
Automatic Parallelization with Separation Logic

Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, UK
{mraza,ccris,pg}@doc.ic.ac.uk

Abstract. Separation logic is a recent approach to the analysis of pointer pro-
grams in which resource separation is expressed with a logical connective in as-
sertions that describe the state at any given point in the program. We extend this
approach to express properties of memory separation between differentpoints in
the program, and present an algorithm for determining independences between
program statements which can be used for parallelization.

1 Introduction

Automatic parallelization techniques are generally basedon a detection of indepen-
dence between statements in a program, in the sense that two statements accessing
separate resources can be executed in parallel. Such techniques have been extensively
studied and successfully applied for programs with simple data types and arrays, but
there has been limited progress for programs that manipulate pointers and dynamic
data structures [8, 9, 12]. Separation logic is a recent approach to the study of pointer
programs [14] in which the separation of resource is expressed with the logical connec-
tive ‘∗’. This approach has been implemented in many program analysis tools for the
purposes of shape analysis and safety verification [16, 4, 1]. However, these analyses
cannot be used for program parallelization, because the∗ connective only expresses
separation of memory at a single program point and thereforecannot determine inde-
pendences between statements in a program. In this paper we extend the separation logic
approach to express memory separation properties throughout a program’s lifetime.

The basic idea is to extend separation logic formulae withlabels, which are used
to keep track of memory regions through an execution. Symbolic execution based on
separation logic [2, 5] is extended so that occurrences of the same label, even in differ-
ent formulae referring to different program points, refer to the same memory locations
throughout the execution. However, the symbolic executionmechanism is such that
memory locations cannot always be represented by the same label through an entire
execution: fresh labels have to be introduced during the execution to replace existing
labels and the new labels may represent memory regions that overlap with old ones.
For this reason, we keep anintersection logwhich relates labels that may represent
possibly overlapping memory regions. To keep track of the memory locations that are
accessed by a command, we keep afootprint logwhich records the labels of the part of
the call-site formula that the command depends on. These labels are clearly determined
for primitive commands. For procedure calls and while loops, the labels are determined

2 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

by a frame inference method [2] that keeps track of the labelsby using a form oflabel
respectingentailment between formulae.

Our approach fits in the line of work of using static analysis to detect independent
statements in programs that manipulate pointer data structures [9, 7, 10, 12, 13]. Our de-
parture point is the use of separation logic-based shape analysis. A logic-based approach
is also advocated in [10], wherealiasing axiomsand theorem proving are used to detect
independence. However, this method has difficulty handlingstructural modifications to
the data structure, which do not cause problems in our case. Our method also does not
rely onreachabilityproperties of data structures, as in [9]. Such approaches encounter
difficulties with data structure ‘segments’, such as non-nil-terminated list segments, and
the situation is even worse when there is internal sharing within the data structure, as
in the case of doubly linked lists. Our approach does not suffer from these inherent
limitations as it is based on detecting thefootprintsof statements, that is, the cells that
are actually accessed rather than all the ones that may possibly be accessed. We illus-
trate this on a program that converts a singly linked list segment into a doubly linked
segment. A somewhat different approach to parallelizationis proposed in [15], where
commutativity analysisis used for identifying operations that produce the same output
regardless of the order of execution. This method works together with an independence
analysis, and works better depending on the strength of the independence analysis, and
it will therefore be interesting to explore its combinationwith our method in future
work.

In this paper we illustrate our method in a restricted setting adapted from [2], work-
ing with simple list and tree formulae. Our proposed method is engineered so that it
can be applied as a post-processing phase starting from the output of an existing shape
analysis based on separation logic, and requires only minorchanges to existing sym-
bolic execution engines. We begin in the next section by introducing labelled symbolic
heaps, which are standard symbolic heap formulae extended with labels. In the next
section we describe the programming language we work with and an intermediate lan-
guage which is actually used in the analysis. We then describe the extended symbolic
execution algorithm for determining independences, and discuss examples. In the fol-
lowing section we describe the frame inference method that keeps track of the labels
in the inferred frame axiom. In the final section we demonstrate the soundness of the
method with respect to an action trace semantics of programs.

2 Labelled Symbolic Heaps

The concrete heap model is based on a set of fieldsFields, and disjoint setsLoc of
locations andVal of non-addressable values, withnil ∈ Val. We assume a finite set
Var of program variables and an infinite setVar′ of primed variables. Primed variables
will not be used in programs, only within the symbolic heaps where they will be implic-
itly existentially quantified. We then setHeaps = Loc ⇀fin (Fields → Val ∪ Loc)
andStacks = (Var ∪ Var′) → Val ∪ Loc. We work with a class of separation logic
formulae calledsymbolic heaps, as described in [2, 5], except that we introducelabels,
l ∈ Lab, on the spatial assertions in symbolic heaps.

Automatic Parallelization with Separation Logic 3

x, y, .. ∈ Var program variables

x′, y′, .. ∈ Var
′ primed variables

l, k.. ∈ Lab labels

f1, f2, .. ∈ Fields fields

E, F ::= nil | x | x′ expressions

ρ ::= f1 : E1, ..., fk : Ek record expressions

Π ::= true | E = E | E 6= E | Π ∧ Π pure assertions

S ::= E 7→ [ρ] | ls(E, F) | dls(Ef , Eb, Ff , Fb) | tree(E) simple spatial assertions

Σ ::= emp | 〈S〉
l
| Σ ∗ Σ labelled spatial assertions

SH ::= Π 9
9Σ symbolic heaps

The simple spatial assertions we consider in this paper are for list segments, doubly
linked list segments and binary trees, the formal semanticsof which are given below.
Every simple spatial assertion (conjunct) in a symbolic heap has a label, which shall
be used to keep track of the part of the heap that the conjunct is describing. Theempty
label• ∈ Lab shall be used in situations where the label is unspecified. Except for the
empty label, we require that every label has at most a unique occurrence in a symbolic
heap. We letL(Π 9

9Σ) denote the set of labels in the symbolic heapΠ 9
9Σ.

Labels shall be interpreted in the context of a symbolic execution rather than on a
single symbolic heap. This is because they shall be used to relate the states at different
points through the execution of a program, and thus do not hold meaning on an individ-
ual state. The interpretation of symbolic heaps is therefore the standard one (ignoring
the labels), given by a forcing relations, h |= A wheres ∈ Stacks, h ∈ Heaps, andA
is a pure assertion, spatial assertion, or symbolic heap. Wewrite h = h0 ∗h1 to indicate
that the domains ofh0 andh1 are disjoint, andh is their graph union. We assume the
fieldsn, b, l, r ∈ Fields, wheren is the next field for list segments,b is the back field
for doubly linked segments, andl andr are the left and right fields for trees.

