those of Views with the atomic
commands axiomatised as per Def. 122.

Definition 124 (Proof rules). Given the set of CoLoSL assertions Ast

(Def. 103), and the set of CoLoSL operations Op (Def. 123), The proof

315

rules of CoLoSL, Triples ∈ P (Ast×Op× Ast), are defined as follows,
where |P |Γ ,

{
w | Γ, w |= P

}
and |= denotes the satisfiability relation in

Def. 104:

` {P} skip {P} Skip
∀Γ. (|P |Γ , Ca, |Q|Γ) ∈ Axa

` {P} Ca {Q} Atom

` {P} C1 {R} ` {R} C2 {Q}
` {P} C1;C2 {Q}

Seq

` {P1} C1 {Q1} ` {P2} C2 {Q2}
` {P1 ∗ P2} C1||C2 {Q1 ∗Q2}

Par
` {P} C {Q}

` {P ∗R} C {Q ∗R} Frame

PVP ′ ` {P ′} C {Q′} Q′VQ

` {P} C {Q} Cons

` {P} C1 {Q} ` {P} C2 {Q}
` {P} C1 + C2 {Q}

Choice
` {P} C {P}
` {P} C∗ {P} Rec

Most proof rules are standard from disjoint concurrent separation logic [39].
In the Cons rule, the V denotes the repartitioning of the state as de-
scribed in Def. 116.

9.7. Operational Semantics and Soundness

Operational semantics We define the operational semantics of CoLoSL
in terms of a set of program (low-level) states. Recall that the CoLoSL
worlds are parametric in the monoid of logical states (LState, •l,Unitl).
As such, we also require that the choice of program states be provided
as a parameter to CoLoSL. Since CoLoSL is an instance of the Views
framework [14], its operational semantics is as defined in [14] instantiated
with the set of program states and the semantics of atomic operations. The
semantics of atomic operations are defined in terms of the interpretation of
sequential and primitive operations. As CoLoSL may be instantiated with
any set of primitive operations Prim, the interpretation of these primitive
operations must also be provided as a parameter to CoLoSL. We proceed
with the formalisation of the ingredients necessary for defining the opera-
tional semantics of CoLoSL atomic operations.

316

CoLoSL Parameter

Parameter 27 (Program states). Assume a set of program states
σ ∈ PState.

CoLoSL Parameter

Parameter 28 (Primitive interpretation). Given the set of primi-
tive operations Prim (Par. 26) and the set of program states PState

(Par. 27), assume a primitive interpretation function, [|.|]p (.) :

Prim→ PState→ P (PState), associating each primitive operation
in Prim with a non-deterministic state transformer.
The interpretation function [|.|]p (.) is lifted to sets of program states
as follows, for all S ∈ P (PState):

[|Cp|]p (S) ,
⋃
σ∈S

[|Cp|]p (σ)

Definition 125 (Sequential interpretation). Given the set of sequential
operations Seq (Par. 119), the set of program states PState (Par. 27)
and the primitive interpretation function [|.|]p (.) (Par. 28), the sequential
interpretation function, [|.|]s (.) : Seq→ PState→ P (PState), is defined as
follows:

[|Cp|]s (σ) , [|Cp|]p (σ)

[|skip|]s (σ) , {σ}

[|Cs
1;C

s
2|]s (σ) ,

{
σ′ ∃σ′′. σ′′ ∈ [|Cs

1|]s (σ) ∧ σ′ ∈ [|Cs
2|]s (σ′′)

}
[|Cs

1 + Cs
2|]s (σ) , [|Cs

1|]s (σ) ∪ [|Cs
2|]s (σ)

[|(Cs)∗|]s (σ) , [|skip + Cs; (Cs)∗|]s (σ)

The interpretation function [|.|]s (.) is lifted to sets of program states as
follows, for all S ∈ P (PState):

[|Cs|]s (S) ,
⋃
σ∈S

[|Cs|]s (σ)

317

Definition 126 (Atomic interpretation). Given the set of atomic opera-
tions Atom (Par. 121), the set of program states PState (Par. 27) and
the sequential interpretation function [|.|]s (.) (Par. 125), the atomic inter-
pretation function, [|.|]a (.) : Atom → PState → P (PState), is defined as
follows:

[|<Cs>|]a (σ) , [|Cs|]s (σ)

The atomic interpretation function [|.|]a (.) is lifted to sets of concrete states
ad follows, for all S ∈ P (PState):

[|Cs|]a (S) ,
⋃
σ∈S

[|Cs|]a (σ)

Soundness In order to establish the soundness of CoLoSL program logic,
we relate its proof judgements to its operational semantics. To this end, we
relate the high-level CoLoSL states, namely worlds, to low-level program
states by means of a reification function. The reification of worlds is
defined in terms of relating (reifying) logical states in LState (Par. 22)
to program states in PState (Par. 27). As CoLoSL is parametric in the
choice of both logical and program states, the reification of logical states
is also a parameter in CoLoSL.

Since CoLoSL is an instance of the Views framework [14], its soundness
follows immediately from the soundness of Views, provided that the atomic
axioms are sound with respect to their operational semantics. Recall that
the axioms of atomic operations are defined in terms of the axioms of
primitive operations in Prim (Par. 28) which are parametrised in CoLoSL.
As such, to ensure the soundness of atomic operations, we require that the
primitive axioms be sound with respect to their operational semantics.

CoLoSL Parameter

Parameter 29 (Logical state reification). Given the set of logical
states LState (Par. 22) and the set of program states PState (Par.
27), assume a reification function for logical states, b.cl : LState →
P (PState), relating logical states to sets of program states.
The logical state reification function b.cl is lifted to sets of logical

318

states as follows, for all L ∈ P (LState):

bLcl ,
⋃
h∈L
bhcl

CoLoSL Parameter

Parameter 30 (Primitive soundness). Given the partial commuta-
tive monoid of logical states (LState, •l,Unitl) in Par. 22, the set of
program states PState (Par. 27), the reification function b.cl (Par.
29), the set of primitive operations Prim (Par. 26), the primitive ax-
ioms Axp (Par. 30) and the primitive interpretation function [|.|]p (.)

(Par. 28), assume that for each primitive command Cp ∈ Prim the
following soundness property holds:

∀(L1, Cp, L2)∈Axp.∀h∈LState. [|Cp|]p (bL1 •l {h}cl) ⊆ bL2 •l {h}cl

where the logical state composition •l is lifted to sets of logical
states as follows, for all L,L′ ∈ P (LState):

L •l L′ ,
{
h •l h′ h ∈ L ∧ h′ ∈ L′

}

Definition 127 (Reification). Given the set of worlds World (Def. 102),
the set of program states PState (Par. 27) and the logical state reification
function b.cl (Par. 29), the world reification function, b.cW : World →
P (PState), is defined as follows, for all (l, g, I) ∈World:

b(l, g, I)cW , b(l ◦ g)lcl

where ◦ denotes the composition of instrumented states and (.)l denotes
the logical state component of an instrumented state (Def. 91).

Theorem 4 (Atomic soundness). For all Ca∈Atom (Def. 121), (W1, Ca,W2)

∈ Axa (Def. 122) and w ∈World (Def. 102):

[|Ca|]a (bW1 • {w}cW) ⊆ bW2 • R(w)cW

319

where • denotes the composition of worlds (Def. 102), the b.cW denotes
the world reification function (Def. 127), the R denotes the rely relation
(Def. 112) with R(w) , {w′ | (w,w′) ∈ R}, where the world composition •
is lifted to sets of worlds as follows, for all W,W ′ ∈ P (World):

W •W ′ ,
{
w • w′ w ∈W ∧ w′ ∈W ′

}
Proof. Let Ca=<Cs> for an arbitrary Cs ∈ Seq. Pick arbitrary w=(l, g, I) ∈
World and W1,W2 ∈ P (World) such that (W1, <Cs>,W2) ∈ Axa. From
the definition of Axa (Def. 122) we then know there exist L1, L2 ∈
P (LState) such that:

(L1, Cs, L2) ∈ Axs ∧W1 V
{L1}{L2} W2 (9.33)

We are then required to show:

[|<Cs>|]a (bW1 • {w}cW) ⊆ bW2 • R(w)cW

We first demonstrate that sequential operations are sound in that they
preserve all frames. That is,

∀Cs ∈ Seq. ∀ (L1, Cs, L2) ∈ Axs. ∀h ∈ LState.

[|Cs|]s (bL1 •l {h}cl) ⊆ bL2 •l {h}cl
(9.34)

This is proved in Lemma 44 of §C.

We then demonstrate that when a global state (and its associated action
model) is updated by a thread via its guarantee relation, this change does
not come as a surprise to the other threads in the environment in that it
is captured by their rely relations. That is,

∀w1, w2=(l2, g2, I2), w, w′=(l′, g′, I′) ∈World.

w1 • w2=w ∧ (l′, g′, I′) ∈ G(w1) =⇒ (l2, g
′, I′) ∈ R(w2)

(9.35)

This is proved in Lemma 47 of §C.

It then suffices to show that for an arbitrary w1=(l1, g1, I1) ∈ W1 such
that w1 • w is defined, there exist w2 ∈W2 and w′ ∈ R(w) such that:

[|<Cs>|]a (bw1 • wcW) =
⌊
w2 • w′

⌋
W

(9.36)

320

From the definitions of [|.|]a (.) and b.cW , and the properties of • and •l
we know g1=g, I1=I and:

[|<Cs>|]a (bw1 • wcW) = [|Cs|]s (bw1 • wcW)

= [|Cs|]s (b(l1 ◦ g1)l •l llcl) (9.37)

On the other hand, from (9.33) and the definition of V we know there
exist h1 ∈ L1 and h′ ∈ LState such that:

h1 •l h′ = (l1 ◦ g1)l∧ (9.38)

∀h2 ∈ L2. ∃w2 = (l2, g2, I2) ∈W2.

h2 •l h′ = (l2 ◦ g2)l ∧ (w1, w2) ∈ G
(9.39)

Consequently from (9.37) and (9.38) we have:

[|<Cs>|]a (bw1 • wcW) = [|Cs|]s
(⌊
h1 •l h′ •l ll

⌋
l

)
(9.40)

From (9.33) and 9.34 we can rewrite (9.40) as:

[|<Cs>|]a (bw1 • wcW) ⊆
⌊
L2 •l {h′ •l ll}

⌋
l

That is, there exits h2 ∈ L2 such that:

[|<Cs>|]a (bw1 • wcW) =
⌊
h2 •l h′ •l ll

⌋
l (9.41)

From (9.39) we know there exists w2 ∈World such that

w2 = (l2, g2, I2) ∈W2 ∧ h2 ◦ h′ = (l2 ◦ g2)l (9.42)

(w1, w2) ∈ G (9.43)

From the definition of b.cW and the properties of •l and • we can thus
rewrite (9.41) as:

[|<Cs>|]a (bw1 • wcW) = b(l2 ◦ wL, g2, I2)cW (9.44)

From (9.35) and (9.43) we know there exists w′∈World such that:

w′ = (l, g2, I2) ∧ w′ ∈ R(w) (9.45)

321

Consequently, from (9.42), (9.44) and (9.45) we know there exist w2 ∈W2

and w′ ∈ R(w) such that:

[|<Cs>|]a (bw1 • wcW) =
⌊
w2 • w′

⌋
W

as required.

Concluding remarks This concludes the formal development of CoLoSL.
We have introduced CoLoSL, a new program logic for reasoning locally
about the shared state. We focus on subjective views, which expand and
contract to provide a flexible treatment of both the shared state and its
interference. However, CoLoSL is still young and lacks many features of its
various cousins such as abstract predicates [15, 54, 53, 38, 10, 36], higher-
order reasoning [54, 53, 36, 35, 37] and abstract atomicity [10, 36]. These
ideas suggest interesting directions and require further investigation. Here,
our aim was to simply introduce subjective views as a fundamental new
way of underpinning compositional reasoning. Extending CoLoSL with
abstract predicates allows for building layers of abstraction and building
black-box library specifications. This can be done in a similar fashion as
in program logics such as [15, 38, 53, 36]. In order to extend CoLoSL
with higher-order reasoning capabilities, we can employ the existing tech-
niques in the literature [54, 53, 36, 35, 37]. Lastly, extending CoLoSL
with abstractly atomic triples can be done in a similar fashion to the
works in [10, 36]. An interesting challenge in each of these directions is
preserving the general notion of interference composition and framing.
In the following chapter, we use CoLoSL to verify several challenging

graph-manipulating algorithms. To do this, we devise a general proof
pattern that divides the correctness proof into two parts: the functional
correctness proof carried out on abstract mathematical structures, inde-
pendently from the in-memory (heap) representation of the underlying
data structures; and the memory safety proof connecting the abstract
mathematical representations of structures to their counterpart in-memory
representations, thus establishing the absence of memory leaks and invalid
pointer dereferences. Combining the two parts of the proof, one can then
establish the full correctness of an algorithm.

322

10. CoLoSL Examples

The verification of fine-grained concurrent algorithms is nontrivial. There
has been much recent progress verifying such algorithms modularly using
variants of concurrent separation logic [38, 48, 55, 53, 19, 15]. One area
of particular difficulty has been verifying such algorithms that manipulate
graphs. This is only to be expected: even in a semi-formal “algorithmic”
sense, the correctness arguments of concurrent graph algorithms can be
dauntingly subtle [12].

To verify such algorithms, we must not only understand these algorith-
mic arguments, but must also determine a precise way to express them
in a suitable formal system. Even sequential graph algorithms are chal-
lenging to verify due to the overlapping nature of the graph structures,
preventing e.g. easy use of the frame rule of separation logic [31]. Con-
current graph algorithms pose a number of additional challenges, such as
reasoning how the actions of each thread advance the overall goal despite
the possible interference from other threads. Unsurprisingly, verifications
of such algorithms are rare in the literature.

We verify the functional correctness of three challenging concurrent
fine-grained graph algorithms. We study a structure-preserving copy, a
speculatively-parallel version of Dijkstra’s shortest-path algorithm, and a
spanning tree algorithm. We have found common “proof patterns” for
tackling these algorithms, principally reasoning about the functional cor-
rectness of the algorithm on abstract mathematical graphs γ, defined as
sets of vertices and edges. We use such abstractions to state and prove
key invariants. We then track the progress of each thread using a notion
of tokens to record each thread’s portion of the computation. Informally,
if the token of thread t is on vertex v, then t is responsible for some work
on/around v. Our tokens are sufficiently general to handle sophisticated
parallelism. (e.g. dynamic thread creation/destruction).

We then reason about the memory safety of the algorithm by connecting

323

our reasoning on mathematical graphs to spatial graphs (sets of memory
cells in the heap) by defining spatial predicates that implement mathe-
matical structures in the heap e.g. graph(γ) , We define our spatial
predicates in such a way that simplifies many of the proof obligations
(e.g. when parallel computations join).

This pattern of doing the algorithmic reasoning on abstract states is
similar to the style of reasoning used in logics such as CaReSL [55] and
iCAP [53]. CaReSL introduced the idea of reasoning on abstract states.
Later, iCAP extended the program logic of CAP [15] to reason about
higher-order code and adopted CaReSL’s abstract states. Just as with
these logics, we carry out our reasoning on abstract states, which enables
simpler proofs and lessens the burden of side conditions such as estab-
lishing stability. With these logics, this abstract style of reasoning has
been “baked in” to the semantic models. Here, we demonstrate that this
baking is unnecessary by using a logic (CoLoSL [48]) without such built-in
support. We do not use any of the unique features of CoLoSL. As such,
we believe that our proofs and style of abstract reasoning port to other
program logics without difficulty.

There has been much work on reasoning about graph algorithms using
separation logic. For sequential graph algorithms, Bornat et al. presented
preliminary work on dags in [4], Yang studied the Schorr-Waite graph al-
gorithm [61], Reynolds conjectured how to reason about dags [50], and
Hobor and Villard showed how to reason about dags and graphs [31]. We
make critical use of some of Hobor and Villard’s graph-related verification
infrastructure.
Many concurrent program logics have been proposed in recent years;

both iCAP and CaReSL encourage the kind of abstract reasoning we em-
ploy in our verifications. However, published examples in these logics
focus heavily on verifying concurrent data structures, whereas we focus
on verifying concurrent graph algorithms. Moreover, the semantic models
for both of these logics incorporate significant machinery to enable this
kind of abstract reasoning, whereas we are able to use it without built-in
support.

There has hardly been any work on concurrent graph algorithms. Raad
et al. [48] and Sergey et al. [51] have verified a concurrent spanning tree
algorithm, span, one of our examples. In [48], Raad et al. introduced

324

CoLoSL and gave a shaped-based proof of spanning tree to demonstrate
CoLoSL reasoning. A full functional correctness proof in CoLoSL was
available at the time, although not using the proof pattern presented here.
Later in [51], Sergey et al. gave a full functional correctness proof in Coq,
but only that single example. As we demonstrate shortly, we provide
a local specification whereby the footprint of span(x) is captured accu-
rately and is limited to the sub-graph at x. This is in contrast to the
work of Sergey et al. in [51] where the span(x) footprint encompasses the
entire (global) graph, and thus the interference observed by each thread
comprises the interference on all nodes, regardless of whether they are
included in the span(x) footprint. This is because the framing mecha-
nisms of CoLoSL afforded by the Forget and Shift principles allows us
to carve out the accurate footprint. More concretely, we can limit the
span(x) footprint to the sub-graph at x (those nodes reachable from x),
and similarly limit the observed interference to the interference incurred
by those nodes in the sub-graph at x only.
We believe we are the first to verify copy_dag, which is known to be

difficult, and parrellel_dijkstra, which we believe is the first verification
of an algorithm that uses speculative parallel decomposition [26].
We proceed with an overview of our proof pattern. We then use our

proof pattern to verify the concurrent algorithms of copy_dag (§10.2),
parallel_dijkstra (§10.3) and span (§10.1).

Proof Pattern: Combining Mathematical and Spatial Reasoning
Our graph verifications follow a common pattern which we outline as
follows. First, we select an appropriate abstract model for mathematical
graphs, which is typically sets of vertices and edges together with labels.
Second, we choose a token model. We use tokens to identify each

thread uniquely and to track the contribution of each thread to the global
computation. For instance, for an algorithm with only two threads this
might be as simple as the set {red, blue}, identifying each thread as a
distinct colour.
Third, we define mathematical actions to capture the operations per-

formed by threads. These actions model both concrete updates to the
graph (e.g. removing an edge), as well as ghost updates used solely for rea-
soning (e.g. adding or removing tokens to track the computation progress).

325

Fourth, we define mathematical assertions to describe program invariants
and pre-/postconditions. These assertions are on mathematical graphs
and involve abstract concepts (e.g. reachability along a path). As a key
proof obligation, we must prove that our mathematical assertions are stable
with respect to our mathematical actions, i.e. they remain true under the
actions of other threads in the environment.
Fifth, we define spatial predicates (e.g. graph(γ)) that describe how

mathematical graphs are implemented in the heap. For instance, a graph
may be implemented as a set of heap-linked nodes or as an adjacency
matrix. We then combine these spatial predicates with our mathematical
actions to define spatial actions. Intuitively, if a mathematical action trans-
forms γ to γ′, then the corresponding spatial action transforms graph(γ)

to graph(γ′).

10.1. Parallel Spanning Tree Computation

Mathematical graphs The span program in Fig. 10.1 operates on a
directed binary graph (henceforth simply graph) where each node has at
most two successors, referred to as its left and right children. We assume
that the graph is connected and that all nodes in the graph are reachable
from its top node on which the initial call to span is executed.
The span program concurrently computes an in-place spanning tree of

the graph (i.e. a tree that covers all nodes of the graph from a given root)
as follows: each time a new node is encountered, two new threads are
spawned each pruning the edges of its left and right children recursively.
A mark bit is associated with each node to keep track of the nodes that
have already been visited. Each thread returns whether it was responsible
for marking the node it was called on or whether another thread had
already marked it. In the latter case, when the thread joins its parent
thread removes the link from its own root node to the corresponding
child. Intuitively, it is allowed to do so because the child has already been
reached via some other path in the graph since it was marked by another
thread.
Our language is C with a few cosmetic differences. Line 1 gives the data

type of heap-represented graphs. The statements between angle brackets
<.> (e.g. line 4) denote atomic instructions that cannot be interrupted by

326

1. struct node {int m, node *l, *r}; bool b;

2. b = span(struct node *x){

3. if(!x){ return 1; }

4. bool res = <&CAS(x->m, 0, 1)>;

5. if(res){

6. bool b1=span(x->l) ||bool b1=span(x->r)

7. if(!b1) { x->l = null; }

8. if(!b2) { x->r = null; }

9. }

10. return res;

11. }

Figure 10.1.: The concurrent span program

other threads. We write C1 || C2 (e.g. line 6) for the parallel computation
of C1 and C2. This corresponds to the standard fork-join parallelism.
Although the code is short, its correctness argument is rather subtle

as we need to reason simultaneously about both deep unspecified sharing
inside the graph as well as the parallel behaviour. This is not surprising
since the unspecified sharing makes verifying even the sequential version
of similar algorithms non-trivial [31]. However, the non-deterministic be-
haviour of parallel computation makes even specifying the behaviour of
span challenging. Observe that each node x of the graph may be in one
of the following three stages:

1. x is not visited by any thread (not marked yet), and thus its mark
field is 0.

2. x has already been marked by a thread π, and the mark field of x
has been accordingly updated to 1. However, the edges of x have
not been updated accordingly. That is, the thread marking x has
not yet finished executing line 8.

3. x has been marked and its edges of have been updated accordingly.

Note that in stage 2 when x has already been visited by a thread π,
if another thread π′ visits x, it simply returns even though x and its

327

children may not have been fully processed yet. How do we then specify
the postcondition of thread π′ since we cannot promise that the subgraph
at x is fully spanned when it returns? Intuitively, thread π′ can safely
return because another thread (π) has marked x and has made a promise
to visit its children and ensure that they are also spanned (by which time
the said children may have been marked by other threads, incurring further
promises).

In order to track the contribution of each thread and record the overall
spanning progress, we must identify each thread uniquely. To this end, we
appeal to a token (identification) mechanism that can i) distinguish one
token (thread) from another; ii) identify two distinct sub-tokens given any
token, to reflect the new threads spawned at recursive call points; and iii)
model a parent-child relationship to discern the spawner thread from its
sub-threads. We model our tokens as a variation of the tree share algebra
in [17] as described below.

Trees as tokens A tree token (hereafter simply a token), π ∈ Π, is
defined by the grammar below as a binary tree with boolean leaves (◦, •),
exactly one • leaf, and unlabelled internal nodes.

Π 3 π ::= • | ◦ π | π ◦

We refer to the thread associated with π as thread π. To model the
parent-child relation between thread π and its two sub-threads (left and
right), we define a mechanism for creating two distinct sibling tokens π.l
and π.r defined below. Intuitively, π.l and π.r denote replacing the • leaf
of π with ◦ • and • ◦, respectively.

•.l = ◦ •
(
◦ π

)
.l = ◦ π.l

(
π ◦

)
.l = π.l ◦

•.r = • ◦
(
◦ π

)
.r = ◦ π.r

(
π ◦

)
.r = π.r ◦

We model the ancestor-descendant relation between threads by the < or-
dering defined below where + denotes the transitive closure of the relation:

<, {(π.l, π), (π.r, π) | π ∈ Π}+

328

We write πvπ′ for π=π′∨π<π′, and write π 6< π′ (respectively π 6v π′) for
¬(π < π′) (respectively ¬(π v π′)). Observe that • is the maximal token,
i.e. ∀π ∈ Π. π v •. As such, the top-level thread is associated with the
• token, since all other threads are its sub-threads and are subsequently
spawned by it or its descendants. In what follows we write π to denote
the token set comprising the descendants of π, i.e. π , {π′ | π′ v π}.
As discussed earlier, we carry out most of our reasoning abstractly by

appealing to mathematical objects. To this end, we define mathematical
graphs as an abstraction of the graph structure in span.

Mathematical graphs A mathematical graph, γ ∈ Graph, is a triple in
(V×E×L) where V is the vertex set; E :V→ V0×V0, is the edge function
with V0 , V] {0}, where 0 denotes the absence of an edge (e.g. a null
pointer); and L : V→D, is the vertex labelling function with the label set
D. We define our labels as D , {0}] Π. That is, for each node the label
function records whether it is yet to be visited (0), or it has been already
visited by a thread π and subsequently marked (π).
Given a graph γ=(V,E,L), we write γv for V , γe for E, and γl for

L. We write γ l(x)=l and γr(x)=r when γe(x)=(l, r), and write γm(x)

for γl(x). We write γ(x) for (γm(x), γl(x), γr(x)) when x ∈ V . Given a
function f (e.g. E,L), we write f [x 7→ v] for updating f(x) to v, and write
f][x 7→ v] for extending f with x and value v.
We define the path relation, γ; , and its reflexive transitive closure, γ;∗,

as follows:

x
γ; y , γ l(x)=y ∨ γr(x)=y x

γ;∗ y , x=y ∨ (∃z. x γ; z ∧ z γ;∗ y)

Similarly, we define the marked path relation, γ;π, as:

x
γ;π y , γm(y) = π ∧ x γ

;|π y
x

γ
;|π y , x=y ∨ ∃z, π′. x γ;π′ z ∧

(
(π=π′.l∧γ l(z)=y) ∨ (π=π′.r∧γr(z)=y)

)
That is, the γ;π states that there is a path from x to y, that every node
along this path (each ancestor of y) is marked by a super-thread of π,
and that the sink node y itself is marked by thread π. For instance, when
there is a marked path from node x to y via z with x marked by thread
π, z marked by its left sub-thread π.l and y marked by the right sub-

329

thread of π.l (i.e. π.l.r), then x
γ;π.l.r y, x

γ;π.l z, and x
γ;π x all hold.

The x γ
;|π y relation is similar and excludes the stipulation about the sink

node y being marked. That is, the x γ
;|π y states that there is a path from

x to y and that every node along this path is marked by a super-thread
of π, while not specifying if and how y is marked. It is possible to inline
the definition of x γ

;|π y in that of x γ;π y. However, as we demonstrate
shortly, we appeal to the x γ

;|π y relation to specify the precondition of
span. This is because upon calling span on y, we know of the existence
of a marked path to y ending at π. However, node y itself may be either
unmarked (not visited by a thread yet) or it may already be marked by
another thread other than π.

Actions As discussed earlier, to model the interactions of each thread π
with the shared data structure, we define mathematical actions as relations
on mathematical objects. We thus define two families of actions, each of
which indexed by a token π ∈ Π. The first set, A1

π, describes the atomic
operation of line 1 in the algorithm: the state of a node is changed from
unmarked to marked by thread π.

A1
π ,

(
(V,E,L), (V,E,L′)

) ∃x, p, π′. L(x)=0 ∧ ∧ L′=L[x 7→ π]

∧
[
(x=t ∧ π=•)
∨(E(p)=(x,−)∧L(p)=π′∧π=π′.l)

∨(E(p)=(−,x)∧L(p)=π′∧π=π′.r)
]

The next two set of actions respectively describe the atomic operations of
lines 7 and 8.

A2
π ,

((V ,E,L), (V ,E′,L)
) ∃x, l, r, π′.

L(x)=π ∧ E(x)=(l, r) ∧ L(l)=π′ ∧ π′ 6=π.l
∧E′=E[x 7→ (0, r)]

A3
π ,

((V ,E,L), (V ,E′,L)
) ∃x, l, r, π′.

L(x)=π ∧ E(x)=(l, r) ∧ L(r)=π′ ∧ π′ 6=π.r
∧E′=E[x 7→ (l, 0)]

We write Aπ for actions of thread π: Aπ , A1

π ∪ A2
π ∪ A3

π. We can now
specify the behaviour of span mathematically.

330

Mathematical specification Let γ0 denote the original graph (over
which the initial call to span is executed) with its top node denoted by
t from which all other nodes are reachable. Throughout the execution of
span, the current graph γ satisfies the invariant Inv(γ,t, γ0) defined below:

Inv(γ,t, γ0) , γ ≤t γ0 ∧ ∀x, π. γm(x) = π ⇒ t γ;π x

γ ≤t γ0 , γv=γv
0 ∧ γe ⊆ γe

0 ∧ ∀x. t
γ0;∗ x⇒ t γ;∗ x

γe ⊆ γe
0 , ∀x.

(
γ l(x)=0 ∨ γ l(x)=γ l0(x)

)
∧
(
γr(x)=0 ∨ γr(x)=γr0(x)

)
Informally, the invariant asserts that the current graph γ is a partial
spanning graph of the original graph γ0 (first conjunct) and that for each
node x in γ, if x is labelled π, then there is a marked path π from the
top node t to x (second conjunct). The graph γ is a partial spanning
graph of the original graph γ0 if i) γ has the same vertices as γ0; ii) the
edges of γ are those of γ0 unless they have been pruned (set to 0); and
iii) every node reachable from the top node t in the original graph γ0 is
also reachable from t in γ.

Observe that span does not eliminate nodes and thus t remains as the
top node in γ. In the remainder of this section, we write γ0 for the original
graph (prior to the initial call to span) and write t for its top node which
remains unchanged as γ0 evolves.

When calling span on a sub-graph at x, the mathematical precondition
of span, Pπ(γ,t,x), can be specified as follows, where π denotes the thread
identifier executing span, γ is the current graph and t denotes the top
node:

Pπ(γ,t,x) , (x=0 ∨ t
γ
;|π x) ∧ ∀y, π′. γm(y)=π′ ⇒ π′ 6v π

The first conjunct of the precondition asserts that either the sub-graph
at x is empty (x=0), or there is a marked path from the top node t

to x. Moreover, all ancestors of x along this path (excluding x itself)
are marked by a super-thread of π (excluding π). Recall that each token
uniquely identifies a thread and thus the descendants of π correspond to
the sub-threads subsequently spawned by π. As such, the second conjunct
of the precondition asserts that prior to the execution of span by thread
π, none of the descendants of π (including π itself) have yet marked any
nodes.

331

The Qπs (γ,x) and Qπf (γ,x) defined below describe the mathematical post-
conditions of span when called by thread π on a subgraph at x. The
Qπs (γ,x) describes the case when thread π successfully marks the node at
x and thus γm(x)=π (if x 6= 0). The Qπf (γ,x) captures the case when
thread π fails to mark the node at x as it has already been marked by
another thread other than π or its descendants. Note that in this case
the thread responsible for marking x cannot be a descendant of x as the
thread simply returns (line 3) and does not spawn new sub-threads.

Qπs (γ,x) , (x=0 ∨ γm(x)=π) Qπf (γ,x) , ∃π′. π′ 6v π ∧ γm(x)=π′

Recall that as a key proof obligation we must prove that our mathematical
assertions are stable with respect to our mathematical actions. This is
captured by Lemma 13 below. Part (10.1) states that the invariant Inv
is stable with respect to the actions of all threads (Aπ for any tokens π).
Parts (10.3) and (10.4) state that the postconditions of thread π′ (Qπ

′
s

and Qπ
′

f) are stable with respect to the actions of all threads. Part (10.2)
states that the precondition of thread π′ (Pπ

′
) is stable with respect to the

actions of all threads but those of its descendants (π 6∈ π′). Observe that
despite the additional stipulation π 6∈ π′, the actions of π are irrelevant
and do not affect the stability of Pπ

′
. More concretely, the precondition

Pπ
′
only holds at the beginning of the program before new descendants are

spawned (line 6). As such, at these program points Pπ
′
is trivially stable

with respect to the actions of its (non-existing) descendants.

Lemma 13 (span stability). For all mathematical graphs γ and γ′, nodes t
and x, and tokens π and π′,

Inv(γ,t, γ0) ∧ γ Aπ γ′ ⇒ Inv(γ′,t, γ0) (10.1)

Pπ
′
(γ,t,x) ∧ π 6∈ π′ ∧ γ Aπ γ′ ⇒ Pπ

′
(γ′,t,x) (10.2)

Qπ
′

s (γ,x) ∧ γ Aπ γ′ ⇒ Qπ
′

s (γ′,x) (10.3)

Qπ
′

f (γ,x) ∧ γ Aπ γ′ ⇒ Qπ
′

f (γ′,x) (10.4)

Proof. Follows from the definitions of Aπ, Inv, P, Qs, and Qf .

We are almost in a position to verify span. As discussed earlier, in
order to verify span we integrate our mathematical correctness argument

332

with a machine-level memory safety argument by linking our abstract
mathematical objects to concrete structures in the heap. We proceed with
the spatial representation of our mathematical graphs in the heap.

Spatial graphs We represent a mathematical sub-graph γ at x in the
heap through the G predicate below as a location (g) in the ghost heap
tracking the current abstract state of the graph (γ), together with a col-
lection of ∗-separated nodes reachable from x (the g predicate). Observe
that this way of tracking the abstract state of the graph in the ghost
heap eliminates the need for baking in the abstract state into the model.
That is, rather than incorporating the abstract state into the model as
in [53, 55], we encode it as an additional resource in the ghost heap. We
use ⇀⇁ for ghost heap cells to differentiate them from concrete heap cells
indicated by 7→. As before, we write e.g. x=̇0 for x=0 ∧ emp.
A node x in γ may be either unmarked (U(γ,x)) or marked by a thread

π (M(γ,x,π)). A node is represented as three adjacent cells in the heap
together with an additional cell in the ghost heap. The cells in the heap
track the mark bit of the node (0 when unmarked, 1 when marked), and
the left (l) and right (r) children, respectively. The ghost location is used
to track the thread identifier responsible for marking the node (0 when
unmarked, π when marked by thread π).

G(γ,x) ,g ⇀⇁ γ ∗ g(γ,x) g(γ,x) , x=̇0 ∨ ~
x γ;∗y

node(γ,y)

node(γ,x) , ∃π ∈ Π. M(γ,x,π) ∨ U(γ,x)

M(γ,x,π) , γm(x)=̇π ∗ ∃l,r. γl(x)=̇l ∗ γr(x)=̇r ∗ x 7→ 1, l,r ∗ x ⇀⇁ π

U(γ,x) , γm(x)=̇0 ∗ ∃l,r. γl(x)=̇l ∗ γr(x)=̇r ∗ x 7→ 0, l,r ∗ x ⇀⇁ 0

Observe that each recursive call to span(x) computes a spanning graph
of the nodes accessible in the sub-graph at x rather than the entire graph
and the nodes accessible from its top node t. In order to give a local
specification of span and focus on the relevant sub-graph at each recursive
call point, we use the following lemma (due to Wang et al in [58]) to fold
and unfold the graph predicate g and thus zoom in on the appropriate
sub-graph.

Lemma 14 (Graph unfolding due to [58]). For all mathematical graphs γ

333

and nodes x:

g(γ,x) ⇐⇒ x=̇0 ∨
(
node(γ,x) ∪∗ g(γ,γl(x)) ∪∗ g(γ,γr(x))

)
Spatial specification We can now specify the spatial precondition of
span, Pre(γ0,t,x,π), as a CoLoSL assertion defined below where γ0 denotes
the original graph, t denotes the top node of γ0, x denotes the top node of
the sub-graph over which span is called and π denotes the thread identifier
executing span. Recall that the spatial actions in CoLoSL are indexed by
capabilities. That is, a CoLoSL action may be performed by a thread only
when it holds the necessary capabilities. Since CoLoSL is parametric in
its primitive capability model, to verify span we instantiate our primitive
capabilities as sets of tokens in P (Π). That is, the partial commutative
monoid of primitive capabilities (Par. 23) is given by (P (Π) ,], ∅).
The precondition Pre states that the current thread π holds the capa-

bilities associated with itself and all its descendants ([π]). Thread π will
subsequently pass on the descendant capabilities when spawning new sub-
threads and reclaim them as the sub-threads return and join. The Pre
further asserts that the abstract state of the graph currently corresponds
to γ. That is, since the graph is concurrently manipulated by several
threads, to ensure the stability of the shared state assertion to the actions
of the environment, Pre states that the original graph γ0 may have evolved
to another graph γ (captured by the existential quantifier). The Pre also
states that the shared state contains the spatial resources of the sub-graph
(G(γ,x)), that γ satisfies the invariant Inv, and that γ satisfies the math-
ematical precondition Pπ. The spatial actions on the sub-graph at x are
declared in I where mathematical actions are simply lifted to spatial ones
indexed by the associated capability. That is, if thread π holds the [π]

capability and the actions of π (Aπ) admit the update of the mathematical
object γ to γ′, then thread π may update the spatial sub-graph G(γ,x) to
G(γ′,x).

The spatial postcondition Post is analogous to Pre and describes the two
possible outcomes of executing span returned in b. In the first case the
execution of span is successful (b=̇1) as captured by the mathematical
postcondition Qπs (γ,x). In the second case the execution of span fails
(b=̇0) as denoted by the mathematical postcondition Qπf (γ,x). Moreover,

334

in the failure case the resulting sub-graph is described by the spatial
predicate G, whereas in the success case the resulting sub-graph is indeed
a tree (i.e. there is at most one path from the top node of the sub-graph
to each descendant node) as described by the spatial predicate T. In
particular, compare the recursive definition of t (in T) to the recursive
unfolding of g in G (Lemma 14). While the sub-structures in a graph
are combined by the overlapping conjunction connective ∪∗ to account for
duplicate nodes (accessible via multiple paths), they are separated by the
∗ connective in a tree as multiple paths are prohibited.

Pre(γ0,t,x,π) , [π] ∗
�� ��∃γ. G(γ,x) ∗ (Inv(γ,t, γ0) ∧ Pπ(γ,t,x))

I(x)

Post(γ0,t,x,π,b) , [π]∗

(
b=̇1∗

�� ��∃γ.T(γ,x,π)∗(Inv(γ,t,γ0) ∧ Qπs (γ,x))
I(x)

∨b=̇0∗
�� ��∃γ.G(γ,x)∗(Inv(γ,t,γ0) ∧ Qπf (γ,x))

I(x)

)
T(γ,x,π) ,g ⇀⇁ γ ∗ t(γ,x,π)

t(γ,x,π) ,x=̇0 ∨ (M(γ,x,π) ∗ t(γ,γl(x),π.l) ∗ t(γ,γr(x),π.r))

I(x) ,
{

[π] : G(γ,x) ∧ γ Aπ γ′ G(γ′,x)
}

Recall that the top-level thread is associated with the maximal token • and
executes span on the sub-graph at the root node t, i.e. the entire graph.
Observe that when the • thread terminates its execution of span, only the
first disjunct (the success case) of its spatial postcondition Post(γ0,t,t,•,b)

applies. More precisely, the second disjunct (failure case) stipulates that t

be marked by a thread that is not a descendant of • (via the mathematical
postcondition (Qf). This however cannot be the case since • is the maximal
token (i.e. ∀π. π v •). As such, the spatial tree predicate T in the first
disjunct together with the invariant Inv assert that the final graph is a
spanning tree of the original graph γ0. More concretely, the invariant
states that γ is a spanning graph of γ0 (via γ ≤t γ0) while T asserts that
γ is a tree.

As with the work of Sergey et al. in [51], it is possible to define a
more sophisticated invariant and mathematical pre- and postconditions
that single-handedly ensure that the resulting graph is a spanning tree
of the original graph. That is, it it is possible to delegate the entire
correctness argument to the mathematical level without appealing to the
spatial representation of the graphs. Indeed, this is the reasoning style we

335

employ in the subsequent examples of §10.2 and §10.3. Here, we choose
to keep the invariant and the pre- and postconditions simple and instead
utilise the resulting in-memory shape of the graph, namely its “tree-ness”,
to our advantage. After all, one of the motivations for the ∗ connective of
separation logic was the ability to describe disjoint structures in the heap.
By handling part of the correctness argument at memory level, we keep
the mathematical argument simpler.

Verifying span We give a proof sketch of span in Fig. 10.2. As be-
fore, at each proof point we have highlighted the effect of the preceding
command, where applicable.

On line 3 we check if x is 0. If so the program returns and the post-
condition, Post(γ0,t,x,π,1), follows trivially from the definition of the pre-
condition Pre(γ0,t,x,π). If x 6= 0, then the atomic block of line 4 is
executed. We first check if x is marked; if so then the desired postcon-
dition Post(γ0,t,x,π,0) follows from the precondition Pre(γ0,t,x,π). More
concretely, the postcondition Qπf (γ,x) in the failure case stipulates that x

be marked by a thread other than π and its descendants. This simply
follows from the precondition since x is marked and Pπ(γ,t, x) states that
neither π nor its descendants have marked any nodes.

On the other hand, if x is not marked, we set res to true and perform
A1
π by setting the mark bit of x to 1 and the ghost bit of x to π. In this

(success) case, we immediately obtain the preconditions Pre(γ0,t,γl(x),π.l)

and Pre(γ0,t,γr(x),π.r), as shown in the derivation below. In the first
implication we move the existential quantifier ∃γ to the beginning of the
assertion and split the capabilities [π]. Recall from the definition of π that
π={π}] π.l] π.r. As such from the semantics of capability assertions we
have: [π]⇔ π∗[π.l]∗[π.r]. We next apply the Copy principle and duplicate
the shared resources. We then weaken each subjective assertion by apply-
ing the Forget principle and dropping the irrelevant resources and pure
assertions. Finally, we apply the Shift principle to weaken the interference
assertions in the last two subjective views. It is straightforward to check
that I(x) vP1 I(γ l(x)) and I(x) vP2 I(γr(x)) where P1 , g ⇀⇁ γ∗g(γ,γl(x))

and P2 , g ⇀⇁ γ ∗ g(γ,γr(x)).

