Automatic Parallelization with Separation Logic

Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, UK
{nraza, ccris, pg} @oc.ic.ac.uk

Abstract. Separation logic is a recent approach to the analysis oftgropro-
grams in which resource separation is expressed with adbgénnective in as-
sertions that describe the state at any given point in thgram. We extend this
approach to express properties of memory separation betliferentpoints in
the program, and present an algorithm for determining iaddpnces between
program statements which can be used for parallelization.

1 Introduction

Automatic parallelization techniques are generally based detection of indepen-
dence between statements in a program, in the sense thatdtemsnts accessing
separate resources can be executed in parallel. Suchdeelsriiave been extensively
studied and successfully applied for programs with simpaia dypes and arrays, but
there has been limited progress for programs that mangylainters and dynamic
data structures [8, 9, 12]. Separation logic is a recentagmbr to the study of pointer
programs [14] in which the separation of resource is expigsth the logical connec-
tive ‘«’. This approach has been implemented in many program asdtyss for the
purposes of shape analysis and safety verification [16, 4dJever, these analyses
cannot be used for program parallelization, becausextbennective only expresses
separation of memory at a single program point and therefan@ot determine inde-
pendences between statements in a program. In this papetevel¢he separation logic
approach to express memory separation properties throtghgrogram’s lifetime.

The basic idea is to extend separation logic formulae Vaiiels which are used
to keep track of memory regions through an execution. Syimleslecution based on
separation logic [2, 5] is extended so that occurrenceseo$éime label, even in differ-
ent formulae referring to different program points, refethe same memory locations
throughout the execution. However, the symbolic executimthanism is such that
memory locations cannot always be represented by the samektlerough an entire
execution; fresh labels have to be introduced during thewdian to replace existing
labels and the new labels may represent memory regions Yeaap with old ones.
For this reason, we keep amtersection logwhich relates labels that may represent
possibly overlapping memory regions. To keep track of thenony locations that are
accessed by a command, we kedpatprint logwhich records the labels of the part of
the call-site formula that the command depends on. Thestslabe clearly determined
for primitive commands. For procedure calls and while Iqadlps labels are determined

2 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

by a frame inference method [2] that keeps track of the ldielssing a form ofabel
respectingentailment between formulae.

Our approach fits in the line of work of using static analysisi¢étect independent
statements in programs that manipulate pointer data atesf9, 7, 10, 12, 13]. Our de-
parture pointis the use of separation logic-based shapgsisal logic-based approach
is also advocated in [10], wheatiasing axioms&nd theorem proving are used to detect
independence. However, this method has difficulty handitngctural modifications to
the data structure, which do not cause problems in our cagem®thod also does not
rely onreachabilityproperties of data structures, as in [9]. Such approachssuater
difficulties with data structure ‘segments’, such as ndrterminated list segments, and
the situation is even worse when there is internal sharitlginvthe data structure, as
in the case of doubly linked lists. Our approach does notsdfbm these inherent
limitations as it is based on detecting tlo®tprintsof statements, that is, the cells that
are actually accessed rather than all the ones that maybpobsi accessed. We illus-
trate this on a program that converts a singly linked lisinseigt into a doubly linked
segment. A somewhat different approach to parallelizasgroposed in [15], where
commutativity analysis used for identifying operations that produce the sampudut
regardless of the order of execution. This method worksttegevith an independence
analysis, and works better depending on the strength ohtfeppendence analysis, and
it will therefore be interesting to explore its combinatiaith our method in future
work.

In this paper we illustrate our method in a restricted sgttidapted from [2], work-
ing with simple list and tree formulae. Our proposed mettodrigineered so that it
can be applied as a post-processing phase starting fronuthetof an existing shape
analysis based on separation logic, and requires only neinanges to existing sym-
bolic execution engines. We begin in the next section bydhicing labelled symbolic
heaps, which are standard symbolic heap formulae extendtbdabels. In the next
section we describe the programming language we work withearnntermediate lan-
guage which is actually used in the analysis. We then desthib extended symbolic
execution algorithm for determining independences, ardudis examples. In the fol-
lowing section we describe the frame inference method teapk track of the labels
in the inferred frame axiom. In the final section we demorestthe soundness of the
method with respect to an action trace semantics of programs

2 Labelled Symbolic Heaps

The concrete heap model is based on a set of fielddds, and disjoint sets.oc of
locations and/al of non-addressable values, withl € val. We assume a finite set
Var of program variables and an infinite kir’ of primed variables. Primed variables
will not be used in programs, only within the symbolic heaeve they will be implic-
ity existentially quantified. We then s#eaps = Loc —;, (Fields — Val U Loc)
andStacks = (Var UVar’) — Val U Loc. We work with a class of separation logic
formulae calledsymbolic heapsas described in [2, 5], except that we introdiedgels

[€ Lab, on the spatial assertions in symbolic heaps.

Automatic Parallelization with Separation Logic 3

x,y,.. € Var program variables
2’y .. € Var’ primed variables
l,k.. € Lab labels

fi, f2,.. € Fields fields

E,F :=nill|z |2 expressions
pu=f1:E1, .. fr: FEk record expressions
II :=truwe |E=FE|E#FE|IINII pure assertions
S = FErp||1s(E,F) | dls(Ey, By, Fr, F) | tree(E) simple spatial assertions
Yu=emp|(S), | XxX labelled spatial assertions
SH:=1I'Y symbolic heaps

The simple spatial assertions we consider in this papeoatest segments, doubly
linked list segments and binary trees, the formal semanbfigghich are given below.
Every simple spatial assertion (conjunct) in a symbolicphleas a label, which shall
be used to keep track of the part of the heap that the conjsimigtscribing. Thempty
labele € Lab shall be used in situations where the label is unspecifiedepfor the
empty label, we require that every label has at most a uniqoercence in a symbolic
heap. We lef(I1} X) denote the set of labels in the symbolic hdapX’.

Labels shall be interpreted in the context of a symbolic etien rather than on a
single symbolic heap. This is because they shall be usedat® the states at different
points through the execution of a program, and thus do natineaning on an individ-
ual state. The interpretation of symbolic heaps is theeefoe standard one (ignoring
the labels), given by a forcing relatiani = A wheres € Stacks, h € Heaps, andA4
is a pure assertion, spatial assertion, or symbolic heapviiteh = h x k1 to indicate
that the domains oty andh; are disjoint, andh is their graph union. We assume the
fieldsn,b,l,r € Fields, wheren is the next field for list segments,s the back field
for doubly linked segments, aricandr are the left and right fields for trees.