JxKs = s(x) Jx′Ks = s(x′) JnilKs = nil

s, h |= E1 = E2 iff JE1Ks = JE2Ks

s, h |= E1 6= E2 iff JE1Ks 6= JE2Ks

s, h |= true always

s, h |= Π0 ∧ Π1 iff s, h |= Π0 ands, h |= Π1

s, h |= 〈E0 7→ [f1 :E1,...,fk :Ek]〉l iff h = [JE0Ks → r] wherer(fi) = JEiKs for i ∈ 1..k

s, h |= 〈ls(E, F)〉
l

iff there is a linked list segment fromE to F

s, h |= 〈dls(Ef , Eb, Ff , Fb)〉l iff there is a doubly linked list segment fromEf to Ff

with initial and final back pointersEb andFb

s, h |= 〈tree(E)〉l iff there is a tree atE

s, h |= emp iff h = ∅

s, h |= Σ0 ∗ Σ1 iff ∃h0h1. h = h0 ∗ h1 ands, h0 |= Σ0 ands, h1 |= Σ1

s, h |= Π 9
9Σ iff ∃v.s(x′ 7→v), h |= Π ands(x′ 7→v), h |= Σ

wherex′ is the collection of primed variables inΠ |Σ

4 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

The formal semantics of the data structure formulae is givenas the least predicates
satisfying the following inductive definitions:

ls(E,F) ⇔ (E = F ∧ emp) ∨ (E 6= F ∧ ∃y.E 7→ [n : y] ∗ ls(y, F))

dls(Ef ,Eb,Ff ,Fb) ⇔ (Ef = Ff ∧ Eb = Fb ∧ emp)∨

(Ef 6= Ff ∧ Eb 6= Fb ∧ ∃y.Ef 7→ [n : y, b : Eb] ∗ dls(y, Ef , Ff , Fb))

tree(E) ⇔ (E = nil ∧ emp) ∨ (∃x, y.E 7→ [l : x, r : y] ∗ tree(x) ∗ tree(y))

3 Programming Language

We consider a standard programming language with procedures.

b ::= E = E | E 6= E boolean expressions

A ::= x := E | x := E → f | E1 → f := E2 | new(x) atomic commands

c ::= i : A | i : f(
»

E1;
»

E2) | i : if b c1 c2 | i : while b c | c1; c2 indexed commands (i ∈ I)

p ::= . | f(#»x ; #»y){local #»z ; c}; p programs

A program is given by a number of procedure definitions. We assume that every
commandi : c in a procedure body has a unique indexi from some set of indices
I. We let I (c) be the set of indices of all command statements inc. In a procedure
with headerf(#»x ; #»y), #»x = x1, .., xn are the variables not modified in the body, and
#»y = y1, .., ym are the variables that are. We assume that all variables occurring free
in the body are declared in the header. We definefree(c) andmod(c) sets as the set of
free and modified variables ofc. For atomic commands these are defined as usual. For
procedures we havefree(f(#»x ; #»y)) = { #»x, #»y } andmod(f(#»x ; #»y)) = { #»y }.

For a given program, we assume that we have separation logic specifications for the
procedure calls and loop invariants for the while loops. These may be obtained from an
interprocedural shape analysis based on separation logic,such as that described in [4],
or could be given as annotations by hand [3]. Formally, a specification is represented
by a spec table, T : SH ⇀ P(SH), which is a partial function from symbolic heaps
to sets of symbolic heaps. A spec tableT for a command represents the set of Hoare
triples in which, for everyP ∈ dom(T), there is a triple with pre-conditionP and post-
condition

∨

Q∈T (P)Q. In the case of while loops, the loop invariant may be given as
a set of symbolic heaps, the intended formula being the disjunction of all the symbolic
heaps in this set. For a while loopwhile b c with invariantS, we obtain the spec table
as the partial function that is only defined on symbolic heapsΠ 9

9Σ ∈ S, and maps each
of these inputs to the set{¬b ∧Π 9

9Σ | Π 9
9Σ ∈ S}. Given these specifications, for our

analysis we shall consider an intermediate language for commands in which procedure
calls and while loops are replaced byspecifiedcommands,com[T], whereT is a spec
table.

c ::= i : A | i : com[T] | i : if b c1 c2 | c1; c2

A com[T] command is some command which satisfies the specification given byT . We
assume that all symbolic heaps in the spec tables of specifiedcommands have empty

Automatic Parallelization with Separation Logic 5

labels. Atomic and specified commands may be referred to asbasiccommands, and
may be denoted byi : B. For any commandc, we letIb(c) be the set of indices of all
basic commands inc.

4 Independence Detection

In this section we describe the algorithm for determining when two statements in a given
program are independent in the sense that they do not access acommon heap location
in any possible execution. The basic idea is to perform a symbolic execution [2] with
labelled symbolic heaps, in which the labels keep track of regions of memory through
the execution. The symbolicfootprintof every program statement is recorded as the set
of labels which represent the memory regions that are accessed in the execution of that
statement. In order to determine independences between footprints, anintersectionrela-
tion between labels needs to be maintained, which relates any two labels that represent
possibly overlapping regions of memory.

Formally, we define a symbolic state as a triple(Π 9
9Σ,F , I), whereΠ 9
9Σ is a

labelled symbolic heap,F is afootprint log , andI is anintersection log. The footprint
log is as a partial functionF : I ⇀ P(Lab) which maps indices of commands to
sets of labels which represent their footprint, and is updated for every command index
when the command is encountered during symbolic execution.The intersection log
I ∈ P(P2(Lab)) is a set of unordered pairs of labels which determines a relation
between labels that represent possibly overlapping regions of the heap.

4.1 Symbolic Execution Rules

Symbolic execution is based on a set ofoperationaland rearrangementrules which
determine the transformation of the symbolic states through the execution. The rules are
displayed in figure 1, where they should be read from top to bottom, and they employ
some expressions which we define below. The operational rules describe, for each kind
of command, the effect of the command on the symbolic heap on which it executes
safely. The footprint log is updated for the index of the command with the labels of the
accessed portion of the symbolic heap, and the intersectionlog is updated when fresh
labels are introduced that may possibly intersect with old ones. The first four rules are
those for the atomic commands, where the footprint log is updated with the label of the
accessed cell. The rules for mutation and lookup use the following definitions:

mutate(ρ, f, F) =

(

f : F, ρ′ if ρ = f : E,ρ′

f : F, ρ if f /∈ ρ
lookup(ρ, f) =

(

E if ρ = f : E, ρ′

x fresh if f /∈ ρ

In the case of allocation, a fresh label is introduced for thenewly allocated cell, but the
intersection log is unchanged as the new label does not intersect with any old ones.

The last operational rule is for the specified commands. In this case the pre- and
post- conditions in the command’s spec table determine the transformation of the sym-
bolic heap. However, the assertion at the call-site may be larger than the command
pre-condition, since the pre-condition only describes thepart of the heap that is ac-
cessed by the command. For this reason, theframe assertionneeds to be discovered,

6 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

which is the part of the call-site heap that is not in the pre-condition of the command.
We describe the frame inference method in detail in section 6. For now, we use the
expressionframe(Π 9

9Σ,Π1 9
9Σ1) to denote the frame assertion obtained for call-site

assertionΠ 9
9Σ and pre-conditionΠ1 9
9Σ1. The transformed symbolic heap is obtained

by the conjunction of the frame assertion with the post-condition. The frame inference
method ensures that the frame assertion preserves its labels from the call-site assertion.
The post-condition assertion, which has all empty labels inthe spec table, is assigned
fresh non-empty labels with the expressionfreshlabs(Σ2, Σ

′
2), which means thatΣ′

2 is
the formulaΣ2 with fresh non-empty labels on all simple conjuncts.

As an example, consider the case where the call-site state is(〈x 7→ [l : y, r : z]〉1 ∗
〈tree(y)〉2 ∗ 〈tree(z)〉3,F , I) and the specified command is a call to a procedure
which rotates a tree aty, having a spec table with pre- and post- condition〈tree(y)〉•.
In this case the inferred frame assertion is〈x 7→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3. The fresh
label 4 may be assigned to the post-condition, giving the transformed symbolic heap to
be〈x 7→ [l : y, r : z]〉1 ∗ 〈tree(y)〉4 ∗ 〈tree(z)〉3.