[π] ∗

�
�

�
∃γ. g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γ l(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=̇π∧Inv(γ,t, γ0)∧Pπ.l(γ,t, γ l(x))∧Pπ.r(γ,t, γr(x)))

I(x)

336

=⇒
∃γ. [π]∗[π.l]
∗ [π.r]

∗

�
�

�
g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γ l(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=̇π∧Inv(γ,t, γ0)∧Pπ.l(γ,t,γ l(x))∧Pπ.r(γ,t,γr(x)))

I(x)

Copy
=⇒ ∃γ. [π] ∗

�
�

�
g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γ l(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=̇π ∧ Inv(γ,t, γ0) ∧ Pπ.l(γ,t, γ l(x)) ∧ Pπ.r(γ,t, γr(x)))

I(x)

∗ [π.l] ∗

�
�

�
g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γ l(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=̇π ∧ Inv(γ,t, γ0) ∧ Pπ.l(γ,t, γ l(x)) ∧ Pπ.r(γ,t, γr(x)))

I(x)

∗ [π.r] ∗

�
�

�
g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γ l(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=̇π ∧ Inv(γ,t, γ0) ∧ Pπ.l(γ,t, γ l(x)) ∧ Pπ.r(γ,t, γr(x)))

I(x)

Forget
=⇒ ∃γ. [π] ∗

�� ��g ⇀⇁ γ ∗M(γ,x,π) ∗ (Inv(γ,t, γ0) ∧ γm(x)=̇π)
I(x)

∗ [π.l] ∗
�� ��g ⇀⇁ γ ∗ g(γ,γ l(x)) ∗ (Inv(γ,t, γ0) ∧ Pπ.l(γ,t, γ l(x)))

I(x)

∗ [π.r] ∗
�� ��g ⇀⇁ γ ∗ g(γ,γr(x)) ∗ (Inv(γ,t, γ0) ∧ Pπ.r(γ,t, γr(x)))

I(x)

Shift
=⇒ ∃γ. [π] ∗

�� ��g ⇀⇁ γ ∗M(γ,x,π) ∗ (Inv(γ,t, γ0) ∧ γm(x)=̇π)
I(x)

∗ [π.l] ∗
�� ��g ⇀⇁ γ ∗ g(γ,γ l(x)) ∗ (Inv(γ,t, γ0) ∧ Pπ.l(γ,t, γ l(x)))

I(γ l(x))

∗ [π.r] ∗
�� ��g ⇀⇁ γ ∗ g(γ,γr(x)) ∗ (Inv(γ,t, γ0) ∧ Pπ.r(γ,t, γr(x)))

I(γr(x))

⇐⇒ ∃γ. [π] ∗
�� ��g ⇀⇁ γ ∗M(γ,x,π) ∗ (Inv(γ,t, γ0) ∧ γm(x)=̇π)

I(x)

∗ Pre(γ0,t,γ l(x),π.l) ∗ Pre(γ0,t,γr(x),π.r)

On line 6 we call span on the left and right sub-graphs of x. We
then use the Par rule (Def. 124) to distribute the resources between the
sub-threads and collect them back when they join. In the failure case
of each sub-thread (b1=0 or b2=0), we apply the Forget principle on
the subjective assertions to drop the spatial resources of g(γ,γl(x)) and
g(γ,γr(x)) and weaken them to emp. On lines 7 and 8 we apply the A2

π

and A3
π actions to remove the respective edges in failure cases. We can

then rewrite the subjective assertion emp as t(γ,γl(x),π.l) since γ l(x)=0

and thus t(γ,γl(x),π.l) holds trivially; mutatis mutandis for t(γ,γr(x),π.r).
Finally, we combine the subjective views using Merge, as shown in the
following derivation. In the last implication, the I(x) ∪ I(γ l(x)) ∪ I(γr(x))

is replaced by the equivalent interference assertion I(x) (see the definition
of I(x)). Moreover, observe that:

M(γ,x,π) ∪∗ t(γ,γl(x),π.l) ∪∗ t(γ,γr(x),π.r) =⇒
M(γ,x,π) ∗ t(γ,γl(x),π.l) ∗ t(γ,γr(x),π.r)

337

1. struct node {int m, node *l, *r}; bool b;{
Pre(γ0,t,x,π)

}
2. b = span(struct node *x){

{
Pre(γ0,t,x,π)

}
3. if(!x){

{
Post(γ0,t,x,π,1)∧ x=0

}
return 1;

{
Post(γ0,t,x,π,ret)

}
}{

Pre(γ0,t,x,π) ∧ x 6=0
}

4. bool res = <CAS(x->m, 0, 1)>; // apply A1
π if possible

res=̇0 ∗ Post(γ0,t,x,π,res)∨

res=̇1 ∗ [π] ∗
�

�
	∃γ. g ⇀⇁ γ ∗

(
M(γ,x,π)∪∗ g(γ,γl(x)) ∪∗ g(γ,γr(x))

)
∗(Inv(γ,t, γ0) ∧ γm(x)=π ∧ ∀y, π′. γm(y)=π′ ⇒ π′ 6< π)

I(x)

5. if(res){{

res=̇1 ∗ [π]

∗[π.l] ∗ [π.r]

∗
�

�
	∃γ. g ⇀⇁ γ ∗

(
M(γ,x,π) ∪∗ g(γ,γl(x)) ∪∗ g(γ,γr(x))

)
∗(γm(x)=π ∧ Pπ.l(γ,t, γl(x)) ∧ Pπ.r(γ,t, γr(x)))

I(x)

}
{
res=̇1 ∗ [π] ∗ ∃γ.

�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)
I(x)

∗Pre(γ0,t,γ l(x),π.l) ∗ Pre(γ0,t,γr(x),π.r)

}

6.

{
Pre(γ0,t,γl(x),π.l)

} {
Pre(γ0,t,γr(x),π.r)

}
bool b1=span(x->l) bool b2=span(x->r){
Post(γ0,t,γl(x),π.l,b1)

} {
Post(γ0,t,γr(x),π.r,b2)

}{
res=̇1 ∗ [π] ∗ ∃γ.

�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)
I(x)

∗Post(γ0,t,γ l(x),π.l,b1) ∗ Post(γ0,t,γr(x),π.r,b2)

}

res=̇1 ∗ [π] ∗ [π.l] ∗ [π.r] ∗ ∃γ.
�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)

I(x)

∗
(
b1=̇1 ∗

�� ��g⇀⇁γ ∗ t(γ,γl(x),π.l)
I(γ l(x))

∨ b1=̇0 ∗
�� ��g ⇀⇁ γ ∗ (Qπ.lf (γ,γl(x)) ∧ emp)

I(γ l(x))

)
∗
(
b2=̇1 ∗

�� ��g ⇀⇁ γ ∗ t(γ,γr(x),π.r)
I(γr(x))

∨ b2=̇0 ∗
�� ��g ⇀⇁ γ ∗ (Qπ.rf (γ,γr(x)) ∧ emp)

I(γr(x))

)

7. if(!b1) { x->l = null; } // perform A2

π if applicable
res=̇1 ∗ [π] ∗ ∃γ.

�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)
I(x)

∗
�� ��g⇀⇁γ ∗ t(γ,γl(x),π.l)

I(γ l(x))
∗
(
b2=̇1 ∗

�� ��g ⇀⇁ γ ∗ t(γ,γr(x),π.r)
I(γr(x))

∨ b2=̇0 ∗
�� ��g ⇀⇁ γ ∗ (Qπ.rf (γ,γr(x)) ∧ emp)

I(γr(x))

)

8. if(!b2) { x->r = null; } // perform A3
π if applicable{

res=̇1 ∗ [π] ∗ ∃γ.
�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)

I(x)

∗
�� ��g ⇀⇁ γ ∗ t(γ,γl(x),π.l)

I(γ l(x))
∗
�� ��g ⇀⇁ γ ∗ t(γ,γr(x),π.r)

I(γr(x))

}
9. } // apply the Merge principle

{
Post(γ0,t,x,π,res)

}
10. return res;

11. }
{
Post(γ0,t,x,π,ret)

}
Figure 10.2.: Code and a proof sketch of span

338

In particular, note that t(γ,γl(x),π.l) describes a collection of nodes each
of which marked by either π.l or one of its descendants (i.e. marked by a
thread whose identifier is in π.l). Similarly for t(γ,γr(x),π.r). As such, since
the tokens in π.l are disjoint from those in π.r and {π}, the resources de-
scribed by M(γ,x,π), t(γ,γl(x),π.l) and t(γ,γr(x),π.r) are pairwise disjoint.�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π) ∗M(γ,x,π)

I(x)

∗
�� ��g ⇀⇁ γ ∗ t(γ,γ l(x),π.l)

I(γ l(x))
∗
�� ��g ⇀⇁ γ ∗ t(γ,γr(x),π.r)

I(γr(x))

Merge
=⇒

�
�

�
g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧γm(x)=π)

∗(M(γ,x,π) ∪∗ t(γ,γ l(x),π.l) ∪∗ t(γ,γr(x),π.r))
I(x)∪I(γ l(x))∪I(γr(x))

=⇒
�� ��g⇀⇁γ∗(Inv(γ,t,γ0)∧γm(x)=π) ∗M(γ,x,π) ∗ t(γ,γ l(x),π.l) ∗ t(γ,γr(x),π.r)

I(x)

⇐⇒
�� ��g ⇀⇁ γ ∗ (Inv(γ,t, γ0)∧Qπs (γ,x)) ∗ t(γ,x,π)

I(x)

10.2. Copying Heap-represented Dags Concurrently

The copy_dag(x) program in Fig. 10.5 makes a deep structure-preserving
copy of the dag (directed acyclic graph) rooted at x concurrently. To do
this, each node x in the source dag records in its copy field (x->c) the
location of its copy when it exists, or 0 otherwise.
A thread running copy_dag(x) first checks atomically (lines 5-7) if x has

already been copied. If so, the address of the copy is returned. Otherwise,
the thread allocates a new node y to serve as the copy of x and updates
x->c accordingly; it then proceeds to copy the left and right subdags in
parallel by spawning two new threads (line 9). At the beginning of the
initial call, none of the nodes have been copied and all copy fields are 0;
at the end of this call, all nodes are copied to a new dag whose root is
returned by the algorithm. In the intermediate recursive calls, only parts
of the dag rooted at the argument are copied. Note that the atomic block
of lines 5-7 corresponds to a CAS (compare and set) operation. We have
unwrapped the definition for better readability.
Observe that each node x of the source dag may be in one of the

following three stages:

1. x is not visited by any thread (not copied yet), and thus its copy
field is 0.

339

2. x has already been visited by a thread π, a copy node x′ has been
allocated, and the copy field of x has been accordingly updated to
x′. However, the edges of x′ have not been directed correctly. That
is, the thread copying x has not yet finished executing line 10.

3. x has been copied and the edges of its copy have been updated
accordingly.

Note that in stage 2 when x has already been visited by a thread π, if
another thread π′ visits x, it simply returns even though x and its children
may not have been fully copied yet. Intuitively, thread π′ can safely return
because another thread (π) has copied x and has made a promise to visit
its children and ensure that they are also copied (by which time the
said children may have been copied by other threads, incurring further
promises). More concretely, to reason about copy_dag we associate each
node with a promise set identifying those threads that must visit it.
Consider the dags in Fig. 10.3 where a node x is depicted as i) a

white circle when in stage 1, e.g. x, 0 in 10.3a; ii) a grey ellipse when

in stage 2, e.g. x,x′

π in 10.3b where thread π has copied x to x′; and

iii) a black circle when in stage 3, e.g. x, x′ in 10.3g. Initially no node
is copied and as such all copy fields are 0. Let us assume that the top
thread (the thread running the very first call to copy_dag) is identified
as π. That is, thread π has made a promise to visit the top node x

and as such the promise set of x comprises π. This is depicted in the
initial snapshot of the graph in Fig. 10.3a by the {π} promise set next
to x. Thread π proceeds with copying x to x′, and transforming the
dag to that of Fig. 10.3b. In doing so, thread π fulfils its promise to x

and π is thus removed from the promise set of x. Recall that if another
thread now visits x it simply returns, relinquishing the responsibility of
copying the descendants of x. This is because the responsibility to copy
the left and right subdags of x lies with the left and right sub-threads of
π (spawned at line 9), respectively. As such, in transforming the dag from
Fig. 10.3a to 10.3b, thread π extends the promise sets of l and r, where π.l
(resp. π.r) denotes the left (resp. right) sub-thread spawned by π at line 9.
Subsequently, the π.l and π.r sub-threads copy l and r as illustrated in
Fig. 10.3c, each incurring a promise to visit y via their sub-threads. That
is, since both l and r have an edge to y, they race to copy the subdag

340

x, 0 {π}

l, 0 r, 0

y, 0

z, 0

{π.r.l.l}

(a)

x, x′

π

l, 0

{π.l}
r, 0

{π.r}
y, 0

z, 0

{π.r.l.l}

(b)

x, x′

π

l, l′

π.l

r, r′

π.r

y, 0{π.r.l
π.l.r

}
z, 0

{π.r.l.l}

(c)

x, x′

π

l, l′

π.l

r, r′

π.r

y, y′

π.r.l {π.l.r}
z, 0

{π.r.l.l}

(d)

x, x′

π

l, l′
r, r′

π.r

y, y′

π.r.l

z, 0

{π.r.l.l}

(e)

x, x′

π

l, l′
r, r′

π.r

y, y′

π.r.l

z, z′

π.r.l.l {π.r.l.l}

(f)

x, x′

l, l′ r, r′

y, y′

z, z′

{π.r.l.l}

(g)

Figure 10.3.: An example trace of copy_dag

at y. In the trace detailed in Fig. 10.3, the π.r.l sub-thread wins the race
and transforms the dag to that of Fig. 10.3d by removing π.r.l from the
promise set of y, and incurring a promise at z. Since the π.l.r sub-thread
lost the race for copying y, it simply returns (line 3). That is, π.l.r needs
not proceed to copy y as it has already been copied. As such, the promise
of π.l.r to y is trivially fulfilled and the copying of l is finalised. This is
captured in the transition from Fig. 10.3d to 10.3e where π.l.r is removed
from the promise set of y, and l is taken to stage 3. Thread π.r.l.l then
proceeds to copy z, transforming the dag to that of Fig. 10.3f. Since z
has no descendants, the copying of the subdag at z is now at an end;
thread π.r.l.l thus returns, taking z to stage 3. In doing so, the copying
of the entire dag is completed; sub-threads join and the effect of copying
is propagated to the parent threads, taking the dag to that depicted in
Fig. 10.3g.
Observe that as with span in §10.1, the copy_dag program spawns a

new thread at each recursive call point in line 8. We thus take our tokens
as elements of the tree share algebra, π ∈ Π, described in §10.1.
We associate the top-level thread with the • token (i.e. π=• in Figs. 10.3a-

10.3g), since • is the maximal token and all other threads are its sub-
threads and are subsequently spawned by it or its descendants. As before,
we write π to denote the token set comprising the descendants of π,
i.e. π , {π′ | π′ v π}.

Mathematical dags Similar to mathematical graphs in §10.1, a math-
ematical dag, δ ∈ Dag, is a triple in (V,E,L) where V is the vertex set;
E :V → V0×V0, is the edge function with V0 , V] {0}, where 0 denotes
the absence of an edge (e.g. a null pointer); and L : V→D, is the vertex

341

labelling function with the label set D defined shortly. As before, given a
graph δ=(V,E, L) , we write δv, δe and δl, for the first, second and third
projections of δ, respectively. Moreover, we write δl(x) and δr(x) for the
first and second projections of E(x); and write δ(x) for (δl(x), δl(x), δr(x))

when x ∈ V . Given a function f (e.g. E,L), we write f [x 7→ v] for up-
dating f(x) to v, and write f][x 7→ v] for extending f with x and value
v. Two dags are congruent if they have the same vertices and edges,
i.e. δ1

∼= δ2 , δv1 =δv2 ∧ δe1=δe2 . We define our mathematical objects as pairs
of dags (δ, δ′) ∈ (Dag × Dag), where δ and δ′ denote the source dag and
its copy, respectively.

To capture the stages a node goes through, we define the node labels
as D ,

(
V0 × (Π] {0}) ×P (Π)

)
. The first component records the copy

information (the address of the copy when in stage 2 or 3; 0 when in stage
1). This corresponds to the second components in the nodes of the dags
in Fig. 10.3, e.g. 0 in x, 0 . The second component tracks the node stage
as described on page 339: 0 in stage 1 (white nodes in Fig. 10.3), some
π in stage 2 (grey nodes in Fig. 10.3), and 0 in stage 3 (black nodes in
Fig. 10.3). That is, when the node is being processed by thread π, this
component reflects the thread’s token. Note that this is a ghost component
in that it is used purely for reasoning and does not appear in the physical
memory.
The third (ghost) component denotes the promise set of the node and
tracks the tokens of those threads that are yet to visit it. This corre-
sponds to the sets adjacent to nodes in the dags of Fig. 10.3, e.g. {π.l} in
Fig. 10.3b. We write δc(x), δs(x) and δp(x) for the first, second, and third
projections of x’s label, respectively. We define the path relation, x δ; y,
and the unprocessed path relation, x δ;0 y, as follows and write δ;∗ and
δ;∗0 for their reflexive transitive closure, respectively.

x
δ; y , δl(x)=y ∨ δr(x)=y x

δ;0 y , x
δ; y ∧ δc(x) = 0 ∧ δc(y) = 0

The lifetime of a node x with label (c, s, P) can be described as follows.
Initially, x is in stage 1 (c=0, s=0). When thread π visits x, it creates a
copy node x′ and takes x to stage 2 (c=x′, s=π). In doing so, it removes
its token π from the promise set P , and adds π.l and π.r to the promise
sets of its left and right children, respectively. Once π finishes executing

342

A1
π ,

(
(δ1, δ2),
(δ′1, δ

′
2)
)
δ1(x)=

(
(0,0,P]{π}), l, r

)
∧ δ1l(l)=(cl, sl, Pl) ∧ δ1l(r)=(cr, sr, Pr)
∧ δ′1 = (δv1 , δ

e
1 , L

′
1) ∧ δ′2 = (V ′2 , E

′
2, L
′
2)

∧L′′1=δl1[l 7→ cl, sl, Pl] {π.l}][r 7→ cr, sr, Pr]{π.r}]
∧L′1=L′′1 [x 7→ (y, π, P)]
∧V ′2=δv2]{y} ∧ E′2=δe2][y 7→ (0,0)] ∧ L′2=δl2][y 7→ (0,π,∅)])

A2
π ,

{(
(δ1, δ2),
(δ1, δ

′
2)
) δ1(x)=

(
(y,π,P), l,−

)
∧
(
(l=0∧cl=0) ∨ (δc1(l)=cl∧cl 6=0)

)
∧ δ2(y)=

(
(0,π,∅), 0, r

)
∧ δ′2=(δv2 , E

′
2, δ

l
2) ∧ E′2=δe2 [y 7→ (cl, r)]

}
A3
π ,

{(
(δ1, δ2),
(δ1, δ

′
2)
) δ1(x)=

(
(y,π,P),−, r

)
∧
(
(r=0∧cr=0) ∨ (δc1(r)=cr∧cr 6=0)

)
∧δ2(y)=

(
(0,π,∅), l, 0

)
∧ δ′2=(δv2 , E

′
2, δ

l
2) ∧ E′2=δe2 [y 7→ (l, cr)]

}

A4
π ,

(
(δ1, δ2),
(δ′1, δ

′
2)
) δ1(x)=

(
(y,π,P), l, r

)
∧ δ2(y)=

(
(0,π,∅), cl, cr

)
∧ (l=0∧cl=0 ∨ δc1(l)=cl∧cl 6=0)
∧ (r=0∧cr=0 ∨ δc1(r)=cr∧cr 6=0)
∧ δ′1=(δv1 , δ

e
1 , δ

l
1[x 7→(y,0,P)]) ∧ δ′2=(δv2 , δ

e
2 , δ

l
2[y 7→(0,0,∅)])

A5
π ,

{(
(δ1, δ2),
(δ′1, δ2)

) δl1(x)=(y, s, P]{π}) ∧ y 6=0 ∧ δ′1=
(
δv1 , δ

e
1 , δ

l
1[x 7→ (y, s, P)]

)}

Figure 10.4.: The mathematical actions of copy_dag

line 10, it takes x to stage 3 (c=x′, s=0). If another thread π′ then visits
x when it is in stage 2 or 3, it removes its token π′ from the promise set
P , leaving the node stage unchanged.

Actions The mathematical actions of copy_dag are given in Fig. 10.4.
The A1

π describes taking a node x from stage 1 to 2 by thread π. In doing
so, it removes its token π from the promise set of x, and adds π.l and π.r

to the promise sets of its left and right children respectively, indicating
that they will be visited by its sub-threads, π.l and π.r. It then updates
the copy field of x to y, and extends the copy graph with y. This action
captures the atomic block of lines 5-7 when successful. The next two sets
capture the execution of atomic commands in line 10 by thread π where
A2
π and A3

π respectively describe updating the left and right edges of the
copy node. Once thread π has finished executing line 10 (and has updated
the edges of y), it takes x to stage 3 by updating the relevant ghost values.
This is described by A4

π. The A5
π set describes the case where node x has

already been visited by another thread (it is in stage 2 or 3 and thus its
copy field is non-zero). Thread π then proceeds by removing its token
from x’s promise set. We write Aπ to denote the actions of thread π:

343

Aπ , A1
π ∪ A2

π ∪ A3
π ∪ A4

π ∪ A5
π. We can now specify the behaviour of

copy_dag mathematically.

Mathematical specification Throughout the execution of copy_dag,
the source dag and its copy (δ, δ′), satisfy the invariant Inv below.

Inv(δ, δ′) , acyc(δ) ∧ acyc(δ′)

∧ (∀x′∈δ′. ∃!x∈δ. δc(x)=x′)∧(∀x ∈ δ. ∃x′. ic(x,x′, δ, δ′))

acyc(δ) ,¬∃x. x δ;+x

ic(x,x′, δ, δ′),(x=0 ∧ x′=0)∨(
x 6=0∧

[
(x′=0 ∧ δc(x)=x′∧ ∃y. δp(y) 6=∅ ∧ y δ;∗0 x)

∨
(
x′6=0 ∧ x′∈ δ′ ∧ ∃π, l,r, l′,r′. δ(x)=((x′, π,−),l,r)

∧ δ′(x′)=(−, l′,r′)

∧ (l′ 6=0⇒ ic(l, l′, δ, δ′)) ∧ (r′ 6=0⇒ ic(r,r′, δ, δ′))
)

∨
(
x′ 6=0 ∧ x′ ∈ δ′ ∧ ∃l,r, l′,r′. δ(x)=((x′, 0,−), l,r)

∧ δ′(x′)=(−, l′,r′) ∧ ic(l, l′, δ, δ′) ∧ ic(r,r′, δ, δ′)
)])

where δ;+ denotes the transitive closure of δ; .

Informally, the invariant asserts that δ and δ′ are acyclic (first two
conjuncts), and that each node x′ of the copy dag δ′ corresponds to a
unique node x of the source dag δ (third conjunct). The last conjunct
states that each node x of the source dag (i.e. x 6=0) is in one of the three
stages described above, via the second disjunct of the icpredicate: i) x is
not copied yet (stage 1), in which case there is an unprocessed path from a
node y with a non-empty promise set to x, ensuring that it will eventually
be visited (first disjunct); ii) x is currently being processed (stage 2) by
thread π (second disjunct), and if its children have been copied they also
satisfy the invariant; iii) x has been processed completely (stage 3) and
thus its children also satisfy the invariant (last disjunct).

The mathematical precondition of copy_dag, Pπ(x, δ), is defined below
where x identifies the top node being copied (the argument to copy_dag),
π denotes the thread identifier, and δ is the source dag. It asserts that π
is in the promise set of x, i.e. thread π has an obligation to visit x (first
conjunct). Recall that each token uniquely identifies a thread and thus the

344

descendants of π correspond to the sub-threads subsequently spawned by
π. As such, prior to spawning new threads the precondition asserts that
none of the strict descendants of π can be found anywhere in the promise
sets (second conjunct), and π itself is only in the promise set of x (third
conjunct). Similarly, neither π nor its descendants have yet processed any
nodes (last conjunct). The mathematical postcondition, Qπ(x,y, δ, δ′), is
as defined below and asserts that x (in δ) has been copied to y (in δ′);
that π and all its descendants have fulfilled their promises and thus cannot
be found in promise sets; and that π and all its descendants have finished
processing their charges and thus cannot correspond to the stage field of
a node.

Pπ(x, δ) , (x=0 ∨ π ∈ δp(x))

∧∀π′. ∀y ∈ δ. (π′∈ δp(y)⇒ π′ 6<π)

∧ (x6=y⇒ π 6∈ δp(y)) ∧ (δs(y)=π′ ⇒ π′ 6vπ)

Qπ(x,y, δ, δ′) , (x=0 ∨ (δc(x)=y ∧ y ∈ δ′))
∧∀π′. ∀z ∈ δ. π′ ∈ δp(z) ∨ δs(z)=π′ ⇒ π′ 6v π

Observe that when the top level thread (associated with the • token)
terminates its execution of copy_dag(x), since • is the maximal token
and all other tokens are its descendants (i.e. ∀π. π v •), the second
conjunct of Q•(x, ret, δ, δ′) entails that no tokens can be found anywhere
in δ, i.e. ∀y. δp(y)=∅ ∧ δs(y)=0. As such, Q•(x, ret, δ, δ′) together with
Inv entails that all nodes in δ have been correctly copied into δ′, i.e. only
the third disjunct of ic(x, ret, δ, δ′) in Inv applies.

Recall that as a key proof obligation we must prove that our mathe-
matical assertions are stable against our mathematical actions. This is
captured by Lemma 15 below. Part (10.5) states that the invariant Inv is
stable against the actions of all threads. That is, if the invariant holds for
(δ1, δ2), and a thread π updates (δ1, δ2) to (δ3, δ4), then the invariant holds
for (δ3, δ4). Parts (10.6) and (10.7) state that the pre- and postconditions
of thread π′ (Pπ′ and Qπ

′) are stable with respect to the actions of all
threads π, but those of its descendants (π 6∈ π′). Observe that despite
this latter stipulation, the actions of π are irrelevant and do not affect
the stability of Pπ

′ and Qπ
′. More concretely, the precondition Pπ

′ only
holds at the beginning of the program before new descendants are spawned

345

(line 9). As such, at these program points Pπ′ is trivially stable against the
actions of its (non-existing) descendants. Analogously, the postcondition
Qπ
′ only holds at the end of the program after the descendant threads

have completed their execution and joined. Therefore, at these program
points Qπ

′ is trivially stable against the actions of its descendants.

Lemma 15 (copy_dag stability). For all mathematical objects (δ1,δ2), (δ3,δ4),
and all tokens π, π′,

Inv(δ1, δ2) ∧ (δ1,δ2)Aπ (δ3,δ4)⇒ Inv(δ3, δ4) (10.5)
Pπ
′
(x, δ1) ∧ (δ1,δ2)Aπ (δ3,δ4) ∧ π 6∈ π′ ⇒ Pπ

′
(x, δ3) (10.6)

Qπ
′
(x,y, δ1, δ2) ∧ (δ1,δ2)Aπ (δ3,δ4) ∧ π 6∈ π′ ⇒ Qπ

′
(x,y, δ3, δ4) (10.7)

Proof. Follows from the definitions of Aπ, Inv, P, and Q.

Spatial graphs We represent a mathematical object (δ, δ′) in the heap
through the icdag (in-copy) predicate below as two disjoint (∗-separated)
dags, as well as a ghost location (d) in the ghost heap tracking the current
abstract state of each dag. As mentioned earlier, this way of tracking the
abstract state of dags in the ghost heap eliminates the need for baking in
the abstract state into the model. We implement each dag as a collection
of nodes in the heap. A node is represented as three adjacent cells in the
heap together with two additional cells in the ghost heap. The cells in
the heap track the addresses of the copy (c), and the left (l) and right
(r) children, respectively. The ghost locations are used to track the node
state (s) and the promise set (P).

icdag(δ1, δ2) ,d ⇀⇁ (δ1, δ2) ∗ dag(δ1) ∗ dag(δ2) dag(δ), ~
x∈δ

node(x, δ)

node(x, δ) , ∃l,r,c, s,P. δ(x)=(c, s,P), l,r ∧ x 7→ c, l,r ∗ x ⇀⇁ s,P

It is also possible (and perhaps more pleasing) to implement a dag via a
recursive predicate using the overlapping conjunction ∪∗ as follows where
rdag(x, δ) describes the sub-dag in δ with its top node denoted by x:

rdag(x, δ) , node(x, δ) ∗
(
rdag(δl(x), δ) ∪∗ rdag(δr(x), δ)

)
Note that in the same way that the graph unfolding mechanism of Lemma
14 allows for a more local specification by focusing on the relevant sub-

346

graph at each recursive call point, the recursive dag definition rdag allows
us to fold and unfold the dags as required. Here, we choose the flat
representation dag to demonstrate an alternative (global) reasoning style.

Spatial specification We can now specify the spatial precondition of
copy_dag, Pre(x, π, δ), as a CoLoSL assertion defined below where x is
the top node being copied (the argument of copy_dag), π identifies the
running thread, and δ denotes the initial top-level dag (where none of the
nodes are copied yet). As before, we model our capabilities as elements of
the partial commutative monoid given by (P (Π) ,], ∅). The precondition
Pre states that the current thread π holds the capabilities associated with
itself and all its descendants ([π]). Thread π will subsequently pass on
the descendant capabilities when spawning new sub-threads and reclaim
them as the sub-threads return and join. The Pre further asserts that the
initial dag δ and its copy currently correspond to δ1 and δ2, respectively.
That is, since the dags are concurrently manipulated by several threads,
to ensure the stability of the shared state assertion to the actions of the
environment, Pre states that the initial dag δ may have evolved to another
congruent dag δ1 (captured by the existential quantifier). The Pre also
states that the shared state contains the spatial resources of the dags
(icdag(δ1, δ2)), that (δ1, δ2) satisfies the invariant Inv, and that the source
dag δ1 satisfies the mathematical precondition Pπ. The spatial actions
on the shared state are declared in I where mathematical actions are
simply lifted to spatial ones indexed by the associated capability. That
is, if thread π holds the π capability, and the actions of π (Aπ) admit
the update of the mathematical object (δ1, δ2) to (δ′1, δ

′
2), then thread π

may update the spatial resources icdag(δ1, δ2) to icdag(δ′1, δ
′
2). Finally, the

spatial postcondition Post is analogous to Pre and further states that node
x has been copied to y.

Pre(x, π, δ), [π] ∗

�
�

�

∃δ1, δ2. icdag(δ1, δ2)

∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Pπ(x, δ1))
I

Post(x,y, π, δ), [π] ∗

�
�

�

∃δ1, δ2. icdag(δ1,δ2)

∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Qπ(x,y, δ1, δ2))
I

I ,
{

[π] : icdag(δ1, δ2) ∧ (δ1, δ2)Aπ(δ′1, δ
′
2) icdag(δ′1, δ

′
2)
}

347

Verifying copy_dag We give a proof sketch of copy_dag in Fig. 10.5.
As mentioned earlier, unlike the span example in §10.1 where we dele-
gated part of the correctness argument to the spatial representation of
the graph, for copy_dag we carry out the entire correctness argument at
the mathematical level. As such, one thing jumps out when looking at
the assertions at each program point: they have identical spatial parts
in the shared state: icdag(δ1, δ2). Indeed, the spatial graph in the heap
is changing constantly, due both to the actions of this thread and the
environment. Nevertheless, the spatial graph in the heap remains in sync
with the mathematical object (δ1, δ2), however (δ1, δ2) may be changing.
Whenever this thread interacts with the shared state, the mathematical
object (δ1, δ2) changes, reflected by the changes to the pure mathematical
facts. Changes to (δ1, δ2) due to other threads in the environment are
handled by the existential quantification of δ1 and δ2.
On line 3 we check if x is 0. If so the program returns and the postcon-

dition, Post(x, 0, δ, π), follows trivially from the definition of the precondi-
tion Pre(x, δ, π). If x 6= 0, then the atomic block of lines 5-7 is executed.
We first check if x is copied; if so we set b to false, perform action A5

π

(i.e. remove π from the promise set of x) and thus arrive at the desired
postcondition Post(x, δc1(x), π, δ). On the other hand, if x is not copied,
we set b to true and perform A1

π. That is, we remove π from the promise
set of x, and add π.l and π.r to the left and right children of x, respec-
tively. In doing so, we obtain the mathematical preconditions Pδ1(l, π.l)

and Pδ1(r, π.r). On line 8 we check whether the thread did copy x and has
thus incurred an obligation to call copy_dag on x’s children. If this is the
case, we load the left and right children of x into l and r, and subsequently
call copy_dag on them (line 9). To obtain the preconditions of the recur-
sive calls, we duplicate the shared state twice (

�� ��P I
Copy×2

=⇒
�� ��P I ∗

�� ��P I ∗
�� ��P I),

drop the irrelevant pure assertions, and split [π]. We then use the Par

rule (Def. 124) to distribute the resources between the sub-threads and
collect them back when they join. Subsequently, we combine the subjec-
tive views using Merge. Finally, on line 10 we perform actions A2

π, A3
π

and A4
π in order to update the edges of y, and arrive at the postcondition

Post(x, y, π, δ).

348

Copying graphs Recall that a dag is a directed graph that is acyclic.
However, the copy_dag program does not depend on the acyclicity of the
dag at x and thus copy_dag may be used to copy both dags and cyclic
graphs. The specification of copy_dag for cyclic graphs is rather similar
to that of dags. More concretely, the spatial pre- and postcondition (Pre
and Post), as well as the mathematical pre- and postcondition (P and Q)
remain unchanged, while the invariant Inv is weakened to allow for cyclic
graphs. That is, the Inv for cyclic graphs does not include the first two
conjuncts asserting that δ and δ′ are acyclic. As such, when verifying
copy_dag for cyclic graphs, the proof obligation for establishing the Inv

stability (i.e. Lemma 15(10.5)) is somewhat simpler. The other stability
proofs (Lemma 15(10.6) and (10.7)) and the proof sketch in Fig. 10.5 are
essentially unchanged.

349

1. struct node {struct node *c, *l, *r};{
Pre(x, π, δ)

}
2. copy_dag(struct node *x) {struct node *l,*r,*ll,*rr,*y; bool b;{

[π] ∗
�� ��∃δ1, δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Pπ(x, δ1))

I

}
3. if(!x){ return 0; }{

[π] ∗ ret=̇0∗
�� ��∃δ1, δ2. icdag(δ1, δ2)∗(δ∼̇=δ1∧Inv(δ1, δ2)∧Qπ(x, ret, δ1, δ2))

I

}
4. y = malloc(sizeof(struct node));{

[π] ∗
�� ��∃δ1, δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Pπ(x, δ1))

I
∗ y 7→ 0, 0, 0 ∗ y⇀⇁ π, ∅

}
5. <if(x->c){ b = false; // Perform the action A5

π{
[π] ∗

�� ��∃δ1, δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧Qπ(x, δc1(x), δ1, δ2) ∧ δc1(x) 6= 0)
I

∗ y 7→ 0,−,− ∗ y⇀⇁ π, ∅ ∗ b=̇0

}
6. }else{ x->c = y; b = true; // Perform the action A1

π{
[π]∗

�

�
	∃δ1,δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2)∧∀y∈δ1. π 6∈δp1(y)∧

(x 6=y⇒π 6=δs1(y))∧ ∃l,r. δ1(x)=(y,π,−,l,r)∧ y∈̇δ2∧ Pπ.l(l,δ1)∧ Pπ.r(r,δ1))
I

∗b=̇1

}
7. }>
8. if(b){ l = x->l; r = x->r;{

[π] ∗
�

�
	∃δ1,δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ ∀y∈δ1. π 6∈δp1(y)∧

(x 6=y⇒ π 6=δs1(y)) ∧ δ1(x)=(y, π,−,l, r) ∧ y∈̇δ2 ∧ Pπ.l(l, δ1) ∧ Pπ.r(r, δ1))
I

}

[π] ∗
�

�
	∃δ1,δ2. icdag(δ1,δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ ∀y∈δ1. π 6∈δp1(y)∧

(x 6=y⇒ π 6=δs1(y)) ∧ δ1(x)=(y,−,π,l,r) ∧ y∈̇δ2) I

∗ [π.l] ∗
�� ��∃δ1, δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Pπ.l(l, δ1))

I

∗ [π.r] ∗
�� ��∃δ1, δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ Pπ.r(r, δ1))

I

{
[π] ∗

�

�
	∃δ1,δ2. icdag(δ1,δ2)∗(δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ ∀y∈δ1. π 6∈δp1(y)

∧ (x 6=y⇒ π 6=δs1(y)) ∧ δ1(x)=(y,−,π,l,r) ∧ y∈̇δ2) I

∗Pre(l, π.l, δ)
∗Pre(r, π.r, δ)

}
9.

{Pre(l, π.l, δ)} {Pre(r, π.r, δ)}
ll = copy_dag(l) rr = copy_dag(r)
{Post(l, ll, π.l, δ)} {Post(r, rr, π.r, δ)}{

[π] ∗
�

�
	∃δ1,δ2. icdag(δ1,δ2)∗(δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧ ∀y∈δ1. π 6∈δp1(y)

∧ (x 6=y⇒ π 6=δs1(y)) ∧ δ1(x)=(y,−,π,l,r) ∧ y∈̇δ2) I

∗Post(l, ll, π.l, δ)
∗Post(r, rr, π.r, δ)

}
{

[π] ∗
�
�

�
∃δ1,δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1∧Inv(δ1,δ2)∧∀y∈δ1.π 6∈δp1(y) ∧ (x 6=y⇒π 6=δs1(y))

∧ δ1(x)=(y,−,π,l,r)∧y∈̇δ2∧Qπ.l(l, ll,δ1,δ2)∧Qπ.r(r, rr,δ1,δ2))
I

}
10. <y->l = ll>;<y->r = rr>; // Perform A2

π, A3
π and A4

π in order{
[π] ∗

�� ��∃δ1,δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧Qπ(x, y, δ1, δ2))
I

}
11. return y;

{
[π]∗

�� ��∃δ1,δ2. icdag(δ1, δ2)∗(δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧Qπ(x, ret, δ1, δ2))
I}

12. }else{{
[π]∗

�� ��∃δ1,δ2. icdag(δ1,δ2)∗(δ∼̇=δ1∧Inv(δ1,δ2)∧Qπ(x, δc1(x),δ1,δ2)∧δc1(x) ˙6=0)
I

∗y 7→ 0,− ,−
∗y⇀⇁ π, ∅}

13. free(y, sizeof(struct node)) ; return x->c;{
[π] ∗

�� ��∃δ1,δ2. icdag(δ1, δ2) ∗ (δ∼̇=δ1 ∧ Inv(δ1, δ2) ∧Qπ(x, ret, δ1, δ2))
I

}
14. } }

{
Post(x, ret, π, δ)

}
Figure 10.5.: The code and a proof sketch of copy_dag

350

10.3. Parallel Speculative Shortest Path (Dijkstra)

Given a graph with size vertices, the weighted adjacency matrix a, and a
designated source node src, Dijkstra’s sequential algorithm calculates the
shortest path from src to all other nodes incrementally. To do this, it
maintains a cost array c, and two sets of vertices: those processed thus
far (done), and those yet to be processed (work). The cost for each node
(bar src itself) is initialised with the value of the adjacency matrix (i.e.
c[src]=0; c[i]=a[src][i] for i 6=src). Initially, all vertices are in work and
the algorithm proceeds by iterating over work performing the following two
steps at each iteration. First, it extracts a node i with the cheapest cost
from work and inserts it to done. Second, for each vertex j, it updates its
cost (c[j]) to min{c[j], c[i]+a[i][j]}. This greedy strategy ensures that
at any one point the cost associated with the nodes in done is minimal.
Once the work set is exhausted, c holds the minimal cost for all vertices.

We study a parallel non-greedy variant of Dijkstra’s shortest path algo-
rithm, parallel_dijkstra in Fig. 10.6, with work and done implemented
as bit arrays. We initialize the c, work and done arrays as described above
(lines 2-5), and find the shortest path from the source src concurrently,
by spawning multiple threads, each executing the non-greedy dijkstra

(line 6). The code for dijkstra is given in Fig. 10.6. In this non-greedy
implementation, at each iteration an arbitrary node from the work set is
selected rather than one with minimal cost. Unlike the greedy variant,
when a node is processed and inserted into done, its associated cost is not
necessarily the cheapest. As such, during the second step of each iteration,
when updating the cost of node j to min{c[j], c[i]+a[i][j]} (as described
above), we must further check if j is already processed. This is because if
the cost of j goes down, the cost of its adjacent siblings may go down too
and thus j needs to be reprocessed. When this is the case, j is removed
from done and reinserted into work (lines 10-12). If on the other hand j

is unprocessed (and is in work), we can safely decrease its cost (lines 8-9).
Lastly, if j is currently being processed by another thread, we must wait
until it is processed (loop back and try again).