[z]s = s(z) [z']s =s(z’) [nil]s =nil

s,h|E E1 = E> iff [E1]s =[FE2]s

s,h |E E1 # E» iff [E1]s # [E2]s

s,h = true always

s,h = IIp A 111 iff s,h = Ilpands, h = I

s,h = (Eor[fi1:Ey,....fr: Ex]), iff h=[[Eo]s — r]wherer(f;) = [Eisforie 1.k
s,h = (1s(E, F)), iff there is alinked list segment frofy to I’

s,h = (d1s(Ey, Ey, Fy, Fy)), iff there is a doubly linked list segment frofii; to F'¢
with initial and final back pointer&;, and F,

s, h = (tree(E)), iff thereis atree aty

s,h = emp iff h=20

s,h = Zo* 51 iff 3hoh.h = ho * b1 ands, ho = 5o ands, b1 = 5
s,h =X iff Jv.s(z'—wv),h | IT ands(z'—v),h = X

wherez’ is the collection of primed variables iff| X~

4 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

The formal semantics of the data structure formulae is gagthe least predicates
satisfying the following inductive definitions:

1s(E,F) &
dlS(Ef,Eb,Ff,Fb) =

E=FAemp)V (E#FAJyE—[n:y|*1ls(y, F))

Ey = Fy N Ey = Fy, A emp)V

Ef £FfNEy# Fy NIy Ep—[n:y,b: Ey] xdls(y, By, Fr, Fy))
E =nil Aemp) V (3z,y.E[l: x,r : y] x tree(z) * tree(y))

o~ o~ o~ —~

tree(E) &

3 Programming Language

We consider a standard programming language with procedure

bu=FE=E|E#E boolean expressions
Auv=z:=E|z:=F — f| E1 — f:= E; | new(x) atomic commands
cu=1: A4 f(E, E;) |t:if ber o | i:while be| c15¢2 indexed commands € 1)
pu=.| f(Z;7){local Z;c};p programs

A program is given by a number of procedure definitions. Weimgsthat every
command; : c in a procedure body has a unique indeftom some set of indices
I. We letI(c) be the set of indices of all command statements.iin a procedure
with headerf(Z; %), @ = z1,..,z, are the variables not modified in the body, and
v = yi,..,Ym are the variables that are. We assume that all variablegringtree
in the body are declared in the header. We defites(c) andmod(c) sets as the set of
free and modified variables of For atomic commands these are defined as usual. For
procedures we haviree(f(7; 7)) = {7, ¥} andmod(f(Z; 7)) = {¥}-

For a given program, we assume that we have separation logpifications for the
procedure calls and loop invariants for the while loops.SEhmay be obtained from an
interprocedural shape analysis based on separation kgih,as that described in [4],
or could be given as annotations by hand [3]. Formally, aifipation is represented
by aspec table7 : SH — P(SH), which is a partial function from symbolic heaps
to sets of symbolic heaps. A spec talilfor a command represents the set of Hoare
triples in which, for eveny? € dom(7T), there is a triple with pre-conditioR and post-
condition\/QeT(P Q. In the case of while loops, the loop invariant may be given as
a set of symbolic %eaps, the intended formula being themtisjon of all the symbolic
heaps in this set. For a while logfaile b ¢ with invariantS, we obtain the spec table
as the partial function that is only defined on symbolic heddp&. € S, and maps each
of these inputs to the s¢t-b A I11 X | II} X' € S}. Given these specifications, for our
analysis we shall consider an intermediate language fontamas in which procedure
calls and while loops are replaced $gecifiedcommandscon|7 |, whereT is a spec
table.

cu=i:A|i:com[T]|i:ifbecy ca|crze

A com[7] command is some command which satisfies the specificatiem giy7 . We
assume that all symbolic heaps in the spec tables of specifi@inands have empty

Automatic Parallelization with Separation Logic 5

labels. Atomic and specified commands may be referred tmaa& commands, and
may be denoted by : B. For any command, we let],(c) be the set of indices of all
basic commands ia

4 Independence Detection

In this section we describe the algorithm for determiningwtwo statements in a given
program are independent in the sense that they do not accessmon heap location
in any possible execution. The basic idea is to perform a sjimbxecution [2] with
labelled symbolic heaps, in which the labels keep track giores of memory through
the execution. The symbolfootprintof every program statement is recorded as the set
of labels which represent the memory regions that are aedesthe execution of that
statement. In order to determine independences betwetriftts, anntersectiorrela-
tion between labels needs to be maintained, which relatesaamlabels that represent
possibly overlapping regions of memory.

Formally, we define a symbolic state as a triplé| >, 7,7), wherelIl ! X is a
labelled symbolic hea is afootprintlog, andZ is anintersection log The footprint
log is as a partial functiodF : I — P(Lab) which maps indices of commands to
sets of labels which represent their footprint, and is updi&r every command index
when the command is encountered during symbolic execuliba. intersection log
T € P(P:(Lab)) is a set of unordered pairs of labels which determines aioelat
between labels that represent possibly overlapping regibthe heap.

4.1 Symbolic Execution Rules

Symbolic execution is based on a setapferationaland rearrangementules which
determine the transformation of the symbolic states thindlig execution. The rules are
displayed in figure 1, where they should be read from top ttobotand they employ
some expressions which we define below. The operationa ddscribe, for each kind
of command, the effect of the command on the symbolic heap ltiohait executes
safely. The footprint log is updated for the index of the commehwith the labels of the
accessed portion of the symbolic heap, and the interselctipis updated when fresh
labels are introduced that may possibly intersect with oleso The first four rules are
those for the atomic commands, where the footprint log isatgiwith the label of the
accessed cell. The rules for mutation and lookup use theWaoll definitions:

f:Fp fp=f:E/)p E ifp=f:E,p
f:Fp iffép x fresh if f&p

In the case of allocation, a fresh label is introduced fortéwly allocated cell, but the
intersection log is unchanged as the new label does nosettewith any old ones.
The last operational rule is for the specified commands. is1dhse the pre- and
post- conditions in the command’s spec table determing #mstormation of the sym-
bolic heap. However, the assertion at the call-site may kgetathan the command
pre-condition, since the pre-condition only describesbg of the heap that is ac-
cessed by the command. For this reason fitimme assertiomeeds to be discovered,

mutate(p, f, F) = { lookup (p, f) = {

6 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

which is the part of the call-site heap that is not in the praeition of the command.
We describe the frame inference method in detail in sectiofoB now, we use the
expressionframe(II| X, IT, | X'1) to denote the frame assertion obtained for call-site
assertion/I | X and pre-conditiodI; | X;. The transformed symbolic heap is obtained
by the conjunction of the frame assertion with the post-ittondl The frame inference
method ensures that the frame assertion preserves its fabel the call-site assertion.
The post-condition assertion, which has all empty labelhénspec table, is assigned
fresh non-empty labels with the expressfoeshiabs (X2, X4), which means that} is

the formulaX’; with fresh non-empty labels on all simple conjuncts.

As an example, consider the case where the call-site stéfe is> [: y, 7 : z]); *
(tree(y)), * (tree(z)),,F,Z) and the specified command is a call to a procedure
which rotates a tree gt having a spec table with pre- and post- conditfenee(y)), .

In this case the inferred frame assertiofads— [l : y,r : 2]), * (tree(z)),. The fresh
label 4 may be assigned to the post-condition, giving thesfarmed symbolic heap to
be(x — [l :y,r:z]), * (tree(y)), * (tree(z)),.