The footprint labels of the specified command are determinedby the labels of the
pre- and post- condition assertions. In the example, the footprint of the procedure call
will be {2, 4}. Since fresh labels are introduced in the post-condition, the intersection
log should be updated with the information of which labels the new labels may possibly
intersect with. In the rule, we use the expressionrelFresh(L1, L2, I) to update the
intersection logI when a fresh set of labelsL1 is introduced in such a way that any
label inL1 may possibly intersect with any label in the setL2, or with any label that
intersects with some label inL2 according toI.

relFresh(L1, L2, I) = I ∪ {{l1, l} | l1 ∈ L1 ∧ (l ∈ L2 ∨ ∃l′ ∈ L2. {l, l
′} ∈ I)}

In our example, ifI = {{1, 5}, {2, 5}, {3, 5}} then the transformed intersection log is
given byrelFresh({4}, {2}, I) = {{1, 5}, {2, 5}, {3, 5}, {4, 2}, {4, 5}}, meaning that
the fresh label 4 possibly intersects with 2 and everything that 2 was already possibly
intersecting with inI. Note that this example shows that the relation determined by
the intersection log is not transitive. The intended relation is of course reflexive and
symmetric, and this is taken into account in the independence detection algorithm.

The rearrangement rules are needed to make an expressionE explicit in the sym-
bolic heap so that an operational rule for a command that accesses the heap cell atE can
be applied. Apart from the first simple substitution rule, these are basically unfolding
rules for each of the inductively defined data structure predicates, where fresh labels in
the unfolding are related to the original label usingrelFresh.

4.2 Independence Detection Algorithm

The independence detection algorithm is given in Figure 2. Given a commandc with
a set of preconditionsPre, thegetInd(c,Pre) function returns a setInd ⊆ P2(Ib(c))
such that{i, j} ∈ Ind implies that the basic statements with indicesi andj are indepen-
dent. For a conditionali : if b c1 c2, we can test independence with a statementj : c by
testing independence betweenj : c and all the basic statements in the conditional. The
track(S, c) function takes a commandc and a setS of initial symbolic states, applies

Automatic Parallelization with Separation Logic 7

OPERATIONAL RULES

(Π

9
9Σ,F , I)

(x = E[x′/x] ∧ (Π

9
9Σ)[x′/x],F [i → ∅], I)

i : x := E, x′fresh

(Π

9
9Σ ∗ 〈E 7→ [ρ]〉

l
,F ,I)

(x = F [x′/x] ∧ (Π
9
9Σ ∗ 〈E 7→ [ρ]〉l)[x

′/x],F [i → {l}], I)
i : x := E → f, x′ fresh, lookup(ρ, f) = F

(Π
9
9Σ ∗ 〈E 7→ [ρ]〉

l
,F , I)

(Π

9
9Σ ∗ 〈E 7→ [ρ′]〉l,F [i → {l}], I)

i : E → f := F, mutate(ρ, f, F) = ρ′

(Π
9
9Σ,F , I)

((Π

9
9Σ)[x′/x] ∗ 〈x 7→ []〉l,F [i → {l}], I)

i : new(x), x′ fresh , l fresh

(Π
9
9Σ,F ,I)

(Π ∧ Π2

9
9Σ′

2 ∗ ΣF ,F [i → L(Σ′
2) ∪ (L(Σ)\L(ΣF))], relFresh(L(Σ′

2), L(Σ)\L(ΣF), I))
†

† i : com[T], Π2

9
9Σ2 ∈ T (Π1

9
9Σ1), ΣF = frame(Π

9
9Σ, Π1

9
9Σ1), freshlabs(Σ2, Σ′

2)

REARRANGEMENT RULES

(Π

9
9Σ ∗ 〈F 7→ [ρ]〉l,F ,I)

(Π

9
9Σ ∗ 〈E 7→ [ρ]〉

l
,F , I)

Π ⊢ E = F

(Π

9
9Σ ∗ 〈ls(F, F ′)〉l,F ,I)

(Π

9
9Σ ∗ 〈E 7→ [n : x′]〉

l1
∗ 〈ls(x′, F ′)〉

l2
,F , relFresh({l1, l2}, {l}, I))

†

† Π

9
9Σ ∗ ls(F, F ′) ⊢ F 6= F ′ ∧ E = F andx′ fresh andl1, l2 fresh

(Π

9
9Σ ∗ 〈dls(F, Fb, F ′, F ′

b)〉l
,F , I)

(Π

9
9Σ ∗ 〈E 7→ [n : x′, b : Fb]〉l1

∗ 〈dls(x′, E, F ′, F ′
b)〉

l2
,F , relFresh({l1, l2}, {l}, I))

†

† Π

9
9Σ ∗ dls(F, Fb, F ′, F ′

b) ⊢ F 6= F ′ ∧ E = F andx′ fresh andl1, l2 fresh

(Π

9
9Σ ∗ 〈dls(F, Fb, F ′, F ′

b)〉l
,F , I)

(Π

9
9Σ ∗ 〈dls(F, Fb, E, x′)〉l1

∗ 〈E 7→ [n : F ′, b : x′]〉l2
,F , relFresh({l1, l2}, {l}, I))

†

† Π

9
9Σ ∗ dls(F, Fb, F ′, F ′

b) ⊢ F 6= F ′ ∧ E = F ′
b andx′ fresh andl1, l2 fresh

(Π

9
9Σ ∗ 〈tree(F)〉l,F ,I)

(Π

9
9Σ ∗ 〈E 7→ [l : x′, r : y′]〉

l1
∗ 〈tree(x′)〉

l2
∗ 〈tree(y′)〉

l3
,F , relFresh({l1, l2, l3}, {l}, I))

†

† Π

9
9Σ ∗ tree(F) ⊢ F 6= nil ∧ E = F andx′, y′ fresh andl1, l2, l3 fresh

Fig. 1. Rules for symbolic execution with footprint tracking

8 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

the execution rules from Figure 1, and returns the set of all possible output symbolic
states. The footprint and intersection logs from all of these states are used by thegetInd

function to find the independences. Once we have detected heap independences, we can
use thefree andmod sets of commands to determine stack independences, and then
apply standard parallelization techniques such as those discussed in [7, 9].

getInd(c, Pre) =

S := ∅

for all Π

9
9Σ ∈ Pre

assign fresh non-empty labels inΠ

9
9Σ

F := ∅

I := ∅

S := S ∪ track({(Π

9
9Σ,F , I)}, c)

Ind := {i, j | i, j ∈ Ib(c)}

for all i, j ∈ Ib(c)

for all (Π

9
9Σ,F ,I) ∈ S

if there existl ∈ F(i) andk ∈ F(j)

such thatl = k or {l, k} ∈ I

then remove{(i, j)} from Ind

return Ind

track(S, c) =

if c is empty thenreturn S

elselet c = i : c′; c′′

S′ := ∅

for all (Π

9
9Σ,F , I) ∈ S

if c′ is atomic commandA and(Π

9
9Σ,F ,I) matches premise

of operational rule forA then add the conclusion toS′

elseif c′ is atomic commandA accessing heap cellE and

(Π

9
9Σ,F , I) matches premise of a rearrangement rule forE

then add the conclusion toS′

elseif c′ = com[T] then

for all P ∈ dom(T) for which frame inference succeeds

for all Q ∈ T (P)

add the conclusions of operational rule forcom[T] to S′

elseif c′ = if b c1 c2 then

S1 := track((b ∧ Π
9
9Σ,F , I), c1)

S2 := track((¬b ∧ Π

9
9Σ,F , I), c2)

S′ := S′ ∪ S1 ∪ S2

else return fail

return track(S′, c′′)

Fig. 2. Independence Detection Algorithm

5 Examples

We begin by illustrating our algorithm on a tree rotation program which is based on
the main example from [9]. We have the procedurerotateTree(x;){local x1, x2; c},
where the bodyc is shown in figure 3. The procedure takes a tree atx and rotates it
by recursively swapping its left and right subtrees. Given the spec table with a single
pre-condition〈tree(x)〉• and single post-condition〈tree(x)〉•, the execution of the
independence detection algorithm is shown in figure 3. At theend of the execution,
for final footprint logF6, we haveF6(i6) = {3, 5} andF6(i7) = {4, 6}. Since these
labels do not intersect according to the final intersection log I3, we have that the two
recursive callsi6 and i7 are independent, and therefore may be executed in parallel.
Similar examples are given by other divide-and-conquer programs, such ascopyTree

andmergeSort on linked lists, in which our algorithm determines the recursive calls to
be independent.