The parallel_dijkstra algorithm is an instance of speculative paral-
lelism [26]: each thread running dijkstra assumes that the costs of nodes
in done are final and will not change as a result of processing the nodes

351

1. void parallel_dijkstra(int[][] a, int[] c, int size, src){

2. work[size], done[size];

3. for (i=0; i<size; i++){

4. c[i] = a[src][i]; work[i] = 1; done[i] = 0;

5. }; c[src] = 0;

6. dijkstra(a,c,size,work,done) || . . . || dijkstra(a,c,size,work,done)

7. return c;

8. }

1. void dijkstra(int[][] a, int[] c, int size, bitarray work, done){

2. i=0;

3. while(done != 2size-1){ b=<CAS(work[i],1,0)>;

4. if(b){ cost=c[i];

5. for(j=0; j<size; j++){ newcost=cost+a[i][j]; b=true;

6. do{ oldcost = c[j];

7. if(newcost < oldcost){

8. b = <CAS(work[j],1,0)>;

9. if(b){ b=<CAS(c[j],oldcost,newcost)>; <work[j]=1>; }

10. else { b=<CAS(done[j],1,0)>;

11. if(b){ b=<CAS(c[j],oldcost,newcost)>;

12. if(b){ <work[j]=1> } else { <done[j]=1> }

13. } } }

14. } while(!b)

15. } < done[i]=1 >;

16. } i=(i+1) mod size;

17. } }

Figure 10.6.: A parallel non-greedy variant of Dijkstra’s algorithm

352

in work. However, if at a later point it detects that its assumption was
wrong, it reinserts the affected nodes into work and recomputes their costs.

Mathematical graphs Similar to the graphs in §10.1, we define our
mathematical graphs, γ∈Graph, as triples in (V × E× L) where V is the
vertex set; E :V→ (V→W) is the weighted adjacency function with weights
W , N]{∞}, and L :V→D is the vertex labelling function with the label
set D defined shortly. Given a graph (V,E,L), we use the matrix notation
for adjacency functions and write E[i][j] for E(i)(j).
Unlike span (§10.1) and copy_dag (§10.2) where a new thread is spawned

at every recursive call point, in parallel_dijkstra the number of threads
to run concurrently is decided at the beginning (line 6) and remains un-
changed thereafter. This allows for a simpler token mechanism. We define
our tokens as elements of the (countably) infinite set θ ∈ Θ,N \ {0, 1}.
We refer to the thread with token θ simply as thread θ. Recall that each
node x in the graph can be either: unprocessed (in work); processed (in
done); or under process by a thread (neither in work nor in done). We
define our labels as D , W ×

(
{0, 1}] Θ

)
× (V → {◦, •}]W). The first

component denotes the cost of the shortest path from the source (so far)
to the node. The second component describes the node state (0 for unpro-
cessed, 1 for processed, and θ when under process by thread θ). The last
component denotes the responsibility function. Recall that when a thread
is processing a node, it iterates over all vertices examining whether their
cost can be improved. To do this, at each iteration the thread records the
current cost of node j under inspection in oldcost (line 6). If the cost
may be improved (i.e. the conditional of line 7 succeeds), it then attempts
to update the cost of j with the improved value (lines 9, 11). Note that
since the cost associated with j may have changed from the initial cost
recorded (oldcost), the update operation may fail and thus the thread
needs to re-examine j. To track the iteration progress, for each node the
responsibility function records whether i) its cost is yet to be examined
(◦); ii) its cost has been examined (•); or iii) its cost is currently being
examined (c ∈ W) with its initial cost recorded as c (oldcost=c). We
use the string notation for responsibility functions and write e.g. •n.c.◦m,
when the first n nodes are mapped to •, the (n+1)st node is mapped to
c, and the last m nodes are mapped to ◦. We write ◦ (resp. •) for a

353

function that maps all elements to ◦ (resp. •).
Given a graph γ=(V,E,L), we write γv for V , γe for E, and γl for L.

We write γc(x), γs(x) and γr(x), for the first, second and third projections
of L(x), respectively. Two graphs are congruent if they have equal vertices
and edges: γ1

∼= γ2 , γv
1 =γv

2 ∧ γe
1 =γe

2 . We define the weighted path
relation (γ;c), and its reflexive transitive closure as follows:

x
γ;c y , (γe)[x][y]=c

x
γ;∗c y , (x=y∧c=0) ∨ (∃c1,c2,z. c=c1+c2 ∧ x

γ;c1 z ∧ z
γ;∗c2 y)

Actions We define several families of actions in Fig. 10.7, each of which
indexed by a token θ. The A1

θ describes the CAS operation of line 3
in the algorithm: the state of a node is changed from unprocessed to
being processed by thread θ (i is removed from work). The A2

θ describes
a ghost action at line 6 for iteration j when storing the current cost
of j in oldcost. The thread has not yet examined the cost of node j

(R[j]=◦). It then reads the current cost (c′) of j and (ghostly) updates
the responsibility function. The A3

θ describes the CAS operations of lines 8
and 10 when successful: when processing i, we discovered that the cost
of j may be improved (c+E[i][j]≤ c′). In the former case, j is currently
unprocessed (in work, s=0), while in the latter j is processed (in done,
s=1). In both cases, we remove j from the respective set and temporarily
change its state to under process by θ until its cost is updated and it is
reinserted into the relevant set. The A4

θ describes the CAS operations in
lines 9 and 11 when successful. The cost of j has not changed since we
first read it (R[j]=c′) and we discovered that this cost may be improved
(c′′≤c′). The responsibility of i towards j is then marked as fulfilled
(R′[j]=•) and the cost of j is updated until it is subsequently reinserted
into work via A5

θ. The A5
θ denotes the reinsertion of j into work in lines 9

and 12 following successful CAS operations at lines 9 and 11. The state
of j is changed to 0 to reflect its insertion to work. The A6

θ and A7
θ sets

respectively describe the reinsertion of j into work and done in lines 9 and
12, following failed CAS operations at lines 9 and 11. When attempting to
update the cost of j, we discovered that the cost of j has changed since we
first read it (c′ 6=c′′). We thus reinsert j into the relevant set and (ghostly)
update the responsibility function to reflect that j is to be re-examined

354

A1
θ,
{(

(V,E,L), (V,E,L′)
)
L(i)=(c, 0,◦) ∧ L′=L[i 7→ (c, θ,◦)]

}
A2
θ,

((V,E, L), (V,E, L′)
) L(i)=(c, θ, R) ∧ ∀k<j. R[k]= • ∧R[j]=◦
∧L(j)=(c′,− ,−)
∧R′=R[j 7→ c′] ∧ L′=L[i 7→ (c,θ,R′)]

A3
θ,

{(
(V,E,L), (V,E,L′)

) L(i)=(−,θ,R) ∧R[j]=c′ ∧ c+E[i][j] ≤ c′
∧L(j)=(c,s,R′) ∧ s∈{0,1} ∧ L′=L[j 7→(c,θ,R′)]

}

A4
θ,

((V,E,L), (V,E, L′)
) L(i)=(c,θ,R) ∧R[j]=c′ ∧ L(j)=(c′,θ,R′′)
∧ c′′=c+E[i][j] ∧ c′′<c′
∧R′=R[j 7→ •] ∧ L′=L[i 7→ (c,θ,R′)][j 7→(c′′,θ,R′′)]

A5
θ,

{(
(V,E, L), (V,E,L′)

) L(i)=(c,θ,R) ∧R[j]= • ∧L(j)=(c′,θ,−)
∧L′=L[j 7→ (c′, 0,◦)]

}
A6
θ,

{(
(V,E, L), (V,E, L′)

) L(i)=(c,θ,R) ∧R[j]=c′′ ∧ L(j)=(c′,θ,◦) ∧ c′ 6=c′′
∧R′=R[j 7→◦] ∧ L′=L[i 7→ (c,θ,R′)][j 7→ (c′,0,◦)]

}
A7
θ,

{(
(V,E, L), (V,E, L′)

) L(i)=(c,θ,R) ∧R[j]=c′′ ∧ L(j)=(c′,θ,•) ∧ c′ 6=c′′
∧R′=R[j 7→ ◦] ∧ L′=L[i 7→ (c,θ,R′)][j 7→ (c′,1,•)]

}
A8
θ,

{(
(V,E, L), (V,E, L′)

) L(i)=(c,θ,R) ∧R[j]=c′ ∧ c+E[i][j] ≥ c′
∧R′=[j 7→ •]R ∧ L′=[i 7→ (c,θ,R′)]L

}
A9
θ,
{(

(V,E,L), (V,E, L′)
)
L(x)=(c, θ,•) ∧ L′=L[x 7→ (c, 1,•)]

}
Figure 10.7.: The mathematical actions of dijkstra

(R′[j]=◦). The A8
θ describes a ghost action in line 7 when the conditional

fails: examining j yielded no cost improvement and thus the responsibility
of i towards j is marked as fulfilled. Lastly, the A9

θ captures the atomic
operation in line 15: processing of i is at an end since all nodes have been
examined. The state of i is thus changed to processed (i is inserted into
done). We write Aθ for actions of θ, i.e. Aθ,

⋃
i∈{1...9}A

i
θ.

Mathematical invariant Throughout the execution of dijkstra for a
source node src, the graph γ satisfies the invariant Inv(src, γ) below.

Inv(γ, src) , ∀x ∈ γ.minsrc
γ (x,γc(x))

∨
(
∃y,z,c.minsrc

γ (y, γc(y)) ∧ γ(y)6=1 ∧ γr[y][z]=0

∧y γ;c z ∧ witsrcγ (γc(y)+c, z,x)
)

minsrc
γ (x,c) , min{c | src γ;∗c x} = c

witsrcγ (c, z,x) , minsrc
γ (z,c) ∧ γc(z) > c

∧ (z=x ∨ (∃c′,w. z γ;c′ w ∧ witsrcγ (c+c′,w,x)))

355

The Inv(γ, src) asserts that for any node x, either its associated cost
from src is minimal; or there is a minimal path to x from a node y (via z),
such that the cost of y is minimal and y is either unprocessed or is being
processed. Moreover, none of the nodes along this path (except y) are yet
associated with their correct (minimal) cost. As such, when y is finally
processed, its effect will be propagated down this path, correcting the costs
of the nodes along the way. Observe that when dijkstra terminates, since
all nodes are processed (i.e. ∀x. γs(x)=1), the Inv(γ, src) entails that the
cost associated with all nodes is minimal.

Lemma 16 (dijkstra stability). For all graphs γ, γ′, source nodes src,
and tokens θ, the Inv(γ, src) invariant is stable with respect to Aθ:

Inv(γ, src) ∧ γ Aθ γ′ ⇒ Inv(γ′, src)

Proof. Follows from the definitions of Aθ and Inv.

Spatial graphs We represent a mathematical graph γ in the heap via
the g(γ) predicate below as multiple ∗-separated arrays: two bit-arrays for
the work and done sets, a two-dimensional array for the adjacency matrix,
a one dimensional array for the cost function, and two ghost arrays for
the label function (one for the responsibility function, another for the node
states).

g(γ) ,work(γ) ∗ done(γ) ∗ adj(γ) ∗ cost(γ) ∗ resp(γ) ∗ state(γ)

work(γ) , ~
i∈{i|γs(i)=0}

(
work[i] 7→ 1

)
∗ ~
i∈{i|γs(i)6=0}

(
work[i] 7→ 0

)
done(γ) , ~

i∈{i|γs(i)=1}

(
done[i] 7→ 1

)
∗ ~
i∈{i|γs(i)6=1}

(
done[i] 7→ 0

)
adj(γ) ,~

i∈γ
(~
j∈γ

a[i][j] 7→ γe[i][j]) cost(γ) ,~
i∈γ

(c[i] 7→ γc(i))

resp(γ) ,~
i∈γ

(~
j∈γ

r[i][j] ⇀⇁ γr[i][j]
)

state(γ) ,~
i∈γ

(
s[i] ⇀⇁ γs(i)

)
Spatial specification We specify the spatial precondition of dijkstra,
Pre(θ,γ0), as a CoLoSL assertion defined below where θ identifies the
running thread, and γ0 denotes the original graph (at the beginning of
parallel_dijkstra, before spawning new threads). We instantiate our
user-defined capabilities as sets of tokens in P (Θ). That is, the partial

356

commutative monoid of user-defined capabilities is given by (P (Θ) ,], ∅).
The precondition Pre states that the current thread θ holds the [θ] capa-
bility, that the original graph γ0 may have evolved to another congruent
graph γ (captured by the existential quantifier) satisfying the invariant Inv,
and that the shared state contains the spatial resources of the graph g(γ).
As before, the spatial actions on the shared state are declared in I by
lifting mathematical actions to spatial ones indexed by the corresponding
capability. Finally, the spatial postcondition Post is analogous to Pre and
further states that all nodes in γ are processed (in done).

Pre(θ,γ0) , [θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src))
I

Post(θ,γ0) , [θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ ∀x∈γ. γs(x)=̇1)
I

I ,
{

[θ] : g(γ) ∧ γ Aθ γ′ g(γ′)
}

Verifying parallel_dijkstra A proof sketch of dijkstra is given in
Figs. 10.8-10.9. As with copy_dag in §10.2, at all proof points the
spatial part (g(γ)) remains unchanged and the changes to the graph
are reflected in the changes to the pure mathematical assertions. Ob-
serve that when all threads return, the pure part of the postcondition
(Inv(γ, src) ∧ ∀x∈ γ. γs(x)=̇1) entails that all costs in cost are minimal
as per the first and only applicable disjunct in Inv(γ, src). As such, the
proof of parallel_dijkstra is immediate from the parallel rule (Par).

357

{
Pre(θ,γ0)

}
1. void dijkstra(int[][] a,int[] c,int size,bitarray work,done){

2. i = 0;

3. while(done != 2size-1){ b = <CAS(work[i],1,0)>;
// apply A1

θ if possible

4. if(b){
{

[θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=•)
I

}
cost = c[i];{

[θ] ∗
�� ��∃γ. g(γ)∗(γ0

∼̇=γ ∧Inv(γ, src) ∧γs(i)=θ ∧γr(i)=• ∧ cost=γc(i))
I

}
5. for(j=0;j<size;j++){{

[θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.0size-j ∧ cost=γc(i))
I

}
newcost = cost + a[i][j]; b = 1;{

[θ] ∗
�

�
	∃γ. g(γ) ∗ (γ0

∼̇=γ∧Inv(γ, src)∧γs(i)=θ ∧γr(i)=1j.0size-j

∧ cost=γc(i) ∧ newcost=cost+γe[i][j] ∧ b=1)
I

}
6. do{ oldcost=c[j];// apply A2

θ{
[θ] ∗

�

�
	∃γ,c. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.c.0size-j-1

∧ cost=γc(i) ∧ newcost=cost+γe[i][j] ∧ b=1 ∧ oldcost=c)
I

}
7. if(newcost<oldcost){{

[θ]∗
�

�
	∃γ,c. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.c.0size-j-1

∧cost=γc(i) ∧ newcost=cost+γe[i][j] ∧ oldcost=c ∧ newcost<oldcost)
I

}
8. b=<CAS(work[j],1,0)>; // apply A3

θ if possible

9. if(b){[θ]∗

�
�

�
�

∃γ,c. g(γ) ∗ (γ0
∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.c.0size-j-1

∧ cost=γc(i) ∧ newcost=cost+γe[i][j] ∧ oldcost=c ∧ newcost<oldcost
∧γs(j)=θ∧γr(j)=◦)

I

b=<CAS(c[j],oldcost,newcost)>; // apply A4

θ if possible[θ] ∗

�
�

�
�

∃γ,c. g(γ)∗(γ0
∼̇=γ ∧ Inv(γ, src)∧γs(i)=θ∧cost=γc(i) ∧ newcost<oldcost

∧
(
(b=1 ∧ γr(i)=1j+1.0size-j-1) ∨ (b=0 ∧ γr(i)=1j.c.0size-j-1)

)
∧ γs(j)=θ ∧ γr(j)=◦)

I

<work[j]=1>; } // apply A5

θ or A6
θ depending on the value of b{

[θ] ∗
�

�
	∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ cost=γc(i) ∧ newcost<oldcost
∧
(
(b=1 ∧ γr(i)=1j+1.0size-j-1) ∨ (b=0 ∧ γr(i)=1j.0size-j)

)
)

I

}

Figure 10.8.: A proof sketch of dijkstra (continued in Fig. 10.9)

358

9. else {{
[θ] ∗

�

�
	∃γ,c. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.c.0size-j-1 ∧cost=γc(i)
∧ newcost=cost+γe[i][j] ∧ oldcost=c ∧ newcost<oldcost)

I

}
b=<CAS(done[j],1,0)>; // apply A3

θ if possible

10. if(b){[θ] ∗

�
�

�
�

∃γ,c. g(γ) ∗ (γ0
∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j.c.0size-j-1

∧ cost=γc(i) ∧ newcost=cost+γe[i][j] ∧ oldcost=c ∧ newcost<oldcost
∧γs(j)=θ ∧ γr(j)=•)

I

b=<CAS(c[j],oldcost,newcost)>; // apply A4

θ if possible[θ] ∗

�
�

�
�

∃γ,c. g(γ) ∗ (γ0
∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ cost=γc(i)

∧
(
(b=1 ∧ γr(i)=1j+1.0size-j-1) ∨ (b=0 ∧ γr(i)=1j.c.0size-j-1)

)
∧ newcost<oldcost ∧ newcost=cost+γe[i][j] ∧ γs(j)=θ ∧ γr(j)=•)

I

11. if(b){ <work[j]=1> } else { <done[j]=1> }

// apply A5
θ or A7

θ depending on the value of b{
[θ] ∗

�

�
	∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ cost=γc(i) ∧ newcost<oldcost
∧
(
(b=1 ∧ γr(i)=1j+1.0size-j-1) ∨ (b=0 ∧ γr(i)=1j.0size-j)

)
)

I

}
12. }}}[θ] ∗

�

�

�

�
∃γ.g(γ) ∗ (γ0

∼̇=γ∧Inv(γ, src)∧γs(i)=θ(
(newcost<oldcost ∧ b=1 ∧ γr(i)=1j+1.0size-j-1)
∨(newcost<oldcost∧b=0∧γr(i)=1j.0size-j)
∨(newcost≥oldcost∧b=1∧γr(i)=1j.−.0size-j-1)

)
I

// apply A8

θ on the third disjunct{
[θ] ∗

�

�
	∃γ. g(γ) ∗ (γ0

∼̇=γ∧Inv(γ, src)∧γs(i)=θ(
(b=1∧γr(i)=1j+1.0size-j-1)∨(b=0∧γr(i)=1j.0size-j)

)
I

}
13. } while(!b){

[θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ γs(i)=θ ∧ γr(i)=1j+1.0size-j-1)
I

}
14. }

{
[θ] ∗

�� ��∃γ. g(γ) ∗ (γ0
∼̇=γ∧Inv(γ, src)∧γs(i)=θ∧γr(i)=•)

I

}
<done[i]=1>; // apply A9

θ{
[θ] ∗

�� ��∃γ. g(γ) ∗ (γ0
∼̇=γ∧Inv(γ, src)∧γs(i)=1)

I

}
15. } i = (i+1) mod size;

16. } }
{

[θ] ∗
�� ��∃γ. g(γ) ∗ (γ0

∼̇=γ ∧ Inv(γ, src) ∧ ∀x. γs(x)=1)
I

}{
Post(θ,γ0)

}
Figure 10.9.: A proof sketch of dijkstra (continued from Fig. 10.8)

359

11. Conclusions

Throughout this thesis, we have considered numerous challenges concerning
abstract library specification, library refinement and fine-grained concur-
rent reasoning. In doing so, we have explored numerous ideas, answered
several questions and found new techniques and solutions.

As to abstract library specification, we have applied structural separa-
tion logic (SSL) [60] for abstract specification of several libraries and for lo-
cal reasoning about their client programs. Most notably, we have used SSL
to specify a fragment of the Document Object Model (DOM) Core Level 1
library [1], following the standard closely. We have demonstrated that our
specification significantly improves over the existing DOM formalisms [24,
52] in that it is local, compositional and language-independent. We have
generalised the theory of SSL from [60] to allow for a language-independent
library specification and client reasoning. This way, our library specifica-
tion can be used to reason about different client programs of the library
written in different programming languages. We have demonstrated this
by integrating SSL with several program logics based on separation logic
(SL). Most notably we have integrated the SSL DOM specification with
the SL-based JavaScript program logic of [21] and used it to verify several
realistic JavaScript ad blocker programs.

As to library refinement, we have explored two existing approaches to
library refinement for separation logic: the locality-breaking and locality-
preserving refinements. We demonstrated that while the more popular
locality-breaking approach is more suitable for the refinement of sequential
libraries, the locality-preserving is better suited for the refinement of con-
current libraries as it simplifies the proof obligations. We have presented
a JavaScript implementation of the DOM fragment formally specified in
this thesis. We have established the correctness of our DOM implemen-
tation with respect to its formal specification by providing a locality-
breaking refinement proof. Unlike existing formalism of DOM where the

360

axiomatic DOM specification is justified against a high-level operational
semantics [59, 60, 52, 24], we link our specification to an underlying imple-
mentation (in JavaScript) and demonstrate that our implementation satis-
fies the same specification. This allows us to obtain a stronger soundness
result as our specification is justified against a realistic implementation
rather than the semantics devised specifically to validate the axiomatic
specification.
Concerning concurrent reasoning, we have introduced the concurrent

local subjective logic (CoLoSL) for compositional reasoning about concur-
rent programs. We have introduced the notion of subjective views where
we verify each thread with respect to its customised local view of the
state. Subjective views may arbitrarily overlap with one another, and
may expand or contract in accordance with the thread footprint. We have
introduced the general composition and framing of interference relations
(describing how the shared resources may be manipulated by each thread)
in the spirit of resource composition and framing in standard separation
logic. We have demonstrated that this fluidity allows for better proof
reuse. We have used CoLoSL to reason about several nontrivial concur-
rent graph-manipulating algorithms, two of which had never been verified
before.

361

Bibliography

[1] W3C DOM Core Level 1 Standard. https://www.w3.org/TR/

REC-DOM-Level-1/level-one-core.html.

[2] W3C DOM Standard. https://www.w3.org/TR/#tr_DOM.

[3] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Cambridge Tracts in
Theoretical Computer Science 47. Cambridge University Press, 1998.

[4] Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local rea-
soning, separation and aliasing. In SPACE, volume 4, 2004.

[5] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables
As Resource in Separation Logic. Electronic Notes in Theoretical Com-
puter Science, 155:247–276, May 2006.

[6] Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner.
Adjunct Elimination in Context Logic for Trees. In Proceedings of the
5th Asian Conference on Programming Languages and Systems, pages
255–270. Springer-Verlag, 2007.

[7] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context Logic
and Tree Update. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 271–282.
ACM, 2005.

[8] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local
action and abstract separation logic. In LICS, pages 366–378, 2007.

[9] Pedor da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner,
and Julian Sutherland. Modular termination verification for non-
blocking concurrency. In Programming Languages and Systems: 25th
European Symposium on Programming, ESOP’16, pages 176–201, 2016.

362

https://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
https://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
https://www.w3.org/TR/#tr_DOM

[10] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gard-
ner. TaDA: A logic for time and data abstraction. In ECOOP, 2014.

[11] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17(11):643–644, 1974.

[12] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: an exercise
in cooperation. In Language Hierarchies and Interfaces, pages 43–56,
1975.

[13] Thomas Dinsdale-Young. Abstract Data and Local Reasoning. PhD
thesis, Imperial College London, 2010.

[14] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang. Views: Compositional Reasoning
for Concurrent Programs. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 287–300. ACM, 2013.

[15] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis. Concurrent Abstract Predicates. In
Proceedings of the 24th European Conference on Object-oriented Pro-
gramming, pages 504–528. Springer-Verlag, 2010.

[16] Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse.
Abstraction and refinement for local reasoning. In Proceedings of the
Third International Conference on Verified Software: Theories, Tools,
Experiments, pages 199–215. Springer-Verlag, 2010.

[17] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look
at separation algebras and share accounting. In The Proceeding of the
7th Asian Symposium of Programming Languages and Systems, pages
161–177. Springer Berlin Heidelberg, 2009.

[18] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor
Vafeiadis. Deny-guarantee reasoning. In ESOP, pages 363–377, 2009.

[19] Xinyu Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

363

[20] Ivana Filipović, Peter O’Hearn, Noah Torp-Smith, and Hongseok
Yang. Blaming the Client: On Data Refinement in the Presence
of Pointers. Formal Aspects of Computing, 22(5):547–583, September
2010.

[21] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards a
Program Logic for JavaScript. In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 31–44. ACM, 2012.

[22] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards a Pro-
gram Logic for JavaScript. Technical report, Imperial College London,
2012.

[23] Philippa Gardner, Azalea Raad, Mark Wheelhouse, and Adam Wright.
Abstract local reasoning for concurrent libraries: Mind the gap. Elec-
tronic Notes in Theoretical Computer Science, 308:147 – 166, 2014.

[24] Philippa Gardner, Gareth Smith, Mark Wheelhouse, and Uri Zarfaty.
Local Hoare Reasoning about DOM. In Proceedings of the Twenty-
seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 261–270. ACM, 2008.

[25] Philippa Gardner and Mark Wheelhouse. Small Specifications for Tree
Update. In Proceedings of the 6th International Conference on Web
Services and Formal Methods, pages 178–195. Springer-Verlag, 2010.

[26] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar.
Introduction to Parallel Computing (Second Ed.). Addison Wesley,
2003.

[27] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[28] Peter G. Hinman. Fundamentals of Mathematical Logic. A K Peters,
Wellesley, Massachusetts, 2005.

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

364

[30] C. A. R. Hoare. Proof of Correctness of Data Representations. Acta
Inf., 1(4):271–281, December 1972.

[31] Aquinas Hobor and Jules Villard. The ramifications of sharing in data
structures. In POPL, pages 523–536, 2013.

[32] Samin S. Ishtiaq and Peter W. O’Hearn. BI As an Assertion Lan-
guage for Mutable Data Structures. In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 14–26. ACM, 2001.

[33] Jonas Braband Jensen and Lars Birkedal. Fictional separation logic.
In Proceedings of the 21st European Conference on Programming Lan-
guages and Systems, ESOP’12, pages 377–396, 2012.

[34] Cliff B. Jones. Specification and design of (parallel) programs. In
IFIP Congress, pages 321–332, 1983.

[35] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer.
Higher-order ghost state. In Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional Programming, ICFP
2016, pages 256–269, 2016.

[36] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants
as an orthogonal basis for concurrent reasoning. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’15, pages 637–650, 2015.

[37] Robert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs
in higher-order concurrent separation logic. In Proceedings of the 44th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’17, 2017.

[38] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés
Delbianco. Communicating state transition systems for fine-grained
concurrent resources. In ESOP, pages 290–310, 2014.

[39] Peter W. O’Hearn. Resources, concurrency, and local reasoning. The-
oretical Computer Science, 375(1-3):271–307, 2007.

365

[40] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local
Reasoning About Programs that Alter Data Structures. In Proceedings
of the 15th International Workshop on Computer Science Logic, pages
1–19. Springer-Verlag, 2001.

[41] Matthew Parkinson and Gavin Bierman. Separation Logic and Ab-
straction. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 247–258. ACM,
2005.

[42] Matthew J. Parkinson. Local Reasoning for Java. PhD thesis, Univer-
sity of Cambridge, 2005.

[43] Azalea Raad and Sophia Drossopoulou. A sip of the chalice. In
Proceedings of the 13th Workshop on Formal Techniques for Java-Like
Programs, FTfJP ’11, pages 2:1–2:30. ACM, 2011.

[44] Azalea Raad, José Fragoso Santos, and Philippa Gardner. DOM:
A JavaScript implementation. http://www.soundandcomplete.org/

DOM/implementation.zip.

[45] Azalea Raad, José Fragoso Santos, and Philippa Gardner. Dom: Spec-
ification and client reasoning. In Proceedings of the 14th Asian Sym-
posium on Programming Languages and Systems, APLAS ’16, 2016.

[46] Azalea Raad, Aquinas Hobor, Jules Villard, and Philippa Gardner.
Verifying concurrent graph algorithms. In Proceedings of the 14th
Asian Symposium on Programming Languages and Systems, APLAS
’16, 2016.

[47] Azalea Raad, Jules Villard, and Philippa Gardner. CoLoSL: Con-
current Local Subjective Logic. Technical report, 2014. http:

//www.doc.ic.ac.uk/~azalea/ESOP2015/CoLoSL-TR.pdf.

[48] Azalea Raad, Jules Villard, and Philippa Gardner. CoLoSL: Concur-
rent Local Subjective Logic. In ESOP, pages 710–735, 2015.

[49] John C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science, pages 55–74. IEEE Computer Society,
2002.

366

http://www.soundandcomplete.org/DOM/implementation.zip
http://www.soundandcomplete.org/DOM/implementation.zip
http://www.doc.ic.ac.uk/~azalea/ESOP2015/CoLoSL-TR.pdf
http://www.doc.ic.ac.uk/~azalea/ESOP2015/CoLoSL-TR.pdf

[50] John C. Reynolds. A short course on separation logic.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/

jcr/wwwaac2003/notes7.ps, 2003.

[51] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized
verification of fine-grained concurrent programs. In PLDI, 2015.

[52] Gareth D. Smith. Local reasoning for Web Programs. PhD thesis,
Imperial College London, 2011.

[53] Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract
predicates. In ESOP, pages 149–168, 2014.

[54] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Modular
reasoning about separation of concurrent data structures. In Proceed-
ings of the 22Nd European Conference on Programming Languages and
Systems, ESOP’13, pages 169–188, 2013.

[55] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement
and Hoare-style reasoning in a logic for higher-order concurrency. In
ICFP, pages 377–390, 2013.

[56] Viktor Vafeiadis. Automatically proving linearizability. In Proceedings
of the 22Nd International Conference on Computer Aided Verification,
CAV’10, pages 450–464, 2010.

[57] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guar-
antee and separation logic. In CONCUR, pages 256–271, 2007.

[58] Shengyi Wang, Qinxiang Cao, Asankhaya Sharma, and Aquinas Ho-
bor. The ramifications of mechanized localizations within data struc-
tures. under submission, 2016.

[59] Mark J. Wheelhouse. Segment Logic. PhD thesis, Imperial College
London, 2012.

[60] Adam D. Wright. Structural Separation Logic. PhD thesis, Imperial
College London, 2013.

[61] Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis,
University of Illinois, 2001.

367

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps

A. DOM Specification

We proceed with a description of each of the DOM operations defined in
Def. 61 and its axiomatisation in SSL.

A.1. Node Axioms

When n identifies a DOM node, then

• r:= n.nodeName: returns the name of n in r.{
vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ

}
r := n.nodeName{

vars(n : n, r : “#document”) ∗ α 7→ #docn[β]ef & γ
}

{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef

}
r := n.nodeName{

vars(n : n, r : s) ∗ α 7→ sn[β, γ]ef

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.nodeName{

vars(n : n, r : “#text”) ∗ α 7→ #textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[s′]f

}
r := n.nodeName{

vars(n : n, r : s) ∗ α 7→ sn[s′]f
}

368

• r:= n.nodeValue: returns the value of n in r.{
vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ

}
r := n.nodeValue{

vars(n : n, r : null) ∗ α 7→ #docn[β]ef & γ
}

{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef

}
r := n.nodeValue{

vars(n : n, r : null) ∗ α 7→ sn[β, γ]ef

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.nodeValue{

vars(n : n, r : s) ∗ α 7→ #textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[t]f ∗ val(t, s′)

}
r := n.nodeValue{

vars(n : n, r : s′) ∗ α 7→ sn[t]f

}

• The r:= n.nodeType: returns the type of n in r. Each DOM node
type is described as an integer value, with the text, element, attribute
and document node types associated with integer values 3, 1, 2 and 9,
respectively. {

vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ
}

r := n.nodeType{
vars(n : n, r : 9) ∗ α 7→ #docn[β]ef & γ

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef

}
r := n.nodeType{

vars(n : n, r : 1) ∗ α 7→ sn[β, γ]ef

}

369

{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.nodeType{

vars(n : n, r : 3) ∗ α 7→ #textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[t]f

}
r := n.nodeType{

vars(n : n, r : 2) ∗ α 7→ sn[t]f

}

• r:= n.parentNode: returns the identifier of the parent node of n in r

when it exists; it returns null if n is a document or attribute node (a
document node is the top-most node and has no parent; an attribute
node is associated with an element node, but is not the child of an
element node), or if n resides in the grove.{

vars(n : n, r : r) ∗ α 7→ #docu[sn[β, γ]e
′

f′]
e
f & δ

}
r := n.parentNode{

vars(n : n, r : u) ∗ α 7→ #docu[sn[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ su[β, ε1 ⊗ sn[γ, δ]e

′
f′ ⊗ ε2]ef

}
r := n.parentNode{

vars(n : n, r : u) ∗ α 7→ su[β, ε1 ⊗ sn[γ, δ]e
′

f′ ⊗ ε2]ef

}
{
vars(n : n, r : r) ∗ α 7→ su[β, γ1 ⊗#textn[s′]f′ ⊗ γ2]ef

}
r := n.parentNode{

vars(n : n, r : u) ∗ α 7→ su[β, γ1 ⊗#textn[s′]f′ ⊗ γ2]ef

}
{
vars(n : n, r : r) ∗ α 7→ su[β1 �#textn[s′]f′]f � β2

}
r := n.parentNode{

vars(n : n, r : u) ∗ α 7→ su[β �#textn[s′]f′]f � β2

}

370

{
vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ

}
r := n.parentNode{

vars(n : n, r : null) ∗ α 7→ #docn[β]ef & γ
}

{
vars(n : n, r : r) ∗ α 7→ sn[t]f

}
r := n.parentNode{

vars(n : n, r : null) ∗ α 7→ sn[t]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef ⊕∅g

}
r := n.parentNode{

vars(n : n, r : null) ∗ α 7→ sn[β, γ]ef ⊕∅g

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f ⊕∅g

}
r := n.parentNode{

vars(n : n, r : null) ∗ α 7→ #textn[s]f ⊕∅g

}

• r:= n.childNodes: compiles a (live) NodeList containing the identifiers
of the children of node n and returns the identifier of the NodeList in
r. {

vars(n : n, r : r) ∗ α 7→ #docn[t]ef1 & γ ∗ TIDs(t, l)
}

r := n.childNodes{
∃f, f2. vars(n:n, r:f) ∗ α 7→ #docn[t]ef2 & γ ∗ f1⊆̇f2 ∗ f∈̇f2

}
{
vars(n : n, r : r) ∗ α 7→ sn[β,t]ef1 ∗ TIDs(t, l)

}
r := n.childNodes{

∃f, f2. vars(n : n, r : f) ∗ α 7→ sn[β,t]ef2 ∗ f1⊆̇f2 ∗ f∈̇f2

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f1

}
r := n.childNodes{

∃f, f2. vars(n : n, r : f) ∗ α 7→ #textn[s]f2 ∗ f1⊆̇f2 ∗ f∈̇f2

}

371

{
vars(n : n, r : r) ∗ α 7→ sn[s′]f1

}
r := n.childNodes{

∃f, f2. vars(n : n, r : f) ∗ α 7→ sn[s′]f2 ∗ f1⊆̇f2 ∗ f∈̇f2

}

• r:= n.firstChild: returns the identifier of the first child of n in r

when it exists; returns null if n has no children.{
vars(n : n, r : r) ∗ α 7→ #docn[sm[β, γ]e

′
f′]

e
f & δ

}
r := n.firstChild{

vars(n : n, r : m) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ #docn[∅e]

e
f & δ

}
r := n.firstChild{

vars(n : n, r : null) ∗ α 7→ #docn[∅e]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, sm[γ, δ]e

′
f′ ⊗ ε]ef

}
r := n.firstChild{

vars(n : n, r : m) ∗ α 7→ sn[β, sm[γ, δ]e
′

f′ ⊗ ε]ef
}

{
vars(n : n, r : r) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef

}
r := n.firstChild{

vars(n : n, r : m) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef

}
{
vars(n : n, r : r) ∗ α 7→ sn[β,∅f]ef

}
r := n.firstChild{

vars(n : n, r : null) ∗ α 7→ sn[β,∅f]ef

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.firstChild{

vars(n : n, r : null) ∗ α 7→ #textn[s]f

}

372

{
vars(n : n, r : r) ∗ α 7→ sn[#textm[s′]f′ � β]f

}
r := n.firstChild{

vars(n : n, r : m) ∗ α 7→ sn[#textm[s′]f′ � β]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[∅tf]f

}
r := n.firstChild{

vars(n : n, r : null) ∗ α 7→ sn[∅tf]f

}

• r:= n.lastChild: returns the identifier of the last child of n in r when
it exists; returns null if n has no children.{

vars(n : n, r : r) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
r := n.lastChild{

vars(n : n, r : m) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ #docn[∅e]

e
f & δ

}
r := n.lastChild{

vars(n : n, r : null) ∗ α 7→ #docn[∅e]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ ⊗ sm[δ, ε]e

′
f′]

e
f

}
r := n.lastChild{

vars(n : n, r : m) ∗ α 7→ sn[β, γ ⊗ sm[δ, ε]e
′

f′]
e
f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ ⊗#textm[s′]f′]ef

}
r := n.lastChild{

vars(n : n, r : m) ∗ α 7→ sn[β, γ ⊗#textm[s′]f′]ef
}

{
vars(n : n, r : r) ∗ α 7→ sn[β,∅f]ef

}
r := n.lastChild{

vars(n : n, r : null) ∗ α 7→ sn[β,∅f]ef

}

373

{
vars(n : n, r : −) ∗ α 7→ #textn[s]f

}
r := n.lastChild{

vars(n : n, r : null) ∗ α 7→ #textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β �#textm[s′]f′]f

}
r := n.lastChild{

vars(n : n, r : m) ∗ α 7→ sn[β �#textm[s′]f′]f
}

{
vars(n : n, r : r) ∗ α 7→ sn[∅tf]f

}
r := n.lastChild{

vars(n : n, r : null) ∗ α 7→ sn[∅tf]f

}

• r:= n.previousSibling: returns the identifier of the previous sibling
of n in r when it exists; it returns null if i) n is the first child of its
parent; or ii) n identifies a document or attribute node; or iii) n resides
in the grove.{

vars(n : n, r : r) ∗ α 7→ #textl[s′]f′ ⊗ sn[β, γ]ef

}
r := n.previousSibling{

vars(n : n, r : l) ∗ α 7→ #textl[s′]f′ ⊗ sn[β, γ]ef

}
{
vars(n : n, r : r) ∗ α 7→ sl[β, γ]e

′
f′ ⊗#textn[s′]f

}
r := n.previousSibling{

vars(n : n, r : l) ∗ α 7→ sl[β, γ]e
′

f′ ⊗#textn[s′]f
}

{
vars(n : n, r : r) ∗ α 7→ s′l[β, γ]e

′
f′ ⊗ sn[δ, ε]ef

}
r := n.previousSibling{

vars(n : n, r : l) ∗ α 7→ s′l[β, γ]e
′

f′ ⊗ sn[δ, ε]ef

}

374

{
vars(n : n, r : r) ∗ α 7→ #textl[s′]f′ ⊗#textn[s]f

}
r := n.previousSibling{

vars(n : n, r : l) ∗ α 7→ #textl[s′]f′ ⊗#textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ su[β,#textn[s′]f ⊗ γ]ef′

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ su[β,#textn[s′]f ⊗ γ]ef′

}
{
vars(n : n, r : r) ∗ α 7→ s′u[β, sn[γ, δ]ef ⊗ ε]e

′
f′

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ s′u[β, sn[γ, δ]ef ⊗ ε]e
′

f′

}
{
vars(n : n, r : r) ∗ α 7→ #docu[sn[β, γ]ef]e

′
f′ & δ

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ #docu[sn[β, γ]ef]e
′

f′ & δ
}

{
vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ #docn[β]ef & γ
}

{
vars(n : n, r : r) ∗ α 7→ sn[t]f

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ sn[t]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef ⊕∅g

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ sn[β, γ]ef ⊕∅g

}

375

{
vars(n : n, r : −) ∗ α 7→ #textn[s]f ⊕∅g

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ #textn[s]f ⊕∅g

}
{
vars(n : n, r : r) ∗ α 7→ #textl[s′]f′ �#textn[s]f

}
r := n.previousSibling{

vars(n : n, r : l) ∗ α 7→ #textl[s′]f′ �#textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ su[#textn[s′]f′ � β]f

}
r := n.previousSibling{

vars(n : n, r : null) ∗ α 7→ su[#textn[s′]f′ � β]f

}

• r:= n.nextSibling: returns the identifier of the next sibling of n in r

when it exists; it returns null if i) n is the last child of its parent; or
ii) n identifies a document or attribute node; or iii) n resides in the
grove. {

vars(n : n, r : r) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ #textn[s′]f ⊗ sm[β, γ]ef′

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef ⊗#textm[s′]f′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ sn[β, γ]ef ⊗#textm[s′]f′
}