The footprint labels of the specified command are determiyethe labels of the
pre- and post- condition assertions. In the example, thigfow of the procedure call
will be {2,4}. Since fresh labels are introduced in the post-conditiomntersection
log should be updated with the information of which labebsitiew labels may possibly
intersect with. In the rule, we use the expressieifresh(L1, L2,7) to update the
intersection logZ when a fresh set of labels; is introduced in such a way that any
label in L; may possibly intersect with any label in the det, or with any label that
intersects with some label ib, according tdz.

relFresh(Ly, Lo, T) =T U{{l,1} |11 € Ly A(1 € Ly v A € Ly. {11} € T)}

In our example, ifZ = {{1,5},{2,5}, {3,5}} then the transformed intersection log is
given byrelFresh({4},{2},7) = {{1,5},{2,5}, {3,5}, {4, 2}, {4, 5} }, meaning that
the fresh label 4 possibly intersects with 2 and everythirag 2 was already possibly
intersecting with inZ. Note that this example shows that the relation determined b
the intersection log is not transitive. The intended relatis of course reflexive and
symmetric, and this is taken into account in the indepeneldetection algorithm.

The rearrangement rules are needed to make an exprdssaplicit in the sym-
bolic heap so that an operational rule for a command thasaesghe heap cell &tcan
be applied. Apart from the first simple substitution ruleegé are basically unfolding
rules for each of the inductively defined data structure ioegds, where fresh labels in
the unfolding are related to the original label usiagfresh.

4.2 Independence Detection Algorithm

The independence detection algorithm is given in Figurei2eiGa commanda with

a set of precondition®re, the getInd(c, Pre) function returns a sefnd C Pa(1;(c))
suchthafi, j} € Ind implies that the basic statements with indicasd; are indepen-
dent. Fora conditional: if b ¢; c2, we can test independence with a statementby
testing independence betwegnc and all the basic statements in the conditional. The
track(S, ¢) function takes a commandand a sefS of initial symbolic states, applies

Automatic Parallelization with Separation Logic

OPERATIONAL RULES

(1%, 7,1)

n 7 - i:x:= E,x fresh
(z = Elz'/z] A (T} X)[2'/z], F[i — 0], T)

(T2« (E — [p]), 7, T)

i:x:=E — f, 2’ fresh, looku s =F
(@ = Fla/Jal A (12 = (B = (o)) /), 7li = (1. D) fw s 2(e:)

(11X« (E — [p]), F,)

i: E — f:= F, mutate(p, f, F) = p’
(1,2« (E — [p']),, Fli — {1}].T) Y tate(p, f, F) = p

(1,3, 7,1)

i :new(x), ' fresh,l fresh
(D) o)« (@ = Do Fli = gy | e fresh b

(1%, F,7T)
(II A T3 5 % Xp, Fli — L(Z5) U (L(D)\L(Zp))], relFresh(L(Z}), LZ)\L(Zr), T))

ti:com[T), 12| X2 € T(I11X1), XF = frame(I1| X, I11|21), freshlabs(X2, X4)

REARRANGEMENT RULES

(I 2« (F — [p]};, F,T)

I I N

(IT} 2 = (1s(F, F")),, F,T)

(I} X % (E +— [n: x'])ll * (1s(2’, Fl)>l2"f7 relFresh({l1,1l2},{l},T)) 1

t /Y *x1s(F,F') - F # F’' AN E = F andz’ fresh and, I fresh

(112 * (d1s(F, Fy, F', Fy)),, F, T)

(T2 x(Ew+ [n: z',b: Fb]>11 * (dls(;ﬂ/7 E,F', Fé)>l2’]:’ relFresh({l1,12},{l},7)) f

t I X «dls(F, Fy,, F',F]) - F # F' AN E = F andx’ freshand 1, l> fresh

(115 « (d1s(F, Fy, F', F})),, F, T)
(IT} 2 * (d1s(F, Fy, E,w’)}ll * (B~ [n:F' b:a']), ,F,relFresh({l1,l2}, {1}, 7)) f

lg?

t 1Y +«dls(F, Fy,, F',F]) = F # F' A E = F} andz’ fresh and 1, I> fresh

(IT} X (tree(F)),, F,I) ;
(MEZ*(Evw[l:2',r: y’])l1 * (tree(z’))l2 * (tree(y’))l?’,]:7 relFresh({l1,12,13},{l}, 1))

t 1! x tree(F) - F #nil A E = F andz’,y’ fresh and, 2, I3 fresh

Fig. 1. Rules for symbolic execution with footprint tracking

8 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

the execution rules from Figure 1, and returns the set ofdbible output symbolic
states. The footprint and intersection logs from all of th&tmites are used by thet/nd
function to find the independences. Once we have detectedidapendences, we can
use thefree andmod sets of commands to determine stack independences, and then
apply standard parallelization techniques such as theseisked in [7, 9].

track(S,c) =
if c¢is empty themeturn S

elseletc =i : c¢’;c”
getInd(c, Pre) = S =0

S:=0
forall I7} X € Pre
assign fresh non-empty labelsin| >
F:=0
Z:=0
S :=SUtrack({({1|X,F,I)},c)
Ind :={i,j | i,j € I,(c)}
forall 4,5 € I (c)
forall (II'X,F,I) € S
if there exist € F (i) andk € F(j)
suchthat = kor{l,k} € T
then remove{ (7, j)} from Ind
return Ind

forall (I1'X,F,Z) € S
if ¢’ is atomic command! and (11X, F,T) matches premise
of operational rule forA then add the conclusion 18’
elseif ¢’ is atomic commandi accessing heap celi and
(IT1} X, F,T) matches premise of a rearrangement ruleHor
then add the conclusion t8’
elseif ¢/ = com[7] then
forall P € dom(T) for which frame inference succeeds
forall Q € T(P)
add the conclusions of operational rule tem[7] to S’
elseif ¢/ = if b ¢y co then
S1 = track((bAN I\ X, F,T),c1)
So := track((-b A Il X, F,T),c2)
S’ :=5"US US>
else return fail
return track(S’,c")

Fig. 2. Independence Detection Algorithm

5 Examples

We begin by illustrating our algorithm on a tree rotation gnam which is based on
the main example from [9]. We have the procedw&ite Tree(x;){local x1,x2;c},
where the body: is shown in figure 3. The procedure takes a tree and rotates it
by recursively swapping its left and right subtrees. Gives $pec table with a single
pre-condition(tree(z)), and single post-conditioftree(x)),, the execution of the
independence detection algorithm is shown in figure 3. Atehd of the execution,
for final footprint log Fs, we haveFs(ig) = {3,5} andFgs(i7) = {4,6}. Since these
labels do not intersect according to the final intersectimZl;, we have that the two
recursive callsg andi; are independent, and therefore may be executed in parallel.
Similar examples are given by other divide-and-conquegms, such asopyTree
andmergeSort on linked lists, in which our algorithm determines the resiwe calls to
be independent.