Automatic Parallelization with Separation Logic 9

`

〈tree(x)〉
1
, ∅, ∅

´

i1 : if(x 6= nil){
`

x 6= nil

9
9〈tree(x)〉

1
, ∅, ∅

´

`

x 6= nil

9
9〈x 7→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, ∅, I1

´

i2 : x1 := x → l;
`

x1=x
′∧x 6=nil

9
9〈x 7→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F1 = i2→{2},I1

´

i3 : x2 := x → r;
`

x2=y
′∧x1=x

′∧x 6=nil

9
9〈x 7→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F2 =F1[i3→{2}], I1

´

i4 : x → l := x2;
`

x2=y
′∧x1=x

′∧x 6=nil

9
9〈x 7→ [l :x2, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F3 =F2[i4→{2}], I1

´

i5 : x → r := x1;
`

x2=y
′∧x1=x

′∧x 6=nil

9
9〈x 7→ [l :x2, r :x1]〉2 ∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F4 =F3[i5 →{2}],I1

´

i6 : rotateTree(x1;);
`

x2=y
′∧x1=x

′∧x 6=nil

9
9〈x 7→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(y′)〉

4
,F5 =F4[i6→{3, 5}], I2

´

i7 : rotateTree(x2;);
`

x2=y
′∧x1=x

′∧x 6=nil

9
9〈x 7→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(x2)〉6,F6 =F5[i7→{4, 6}], I3

´

}

whereI1 = {{1, 2}, {1, 3}, {1, 4}}, I2 = I1 ∪ {{5, 3}, {5, 1}}, I3 = I2 ∪ {{6, 4}, {6, 1}}

Fig. 3. Independence detection forrotateTree

Previous approaches to independence detection such as [9] have been based on
reachabilityproperties of certain pointer data structures, e.g., statements referring to
the left and right subtrees of a tree can be determined to be independent since no heap
location is reachable from both of them. The limitations of this approach can be seen
even on simple list segment programs, where reachability analysis is unable to guar-
antee independence since the list segment may in fact be partof a larger cyclic data
structure. Worse is the situation where there is internal sharing within the data struc-
ture, such as in the case of doubly linked lists. In contrast,our approach does not suffer
from these inherent limitations since it is based on detecting thefootprintsof state-
ments. We illustrate this with the example in figure 4. In thiscase we have the pro-
ceduresetBack (x, y, z;){local x1; c}, which transforms a singly linked list segment
from x to y into a doubly linked segment by recursively traversing the segment and
setting the back pointers. The bodyc is shown in the figure. The parameterz is the
back pointer to be set for the head element. In this case we have the spec table with a
single pre-condition〈ls(x, y)〉• and single post-condition〈dls(x, z, y, z′)〉•, wherez′

is the existentially quantified pointer to the last element.As can be seen in figure 4, our
algorithm detects the recursive call ati4 to be independent of the statementi3, and they
can hence be executed in parallel. A reachability-based approach will fail to determine
this independence even though the statements are accessingdisjoint locations.

6 Frame Inference with Label Respecting Entailment

We have discussed how, in the case of the operational rule forspecified commands,
there is a need to infer theframe assertionin order to match the call-site assertion to the

10 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

`

〈ls(x, y)〉
1
, ∅, ∅

´

i1 : if(x 6= y){
`

x 6=y

9
9〈ls(x, y)〉

1
, ∅, ∅

´

`

x 6=y

9
9〈x 7→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
, ∅, I1

´

i2 : x1 := x → n;
`

x1 =x
′∧x 6=y

9
9〈x 7→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
,F1 = i2 →{2}, I1

´

i3 : x → b := z;
`

x1 =x
′∧x 6=y

9
9〈x 7→ [n : x′, b : z]〉

2
∗ 〈ls(x′, y)〉

3
,F2 = F1[i3→{2}], I1

´

i4 : setBack(x1, y, x)
`

x1 =x
′∧x 6=y

9
9〈x 7→ [n : x′, b : z]〉

2
∗ 〈dls(x1, x, y, z

′)〉
4
,F3 = F2[i4 →{3, 4}], I2

´

}

whereI1 = {{2, 1}, {3, 1}} andI2 = I1 ∪ {{4, 3}, {4, 1}}

Fig. 4. Independence detection forsetBack

command’s pre-condition. Given a call-site assertionΠ 9
9Σ and command pre-condition

Π1 9
9Σ1, the objective is to find a frame assertionΣF such thatΠ 9
9Σ ⊢ Π1 9
9Σ1 ∗ ΣF .

We adapt the frame inference method of [2], which uses a prooftheory for entailments
between symbolic heaps. However, in our case, as well as inferring the formula, we also
require that the frame assertion should correctly preserveits labels from the original
call-site assertion since these are used to determine the footprint labels of the specified
command. For this purpose we introduce the notion oflabel respectingentailment.

The standard meaning of an entailmentΠ1 9
9Σ1 ⊢ Π2 9
9Σ2 between two symbolic

heaps is given as∀s, h. s, h |= Π1 9
9Σ1 impliess, h |= Π2 9
9Σ2. For label respecting

entailment, we have the additional constraint that a label appearing on both sides of the
entailment ‘refers to the same heap locations’ on both sides. The formal definition of
this form of entailment is based on the following property oflabelled symbolic heaps.

Lemma 1. If s, h |= Π 9
9Σ ∗ 〈S〉l and l 6= •, then there is a uniqueh′ such thath =

h′ ∗ h′′ ands, h′ |= Π 9
9〈S〉l. In this case we definesubheap(s, h,Π 9
9Σ ∗ 〈S〉l, l) = h′,

and it is undefined otherwise.

Proof: The result follows by the fact that every formula is precise,that is, for any heap,
there is at most a unique subheap that satisfies the formula.

Definition 1 (Label respecting entailment).The entailmentΠ1 9
9Σ1 ⊢ Π2 9
9Σ2 holds

iff for all s, h, s, h |= Π1 9
9Σ1 impliess, h |= Π2 9
9Σ2, and if l ∈ L(Σ1) andl ∈ L(Σ2)

andl 6= • thensubheap(s, h,Π1 9
9Σ1, l) = subheap(s, h,Π2 9
9Σ2, l).

We have adapted the proof theory for entailments from [2] forlabel respecting en-
tailment in figure 5. We omit the normalization rules and rules for the tree and doubly
linked segment predicates as they adapt in a very similar manner. In the figure, the
expressionop(E) is an abbreviation forE 7→ [ρ], ls(E,F), dls(E,Eb, F, Fb) or
tree(E). The guardG(op(E)) asserts that the heap is non-empty, and is defined as

G(E 7→ [ρ]) , true G(ls(E,F)) , E 6= F G(tree(E)) , E 6= nil

G(dls(E,Eb, Ff , Fb)) , E 6= Ff G(dls(Ff , Fb, Ef , E)) , E 6= Fb

Automatic Parallelization with Separation Logic 11

Π

9
9emp ⊢ true

9
9emp

Π

9
9Σ ⊢ Π′

9
9Σ′

Π

9
9Σ ⊢ Π′ ∧ E = E

9
9Σ′

Π ∧ P

9
9Σ ⊢ Π′

9
9Σ′

Π ∧ P

9
9Σ ⊢ Π′ ∧ P

9
9Σ′

〈S〉l ⊢ 〈S′〉k Π

9
9Σ ⊢ Π′

9
9Σ′

Π

9
9〈S〉l ∗ Σ ⊢ Π′

9
9〈S′〉k ∗ Σ′

l, k ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′))