{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef ⊗ s′m[δ, ε]e

′
f′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ sn[β, γ]ef ⊗ s′m[δ, ε]e
′

f′

}

376

{
vars(n : n, r : r) ∗ α 7→ #textn[s]f ⊗#textm[s′]f′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ #textn[s]f ⊗#textm[s′]f′
}

{
vars(n : n, r : r) ∗ α 7→ su[β, γ ⊗#textn[s′]f]ef′

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ su[β, γ ⊗#textn[s′]f]ef′

}
{
vars(n : n, r : r) ∗ α 7→ s′u[β, γ ⊗ sn[δ, ε]ef]e

′
f′

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ s′u[β, γ ⊗ sn[δ, ε]ef]e
′

f′

}
{
vars(n : n, r : r) ∗ α 7→ #docu[sn[α, β]ef]e

′
f′ & γ

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ #docu[sn[α, β]ef]e
′

f′ & γ
}

{
vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ #docn[β]ef & γ
}

{
vars(n : n, r : r) ∗ α 7→ sn[t]f

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ sn[t]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef ⊕∅g

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ sn[β, γ]ef ⊕∅g

}

377

{
vars(n : n, r : r) ∗ α 7→ #textn[s]f ⊕∅g

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ #textn[s]f ⊕∅g

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f �#textm[s′]f′

}
r := n.nextSibling{

vars(n : n, r : m) ∗ α 7→ #textn[s]f �#textm[s′]f′
}

{
vars(n : n, r : r) ∗ α 7→ su[β �#textn[s′]f′]f

}
r := n.nextSibling{

vars(n : n, r : null) ∗ α 7→ su[#textn[s′]f′ � β]f

}

• r:= n.ownerDocument: returns in r the identifier of the document node
with which n is associated. As we do not model document fragment
nodes (lightweight document nodes in the grove), the result always
corresponds to the document identifier d.{

vars(n : n, r : r) ∗ α 7→ #docn[β]ef & γ
}

r := n.ownerDocument{
vars(n : n, r : null) ∗ α 7→ #docn[β]ef & γ

}
{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef

}
r := n.ownerDocument{

vars(n : n, r : d) ∗ α 7→ sn[β, γ]ef

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.ownerDocument{

vars(n : n, r : d) ∗ α 7→ #textn[s]f

}

378

{
vars(n : n, r : r) ∗ α 7→ sn[t]f

}
r := n.ownerDocument{

vars(n : n, r : d) ∗ α 7→ sn[t]f

}
When u, n and o identify DOM nodes, then

• u.insertBefore(n,o): inserts n into the child list of u before the
existing child o, and returns n. If o is null, n is appended to the end
of the child list. It fails if i) o is not null and is not a child of u; or
ii) the result of insertion does not correspond to a well-typed DOM
node (e.g. when n is a document node); or iii) n is an ancestor of u

(otherwise it would introduce a cycle and break the DOM structure).{
vars(u : u, m : m, n : n, r : r)

∗α 7→ su[β, γ1 ⊗ s′′m[δ, ε]e2f2 ⊗ γ2]ef ∗ ζ 7→ s′n[η,t]e1f1 ∗ complete(t)

}
r := u.insertBefore(m, n){

vars(u : u, m : m, n : n, r : n)

∗α 7→ su[β, γ1 ⊗ s′n[η,t]e1f1 ⊗ s′′m[δ, ε]e2f2 ⊗ γ2]ef ∗ ζ 7→ (∅f ∨∅g)

}

{
vars(u : u, m : m, n : n, r : r)

∗α 7→ su[β, γ1 ⊗ s′m[δ, ε]e2f2 ⊗ γ2]ef ∗ ζ 7→ #textn[s′′]f1

}
r := u.insertBefore(m, n){

vars(u : u, m : m, n : n, r : n)

∗α 7→ su[β, γ1 ⊗#textn[s′′]f1 ⊗ s′m[δ, ε]e2f2 ⊗ γ2]ef ∗ ζ 7→ (∅f∨∅g)

}

{
vars(u : u, m : m, n : n, r : r)

∗α 7→ su[β, γ1 ⊗#textm[s′′]f2 ⊗ γ2]ef ∗ δ 7→ s′n[ε,t]e1f1 ∗ complete(t)

}
r := u.insertBefore(m, n){

vars(u : u, m : m, n : n, r : n)

∗α 7→ su[β, γ1 ⊗ s′n[ε,t]e1f1 ⊗#textm[s′′]f2 ⊗ γ2]ef ∗ δ 7→ (∅f ∨∅g)

}

{
vars(u : u, m : m, n : n, r : r)

∗α 7→ su[β, γ1 ⊗#textm[s′′]f2 ⊗ γ2]ef ∗ δ 7→ #textn[s′]f1

}
r := u.insertBefore(m, n){

vars(u : u, m : m, n : n, r : n)

∗α 7→ su[β, γ1 ⊗#textn[s′]f1⊗#textm[s′′]f2⊗ γ2]ef ∗ δ 7→ (∅f∨∅g)

}

379

{
vars(u : u, m : null, n : n, r : r)

∗α 7→ su[β, γ]ef ∗ ζ 7→ s′n[η,t]e
′

f′ ∗ complete(t)

}
r := u.insertBefore(m, n){

vars(u : u, m : null, n : n, r : n)

∗α 7→ su[β, γ ⊗ s′n[η,t]e
′

f′]
e
f ∗ ζ 7→ (∅f ∨∅g)

}

{
vars(u : u, m : null, n : n, r : r)

∗α 7→ su[β, γ]ef ∗ ζ 7→ #textn[s′]f′

}
r := u.insertBefore(m, n){

vars(u : u, m : null, n : n, r : n)

∗α 7→ su[β, γ ⊗#textn[s′]f′]ef ∗ ζ 7→(∅f ∨∅g)

}

{
vars(u : u, m : m, n : n, r : r)

∗α 7→ su[β1 �#textm[s′′]f2 � β2]f ∗ δ 7→ #textn[s′]f1

}
r := u.insertBefore(m, n){

vars(u : u, m : m, n : n, r : n)

∗α 7→ su[β1 ⊗#textn[s′]f1⊗#textm[s′′]f2⊗ β2]f ∗ δ 7→ (∅f∨∅g)

}

{
vars(u : u, m : null, n : n, r : r)

∗α 7→ su[β]f ∗ ζ 7→ #textn[s′]f′

}
r := u.insertBefore(m, n){

vars(u : u, m : null, n : n, r : n)

∗α 7→ su[β ⊗#textn[s′]f′]f ∗ ζ 7→(∅f ∨∅g)

}

{
vars(u : u, m : null, n : n, r : r)

∗α 7→ #docu[∅e]
e
f & β ∗ γ 7→ sn[δ, ε]e1f1

}
r := u.insertBefore(m, n){

vars(u : u, m : null, n : n, r : n)

∗α 7→#docu[sn[δ, ε]e1f1]ef & β ∗ γ 7→ (∅f ∨∅g)

}

• u.replaceChild(n,o): replaces o in the child list of u with n, and
returns o. It fails if i) o is not a child of u; or ii) the result of
replacement does not correspond to a well-typed DOM node (e.g. when
n is a document node); or iii) n is an ancestor of u (otherwise it would

380

introduce a cycle and break the DOM structure).
vars(u : u, n : n, o : o, r : r)

∗α 7→ su[β, γ1 ⊗ s′′o[δ, ε]e2f2 ⊗ γ2]ef

∗ ζ 7→ s′n[θ,t]e1f1 ∗ complete(t) ∗ µ 7→ ∅g

r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗α 7→ su[β, γ1⊗ s′n[θ,t]e1f1 ⊗ γ2]ef ∗ ζ 7→ (∅f ∨∅g) ∗ µ 7→ s′′o[δ, ε]e2f2

}

{
vars(u : u, n : n, o : o, r : r)

∗α 7→ su[β, γ1 ⊗ s′o[δ, ε]e2f2 ⊗ γ2]ef ∗ ζ 7→ #textn[s′′]f1 ∗ η 7→ ∅g

}
r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗α 7→su[β, γ1⊗#textn[s′′]f1⊗ γ2]ef ∗ ζ 7→(∅f∨∅g) ∗ η 7→s′o[δ, ε]e2f2

}

vars(u : u, n : n, o : o, r : r)

∗α 7→ su[β, γ1 ⊗#texto[s′′]f2 ⊗ γ2]ef

∗ δ 7→ s′n[ε,t]e1f1 ∗ complete(t) ∗ ζ 7→ ∅g

r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗α 7→su[β, γ1 ⊗ s′n[ε,t]e1f1⊗γ2]ef ∗ δ 7→(∅f∨∅g) ∗ ζ 7→#texto[s′′]f2

}

{
vars(u : u, n : n, o : o, r : r)

∗α 7→ su[β, γ1 ⊗#texto[s′′]f2 ⊗ γ2]ef ∗ δ 7→ #textn[s′]f1 ∗ ε 7→ ∅g

}
r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗α 7→su[β, γ1⊗#textn[s′]f1⊗γ2]ef ∗ δ 7→(∅f∨∅g) ∗ ε 7→#texto[s′′]f2

}

{
vars(u : u, n : n, o : o, r : r)

∗α 7→ su[β1 �#texto[s′′]f2 � β2]f ∗ δ 7→ #textn[s′]f1 ∗ ε 7→ ∅g

}
r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗α 7→su[β1�#textn[s′]f1�β2]f ∗ δ 7→(∅f ∨∅g) ∗ ε 7→#texto[s′′]f2

}

381

{
vars(u : u, n : n, o : o, r : r)

∗µ 7→ #docu[s′o[α, β]e2f2]ef & η ∗ γ 7→ sn[δ, ε]e1f1 ∗ ζ 7→ ∅g

}
r := u.replaceChild(n, o){

vars(u : u, n : n, o : o, r : o)

∗µ 7→#docu[sn[δ, ε]e1f1]ef & η ∗ γ 7→ (∅f ∨∅g) ∗ ζ 7→ s′o[α, β]e2f2

}

• u.removeChild(o): removes o from the child list of u, moves o to the
document grove (DOM nodes are never deleted; orphaned nodes are
added to the grove) and then returns o. It fails if o is not a child of
u. {

vars(u : u, o : o, r : r) ∗ α 7→ su[β, γ1 ⊗ s′o[δ, ε]e
′

f′ ⊗ γ2]ef ∗ ζ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ su[β, γ1 ⊗ γ2]ef ∗ ζ 7→ s′o[δ, ε]e
′

f′

}
{
vars(u : u, o : o, r : r) ∗ α 7→ su[β, γ1 ⊗#texto[s′]f′ ⊗ γ2]ef ∗ δ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ su[β, γ1 ⊗ γ2]ef ∗ δ 7→ #texto[s′]f′
}

{
vars(u : u, o : o, r : r) ∗ α 7→ su[β1 �#texto[s′]f′ � β2]f ∗ γ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ su[β1 � β2]f ∗ γ 7→ #texto[s′]f′
}

{
vars(u : u, o : o, r : r) ∗ α 7→ #docu[so[β, γ]e

′
f′]

e
f & ∗ δ 7→ ∅g

}
r := u.removeChild(o){

vars(u : u, o : o, r : o) ∗ α 7→ #docu[∅e]
e
f & ∗ δ 7→ so[β, γ]e

′
f′

}

• u.appendChild(n): appends n to the end of u’s child list and returns
n. It fails if i) the result of appending does not correspond to a
well-typed DOM node (e.g. when n is a document node); or ii) n is
an ancestor of u (otherwise it would introduce a cycle and break the

382

DOM structure).{
vars(u : u, n : n, r : r) ∗ α 7→ su[β, γ]e1f1 ∗ δ 7→ s′n[ε,t]e2f2 ∗ complete(t)

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ α 7→ su[β, γ ⊗ s′n[ε,t]e2f2]e1f1 ∗ δ 7→ (∅f ∨∅g)
}

{
vars(u : u, n : n, r : r) ∗ α 7→ su[β, γ]ef ∗ δ 7→ #textn[s′]f′

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ α 7→ su[β, γ ⊗#textn[s′]f′]ef ∗ δ 7→ (∅f ∨∅g)
}

{
vars(u : u, n : n, r : r) ∗ α 7→ su[β]f ∗ δ 7→ #textn[s′]f′

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ α 7→ su[β �#textn[s′]f′]f ∗ δ 7→ (∅f ∨∅g)
}

{
vars(u : u, n : n, r : r) ∗ α 7→ #docu[∅e]

e
f & β ∗ γ 7→ sn[δ, ε]e

′
f′

}
r := u.appendChild(n){

vars(u : u, n : n, r : n) ∗ α 7→ #docu[sn[δ, ε]e
′

f′]
e
f & β ∗ γ 7→ (∅f ∨∅g)

}
• r:= n.hasChildNodes: returns a boolean value in r denoting whether
n has any children.{

vars(n : n, r : r) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
r := n.hasChildNodes(){

vars(n : n, r : true) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ #docn[∅e]

e
f & β

}
r := n.hasChildNodes(){

vars(n : n, r : false) ∗ α 7→ #docn[∅e]
e
f & β

}
{
vars(n : n, r : −) ∗ α 7→ sn[β, ε1 ⊗ sm[γ, δ]e

′
f′ ⊗ ε2]ef

}
r := n.hasChildNodes(){

vars(n : n, r : true) ∗ α 7→ sn[β, ε1 ⊗ sm[γ, δ]e
′

f′ ⊗ ε2]ef

}

383

{
vars(n : n, r : r) ∗ α 7→ sn[β, γ1 ⊗#textm[s′]f′ ⊗ γ2]ef

}
r := n.hasChildNodes(){

vars(n : n, r : true) ∗ α 7→ sn[β, γ1 ⊗#textm[s′]f′ ⊗ γ2]ef

}
{
vars(n : n, r : r) ∗ α 7→ sn[β,∅f]ef

}
r := n.hasChildNodes(){

vars(n : n, r : false) ∗ α 7→ sn[β,∅f]ef

}
{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.hasChildNodes(){

vars(n : n, r : false) ∗ α 7→ #textn[s]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[β1 �#textm[s′]f′ � β2]f

}
r := n.hasChildNodes(){

vars(n : n, r : true) ∗ α 7→ sn[β1 �#textm[s′]f′ � β2]f

}
{
vars(n : n, r : r) ∗ α 7→ sn[∅tf]f

}
r := n.hasChildNodes(){

vars(n : n, r : false) ∗ α 7→ sn[∅tf]f

}

A.2. Text Node Axioms

When n identifies a text node, then

• r:= n.data: returns the value (text contents) of n in r.{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.data{

vars(n : n, r : s) ∗ α 7→ #textn[s]f

}
• r:= n.length: returns the length of the value (text contents) of n in
r (i.e. returns a non-negative value corresponding to the number of

384

characters in the value of n).{
vars(n : n, r : r) ∗ α 7→ #textn[s]f

}
r := n.length{

∃l. vars(n : n, r : l) ∗ α 7→ #textn[s]f ∗ l=̇ |s|
}

• r:= n.substringData(o,c): when o and c hold integer values and the
value of n is denoted by string s, the substring of s beginning at offset
o (indexed from 0) and continuing for c characters is returned in r.
If the sum of o and c exceeds the length of s, then all characters
to the end of s are returned. This operation fails if o is an invalid
offset (i.e. negative or greater than the length of s), or if c is negative.
For instance, when the value of n is “lorem”, o=1 and c=3, then
r:= n.substringData(o,c) yields r=“ore”. On the other hand, when
c=7, then r=“orem”.{

vars(n :n, o :o, c :c, r :r) ∗ α 7→ #textn[s1.s2.s3]f ∗ o=̇ |s1| ∗ c=̇ |s2|
}

r := n.substringData(o, c){
vars(n : n, o : o, c : c, r : s2) ∗ α 7→ #textn[s1.s2.s3]f

}
{
vars(n : n, o : o, c : c, r : r) ∗ α 7→ #textn[s1.s2]f ∗ o=̇ |s1| ∗ c≥̇ |s2|

}
r := n.substringData(o, c){

vars(n : n, o : o, c : c, r : s2) ∗ α 7→ #textn[s1.s2]f

}
• n.appendData(s): when s holds a string, then s is appended to the

end of the value of n.{
vars(n : n, s : s′) ∗ α 7→ #textn[s]f

}
n.appendData(s){

vars(n : n, s : s′) ∗ α 7→ #textn[s.s′]f
}

• n.insertData(o,s): when o holds an integer value and s holds a
string, then s is inserted into the text contents (value) of n at offset o

(indexed from 0). This operation fails if o is an invalid offset (i.e. neg-

385

ative or greater than the length of the value of n). For instance, when
the value of n is “lorem”, o=1 and s=“ipsum”, then n.insertData(o,s)

updates the value of n to “lipsumorem”.{
vars(n : n, o : o, s : s) ∗ α 7→ #textn[s1.s2]f ∗ o=̇ |s1|

}
n.insertData(o, s){

vars(n : n, o : o, s : s) ∗ α 7→ #textn[s1.s.s2]f

}
• n.deleteData(o,c): when o and c hold integer values and the value

of n is denoted by string s, the substring of s beginning at offset o

(indexed from 0) and continuing for c characters is removed from s.
If the sum of o and c exceeds the length of s, then all characters
to the end of s are removed. This operation fails if o is an invalid
offset (i.e. negative or greater than the length of s), or if c is negative.
For instance, when the value of n is “lorem”, o=1 and c=3, then
n.deleteData(o,c) updates the value of n to “lm”. On the other
hand, when c=7, the value of n to is updated to “l”.{

vars(n : n, o : o, c : c) ∗ α 7→ #textn[s.s′.s′′]f ∗ o=̇ |s| ∗ c=̇ |s′|
}

n.deleteData(o, c){
vars(n : n, o : o, c : c) ∗ α 7→ #textn[s.s′′]f

}
{
vars(n : n, o : o, c : c) ∗ α 7→ #textn[s.s′]f ∗ o=̇ |s| ∗ c≥̇ |s′|

}
n.deleteData(o, c){

vars(n : n, o : o, c : c) ∗ α 7→ #textn[s]f

}
• n.replaceData(o,c,s): when o and c hold integer values, s holds a

DOM string, and the value of n is denoted by string s, the substring of
s beginning at offset o (indexed from 0) and continuing for c characters
is replaced by s. If the sum of o and c exceeds the length of s, then
all characters to the end of s are replaced. This operation fails if o

is an invalid offset (i.e. negative or greater than the length of s), or if
c is negative. For instance, when the value of n is “lorem”, o=1, c=3

and s=“ipsum”, then n.replaceData(o,c,s) updates the value of n to
“lipsumm”. On the other hand, when c=7, the value of n to is updated

386

to “lipsum”.{
vars(n :n, o :o, c :c, s :s2) ∗ α 7→ #textn[s.s1.s′]f ∗ o=̇ |s| ∗ c=̇ |s1|

}
n.replaceData(o, c, s){

vars(n : n, o : o, c : c, s : s2) ∗ α 7→ #textn[s.s2.s′]f
}

{
vars(n : n,o : o,c : c,s : s′′) ∗ α 7→ #textn[s.s′]f ∗ o=̇ |s| ∗ c≥̇|s′|

}
n.replaceData(o, c, s){

vars(n : n, o : o, c : c, s : s′′) ∗ α 7→ #textn[s.s′′]f
}

• r:= n.splitText(o): when o holds an integer value, the text contents
(value) of n are split into two text nodes at offset o (indexed from 0),
keeping both in the DOM tree as siblings. The identifier of the new
text node is returned in r. This operation fails if o is an invalid offset
(i.e. negative or greater than the length of n’s value).{

vars(n : n, o : o, r : r) ∗ α 7→ #textn[s.s′]f ∗ o=̇ |s|
}

r := n.splitText(o){
∃m, f′. vars(n : n, o : o, r : m) ∗ α 7→ #textn[s]f ⊗#textm[s′]f′

}

A.3. Element Node Axioms

When n identifies an element node, then

• r:= n.tagName: returns the (tag) name of n in r.{
vars(n : n, r : r) ∗ α 7→ sn[β, γ]ef

}
r := n.tagName{

vars(n : n, r : s) ∗ α 7→ sn[β, γ]ef

}

• r:= n.getAttribute(s): when s holds a string, the attributes of n are
inspected and the value of the attribute named s is returned in r if
such an attribute exists. If n has no attribute named s then the empty

387

string is returned.{
vars(n : n, s : s′, r : r) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef ∗ val(t, s′′)

}
r := n.getAttribute(s){

vars(n : n, s : s′, r : s′′) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef

}
{
vars(n : n, s : s′, r : r) ∗ α 7→ sn[a, γ]ef ∗ out(a, s′)

}
r := n.getAttribute(s){

vars(n : n, s : s′, r : “”) ∗ α 7→ sn[a, γ]ef

}

• n.setAttribute(s,v): when s and v hold strings, the attributes of n

are inspected and the value of the attribute named s is set to v if such
an attribute exists. If n has no attribute named s then the attribute
set of n is extended with a new attribute with name s and value v.{

vars(n :n, s :s′, v :s′′) ∗ α 7→sn[β � s′m[t]f′ , γ]ef ∗ δ 7→∅g ∗ grove(t,g)
}

n.setAttribute(s, v){
∃r, f′′. vars(n : n, s : s′, v : s′′)

∗α 7→ sn[β � s′m[#textr[s′′]f′′]f′ , γ]ef ∗ δ 7→ g

}

{
vars(n : n, s : s′, v : s′′) ∗ α 7→ sn[a, γ]ef ∗ out(a, s′) ∗ safe(s′)

}
n.setAttribute(s, v){

∃m, f′,r, f′′. vars(n : n, s : s′, v : s′′)

∗α 7→ sn[a� s′m[#textr[s′′]f′′]f′ , γ]ef

}

• n.removeAttribute(s): when s holds a string, the attribute named s

is removed from the attribute set of n when such an attribute exists.
If n has no attribute named s then n remains unchanged.{

vars(n : n, s : s′) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef ∗ δ 7→ ∅g

}
n.removeAttribute(s){

vars(n : n, s : s′) ∗ α 7→ sn[β, γ]ef ∗ δ 7→ s′m[t]f′
}

388

{
vars(n : n, s : s′) ∗ α 7→ sn[a, γ]ef ∗ out(a, s′)

}
n.removeAttribute(s){

vars(n : n, s : s′) ∗ α 7→ sn[a, γ]ef

}
• r:= n.getAttributeNode(s): when s holds a string, the attributes of
n are inspected and the identifier of the attribute named s is returned
in r if such an attribute exists. If n has no attribute named s then
null is returned.{

vars(n : n, s : s′, r : r) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef

}
r := n.getAttributeNode(s){

vars(n : n, s : s′, r : m) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef

}
{
vars(n : n, s : s′, r : r) ∗ α 7→ sn[a, γ]ef ∗ out(a, s′)

}
r := n.getAttributeNode(s){

vars(n : n, s : s′, r : null) ∗ α 7→ sn[a, γ]ef

}
• r:= n.setAttributeNode(a): when a identifies a DOM attribute node

named s, the attributes of n are inspected and the attribute named s
is replaced with a if such an attribute exists. If n has no attribute
named s then the attribute set of n is extended with a.{

vars(n : n, a : m,r : r)

∗α 7→ sn[β � s′p[t1]f1 , γ]ef ∗ δ 7→ s′m[t2]f2 ⊕∅g ∗ ε 7→ ∅g

}
r := n.setAttributeNode(a){

vars(n : n, a : m,r : p)

∗α 7→ sn[β � s′m[t2]f2 , γ]ef ∗ δ 7→ ∅g ∗ ε 7→ s′p[t1]f1

}

{
vars(n :n, a :m,r :r) ∗ α 7→ sn[a, γ]ef ∗ δ 7→ s′m[t]f′ ⊕∅g ∗ out(a,m)

}
r := n.setAttributeNode(a){

vars(n : n, a : m,r : null) ∗ α 7→ sn[a� s′m[t]f′ , γ]ef ∗ δ 7→ ∅g

}
• r:= n.removeAttributeNode(a): when a identifies an attribute node

in the attribute set of n, a is removed from the attribute set of n and

389

is returned in r. This operation fails if a is not in the attribute set of
n. {

vars(n : n, a : m, r : r) ∗ α 7→ sn[β � s′m[t]f′ , γ]ef ∗ δ 7→ ∅g

}
r := n.removeAttributeNode(a){

vars(n : n, a : m, r : m) ∗ α 7→ sn[β, γ]ef ∗ δ 7→ s′m[t]f′
}

• r:= n.getElementsByTagName(s): when s holds a string, it searches
the child list of n (using depth-first, left-to-right search), compiles a
NodeList containing the identifiers of those element nodes whose names
match s and returns the identifier of this NodeList in r.{

vars(n : n, s : s, r : r) ∗ α 7→ s′n[β,t]ef ∗ srch(t, s, l)
}

r := n.getElementsByTagName(s){
∃e′, f′. vars(n : n, s : s, r : f′) ∗ α 7→ s′n[β,t]e

′
f ∗ e⊆̇e′ ∗ (s, f′)∈̇e′

}

A.4. Attribute Node Axioms

When n identifies an attribute node, then

• r:= n.name: returns the name of n in r.{
vars(n : n, r : r) ∗ α 7→ sn[β]f

}
r := n.name{

vars(n : n, r : s) ∗ α 7→ sn[β]f

}
• r:= n.value: returns the value of n in r.{

vars(n : n, r : r) ∗ α 7→ sn[t]f ∗ val(t, s′)
}

r := n.value{
vars(n : n, r : s′) ∗ α 7→ sn[t]f

}

A.5. Document Node Axioms

When n identifies a document node, then

390

• r:= n.documentElement: returns the identifier of the document element
in r when it exists; otherwise null is returned.{

vars(n : n, r : r) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
r := n.documentElement{

vars(n : n, r : m) ∗ α 7→ #docn[sm[β, γ]e
′

f′]
e
f & δ

}
{
vars(n : n, r : r) ∗ α 7→ #docn[∅e]

e
f & δ

}
r := n.documentElement{

vars(n : n, r : null) ∗ α 7→ #docn[∅e]
e
f & δ

}

• r:= n.createElement(s): when s holds a safe DOM string, the DOM
grove is extended with a new element node named s. The identifier
of the new element node is returned in r. A DOM string is safe if it
does not contain the invalid ‘#’ character. The new element has no
attributes and no children. This operation fails if s holds an unsafe
string (one containing the ‘#’ character).{

vars(n : n, s : s, r : r) ∗ α 7→ #docn[β]ef & γ ∗ safe(s)
}

r := n.createElement(s){
∃m, f′,e′. vars(n : n, s : s, r : m) ∗ α 7→ #docn[β]ef & γ ⊕ sm[∅a,∅f]e

′
f′

}

• r:= n.createTextNode(s): when s holds a string, the DOM grove is
extended with a new text node with value s. The identifier of the new
text node is returned in r.{

vars(n : n, s : s, r : r) ∗ α 7→ #docn[β]ef & γ
}

r := n.createTextNode(s){
∃m,f′. vars(n : n, s : s, r : m) ∗ α 7→ #docn[β]ef & γ ⊕#textm[s]f′

}

• r:= n.createAttribute(s): when s holds a safe string, the DOM
grove is extended with a new attribute node named s. The identifier
of the new attribute node is returned in r. This operation fails if s

391

holds an unsafe string (one containing the ‘#’ character).{
vars(n : n, s : s, r : r) ∗ α 7→ #docn[β]ef & γ ∗ safe(s)

}
r := n.createAttribute(s){

∃m,f′. vars(n : n, s : s, r : m) ∗ α 7→ #docn[β]ef & γ ⊕ sm[∅tf]f′
}

• r:= n.getElementsByTagName(s): behaves the same way as the ele-
ment node operation with the same name.{

vars(n : n, s : s, r : r) ∗ α 7→ #docn[t]ef & β ∗ srch(t, s, l)
}

r := n.getElementsByTagName(s){
∃e′, f′. vars(n :n, s :s, r :f′) ∗ α 7→#docn[t]e

′
f &β ∗ e⊆̇e ∗ (s, f′)∈̇e′

}

A.6. NodeList Axioms

When f identifies a NodeList, then

• r:= f.length(): returns the length of f in r.{
vars(f : f, r : r) ∗ α 7→ #docu[t]ef′ & δ ∗ TIDs(t, l) ∗ f∈̇f′

}
r := f.length(){

∃m. vars(f : f, r : m) ∗ α 7→ #docu[t]ef′ & δ ∗m=̇ |l|
}

{
vars(f : f, r : r) ∗ α 7→ sn[β,t]ef′ ∗ TIDs(t, l) ∗ f∈̇f′

}
r := f.length(){

∃m. vars(f : f, r : m) ∗ α 7→ sn[β,t]ef′ ∗m=̇ |l|
}

{
vars(f : f, r : r) ∗ α 7→ #textn[s]f′ ∗ f∈̇f′

}
r := f.length(){

vars(f : f, r : 0) ∗ α 7→ #textn[s]f′
}

{
vars(f : f, r : r) ∗ α 7→ sn[t]f′ ∗ TIDs(t, l) ∗ f∈̇f′

}
r := f.length(){

∃m. vars(f : f, r : m) ∗ α 7→ sn[s′]f′ ∗m=̇ |l|
}

392

{
vars(f : f, r : r) ∗ α 7→ #docu[t]ef′ & γ ∗ srch(t, s, l) ∗ (s, f) ∈ e

}
r := f.length(){

∃m. vars(f : f, r : m) ∗ α 7→ #docu[t]ef′ & γ ∗m=̇ |l|
}

{
vars(f:f, r:r) ∗ α 7→ sn[β,t]ef′ ∗ srch(t, s′, l) ∗(s′,f)∈̇e

}
r := f.length(){

∃m. vars(f : f, r : m) ∗ α 7→ sn[β,t]ef′ ∗m=̇ |l|
}

• r:= f.item(i): when i holds an integer, the ith item of f (indexed
from 0) is returned in r. If i holds an out-of-bounds value (i.e. negative
or greater than or equal to the length of f) then null is returned.{

vars(f : f, i : i, r : r)

∗α 7→ #docu[sn[β, γ]e1f1]e2f2 & δ ∗ f∈̇f2 ∗ i=̇0

}
r := f.item(i){

vars(f : f, i : i, r : n) ∗ α 7→ #docu[sn[β, γ]e1f1]e2f2 & δ
}

{
vars(f : f, i : i, r : r) ∗ α 7→ #docu[β]ef′ & γ ∗ f∈̇f′ ∗ i ˙6=0

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ #docu[β]ef′ & γ
}

{
vars(f : f, i : i, r : r) ∗ α 7→ #docu[∅e]

e
f′ & γ ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ #docu[∅e]
e
f′ & γ

}
{
vars(f : f, i : i, r : r) ∗ i<̇0 ∗ α 7→ sn[α, β]ef′ ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ sn[α, β]ef′

}

393

{
vars(f : f, i : i, r : r)

∗α 7→ sn[β,t]ef′ ∗ TIDs(t, l) ∗ i≥̇ |l| ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ sn[β,t]ef′

}
{
vars(f : f, i : i, r : r)

∗α 7→ sn[β,t⊗ γ]ef′ ∗ TIDs(t, l) ∗ 0≤̇i<̇ |l| ∗ f∈̇f′

}
r := f.item(i){

∃m. vars(f : f, i : i, r : m) ∗ α 7→ sn[β,t⊗ γ]ef′ ∗m=̇ |l|i
}

{
vars(f : f, i : i, r : r) ∗ α 7→ #textn[s]f′ ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ #textn[s]f′
}

{
vars(f : f, i : i, r : r) ∗ i<̇0 ∗ α 7→ sn[α]f′ ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ sn[α]f′
}

{
vars(f : f, i : i, r : r) ∗ α 7→ sn[t]f′ ∗ TIDs(t, l) ∗ i≥̇ |l| ∗ f∈̇f′

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ sn[t]f′
}

{
vars(f : f, i : i, r : r)

∗α 7→ sn[t� β]f′ ∗ TIDs(t, l) ∗ 0≤̇i<̇ |l| ∗ f∈̇f′

}
r := f.item(i){

∃m. vars(f : f, i : i, r : m) ∗ α 7→ sn[t� β]f′ ∗m=̇ |l|i
}

{
vars(f : f, i : i, r : r) ∗ α 7→ #docu[β]ef′ & γ ∗ (s, f)∈̇e ∗ i<̇0

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ #docu[β]ef′ & γ
}

394

{
vars(f : f, i : i, r : r)

∗α 7→ #docu[t]ef′ & β ∗ srch(t, s, l) ∗ (s, f)∈̇e ∗ 0≤̇i<̇ |l|

}
r := f.item(i){

∃m. vars(f : f, i : i, r : m) ∗ α 7→ #docu[t]ef′ & β ∗m=̇ |l|i
}

{
vars(f : f, i : i, r : r)

∗α 7→ #docu[t]ef′ & β ∗ srch(t, s, l) ∗ (s, f)∈̇e ∗ i≥̇ |l|

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ #docu[t]ef′ & β
}

{
vars(f : f, i : i, r : r)

∗α 7→ sn[β,t]ef′ ∗ srch(t, s′, l) ∗ (s′, f)∈̇e ∗ 0≤̇i<̇ |l|

}
r := f.item(i){

∃m. vars(f : f, i : i, r : m) ∗ α 7→ sn[β,t]ef′ ∗m=̇ |l|i
}

{
vars(f : f, i : i, r : r)

∗α 7→ sn[β,t]ef′ ∗ srch(t, s′, l) ∗ (s′, f)∈̇e ∗ i≥̇ |l|

}
r := f.item(i){

∃m. vars(f : f, i : i, r : null) ∗ α 7→ sn[β,t]ef′

}
{
vars(f : f, i : i, r : r) ∗ α 7→sn[β, γ]ef′ ∗ (s′, f)∈̇e ∗ i<̇0

}
r := f.item(i){

vars(f : f, i : i, r : null) ∗ α 7→ sn[β, γ]ef′

}

395

B. DOM Implementation
Correctness

Definition 128 (JS assertion transformation). Given the implementa-
tion function [[[.]]] (Def. 87), and the JSLogic logical expressions JSLExp

(Def. 74), the JSLogic expression transformation function, bb.cce : JSLExp→
JSLExp, is defined over the structure of JSLogic expressions as follows:

bbwcce , w bbLcce , L bbScce , S bbecce , [[[e]]] bb�cce , �

bbxcce , x bblcce , l bbE1 	 E2cce , bbE1cce 	 bbE2cce

bbE1.E2cce , bbE1cce. bbE2cce bbE1 : E2cce , bbE1cce : bbE2cce

bbE1 ⊕ E2cce , bbE1cce ⊕ bbE2cce bbE1.E2cce , bbE1cce . bbE2cce

bbλE1.E2cce , λ bbE1cce . bbE2cce

Given the JSLogic assertions JSAst (Def. 75), the JSLogic assertion trans-
formation function, bb.cca : JSAst→ JSAst, is defined over the structure of
JSLogic assertions as follows:
bbfalsecca , false bbP ⇒ Qcca , bbP cca ⇒ bbQcca bb∃x. P cca , ∃x. bbP cca

bbE1 	 E2cca , bbE1cce 	 bbE2cce bbempcca , emp

bb(E1, E2) 7→ Ecca , (bbE1cce , bbE2cce) 7→ bbEcce bbP ∗Qcca , bbP cca ∗ bbQcca

bbP −−∗ Qcca , bbP cca −−∗ bbQcca bbP ∪∗ Qcca , bbP cca ∪∗ bbQcca

Lemma 17 (JS expression translation). Given the expression transforma-
tion function bb.cce (Def. 128), the JSLogic expressions Exp, the JSLogic

evaluation environments Env and the JSLogic evaluation function (|.|)(.)

(Def. 74), for all E ∈ Exp and ε ∈ Env:

(|bbEcce|)
ε = (|E|)ε ∨ ∃x, e. (|E|)ε =λx.e ∧ (|bbEcce|)

ε = λx. [[[e]]]

396

Proof. By induction on the structure of JSLogic expressions. The full
proof is straightforward and is omitted here. Informally, the proof of
all base cases but λE1.E2 follows trivially from the definition of bb.cce
(i.e. the bb.cce behaves as the identity function in these cases). The proof of
inductive cases follow from the inductive hypotheses and the definition of
the evaluation function. The proof of λE1.E2 follows from the definitions
of (|.|)ε and bb.cce.

Lemma 18 (JS assertion translation). Given the translation function bb.cc
(Def. 89), the interface functions I (Def. 80), the JSLogic evaluation envi-
ronments Env (Def. 74), and the JSLogic assertions JSAst (Def. 75), for
all ε ∈ Env, I ∈ I and P ∈ JSAst:

bb|P |εcc
I = |bbP cca|ε

Proof. By induction on the structure of JSLogic assertions.
Case false

bb|false|εcc
I = bb∅ccI = ∅ = |false|ε = |bbfalsecca|ε

Case emp

bb|emp|εcc
I = bb{0}ccI = {0} = |emp|ε = |bbempcca|ε

where 0 denotes the empty JavaScript heap.

Case (E1, E2) 7→ E

bb|(E1, E2) 7→ E|εcc
I

(bb.cc Def.) =

{
[(l, x) 7→ w]

(|E1|)ε =l ∧ (|E2|)ε =x ∧ (|E|)ε =v

∧
(
(∃y, e. v=λy.e ∧ w=λy. [[[e]]]) ∨ v=w

)}
(Lemma17) =

{
[(l, x) 7→ w] (|bbE1cce|)

ε =l ∧ (|bbE2cce|)
ε =x ∧ (|bbEcce|)

ε =w
}

(bb.cce Def.) = |(bbE1cce , bbE2cce) 7→ bbEcce|ε
(bb.cc Def.) = |bb(E1, E2) 7→ Ecca|ε

397

Case E1 	 E2

The proof of this case is analogous and omitted here.

Case ∃x. P
Let ε=(Γ, L), then we have:

bb|∃x. P |εcc
I

=

 ⋃
v∈JSLValDOM

|P |([Γ|x 7→v],L)

I

=
⋃

v∈JSLValDOM

⌊⌊
|P |([Γ|x 7→v],L)

⌋⌋I
(I.H.) =

⋃
v∈JSLValDOM

|bbP cca|([Γ|x 7→v],L)

= |∃x. bbP cca|ε
(bb.cc Def.) = |bb∃x. P cca|ε

Case P ∗Q

bb|P ∗Q|εcc
I

(bb.cc , |.| Def.) =

{
h1 ◦ h2

∃h′1 ∈ |P |ε . ∃h′2 ∈ |Q|ε .
h1= 〈〈h′1〉〉js ∧ h2= 〈〈h′2〉〉js

}

=

{
h1
∃h′1 ∈ |P |ε .
h1= 〈〈h′1〉〉js

}
∗

{
h2
∃h′2 ∈ |Q|ε .
h2= 〈〈h′2〉〉js

}
(bb.cc , |.| Def.) = bb|P |εcc

I ∗ bb|Q|εcc
I

(I.H.) = |bbP cca|ε ∗ |bbQcca|ε
(bb.cc Def.) = |bbP ∗Qcca|ε

Case P †Q where † ∈ {−−∗,∪∗,⇒}
The proof of these cases are analogous to that of P ∗ Q and are omitted
here.

Theorem 5 (Correct refinement (with proof)). For all P,Q ∈ JSAstDOM

398

(Def. 76) and C ∈ JSOpDOM (Def. 70):

{P} C {Q} =⇒ τ : {P} C {Q}

Proof. By induction on the structure of triples {P} C {Q}. In each case we
assume, as the inductive hypothesis, that the translated premises of each
rule are sound. We show how to derive a proof of translated conclusions
from these translated premises.

Case e ∈ OpDOM

This follows immediately from Lemma 23.

Case (Definition)

τ : {P} e {Q}
(I.H.)

∀I,ε,r.{bb|P |ε ∗ rcc
I} [[[e]]] {bb|Q|ε ∗ rcc

I}
τ : Def.

r 6∈ fv(Q)

r 6∈ fv(|Q|ε)
∀I,ε,r. {bb|P |ε ∗ rcc

I} var [[[e]]] {bb|Q|ε ∗ rcc
I ∗ |r=̇undefined|ε}

(Definition)

∀I,ε,r. {bb|P |ε ∗ rcc
I} [[[var e]]] {bb|Q ∗ r=̇undefined|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} var e {Q ∗ r=̇undefined} τ : Def.

Case (Value)

∀ε. {|emp|ε} v {|r=̇v|ε}
(Value)

∀I, ε, r. {|emp|ε ∗ bbrcc
I} v {|r=̇v|ε ∗ bbrcc

I}
(Frame)

∀I, ε, r. {bb|emp|ε ∗ rcc
I} [[[v]]] {bb|r=̇v|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {emp} v {r=̇v} τ : Def.

Case (Variable)
Let P , σ(Ls1, l, x, L) ∪∗ γ(Ls2, L.x, V). Given an evaluation environ-
ment ε, an interface function I, and a set of states r, from Lemma
18 and the definition of bb.ccI we have bb|P |ε ∗ rcc

I = |P ′|ε ∗ bbrcc
I and

bb|P ∗ r=̇L.x|ε ∗ rcc
I = |P ′ ∗ r=̇ bbLcce .x|ε ∗ bbrcc

I , where

P ′ , σ(bbLs1cce , l, x, bbLcce) ∪∗ γ(bbLs2cce , bbLcce .x, bbV cce)

399

We then have:

∀ε. {|P ′|ε} x {|P ′ ∗ r=̇ bbLcce .x|ε}
(Variable)

∀I, ε, r. {|P ′|ε ∗ bbrcc
I} x {|P ′ ∗ r=̇ bbLcce .x|ε ∗ bbrcc

I}
(Frame)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[x]]] {bb|P ∗ r=̇L.x|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} x {P ∗ r=̇L.x} τ : Def.