Automatic Parallelization with Separation Logic 9

((tree(x)),,0,0)
i1 ¢ if(z # nil){
(x # nil} tree(x)}i,@ 0)
(x #nill(x — [1:x',r:y']), * (tree(x’)), * (tree(y’)),, 0, Z1)
T = —
(x1=x'Ax#nil}(x — [1:x',1:y]), * (tree(x’)), * (tree(y’)),, F1 =12 — {2}, 71)
i3 1 T i=ax — T
(x2=y' Ax1=x'Ax#nil|(x — [1:x',1:y']), * (tree(x')), * (tree(y’)),, Fo=Filis —{2}],T1)
i4: T — 1 := x9;
(x2=y'Axi=x'Ax#nil|(x > [Lixa,1:y']), * (tree(x’)), * (tree(y’)),, Fs=TFalis — {2}], 1)
Q51 T — T i=T1;
(x2=y'Axi=x'Ax#nil](x > [L:ix2,T:x1]), * (tree(x')), * (tree(y')),, Fa=Fslis — {2}],71)
ig : rotateTree(x1;);
(xzzy//\xlzx//\x;éniI} (x = [Lixo, r:x1]), * (tree(xy)), * (tree(y/))q,]:s:]i;[ig—»{?), 5}],12)
i7 : rotateTree(xa;);
(xzzy//\xlzx//\x;éniI} (x = [Lixg, r:x1]), * (tree(xy))s * (tree(x2))q, Fo = Fslir — {4, 6}]713)
}

i :

whereZ, = {{1, 2}, {1,3},{1,4}},Z> = 7. U {{5,3},{5,1}},Z3 = Z> U {{6,4},{6,1}}

Fig. 3. Independence detection festate Tree

Previous approaches to independence detection such as\8]deen based on
reachability properties of certain pointer data structures, e.g., stanes referring to
the left and right subtrees of a tree can be determined todepandent since no heap
location is reachable from both of them. The limitationstoétapproach can be seen
even on simple list segment programs, where reachabilijyais is unable to guar-
antee independence since the list segment may in fact bepartarger cyclic data
structure. Worse is the situation where there is internafis within the data struc-
ture, such as in the case of doubly linked lists. In cont@stapproach does not suffer
from these inherent limitations since it is based on detgcthefootprints of state-
ments. We illustrate this with the example in figure 4. In tbése we have the pro-
ceduresetBack(z,y, z;){local x1;c}, which transforms a singly linked list segment
from z to y into a doubly linked segment by recursively traversing tegnsent and
setting the back pointers. The bodys shown in the figure. The parameteis the
back pointer to be set for the head element. In this case we thavspec table with a
single pre-conditiofls(z, y)), and single post-conditiofdls(z, z,y, z’)),, wherez’
is the existentially quantified pointer to the last elem@stcan be seen in figure 4, our
algorithm detects the recursive calliato be independent of the statemeéptand they
can hence be executed in parallel. A reachability-baserbapp will fail to determine
this independence even though the statements are accdigoigt locations.

6 Frame Inference with Label Respecting Entailment

We have discussed how, in the case of the operational rulspiecified commands,
there is a need to infer tHeame assertiomn order to match the call-site assertion to the

10 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

(<15(X7Y)>1a®7®)
10 if (e # y){
(X¢Y1<1S(X7Y)>1a®7®)
(x#yi(x = I x']), * (Is(x',7))5, 0, 71)
Q2 T1:i=x — Ny
(x1=x'Ax#£y(x — n:x]), % (Is(x',y)),, F1 = i2 — {2}, T1)
iz: x — b=z
(xizx’/\x;éy: (x+—[n:x,b: z]), * (ls(x’,y))S,]—'g = .7-'1[1'3~>{2}].,I1)
ig ¢ setBack(z1,y,x)
(xlzx'/\x;éy: (x—[n:x,b: z]), * (dls(xl,x,y,z/)>4,]:3 =]:2[1'4—>{3,4}],Ig)
}

whereZ; = {{2,1},{3,1}} andZ> = Z; U {{4, 3}, {4,1}}

~.

Fig. 4. Independence detection fe¢tBack

command’s pre-condition. Given a call-site asserfibj” and command pre-condition
11, ! X1, the objective is to find a frame assertidly such thatll | X' - 111 Xy * Xp.
We adapt the frame inference method of [2], which uses a pghaafry for entailments
between symbolic heaps. However, in our case, as well agimjehe formula, we also
require that the frame assertion should correctly presisvabels from the original
call-site assertion since these are used to determine tiyarfiot labels of the specified
command. For this purpose we introduce the notiolabél respectingntailment.

The standard meaning of an entailmént| >, + 15! Y5 between two symbolic
heaps is given ags, h. s,h = II;| X, impliess, h | II2| Xs. For label respecting
entailment, we have the additional constraint that a lappéaring on both sides of the
entailment ‘refers to the same heap locations’ on both sitlles formal definition of
this form of entailment is based on the following propertyadfelled symbolic heaps.

Lemmal. If s,h |= I} X « (S), andl # e, then there is a uniqué’ such thath =
h' «h" ands,h’ |= IT}(S),. In this case we defin@ibheap(s, h,IT} X « (S),,1) = I/,
and it is undefined otherwise.

Proof: The result follows by the fact that every formula is predisat is, for any heap,
there is at most a unique subheap that satisfies the forflLla.

Definition 1 (Label respecting entailment).The entailmenfl; | Xy + I} X5 holds
iff for all s, h, s, h = II1 | X impliess, h = 115} X, and ifl € L(X) andl € L(Xs)
and! # e thensubheap(s, h, II | X1,1) = subheap(s, h, [I5} X5, 1).

We have adapted the proof theory for entailments from [2]dbel respecting en-
tailment in figure 5. We omit the normalization rules and sufier the tree and doubly
linked segment predicates as they adapt in a very similamerain the figure, the
expressiorop(E) is an abbreviation fol? — [p], 1s(F, F), d1s(F, Ep, F, F},) or
tree(F). The guardi(op(E)) asserts that the heap is non-empty, and is defined as

G(E — [p]) £ true G(1s(E,F) 2 E#F G(tree(E)) £ E # nil

G(dls(E, Ey, Fy, Fy)) 2 E # Iy G(d1s(Fy, Fy, Ef,E) = E # F,

Automatic Parallelization with Separation Logic 11

n\x+a'\x’

Ilemp - truelemp !X+ ' ANE=E'S'

AP sv+mls! (S), F (s, mizr-ms!

n n — n I,k € {e} ULab\(L(X) U L(X'))
OAPSEII'APS ISy Xk IS5, =

mxsvr s

_— al ’
(Sy, F(S), Mk I'Q1s(E,E)) ' PE (o} ULmLE)

IAEy #E3|(E1— Ba)y «X = ' [(B1— Ea)p, = (1s(B2, B3)) 5+ 5’

n n Iy € {®} ULab\(L(X) UL(XZ') U {ly,l2,13})
MTAEy #Eg|(By— Eg)y 2 = ' [(1s(By, Bg));, * ¥