〈S〉l ⊢ 〈S〉k

Π

9
9Σ ⊢ Π′

9
9Σ′

Π

9
9Σ ⊢ Π′

9
9〈ls(E, E)〉l ∗ Σ′

l ∈ {•} ∪ Lab\L(Σ′)

Π∧E1 6=E3 9
9〈E1 7→E2〉l1

∗Σ ⊢ Π′

9
9〈E1 7→E2〉l2

∗〈ls(E2, E3)〉l3
∗Σ′

Π∧E1 6=E3 9
9〈E1 7→E2〉l1

∗Σ ⊢ Π′

9
9〈ls(E1, E3)〉l4

∗Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π

9
9〈ls(E1, E2)〉l1

∗ Σ ⊢ Π′

9
9〈ls(E1, E2)〉l2

∗ 〈ls(E2, nil)〉l3
∗ Σ′

Π

9
9〈ls(E1, E2)〉l1

∗ Σ ⊢ Π′
9
9〈ls(E1, nil)〉l4

∗ Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π ∧ G(op(E3))

9
9〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ ⊢ Π′

9
9〈ls(E1, E2)〉l3

∗ 〈ls(E2, E3)〉l4
∗ Σ′

Π ∧ G(op(E3))

9
9〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ ⊢ Π′

9
9〈ls(E1, E3)〉l5

∗ Σ′
†

† l5 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1, l2, l3, l4})

Fig. 5.Rules for label respecting entailment

The label respecting aspect of these rules can be best appreciated by considering the
way in which the frame inference method works. Assume we are given a call-site asser-
tionΠ 9

9Σ and procedure pre-conditionΠ1 9
9Σ1. To findΣF such thatΠ 9
9Σ ⊢ Π1 9
9Σ1 ∗

ΣF , we apply the proof rules upwards starting from the entailmentΠ 9
9Σ ⊢ Π1 9
9Σ1, as

instructed by the following theorem which we inherit from [2].

Theorem 1. Suppose that we have an incomplete proof:

Π ′

9
9ΣF ⊢ true 9
9emp

...
Π 9

9Σ ⊢ Π1 9
9Σ1

Then there is a complete proof of the label respecting entailmentΠ 9
9Σ ⊢ Π1 9
9Σ1 ∗ΣF .

When applying the label-respecting proof rules upwards, labels can only be re-
moved from the left hand side of an entailment. HenceΣF will retain its labels from
the call-site assertionΠ 9

9Σ. By theorem 1, the entailmentΠ 9
9Σ ⊢ Π1 9
9Σ1 ∗ ΣF is la-

bel respecting, and so we have that the labels common to the call-site assertion and the
frame assertion refer to the same heap locations. Notice that when applying this method
in practice, since we are only concerned about preserving the labels in the frame as-
sertion, we do not care about the labels on the right hand sideof the entailments as
we go up the proof. They can hence be chosen to be the empty label when applying
the rules upwards. As a simple illustration, in the case where the call-site assertion
is 〈x 7→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 and the command pre-condition is
〈tree(y)〉•, the following derivation gives us the correctly labelled frame assertion:

〈x 7→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3 ⊢ emp

〈x 7→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 ⊢ 〈tree(y)〉
•

12 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

7 Soundness

We demonstrate the soundness of our algorithm in detecting independences, a property
which is necessary if we are to use the algorithm to safely parallelize a program. For
this we adapt an action trace semantics of programs from [6].The action traces are
composed of primitive actionsα:

α ::= x := E | x := E → f | E1 → f := E2 | newl(x) | assume(b) wherel ∈ Loc

Theassume(b) action is used to implement conditionals, as shown in the trace seman-
tics of commands below. It filters out states which do not satisfy the booleanb. The
newl(x) command allocates the locationl if it is not already allocated. We choose this
instead of a non-deterministic allocation primitive (which is usually used in separation
logic works) as keeping traces deterministic will be usefulfor our purposes.

Semantically, the primitive actions correspond to total functions that are of the form
Stacks × Heaps → P(Stacks × Heaps)⊤. The⊤ element represents a faulting ex-
ecution, that is, dereferencing a null pointer or an unallocated region of the heap. For
a primitive actionα and a state(s, h) ∈ Stacks× Heaps, we define thelocation set
loc(α, s, h) as the set of locations that are accessed byα when executed on the state
(s, h). The denotational semantics and location sets of the primitive actions is given in
figure 6.

Definition 2 (Action trace). An action traceτ is a finite sequential composition of
atomic actions,τ ::= α; · · · ;α

Denotational semantics of action traces is given by the sequential composition of
actions, which is defined as

Jα1; α2K(s, h) =

8

<

:

[

(s′,h′)∈Jα1K(s,h)

Jα2K(s
′, h′) if Jα1K(s, h) 6= ⊤

⊤ otherwise

Note that every traceτ is deterministic in that for any state(s, h), JτK(s, h) either faults
or has at most a single outcome{(s′, h′)}.

The action trace semantics of commands of our programming language is given
in figure 7. Just as our commands are indexed, we assign uniqueindices to the primi-
tive actions in every action trace of every command as follows. For each atomic com-
mandi : A, every trace is a single primitive actionα, and we index this as(i, 1) : α.
For each specified commandi : com(T), every traceα1; ...;αn is indexed as(i, 1) :
α1; ...; (i, n) : αn. For sequential composition the indices are obtained from the com-
ponent commands. For a conditionali : if b c1 c2, we index the assume actions as
(i, 1) : assume(b) and(i, 1) : assume(¬b) and the other indices are obtained from the
component commands. We shall write(i, j) : α ∈ τ to mean thatτ = τ ′; (i, j) : α; τ ′′

for someτ ′ andτ ′′.

Definition 3 (Index subtrace).For a traceτ and a command indexi, we defineτ |i to
be the subtrace ofτ containing all the actions of the form(i, j) : α. If there are no such
actions inτ thenτ |i is undefined.

Automatic Parallelization with Separation Logic 13

α JαK(s, h), loc(α, s, h)

x := E {s[x 7→JEKs], h}, ∅

x := E → f

(

{s[x 7→v], h}, {l} if JEKs = l, l ∈ Loc andh(l)(f) = v

⊤, ∅ otherwise

E1 → f := E2

(

{s, h[l 7→r]}, {l} if JE1Ks = l, JE2Ks = v, l ∈ Loc andr = h(l)[f → v]

⊤, ∅ otherwise

newl(x)

(

{s, h ∗ l 7→ r}, {l} if l ∈ Loc\dom(h) andr(f) = nil for all f ∈ Fields

∅, ∅ otherwise

assume(b)

(

{s, h}, ∅ if JbKs

∅, ∅ otherwise

Fig. 6. Denotational semantics and location sets of primitive actions

T (x := E) = {x := E} T (x := [E]) = {x := [E]}

T ([E1] := [E2]) = {[E1] := [E2]} T (new(x)) = {newl(x) | l ∈ Loc}

T (com(T)) ⊆ {τ | ∀P ∈ dom(T).∀(s, h) ∈ JP K.∃Q ∈ T (P). JτK(s, h) ⊆ JQK}

T (c1; c2) = {τ1; τ2 | τ1 ∈ T (c1), τ2 ∈ T (c2)}

T (if b c1 c2) = {assume(b); τ1 | τ1 ∈ T (c1)} ∪ {assume(¬b); τ2 | τ2 ∈ T (c2)}

Fig. 7.Action trace semantics of commands

Lemma 2. For a commandc, every traceτ ∈ T (c) is of the formτ |i1 ; ...; τ |in
, where

i1, ..., in ∈ I (c).

We define the locations accessed by an atomic action in the execution of a trace.

Definition 4 (Location set of an action in a trace).The location set of an action
(i, j) : α in a traceτ from initial state(s, h) is defined as

loc((i, j) : α, τ, s, h) =

(

loc(α, s′, h′) if τ = τ1; (i, j) : α; τ2 andJτ1K(s, h) = {(s′, h′)}

∅ otherwise

We extend the definition of locations accessed by an action tothe locations accessed by
a subtrace ofτ .