Case (Variable Null)
Let P , σ(Ls, l, x, null). Given an evaluation environment ε, an interface
function I, and a set of states r, from Lemma 18 and the definition
of bb.ccI we have bb|P |ε ∗ rcc

I = |P ′|ε ∗ bbrcc
I and bb|P ∗ r=̇null.x|ε ∗ rcc

I =

|P ′ ∗ r=̇null.x|ε ∗ bbrcc
I , where P ′ = σ(bbLscce , l, x, null).

We then have:

∀ε. {|P ′|ε} x {|P ′ ∗ r=̇null.x|ε}
(Variable Null)

∀I, ε, r. {|P ′|ε ∗ bbrcc
I} x {|P ′ ∗ r=̇null.x|ε ∗ bbrcc

I}
(Frame)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[x]]] {bb|P ∗ r=̇null.x|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} x {P ∗ r=̇null.x} τ : Def.

Case (Member Access)
Let Q , R ∗ γ(Ls, V, L) ∗ L ˙6=null. Given an evaluation ε, an interface
function I, and a set of states r, from Lemma 18 and the definition of bb.cc
we have

bb|Q|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗ |S|ε
bb|Q ∗ r=̇L.x|εcc

I = bb|R|ε ∗ rcc
I ∗ |S ∗ r=̇ bbLcce .x|ε

bb|Q ∗ r=̇V |εcc
I = bb|R|ε ∗ rcc

I ∗ |S ∗ r=̇ bbV cce|ε

where S , γ(bbLscce , bbV cce , bbLcce) ∗ bbLcce ˙6=null.

400

We then have:

τ : {P} e {Q ∗ r=̇V }
(I.H.)

∀I,ε,r. {bb|P |ε ∗ rcc
I} [[[e]]] {bb|Q ∗ r=̇V |ε ∗ rcc

I}
τ : Def.

∀I,ε,r.{bb|P |ε ∗ rcc
I} [[[e]]] {bb|R|ε ∗ rcc

I ∗ |S ∗ r=̇ bbV cce|ε}
Def. of bb.cc

∀I,ε,r. {bb|P |ε ∗ rcc
I}

[[[e]]].x{
bb|R|ε ∗ rcc

I ∗ |S ∗ r=̇ bbLcce .x|ε
}

(Member Access)

∀I,ε,r.{bb|P |ε ∗ rcc
I} [[[e.x]]] {bb|Q ∗ r=̇L.x|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} e.x {Q ∗ r=̇L.x} τ : Def.

Case (Computed Access)
Let Q , S2 ∗ γ(Ls2, V2, X) and R , S1 ∗ γ(Ls1, V1, L) ∗L ˙6=null. Given an
evaluation environment ε, an interface function I, and a set of states r,
from Lemma 18 and the definition of bb.cc we have bb|R|ε ∗ rcc

I = bb|S1|ε ∗ rcc
I∗

|T1|ε and bb|R ∗ r=̇V1|ε ∗ rcc
I = bb|S1|ε ∗ rcc

I ∗ |T1 ∗ r=̇ bbV1cce|ε, where

T1 , γ(bbLs1cce , bbV1cce , bbLcce) ∗ bbLcce ˙6=null

Similarly, we know

bb|Q|ε ∗ rcc
I =bb|S2|ε ∗ rcc

I ∗ |T2|ε⌊⌊∣∣Q ∗X∈̇χU∗ r=̇V2

∣∣
ε
∗ r
⌋⌋I

=bb|S2|ε ∗ rcc
I ∗
∣∣T2 ∗ bbXcce ∈̇χ

U∗ r=̇ bbV2cce
∣∣
ε

bb|Q ∗ r=̇L.x|ε ∗ rcc
I =bb|S2|ε ∗ rcc

I∗ |T2 ∗ r=̇ bbLcce.x|ε
T2 =γ(bbLs2cce , bbV2cce , bbXcce)

401

We then have:

τ : {P} e1 {R ∗ r=̇V1}
(I.H.)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[e1]]] {bb|R ∗ r=̇V1|ε ∗ rcc

I}
τ : Def.

∀I,ε,r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]
{
bb|S1|ε ∗ rcc

I ∗ |T1 ∗ r=̇ bbV1cce|ε
} bb.cc Def.

(‡)

∀I,ε,r. {bb|P |ε ∗ rcc
I}

[[[e1]]][[[[e2]]]]{
bb|S2|ε ∗ rcc

I ∗ |γ(bbLs2cce , bbV2cce , bbXcce) ∗ r=̇ bbLcce .x|ε
}

(†)

{bb|P |ε ∗ rcc
I} [[[e1[e2]]]] {bb|Q ∗ r=̇L.x|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} e1[e2] {Q ∗ r=̇l.x} τ : Def.

where (†) denotes the application of the (Computed Access) rule, and

τ : {R} e2 {Q ∗X∈̇χU ∗ r=̇V2}
(I.H.)

∀I, ε, r. {bb|R|ε ∗ rcc
I}

[[[e2]]]{⌊⌊∣∣Q ∗X∈̇χU ∗ r=̇V2

∣∣
ε
∗ r
⌋⌋I}

τ : Def.

∀I, ε, r.
{
bb|S1|ε ∗ rcc

I ∗ |T1|ε
}

[[[e2]]]{
bb|S2|ε ∗ rcc

I ∗
∣∣γ(bbLs2cce ,bbV2cce ,bbXcce) ∗ bbXcce ∈̇χU ∗ r=̇ bbV2cce

∣∣
ε

}
bb.cc Def.

(‡)

Case (Object)
Let Pi,Ri ∗ γ(Lsi, Yi, Xi); {Pi−1}ei{Pi ∗ r=̇Yi} for i ∈ 1 · · ·n and Q ,

Pn ∗ R; R,∃l. newobj(l,@proto, x1, · · · xn) ∗ (l, x1) 7→ X1 ∗ · · · ∗ (l, xn) 7→
Xn ∗ (l,@proto) 7→ lop ∗ r=̇l. Assume x1 6= · · · 6=xn and that r 6∈ fv(Pn).
Given an evaluation environment ε, an interface function I, a set of states
r, and i ∈ 1..n, from from Lemma 18 and the definition of bb.ccI we know
bb|Pi|ε ∗ rcc

I = bb|Ri|ε ∗ rcc
I ∗ |Ti|ε and bb|Pi|ε ∗ r=̇Yi ∗ rccI = bb|Ri|ε ∗ rcc

I ∗
|Ti ∗ r=̇ bbYicce|ε, where Ti , γ(bbLsicce , bbYicce , bbXicce).

402

Similarly, we know bb|Q ∗ r|εcc
I = bb|Rn|ε ∗ rcc

I ∗ |Tn ∗R′|ε, where

R′ , ∃l. newobj(l,@proto, x1, · · · xn)

∗(l, x1) 7→ bbX1cce ∗ · · · ∗ (l, xn) 7→ bbXncce
∗(l,@proto) 7→ lop ∗ r=̇l

We then have:

(‡)

τ : {Pi−1} ei {Pi} ∀i ∈ 2..n
(I.H.)

∀I,ε,r.{bb|Pi−1|ε ∗ rcc
I} [[[ei]]] {bb|Pi|ε ∗ rcc

I} ∀i ∈ 2..n
τ : Def.

∀I,ε,r. {bb|Ri−1|ε ∗ rcc
I ∗ |Ti|ε}

[[[ei]]] ∀i ∈ 2..n

{bb|Ri|ε ∗ rcc
I ∗|Ti ∗ r=̇ bbYicce|ε}

bb.ccDef.

∀I, ε, r. {bb|P0|ε ∗ rcc
I}

x1:[[[e1]]],..., xn:[[[en]]]

{bb|Rn|ε ∗ rcc
I ∗ |Tn ∗R′|ε}

(Object)

∀I,ε,r.{bb|P0|ε ∗ rcc
I} [[[x1:e1,..., xn:en]]] {bb|Q|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P0} x1:e1,...,xn:en {Q}
τ : Def.

τ : {P0} e1 {P1}
(I.H.)

∀I, ε, r. {bb|P0|ε ∗ rcc
I} [[[e1]]] {bb|P1|ε ∗ rcc

I}
τ : Def.

∀I, ε, r.
{
bb|P0|ε ∗ rcc

I
}

[[[e1]]]
{
bb|R1|ε ∗ rcc

I ∗ |Ti ∗ r=̇ bbY1cce|ε
} bb.ccDef.

(‡)

403

Case (Binary Operators)
Let Q , S2 ∗ γ(Ls2, V2, V4); R , S1 ∗ γ(Ls1, V1, V3), and V=V3⊕V4.
Given an evaluation environment ε, an interface function I and a set of

states r, from Lemma 18 and the definition of bb.ccI we know

bb|Q ∗ r=̇V2|ε ∗ rcc
I = bb|S2|ε ∗ rcc

I ∗ |γ(bbLs2cce , bbV2cce , bbV4cce) ∗ r=̇ bbV2cce|ε
bb|R|ε ∗ rcc

I = bb|S1|ε ∗ rcc
I ∗ |γ(bbLs1cce , bbV1cce , bbV3cce)|ε

bb|R ∗ r=̇V1|ε ∗ rcc
I = bb|S1|ε ∗ rcc

I ∗ |γ(bbLs1cce , bbV1cce , bbV3cce) ∗ r=̇ bbV1cce|ε
bbV cce = bbV3cce⊕bbV4cce

Then we have:

τ : {P} e1 {R ∗ r=̇V1}
(I.H.)

∀I,ε,r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]{
bb|S1 ∗ γ(Ls1,V1,V3) ∗ r=̇V1|ε ∗ rcc

I
}

τ : Def.

∀I,ε,r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]{
bb|S1|ε ∗ rcc

I

∗ |γ(bbLs1cce , bbV1cce , bbV3cce) ∗ r=̇ bbV1cce|ε

}
bb.cc Def.

(†) (‡)

∀I, ε, r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]⊕ [[[e2]]]{
bb|S2|ε ∗ rcc

I

∗ |γ(bbLs2cce , bbV2cce , bbV4cce) ∗ r=̇ bbV cce|ε

}
(∗)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[e1⊕ e2]]] {bb|Q ∗ r=̇V |ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} e1⊕ e2 {Q ∗ r=̇v} τ : Def.

where (∗) denotes the application of the (Binary Operators) rule, and

404

τ : {R} e2 {Q ∗ r=̇V2}
(I.H.)

∀I, ε, r. {bb|R|ε ∗ rcc
I} [[[e2]]] {bb|Q ∗ r=̇V2|ε ∗ rcc

I}
τ : Def.

∀I, ε, r. {bb|S1 ∗ γ(Ls1, V1, V3)|ε ∗ rcc
I}

[[[e2]]]

{bb|S2 ∗ γ(Ls2, V2, V4) ∗ r=̇V2|ε ∗ rcc
I}

R, Q Defs.

∀I, r, ε. {bb|S1|ε ∗ rcc
I ∗ |γ(bbLs1cce , bbV1cce , bbV3cce)|ε}

[[[e2]]]

{bb|S2|ε ∗ rcc
I ∗ |γ(bbLs2cce , bbV2cce , bbV4cce) ∗ r=̇ bbV2cce|ε}

bb.cc Def.

(†)

V = V3⊕V4

bbV cce = bbV3cce⊕bbV4cce
(‡)

Case (Assign Global)
Let Q , S ∗ γ(Ls, V1, V2).
Given an evaluation environment ε, an interface function I and a set of
states r, from Lemma 18 and the definition of bb.ccI we know

⌊⌊
|Q ∗ (lg , X) 7→ � ∗ r=̇V1|ε ∗ r

⌋⌋I
= bb|S|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗(lg , bbXcce) 7→ � ∗ r=̇ bbV1cce

∣∣∣∣∣
ε⌊⌊

|Q ∗ (lg , X) 7→ V2 ∗ r=̇V2|ε ∗ r
⌋⌋I

= bb|S|ε ∗ rcc
I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)

∗(lg , bbXcce) 7→ bbV2cce ∗ r=̇ bbV2cce

∣∣∣∣∣
ε

We then have:

405

τ : {P} e1 {R ∗ r=̇null.X}
(I.H.)

∀I, ε, r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]{
bb|R ∗ r=̇null.X|ε ∗ rcc

I
}

τ : Def.

∀I, ε, r. {bb|P |ε ∗ rcc
I}

[[[e1]]]

{bb|R|ε ∗ rcc
I ∗ |r=̇null. bbXcce|ε}

bb.cc Def.

(‡)

∀I,ε,r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]=[[[e2]]]

bb|S|ε ∗ rcc

I ∗∣∣∣∣∣∣∣
γ(bbLscce , bbV1cce , bbV2cce)
∗(lg, X) 7→bbV2cce
∗r=̇ bbV2cce

∣∣∣∣∣∣∣
ε

(†)

∀I,ε,r.
{
bb|P |ε∗rcc

I
}

[[[e1=e2]]]

{⌊⌊
|Q ∗ (lg, X) 7→V2 ∗ r=̇V2|ε
∗r

⌋⌋I} bb.cc,[[[.]]] Def.

τ : {P} e1 = e2 {Q ∗ (lg, X) 7→ V2 ∗ r=̇V2}
τ : Def.

where (†) denotes the application of the (Assign Global) rule, and

τ : {R} e2 {Q ∗ (lg, X) 7→ � ∗ r=̇V1}
(I.H.)

∀I,ε,r.{bb|R|ε∗rcc
I} [[[e2]]] {

⌊⌊
|Q ∗ (lg, X) 7→� ∗r=̇V1|ε ∗ r

⌋⌋I} τ : Def.

∀I, ε, r. {bb|R|ε ∗ rcc
I}

[[[e2]]]{
bb|S|ε ∗ rcc

I ∗
|γ(bbLscce ,bbV1cce ,bbV2cce) ∗ (lg,bbXcce) 7→ � ∗ r=̇ bbV1cce|ε

}
bb.cc Def.

(‡)

406

Case (Assign Local)
Let Q , S ∗ γ(Ls, V1, V2).
Given an evaluation environment ε, an interface function I and a set of
states r, from Lemma 18 and the definition of bb.ccI we know

bb|Q ∗ (L,X) 7→ V3 ∗ r=̇V1|ε ∗ rcc
I = bb|S|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗(bbLcce , bbXcce) 7→ bbV3cce ∗ r=̇ bbV1cce

∣∣∣∣∣
ε

bb|Q ∗ (L,X) 7→ V2 ∗ r=̇V2|ε ∗ rcc
I = bb|S|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗(bbLcce , bbXcce) 7→ bbV2cce ∗ r=̇ bbV2cce

∣∣∣∣∣
ε

We then have:

τ : {P} e1 {R ∗ r=̇L.X}
(I.H.)

∀I, ε, r. {bb|P |ε ∗ rcc
I}

[[[e1]]]

{bb|R ∗ r=̇L.X|ε ∗ rcc
I}

τ : Def.

∀I, ε, r. {bb|P |ε ∗ rcc
I}

[[[e1]]]

{bb|R|ε ∗ rcc
I ∗ |r=̇ bbLcce . bbXcce|ε}

bb.cc Def.

(‡)

∀I,ε,r.
{
bb|P |ε ∗ rcc

I
}

[[[e1]]]=[[[e2]]]

bb|S|ε ∗ rcc

I

∗

∣∣∣∣∣∣∣
γ(bbLscce , bbV1cce , bbV2cce) ∗
(bbLcce , bbXcce) 7→bbV2cce
∗ r=̇ bbV2cce

∣∣∣∣∣∣∣
ε

(†)

∀I,ε,r.
{
bb|P |ε∗rcc

I
}

[[[e1=e2]]]

{⌊⌊
|Q ∗ (L,X) 7→V2 ∗ r=̇V2|ε
∗r

⌋⌋I} bb.cc,[[[.]]] Def.

τ : {P} e1 = e2 {Q ∗ (L,X) 7→ V2 ∗ r=̇V2}
τ : Def.

where (†) denotes the application of the (Assign Local) rule, and

407

τ : {R} e2 {Q ∗ (L,X) 7→ V3 ∗ r=̇V1}
(I.H.)

∀I,ε,r.{bb|R|ε∗rcc
I} [[[e2]]] {bb|Q∗(L,X) 7→V3∗r=̇V1|ε∗rcc

I}
τ : Def.

∀I,ε,r. {bb|R|ε ∗ rcc
I}

[[[e2]]]
bb|S|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗ (bbLcce , bbXcce) 7→ bbV3cce ∗ r=̇ bbV1cce

∣∣∣∣∣
ε

bb.cc Def.

(‡)

Case (Function)
Let

Q =

 ∃l1, l2. newobj(l1,@proto) ∗ (l1,@proto) 7→ lop

∗newobj(l2,@proto, prototype,@scope,@body)

∗fun(l2, l, x, e, l1) ∗ r=̇l2

Given an evaluation environment ε, an interface function I and a set of
states r, from Lemma 18 and the definition of bb.ccI we know bb|Q|ε ∗ rcc

I =

|Q′|ε ∗ bbrcc
I , where

Q′ =

 ∃l1, l2. newobj(l1,@proto) ∗ (l1,@proto) 7→ lop

∗newobj(l2,@proto, prototype,@scope,@body)

∗fun(l2, l, x, [[[e]]] , l1) ∗ r=̇l2

We then have:

∀ε. {|emp|ε} function(x){[[[e]]]} {|Q′|ε}
(Function)

∀I, ε, r. {|emp|ε ∗ bbrcc
I} function(x){[[[e]]]} {|Q′|ε ∗ bbrcc

I}
(Frame)

∀I, ε, r. {bb|emp|ε ∗ rcc
I} [[[function(x){e}]]] {bb|Q|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {emp} function(x){e} {Q} τ : Def.

Case (Named Function)
The proof of this case is analogous to that (Function) and is omitted here.

408

Case (While)
Let S , R ∗ γ(Ls, V1, V2), Q , S ∗ False(V2) ∗ r=̇undefined.
Given an evaluation environment ε, an interface function I and a set of
states r, from Lemma 18 and the definition of bb.ccI we know

bb|S ∗ r=̇V1|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗
∣∣∣γ(bbLscce , bbV1cce , bbV2cce) ∗ r=̇ bbV1cce

∣∣∣
ε

bb|S ∗ True(V2)|ε ∗ rcc
I = bb|R|ε ∗ rcc

I

∗
∣∣∣γ(bbLscce , bbV1cce , bbV2cce) ∗ True(bbV2cce)

∣∣∣
ε

bb|Q|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗False(bbV2cce) ∗ r=̇undefined

∣∣∣∣∣
ε

We then have:

τ : {P} e1 {S ∗ r=̇V1}
(I.H.)

∀I,ε,r.{bb|P |ε ∗ rcc
I} [[[e1]]] {bb|S ∗ r=̇V1|ε ∗ rcc

I}
τ : Def.

∀I,ε,r.
{
bb|P |ε∗rcc

I
}

[[[e1]]]

bb|R|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbV2cce)
∗ r=̇ bbV1cce

∣∣∣∣∣
ε

bb.cc Def.

(†)

∀I, ε, r. {bb|P |ε ∗ rcc
I}

while([[[e1]]]){[[[e2]]]}{
bb|R|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLscce , bbV1cce , bb2cce)
∗False(bbV2cce) ∗ r=̇undefined

∣∣∣∣∣
ε

}
(While)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[while(e1){e2}]]] {bb|Q|ε ∗ rcc

I}
bb.cc,[[[.]]] Def.

τ : {P} while(e1){e2} {Q} τ : Def.

τ : {S ∗ True(V2)} e2 {P}
(I.H.)

∀I, ε, r. {bb|S ∗ True(V2)|ε ∗ rcc
I} [[[e2]]] {bb|P |ε ∗ rcc

I}
τ : Def.

∀I, ε, r.

{
bb|R|ε ∗ rcc

I ∗
|γ(bbLscce,bbV1cce,bbV2cce)∗True(bbV2cce))|ε

}
[[[e2]]]

{
bb|P |ε ∗ rcc

I
} bb.cc Def.

(†)

409

Case If
This case is analogous to that of (While) and is omitted here.

Case (With)
Let S , R ∗ γ(Ls, V1, L1).
Given an evaluation environment ε, an interface function I, a set of states
r and assertions P and Q, from Lemma 18 and the definition of bb.ccI we
know

bb|S ∗ l=̇L ∗ r=̇V1|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLscce , bbV1cce , bbL1cce)
∗ l=̇ bbLcce ∗ r=̇ bbV1cce

∣∣∣∣∣
ε

bb|S ∗ l=̇L|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLscce , bbV1cce , bbL1cce)
∗ l=̇ bbLcce

∣∣∣∣∣
ε

bb|S ∗ l=̇L1 : L|ε ∗ rcc
I = bb|R|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLscce , bbV1cce , bbL1cce)
∗ l=̇ bbL1cce : bbLcce

∣∣∣∣∣
ε

bb|P ∗ l=̇L|ε ∗ rcc
I = bb|P |ε ∗ rcc

I ∗
∣∣∣l=̇ bbLcce∣∣∣ε

bb|Q ∗ l=̇L|ε ∗ rcc
I = bb|Q|ε ∗ rcc

I ∗
∣∣∣l=̇ bbLcce∣∣∣ε

bb|P ∗ l=̇L1 : L|ε ∗ rcc
I = bb|P |ε ∗ rcc

I ∗
∣∣∣l=̇ bbL1cce : bbLcce

∣∣∣
ε

We then have:

τ : {P ∗ l=̇l} e1 {S ∗ l=̇l ∗ r=̇v1}
(I.H.)

∀I,ε,r. {bb|P ∗ l=̇L|ε ∗ rcc
I}

[[[e1]]]

{bb|S ∗ l=̇L ∗ r=̇V1|ε ∗ rcc
I}

τ : Def.

∀I,ε,r. {bb|P |ε ∗ rcc
I ∗ |l=̇ bbLcce|ε}
[[[e1]]]{

bb|R|ε ∗ rcc
I ∗

|γ(bbLscce , bbV1cce , bbL1cce) ∗ l=̇ bbLcce ∗ r=̇ bbV1cce|ε

}
bb.cc Def.

(†)

∀I,ε,r.

{
bb|P |ε ∗ rcc

I

∗ |l=̇ bbLcce|ε

}
with([[[e1]]]){[[[e2]]]}

{
bb|Q|ε ∗ rcc

I

∗ |l=̇ bbLcce|ε

} (With)

∀I,ε,r.{bb|P ∗l=̇L|ε∗rcc
I} [[[with(e1){e2}]]] {bb|Q∗l=̇L|ε∗rcc

I}
bb.cc,[[[.]]] Def.

τ : {P ∗ l=̇L} with(e1){e2} {Q ∗ l=̇L} τ : Def.

410

where (†) denotes the application of the (Assign Local) rule, and

τ : {S ∗ l=̇L1:L} e2 {Q ∗ l=̇L1:L}
(I.H.)

∀I,ε,r.{bb|S ∗ l=̇L1:L|ε ∗ rcc
I} [[[e2]]] {bb|Q ∗ l=̇L1:L|ε ∗ rcc

I}
τ : Def.

∀I,ε,r.

bb|R|ε ∗ rcc

I ∗∣∣∣∣∣γ(bbLscce , bbV1cce , bbL1cce)
∗ l=̇ bbL1cce : bbLcce

∣∣∣∣∣
ε

 [[[e2]]]

{
bb|Q|ε ∗ rcc

I

∗ |l=̇ bbL1cce : bbLcce|ε

} bb.cc Def.

(†)

Case (Function Call)
Let

R1 , S1 ∗ This(F1, T) ∪∗ γ(Ls1, F1, F2)

∗ (F2,@body) 7→ λx.e3 ∗ (F2,@scope) 7→ Ls2

R2 , S2 ∗ γ(Ls4, V1, V2)

R3 , R2 ∗ ∃l. l
.
= l : Ls2 ∗ (l, X) 7→ V2 ∗ (l,@this) 7→ T

∗ (l,@proto) 7→ null ∗ defs(X, l, e3)

∗ newobj(l,@proto,@this, X, decls(X, l, e3))

Given an evaluation environment ε=(Γ, L′), an interface function I, a set
of states r and assertions P and Q, from Lemma 18 and the definition of
bb.ccI we know

bb|R1|ε ∗ rcc
I= bb|S1|ε ∗ rcc

I ∗ |T1|ε
bb|R1 ∗ r=̇F1|ε ∗ rcc

I= bb|S1|ε ∗ rcc
I ∗ |T1 ∗ r=̇ bbF1cce|ε

T1=This(bbF1cce , bbT cce) ∪∗ γ(bbLs1cce ,bbF1cce ,bbF2cce)

∗ (bbF2cce ,@body) 7→ λx. [[[e3]]]

∗ (bbF2cce ,@scope) 7→ bbLs2cce

bb|R2 ∗ l=̇Ls3 ∗ r=̇V1|ε ∗ rcc
I= bb|S2|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLs4cce , bbV1cce , bbV2cce)
∗ l=̇ bbLs3cce ∗ r=̇ bbV1cce

∣∣∣∣∣
ε

bb|Q ∗ l=̇L:Ls2|ε ∗ rcc
I = bb|Q|ε ∗ rcc

I ∗
∣∣∣l=̇ bbLcce : bbLs2cce

∣∣∣
ε

411

bb|Q ∗ l=̇Ls3|ε ∗ rcc
I = bb|Q|ε ∗ rcc

I ∗
∣∣∣l=̇ bbLs3cce

∣∣∣
ε

bb|R3|ε ∗ rcc
I = bb|S2|ε ∗ rcc

I ∗ |T3|ε
T3 =γ(bbLs4cce , bbV1cce , bbV2cce)

∗ ∃l. l=̇l: bbLs2cce ∗ (l, bbXcce) 7→ bbV2cce
∗ (l,@this) 7→bbT cce ∗ (l,@proto) 7→ null

∗ defs(bbXcce , l, [[[e3]]])

∗ newobj

(
l,@proto,@this, bbXcce ,
decls(bbXcce , l, [[[e3]]])

)

We then have:

(†) (‡) (††) (‡‡)
∀I,Γ,r. {bb|P |ε ∗ rcc

I}
[[[e1]]]([[[e2]]]){ ⋃

v∈JSLValDOM

(⌊⌊
|Q|([Γ|l 7→v],L′) ∗ r

⌋⌋I
∗ |l=̇Ls3|([Γ|l 7→v],L′)

)}
(Function Call)

∀I,Γ,r.{bb|P |ε∗rcc
I} [[[e1(e2)]]] {bb|∃l.Q∗l .=Ls3|ε∗rcc

I}
τ : {P} e1(e2) {∃l. Q ∗ l .= Ls3}

τ : Def.

τ : {P} e1 {R1 ∗ r=̇F1}
(I.H.)

∀I,Γ, r.{bb|P |ε ∗ rcc
I} [[[e1]]] {bb|R1 ∗ r=̇F1|ε ∗ rcc

I}
τ : Def.

∀I,Γ, r. {bb|P |ε ∗ rcc
I}

[[[e1]]]

{bb|S1|ε ∗ rcc
I ∗ |T1 ∗ r=̇F1|ε}

(†)

τ : {R1} e2 {R2 ∗ l=̇Ls3 ∗ r=̇V1}
(I.H.)

∀I,Γ, r.{bb|R1|ε ∗ rcc
I} [[[e2]]] {bb|R2 ∗ l=̇Ls3 ∗ r=̇V1|ε ∗ rcc

I}
τ : Def.

∀I,Γ, r. {bb|S1|ε ∗ rcc
I ∗ |T1|ε}

[[[e2]]]{
bb|S2|ε ∗ rcc

I ∗

∣∣∣∣∣γ(bbLs4cce , bbV1cce , bbV2cce)
∗ l=̇ bbLs3cce ∗ r=̇ bbV1cce

∣∣∣∣∣
ε

}
(‡)

412

τ : {R3} e3 {∃l. Q ∗ l=̇l:Ls2}
(I.H.)

∀I,Γ, r. {bb|R3|ε ∗ rcc
I} [[[e3]]] {bb|∃l. Q ∗ l=̇l:Ls2|ε ∗ rcc

I}
τ : Def.

∀I,Γ, r. {|T3|ε ∗ bb|S2|ε ∗ rcc
I}

[[[e3]]]{ ⋃
v∈JSLValDOM

(⌊⌊
|Q|[Γ|l 7→v] ∗ r

⌋⌋I
∗ |l=̇l:Ls2|([Γ|l 7→v],L′)

)}
(††)

l 6∈ fv(Q, R2)

∀I,Γ, r. l 6∈ fv
(
bb|Q|ε ∗ rcc

I , bb|S2|ε ∗ rcc
I ∗ |γ(bbLs4cce , bbV1cce , bbV2cce)|ε

)
(‡‡)

Case (Frame)

τ : {P} e {Q}
(I.H.)

∀I, ε, r. {bb|P |ε ∗ rcc
I} [[[e]]] {bb|Q|ε ∗ rcc

I}
τ : Def.

∀I, ε, r. {bb|P |ε ∗ |R|ε ∗ rcc
I} [[[e]]] {bb|Q|ε |R|ε ∗ rcc

I}

∀I, ε, r. {bb|P ∗R|ε ∗ rcc
I} [[[e]]] {bb|Q ∗R|ε ∗ rcc

I}
τ : {P ∗R} e {Q ∗R} τ : Def.

Case (Consequence)

(†)

τ : {P ′} e {Q′}
(I.H.)

∀I,ε,r.
{
bb|P ′|ε ∗ rcc

I
}

[[[e]]]
{
bb|Q′|ε ∗ rcc

I
} τ : Def.

(‡)

∀I, ε, r.
{
bb|P |ε ∗ rcc

I
}

[[[e]]]
{
bb|Q|ε ∗ rcc

I
} (∗)

τ : {P} e {Q} τ : Def.

where (∗) denotes the application of the (Consequence) rule, and

P ` P ′

∀I, ε, r.
{
bb|P |ε ∗ rcc

I
}
⊆
{
bb|P ′|ε ∗ rcc

I
} Lemma 19

(†)

413

Q′ ` Q

∀I, ε, r.
{
bb|Q′|ε ∗ rcc

I
}
⊆
{
bb|Q|ε ∗ rcc

I
} Lemma 19

(‡)

Case (Elimination)

τ : {P} e {Q}
(I.H.)

∀I, ε, r.
{
bb|P |ε ∗ rcc

I
}

[[[e]]]
{
bb|P |ε ∗ rcc

I
} τ : Def.

∀I,ε,r.
{
∃x. bb|P |ε ∗ rcc

I
}

[[[e]]]
{
∃x. bb|Q|ε ∗ rcc

I
} (Elimination)

∀I, ε, r.

 ⋃
v∈JSLValDOM

⌊⌊{w1+w2
w1 ∈ |P |ε ∧
w2 ∈ r ∧ x=v

}⌋⌋I
[[[e]]] ⋃

v∈JSLValDOM

⌊⌊{w1+w2
w1 ∈ |Q|ε ∧
w2 ∈ r ∧ x=v

}⌋⌋I
∀I, ε, r.

{ ⋃
v∈JSLValDOM

(
bb{w | w ∈ |P |ε ∧ x=v} ∗ rccI

)}
[[[e]]]{ ⋃

v∈JSLValDOM

(
bb{w | w ∈ |Q|ε ∧ x=v} ∗ rccI

)}
∗ Def.

∀I, ε, r.
{
bb|∃x. P |ε ∗ rcc

I
}

[[[e]]]
{
bb|∃x. Q|ε ∗ rcc

I
} ∃,bb.cc Def.

τ : {∃x. P} e {∃x. Q} τ : Def.

414

Case (Disjunction)

τ : {P1} e {Q1}
(I.H.)

∀I, ε, r. {bb|P1|ε ∗ rcc
I}

[[[e]]]

{bb|Q1|ε ∗ rcc
I}

τ : {P2} e {Q2}
(I.H.)

∀I, ε, r. {bb|P2|ε ∗ rcc
I}

[[[e]]]

{bb|Q2|ε ∗ rcc
I}

∀I, ε, r. {bb|P1|ε ∗ rcc
I ∨ bb|P2|ε ∗ rcc

I}
[[[e]]]

{bb|Q1|ε ∗ rcc
I ∨ bb|Q2|ε ∗ rcc

I}

(‡)

∀I, ε, r. {bb(|P1|ε ∗ r) ∪ (|P2|ε ∗ r)cc
I}

[[[e]]]

{bb(|Q1|ε ∗ r) ∪ (|Q2|ε ∗ r)cc
I}

bb.cc Def.

∀I, ε, r.
{
bb|(P1 ∨ P2)|ε ∗ rcc

I
}

[[[e]]]
{
bb|(Q1 ∨Q2)|ε ∗ rcc

I
} (†)

τ : {P1 ∨ P2} e {Q1 ∨Q2}
τ : Def.

where (†) follows from the semantics of ∨; and (‡) denotes the application
of the Disjunction rule.

Lemma 19 (Implication preservation). For all evaluation environments ε,
interface functions I ∈ I, JSLogicDOM assertions P,Q ∈ JSAstDOM, and
set of JSLogicDOM statesr ∈ JSLHeapDOM:

` P ⇒ Q =⇒ bb|P |ε ∗ rcc
I ⊆ bb|Q|ε ∗ rcc

I

Proof. Pick arbitrary ε, I ∈ I, P,Q ∈ JSAstDOM, r ∈ JSLHeapDOM and h

such that

` P ⇒ Q (B.1)

h ∈ bb|P |ε ∗ rcc
I (B.2)

We are then required to show:

h ∈ bb|Q|ε ∗ rcc
I (B.3)

From (B.2) and the definitions of bb.cc and |.|ε we know there exists hp, hr,

415

hp, hr, h1, h2 and I1 such that:

ε, (hp,hp) |= P and (hr,hr) ∈ r (B.4)

h1= 〈〈hp ◦ hr〉〉js and h2 ∈ 〈〈hp • hr〉〉I]I1dom (B.5)

dom(I in
1)=(hp • hr)in ∧ dom(Iout

1)=(hp • hr)out (B.6)

h=h1 ◦ h2 (B.7)

From (B.1) and (B.4) we know there exists h′ such that

hp ≈ h′ and ε, (hp,h
′) |= Q (B.8)

On the other hand, from the definition of ≈ and (B.8) we have:

hp • hr ≈ h′ • hr (B.9)

From (B.5), (B.6), (B.9) and Lemma 20 we then know there exists I2 such
that:

h2 ∈
〈〈
h′ • hr

〉〉I]I2
dom ∧ dom(I in

2)=(h′ • hr)in ∧ dom(Iout
2)=(h′ • hr)out

(B.10)

From (B.4), (B.8) and the definition of ι we know (hp◦hr,h′•hr) ∈ |Q|ε∗r.
Consequently, from (B.5), (B.7), (B.10) and the definition of bb.cc we have:

h ∈ bb|Q|ε ∗ rcc
I

as required by (B.3).

Lemma 20 (Abstract (de)allocation preservation). For all h ∈ JSLHeap,
h1,h2 ∈ LHeapDOM, I1 ∈ I:

h ∈ 〈〈h1〉〉I]I1dom ∧ dom(I in
1)=hin

1 ∧ dom(Iout
1)=hout

1 ∧ h1 ≈ h2 =⇒
∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in

2)=hin
2 ∧ dom(Iout

2)=hout
2

Proof. Given a natural number n, let ≈n denote the number of abstract
(de)allocation transitions taken in ≈. That is, h1 ≈0 h2 when h1=h2;
h1 ≈1 h2 when h2 can be obtained from h1 by a single abstract alloca-
tion/deallocation; and h1 ≈n+1 h2 ⇔ ∃h3. h1 ≈1 h3 ∧ h3 ≈n h2. Since

416

≈ denotes the reflexive transitive closure of the abstract (de)allocation
transitions, it suffices to show that for all n ∈ N:

∀h ∈ JSLHeap,h1,h2 ∈ LHeapDOM, I1 ∈ I.

h ∈ 〈〈h1〉〉I]I1dom ∧ dom(I in
1)=hin

1 ∧ dom(Iout
1)=hout

1 ∧ h1 ≈n h2 =⇒
∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in

2)=hin
2 ∧ dom(Iout

2)=hout
2

We proceed by induction on n.
The base case, when h1 ≈0 h2, holds trivially since we have h1=h2 and
can despatch the proof obligation by picking the witness I2=I1.

Inductive case (n=k+1)
Pick arbitrary h ∈ JSLHeap, h1,h2 ∈ LHeapDOM, I1 ∈ I, such that:

h ∈ 〈〈h1〉〉I]I1dom ∧ dom(I in
1)=hin

1 ∧ dom(Iout
1)=hout

1 ∧ h1 ≈k+1 h2 (B.11)

∀m ≤ k. ∀h ∈ JSLHeap,h1,h2 ∈ LHeapDOM, I1 ∈ I.

h ∈ 〈〈h1〉〉I]I1dom ∧ dom(I in
1)=hin

1 ∧ dom(Iout
1)=hout

1 ∧ h1 ≈m h2 =⇒
∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in

2)=hin
2 ∧ dom(Iout

2)=hout
2

(I.H.)

We are then required to show:

∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in
2)=hin

2 ∧ dom(Iout
2)=hout

2 (B.12)

From (B.11) and the definitions of 〈〈.〉〉dom and ≈k+1 we know there exist
h1, h2, h3, h4 ∈ JSLHeap, and h3 such that:

h=h1 ◦ h2 ◦ h3 ◦ h4 (B.13)

h1 ∈ Protos ∧ h2 ∈ Crust (h1, I] I1)

∧h3 ∈ H (h1, I] I1) ∧ h4 ∈ true
(B.14)

h1 ≈1 h3 ∧ h3 ≈k h2 (B.15)

From the definition of the abstract allocation relation ≈1 and (B.15), there
are now two cases consider.

Case 1 There exists a,x,d1,d2,h0 such that

h1=[a 7→ d1] • [x 7→ d2] • h0 and x ∈ addr(d1)

h3=[a 7→ d1 �x d2] • h0

417

Let I3=(I1\x), where (I1\x) denotes I1 with x removed from the domains
of I in

1 and Iout
1 . From (B.11), (B.14) and Lemma 21(B.24) we then have:

h3 ∈ H (h3, I] I3) (B.16)

From the definitions of I1, I3, h1 and h3 we have:

dom(I in
3)=hin

3 ∧ dom(Iout
3)=hout

3 (B.17)

On the other hand, from the definitions of h1, h3 and the crust set
(Def. 81) we have cset (h1, I] I1) =cset (h3, I] I3). Consequently, from
the definition of crust child list (Def. 83) and crust (Def. 84) we have
Crust (h1, I] I1) =Crust (h3, I] I3). As such, from (B.14) we have

h2 ∈ Crust (h3, I] I3) (B.18)

From (B.13), (B.14), (B.16), (B.18) and the definition of 〈〈.〉〉dom we then
have:

h ∈ 〈〈h3〉〉I]I3dom (B.19)

Lastly, from (I.H.), (B.15), (B.17) and (B.19) we have:

∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in
2)=hin

2 ∧ dom(Iout
2)=hout

2

as required by (B.12).

Case 2 There exists a,x,d1,d2,h0 such that

h1=[a 7→ d1 �x d2] • h0

h3=[a 7→ d1] • [x 7→ d2] • h0 and x ∈ addr(d1)

From (B.11), (B.14) and Lemma 21(B.24) we know there exist (L, u) and
I3 such that I3=(I1] [x 7→ (L, u)]), where (I1] [x 7→ (L, u)]) , (I in

1] [x 7→
L], Iout

1] [x 7→ u]), and:

h3 ∈ H (h3, I] I3) (B.20)

418

From the definitions of I1, I3, h1 and h3 we have:

dom(I in
3)=hin

3 ∧ dom(Iout
3)=hout

3 (B.21)

On the other hand, from the definitions of h1, h3 and the crust set
(Def. 81) we have cset (h1, I] I1) =cset (h3, I] I3). Consequently, from
the definition of crust child list (Def. 83) and crust (Def. 84) we have
Crust (h1, I] I1) =Crust (h3, I] I3). As such, from (B.14) we have

h2 ∈ Crust (h3, I] I3) (B.22)

From (B.13), (B.14), (B.20), (B.22) and the definition of 〈〈.〉〉dom we then
have:

h ∈ 〈〈h3〉〉I]I3dom (B.23)

Lastly, from (I.H.), (B.15), (B.21) and (B.23) we have:

∃I2. h ∈ 〈〈h2〉〉I]I2dom ∧ dom(I in
2)=hin

2 ∧ dom(Iout
2)=hout

2

as required by (B.12).