TiQs(B1, Bo))yy *+ 2 F ' [(1s(B1, B2))y, * (1s(Bg,nil));, * 2

n n lg € {o} ULab\(L(Z) U L(Z') U {l1,12,13})
T (s(B1, B))y, + S F I Qs(By,nil)y, + &

T A G(op(E3))| As(E1, B2))y, * (op(B))y, = 5 = I'1(1s(B1, B)) g = (1s(Ba, B3))y, = &

T A G(op(B3)) 1 (1s(B1, B2))yy * (op(B3))p, * I+ 1T’ (1s(By, E3)) ;g « 3

fls € {0} ULab\(L(X) U L(Z') U{l1,12,13,14})
Fig. 5. Rules for label respecting entailment

The label respecting aspect of these rules can be best &iprkeby considering the
way in which the frame inference method works. Assume we iasng call-site asser-
tion IT} X and procedure pre-conditidiy, | X7y . To find X'z such thatl7 | X' + 1T, | Xy
X'r, we apply the proof rules upwards starting from the entailndé! ' - 17, | ¥, as
instructed by the following theorem which we inherit fronj.[2

Theorem 1. Suppose that we have an incomplete proof:
II''Yr F true!emp
Iy }—:Hl D
Then there is a complete proof of the label respecting en&ilti7 | X' - 1T, | X1 x Xp.

When applying the label-respecting proof rules upwardselacan only be re-
moved from the left hand side of an entailment. HeAge will retain its labels from
the call-site assertioff | 3. By theorem 1, the entailmeiit | X - 11, | X « X'g is la-
bel respecting, and so we have that the labels common to lhsitesassertion and the
frame assertion refer to the same heap locations. Notitevtien applying this method
in practice, since we are only concerned about preserviadatbels in the frame as-
sertion, we do not care about the labels on the right handdfidee entailments as
we go up the proof. They can hence be chosen to be the emptywalee applying
the rules upwards. As a simple illustration, in the case whbe call-site assertion
is (x— [l :y,7: 2]); * (tree(y)), * (tree(z)), and the command pre-condition is
(tree(y)),. the following derivation gives us the correctly labelledrhe assertion:

(= [l:y,r:2]), * (tree(z)), - emp
(= [l:y,7:2]), * (tree(y)), * (tree(z)), I (tree(y)),

12 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

7 Soundness

We demonstrate the soundness of our algorithm in detectohgpiendences, a property
which is necessary if we are to use the algorithm to safelglfgize a program. For
this we adapt an action trace semantics of programs fromT}&}. action traces are
composed of primitive actions:

aw=x:=F|xz:=FE — f| E1— f:= FE>|new/(x) | assume(b) wherel € Loc

Theassume(b) action is used to implement conditionals, as shown in theetseman-
tics of commands below. It filters out states which do notséatihe boolearb. The
new;(x) command allocates the locatidif it is not already allocated. We choose this
instead of a non-deterministic allocation primitive (whis usually used in separation
logic works) as keeping traces deterministic will be uséulour purposes.

Semantically, the primitive actions correspond to totaldlions that are of the form
Stacks x Heaps — P(Stacks x Heaps)'. The T element represents a faulting ex-
ecution, that is, dereferencing a null pointer or an unalied region of the heap. For
a primitive actionc and a statés, h) € Stacks x Heaps, we define thdocation set
loc(a, s, h) as the set of locations that are accessed:lwhen executed on the state
(s, h). The denotational semantics and location sets of the pvierdictions is given in
figure 6.

Definition 2 (Action trace). An action tracer is a finite sequential composition of
atomic actionsy ::== ;- ;«

Denotational semantics of action traces is given by the esgtipl composition of
actions, which is defined as

U [ao](s',n") i Jea](s, k) # T
[oa; 2] (s, h) = § (s .h)elanl(sh)
T otherwise

Note that every trace is deterministic in that for any state, 1), [7] (s, k) either faults
or has at most a single outcorfies’, h')}.

The action trace semantics of commands of our programmimgukge is given
in figure 7. Just as our commands are indexed, we assign umdiees to the primi-
tive actions in every action trace of every command as fdldvor each atomic com-
mandi : A, every trace is a single primitive actien and we index this ag, 1) : «.
For each specified command com(7), every tracev; ...; o, is indexed agi, 1) :
aq;...; (3, n) @ ay. FOr sequential composition the indices are obtained fioencom-
ponent commands. For a conditioral if b ¢; cp, we index the assume actions as
(i,1) : assume(b) and(7, 1) : assume(—b) and the other indices are obtained from the
component commands. We shall writej) : o € 7 to mean that = 7'; (i,) : a; 7"
for somer’ andr”.

Definition 3 (Index subtrace).For a tracer and a command index we definer|; to
be the subtrace af containing all the actions of the for(4, j) : «. If there are no such
actions int thenr|; is undefined.

Automatic Parallelization with Separation Logic 13

| 1 [ERDN T D)
z:=F {s[z—[E]s],h},0
—E {slzx—],h},{I} if[E]s=11¢€Locandh(l)(f) =v
=B T,0 otherwise
{s,h[l—r]}, {1} if[Ei]ls =1 [E2]s =wv,l € Locandr = h(l)[f — v]
Ey — f:=Es)
T,0 otherwise
{s,h*l+— 7} {l} ifl € Loc\dom(h)andr(f)=nilforall f € Fields
new; (x))
0,0 otherwise
b {s,h},0 if [b]s
assune(b) 0,0 otherwise

Fig. 6. Denotational semantics and location sets of primitiveoasti

T(z:=E)={z:=E} T(z:=[E]) = {z:=[E]}
T([E1] = [B2]) = {[E1] := [E2]} T(new(z)) = {new;(z) | | € Loc}
T(con(T)) C {7 | VP € dom(T).¥(s, h) € [P].3Q € T(P). [r](s,) C [QI}
T(c1;e2) = {1372 | 71 € T(e1), 72 € T(c2)}

T(if b cy c2) = {assume(b); 71 | 71 € T'(c1)} U {assume(—b); 72 | 72 € T'(c2)}

Fig. 7. Action trace semantics of commands

Lemma 2. For a command:, every tracer € T'(c) is of the formr|;,; ...; 7|;,, , where
T1y eyl €](C)

We define the locations accessed by an atomic action in theutiee of a trace.

Definition 4 (Location set of an action in a trace).The location set of an action
(i,7) : ain a tracer from initial state(s, h) is defined as

loc(a, s’ B') if 7 =71;(,7) : ;= and 1] (s, h) = {(s', ')}
0 otherwise

loc((i,7) : a,7,8,h) = {

We extend the definition of locations accessed by an actithettocations accessed by
a subtrace of.

Definition 5 (Location set of a subtrace).The location set of subtrace of = from
initial state (s, h) is defined asoc(7', 1, s,h) = U loc((4,5) : o, T, 8, h)
(i,4):€T’

We now give the formal definition of independence betweenliagic statements in a
progam, for a given pre-condition.