Definition 5 (Location set of a subtrace).The location set of subtraceτ ′ of τ from
initial state(s, h) is defined asloc(τ ′, τ, s, h) =

⋃

(i,j):α∈τ ′

loc((i, j) : α, τ, s, h)

We now give the formal definition of independence between twobasic statements in a
progam, for a given pre-condition.

Definition 6 (Independence). Given a commandc and a pre-condition given by a
set of symbolic heapsPre, for two basic commands with indicesi and i′ in c, we say
that commandi is independentof commandi′, written indep(i, i′, c,Pre), iff for all
Π 9

9Σ ∈ Pre and for all(s, h) ∈ JΠ 9
9ΣK, we have for everyτ ∈ T (c) such thatτ |i and

τ |i′ are defined, thatloc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

14 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Given the trace model developed above, we can now formally state the soundness
property of the independence detection algorithm given in figure 2.

Theorem 2. For a commandc and a pre-condition setPre, if for two basic commands
with indicesi andi′ in c we have{i, i′} ∈ getInd(c,Pre), thenindep(i, i′, c,Pre).

The algorithm of figure 2 works by applying the operational and rearrangement
rules of figure 1 through the program, possibly branching on disjunctive outcomes and
conditionals. We can therefore think of it as determining a set of symbolic execution
traces, which are sequences of symbolic states, each starting withsome initial stateψI

given by the pre-condition and ending with someψF in the final set of symbolic states
that is used to determine independences.

Before we define symbolic execution traces, we formulate thecase for conditionals
in terms of an operational rule for assume statements. When the algorithm encounters
a conditional statement with guardb, it branches on the two casesb and¬b. Given the
semantics of conditionals described in the last section, any action trace of the program
at this point either starts with anassume(b) or anassume(¬b) action. This step can
hence be interpreted with an operational rule for assume statements:

(Π 9
9Σ,F , I)

(b ∧ Π 9
9Σ,F , I)

i : assume(b)

Definition 7 (Symbolic execution trace).A symbolic execution traceS is a sequence
of symbolic states such that any two consecutive states in the sequence are related by
an application of an operational or a rearrangement rule. The initial state is denoted
S[0, 0], its symbolic heap has all non-empty labels, its fooptrint log is∅ and its inter-
section log is{{l, l} | l ∈ Lab(Π 9

9Σ)}, whereΠ 9
9Σ is the symbolic heap ofS[0, 0].

Apart from the initial state, every state is either anoperational state(the conclusion
of an operational rule) or arearrangement state(the conclusion of a rearrangement
rule). The operational states are denotedS[1, 0] to S[N(S), 0] in the order in which
they appear, whereN(S) is the number of operational states andN(S) > 0. For
0 ≤ n < N(S), the rearrangement states fromS[n, 0] to the next operational state
are denotedS[n, 1], ...,S[n,R(S, n)], whereR(S, n) is the number of rearrangement
states in this segment. There are no rearrangement states after the last operational state.

For a symbolic execution traceS and0 ≤ n ≤ N(S), 0 ≤ r ≤ R(S, n), we shall
denote byHS[n,r], FS[n,r] andIS[n,r] the symbolic heap, footprint log and intersection
log in stateS[n, r] respectively. We denote byin,S the index of the command in thenth
operational rule inS, and letI(S) be the set of all command indices. We letLab(S) be
the set of all labels occuring in all the symbolic heaps inS.

Definition 8 (Trace satisfaction).Given a symbolic execution traceS, we say that an
action traceτ satisfiesS, writtenτ |= S, iff τ = τ |i1,S ; ...; τ |iN(S),S

and for all(s, h) ∈
JHS[0,0]K, for all 1 ≤ n ≤ N(S) we haveJτ |i1,S ; ...; τ |in,S K(s, h) ⊆ JHS[n,0]K.

Automatic Parallelization with Separation Logic 15

Lemma 3. For a commandc and pre-condition setPre, let ψI be a symbolic state
with a symbolic heap fromPre and footprint and intersection logs initialised as in
the getInd(c,Pre) method in figure 2. For every such initial stateψI , the algorithm
generates a collection of symbolic execution traces, each starting withψI and ending
with someΨF in the final set of states that is used to test independence. Wehave that
everyτ ∈ T (c) satisfies at least one of these symbolic execution traces.

Proof: Trace satisfaction depends only on the symbolic heap component of the states
in a symbolic trace and not on the footprint or intersection logs. Thus soundness of
standard symbolic execution [2] alone implies that the algorithm overapproximates all
possible executions of the program starting from the given pre-condition.

Proposition 1. Assume we haveτ |= S. LetFF andIF be the footprint and intersec-
tion logs of the final state ofS. For any two distinct command indicesi, i′ ∈ I(S), if
for all labels l ∈ FF (i) and l′ ∈ FF (i′) we have{l, l′} 6∈ IF , then for all (s, h) ∈
JHS[0,0]K, we haveloc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

The proof of this proposition appears in the appendix (section 9). The underlying idea
is that given an action traceτ satisfying a symbolic execution traceS, and a con-
crete initial state(s, h), every labell in the symbolic execution trace represents a fixed
set of heap locations throughout the entire concrete execution of τ , which we denote
labloc(l,S, τ, s, h). This expression is then used to reason about the heap locations rep-
resented by labels in the footprint and intersection logs, and to show that two subtraces
with non-intersecting footprint labels access disjoint heap locations.

Lemma 3 and proposition 1 together give the proof of the soundness theorem 2,
as follows. Assume we are given a programc, a pre-condition setPre, and indicesi
and i′ of two basic commands, and that{i, i′} ∈ getInd(c,Pre). Hence in each of
the final symbolic states generated by the algorithm, the footprint labels ofi and i′

do not intersect according to the intersection log. By lemma3, every traceτ of the
program satisfies some symbolic execution trace generated by the algorithm. Hence, by
proposition 1, ifτ |i andτ |i′ are defined then they have disjoint location sets starting
from any state in the pre-condition. Since this is true for all traces ofc, by definition of
independence (definition 6), we haveindep(i, i′, c,Pre).

8 Conclusion and Future Work

In this work we have focussed on laying the foundations of ourextended separation
logic framework for independence detection. We plan to extend the method we describe
to the more complex data structures handled by separation logic shape analyses [1], to
integrate our method with the existingspace invadertool for shape analysis [16, 4], and
conduct practical experiments, conceivably exploiting the scalability of this tool to large
programs. A notable aspect of this integration is that, while our framework relies on the
atomic predicates being precise, sometimes imprecise predicates, e.g. ‘possibly cyclic
list’, are used in shape analyses. However, these predicates are ‘boundedly imprecise’,
so that case analysis can be performed to obtain finite disjunctions of precise predicates
from imprecise ones. Another direction for future work is toimprove the precision

16 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

of label tracking by incorporating it into the shape analysis phase itself, which would
involve taking the footprint and intersection logs throughthe abstraction and fixpoint
calculations. Following this, we intend to investigate theapplication of our method to
other kinds of program optimizations.

Acknowledgements We thank the anonymous referees for very helpful comments.
Raza acknowledges support of an ORS award and EPSRC grant “Smallfoot: static asser-
tion checking for C programs”. Gardner acknowledges support of a Microsoft Research
Cambridge/Royal Academy of Engineering Senior Research Fellowship. Calcagno ac-
knowledges support of an EPSRC advanced fellowship.

References
1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. OHearn,T. Wies and H. Yang. Shape

Analysis for Composite Data Structures. InCAV, 2007.
2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic Execution with Separation Logic. In

APLAS, 2005.
3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Automatic modular assertion check-

ing with separation logic. In4th FMCO, 2006.
4. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis. In

POPL, 2009.
5. D. Distefano, P. O’Hearn, and H. Yang. A Local Shape Analysis based on Separation Logic.