Lemma 21 (Abstract (de)allocation preservation (auxiliary)). For all h0,

h1,h2 ∈ LHeapDOM, I ∈ I, a ∈ AddDOM, d1,d2 ∈ LDataDOM and x ∈
AAdd:

h1=[a 7→ d1] • [x 7→ d2] ∧ h2=[a 7→ d1 �x d2] ∧ x ∈ addr(d1)

=⇒ ∃(L, u). H (h1 • h0, I] [x 7→ (L, u)]) = H (h2 • h0, I)
(B.24)

where I] [x 7→ (L, u)] , (I in] [x 7→ L], Iout] [x 7→ u]).
For all I ∈ I, ι ∈ Inter, d1,d2 ∈ LDataDOM and x ∈ AAdd:

x ∈ addr(d1) ∧ (d1 �x d2) defined =⇒
D (d1)ιI ∗ H (x 7→ d2, I) = D (d1 �x d2)ιI

(B.25)

For all h ∈ LHeapDOM, I0, I ∈ I:

∀x ∈ hin ∪ hout. I(x) defined =⇒ H (h, I0] I) =H (h, I) (B.26)

419

For all h ∈ LHeapDOM, I ∈ I:

H (h, I) 6= ∅ =⇒ ∀x ∈ hin ∪ hout. I(x) defined (B.27)

Proof (B.24). Pick arbitrary h0,h1,h2 ∈ LHeapDOM, I ∈ I, a ∈ AddDOM,
d1,d2 ∈ LDataDOM and x ∈ AAdd such that

h1=[a 7→ d1] • [x 7→ d2] ∧ h2=[a 7→ d1 �x d2] ∧ x ∈ addr(d1) (B.28)

Let:

ι ,

([d], null) if a=Rd

I(a) otherwise

From the definitions of h1, h2 and h0 we have

(h2 • h0)in=hin
0] ({a} ∩ AAdd) (h1 • h0)in=(h2 • h0)in] {x}

(h2 • h0)out=hout
0] addr(d1 �x d2) (h1 • h0)out=(h2 • h0)out] {x}

(B.29)
There are two cases to consider.

Case 1. ¬∀y ∈ (h2 • h0)in ∪ (h2 • h0)out. I(y) defined
From the assumption of the case and Lemma 21(B.27) we have:

H (h2 • h0, I) =∅

On the other hand, from (B.29), the assumption of the case and the
definition of I] [x 7→ (L, u)] we then know

¬∀y ∈ (h1 • h0)in ∪ (h1 • h0)out. (I] [x 7→ (L, u)])(y) defined

Consequently, from Lemma 21(B.27) we have H (h1 • h0, I] [x 7→ (L, u)]) =∅.
As such we have,

H (h2 • h0, I) =H (h1 • h0, I] [x 7→ (L, u)]) =∅

as required.

Case 2. ∀y ∈ (h2 • h0)in ∪ (h2 • h0)out. I(y) defined
From (B.29), the assumption of the case and the definition of I] [x 7→

420

(L, u)] we have

∀y ∈ (h1 • h0)in ∪ (h2 • h0)out. (I] [x 7→ (L, u)])(y) defined (B.30)

We then have:

∃(L, u). H (h1 • h0, I] [x 7→ (L, u)])

=
⋃

(L,u)∈Inter

H (h1 • h0, I] [x 7→ (L, u)])

(H Def.) =
⋃

(L,u)∈Inter

H ([a 7→ d1], I] [x 7→ (L, u)])

∗H ([x 7→ d2], I] [x 7→ (L, u)])

∗H (h0, I] [x 7→ (L, u)])

(H Def.) =
⋃

(L,u)∈Inter

D (d1)ιI][x 7→(L,u)]

∗H ([x 7→ d2], I] [x 7→ (L, u)])

∗H (h0, I] [x 7→ (L, u)])

(∗) =

⋃
(L,u)∈Inter

(
D (d1 �x d2)ιI][x 7→(L,u)]

∗H (h0, I] [x 7→ (L, u)])

)

(H Def.) =
⋃

(L,u)∈Inter

(
H ([a 7→ d1 �x d2], I] [x 7→ (L, u)])

∗H (h0, I] [x 7→ (L, u)])

)
(∗∗) = H ([a 7→ d1 �x d2], I) ∗ H (h0, I)

(H Def.) = H ([a 7→ d1 �x d2] • h0, I)

= H (h2 • h0, I)

where the step in (∗) follows from Lemma 21(B.25), and the step in (∗∗)
follows from Lemma 21(B.26) and (B.30).

Proof (B.25). Pick arbitrary I ∈ I,ι ∈ Inter, d1,d2 ∈ LDataDOM and
x ∈ AAdd such that

x ∈ addr(d1) and (d1 �x d2) defined (B.31)

We proceed by induction on the structure of d1.

Case d1=∅† ∈ {∅e,∅f ,∅a,∅tf ,∅g}
This case holds vacuously since the x ∈ addr(d1) assumption in (B.31) is
contradicted.

421

Case d1=d3 ‡ d4 with ‡ ∈ {⊗,�,�,⊕}
Pick arbitrary L and u such that ι=(L, u). From (B.31) and the definition
of �x we know that either x ∈ addr(d3), x 6∈ addr(d4) and d3 �x d2 is
defined, or x 6∈ addr(d3), x ∈ addr(d4) and d4 �x d2 is defined.

Case 1. x ∈ addr(d3), x 6∈ addr(d4) and d3 �x d2 defined
We then have:

D (d1)ιI ∗ H (x 7→ d2, I)

= D (d3 ‡ d4)
(L,u)
I ∗ H (x 7→ d2, I)

(D (.) Def.) = ∃L1, L2. L=̇L1++L2 ∗ D (d3)
(L1,u)
I ∗ D (d4)

(L2,u)
I

∗H (x 7→ d2, I)

(I.H.) = ∃L1, L2. L=̇L1++L2 ∗ D (d3 �x d2)
(L1,u)
I ∗ D (d4)

(L2,u)
I

(D (.) Def.) = D ((d3 �x d2) ‡ d2)
(L,u)
I

(�x Def.) = D ((d3 ‡ d4) �x d2)
(L,u)
I

= D (d1 �x d2)ιI

as required.

Case 2. x 6∈ addr(d3), x ∈ addr(d4) and d4 �x d2 defined
We then have:

D (d1)ιI ∗ H (x 7→ d2, I)

= D (d3 ‡ d4)
(L,u)
I ∗ H (x 7→ d2, I)

(D (.) Def.) = ∃L1, L2. L=̇L1++L2 ∗ D (d3)
(L1,u)
I ∗ D (d4)

(L2,u)
I

∗H (x 7→ d2, I)

(I.H.) = ∃L1, L2. L=̇L1++L2 ∗ D (d3)
(L1,u)
I ∗ D (d4 �x d2)

(L2,u)
I

(D (.) Def.) = D (d3 ‡ (d4 �x d2))
(L,u)
I

(�x Def.) = D ((d3 ‡ d4) �x d2)
(L,u)
I

= D (d1 �x d2)ιI

as required.

422

Case d1=sn[as, f]tsfs
Pick arbitrary L and u such that ι=(L, u). From (B.31) and the definition
of �x we know that either x ∈ addr(as), x 6∈ addr(f) and as �x d2 is
defined, or x 6∈ addr(as), x ∈ addr(f) and f �x d2 is defined.

Case 1. x ∈ addr(as), x 6∈ addr(f) and as �x d2 defined
We then have:

D (d1)ιI ∗ H (x 7→ d2, I)

= D
(
sn[as, f]tsfs

)(L,u)

I
∗ H (x 7→ d2, I)

(D (.) Def.) = L=̇[n] ∗ ∃fid , la, Lf , La. fs=̇{fid} ∗ ENode (n, s, la,fid , u)

∗FL (fid , n, Lf) ∗ TLs (n, ts) ∗ la Z⇒
{
s′:m | (s′,m) ∈ La

}
∗D (f)(Lf ,n)

I ∗ D (as)(La,null)
I ∗ H (x 7→ d2, I)

(I.H.) = L=̇[n] ∗ ∃fid , la, Lf , La. fs=̇{fid} ∗ ENode (n, s, la,fid , u)

∗FL (fid , n, Lf) ∗ TLs (n, ts) ∗ la Z⇒
{
s′:m | (s′,m) ∈ La

}
∗D (f)(Lf ,n)

I ∗ D (as �x d2)
(La,null)
I

(D (.) Def.) = D
(
sn[as �x d2, f]tsfs

)(L,u)

I

(�x Def.) = D
(
(sn[as, f]tsfs) �x d2

)(L,u)

I

= D (d1 �x d2)ιI

as required.

Case 2. x 6∈ addr(as), x ∈ addr(f) and f �x d2 defined
We then have:

D (d1)ιI ∗ H (x 7→ d2, I)

= D
(
sn[as, f]tsfs

)(L,u)

I
∗ H (x 7→ d2, I)

(D (.) Def.) = L=̇[n] ∗ ∃fid , la, Lf , La. fs=̇{fid} ∗ ENode (n, s, la,fid , u)

∗FL (fid , n, Lf) ∗ TLs (n, ts) ∗ la Z⇒
{
s′:m | (s′,m) ∈ La

}
∗D (f)(Lf ,n)

I ∗ D (as)(La,null)
I ∗ H (x 7→ d2, I)

(I.H.) = L=̇[n] ∗ ∃fid , la, Lf , La. fs=̇{fid} ∗ ENode (n, s, la,fid , u)

∗FL (fid , n, Lf) ∗ TLs (n, ts) ∗ la Z⇒
{
s′:m | (s′,m) ∈ La

}
∗D (f �x d2)

(Lf ,n)
I ∗ D (as)(La,null)

I

423

(D (.) Def.) = D
(
sn[as, f �x d2]tsfs

)(L,u)

I

(�x Def.) = D
(
(sn[as, f]tsfs) �x d2

)(L,u)

I

= D (d1 �x d2)ιI

as required.

Case d1=#textn[s]fs
This case holds vacuously since the x ∈ addr(d1) assumption in (B.31) is
contradicted.

Case d1=sn[tf]fs or d1=#docn[d]fstf & g
These two cases are analogous to the element case (where d1=sn[as, f]tsfs)
and are omitted here.

Proof (B.26). The proof of this part is by induction on the structure of
H (., .) and D (.)

(.)
(.) definitions. The proof is straightforward and we provide

an informal argument instead.
When h=0, the result holds trivially from the definition of H (0, .). When
h=h1 •h2, the result follows from the inductive hypotheses for h1 and h2.
Lastly, when h=a 7→ d, then H (h, I) =D (d)ιI where the choice of ι

is decided by whether a=Rd or a ∈ AAdd. When a=Rd then we must
show that D (d)

([d],null)
I0]I =D (d)

([d],null)
I . On the other hand, when a ∈

AAdd, from the assumption we have I(x) is defined, and consequently
I(x)=I0] I(x) and thus it suffices to show D (d)

I(x)
I0]I =D (d)

I(x)
I . Either

way, it suffices to show that for all ι we have D (d)ιI0]I =D (d)ιI . From the
assumption we know that the range of h (i.e. hout) is in the domain of
I, and thus for all abstract addresses in hout (i.e. the abstract addresses
present in d) we have I(x)=I0]I(x). Observe that the definition of D (d)ιI
restricts I only with respect to those abstract addresses in d. Since for any
abstract address x in d the I(x) and I0] I(x) agree (i.e. I(x)=I0] I(x)),
it is then straightforward to show that D (d)ιI0]I =D (d)ιI .

Proof (B.27). The proof of this part is by induction on the structure of
the H (., .) and D (.)

(.)
(.) definitions. The formal proof is straightforward and

omitted here. We provide an informal argument instead.
Observe that the H (., .) is defined piecemeal as the composition of each

424

cell in h. For any abstract address in the domain of h (i.e. in hin), the
H (x 7→ d, I) is defined as D (d)

I(x)
I and is thus undefined if I(x) is not

defined. Similarly, for any abstract address x in the range of h (i.e. in
hout), the translation contains D (x)ιI (for some ι) with the definition of
D (x)ιI in turn stipulating that I(x)=ι. As such, D (x)ιI (and consequently
H (h, I)) is undefined if I(x) is not defined.

Auxiliary Lemmata

The lemmas presented in this section are used in establishing the cor-
rectness of the DOM implementation in [44]. In the proof derivations
given in the remaining of this chapter, given a proof rule (Rule), we write
(Rule)∗ to denote the application of (Rule) combined with an application
of the frame rule. Similarly, we write (Rule)⇒ to denote the application
of (Rule) combined with an application of the rule of consequence. Fi-
nally, we write (Rule)⇒∗ to denote the application of (Rule) combined
with applications of the frame rule and the rule of consequence. Lastly,
we write vars(xi : vi

i=1...n)Ls, to describe the variable store at the model
level (without logical variables), in the scope chain captured by Ls.

To verify our implementation, we assume the following axioms for the
JavaScript array library operations. The specification below is partial and
does not capture all behaviours admitted by the array library. We have
specified those cases used in our implementation only.

Definition 129 (Array axioms).

{P} e {Q ∗ r=̇V ′} Q = R ∗ γ(Ls, V ′, V) ∗ array(V,L)

{P} e.length {Q ∗ r=̇ |L|}

{P} e {r=̇V ′1 ∗Q ∗ S1} Q = γ(Ls1, V
′

1 , V1) ∗ array(V1,−)

{Q ∗ S1} e’ {r=̇V ′2 ∗R ∗ S2} R = γ(Ls2, V
′

2 , V2) ∗ array(V1, L){
P
}

e.item(e’){
R ∗ S2 ∗

[(
(V2<̇0 ∨ V2≥̇ |L|) ∗ r=̇null

)
∨
(
0≤̇V2<̇ |L| ∗ r=̇ |L|V2

)]}

425

{P} e {r=̇V ′1 ∗Q ∗ S1} Q = γ(Ls1, V
′

1 , V1) ∗ array(V1,−)

{Q ∗ S1} e’ {r=̇V ′2 ∗R ∗ S2}
R = γ(Ls2, V

′
2 , V2) ∗ array(V1, L1++[V2]++L2) V2 6∈ L1

{P} e.indexOf(e’) {R ∗ S2 ∗ r=̇ |L1|}

{P} e {r=̇V ′1 ∗Q ∗ S1} Q = γ(Ls1, V
′

1 , V1) ∗ array(V1,−)

{Q ∗ S1} e’ {r=̇V ′2 ∗R ∗ S2}
R = γ(Ls2, V

′
2 , V2) ∗ array(V1, L) V 6∈ L

{P} e.indexOf(e’) {R ∗ S2 ∗ r=̇− 1}

{P} e {r=̇V ′1 ∗R1 ∗ S1} R1 = γ(Ls1, V
′

1 , V1) ∗ array(V1,−)

{R1 ∗ S1} e1 {r=̇V ′2 ∗R2} {R2} e2 {r=̇V ′3 ∗R3 ∗R4 ∗ S3}
R3 = (γ(Ls2, V

′
2 , V2) ∪∗ γ(Ls3, V

′
3 , V3))

R4 = array(V1, L1++L2++L3) ∗ |L1| =̇V1 ∗ |L2| =̇V2

R5 = ∃l. array(l, L2) ∗ array(V1, L1++L3)

{P} e.splice(e1, e2) {R3 ∗R5 ∗ S3 ∗ r=̇l}

Lemma 22 (Function call (auxiliary)). For all n, x1 . . . xm, x′1 . . . x
′
m, y1 . . . yo,

f, n, x1 . . . xm, y1 . . . yo, e, Ls, fid , e, s, la, u, lp, and lp, and for all
pi ∈ {p1, . . . , p6},

if pi ⇐⇒ p′i ∗ (p′i −−∗ pi)
then the following proof rule is sound{

pi ∗ ∃l. l=̇l:Ls ∗ r
}
e
{
q ∗ ∃l. l=̇l:Ls

}
{vs ∗ pi} n.f(x1 . . . xm) {vs ∗ q ∗ true}

where

vs , vars(n : n, xj : xj
1...m, yj : yj

1...o)Ls

p1 , DNode (n,fid , e) ∗ Protos ∗ F

p2 , ENode (n, s, la,fid , u) ∗ Protos ∗ F

p3 , TNode (n, s,fid , u) ∗ Protos ∗ F

p4 , ANode (n, s,fid) ∗ Protos ∗ F

p5 , FL (n, u, L) ∗ Protos ∗ F

p6 , TL (n, s, u) ∗ Protos ∗ F

426

r , l Z⇒
{
x′j :xj

1...m
,@this :n,@proto :null, defs({x′1 . . . x′m}, l, e)

}
p′i , (n,@this) 7→ � ∗ lf 7→ {@body :λx′1 . . . x

′
m.e,@scope :Ls}

∗F([n, lp, lg], f, lf)

and for all a, b, L

F([a], f, lf) , (a, f) 7→ lf

F(a:(b:L), f, lf) , (a, f) 7→ lf ∨ (a 7→ {f :�,@proto :b} ∗F(b:L, f, lf))

Proof.

(†) (‡)
{
pi ∗ ∃l. l=̇l:Ls ∗ r

}
e
{
q ∗ ∃l. l=̇l:Ls

}
{vs ∗ pi} n.f(x1. . . xm)) {vs ∗ q}

(Function Call)⇒∗

where

{vs} n {γ(Ls0, L0.n, n) ∗ [γ(Ls0, L0.n, n) −−∗ vs] ∗ r=̇L0.n}
(Variable)∗

{vs ∗ pi} n.f {vs ∗ pi ∗ r=̇n.f}
(Member Access)⇒∗

{vs ∗ pi} n.f {vs ∗ p′i ∗ (p′i −−∗ pi) ∗ r=̇n.f}
(Consequence)

(†)

and for j ∈ {1 . . .m}

{vs} xj {γ(Lsj , Lj .xj , xj) ∗ [γ(Lsj , Lj .xj , xj) −−∗ vs] ∗ r=̇Lj .x}
(Variable)∗{

vs ∗ pi
}

xj{
γ(Lsj , Lj .xj , xj) ∗ [γ(Lsj , Lj .xj , xj) −−∗ vs] ∗ pi ∗ r=̇Lj .xj

}
(Frame)

(‡)

Lemma 23 (Axiom correctness). For all (P,C,Q) ∈ AxiomDOM,

τ : {P} C {Q}

Proof. By structural induction on the DOM axioms. We provide a proof

427

of one of the axioms of r := n.firstChild() and n.removeChild(o) here.
The proof of other cases are analogous and omitted here.

Case r := n.firstChild()

We prove the correctness of one of the r := n.firstChild() axioms; the
correctness proof of the remaining axioms is analogous.
Given an evaluation environment ε=(Γ, Ls) ∈ Env, pick an arbitrary s ∈
P (JSLHeapDOM) and I ∈ I such that:

Γ(α)=x Γ(β)=y Γ(γ)=z Γ(n)=n Γ(s)=s Γ(s′)=s′

Γ(m)=m Γ(f)=fs Γ(e)=ts Γ(f′)=fs ′ Γ(r)=r

and let

p ,
⌊⌊∣∣vars(n : n, r : r) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef

∣∣
ε
∗ s
⌋⌋I

q ,
⌊⌊∣∣vars(n : n, r : m) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef

∣∣
ε
∗ s
⌋⌋I

It then suffices to show that:

{p} r = n.firstChild() {q}

From the definition of p we have:

428

p =
{
bb|vars(n : n, r : r) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef|ε ∗ scc

I
}

// From the definition of bb.ccI and Lemma 18

vars(n : n, r : r)Ls ∗ Protos ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js ∗ H (h, I) ∗ Crust

(
x 7→ sn[y,#textm[s′]fs′ ⊗ z]tsfs • h, I

)
∗∃u, la, lcn, La, Lz. I(x)

.
=([n], u) ∗ fs=̇{lcn} ∗ ENode (n, s, la, lcn, u)

∗FL (lcn, n, [m]++Lz) ∗ TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D

(
#textm[s′]fs′ ⊗ z

)([m]++Lz ,n)

I

=

vars(n : n, r : r)Ls ∗ ∃le, ln. (EProto ∗ NProto −−∗ Protos) ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js ∗ H (h, I) ∗ Crust

(
x 7→ sn[y,#textm[s′]fs′ ⊗ z]tsfs • h, I

)
∗∃u, la, lcn, La, Lz. I(x)

.
= ([n], u) ∗ fs=̇{lcn} ∗ FL (lcn, n, [m]++Lz)

∗TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D

(
#textm[s′]fs′ ⊗ z

)([m]++Lz ,n)

I

∗(n,@this) 7→ � ∗ (n, firstChild) 7→ � ∗ (n,@proto) 7→ le

∗((n,@this) 7→ � ∗ (n, firstChild) 7→ � ∗ (n,@proto) 7→ le

−−∗ ENode (n, s, la, lcn, u))

∗(le, firstChild) 7→ � ∗ (le,@proto) 7→ ln

∗((le, firstChild) 7→ � ∗ (le,@proto) 7→ ln −−∗ EProto)

∗(ln, firstChild) 7→ lfc ∗ lfc 7→ {@body : λ.efc,@scope : Ls}
∗((ln, firstChild) 7→ lfc ∗ lfc 7→ {@body :λ.efc,@scope:Ls} −−∗ NProto)

=

vars(n : n, r : r)Ls ∗ ∃le, ln. (EProto ∗ NProto −−∗ Protos) ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js ∗ H (h, I) ∗ Crust

(
x 7→ sn[y,#textm[s′]fs′ ⊗ z]tsfs • h, I

)
∗∃u, la, lcn, La, Lz. I(x)

.
= ([n], u) ∗ fs=̇{lcn} ∗ FL (lcn, n, [m]++Lz)

∗TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D

(
#textm[s′]fs′ ⊗ z

)([m]++Lz ,n)

I

F([n, le, ln], firstChild, lfc) ∗ lfc 7→ {@body : λ.efc,@scope : Ls}
∗(F([n, le, ln], firstChild, lfc) ∗ lfc 7→ {@body : λ.efc,@scope : Ls}

−−∗ ENode (n, s, la, lcn, u) ∗ EProto ∗ NProto)

=

∃le, ln. vars(n:n, r:r)Ls ∗F([n, le, ln], firstChild, lfc)

∗lfc 7→ {@body :λ.efc,@scope:Ls}
∗(vars(n:n, r:r)Ls ∗F([n, le, ln], firstChild, lfc)

∗lfc 7→ {@body : λ.efc,@scope : Ls}
−−∗ bb|vars(n : n, r : r) ∗ α 7→ sn[β,#textm[s′]f′ ⊗ γ]ef|ε ∗ scc

I)

(B.32)

429

We then proceed as follows:

{
p ∗ ∃l. l=̇l:Ls ∗ l Z⇒{@this:n,@proto:null}

}
this.childNodes.__contents__.length{

p ∗ r=̇m ∗ ∃l. l=̇l:Ls ∗ l Z⇒{@this:n,@proto:null}
}

array axioms, (B.32)

{
p
}

n.firstChild(){
p ∗ r=̇m ∗ ∃l. l Z⇒{@this:n,@proto:null}

}
Lemma 22,(B.32)

{p} n.firstChild() {p ∗ r=̇m ∗ true}
(Consequence)

{p} n.firstChild() {p ∗ r=̇m}
bb.cc Def.

{p} r = n.firstChild() {q}
(Assign Local), (B.32)

Case n.removeChild(o)

Given an evaluation environment ε=(Γ, Ls) ∈ Env, pick an arbitrary s ∈
P (JSLHeapDOM) and I ∈ I, such that:

Γ(α)=x Γ(β)=y Γ(γ1)=z1 Γ(γ2)=z2 Γ(δ)=w Γ(n)=n

Γ(s)=s Γ(s′)=s′ Γ(o)=o Γ(f)=fs Γ(e)=ts Γ(f′)=fs ′

and let

p ,
⌊⌊∣∣vars(n:n, o:o, r:r) ∗ α 7→ sn[β, γ1 ⊗#texto[s′]f′ ⊗ γ2]ef ∗ δ 7→ ∅g

∣∣
ε
∗ s
⌋⌋I

q′ ,
⌊⌊∣∣vars(n:n, o:o, r:r) ∗ α 7→ sn[β, γ1 ⊗ γ2]ef ∗ δ 7→ #texto[s′]f′

∣∣
ε
∗ s
⌋⌋I

q ,
⌊⌊∣∣vars(n:n, o:o, r:o) ∗ α 7→ sn[β, γ1 ⊗ γ2]ef ∗ δ 7→ #texto[s′]f′

∣∣
ε
∗ s
⌋⌋I

It then suffices to show that:

{p} r = n.removeChild(o) {q}

From the definition of p we have:

430

p =
{
bb|vars(n:n, o:o, r:r)Ls ∗ α 7→ sn[β, γ1 ⊗#texto[s′]f′ ⊗ γ|2]ef|ε ∗ scc

I
}

// From the definition of bb.ccI and Lemma 18

vars(n:n, o:o, r:r)Ls ∗ Protos ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js∗H (h, I)∗Crust

(
x 7→sn[y, z1⊗#texto[s′]fs′⊗z2]tsfs • h, I

)
∗∃u, la, lcn, La, L1, L2. I(x)

.
=([n], u) ∗ fs=̇{lcn} ∗ ENode (n, s, la, lcn, u)

∗FL (lcn, n, L1++[o]++L2) ∗ TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D

(
z1 ⊗#texto[s′]fs′ ⊗ z2

)(L1++[o]++L2,n)

I
∗ o ˙6∈L1

=

vars(n:n, o:o, r:r)Ls ∗ ∃le, ln. (n,@this) 7→ �

∗(n, removeChild) 7→ � ∗ (n,@proto) 7→ le

∗(le, removeChild) 7→ � ∗ (le,@proto) 7→ ln

∗(ln, removeChild) 7→ lrm ∗ lrm 7→ {@body : λ.erm,@scope : Ls}
∗(vars(n:n, o:o, r:r)Ls ∗ (n,@this) 7→ �

∗(n, removeChild) 7→ � ∗ (n,@proto) 7→ le

∗(le, removeChild) 7→ � ∗ (le,@proto) 7→ ln

∗(ln, removeChild) 7→ lrm ∗ lrm 7→ {@body : λ.erm,@scope : Ls}
−−∗ bb|vars(n:n, o:o, r:r) ∗ α 7→sn[β, γ1⊗#texto[s′]f′⊗γ2]ef|ε ∗ scc

I)

(B.33)

Using a similar rewrite, we have:

p =

vars(n:n, o:o, r:r)Ls ∗ ∃le, ln. (n,@this) 7→ �

∗(n, __removeChild__) 7→ � ∗ (n,@proto) 7→ le

∗(le, __removeChild__) 7→ � ∗ (le,@proto) 7→ ln

∗(ln, __removeChild__) 7→ lrm ∗ lrm 7→ {@body : λ.erm,@scope : Ls}
∗(vars(n:n, o:o, r:r)Ls ∗ (n,@this) 7→ �

∗(n, __removeChild__) 7→ � ∗ (n,@proto) 7→ le

∗(le, __removeChild__) 7→ � ∗ (le,@proto) 7→ ln

∗(ln, __removeChild__) 7→ lrm ∗ lrm 7→ {@body : λ.erm,@scope : Ls}
−−∗ bb|vars(n:n, o:o, r:r) ∗ α 7→sn[β, γ1⊗#texto[s′]f′⊗γ2]ef|ε ∗ scc

I)

(B.34)

431

We then proceed as follows:

(†)
p ∗ ∃l, l′. l=̇l′:l:Ls
∗ l Z⇒{@this:n,@proto:null, o:o}
∗ l′ Z⇒{@this:n,@proto:null, o:o, i:undefined}

erm{

q′ ∗ ∃l, l′. l=̇l′:l:Ls ∗ (l′, o) 7→ o ∗ r=̇l′.o ∗ true
}

{
p ∗ ∃l. l=̇l:Ls ∗ l Z⇒{@this:n,@proto:null, o:o}

}
this.childNodes.__removeChild__(o){
q′ ∗ ∃l, l′. l=̇l:Ls ∗ (l′, o) 7→ o ∗ r=̇l′.o ∗ true

}
(Function Call)⇒, (B.34)

{
p
}

n.removeChild(o){
q′ ∗ ∃l′. (l′, o) 7→ o ∗ r=̇l′.o ∗ true

}
Lemma 22,(B.33)

{
p
}

r = n.removeChild(o){
q ∗ ∃l′. (l′, o) 7→ o ∗ r=̇l′.o ∗ true

}
(Assign Local))⇒, (B.33)

{p} r = n.removeChild(o) {q ∗ true}
Consequence

{p} r = n.removeChild(o) {q} (∗)

where in (∗) we i) unfold the definition of bb.cc; ii) apply the rule of con-
sequence to absorb true; and iii) fold the definition of bb.cc, and (†) follows
from the proof sketch below where we have unwrapped the implementation
code denoted by erm:

432

{
p ∗ l=̇l′:l:Ls ∗ l Z⇒{@this:n,@proto:null, o:o}
∗ l′ Z⇒{@this:n,@proto:null, o:o, i:undefined}

}
// From the definition of bb.ccI

vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls ∗ Protos ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js∗H (h, I)∗Crust

(
x 7→sn[y, z1⊗#texto[s′]fs′⊗z2]tsfs • h, I

)
∗∃u, la, lcn, La, L1, L2. I(x)

.
=([n], u) ∗ fs=̇{lcn} ∗ ENode (n, s, la, lcn, u)

∗FL (lcn, n, L1++[o]++L2) ∗ TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D (z1)

(L1,n)
I ∗ D

(
#texto[s′]fs′

)([o],n)

I
∗ D (z2)

(L2,n)
I ∗ o ˙6∈L1

∗l Z⇒{@this:n,@proto:null, o:o}
∗l′ Z⇒{@this:n,@proto:null, o:o, i:undefined}

// Frame off
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ FL (lcn, n, L1++[o]++L2)

∗D
(
#texto[s′]fs′

)([o],n)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒{@this:n,@proto:null, o:o, i:undefined}

var i; // Apply (Definition)⇒
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ FL (lcn, n, L1++[o]++L2)

∗D
(
#texto[s′]fs′

)([o],n)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒{@this:n,@proto:null, o:o, i:undefined}

i = this.childNodes.__contents__.indexOf(o);

// array indexOf axiom in Def. 129, (Assign Local)⇒, (Member Access)⇒
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ FL (lcn, n, L1++[o]++L2)

∗D
(
#texto[s′]fs′

)([o],n)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒
{

@this:n,@proto:null, o:o,i: |L1|
}

if (i === -1) { throw NOT_FOUND_ERROR }
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ FL (lcn, n, L1++[o]++L2)

∗D
(
#texto[s′]fs′

)([o],n)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|}

433

this.contents.splice(i, 1);

// array splice axiom in Def. 129, (Member Access)⇒
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ ∃l′′. FL (lcn, n, L1++L2) ∗ array(l′′, [o])
∗D
(
#texto[s′]fs′

)([o],n)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|}

o.parentChild = null;

// (Assign Local)⇒, (Member Access)⇒
vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls
∗ENode (n, s, la, lcn, u) ∗ FL (lcn, n, L1++L2)

∗D
(
#texto[s′]fs′

)([o],null)

I
∗ o ˙6∈L1 ∗ l Z⇒{@this:n,@proto:null, o:o}

∗l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|} ∗ ∃l′′. array(l′′, [o])

// Frame on

vars(n:n, o:o, r:r)Ls ∗ l=̇l′:l:Ls ∗ Protos ∗ true
∗
⋃

(h,h)∈s
〈〈h〉〉js∗H (h, I)∗Crust

(
x 7→sn[y, z1⊗#texto[s′]fs′⊗z2]tsfs • h, I

)
∗∃u, la, lcn, La, L1, L2. I(x)

.
=([n], u) ∗ fs=̇{lcn} ∗ ENode (n, s, la, lcn, u)

∗FL (lcn, n, L1++L2) ∗ TLs (n, ts) ∗ la Z⇒{s′′ : l | (s′′, l) ∈ La}
∗D (y)

(La,null)
I ∗ D (z1)

(L1,n)
I ∗ D

(
#texto[s′]fs′

)([o],null)

I
∗ D (z2)

(L2,n)
I ∗ o ˙6∈L1

∗l Z⇒{@this:n,@proto:null, o:o}
∗l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|} ∗ ∃l′′. array(l′′, [o])

// From the definition of bb.ccI{
q′ ∗ l=̇l′:l:Ls ∗ l Z⇒{@this:n,@proto:null, o:o}
∗ l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|} ∗ ∃l′′. array(l′′, [o])

}
o;{
q′ ∗ l=̇l′:l:Ls ∗ l Z⇒{@this:n,@proto:null, o:o}
∗ l′ Z⇒{@this:n,@proto:null, o:o, i: |L1|} ∗ ∃l′′. array(l′′, [o]) ∗ r=̇l′.o

}
{
q′ ∗ l=̇l′:l:Ls ∗ (l′, o) 7→ o ∗ r=̇l′.o ∗ true

}

434

C. Auxiliary CoLoSL Lemmata

Lemma 24 (|=† implies �sl). For all P ∈ Ast, Γ ∈ LEnv, s, g ∈ IState

and I ∈ AMod:
Γ, s |=g,I P =⇒ Γ, s �sl P

Proof. We proceed by induction on the structure of assertion P .

Case P = p where p ∈ LAst

Immediate from the definition of |=g,I for local assertions.

Case P = P1 ∨ P2 where P1, P2 ∈ Ast

Pick arbitrary Γ ∈ LEnv, s, g ∈ IState and I ∈ AMod, such that:

s,Γ |=g,I P1 ∨ P2 (C.1)

∀Γ, s, g, I. Γ, s |=g,I P1 =⇒ Γ, s �sl P1 (I.H1)

∀Γ, s, g, I. Γ, s |=g,I P2 =⇒ Γ, s �sl P2 (I.H2)

From (C.1) and the |=g,I definition we know Γ, s |=g,I P1 or Γ, s |=g,I P2.
Consequently, from (I.H1) and (I.H2) we have: Γ, s �sl P1 or Γ, s �sl P2.
Thus, from the definition of �sl we have Γ, s �sl P1 ∨ P2 as required.

Cases P=∃x. P ′ or P=P1 ∧ P2 or P=P1 ∗ P2 or P=P1 ∪∗ P2

These cases are analogous to the previous case and are omitted here.

Case P=
�� ��P ′

I
where P ′ ∈ Ast and I ∈ IAst

Pick arbitrary Γ ∈ LEnv, s, g ∈ IState and I ∈ AMod such that Γ, s |=g,I�� ��P ′
I
. From the definition of |=g,I we then know (s, g, I) |=

�� ��P ′
I
and

hence, from the definition of |=, we have s ∈ UnitIns. Consequently, from
the definition of �sl we have Γ, s �sl

�� ��P ′
I
as required.

435

Lemma 25 (|= implies �sl). For all P ∈ Ast, Γ ∈ LEnv, l ∈ IState and
I ∈ AMod:

Γ, l |= P =⇒ Γ, l �sl P

Proof. We proceed by induction on the structure of assertion P .

Case P = p where p ∈ LAst

Immediate from the definition of |= for local assertions.

Case P = P1 ∨ P2 where P1, P2 ∈ Ast

Pick an arbitrary Γ ∈ LEnv and l ∈ IState, such that:

s,Γ |=g,I P1 ∨ P2 (C.2)

∀Γ, l. Γ, l |= P1 =⇒ Γ, l �sl P1 (I.H1)

∀Γ, l. Γ, l |= P2 =⇒ Γ, l �sl P2 (I.H2)

From (C.2) and the definition of |= we know Γ, l |= P1 or Γ, l |= P2.
Consequently, from (I.H1) and (I.H2) we have: Γ, l �sl P1 or Γ, l �sl P2.
Thus, from the definition of �sl we have:

Γ, l �sl P1 ∨ P2

as required.

Cases P=∃x. P ′ or P=P1 ∧ P2 or P=P1 ∗ P2 or P=P1 ∪∗ P2

These cases are analogous to the previous case and are omitted here.

Case P=
�� ��P ′

I
where P ′ ∈ Ast and I ∈ IAst

Pick an arbitrary Γ ∈ LEnv and l ∈ IState such that:

Γ, l �sl
�� ��P ′

I
(C.3)

From (C.3) and the definition of |= for boxed assertions we have l ∈
UnitIns. Consequently, from the definition of �sl we have:

Γ, l �sl
�� ��P ′

I

as required.

436

Lemma 26 (Compatibility). Given a partial commutative monoid (M, •M,
UnitM), for all a, b, c, d ∈M:

a •M b = d ∧ c ≤ b =⇒ ∃f ∈M. a •M c = f

Proof. Pick arbitrary a, b, c, d ∈M such that:

a •M b = d (C.4)

c ≤ b (C.5)

From (C.5), we have:
∃e ∈M. c •M e = b (C.6)

and consequently from (C.4) we have:

a •M c •M e = d (C.7)

Let us assume that

¬∃f ∈M. a •M c = f (C.8)

From (C.7) and the associativity of monoids we know that

a •M c •M e = (a •M c) •M e = undefined •M e = undefined 6∈M

which contradicts C.7. As such, our assumption in (C.8) is wrong and we
have:

∃f ∈M. a •M c = f

as required.

Lemma 27 (Closure monotonicity). For all I, I′ ∈ AMod and n ∈ N+:

∀s, r ∈ IState. I↓n
(
s, r, I′

)
⇒ I↓(n−1)

(
s, r, I′

)
Proof. Pick arbitrary I, I′ ∈ AMod and proceed by natural induction on
the number of steps n.

437

Base case n=1

Pick arbitrary s, r ∈ IState. We are then required to show I ↓0 (s, r, I′)

which trivially follows from the definition of ↓0.

Inductive case n=m+1

Pick an arbitrary s, r ∈ IState such that

I↓(m+1)

(
s, r, I′

)
(C.9)

∀s′, r′ ∈ IState. I↓m
(
s′, r′, I′

)
=⇒ I↓(m−1)

(
s′, r′, I′

)
(I.H)

We are then required to show:

∀κ. ∀a ∈ I′(κ). reflected(a, s ◦ r, I′(κ)) (C.10)

∀κ. ∀a ∈ I(κ). potential(a, s ◦ r)⇒

(reflected(a, s ◦ r, I′(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r]. I↓(m−1) (s′, r′, I′)

(C.11)

RTS. (C.10)
Pick an arbitrary κ and a ∈ I′(κ). From (C.9) and the definition of ↓ we
then have reflected(a, s ◦ r, I(κ)) as required.

RTS. (C.11)
Pick an arbitrary κ and a ∈ I(κ) such that potential(a, s ◦ r) holds. Then
from (C.9) we have:

(reflected(a, s ◦ r, I′(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r]. I↓m (s′, r′, I′)

and consequently from (I.H)

(reflected(a, s ◦ r, I′(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r]. I↓(m−1) (s′, r′, I′)

as required.

438

Lemma 28 (Forget closure). For all I, I′ ∈ AMod (Def. 94) and s1, s2, r ∈
IState (Def. 91):

I↓
(
s1 ◦ s2, r, I

′)⇒ I↓
(
s1, s2 ◦ r, I′

)
Proof. Pick arbitrary I, I′ ∈ AMod and s1, s2, r ∈ IState such that:

I↓
(
s1 ◦ s2, r, I

′) (C.12)

From the definition of ↓ (Def. 107), it then suffices to show

∀n ∈ N. I↓n
(
s1, s2 ◦ r, I′

)
(C.13)

Rather than proving (C.13) directly, we first establish the following:

∀n ∈ N. ∀s1, s2, r ∈ IState.

I↓n
(
s1 ◦ s2, r, I

′)⇒ I↓n
(
s1, s2 ◦ r, I′

)
(C.14)

We can then despatch (C.13) as follows. For an arbitrary n ∈ N, from
(C.12) and the definition of ↓ we have I ↓n (s1 ◦ s2, r, I

′). Consequently
from (C.14) we have I↓n (s1, s2 ◦ r, I′) as required.

RTS. (C.14)
We proceed by induction on the number of steps n.

Base case n=0

Pick arbitrary s1, s2, r ∈ IState. We are then required to show I ↓0
(s1, s2 ◦ r, I′) which follows trivially from the definition of ↓0.

Inductive Step n=m+1

Pick arbitrary s1, s2, r ∈ IState such that:

I↓m+1

(
s1 ◦ s2, r, I

′) (C.15)

∀s1, s2, r ∈ IState.

I↓m
(
s1 ◦ s2, r, I

′) =⇒ I↓m
(
s1, s2 ◦ r, I′

)
(I.H.)

439

We are the required to show:

∀κ. ∀a ∈ I′(κ). reflected(a, s1 ◦ s2 ◦ r, I(κ)) (C.16)

∀κ. ∀a ∈ I(κ). potential(a, s1 ◦ s2 ◦ r)⇒

(reflected(a, s1 ◦ s2 ◦ r, I′(κ)) ∨ ¬visible(a, s1)) (C.17)

∧ ∀(s′, r′) ∈ a[s1, s2 ◦ r]. I↓m+1

(
s′, r′, I′

)
) (C.18)

RTS. (C.16)
Pick arbitrary κ and a ∈ I′(κ). From (C.15) and the definition of ↓m+1

we then have reflected(a, s1 ◦ s2 ◦ r, I(κ)) as required.

RTS. (C.17)
Pick an arbitrary κ and a ∈ I(κ) such that potential(a, s1 ◦ s2 ◦ r) holds.
Then from (C.15) we have:

reflected(a, s1 ◦ s2 ◦ r, I′(κ)) ∨ ¬visible(a, s1 ◦ s2)

In the case of the first disjunct the desired result holds trivially. In the
case of the second disjunct, from the definition of visible (Def. 98) we have
¬visible(a, s1) as required.

RTS. (C.18)
Pick an arbitrary κ and a = (p, q, c) ∈ I(κ) such that potential(a, s1 ◦s2 ◦r)
holds. From (C.15) and the definition of ↓ we then have:

∀(s′, r′) ∈ a[s1 ◦ s2, r]. I↓m
(
s′, r′, I′

)
(C.19)

Pick an arbitrary (s′, r′) such that

(s′, r′) ∈ a[s1, s2 ◦ r] (C.20)

Then from the definition of a[s1, s2 ◦ r] and by the cross-split property we
know there exists ps1, ps2, pr, s

′
1, s
′
2, r
′′ ∈ IState such that :

p = ps1 ◦ ps2 ◦ pr ∧ s1 = ps1 ◦ s′1 ∧ s2 = ps2 ◦ s′2 ∧ r = pr ◦ r′′∧(
(ps1 6∈ UnitIns ∧ s′ = q ◦ s′1 ∧ r′ = s′2 ◦ r′′)
∨ (ps1 ∈ UnitIns ∧ s′ = s1 ∧ r′ = q ◦ s′2 ◦ r′′)

)
(C.21)

440

and consequently from the definition of a[s1 ◦ s2, r]

p = ps1 ◦ ps2 ◦ pr ∧ s1 = ps1 ◦ s′1 ∧ s2 = ps2 ◦ s′2 ∧ r = pr ◦ r′′∧
(s′ = q ◦ s′1 ∧ r′ = s′2 ◦ r′′ ∧ (q ◦ s′1 ◦ s′2, r′′) ∈ a[s1 ◦ s2, r])

∨

ps1 ∈ UnitIns ∧ s′ = s1 ∧ r′ = q ◦ s′2 ◦ r′′∧(
(ps2 ∈ UnitIns ∧ (s′1 ◦ s′2, q ◦ r′′) ∈ a[s1 ◦ s2, r])

∨(ps2 6∈ UnitIns ∧ (s′1 ◦ q ◦ s′2, r′′) ∈ a[s1 ◦ s2, r])

)

That is,

∃s′′, r′′. (s′ ◦ s′′, r′′) ∈ a[s1 ◦ s2, r] ∧ r′=s′′ ◦ r′′ (C.22)

From (C.19) and (C.22) we then have

∃s′′, r′′. I↓m
(
s′ ◦ s′′, r′′, I′

)
∧ r′=s′′ ◦ r′′

Finally from (I.H.) we have

∃s′′, r′′. I↓m
(
s′, s′′ ◦ r′′, I′

)
∧ r′=s′′ ◦ r′′

That is,

I↓m
(
s′, r′, I′

)
as required.

441

Lemma 29 (Merge closure). For all I, I1, I2 ∈ AMod and sp, sc, sq, r ∈
IState:

I↓ (sp ◦ sc, sq ◦ r, I1) ∧ I↓ (sq ◦ sc, sp ◦ r, I2) =⇒
I↓ (sp ◦ sc ◦ sq, r, I1 ∪ I2)

Proof. Pick arbitrary I, I1, I2 ∈ AMod and sp, sc, sq, r ∈ IState such that

I↓ (sp ◦ sc, sq ◦ r, I1) (C.23)

I↓ (sq ◦ sc, sp ◦ r, I2) (C.24)

From the definition of ↓, it then suffices to show

∀n ∈ N. I↓n (sp ◦ sc ◦ sq, r, I1 ∪ I2) (C.25)

RTS. (C.25)
Rather than proving (C.25) directly, we first establish the following.

∀n ∈ N. ∀sp, sc, sq, r ∈ IState.

I↓n (sp ◦ sc, sq ◦ r, I1) ∧ I↓n (sc ◦ sq, sp ◦ r, I2)

=⇒ I↓n (sp ◦ sc ◦ sq, r, I1 ∪ I2) (C.26)

We then despatch (C.25) as follows. For an arbitrary n ∈ N, from
(C.23), (C.24) and the definition of ↓ we have I↓n (sp ◦ sc, sq ◦ r, I1) ∧ I↓n
(sc ◦ sq, sp ◦ r, I2). From (C.26) we then have I↓n (sp ◦ sc ◦ sq, r, I1 ∪ I2) as
required.

RTS. (C.26)
We proceed by induction on the number of steps n.

Base case n = 0

Pick arbitrary sp, sq, sc, r ∈ IState. We are then required to show I ↓0
(sp ◦ sc ◦ sq, r, I′) which follows trivially from the definition of ↓0.

Inductive Step n=m+1 Pick arbitrary sp, sq, sc, r ∈ IState and n ∈ N,
such that

I↓(m+1) (sp ◦ sc, sq ◦ r, I1) (C.27)

442

I↓(m+1) (sq ◦ sc, sp ◦ r, I2) (C.28)

∀sp, sq, sc, r ∈ IState.

I↓m (sp ◦ sc, sq ◦ r, I1) ∧ I↓m (sq ◦ sc, sp ◦ r, I2)

=⇒ I↓m (sp ◦ sc ◦ sq, r, I1 ∪ I2) (I.H.)

We are then required to show:

∀κ. ∀a ∈ (I1 ∪ I2)(κ). reflected(a, sp ◦ sc ◦ sq ◦ r, I(κ)) (C.29)

∀κ. ∀a ∈ I(κ). potential(a, sp ◦ sc ◦ sq ◦ r)⇒

(reflected(a, sp ◦ sc ◦ sq ◦ r, (I1 ∪ I2)(κ)) ∨ ¬visible(a, sp ◦ sc ◦ sq))∧
∀(s′, r′) ∈ a[sp ◦ sc ◦ sq, r]. I↓m (s′, r′, I1 ∪ I2))

(C.30)

RTS. (C.29)
Pick an arbitrary κ and a ∈ (I1 ∪ I2)(κ). From the definition of I1 ∪ I2 we
know either a ∈ I1(κ) or a ∈ I2(κ). In the former case from (C.27) and
the definition of ↓m+1 we have reflected(a, sp ◦ sc ◦ sq ◦ r, I(κ)) as required.
Similarly, in the latter case from (C.28) and the definition of ↓m+1 we
have reflected(a, sp ◦ sc ◦ sq ◦ r, I(κ)) as required.

RTS. (C.30)
Pick arbitrary κ and a = (p, q, c) ∈ I(κ) such that:

potential(a, sp ◦ sc ◦ sq ◦ r) (C.31)

From (C.27) and (C.31) we have:

(reflected(a, sp ◦ sc ◦ sq ◦ r, I1(κ)) ∨ ¬visible(a, sp ◦ sc))∧
∀(s′, r′) ∈ a[sp ◦ sc, sq ◦ r]. I↓(n−1) (s′, r′, I1)

and consequently from the definition of I1 ∪ I2 we have:

(reflected(a, sp ◦ sc ◦ sq ◦ r, (I1 ∪ I2)(κ)) ∨ ¬visible(a, sp ◦ sc))∧
∀(s′, r′) ∈ a[sp ◦ sc, sq ◦ r]. I↓m (s′, r′, I1)

(C.32)

443

Similarly, from (C.28) and (C.31) we have:

(reflected(a, sp ◦ sc ◦ sq ◦ r, (I1 ∪ I2)(κ)) ∨ ¬visible(a, sc ◦ sq))∧
∀(s′, r′) ∈ a[sc ◦ sq, sp ◦ r]. I↓m (s′, r′, I2)

(C.33)

From (C.32), (C.33) and the definition of visible we have:

(reflected(a, sp ◦ sc ◦ sq ◦ r, (I1 ∪ I2)(κ)) ∨ ¬visible(a, sp ◦ sc ◦ sq))∧
∀(s′, r′) ∈ a[sp ◦ sc, sq ◦ r]. I↓m (s′, r′, I1)∧
∀(s′, r′) ∈ a[sc ◦ sq, sp ◦ r]. I↓m (s′, r′, I2)

(C.34)

Pick arbitrary s′, r′ ∈ IState such that

(s′, r′) ∈ a[sp ◦ sc ◦ sq, r] (C.35)

Then from the definition of a[sp ◦ sc ◦ sq] and by the cross-split property
we know there exist pp, pc, pq, s′p, s′c, s′q ∈ IState such that :

s′ = sp ◦ sc ◦ sq∨ (pp 6∈ UnitIns ∨ pc 6∈ UnitIns ∨ pq 6∈ UnitIns)

∧ s′ = q ◦ s′p ◦ s′c ◦ s′q ∧ p = pp ◦ pc ◦ pq ◦ pr
∧ sp = pp ◦ s′p ∧ sc = pc ◦ s′c ∧ sq = pq ◦ s′q ∧ r = pr ◦ r′

 (C.36)

and consequently from the definitions of a[sp ◦sc, sq ◦ r] and a[sc ◦sq, sp ◦ r]
we have:(

s′ = sp ◦ sc ◦ sq ∧ (sp ◦ sc, sq ◦ r′) ∈ a[sp ◦ sc, sq ◦ r]
∧ (sc ◦ sq, sp ◦ r′) ∈ a[sc ◦ sq, sp ◦ r]

)

∨

s′ = q ◦ s′p ◦ s′c ◦ s′q ∧

(pc 6∈ UnitIns ∨ (pc ∈ UnitIns ∧ pp, pq 6∈ UnitIns))∧
(q ◦ s′p ◦ s′c, s′q ◦ r′) ∈ a[sp ◦ sc, sq ◦ r]∧
(q ◦ s′c ◦ s′q, s′p ◦ r′) ∈ a[sc ◦ sq, sp ◦ r]

∨

pp 6∈ UnitIns ∧ pc, pq ∈ UnitIns ∧
(q ◦ s′p ◦ s′c, s′q ◦ r′) ∈ a[sp ◦ sc, sq ◦ r]∧
(s′c ◦ s′q, q ◦ s′p ◦ r′) ∈ a[sc ◦ sq, sp ◦ r]

∨

pq 6∈ UnitIns ∧ pc, pp ∈ UnitIns ∧
(s′p ◦ s′c, q ◦ s′q ◦ r′) ∈ a[sp ◦ sc, sq ◦ r]∧
(q ◦ s′c ◦ s′q, s′p ◦ r′) ∈ a[sc ◦ sq, sp ◦ r]

(C.37)

444

From (29), (C.27), (C.28) and (C.31) we have:(
s′ = sp ◦ sc ◦ sq∧
I↓m (sp ◦ sc, sq ◦ r′, I1) ∧ I↓m (sc ◦ sq, sp ◦ r′, I2)

)

∨

s′ = q ◦ s′p ◦ s′c ◦ s′q∧

(pc 6∈ UnitIns ∨ (pc ∈ UnitIns ∧ pp, pq 6∈ UnitIns))∧
I↓m

(
q ◦ s′p ◦ s′c, s′q ◦ r′, I1

)
∧

I↓m
(
q ◦ s′c ◦ s′q, s′p ◦ r′, I2

)

∨

pp 6∈ UnitIns ∧ pc, pq ∈ UnitIns∧
I↓m

(
q ◦ s′p ◦ s′c, s′q ◦ r′, I1

)
∧

I↓m
(
s′c ◦ s′q, q ◦ s′p ◦ r′, I2

)

∨

pq 6∈ UnitIns ∧ pc, pp ∈ UnitIns∧
I↓m

(
s′p ◦ s′c, q ◦ s′q ◦ r′, I1

)
∧

I↓m
(
q ◦ s′c ◦ s′q, s′p ◦ r′, I2

)

(C.38)

and thus from (C.38) and (I.H.)

I↓m
(
s′, r′, I1 ∪ I2

)
(C.39)

Finally, from (C.34), (C.35) and (C.39) we have:

(reflected(a, sp ◦ sc ◦ sq ◦ r, (I1 ∪ I2)(κ)) ∨ ¬visible(a, sp ◦ sc ◦ sq))∧
∀(s′, r′) ∈ a[sp ◦ sc ◦ sq, r]. I↓m (s′, r′, I1 ∪ I2)

as required.

445

Lemma 30 (Shift auxiliary). For all I1, I2 ∈ AMod, s, s′, r, r′ ∈ IState

and a ∈ rng(I1):

I1 v{s} I2 ∧
(
(s′, r′) ∈ a(s) ∨ (s′, r′) ∈ a[s, r]

)
=⇒ ∃r′′ ≤ r′. I1 v{s

′◦r′′} I2

Proof. Pick arbitrary I1, I2 ∈ AMod, s, s′, r, r′ ∈ IState and a ∈ rng(I1)

such that:

I1 v{s} I2 (C.40)

There are two cases to consider:
Case 1. (s′, r′) ∈ a(s)

From the definition of v{s} and (C.40) we know there exists a fence F

such that:

s ∈ F (C.41)

F � I1 (C.42)

∀l ∈ F. ∀κ. ∀a ∈ I2(κ). reflected(a, l, I1(κ)) ∧

∀a ∈ I1(κ). a(l) 6= ∅ ∧ visible(a, l)⇒ reflected(a, l, I2(κ)) (C.43)

From the definition of �, (C.41)-(C.42) and the assumption of case 1. we
know there exists r′′ ≤ r′ such that :

s′ ◦ r′′ ∈ F (C.44)

Finally by definition of v{s′◦r′′} and (C.42)-(C.44) we have

I1 v{s
′◦r′′} I2

as required.

Case 2. (s′, r′) ∈ a[s, r]

From the definitions of a[s, r] and a(s) and the assumption of the case we
know (s′, r′) ∈ a(s). The required result then follows from case 1.

446

Lemma 31 (Shift closure). For all I1, I2, I ∈ AMod and s, r ∈ IState,

I↓ (s, r, I1) ∧ I1 v{s} I2 =⇒ I↓ (s, r, I2)

Proof. Pick arbitrary I1, I2, I ∈ AMod and s, r ∈ IState such that

I↓ (s, r, I1) (C.45)

I1 v{s} I2 (C.46)

From the definition of ↓, we are then required to show:

∀n ∈ N. I↓n (s, r, I2) (C.47)

Rather than proving (C.47) directly, we first establish the following.

∀n ∈ N. ∀s, r, r′ ∈ IState.

I↓n (s, r, I1) ∧ r′ ≤ r ∧ I1 v{s◦r
′} I2 =⇒ I↓n (s, r, I2) (C.48)

We can then despatch (C.47) as follows. For an arbitrary n ∈ N, from
(C.45) and the definition of ↓ we have I ↓n (s, r, I1). Let r′ ∈ UnitIns

denote a unit element. As such we have r′ ≤ r and s ◦ r′=s. Consequently
from (C.46) and (C.48) we have I↓n (s, r, I2) as required.

RTS. (C.48)
We proceed by induction on the number of steps n.

Base case n = 0

Pick arbitrary s, r ∈ IState. We are then required to show I ↓0 (s, r, I2)

which follows trivially from the definition of ↓0.

Inductive Case n=m+1

Pick arbitrary s, r, r0 ∈ IState such that:

I↓m+1 (s, r, I1) (C.49)

r0 ≤ r (C.50)

I1 v{s◦r0} I2 (C.51)

∀s, r, r0 ∈ IState.

447

I↓m (s, r, I1) ∧ r0 ≤ r ∧ I1 v{s◦r0} I2 =⇒ I↓m (s, r, I2) (I.H)

We are then required to show:

∀κ. ∀a ∈ I2(κ). reflected(a, s ◦ r, I(κ))) (C.52)

∀κ. ∀a ∈ I(κ). potential(a, s ◦ r)⇒

(reflected(a, s ◦ r, I2(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r]. I↓m (s′, r′, I2)

(C.53)

RTS. (C.52)
Pick arbitrary κ and a = (p, q, c) ∈ I2(κ) and l ∈ IState such that :

p ◦ c ≤ s ◦ r ◦ l (C.54)

From (C.50), (C.51) and the definition of reflected we then know there
exist a′′, c′′ such that:

a′′ = (p, q, c′′) ∈ I1(κ) ∧ p ◦ c′′ ≤ s ◦ r ◦ l

Consequently from (C.49) and the definition of reflected we know there
exists a′, c′ such that:

a′ = (p, q, c′) ∈ I(κ) ∧ p ◦ c′ ≤ s ◦ r ◦ l (C.55)

Thus from (C.54),(C.55) and the definition of reflected we have:

reflected(a, s ◦ r, I(κ))

as required.

RTS. (C.53)
Pick arbitrary κ and a = (p, q, c) ∈ I(κ) such that:

potential(a, s ◦ r) (C.56)

448

From (C.49) and (C.56) we have:

(reflected(a, s ◦ r, I1(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r]. I↓m (s′, r′, I1)

(C.57)

Pick an arbitrary (s′, r′) such that

(s′, r′) ∈ a[s, r] (C.58)

Then from (C.57) we have:

I↓m
(
s′, r′, I1

)
(C.59)

On the other hand, from (C.58) and Lemma 30 we know there exists
r1 ≤ r′ such that:

I1 v{s
′◦r1} I2 (C.60)

Consequently, from (C.59), (C.60) and (I.H) we have:

I↓m
(
s′, r′, I2

)
and thus from (C.58) we have

∀(s′, r′) ∈ a[s, r]. I↓m
(
s′, r′, I2

)
(C.61)

Since either visible(a, s) or ¬visible(a, s), there are two cases to consider:

Case 1. ¬visible(a, s)
From the assumption of the case and (C.61) we then have:

¬visible(a, s) ∧ ∀(s′, r′) ∈ a[s, r]. I↓m
(
s′, r′, I2

)
as required.

Case 2. visible(a, s)
From (C.57) and the assumption of the case we have:

reflected(a, s ◦ r, I1(κ)) (C.62)

449

Pick an arbitrary l ∈ IState such that:

p ◦ c ≤ s ◦ r ◦ l (C.63)

Then from (C.62) and the definition of reflected we know there exist a′, c′

such that:

a′=(p, q, c′) ∧ a′ ∈ I1(κ) ∧ p ◦ c′ ≤ s ◦ r ◦ l (C.64)

From (C.56) and by definition of potential we know a[s ◦ r] is non-empty.
From (C.64), and the definition of a′[s ◦ r] we know that a′[s ◦ r] is also
non-empty. Consequently, from the definition of a′(s), we know a′(s) is
also non-empty.
On the other hand, from the definition of visible, (C.64) and the assump-
tion of the case we have:

visible(a′, s) (C.65)

Thus from (C.50), (C.51), (C.64), (C.65) and from the definition of v{s◦r0}

we know there exist a′′, c′′ such that:

a′′ = (p, q, c′′) ∧ a′′ ∈ I2(κ) ∧ p ◦ c′′ ≤ s ◦ r ◦ l (C.66)

Finally, from (C.63), (C.66) and by definition of reflected we have:

reflected(a, s ◦ r, I2(κ)) (C.67)

From (C.61) and (C.67) we have

reflected(a, s ◦ r, I2(κ)) ∧ ∀(s′, r′) ∈ a[s, r]. I↓m
(
s′, r′, I2

)
as required.

450

Lemma 32 (Confinement monotonocity). For all g, g′ ∈ IState and I, I′ ∈
AMod,

g] g′ ∧ g c© I ∧ g′ c© I′ =⇒ g ◦ g′ c© I ∪ I′

Proof. Pick arbitrary g, g′ ∈ IState and I, I′ ∈ AMod such that:

g] g′ ∧ g c© I ∧ g′ c© I′ (C.68)

From the definition of c© and (C.68) we know there exist F,F′ such that

g ∈ F ∧ F � I (C.69)

g′ ∈ F ∧ F′ � I′ (C.70)

Let

F′′ ,
{
l ◦ l′ l ∈ F ∧ l′ ∈ F′ ∧ l] l′

}
(C.71)

From the definition of F′′ and since g] g′ (C.68) we know:

g ◦ g′ ∈ F′′ (C.72)

Pick arbitrary l′′ ∈ F′′ and action a=(p, q, c) ∈ rng [(I ∪ I′)a] From the
definition of I∪ I′ we know that either a ∈ rng(I) or a ∈ rng(I′). Without
loss of generality, let us assume that a ∈ rng(I). From the definition of F′′

we know there exists l, l′ such that:

l′′=l ◦ l′ ∧ l ∈ F ∧ l′ ∈ F′ (C.73)

On the other hand from (C.69), and the definition of c© we know:

∀r. l] r ∧ agree(p ◦ c, l)⇒ p ≤ l ∧ p ⊥ r (C.74)

Pick arbitrary r such that l′′] r. Assume that agree(p ◦ c, l′′). From the
definition of agree and l′′ we know that agree(p ◦ c, l) and l] r. As such,
from (C.74) above we have p ≤ l ∧ p ⊥ r, and consequently from the
definition of l′′, p ≤ l′′ ∧ p ⊥ r. That is, we have:

l′′ c© a (C.75)

451

Pick an arbitrary r′ ∈ a[l′′]. From the definition of a[l′′] we know that
there exists s such that:

agree(p ◦ c, l′′) ∧ p ◦ s=l′′ ∧ q] s ∧ r′=q ◦ s (C.76)

From the definition of agree and the definition of l′′ in (C.73) we have
agree(p ◦ c, l) and thus from the definition of l′′ and (C.74) we have:

p ≤ l ∧ p ⊥ l′ (C.77)

On the other hand, from the cross-split property and (C.76) we know there
exist pl, pl′ , sl, sl′ such that p=pl ◦ pl′ , s=sl ◦ sl′ , l=pl ◦ sl and l′=pl′ ◦ sl′ .
Since p ⊥ l′ (C.77) we then know that pl′ ∈ UnitIns, and thus p=pl, l=p◦sl
and l′=sl′ . As such from (C.76) we know:

r′=q ◦ sl ◦ l′ (C.78)

On the other hand, from (C.76), the definitions of l′′ and agree and since
s=sl ◦ sl′ we know agree(p ◦ c, l) ∧ q] sl. Consequently, from the definition
of a[l] and since l=p ◦ sl we know

q ◦ sl ∈ a[l] (C.79)

From (C.69), (C.73), (C.79) and the definition of � we have:

q ◦ sl ∈ F (C.80)

From (C.74), (C.80), the definition of a[l′′] (C.76) and the definition of F′′

we have:

a[l′′] ∈ F′′ (C.81)

From (C.75), (C.81) and the definition of � we have F′′ � I ∪ I′. Thus
from (C.75) and above we have:

g ◦ g′ c© I ∪ I′

as required.

452

Lemma 33 (Extend closure). For all I, Ie ∈ AMod and for all g, se ∈
IState,

g c© I ∧ se c© Ie =⇒ I ∪ Ie ↓ (se, g, Ie)

Proof. Pick arbitrary I, Ie ∈ AMod and g, se ∈ IState such that

g c© I ∧ se c© Ie (C.82)

From the definition of c© we then know there exist F and Fe such that

g ∈ F ∧ se ∈ Fe (C.83)

F � I ∧ Fe � Ie (C.84)

From the definition of ↓, it then suffices to show

∀n ∈ N. I ∪ Ie ↓n (se, g, Ie) (C.85)

Rather than proving (C.85) directly, we first establish the following:

∀n ∈ N. ∀g, se ∈ IState.

g ∈ F ∧ se ∈ Fe =⇒ I ∪ Ie ↓n (se, g, Ie) (C.86)

We can then despatch (C.85) as follows. For an arbitrary n ∈ N, from
(C.83) and (C.86) we have I ∪ Ie ↓n (se, g, Ie) as required.

RTS. (C.86)
We proceed by induction on the number of steps n.

Base case n = 0

Pick arbitrary g, se ∈ IState. We are then required to show I ∪ Ie ↓0
(se, g, Ie) which follows trivially from the definition of ↓0.

Inductive case n=m+1

Pick arbitrary n ∈ N and g, se ∈ IState such that:

g ∈ F (C.87)

se ∈ Fe (C.88)

453

∀g′, s′e. g′ ∈ F ∧ s′e ∈ Fe =⇒ I ∪ Ie ↓m
(
s′e, g

′, Ie
)

(I.H)

We are then required to show:

∀κ. ∀a ∈ Ie(κ). reflected(a, se ◦ g, (I ∪ Ie)(κ)) (C.89)

∀κ. ∀a ∈ (I ∪ Ie)(κ). potential(a, se ◦ g)⇒

(reflected(a, se ◦ g, Ie(κ)) ∨ ¬visible(a, se))∧
∀(s′, r′) ∈ a[se, g]. I ∪ Ie ↓m (s′, r′, Ie)

(C.90)

RTS. C.89
Pick arbitrary κ and a ∈ Ie(κ). From the definitions of I∪ Ie and reflected
we then trivially have reflected(a, se ◦ g, (I ∪ Ie)(κ)) as required.

RTS. C.90
Pick an arbitrary κ, a = (p, q, c) ∈ (I ∪ Ie) (κ) and (s′, r′) such that:

potential(a, se ◦ g) (C.91)

(s′, r′) ∈ a[se, g] (C.92)

There are two cases to consider.

Case 1. a ∈ I(κ)

From the assumption of the case, (C.87), (C.84), the definition of � and
since se ◦ g is defined we have:

p ⊥ se (C.93)

From (C.91) and the definition of potential we have ∃l1, l2. p◦c◦l1=se◦g◦l2
and ∃l. p ◦ l=se ◦ g ∧ q] l. Consequently, we have ∃l1, l2. p ◦ c ◦ l1 = g ◦ l2
and ∃l. p ◦ l=se ◦ g ∧ q] l.
On the other hand from the cross-split property we know there exist
pg, pe, lg and le such that p=pg ◦pe, l=lg ◦ le, g=pg ◦ lg and se=pe ◦ le. Since
p ⊥ se (C.93), we know pe ∈ UnitIns and thus p=pg and g=p ◦ lg. Lastly,
since q] l, from the definition of l we know that q] lg, and thus we have
∃lg. p ◦ lg=g ∧ q] lg. That is,

potential(a, g) (C.94)

454

From (C.93) and the definition of visible we have:

¬visible(a, se) (C.95)

On the other hand, from (C.92), (C.93) and the definitions of a[se, g], a[g]

and ⊥, we know:

s′ = se (C.96)

r ∈ a[g] (C.97)

Consequently, from (C.84), (C.87), (C.94), (C.97) and the definition of �
we have:

r′ ∈ F (C.98)

Finally, from (C.88), (C.96), (C.98), (I.H) we have:

I ∪ Ie ↓m
(
s′, r′, Ie

)
(C.99)

and consequently from (C.95) and (C.92), (C.99) we have

¬visible(a, se) ∧ ∀(s′, r′) ∈ a[se, g]. I ∪ Ie ↓m
(
s′, r′, Ie

)
as required.

Case 2. a ∈ Ie(κ)

From the assumption of the case and the definition of reflected we trivially
have:

reflected(a, se ◦ g, Ie(κ)) (C.100)

From the assumption of the case, (C.88), (C.84) and the definition of �
we have:

p ⊥ g (C.101)

From (C.91) and the definition of potential we have ∃l1, l2. p◦c◦l1=se◦g◦l2
and ∃l. p ◦ l=se ◦ g ∧ q] l. Consequently, we have ∃l1, l2. p ◦ c ◦ l1 = se ◦ l2

455

and ∃l. p ◦ l=se ◦ g ∧ q] l.
On the other hand from the cross split property we know there exist
pg, pe, lg and le such that p=pg ◦pe, l=lg ◦ le, g=pg ◦ lg and se=pe ◦ le. Since
p ⊥ g (C.93), we know pg ∈ UnitIns and thus p=pe and se=p ◦ le. Lastly,
since q] l, from the definition of l we know that q] le, and thus we have
∃le. p ◦ le=se ∧ q] le. That is,

se=p ◦ le ∧ potential(a, se) (C.102)

On the other hand, from (C.92), (C.101) and the definitions of a[se, g] and
⊥, we have:

r′ = g (C.103)

s′ ∈ a[se] (C.104)

Consequently, from (C.84), (C.88), (C.102), (C.104) and the definition of
� we have:

s′ ∈ Fe (C.105)

Finally, from (C.87), (C.103), (C.105) and (I.H) we have:

I ∪ Ie ↓m
(
s′, r′, Ie

)
(C.106)

Thus from (C.92) and (C.100), (C.106) we have:

reflected(a, se ◦ g, Ie(κ)) ∧ ∀(s′, r′) ∈ a[se, g]. I ∪ Ie ↓m
(
s′, r′, Ie

)
as required.

456

Lemma 34 (Extend closure (continued)). For all I0, I, Ie ∈ AMod and
s, r, se ∈ IState:

s ◦ r c© I ∧ se c© Ie ∧ I↓ (s, r, I0)

⇒ I ∪ Ie ↓ (s, r ◦ se, I0)

Proof. Pick arbitrary I0, I, Ie ∈ AMod and s, r, se ∈ IState such that

s ◦ r c© I ∧ se c© Ie (C.107)

I↓ (s, r, I0) (C.108)

From (C.107) and the definition of c© we know there exist F and Fe such
that

s ◦ r ∈ F ∧ se ∈ Fe (C.109)

F � I ∧ Fe � Ie (C.110)

From the definition of ↓, it then suffices to show

∀n ∈ N. I ∪ Ie ↓n (s, r ◦ se, I0) (C.111)

RTS. (C.111)
Rather than proving (C.111) directly, we first establish the following.

∀n ∈ N. ∀s, r, se ∈ IState.

s ◦ r ∈ F ∧ se ∈ Fe ∧ I↓n (s, r, I0)⇒ I ∪ Ie ↓n (s, r ◦ se, I0) (C.112)

We can then despatch (C.111)as follows. For an arbitrary n ∈ N, from
(C.108) and the definition of ↓ we have I ↓n (s, r, I0). Consequently from
(C.109) and (C.112) we have I ∪ Ie ↓n (s, r ◦ se, I0) as required.

RTS. (C.112)
We proceed by induction on the number of steps n.

Base case n = 0

Pick arbitrary s, r, se ∈ IState. We are then required to show I ∪ Ie ↓0
(s, r ◦ se, I0) which follows trivially from the definition of ↓0.

457

Inductive case n=m+1

Pick arbitrary n ∈ N and s, r, se ∈ IState such that

s ◦ r ∈ F (C.113)

se ∈ Fe (C.114)

I↓(m+1) (s, r, I0) (C.115)

∀s′′, r′′, s′′e . s′′ ◦ r′′ ∈ F ∧ s′′e ∈ Fe ∧ I↓m
(
s′′, r′′, I0

)
⇒ I ∪ Ie ↓m

(
s′′, r′′ ◦ s′′e , I0

)
(I.H)

We are then required to show:

∀κ. ∀a ∈ I0(κ). reflected(a, s ◦ r ◦ se, (I ∪ Ie)(κ)) (C.116)

∀κ. ∀a ∈ (I ∪ Ie)(κ). potential(a, s ◦ r ◦ se)⇒

(reflected(a, s ◦ r ◦ se, I0(κ)) ∨ ¬visible(a, s))∧
∀(s′, r′) ∈ a[s, r ◦ se]. I ∪ Ie ↓m (s′, r′, I0)

(C.117)

RTS. (C.116)
Pick arbitrary κ and a = (p, q, c) ∈ I0(κ). From (C.115) and the definition
of ↓ we then have reflected(a, s ◦ r, I(κ)). Consequently, from the definition
of reflected we trivially have:

reflected(a, s ◦ r, (I ∪ Ie)(κ)) (C.118)

Pick an arbitrary l ∈ IState such that

p ◦ c ≤ s ◦ r ◦ se ◦ l (C.119)

From (C.118) and the definition of reflected we then know there exist a′, c′

such that:

a′ = (p, q, c′) ∈ (I ∪ Ie)(κ) ∧ p ◦ c′ ≤ s ◦ r ◦ se ◦ l (C.120)

Finally, from (C.119), (C.120) and the definition of reflected we have

reflected(a, s ◦ r ◦ se, (I ∪ Ie)(κ))

458

as required.

RTS. (C.117)
Pick arbitrary κ, a = (p, q, c) ∈ (I ∪ Ie) (κ) and (s′, r′) such that:

potential(a, s ◦ r ◦ se) (C.121)

(s′, r′) ∈ a[s, r ◦ se] (C.122)

Since either a ∈ I(κ) or a ∈ Ie(κ), there are two cases to consider:

Case 1. a ∈ I(κ)

From the assumption of the case, (C.113), (C.110) and the definition of �
we have:

p ⊥ se (C.123)

From (C.121) and the definition of potential we have ∃l1, l2. p◦c◦l1=s◦r◦se◦
l2 and ∃l. p◦l=s◦r◦se∧q] l. Consequently, we have ∃l1, l2. p◦c◦l1 = s◦r◦l2
and ∃l. p ◦ l=s ◦ r ◦ se ∧ q] l.
On the other hand from the cross split property we know there exist
psr, pe, lg and le such that p=psr ◦ pe, l=lsr ◦ le, (s ◦ r)=psr ◦ lsr and
se=pe ◦ le. Since p ⊥ se (C.123), we know pe ∈ UnitIns and thus p=psr
and s ◦ r=p ◦ lsr. Lastly, since q] l, from the definition of l we know that
q] lsr, and thus we have ∃lsr. p ◦ lsr=s ◦ r ∧ q] lsr. That is,

potential(a, s ◦ r) (C.124)

On the other hand, from (C.122), (C.123) and the definitions of a[s, r ◦ se]
and ⊥, we know there exists r′′:

r′ = r′′ ◦ se (C.125)

(s′, r′′) ∈ a[s, r] (C.126)

From (C.126) and the definitions of a[s, r] and a[s ◦ r], we know s′ ◦ r′′ ∈
a[s ◦ r]. Consequently, from (C.110), (C.113), (C.124), and the definition
of � we have:

459

s′ ◦ r′′ ∈ F (C.127)

On the other hand, from (C.115), (C.124) and (C.126) we have:

(reflected(a, s ◦ r, I0(κ)) ∨ ¬visible(a, s))∧ (C.128)

I↓m
(
s′, r′′, I0

)
(C.129)

From (C.114), (C.127), (C.129) and (I.H) we have:

I ∪ Ie ↓m
(
s′, r′′ ◦ se, I0

)
and thus from (C.125)

I ∪ Ie ↓m
(
s′, r′, I0

)
(C.130)

Consequently, from (C.122), (C.130) we have:

∀(s′, r′) ∈ a[s, r ◦ se]. I ∪ Ie ↓m
(
s′, r′, I0

)
(C.131)

From (C.128) there are two cases to consider:

Case 1.1. ¬visible(a, s)
From (C.131) and the assumption of the case we have:

¬visible(a, s)∧

∀(s′, r′) ∈ a[s, r ◦ se]. I ∪ Ie ↓m
(
s′, r′, I0

)
as required.

Case 1.2. reflected(a, s ◦ r, I0(κ))

Pick an arbitrary l ∈ IState such that

p ◦ c ≤ s ◦ r ◦ se ◦ l (C.132)

From the assumption of the case and the definition of reflected we then

460

know there exist a′, c′ such that:

a′ = (p, q, c′) ∧ a′ ∈ I0(κ) ∧ p ◦ c′ ≤ s ◦ r ◦ se ◦ l (C.133)

From (C.132), (C.133) and the definition of reflected we have:

reflected(a, s ◦ r ◦ se, I0(κ)) (C.134)

Thus from (C.131) and (C.134) we have:

reflected(a, g ◦ se, I0(κ))∧

∀(s′, r′) ∈ a[s, r ◦ se]. I ∪ Ie ↓m
(
s′, r′, I0

)
as required.

Case 2. a ∈ Ie(κ)

From the assumption of the case, (C.114), (C.110) and the definition of �
we have:

p ⊥ s ◦ r (C.135)

From (C.121) and the definition of potential we have ∃l1, l2. p◦c◦l1=s◦r◦se◦
l2 and ∃l. p◦l=s◦r◦se∧q] l. Consequently, we have ∃l1, l2. p◦c◦l1 = s◦r◦l2
and ∃l. p ◦ l=s ◦ r ◦ se ∧ q] l.
On the other hand from the cross split property we know there exist
psr, pe, lg and le such that p=psr ◦ pe, l=lsr ◦ le, (s ◦ r)=psr ◦ lsr and
se=pe ◦ le. Since p ⊥ se (C.135), we know psr ∈ UnitIns and thus p=pe
and se=p ◦ le. Lastly, since q] l, from the definition of l we know that
q] le, and thus we have ∃le. p ◦ le=se ∧ q] le. That is,

potential(a, se) (C.136)

From (C.135) and the definition of visible we have:

¬visible(a, s) (C.137)

From (C.135) and the definitions of a[s, r◦se] and ⊥, we know there exists

461

s′e such that:

s′ = s ∧ r′ = r ◦ s′e (C.138)

s′e ∈ a[se] (C.139)

Consequently, from (C.110), (C.114), (C.136), (C.139) and the definition
of � we have:

s′e ∈ Fe (C.140)

From (C.115), (C.138) and Lemma 27 below we have:

I↓m
(
s′, r, I0

)
(C.141)

From (C.113), (C.140), (C.141), (I.H) we have:

I ∪ Ie ↓m
(
s′, r ◦ s′e, I0

)
and thus from (C.138)

I ∪ Ie ↓(n−1)

(
s′, r′, I0

)
(C.142)

Finally, from (C.122), (C.137) and (C.142) we have:

¬visible(a, s) ∧ ∀(s′, r′) ∈ a[s, r ◦ se]. I ∪ Ie ↓m
(
s′, r′, I0

)
as required.

462

Lemma 35 (|=† monotonicity). for all P ∈ Ast, Γ ∈ LEnv, s, g, g′ ∈ IState

and I, I′ ∈ AMod:

Γ, s |=g,I P ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P

Proof. By induction on the structure of P .

Case P = p where p ∈ LAst

Immediate from the semantics of local assertions.

Case P = P1 ∨ P2

Pick an arbitrary Γ ∈ LEnv, s, g, g′ ∈ IState and I, I′ ∈ AMod such that

Γ, s |=g,I P1 ∨ P2 (C.143)

g′ c© I′ (C.144)

∀s, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, s |=g,I P1 ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P1 (I.H1)

∀s, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, s |=g,I P2 ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P2 (I.H2)

From (C.143) and the definition of |=g,I we know Γ, s |=g,I P1 or Γ, s |=g,I

P2; consequently, from (C.144), (I.H1) and (I.H2) we have: Γ, s |=g◦g′,I∪I′

P1 or Γ, s |=g◦g′,I∪I′ P2. Thus, from the definition of |=g◦g′,I∪I′ we have:

Γ, s |=g◦g′,I∪I′ P1 ∨ P2

as required.

Cases P=∃x. P ′ or P=P1 ∧ P2 or P=P1 ∗ P2 or P=P1 ∪∗ P2

These cases are analogous to the previous case and are omitted here.

Case P ,
�� ��P ′

I
Pick an arbitrary Γ ∈ LEnv, s, g ∈ IState and I, I′ ∈ AMod such that

Γ, s |=g,I

�� ��P ′
I

(C.145)

g′ c© I′ (C.146)

463

∀s, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, s |=g,I P
′ ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P

′ (I.H)

From (C.145) and the definition of |=g,I we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g,I P
′ ∧ I↓

(
s′, r′, 〈|I|〉Γ

)
Thus from (C.146) and (I.H) we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g◦g′,I∪I′ P
′∧

I↓
(
s′, r′, 〈|I|〉Γ

)
Consequently since we have g c© I (from the well-formedness of worlds and
that (l, g, I) ∈ World), from (C.146), the definition of � and Lemma 34
we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g◦g′,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′ ◦ g′, 〈|I|〉Γ

)
After rewriting we have:

s ∈ UnitIns ∧ ∃s′, r′. g ◦ g′ = s′ ◦ r′ ∧ s′,Γ |=g◦g′,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′, 〈|I|〉Γ

)
That is,

Γ, s |=g◦g′,I∪I′
�� ��P ′

I

as required.

464

Lemma 36 (Confinement (auxiliary)). for all P ∈ Ast, Γ ∈ LEnv, s, g ∈
IState and I, I′ ∈ AMod:

Γ, (s, g, I) |= P ∧ s c© I′ =⇒ Γ, s |=g◦s,I∪I′ P

Proof. By induction on the structure of P .

Case P = p where p ∈ LAst

Immediate from the semantics of local assertions.

Case P = P1 ∨ P2

Pick an arbitrary Γ ∈ LEnv, s, g ∈ IState and I, I′ ∈ AMod such that

Γ, (s, g, I) |= P1 ∨ P2 (C.147)

g′ c© I′ (C.148)

∀s, g ∈ IState. ∀I′, I ∈ AMod.

Γ, (s, g, I) |= P1 ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P1 (I.H1)

∀s, g ∈ IState. ∀I′, I ∈ AMod.

Γ, (s, g, I) |= P2 ∧ g′ c© I′ =⇒ Γ, s |=g◦g′,I∪I′ P2 (I.H2)

From (C.147) and the definition of |= we know Γ, (s, g, I) |= P1 or
Γ, (s, g, I) |= P2; consequently, from (C.148), (I.H1) and (I.H2) we have:
Γ, s |=g◦s,I∪I′ P1 or Γ, s |=g◦s,I∪I′ P2. Thus, from the definition of |=g◦s,I∪I′

we have:

Γ, s |=g◦s,I∪I′ P1 ∨ P2

as required.

Cases P=∃x. P ′ or P=P1 ∧ P2 or P=P1 ∗ P2 or P=P1 ∪∗ P2

These cases are analogous to the previous case and are omitted here.

Case P ,
�� ��P ′

I
Pick an arbitrary Γ ∈ LEnv, s, g ∈ IState and I, I′ ∈ AMod such that

Γ, (s, g, I) |=
�� ��P ′

I
(C.149)

465

s c© I′ (C.150)

∀s, g ∈ IState. ∀I′, I ∈ AMod.

Γ, (s, g, I) |= P ′ ∧ s c© I′ =⇒ Γ, s |=g◦s,I∪I′ P
′ (I.H)

From (C.149) and the definition of |= we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g,I P
′ ∧ I↓

(
s′, r′, (〈|I|〉Γ ,−)

)
From (C.150) and Lemma 24 we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g◦s,I∪I′ P
′∧

I↓
(
s′, r′, (〈|I|〉Γ ,−)

)
From the well-formedness of worlds and (C.149) we know g c© I. As such,
from (C.150), the definition of � and Lemma 34 we have:

s ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g◦s,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′ ◦ s, (〈|I|〉Γ ,−)

)
After rewriting we have:

s ∈ UnitIns ∧ ∃s′, r′. g ◦ s = s′ ◦ r′ ∧ s′,Γ |=g◦s,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′, 〈|I|〉Γ

)
That is,

Γ, s |=g◦s,I∪I′
�� ��P ′

I

as required.

466

Lemma 37 (Extend stability). for all P ∈ Ast, Γ ∈ LEnv, w,w′ ∈
World,

Γ, w |= P ∧ (w,w′) ∈ Re =⇒ Γ, w′ |= P

Proof. We proceed by induction on the structure of assertion P .

Case P = p where p ∈ LAst

Immediate from the semantics of local assertions.

Case P = P1 ∨ P2

Pick arbitrary Γ ∈ LEnv, l, g, g′ ∈ IState and I, I′ ∈ AMod such that:

(l, g, I),Γ |= P1 ∨ P2 (C.151)

g′ c© I′ (C.152)

∀l, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, (l, g, I) |= P1 ∧ g′ c© I′ =⇒ Γ, (l, g ◦ g′, I ∪ I′) |= P1 (I.H1)

∀l, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, (l, g, I) |= P2 ∧ g′ c© I′ =⇒ Γ, (l, g ◦ g′, I ∪ I′) |= P2 (I.H2)

From (C.151) and the definition of |= we know Γ, (l, g, I) |= P1 or
(l, g, I),Γ |= P2; consequently, from (C.152), (I.H1) and (I.H2) we have:
Γ, (l, g ◦ g′, I∪ I′) |= P1 or Γ, (l, g ◦ g′, I∪ I′) |= P2. Thus, from the defini-
tion of |= we have Γ, (l, g ◦ g′, I ∪ I′) |= P1 ∨ P2 as required.

Cases P=∃x. P ′ or P=P1 ∧ P2 or P=P1 ∗ P2 or P=P1 ∪∗ P2

These cases are analogous to the previous case and are omitted here.

Case P ,
�� ��P ′

I
Pick arbitrary Γ ∈ LEnv, s, g ∈ IState and I, I′ ∈ AMod such that

(l, g, I),Γ |=
�� ��P ′

I
(C.153)

g′ c© I′ (C.154)

∀l, g, g′ ∈ IState. ∀I′, I ∈ AMod.

Γ, (l, g, I) |= P ′ ∧ g′ c© g =⇒ (l, g ◦ g′, I ∪ I′),Γ |= P ′ (I.H)

467

From (C.153) and the definition of |= we have:

l ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ Γ, s′ |=g,I P
′ ∧ I↓

(
s′, r′, 〈|I|〉Γ

)
Thus from (C.154) and Lemma 35 we have

l ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ◦ g′ ∧ Γ, s′ |=g◦g′,I∪I′ P
′ ∧ I↓

(
s′, r′, 〈|I|〉Γ

)
Consequently since we have g c© I (from the well-formedness of (l, g, I) ∈
World), from (C.154), the � definition and Lemma 34 we have:

l ∈ UnitIns ∧ ∃s′, r′. g = s′ ◦ r′ ∧ s′,Γ |=g◦g′,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′ ◦ g′, 〈|I|〉Γ

)
After rewriting we have:

l ∈ UnitIns ∧ ∃s′, r′. g ◦ g′ = s′ ◦ r′ ∧ s′,Γ |=g◦g′,I∪I′ P
′∧

I ∪ I′ ↓
(
s′, r′, 〈|I|〉Γ

)
That is,

(l, g ◦ g′, I ∪ I′),Γ |=
�� ��P ′

I

as required.

Lemma 38 (Stability). Given the update rely Ru (Def. 112), for all P ∈ Ast

(Def. 103), if P is stable with respect to the actions in Ru (Def. 112), then
it is stable:

stable (P,Ru)⇒ stable (P)

Proof. Let S ∈ P (World×World) denote a binary relation on worlds
defined as follows.

S ,
⋃
i∈N

Si where S0 , Re ∪Ru ∪ {(w,w) | w ∈World}

Sn+1 ,
{

(w,w′) | (w,w′′) ∈ S0 ∧ (w′′, w) ∈ Sn
}

From the definition of the rely relation on worlds (R) we then have R = S.

468

It thus suffices to show that for all n ∈ N and P ∈ Ast,

stable (P,Ru)⇒ stable (P, Sn)

We proceed by induction on n.

Base case n = 0

Pick arbitrary Γ ∈ LEnv, w,w′ ∈World and P ∈ Ast such that:

(w,w′) ∈ S0 ∧ Γ, w |= P (C.155)

stable (P,Ru) (C.156)

We are then required to show:

Γ, w′ |= P

From (C.155) and the definition of S0 there are three cases to consider:

1. If (w,w′) ∈ {(w,w) | w ∈World}, then w′ = w and from (C.155) we
trivially have Γ, w′ |= P .

2. If (w,w′) ∈ Re then from Lemma 37 and (C.155) we have Γ, w′ |= P .

3. If (w,w′) ∈ Ru then from (C.156) we have Γ, w′ |= P .

Inductive case n=m+1

Pick arbitrary w,w′ ∈World, Γ ∈ LEnv and P ∈ Ast such that

(w,w′) ∈ Sm+1 ∧ Γ, w |= P (C.157)

stable (P,Ru) (C.158)

stable (P,Ru)⇒ stable (P, Sm) (I.H.)

From (C.157) and Sm+1 we know there exists w′′ ∈World such that

(w,w′′) ∈ S0 ∧ (w′′, w′) ∈ Sm (C.159)

From (C.158), (C.159) and the base case we know Γ, w′′ |= P . Con-
sequently, from (C.158), (C.159) and (I.H.) we have Γ, w′ |= P as re-
quired.

469

Lemma 39 (Weakening (full proof)). For all P ∈ Ast (Def. 103):

P `�P

Proof. By induction on the structure of assertions.

Case P = p where p ∈ LAst

Follows immediately from the definition of �for local assertions.

Case P = ∃x. Q
Pick arbitrary Γ ∈ LEnv and w ∈ World such that Γ, w |= ∃x. Q. From
the definition of |= we then know there exists v such that [Γ | x:v], w |= Q.
From the inductive hypothesis we have [Γ | x:v], w |=�Q and consequently
from the definition of |= we have Γ, w |=�(∃x. Q) as required.

Case P = Q ∨R
Pick arbitrary Γ ∈ LEnv and w ∈ World such that Γ, w |= Q ∨ R. From
the definition of |= we then know that Γ, w |= Q or Γ, w |= R. From the
inductive hypothesis we have Γ, w |=�Q or Γ, w |=�R. From the definition
of |= we then have Γ, w |=�Q ∨ �R. Consequently from the definition of �
we have Γ, w |=�(Q ∨R) as required.

Case P = Q ∗R or P = Q ∪∗ R
These cases are analogous to the Q ∨R case and are omitted here.

Case P =
�� ��Q I

Pick arbitrary Γ ∈ LEnv and w=(l, g, I) ∈ World such that Γ, w |=
�� ��Q I

.
From the definition of |= we know that l ∈ UnitIns. From the definition
of |= we then have Γ, w |= emp. Consequently from the definition of �we
have Γ, w |=�

�� ��Q I
as required.

470

Lemma 40 (Boxed assertions). For all Γ ∈ LEnv, (l, g, I) ∈World (Def. 102),
s, g ∈ IState (Def. 91), I ∈ AMod (Def. 94) and P b ∈ BAst (Def. 118):

Γ, (l, g, I) |= P b =⇒ l ∈ UnitIns ∧ Γ, l |=g,I P
b

∧∀l′ ∈ UnitIns. Γ, (l′, g, I) |= P b

(C.160)

Γ, s |=g,I P
b =⇒ s ∈ UnitIns ∧ Γ, (s, g, I) |= P b

∧∀s′ ∈ UnitIns. Γ, s′ |=g,I P
b

(C.161)

where |= and |=g,I denote the satisfiability relations in Def. 104.

Proof (C.160). Pick an arbitrary Γ ∈ LEnv, and (l, g, I) ∈ World such
that Γ, (l, g, I) |= P b. We then proceed by induction on the structure of
P b.

Case P b = emp
Follows immediately from the definitions of |= and |=g,I for emp.

Case P b =
�� ��Q I

Follows immediately from the definition of |= for
�� ��Q I

.

Case P b = P b
1 ∗ P b

2

From the definition of |= and composition on worlds we know that there
exist l1, l2 ∈ IState such that l=l1 ◦ l2; Γ, (l1, g, I) |= P b

1 and Γ, (l2, g, I) |=
P b

2 . From the inductive hypotheses we then have:

l1 ∈ UnitIns ∧ Γ, l1 |=g,I P
b
1 ∧ ∀l′1 ∈ UnitIns. Γ, (l′1, g, I) |= P b

1

l2 ∈ UnitIns ∧ Γ, l2 |=g,I P
b
2 ∧ ∀l′2 ∈ UnitIns. Γ, (l′2, g, I) |= P b

2

From the definition of l and ◦ we have l ∈ UnitIns as required. Similarly
from the definitions of l and |=g,I we have Γ, l |=g,I P

b
1 ∗ P b

2 . For the third
conjunct, pick an arbitrary l′ ∈ UnitIns. From the definition of unit set
we know there exists a unit element l′u ∈ UnitIns such that l′ ◦ l′u=l′. Since
both l′ and l′u are in UnitIns from above we have:

(l′, g, I) |= P b
1 ∧ (l′u, g, I) |= P b

2

Consequently from the definition of |= we have (l′ ◦ l′u, g, I) |= P b
1 ∗ P b

2 .

471

Lastly, since l′ ◦ l′u=l′, we have (l′, g, I) |= P b
1 ∗ P b

2 as required.

Proof (C.161). Pick an arbitrary Γ ∈ LEnv, s, g ∈ IState and I ∈ AMod

such that Γ, s |=g,I P
b. We first establish the second conjunct. The first

and third conjuncts then follow from the second conjunct and the previ-
ous part (C.160). For the second conjunct we proceed by induction on the
structure of P b.

Case P b = emp
Follows immediately from the definition of |=g,I for emp.

Case P b =
�� ��Q I

From immediately from the definition of |=g,I for
�� ��Q I

.

Case P b = P b
1 ∗ P b

2

From the definition of |=g,I and composition on worlds we know that there
exist s1, s2 ∈ IState such that s=s1 ◦ s2, Γ, s1 |=g,I P

b
1 and Γ, s2 |=g,I

P b
2 . From the inductive hypotheses we then have Γ, (s1, g, I) |= P b

1 and
Γ, (s2, g, I) |= P b

2 . Consequently, from the definitions of s, and |= we have
Γ, (s, g, I) |= P b

1 ∗ P b
2 as required.

472

Lemma 41 (Boxed assertions (continued)). For all Γ ∈ LEnv, (l, g, I) ∈
World (Def. 102) and P b, Qb ∈ BAst (Def. 118):

Γ, (l, g, I) |= P b ∗Qb ⇐⇒ Γ, (l, g, I) |= P b ∪∗ Qb

where |= denotes the satisfiability relation in Def. 104.

Proof.
The ⇒ direction

Γ, (l, g, I) |= P b ∗Qb

|=Def.
=⇒ ∃l1, l2. Γ, (l1, g, I) |= P b ∧ Γ, (l2, g, I) |= Qb ∧ l=l1 ◦ l2

Lemma40
=⇒ ∃l1, l2. Γ, (l1, g, I) |= P b ∧ Γ, (l2, g, I) |= Qb ∧ l=l1 ◦ l2

∧ l1, l2, l ∈ UnitIns

Lemma40
=⇒ Γ, (l, g, I) |= P b ∧ Γ, (l, g, I) |= Qb

|=Def.
=⇒ Γ, (l, g, I) |= P b ∪∗ Qb

as required.

The ⇐ direction

Γ, (l, g, I) |= P b ∪∗ Qb

|=Def.
=⇒ ∃l1, l2, l3. Γ, (l1 ◦ l2, g, I) |= P b ∧ Γ, (l2 ◦ l3, g, I) |= Qb

∧ l=l1 ◦ l2 ◦ l3
Lemma40

=⇒ ∃l1, l2, l3. Γ, (l1 ◦ l2, g, I) |= P b ∧ Γ, (l2 ◦ l3, g, I) |= Qb

∧ l=l1 ◦ l2 ◦ l3 ∧ l1 ◦ l2, l2 ◦ l3 ∈ UnitIns

UnitInsDef.
=⇒ ∃l1, l2, l3. Γ, (l1 ◦ l2, g, I) |= P b ∧ Γ, (l2 ◦ l3, g, I) |= Qb

∧ l=l1 ◦ l2 ◦ l3 ∧ l1 ◦ l2, l2 ◦ l3, l1, l2, l3 ∈ UnitIns

Lemma40
=⇒ ∃l1, l2, l3. Γ, (l1 ◦ l2, g, I) |= P b ∧ Γ, (l3, g, I) |= Qb

∧ l=l1 ◦ l2 ◦ l3
|=Def.
=⇒ Γ, (l, g, I) |= P b ∗Qb

473

Lemma 42 (Flattening normalisation (auxiliary)). For all Γ ∈ LEnv, l, g ∈
IState (Def. 91), I ∈ AMod (Def. 94) and quantifier-free assertions P ∈ Ast

(Def. 103):
Γ, l |=g,I P ⇔ Γ, l |=g,I nf (P)

where |=g,I denotes the satisfiability relations in Def. 104.

Proof. Pick arbitrary l, g ∈ IState, I ∈ AMod and quantifier-free assertion
P ∈ Ast. We proceed by induction over the structure of P .

Case P = p where p ∈ LAst

Follows immediately from the nf (.) definition for local assertions (nf (p) =p).

Case P = Q ∨R

Γ, l |=g,I|= P
|=Def.⇐⇒ Γ, l |=g,I Q ∨ Γ, l |=g,I R

I.H.⇐⇒ Γ, l |=g,I nf (Q) ∨ Γ, l |=g,I nf (R)

|=Def.⇐⇒ Γ, l |=g,I nf (Q) ∨ nf (R)

nf(.)Def.⇐⇒ Γ, l |=g,I nf (Q ∨R) ⇐⇒ Γ, l |=g,I nf (P)

Case P = Q ∗R
Let nf (Q) =

∨
j∈J

(
qj ∗Qb

j

)
and nf (R) =

∨
k∈K

(
rk ∗Rb

k

)
. We then have:

Γ, l |=g,I P
|=Def.⇐⇒ ∃l1, l2. l=l1 ◦ l2 ∧ Γ, l1 |=g,I Q ∧ Γ, l2 |=g,I R

I.H.⇐⇒ ∃l1, l2. l=l1 ◦ l2 ∧ Γ, l1 |=g,I nf (Q) ∧ Γ, l2 |=g,I nf (R)

⇐⇒ ∃l1, l2. l=l1 ◦ l2
∧ Γ, l1 |=g,I

∨
j∈J

(qj ∗Qb
j) ∧ Γ, l2 |=g,I

∨
k∈K

(rk ∗Rb
k)

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2. l=l1 ◦ l2
∧ Γ, l1 |=g,I qj ∗Qb

j ∧ Γ, l2 |=g,I rk ∗Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4. l=l1 ◦ l2 ◦ l3 ◦ l4
∧ Γ, l1 |=g,I qj ∧ Γ, l3 |=g,I Q

b
j

∧ Γ, l2 |=g,I rk ∧ Γ, l4 |=g,I R
b
k

474

|=Def.,Lem.40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l4, l5. l=l0 ◦ l3 ◦ l4
∧ l3, l4 ∈ UnitIns ∧ Γ, l0 |=g,I qj ∗ rk
∧ Γ, l3 |=g,I Q

b
j ∧ Γ, l4 |=g,I R

b
k

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l4, l5. l=l0 ◦ l3 ◦ l4 ∧ Γ, l0 |=g,I qj ∗ rk
∧ Γ, l3 |=g,I Q

b
j ∧ Γ, l4 |=g,I R

b
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. Γ, l |=g,I qj ∗ rk ∗Qb
j ∗Rb

k

|=Def.⇐⇒ Γ, l |=g,I

∨
j∈J, k∈K

(
qj ∗ rk ∗Qb

j ∗Rb
k

)
nf(.)Def.⇐⇒ Γ, l |=g,I nf (Q ∗R)

⇐⇒ Γ, l |=g,I nf (P)

Case P = Q ∪∗ R
Let nf (Q) =

∨
j∈J

(
qj ∗Qb

j

)
and nf (R) =

∨
k∈K

(
rk ∗Rb

k

)
. We then have:

Γ, (l, g, I) |= P
|=Def.⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3

∧ Γ, l1 ◦ l2 |=g,I Q ∧ Γ, l2 ◦ l3 |=g,I R

I.H.⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, l1 ◦ l2 |=g,I nf (Q) ∧ Γ, l2 ◦ l3 |=g,I nf (R)

⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, l1 ◦ l2 |=g,I

∨
j∈J

(qj ∗Qb
j) ∧ Γ, l2 ◦ l3 |=g,I

∨
k∈K

(rk ∗Rb
k)

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, l1 ◦ l2 |=g,I qj ∗Qb

j ∧ Γ, l2 ◦ l3 |=g,I rk ∗Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4, l5, l6, l7. l=l1 ◦ l2 ◦ l3
∧ l1 ◦ l2=l4 ◦ l5∧l2 ◦ l3=l6 ◦ l7
∧ Γ, l4 |=g,I qj ∧ Γ, l5 |=g,I Q

b
j

∧ Γ, l6 |=g,I rk ∧ Γ, l7 |=g,I R
b
k

475

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4, l5. l=l1 ◦ l2 ◦ l3 ◦ l5 ◦ l7
∧ l1 ◦ l2=l1 ◦ l2 ◦ l5∧l2 ◦ l3=l2 ◦ l3 ◦ l7 ∧ l5, l7 ∈ UnitIns

∧ Γ, l1 ◦ l2 |=g,I qj ∧ Γ, l5 |=g,I Q
b
j

∧ Γ, l2 ◦ l3 |=g,I rk ∧ Γ, l7 |=g,I R
b
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l5, l7. l=l0 ◦ l5 ◦ l7
∧ l5, l7 ∈ UnitIns ∧ Γ, l0 |=g,I qj ∪∗ rk
∧ Γ, l5 |=g,I Q

b
j ∧ Γ, l7 |=g,I R

b
k

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l5, l7. l=l0 ◦ l5 ◦ l7 ∧ Γ, l0 |=g,I qj ∪∗ rk
∧ Γ, l5 |=g,I Q

b
j ∧ Γ, l7 |=g,I R

b
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. Γ, l |=g,I (qj ∪∗ rk) ∗Qb
j ∗Rb

k

|=Def.⇐⇒ Γ, l |=g,I

∨
j∈J, k∈K

(
(qj ∪∗ rk) ∗Qb

j ∗Rb
k

)
nf(.)Def.⇐⇒ Γ, l |=g,I nf (Q ∪∗ R) ⇐⇒ Γ, l |=g,I nf (P)

Case P =
�� ��Q I

Let nf (Q) =
∨
j∈J

(
qj ∗Qb

j

)
. We then proceed as follows:

Γ, l |=g,I P

|=Def.⇐⇒ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ ∃s, r. g=s ◦ r

∧ Γ, s |=g,I Q ∧ I↓
(
s, r, I′

)
UnitIns⇐⇒ ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su

∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I Q ∧ I↓
(
s, r, I′

)
I.H.⇐⇒ ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su

∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I nf (Q) ∧ I↓
(
s, r, I′

)
nf(.)Def.⇐⇒ ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su

∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I

∨
j∈J

(
qj ∗Qb

j

)
∧ I↓

(
s, r, I′

)

476

|=Def.⇐⇒ ∃j ∈ J. ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su
∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I qj ∗Qb
j ∧ I↓

(
s, r, I′

)
|=Def.⇐⇒ ∃j ∈ J. ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su

∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r ∧ ∃s1, s2. s=s1 ◦ s2

∧ Γ, s1 |=g,I qj ∧ I↓
(
s, r, I′

)
∧ Γ, s2 |=g,I Q

b
j

Lemma40⇐⇒ ∃j ∈ J. ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su
∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r ∧ ∃s1, s2. s=s1 ◦ s2

∧ s2 ∈ UnitIns ∧ Γ, s1 |=g,I qj ∧ I↓
(
s, r, I′

)
∧ Γ, s2 |=g,I Q

b
j

Lemma40⇐⇒ ∃j ∈ J. ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su
∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I qj ∧ I↓
(
s, r, I′

)
∧ Γ, su |=g,I Q

b
j

Lemma40⇐⇒ ∃j ∈ J. ∃lu, su ∈ UnitIns. l ◦ lu=l ∧ ∃s, r. s=s ◦ su
∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ g=s ◦ r

∧ Γ, s |=g,I qj ∧ I↓
(
s, r, I′

)
∧ Γ, lu |=g,I Q

b
j

UnitIns⇐⇒ ∃j ∈ J. ∃lu ∈ UnitIns. l ◦ lu=l

∧ l ∈ UnitIns ∧ ∃I′. I′a= 〈|I|〉Γ ∧ ∃s, r. g=s ◦ r

∧ Γ, s |=g,I qj ∧ I↓
(
s, r, I′

)
∧ Γ, lu |=g,I Q

b
j

|=Def.⇐⇒ ∃j ∈ J. ∃lu ∈ UnitIns. l ◦ lu=l

∧ Γ, (l, g, I) |= �� ��qj I
∧ Γ, lu |=g,I Q

b
j

|=Def.⇐⇒ ∃j ∈ J. ∃lu ∈ UnitIns. l ◦ lu=l

∧ Γ, l |=g,I
�� ��qj I

∧ Γ, lu |=g,I Q
b
j

Lemma40⇐⇒ ∃j ∈ J. ∃l1, l2. l=l1 ◦ l2 ∧ Γ, l1 |=g,I
�� ��qj I

∧ Γ, l2 |=g,I Q
b
j

|=Def.⇐⇒ ∃j ∈ J. Γ, l |=g,I
�� ��qj I
∗Qb

j

|=Def.⇐⇒ Γ, l |=g,I

∨
j∈J

(�� ��qj I
∗Qb

j

)
nf(.)Def.⇐⇒ Γ, l |=g,I nf

(�� ��Q I

)
⇐⇒ Γ, l |=g,I nf (P)

477

Lemma 43 (Flattening normalisation (full proof)). For all assertions P ∈
Ast (Def. 103) in the prenex normal form:

` P ⇔ nf (P)

where nf (.) denotes the flattening normalisation function in Def. 118.

Proof. Pick arbitrary Γ ∈ LEnv, (l, g, I) ∈World (Def. 102) and assertion
Q©P ∈ Ast (Def. 103) in the prenex normal form with prefix Q© and matrix
P . We are then required to show:

Γ, (l, g, I) |= P ⇔ Γ, (l, g, I) |= nf (P)

where P denotes a quantifier-free assertion and |= denotes the satisfiability
relations in Def. 104. We proceed by structural induction on P .

Case P = p where p ∈ LAst

Follows immediately from the nf (.) definition for local assertions (nf (p) =p).

Case P = Q ∨R

Γ, (l, g, I) |= P
|=Def.⇐⇒ Γ, (l, g, I) |= Q ∨ Γ, (l, g, I) |= R

I.H.⇐⇒ Γ, (l, g, I) |= nf (Q) ∨ Γ, (l, g, I) |= nf (R)

|=Def.⇐⇒ Γ, (l, g, I) |= nf (Q) ∨ nf (R)

nf(.)Def.⇐⇒ Γ, (l, g, I) |= nf (Q ∨R) ⇐⇒ Γ, (l, g, I) |= nf (P)

Case P = Q ∗R
Let nf (Q) =

∨
j∈J

(
qj ∗Qb

j

)
and nf (R) =

∨
k∈K

(
rk ∗Rb

k

)
. We then have:

Γ, (l, g, I) |= P

|=Def.⇐⇒ ∃l1, l2. l=l1 ◦ l2 ∧ Γ, (l1, g, I) |= Q ∧ Γ, (l2, g, I) |= R

I.H.⇐⇒ ∃l1, l2. l=l1 ◦ l2 ∧ Γ, (l1, g, I) |= nf (Q) ∧ Γ, (l2, g, I) |= nf (R)

⇐⇒∃l1,l2. l=l1 ◦ l2 ∧ Γ,(l1,g,I)|=
∨
j∈J

(qj∗Qb
j) ∧ Γ,(l2,g,I)|=

∨
k∈K

(rk∗Rb
k)

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2. l=l1 ◦ l2
∧ Γ, (l1, g, I) |= qj ∗Qb

j ∧ Γ, (l2, g, I) |= rk ∗Rb
k

478

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4. l=l1 ◦ l2 ◦ l3 ◦ l4
∧ Γ, (l1, g, I) |= qj ∧ Γ, (l3, g, I) |= Qb

j

∧ Γ, (l2, g, I) |= rk ∧ Γ, (l4, g, I) |= Rb
k

|=Def.,Lem.40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l4, l5. l=l0 ◦ l3 ◦ l4
∧ l3, l4 ∈ UnitIns ∧ Γ, (l0, g, I) |= qj ∗ rk
∧ Γ, (l3, g, I) |= Qb

j ∧ Γ, (l4, g, I) |= Rb
k

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l4, l5. l=l0 ◦ l3 ◦ l4 ∧ Γ, (l0, g, I) |= qj ∗ rk
∧ Γ, (l3, g, I) |= Qb

j ∧ Γ, (l4, g, I) |= Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. Γ, (l, g, I) |= qj ∗ rk ∗Qb
j ∗Rb

k

|=Def.⇐⇒ Γ, (l, g, I) |=
∨

j∈J, k∈K

(
qj ∗ rk ∗Qb

j ∗Rb
k

)
nf(.)Def.⇐⇒ Γ, (l, g, I) |= nf (Q ∗R) ⇐⇒ Γ, (l, g, I) |= nf (P)

Case P = Q ∪∗ R
Let nf (Q) =

∨
j∈J

(
qj ∗Qb

j

)
and nf (R) =

∨
k∈K

(
rk ∗Rb

k

)
. We then have:

Γ, (l, g, I) |= P

|=Def.⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, (l1 ◦ l2, g, I) |= Q ∧ Γ, (l2 ◦ l3, g, I) |= R

I.H.⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, (l1 ◦ l2, g, I) |= nf (Q) ∧ Γ, (l2 ◦ l3, g, I) |= nf (R)

⇐⇒ ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, (l1 ◦ l2, g, I) |=

∨
j∈J

(qj ∗Qb
j) ∧ Γ, (l2 ◦ l3, g, I) |=

∨
k∈K

(rk ∗Rb
k)

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3. l=l1 ◦ l2 ◦ l3
∧ Γ, (l1 ◦ l2, g, I) |= qj ∗Qb

j ∧ Γ, (l2 ◦ l3, g, I) |= rk ∗Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4, l5, l6, l7. l=l1 ◦ l2 ◦ l3
∧ l1 ◦ l2=l4 ◦ l5∧l2 ◦ l3=l6 ◦ l7
∧ Γ, (l4, g, I) |= qj ∧ Γ, (l5, g, I) |= Qb

j

∧ Γ, (l6, g, I) |= rk ∧ Γ, (l7, g, I) |= Rb
k

479

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l1, l2, l3, l4, l5. l=l1 ◦ l2 ◦ l3 ◦ l5 ◦ l7
∧ l1 ◦ l2=l1 ◦ l2 ◦ l5∧l2 ◦ l3=l2 ◦ l3 ◦ l7 ∧ l5, l7 ∈ UnitIns

∧ Γ, (l1 ◦ l2, g, I) |= qj ∧ Γ, (l5, g, I) |= Qb
j

∧ Γ, (l2 ◦ l3, g, I) |= rk ∧ Γ, (l7, g, I) |= Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l5, l7. l=l0 ◦ l5 ◦ l7
∧ l5, l7 ∈ UnitIns ∧ Γ, (l0, g, I) |= qj ∪∗ rk
∧ Γ, (l5, g, I) |= Qb

j ∧ Γ, (l7, g, I) |= Rb
k

Lemma40⇐⇒ ∃j ∈ J. ∃k ∈ K. ∃l0, l5, l7. l=l0 ◦ l5 ◦ l7 ∧ Γ, (l0, g, I) |= qj ∪∗ rk
∧ Γ, (l5, g, I) |= Qb

j ∧ Γ, (l7, g, I) |= Rb
k

|=Def.⇐⇒ ∃j ∈ J. ∃k ∈ K. Γ, (l, g, I) |= (qj ∪∗ rk) ∗Qb
j ∗Rb

k

|=Def.⇐⇒ Γ, (l, g, I) |=
∨

j∈J, k∈K

(
(qj ∪∗ rk) ∗Qb

j ∗Rb
k

)
nf(.)Def.⇐⇒ Γ, (l, g, I) |= nf (Q ∪∗ R) ⇐⇒ Γ, (l, g, I) |= nf (P)

Case P =
�� ��Q I

Let nf (Q) =
∨
j∈J

(
qj ∗Qb

j

)
. We then proceed as follows:

Γ, (l, g, I) |= P
|=Def.⇐⇒ Γ, l |=g,I

�� ��Q I

Lemma42⇐⇒ Γ, l |=g,I nf
(�� ��Q I

)
nf(.)Def.⇐⇒ Γ, l |=g,I

∨
j∈J

(�� ��qj I
∗Qb

j

)
|=Def.⇐⇒

∨
j∈J

(
l |=g,I

�� ��qj I
∗Qb

j

)
Lemma40⇐⇒

∨
j∈J

(
Γ, (l, g, I) |= �� ��qj I

∗Qb
j

)
|=Def.⇐⇒ Γ, (l, g, I) |=

∨
j∈J

(�� ��qj I
∗Qb

j

) nf(.)Def.⇐⇒ Γ, (l, g, I) |= nf (P)

480

Lemma 44 (Sequential command soundness). For all Cs ∈ Seq, (L1, Cs, L2) ∈
Axs and h ∈ LState:

[|Cs|]s (bL1 •l {h}cl) ⊆ bL2 •l {h}cl

Proof. Pick an arbitrary h ∈ LState. We proceed by induction over the
structure of Cs.

Case Cp

Follows immediately from Par. 30.

Case skip
[|Cs|]s (bL •l {h}cl) = bL •l {h}cl

⊆ bL •l {h}cl
as required.

Case Cs1;C
s
2

RTS.
[|Cs

1;C
s
2|]s (bL •l {h}cl) ⊆

⌊
L′ •l {h}

⌋
l

where (L, Cs
1, L

′′) , (L′′, Cs
2, L

′) ∈ Axs

Proof.
[|Cs

1; Cs
2|]s (bL •l {h}cl) = [|Cs

2|]s
(
[|Cs

1|]s (bL •l {h}cl)
)

(I.H.) ⊆ [|Cs
2|]s (bL′′ •l {h}cl)

(I.H.) ⊆ bL′ •l {h}cl
as required.

Case Cs1 + Cs2
RTS.

[|Cs
1 + Cs

2|]s (bL •l {h}cl) ⊆
⌊
L′ •l {h}

⌋
l

where (L, Cs
1, L

′) , (L, Cs
2, L

′) ∈ Axs.

Proof.

[|Cs
1 + Cs

2|]s (bL •l {h}cl) = [|Cs
1|]s (bL •l {h}cl) ∪ [|Cs

2|]s (bL •l {h}cl)

(I.H.) ⊆ bL′ •l {h}cl ∪ bL′ •l {h}cl
⊆ bL′ •l {h}cl

as required.

481

Case (Cs)∗

RTS.
[|(Cs)∗|]s (bL •l {h}cl) ⊆ bL •l {h}cl

where (L, Cs, L) ∈ Axs.

Proof. Let (Cs)0=skip and (Cs)n+1=Cs;(Cs)n. From the definition of [|.|]s (.)

we then have:
[|(Cs)∗|]s (σ) =

⋃
n∈N

[|(Cs)n|]s (σ)

It then suffices to show that for all n ∈ N:

[|(Cs)n|]s (bL •l {h}cl) ⊆ bL •l {h}cl
where

[|Cs|]s (bL •l {h}cl) ⊆ bL •l {h}cl (I.H.)

We proceed by induction on n.

Case n=0

[∣∣(Cs)0
∣∣]
s (bL •l {h}cl) = [|skip|]s (bL •l {h}cl)

= bL •l {h}cl ⊆ bL •l {h}cl
as required.

Case n=m+1

From the inductive hypothesis we have:

[|(Cs)m|]s (bL •l {h}cl) ⊆ bL •l {h}cl (I.H.2)

We then proceed as follows:

[∣∣(Cs)m+1
∣∣]
s (bL •l {h}cl) = [|Cs;(Cs)m|]s (bL •l {h}cl)

= [|(Cs)m|]s ([|Cs|]s (bL •l {h}cl))

(I.H.) ⊆ [|(Cs)m|]s (bL •l {h}cl)

(I.H.2) ⊆bL •l {h}cl
as required.

482

Lemma 45 (Update guarantee containment). For all w1, w2=(l2, g2, I2), w, w′ =

(l′, g′, I′) ∈World,

w1 • w2 = w ∧ (l′, g′, I′) ∈ Gu(w1) =⇒ (l2, g
′, I′) ∈ Ru(w2)

where Ru(w) , {w′ | (w,w′) ∈ Ru(w)}.

Proof. Pick arbitrary w,w1=(l1, g1, I1), w2=(l2, g2, I2) and (l′, g′, I′) such
that:

w1 • w2 = w (C.162)

(l′, g′, I′) ∈ Gu(w1) (C.163)

From (C.162) we know:

g1 = g2 (C.164)

I1 = I2 (C.165)

By definition of Guand from (C.163) and (C.165) we know:

I′ = I1 = I2 (C.166)

(l1 ◦ g1)k)] =
(
(l′ ◦ g′)l

)] (C.167)

g′ = g1 ∨

(
∃κ ≤ (l1)k. (g1, g

′) ∈ dI1e (κ) ∧
((l1 ◦ g1)l)] = ((l′ ◦ g′)l)]

)

There are two cases to consider:

Case 1. g1 = g′

From (C.164) and the assumption of the case we know g′ = g2. Conse-
quently, from (C.166) we have:

((w2)L, g
′, I′) = (l2, g2, I2) (C.168)

By definition of Ru and from (C.168) we can conclude:

((w2)L, g
′, I′) ∈ Ru(l2, g2, I2) (C.169)

as required.

483

Case 2.

∃κ ≤ (l1)k. (g1, g
′) ∈ dI1e (κ) (C.170)

((l1 ◦ g1)l)] =
(
(l′ ◦ g′)l

)] (C.171)

From (C.162), (C.164) and (C.165) we know that

w = (l1 ◦ l2, g2, I2) (C.172)

Since wf (w) (by definition of World) and from (C.164) we know:

(l1 ◦ l2 ◦ g2)k = (l1)k •k (l2)k •k (g2) = (l1 ◦ g1)k •k (l2)k is defined
(C.173)

(l1 ◦ l2 ◦ g1)l = (l1 •l g1)l •l (l2)l is defined (C.174)

Since κ1 ≤ (l1)k (C.170), from (C.173) and Lemma 26, we know:

κ] (l2)k •k (g2)k (C.175)

From (C.164), (C.171) and (C.174) we know

(l′ ◦ g′)l •l (l2)l = (l′ ◦ l2 ◦ g′)l is defined (C.176)

From (C.167) and (C.173) we know

(l′ ◦ g′)k •k (l2)k = (l′ ◦ l2 ◦ g′)k is defined (C.177)

From (C.176) and (C.177) we know l′1 ◦ l2 ◦ g′ is defined and consequently:

l2 ◦ g′ is defined (C.178)

From (C.165), (C.170), (C.175), (C.178) and by definition of Ru, we have:

((w2)L, g
′, I′) = (l2, g2, I2) ∈ Ru(l2, s2, I2)

as required.

484

Lemma 46 (Extension guarantee containment). For all w1, w2, w, w
′ =

(l′, g′, I′) ∈World,

w1 • w2 = w ∧ w′ ∈ Ge(w1) =⇒ ((w2)L, g
′, I′) ∈ Re(w2)

Proof. Pick an arbitrary w1 = (l1, g1, I1), w2 = (l2, g2, I2), w and w′ =

(l′, g′, I′) such that:

w1 • w2 = w (C.179)

w′ ∈ Ge(w1) (C.180)

RTS.

((w2)L, g
′, I′) ∈ Re(w2)

From (C.179) we know:

g1 = g2 ∧ I1 = I2 (C.181)

By definition of Ge and from (C.180) and (C.181) we know there exists
l3, l4, g

′′ ∈ IState, κ1, κ2 ∈ Kap, t ∈ N and I1, I2 ∈ AMod such that

l1 = l3 ◦ l4 ∧ l′1 = l3 ◦ (0, κ1)

∧ g′′ = l4 ◦ (0, κ2) ∧ g′ = g2 ◦ g′′

∧ dom(κ1) ∪ dom(κ2) ⊆ {t}
∧ I1=(Ia, It] [t 7→ 1]) ∧ I′ = I1 ∪ I2

(C.182)

From (C.182) and the definition of Re we have:

((w2)L, g
′, I′) ∈ Re(w2)

as required.

485

Lemma 47 (Guarantee containment). For all w1, w2=(l2, s2, I2), w, w′ =

(l′, g′, I′) ∈World,

w1 • w2 = w ∧ (l′, g′, I′) ∈ G(w1) =⇒ (l2, g
′, I′) ∈ R(w2)

Proof. Pick arbitrary w1, w2=(l2, s2, I2), w, w′=(l′, g′, I′) such that:

w1 • w2 = w (C.183)

(l2, g
′, I′) ∈ G(w1) (C.184)

We are then required to show:

(l2, g
′, I′) ∈ R(w2)

From (C.184) and by definition of G we know:

(l′, g′, I′) ∈ (Gu ∪Ge)∗ (w2) (C.185)

From (C.183), (C.185) and by Lemmata 45 and 46 we have:

(l2, g
′, I′) ∈ (Ru ∪Re)∗ (w2)

and consequently

(l2, g
′, I′) ∈ R(w2)

as required.

486

	Declaration of Originality
	Copyright
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Definitions
	List of Theorems
	Introduction
	Contributions
	Publications
	Thesis Overview
	Notational Conventions

	Abstraction and Refinement
	Technical Background:Abstraction
	Abstraction for Separation Logic
	Set Module
	List Module
	Structural Separation Logic: Informal Development

	Client Reasoning
	The x.size() Client Program

	Structural Separation Logic (SSL)
	SSL Model and Assertions
	The PLogicA Reasoning Framework

	A Tree Library: T
	SSL Model and Assertions: Library T
	Reasoning about T Client Programs
	The getLast(n) Client Program
	The moveChildren(n, m) Client Program

	The DOM Library: DOM
	Overview
	SSL Model and Assertions: Library DOM
	JSLogicDOM Reasoning Framework
	Reasoning about DOM Client Programs
	The santiseImg Client Program
	The adblocker1 Client Program
	The adblocker2 Client Program

	Technical Background:Refinement
	Locality-breaking Translations
	Locality-breaking Limitations: Scalability
	Locality-breaking Limitations: Concurrency

	Locality-preserving Translations
	Locality-preserving Limitations: Complexity

	Hybrid Translations

	Refinement for DOM
	A DOM Implementation in JavaScript
	DOM Implementation Correctness

	CoLoSL: Concurrent Local Subjective Logic
	Technical Background: CoLoSL
	CoLoSL: Overview
	Dijkstra's Token Ring Algorithm
	Comparison to CAP
	Comparison to Iris and Contemporary Logics

	Concurrent Local Subjective Logic
	CoLoSL Model
	CoLoSL Assertions
	Interference Manipulations
	Rely and Guarantee
	CoLoSL Judgements as SL Entailments
	Programming Language and Proof Rules
	Operational Semantics and Soundness

	CoLoSL Examples
	Parallel Spanning Tree Computation
	Copying Heap-represented Dags Concurrently
	Parallel Speculative Shortest Path (Dijkstra)

	Conclusions
	DOM Specification
	Node Axioms
	Text Node Axioms
	Element Node Axioms
	Attribute Node Axioms
	Document Node Axioms
	NodeList Axioms

	DOM Implementation Correctness
	Auxiliary CoLoSL Lemmata