Definition 6 (Independence). Given a command and a pre-condition given by a
set of symbolic heapBre, for two basic commands with indiceandi’ in ¢, we say
that command is independentof command’, written indep(i,4’, ¢, Pre), iff for all
IT' X € Preandforall(s, h) € [II'! X], we have for every € T'(c) such thatr|; and
7|+ are defined, thatoc(7|;, 7, s, h) N loc(7|iv, 7,8, h) = 0.

14 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Given the trace model developed above, we can now formaltg she soundness
property of the independence detection algorithm givergiaré 2.

Theorem 2. For a commanda: and a pre-condition sePre, if for two basic commands
with indicesi andi’ in ¢ we have{i,i'} € getInd(c, Pre), thenindep(i, i, ¢, Pre).

The algorithm of figure 2 works by applying the operationatl aearrangement
rules of figure 1 through the program, possibly branchingisjudctive outcomes and
conditionals. We can therefore think of it as determiningeaf symbolic execution
traces which are sequences of symbolic states, each startingsaitte initial state);
given by the pre-condition and ending with soighg in the final set of symbolic states
that is used to determine independences.

Before we define symbolic execution traces, we formulate#se for conditionals
in terms of an operational rule for assume statements. Wieealgorithm encounters
a conditional statement with guabdit branches on the two caskand—b. Given the
semantics of conditionals described in the last sectiopaation trace of the program
at this point either starts with asssume(b) or anassume(—b) action. This step can
hence be interpreted with an operational rule for assunemntnts:

U x, 7.1

B Sl el P b
oIz, FT) | assumeld)

Definition 7 (Symbolic execution trace)A symbolic execution traceS is a sequence
of symbolic states such that any two consecutive stateisgtjuence are related by
an application of an operational or a rearrangement rule €Tihitial state is denoted
S[0, 0], its symbolic heap has all non-empty labels, its fooptrgtis ¢ and its inter-
section logis{{l,!} | I € Lab(IT|X)}, wherell | X is the symbolic heap &[0, 0].
Apart from the initial state, every state is eithergperational state(the conclusion
of an operational rule) or aearrangement state(the conclusion of a rearrangement
rule). The operational states are denot&fl, 0] to S[N(S), 0] in the order in which
they appear, whereéV(S) is the number of operational states atd(S) > 0. For
0 < n < N(S), the rearrangement states froffin, 0] to the next operational state
are denotedS[n, 1], ..., S[n, R(S,n)], whereR(S, n) is the number of rearrangement
states in this segment. There are no rearrangement statstiaé last operational state.

For a symbolic execution tracgand0 < n < N(S), 0 < r < R(S,n), we shall
denote by s(,,,r), Fsn,r) @NAZs, .1 the symbolic heap, footprint log and intersection
log in stateS[n, r| respectively. We denote hiy; s the index of the command in theth
operational rule i, and let/ (S) be the set of all command indices. Weleb(S) be
the set of all labels occuring in all the symbolic heap§in

Definition 8 (Trace satisfaction).Given a symbolic execution tracg we say that an
action tracer satisfiesS, writtent = S, iff 7 = 7[;, 5;...; Tliy(s, s @andforall(s, h) €
[Hspo,0]: forall 1 <n < N(S) we have7|;, g;...; 7]i, s](5,h) € [Hsp,ol-

Automatic Parallelization with Separation Logic 15

Lemma 3. For a command: and pre-condition sePre, let ¢); be a symbolic state
with a symbolic heap fromPre and footprint and intersection logs initialised as in
the getind(c, Pre) method in figure 2. For every such initial stafe, the algorithm
generates a collection of symbolic execution traces, etatirsy with «); and ending
with someZr in the final set of states that is used to test independencbawethat
everyr € T'(c) satisfies at least one of these symbolic execution traces.

Proof: Trace satisfaction depends only on the symbolic heap coemgaf the states
in a symbolic trace and not on the footprint or intersectiogsl Thus soundness of
standard symbolic execution [2] alone implies that the dilym overapproximates all
possible executions of the program starting from the givengonditionll

Proposition 1. Assume we have = S. Let Fr andZy be the footprint and intersec-
tion logs of the final state af. For any two distinct command indiceg’ € I(S), if
for all labels! € Fr(i) andl’ € Fp(i') we have{l,l'} ¢ Ip, then forall(s,h) €
[Hs0,0], we haveloc(r|s, 7,5, h) N loc(T|ir, 7,5, h) = 0.

The proof of this proposition appears in the appendix (sac). The underlying idea
is that given an action trace satisfying a symbolic execution tracg and a con-
crete initial statd s, h), every label in the symbolic execution trace represents a fixed
set of heap locations throughout the entire concrete execof 7, which we denote
labloc(l, S, T, s, h). This expression is then used to reason about the heapdnsaép-
resented by labels in the footprint and intersection logd,ta show that two subtraces
with non-intersecting footprint labels access disjoirafhécations.

Lemma 3 and proposition 1 together give the proof of the snass theorem 2,
as follows. Assume we are given a prograna pre-condition sePre, and indices
andi’ of two basic commands, and thft, i’} € getind(c, Pre). Hence in each of
the final symbolic states generated by the algorithm, thépfod labels ofi and ¢/
do not intersect according to the intersection log. By len8navery tracer of the
program satisfies some symbolic execution trace genergtitlalgorithm. Hence, by
proposition 1, ifr|; andr|; are defined then they have disjoint location sets starting
from any state in the pre-condition. Since this is true fotrakes ofc, by definition of
independence (definition 6), we hairelep (i, i, ¢, Pre).

8 Conclusion and Future Work

In this work we have focussed on laying the foundations of edended separation
logic framework for independence detection. We plan torecktee method we describe
to the more complex data structures handled by separatipn sbhape analyses [1], to
integrate our method with the existispace invadetool for shape analysis [16, 4], and
conduct practical experiments, conceivably exploitirggbalability of this tool to large
programs. A notable aspect of this integration is that, &biir framework relies on the
atomic predicates being precise, sometimes impreciségated, e.g. ‘possibly cyclic
list', are used in shape analyses. However, these prediasteboundedly imprecise’,
so that case analysis can be performed to obtain finite disurs of precise predicates
from imprecise ones. Another direction for future work isitaprove the precision

16 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

of label tracking by incorporating it into the shape analyshase itself, which would
involve taking the footprint and intersection logs throubh abstraction and fixpoint
calculations. Following this, we intend to investigate #pplication of our method to
other kinds of program optimizations.

Acknowledgements We thank the anonymous referees for very helpful comments.
Raza acknowledges support of an ORS award and EPSRC graalif&t static asser-
tion checking for C programs”. Gardner acknowledges supyf@ Microsoft Research
Cambridge/Royal Academy of Engineering Senior ResearttbviFghip. Calcagno ac-
knowledges support of an EPSRC advanced fellowship.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. OHearityies and H. Yang. Shape
Analysis for Composite Data Structures.QAV, 2007.
2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic BExecwvith Separation Logic. In
APLAS 2005.
. J. Berdine, C. Calcagno, and P.W. O’'Hearn. Smallfootofatic modular assertion check-
ing with separation logic. 1dth FMCQ, 2006.
. C. Calcagno, D. Distefano, P. O'Hearn, and H. Yang. Coitiposl Shape Analysis. In
POPL, 2009.
D. Distefano, P. O’Hearn, and H. Yang. A Local Shape Arialpased on Separation Logic.
In TACAS 2006.
. C. Calcagno, P. O'Hearn, and H. Yang. Local Action and Adr$tSeparation Logic. In
LICS, 2007.
. R. Ghiya, L. J. Hendren and Y. Zhu. Detecting Parallelisi@ programs with recursive data
structures. IrCC, 1998.
. R. Gupta, S. Pande, K. Psarris and V. Sarkar. Compilatmhiques for Parallel Systems.
In Parallel Computing 1999.
. L. J.Hendren and A. Nicolau. Parallelizing programs wéttursive data structures. IIBEE
Transactions on Parallel and Distributed Systert@90.
10. J. Hummel, L. J. Hendren and A. Nicolau. A general dateddence test for dynamic,
pointer-based data structures.RhDI, 1994.
11. T. Hoare and P. O’'Hearn. Separation Logic Semantics ofif@anicating Processes. In
FICS 2008.
12. S. Horwitz, P. Pfeiffer and T. W. Reps. Dependence aisalgs poiner variables. I#®LDI,

© ® N o U A~ w

1989.

13. M. Marron, D. Stefanovic, D. Kapur and M. Hermenegilddentification of Heap-Carried
Data Dependence Via Explicit Store Heap ModelsLGPC, 2008.

14. J. C. Reynolds. Separation logic: A logic for shared mietaata structures. Ih7th LICS

2002.
15. M. C. Rinard and P. C. Diniz. Commutativity Analysis: AWenalysis Technique for
Parallelizing Compilers. IIACM Transactions on Programming Languages and Systems

1997.
16. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. fasie, and P. OHearn. Scalable
Shape Analysis for Systems Code.GAV, 2008.

9 Appendix: Proof of Proposition 1

For an action trace satisfying a symbolic execution traSgwe define the intermediate
states in a concrete executionothat satisfy the symbolic statesdh

Definition 9 (Concrete execution statesAssume we havel= S and(s, h) € [Hs(o,]-
The initial concrete execution state setnc(0,S,7,s,h) = {(s,h)}. For1 < n <
N (S), thenth concrete execution state sainc(n, S, 7,5, h) = [7]i, 551)i, s (5, h).

Automatic Parallelization with Separation Logic 17

The following lemma shows that in any specific execution ofation trace satis-
fying a symbolic execution trace, any label in the symbaohcé always refers to a fixed
set of heap locations for the whole the execution, which wetieadabloc(l, S, 7, s, h).

Lemma 4 (Label-location preservation). Assume we have = S and (s,h) €
[Hs(0,0]- Then for every labdlc L(S), there exists a set of heap locatidasloc(l, S, 7, s, h)
such that for allo < n < N(S), forall 0 < r < R(S,n), if I € L(Hsn,) and
conc(n,S,7,s,h) = {(sn, hn)} then

dom (subheap sy, hn, Hsn,m,1)) = labloc(l, S, 7, s, h)

Ifitis the case that for all stateS[n, r| such that € L(Hs;,,) we haveconc(n, S, 7, s, h) =
0, then we definébloc(l, S, 7,s,h) = 0

Proof: The proof proceeds by checking that for a specific executfon foom state
(s,h), alabell in S that occurs both in the premise and the conclusion of an tipeed
or a rearrangement rule refers to the same heap locatiohg ipremise and the con-
clusion. Sincd cannot reappear once it has been removed in a symbolic éxecihis
implies that refers to a fixed set of locations, and this set is denbilddc(l, S, 7, s, h).

We check every rearrangement rule. Assume the rule has geéti,] and con-
clusionS[n,r + 1] andl € L(Hsp,,r) andl € L(Hspn,r411)- Then if (sp, hy) €
[Hsn,], we can check that

subheap (s,, hin, Hsn,r, 1) = subheap (s, hn, Hspn,r1151)

We check every operational rule with commandc. Assume the rule has premise
S[n,r] and conclusioi$[n + 1,0] and! € L(Hs[n,,) andl € L(Hs[n41,07)- Then for
(80, hn) € [Hsm,nl 7li € T(c) and[7[;] (55, hn) = { (8041, hny1)}, we have

dom (subheap(s,, hn, Hsn ;1)) = dom(subheap (sni1, hnt1, Hsint1,00,1))
|

The following lemma shows that the intersection log cotyedétermines the labels
representing possibly overlapping sets of heap locatitved,is, labels whoséubloc
sets intersect.

Lemma5 (Intersection soundness).Assumer = S. LetZr be the intersection log
of the final state irSs. For each(s, h) € [Hsyo,0/] we have for all label$, I € L(S),

{l,I'} & Ir = labloc(l,S,T,s,h) N labloc(l',S,T,s,h) =0

Proof: For0 < n < N(S) and0 < r < R(S,n), let I,,, be the interection log

in stateS[n,r]. Let L, , be the set of labels in the symbolic heaps in all the states
S[0,0], ...,S[n,r]. To prove the result, we show inductively that for all r, for all

LU €Ly,

labloc(l,S,7,s,h) N labloc(l',S,7,s,h) # 0= {l,I'} € T,,.»

18 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

So assume that this holds for a certairr. Let the next state b&[n’,], which could
either be a rearrangement st&te:, » + 1] or an operational stat8n + 1, 0].

LetL = L,/ ,/\L, , be all the new labels. There are three cases to considerl both
and!’ are notinL, both of them are i, or one of them is irL. In the first case, since
7, contains all the pairs iff,, ., we are done. If both are ih, then we can check
every rule individually to see that any pair of distinct tidabels is never added to the
intersection log, and that two distinct fresh labels alwagmesent disjoint locations in
the conclusion of the rule, and hence thiefrlocs are disjoint by lemma 4.

For the third case, ldtc L andl’ ¢ L without loss of generality. If' € L(Hspn,,)
then we can check the result for every rule individually. €thise, we assume

labloc(l,S,7,s,h) N labloc(l',S,T,s,h) #

and we have to shoWl, '} € 7, ,..Letly, ..., 1, be all the labels it s, ,) such that
fori1<ad <a

labloc(lyr, S, 7,8, h) N labloc(l', S, 7,8, h) # 0

By induction hypothesis we havé, ,!'} € Z,, ..

Now since thelabloc set ofl intersects with’, and thelabloc sets ofly, ..., 1, to-
gether contain thébloc set ofl’, we have for somé < o’ < a,

labloc(l, S, 7,5, h) Nlabloc(ly, S, 7,8, h) # 0

Sincely € L(Hsn,.), from the case above we hayg i, } € Z,., . Hence by the
definition of relFresh in section 4, we have thdt,!'} € Z,,, ..

For the footprint log, we need to show that théloc sets of the footprint labels
determine the location sets of the subtraces for each conhritduis is only true if the
subtrace does not diverge. If the trace diverges, theiftiec sets of the footprint la-
bels only determine the locations that are required for @ @afn-faulting) execution of
the trace, andlo notdetermine the whole location set. In the final proof of theporo
sition we shall see that this is enough to guarantee the armmce result. We first
prove in the following two lemmas that the footprint labeédetmine the safety sets for
diverging traces and the whole location sets for non-divertraces.

Definition 10 (Safety set of a trace on a state) he safety sekafe(r, s, h) of a trace
T on initial state(s, k) is defined as the smallest set of heap locatidnsuch thatr
executes safely on the subheap afith locations given by, that is,[7] (s, h|a) # T

Lemma 6. Assume we have an operational rule for a commandc with premise
(II; X, F1, 1) and conclusionIly| X, Fo, I2). Let (s,h) € [I;}X1] and T €

Automatic Parallelization with Separation Logic 19

T(c).

(1) safe(r,s,h) C U dom(subheap (s, h, 11} X1,1)
1€(F2()NL(IT1 | £1))

(2) If [7](s, h) = {(s’, h)}, thenloc(r,T,s,h) C

U dom (subheap (s, h, 11} X1,1)
le(F2(i)NL(IT1 | Z1))
U U dom(subheap(s', h', I3} X5, 1))

le(F2(i)NL(H2 | X))

Proof: If ¢ : ¢ is an atomic command or an assume statement, then we can check
each of the operational rules. The interesting case is thefona specified command
i:com(T).
Let iy be the heap which is the union of all hedps = subheap(s, h, IT1 | X1,1’)
forall I € (F2(i) N L(II1} X1)). We have
dom(hy) C U dom(subheap (s, h, 11| X1,1))
leF2()NL(M1 | X1)
Leths be the heap which is the union of all hedps = subheap(s’, b/, I} X5, 1")
forall I” € (F2(i) N L(II2} X3)). We have
dom(hs) C U dom (subheap(s', b, I15! X3,1))
l€F2(i)NL(H2 | X2)

By soundness of frame inference, there existsuch thath = h3 * h; andh’ =
hs * he and we havd[r](s,h1) = (s, h2). Hencesafe(r,s,h) C dom(hy) and
loc(,1,8,h) C dom(hy) U dom(hs).

|

Lemma 7. Assumer = S. Let Fr be the footprint log of the final state ifi. For
1 <n < N(S),leti =is . Foreach(s, h) € [Hsio,0], we have

(1) if cone(n —1,8,71,8,h) = {(sn—1, hn—1)} then

safe(T|iy Sn—1,hn—1) C U labloc(l, S, 1,8, h)
leFFr (i)

(2) if cone(n, S, 7, s,h) # (0 then

loe(rli; 7 5,0) € labloc(l, S, 7, 5,h)
leFF (i)

Proof: For (1), assumeonc(n —1,S,7,s,h) = {(sn—1, hn—1)}. The premise of the
operational rule fof is the stateS[n — 1, R(S,n — 1)]. By lemma 6(1) we have

safe(tli, Sn—1,hn-1) C U dom(subheap(sn—1,hn—1, Hsmn-1,r(s,n-1)]>1))

le (]:S[n,o] (i)mL(HS[nfl,R(S,nfl)]))

20 Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

By lemma 4 and since the footprint log foonly gets updated in the operational
rule fori, we have

safe(T|iy Sn—1,hn—1) C U labloc(l, S, 7, s, h)
leFF (i)

For(2), assumeonc(n,S, 7, s, h) # (). Hence we haveonc(n—1,S, 7, s, h) # (.
Let cone(n, S, 7, s,h) = {(8n, hn} @ndconc(n — 1,8, 7,8, h) = {(sn—1,hn—1}. We
haveloc(t|;, 7, s,h) = loc(7|i, T|iy Sn—1, hn—1). The premise of the operational rule
for i is the stateS[n — 1, R(S,n — 1)]. By lemma 6(2) we have

lOC(T|i7 T|ia Sp—1, hn—l) -

U dom (subheap(sn—1, hn—1, Hsm—1,R(S,n-1):1))
le(Fsn,00()N"Hs[n-1,R(5,n—1)])

U U dom (subheap (s, hn, Hsn,o]5 1))
1€(Fsn,01(1)NHs[n,0])
By lemma 4 and since the footprint foonly gets updated in the operational rule for
we get
loc(Ti, Tliy Sn—1,hn—1) € U labloc(1, S, T, s, h)
1 Fr(4)
and therefore
loc(tl];,7,8,h) C U labloc(l, S, T,s,h)
leFr (i)
|

We now restate and prove proposition 1.

Proposition 1Assume we have = S. Let Fr andZr be the footprint and intersection
logs of the final stat€ [N (S), R(S, N(S))] of S. For any two distinct command indices
i,i" € I(S), if for all labels! € Fr(i) andl’ € Fr(i') we have{l,l'} & Ir, then for
all (s, h) € [Hspo,0], we have

loc(tli, 1,8, h) N loc(T|i, 7, 8,h) =0

Proof: Assume without loss of generality thal; comes before-|;; in 7, that is, let
i =1isnandi’ =is,, forsomen,mwith1 <n <m < N(S).

case 1: conc(n, 7,8, s, h) # @ andconc(m, 7,8, s, h) £ 0

Since{l,l'} ¢ Ip foralll € Fr(i) andl’ € Fr(i’'), we have by lemma 5 that
labloc(l, S, T, s,h) Nlabloc(l', S, T, s, h) = 0. Hence by lemma(2) we have that

loc(7|i, 7,8, h) N loc(T|ir, T, 8, h)
=(U tabloc(t,8,7,5,n))n(] labloc(l',S,7,s,h))

leFr (i) l'eFr (i)

=0

Automatic Parallelization with Separation Logic 21

case 2: conc(n, 7,8,s,h) =0

In this case we have thabnc(m,,S, s, h) = 0 and soloc(r|;/, T,s,h) = (and
we are done.

case 3: conc(n, 7,8, s, h) # @ andconc(m, 7,8,s,h) =0

If conc(m—1,7,8,s,h)=0thenloc(r|;,T,s,h) = () and we are done. Otherwise
let conc(m —1,7,8,s,h) = {s', h’'}. By lemma 71) we have

safe(t|y, s, h') C U labloc(l,S,T,s,h)
leFp (i)

We have by lemma(2) that

loc(7'|1-,7',s,h):(U labloc(l,S,T,s,h))
leFF (i)

Since{l,l'} ¢ Ip foralll € Fp(i) andl’ € Fp(i'), we have by lemma 5 that
labloc(l, S, T, s, h)Nlabloc(l', S, 7, s, h) = (). Hence we haveafe(7|;, s', A")Nloc(7|:, T, 8, h) =
0.

We haveloc(7|i, 7,8, h) C safe(r]ir, ', ') U newlocs (7|), wherenewlocs(7];)
is the set of locations allocated by;. Since these new locations cannot intersect with
locations already allocated, we have

loc(7):, 7,8, h) N newlocs(t|i) = 0

and therefore
loc(7|i, 7,8, h) N loc(t|ir, 7,8, h) =0