In TACAS, 2006.
6. C. Calcagno, P. O’Hearn, and H. Yang. Local Action and Abstract Separation Logic. In

LICS, 2007.
7. R. Ghiya, L. J. Hendren and Y. Zhu. Detecting Parallelism in C programs with recursive data

structures. InCC, 1998.
8. R. Gupta, S. Pande, K. Psarris and V. Sarkar. Compilation Techniques for Parallel Systems.

In Parallel Computing, 1999.
9. L. J. Hendren and A. Nicolau. Parallelizing programs withrecursive data structures. InIEEE

Transactions on Parallel and Distributed Systems, 1990.
10. J. Hummel, L. J. Hendren and A. Nicolau. A general data dependence test for dynamic,

pointer-based data structures. InPLDI, 1994.
11. T. Hoare and P. O’Hearn. Separation Logic Semantics of Communicating Processes. In

FICS, 2008.
12. S. Horwitz, P. Pfeiffer and T. W. Reps. Dependence analysis for poiner variables. InPLDI,

1989.
13. M. Marron, D. Stefanovic, D. Kapur and M. Hermenegildo. Identification of Heap-Carried

Data Dependence Via Explicit Store Heap Models. InLCPC, 2008.
14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In17th LICS,

2002.
15. M. C. Rinard and P. C. Diniz. Commutativity Analysis: A New Analysis Technique for

Parallelizing Compilers. InACM Transactions on Programming Languages and Systems,
1997.

16. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. OHearn. Scalable
Shape Analysis for Systems Code. InCAV, 2008.

9 Appendix: Proof of Proposition 1

For an action traceτ satisfying a symbolic execution traceS, we define the intermediate
states in a concrete execution ofτ that satisfy the symbolic states inS.

Definition 9 (Concrete execution states).Assume we haveτ |= S and(s, h) ∈ JHS[0,0]K.
The initial concrete execution state set,conc(0,S, τ, s, h) = {(s, h)}. For 1 ≤ n ≤
N(S), thenth concrete execution state set,conc(n,S, τ, s, h) = Jτ |i1,S ; ...; τ |in,S K(s, h).

Automatic Parallelization with Separation Logic 17

The following lemma shows that in any specific execution of anaction trace satis-
fying a symbolic execution trace, any label in the symbolic trace always refers to a fixed
set of heap locations for the whole the execution, which we denote aslabloc(l,S, τ, s, h).

Lemma 4 (Label-location preservation). Assume we haveτ |= S and (s, h) ∈
JHS[0,0]K. Then for every labell ∈ L(S), there exists a set of heap locationslabloc(l,S, τ, s, h)
such that for all0 ≤ n ≤ N(S), for all 0 ≤ r ≤ R(S, n), if l ∈ L(HS[n,r]) and
conc(n,S, τ, s, h) = {(sn, hn)} then

dom(subheap(sn, hn,HS[n,r], l)) = labloc(l,S, τ, s, h)

If it is the case that for all statesS[n, r] such thatl ∈ L(HS[n,r]) we haveconc(n,S, τ, s, h) =
∅, then we definelabloc(l,S, τ, s, h) = ∅

Proof: The proof proceeds by checking that for a specific execution of τ from state
(s, h), a labell in S that occurs both in the premise and the conclusion of an operational
or a rearrangement rule refers to the same heap locations in the premise and the con-
clusion. Sincel cannot reappear once it has been removed in a symbolic execution, this
implies thatl refers to a fixed set of locations, and this set is denotedlabloc(l,S, τ, s, h).

We check every rearrangement rule. Assume the rule has premiseS[n, r] and con-
clusionS[n, r + 1] and l ∈ L(HS[n,r]) and l ∈ L(HS[n,r+1]). Then if (sn, hn) ∈
JHS[n,r]K, we can check that

subheap(sn, hn,HS[n,r], l) = subheap(sn, hn,HS[n,r+1], l)

We check every operational rule with commandi : c. Assume the rule has premise
S[n, r] and conclusionS[n+ 1, 0] andl ∈ L(HS[n,r]) andl ∈ L(HS[n+1,0]). Then for
(sn, hn) ∈ JHS[n,r]K, τ |i ∈ T (c) andJτ |iK(sn, hn) = {(sn+1, hn+1)}, we have

dom(subheap(sn, hn,HS[n,r], l)) = dom(subheap(sn+1, hn+1,HS[n+1,0], l))

The following lemma shows that the intersection log correctly determines the labels
representing possibly overlapping sets of heap locations,that is, labels whoselabloc
sets intersect.

Lemma 5 (Intersection soundness).Assumeτ |= S. LetIF be the intersection log
of the final state inS. For each(s, h) ∈ JHS[0,0]K we have for all labelsl, l′ ∈ L(S),

{l, l′} 6∈ IF ⇒ labloc(l,S, τ, s, h) ∩ labloc(l′,S, τ, s, h) = ∅

Proof: For 0 ≤ n ≤ N(S) and0 ≤ r ≤ R(S, n), let In,r be the interection log
in stateS[n, r]. Let Ln,r be the set of labels in the symbolic heaps in all the states
S[0, 0], ...,S[n, r]. To prove the result, we show inductively that for alln, r, for all
l, l′ ∈ Ln,r

labloc(l,S, τ, s, h) ∩ labloc(l′,S, τ, s, h) 6= ∅ ⇒ {l, l′} ∈ In,r

18 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

So assume that this holds for a certainn, r. Let the next state beS[n′, r′], which could
either be a rearrangement stateS[n, r + 1] or an operational stateS[n+ 1, 0].

LetL = Ln′,r′\Ln,r be all the new labels. There are three cases to consider: bothl

andl′ are not inL, both of them are inL, or one of them is inL. In the first case, since
In′,r′ contains all the pairs inIn,r, we are done. If both are inL, then we can check
every rule individually to see that any pair of distinct fresh labels is never added to the
intersection log, and that two distinct fresh labels alwaysrepresent disjoint locations in
the conclusion of the rule, and hence theirlablocs are disjoint by lemma 4.

For the third case, letl ∈ L andl′ 6∈ L without loss of generality. Ifl′ ∈ L(HS[n,r])
then we can check the result for every rule individually. Otherwise, we assume

labloc(l,S, τ, s, h) ∩ labloc(l′,S, τ, s, h) 6= ∅

and we have to show{l, l′} ∈ In′,r′ .Let l1, ..., la be all the labels inHS[n,r] such that
for 1 ≤ a′ ≤ a

labloc(la′ ,S, τ, s, h) ∩ labloc(l′,S, τ, s, h) 6= ∅

By induction hypothesis we have{la′ , l′} ∈ In,r.

Now since thelabloc set ofl intersects withl′, and thelabloc sets ofl1, ..., la to-
gether contain thelabloc set ofl′, we have for some1 ≤ a′ ≤ a,

labloc(l,S, τ, s, h) ∩ labloc(la′ ,S, τ, s, h) 6= ∅

Sincela′ ∈ L(HS[n,r]), from the case above we have{l, la′} ∈ In′,r′ . Hence by the
definition ofrelFresh in section 4, we have that{l, l′} ∈ In′,r′ .

For the footprint log, we need to show that thelabloc sets of the footprint labels
determine the location sets of the subtraces for each command. This is only true if the
subtrace does not diverge. If the trace diverges, then thelabloc sets of the footprint la-
bels only determine the locations that are required for a safe (non-faulting) execution of
the trace, anddo notdetermine the whole location set. In the final proof of the propo-
sition we shall see that this is enough to guarantee the independence result. We first
prove in the following two lemmas that the footprint labels determine the safety sets for
diverging traces and the whole location sets for non-diverging traces.

Definition 10 (Safety set of a trace on a state).The safety set,safe(τ, s, h) of a trace
τ on initial state(s, h) is defined as the smallest set of heap locationsA such thatτ
executes safely on the subheap ofh with locations given byA, that is,JτK(s, h|A) 6= ⊤

Lemma 6. Assume we have an operational rule for a commandi : c with premise
(Π1 9

9Σ1,F1, I1) and conclusion(Π2 9
9Σ2,F2, I2). Let (s, h) ∈ JΠ1 9
9Σ1K and τ ∈

Automatic Parallelization with Separation Logic 19

T (c).

(1) safe(τ, s, h) ⊆
⋃

l∈(F2(i)∩L(Π1 9
9Σ1))

dom(subheap(s, h,Π1 9
9Σ1, l)

(2) If JτK(s, h) = {(s′, h′)}, thenloc(τ, τ, s, h) ⊆
⋃

l∈(F2(i)∩L(Π1 9
9Σ1))

dom(subheap(s, h,Π1 9
9Σ1, l)

∪
⋃

l∈(F2(i)∩L(Π2 9
9Σ2))

dom(subheap(s′, h′, Π2 9
9Σ2, l))

Proof: If i : c is an atomic command or an assume statement, then we can check
each of the operational rules. The interesting case is the one for a specified command
i : com(T).

Leth1 be the heap which is the union of all heapshl′ = subheap(s, h,Π1 9
9Σ1, l

′)
for all l′ ∈ (F2(i) ∩ L(Π1 9

9Σ1)). We have

dom(h1) ⊆
⋃

l∈F2(i)∩L(Π1 9
9Σ1)

dom(subheap(s, h,Π1 9
9Σ1, l))

Leth2 be the heap which is the union of all heapshl′′ = subheap(s′, h′, Π2 9
9Σ2, l

′′)
for all l′′ ∈ (F2(i) ∩ L(Π2 9

9Σ2)). We have

dom(h2) ⊆
⋃

l∈F2(i)∩L(Π2 9
9Σ2)

dom(subheap(s′, h′, Π2 9
9Σ2, l))

By soundness of frame inference, there existsh3 such thath = h3 ∗ h1 andh′ =
h3 ∗ h2 and we haveJτK(s, h1) = (s′, h2). Hencesafe(τ, s, h) ⊆ dom(h1) and
loc(τ, τ, s, h) ⊆ dom(h1) ∪ dom(h2).

Lemma 7. Assumeτ |= S. Let FF be the footprint log of the final state inS. For
1 ≤ n ≤ N(S), let i = iS,n. For each(s, h) ∈ JHS[0,0]K, we have

(1) if conc(n− 1,S, τ, s, h) = {(sn−1, hn−1)} then

safe(τ |i, sn−1, hn−1) ⊆
⋃

l∈FF (i)

labloc(l,S, τ, s, h)

(2) if conc(n,S, τ, s, h) 6= ∅ then

loc(τ |i, τ, s, h) ⊆
⋃

l∈FF (i)

labloc(l,S, τ, s, h)

Proof: For (1), assumeconc(n− 1,S, τ, s, h) = {(sn−1, hn−1)}. The premise of the
operational rule fori is the stateS[n− 1, R(S, n− 1)]. By lemma 6(1) we have

safe(τ |i, sn−1, hn−1) ⊆
[

l∈

`

FS[n,0](i)∩L(HS[n−1,R(S,n−1)])
´

dom(subheap(sn−1, hn−1,HS[n−1,R(S,n−1)], l))

20 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

By lemma 4 and since the footprint log fori only gets updated in the operational
rule for i, we have

safe(τ |i, sn−1, hn−1) ⊆
⋃

l∈FF (i)

labloc(l,S, τ, s, h)

For(2), assumeconc(n,S, τ, s, h) 6= ∅. Hence we haveconc(n−1,S, τ, s, h) 6= ∅.
Let conc(n,S, τ, s, h) = {(sn, hn} andconc(n − 1,S, τ, s, h) = {(sn−1, hn−1}. We
haveloc(τ |i, τ, s, h) = loc(τ |i, τ |i, sn−1, hn−1). The premise of the operational rule
for i is the stateS[n− 1, R(S, n− 1)]. By lemma 6(2) we have

loc(τ |i, τ |i, sn−1, hn−1) ⊆

⋃

l∈(FS[n,0](i)∩HS[n−1,R(S,n−1)])

dom(subheap(sn−1, hn−1,HS[n−1,R(S,n−1)], l))

∪
⋃

l∈(FS[n,0](i)∩HS[n,0])

dom(subheap(sn, hn,HS[n,0], l))

By lemma 4 and since the footprint fori only gets updated in the operational rule fori,
we get

loc(τ |i, τ |i, sn−1, hn−1) ⊆
⋃

l∈FF (i)

labloc(l,S, τ, s, h)

and therefore
loc(τ |i, τ, s, h) ⊆

⋃

l∈FF (i)

labloc(l,S, τ, s, h)

We now restate and prove proposition 1.
Proposition 1Assume we haveτ |= S. LetFF andIF be the footprint and intersection
logs of the final stateS[N(S), R(S, N(S))] of S. For any two distinct command indices
i, i′ ∈ I(S), if for all labelsl ∈ FF (i) andl′ ∈ FF (i′) we have{l, l′} 6∈ IF , then for
all (s, h) ∈ JHS[0,0]K, we have

loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅

.

Proof: Assume without loss of generality thatτ |i comes beforeτ |i′ in τ , that is, let
i = iS,n andi′ = iS,m for somen,m with 1 ≤ n < m ≤ N(S).

case 1: conc(n, τ,S, s, h) 6= ∅ andconc(m, τ,S, s, h) 6= ∅
Since{l, l′} 6∈ IF for all l ∈ FF (i) and l′ ∈ FF (i′), we have by lemma 5 that

labloc(l,S, τ, s, h) ∩ labloc(l′,S, τ, s, h) = ∅. Hence by lemma 7(2) we have that

loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h)

=
(

⋃

l∈FF (i)

labloc(l,S, τ, s, h)
)

∩
(

⋃

l′∈FF (i′)

labloc(l′,S, τ, s, h)
)

= ∅

Automatic Parallelization with Separation Logic 21

case 2: conc(n, τ,S, s, h) = ∅
In this case we have thatconc(m, τ,S, s, h) = ∅ and soloc(τ |i′ , τ, s, h) = ∅ and

we are done.
case 3: conc(n, τ,S, s, h) 6= ∅ andconc(m, τ,S, s, h) = ∅
If conc(m−1, τ,S, s, h) = ∅ thenloc(τ |i′ , τ, s, h) = ∅ and we are done. Otherwise

let conc(m− 1, τ,S, s, h) = {s′, h′}. By lemma 7(1) we have

safe(τ |i′ , s
′, h′) ⊆

⋃

l∈FF (i′)

labloc(l,S, τ, s, h)

We have by lemma 7(2) that

loc(τ |i, τ, s, h) =
(

⋃

l∈FF (i)

labloc(l,S, τ, s, h)
)

Since{l, l′} 6∈ IF for all l ∈ FF (i) and l′ ∈ FF (i′), we have by lemma 5 that
labloc(l,S, τ, s, h)∩labloc(l′,S, τ, s, h) = ∅. Hence we havesafe(τ |i′ , s′, h′)∩loc(τ |i, τ, s, h) =
∅.

We haveloc(τ |i′ , τ, s, h) ⊆ safe(τ |i′ , s′, h′)∪ newlocs(τ |i′), wherenewlocs(τ |i′)
is the set of locations allocated byτ |i′ . Since these new locations cannot intersect with
locations already allocated, we have

loc(τ |i, τ, s, h) ∩ newlocs(τ |i′) = ∅

and therefore
loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅

