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Abstract

This thesis presents structural separation logic, a novel program reasoning approach for

software that manipulates both standard heaps and structured data such as lists and trees.

Structural separation logic builds upon existing work in both separation logic and context

logic. It considers data abstractly, much as it is exposed by library interfaces, ignoring

implementation details.

We provide a programming language that works over structural heaps, which are similar

to standard heaps but allow data to be stored in an abstract form. We introduce abstract

heaps, which extend structural heaps to enable local reasoning about abstract data. Such

data can be split up with structural addresses. Structural addresses allow sub-data (e.g. a

sub-tree within a tree) to be abstractly allocated, promoting the sub-data to an abstract

heap cell. This cell can be analysed in isolation, then re-joined with the original data.

We show how the tight footprints this allows can be refined further with promises, which

enable abstract heap cells to retain information about the context from which they were

allocated. We prove that our approach is sound with respect to a standard Hoare logic.

We study two large examples. Firstly, we present an axiomatic semantics for the Docu-

ment Object Model in structural separation logic. We demonstrate how structural separa-

tion logic allows abstract reasoning about the DOM tree using tighter footprints than were

possible in previous work. Secondly, we give a novel presentation of the POSIX file system

library. We identify a subset of the large POSIX standard that focuses on the file system,

including commands that manipulate both the file heap and the directory structure. Ax-

ioms for this system are given using structural separation logic. As file system resources

are typically identified by paths, we use promises to give tight footprints to commands,

so that that they do not require all the resource needed to explain paths being used. We

demonstrate our reasoning using a software installer example.
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1. Introduction and background

“The purpose of abstraction is not to be vague, but to create a new semantic

level in which one can be absolutely precise”

Edsger Dijkstra, The Humble Programmer [20]

In this thesis, we link local reasoning about heaps to local reasoning about rich data

structures, and so create structural separation logic. Our aim is library reasoning : the

ability to give clear and useful axiomatic specifications to programming libraries concerned

with manipulating structured data. We focus on data abstractions, and so create axioms

that capture the effect of commands in a natural manner. This leads to easier proof

construction, and the ability to give specifications that match programmers’ intuitions.

Just as libraries enhance programming languages and ease the development of programs,

structural separation logic enhances separation logic [52] and eases the verification of

programs.

Programming libraries are abstractions for sets of operations. They are the standard

method for interacting with both data structures and system services. It is rare to see a

programmer using, for example, a custom list implementation. Instead, they use a pre-

existing list library, which abstracts away from the implementation details. This allows

programmers to use lists without worrying about how they are implemented. An operation

such as removing element e from a list referenced by l is not exposed as “If you pass in a list

reference l and element e, this command obtains an initial linked-list pointer from l, walks

along a doubly-linked structure until the memory containing element e is encountered,

swings the pointers around it, and deallocates that memory”. Rather, it is exposed as “If

you pass in list reference l and element e, the list at l will be updated such that element e

has been removed, and nothing else has changed”. The first description is much too “low

level”. It focuses on how an operation is achieved rather than what the operation does,

and it forces the programmer to think in terms of machine memory. The second is “high

level” (equally, at the “level of the abstraction”). It allows a programmer to focus on the

meaning of the code they are writing.
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Many libraries are exposed at a high level. From the programmer’s perspective, these

libraries do not set out to abstract some fixed implementation, but instead implement a

well-chosen abstraction. How the operations are performed is hidden, allowing the library

to change implementation details without changing its interface. Moreover, and perhaps

more importantly, this allows programmers to use the library with an mental model of

what it does, rather than how it does it.

Often, libraries are defined only in these abstract terms and have no standard imple-

mentation. If you obtained this thesis from the Internet, you probably downloaded it

from a web page that contained JavaScript [27]. Web browsers expose their internal web

page representation to JavaScript via the Document Object Model [71], allowing script

programs embedded within the page to manipulate the in-memory representation. The

DOM, a standardised programming library based upon trees, is described only via an

abstract specification. Browser authors must carefully read the specification, and provide

an implementation that matches the operations described. However, script programmers

can simply rely on the abstract description of the trees and operations upon them. An-

other ubiquitous system presented abstractly is the Portable Operating Systems Interfaces

for UNIX standard, commonly abbreviated to POSIX [1]. POSIX is a library that all

UNIX-like operating systems offer. By targeting the POSIX library rather than OS spe-

cific interfaces, programmers can create software that should compile and run on any

operating system that provides POSIX. In this thesis, we will demonstrate how structural

separation logic can provide natural axiomatic semantics for both DOM and a subset of

POSIX focusing on file systems.

Libraries help programmers perform informal reasoning about their code. Leveraging

good abstractions, programmers can quickly determine the expected effect of their work

and track down bugs. The informal nature of this approach inevitably leads to problems,

which formal reasoning can help eliminate. Ideally, formal reasoning should (as far as

possible) follow the insights provided by informal reasoning. Unfortunately, this has rarely

been the case, and formal reasoning remains out of reach for most programmers. It is

generally adopted only by cost-critical systems such as hardware design and the finance

industry, or safety-critical systems such as aircraft and national defense [72]. The majority

of software is never subjected to mathematical rigour, relying instead on manual testing.

This is not terribly surprising. Formal methods have not generally kept pace with

software development practices. One very common programming technique is the use

of heap memory. Formal reasoning about heap manipulating software has, traditionally,

been badly served. Fortunately, over the last decade, this has been changing, with some

heap-using programs being statically analysed before they are given to customers. For
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example, the SLAM project [6] from Microsoft forms the basis of several tools used to

analyse parts of their Windows operating system before they are shipped. Their Static

Driver Verifier [5], which uses the SLAM engine, checks that device drivers cannot cause

system failures. Going even further than this is the L4.verified project [49], which provides

formal verification for an entire operating system kernel.

One theoretical development that is enabling the verification of heap manipulating pro-

grams and capturing the spirit of informal program justification is separation logic [52].

Separation logic is a Hoare logic [42] for local reasoning. In essence, local reasoning means

that verifying a program requires consideration of only the parts of memory touched by

that program. This footprint concept very often matches the intuitions a programmer

has when writing heap manipulating code. When, for example, implementing a linked

list reversal, the core loop deals only with the current list element, the next, and the

previous. Programmers focus only on this memory, knowing that all other list elements

will not change during the current loop iteration. Separation logic reasoning considers

the same memory as the programmer, in contrast to previous reasoning techniques which

often required consideration of the entire list (or even the entire heap). This similarity

can give the creation of a separation logic proof a similar flavour to writing the code in

the first place.

Separation logic achieves local reasoning by focusing the descriptions of program heaps

onto individual machine memory cells. These heap cells can be combined with a separating

conjunction. Each cell combined with the separating conjunction is guaranteed to be

disjoint from all others, allowing the effects of heap update to be tracked precisely to

the region of memory affected. Commands are then specified with small axioms, which

describe the effect of the command over the smallest possible number of heap cells. This

technique sidesteps many of the problems that traditional Hoare reasoning about heaps

typically suffers, and allows commands to be specified using only the memory they will

actually access - the command footprint alluded to earlier. The footprint concept has

made separation logic highly compositional, allowing proofs to behave modularly. In the

past decade, the local reasoning philosophy, and separation logic itself, has flourished.

Many research sites now work with local reasoning, with uses spanning the verification

of complex concurrent algorithms [19] to automated reasoning tools that can prove large

amounts of real world code free of memory errors1. Separation logic has been particularly

successful in proving properties of concurrent programs. Separation fits extremely well

with concurrent data update, as manipulating disjoint data can never result in data races,

where multiple program threads simultaneously access the same data.

1Such as over 50% of Apache, OpenSSH and Linux [24]
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Separation logic’s representation of data is typically built upon the shape of machine

memory. When dealing with structured data, such as lists or binary trees, a variety of

data predicates are used. The simplest approach is inductive predicates, which encode an

implementation of the structure into the heap. Whilst inductive predicates allow induc-

tively defined structures to be represented, they do not provide good abstractions of the

data structure. The implementation details leak through the predicates, making proofs

dependent on them. Approaches such as abstract predicates [57] hide more of the imple-

mentation choices, representing data structures as “black-boxes”. These black-boxes can

be manipulated via axioms, and only the library implementation can unroll the boxes to

reveal implementation details.

We term these approaches “bottom-up”. The abstractions must exist alongside machine

heap assertions, will be justified in terms of the heap, and are manipulated similarly to heap

cells. Unfortunately the notion of separation, being designed to support heap memory, can

struggle when trying to enable local reasoning about these abstractions, especially when

they are abstracting highly structured data. The natural specifications for commands

over, e.g. lists or n-ary trees, often want to work on single list elements or sub-trees.

Separating these sub-data out from the abstractions can be hard when using a notion

of separation born in an implementation-focused environment. The predicates, however

abstract, must carry enough information to undo the separation. There is tension between

providing abstractions that allow natural reasoning at the level of the data structure, and

easy verification of data structure implementations.

To gain the benefits of local reasoning on abstract structured data, it is helpful to have

an equally abstract notion of separation. This “abstract separation” can be designed to

break the structure into its natural components without being concerned about implemen-

tations or machine heaps. One approach to this “top-down” reasoning is context logic [15].

Context logic, like separation logic, is a Hoare logic for local reasoning. However, where

separation logic typically works with memory shaped like machine heaps, context logic

works with memory shaped like the abstract data being used. For example, when reason-

ing with lists, abstract lists are stored in the memory directly. The standard technique of

contexts is used to separate complex data into smaller sub-data, and a novel separating

application rule allows these sub-data to be reasoned with locally. Importantly, the logic

does not consider how data might be represented in heap memory. This representation

allows the specification of libraries given entirely abstractly. For example, context logic

was used to give the first axiomatic semantics to the DOM library [65].

Contexts enable a more abstract notion of locality for structured data. Unfortunately,

they lose some of the benefits of separation logic. For one, contexts make little sense for
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reasoning about flat heaps, as the machinery of contexts is too heavy handed for simple

heap manipulation. This can make reasoning about programs that use both heap memory

and abstract data more difficult than it need be. Moreover, the nature of contexts limits

certain types of desirable locality. Tree commands such as appendChild(p, c) (which

moves a tree node c to be the child of node p) cannot be given truly small axioms, as

the contexts requires a larger footprint than the command needs. These larger axioms

are both unintuitive and, by being far less local than truly needed, limit reasoning about

concurrency.

This thesis seeks the best of both worlds, and arrives at structural separation logic.

Structural separation logic is designed to mix separation-logic-style heap reasoning with

context-logic-style reasoning about structured data. This removes many of the restrictions

of context logic, and can obtain truly small footprints for commands like appendChild.

These small footprints, alongside the restoration of a commutative ∗ operation to reasoning

with contexts, enable far more fine-grained concurrent reasoning. We also gain natural

reasoning about combinations of standard heaps and abstract data. Structural separation

logic can create axiomatic specifications for many libraries, including DOM and the POSIX

file system.

To develop structural separation logic, we first introduce a standard concurrent pro-

gramming language, but give it a memory model of structured heaps. Structured heaps

are like normal machine heaps, but instead of storing heap cells representing the memory

used by a specific implementation, store rich structured data directly (see figure 1.1, left).

These heaps are not concerned with how a real machine might implement the structured

data, instead working directly on abstract representations. They share a basic shape with

normal separation logic heaps, allowing low-level implementation focused reasoning to be

used alongside the structured data.

We accomplish local reasoning by introducing abstract heaps. Abstract heaps allow

structured data to be cut-up into sub-data, and enable the sub-data to be “promoted”

to the heap level via abstract allocation. Abstract allocation is analogous to allocation in

imperative programs, but is managed entirely in the logic. It places sub-data in abstract

heap cells, addressed by abstract addresses (figure 1.1, right). These abstract heap cells

are disjoint, and so are separated via ∗ in the reasoning. They behave like normal heap

cells (albeit cells invisible to the program code), until they are no longer needed. At this

point, abstract deallocation merges the data back into the value containing the matching

body address. In this manner, we obtain the high-level reasoning enabled by contexts, and

retain the low-level reasoning and natural separation that heaps provide.

We introduce structural separation logic with pedagogical examples, but our goal is
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Figure 1.1.: On the left, a structured heap, storing an entire list at address L. On the right,
an abstract heap, in which the sub-list 2⊗ 5 has been abstractly allocated at
abstract address x. Notice the same address then appears as a body address
in the list at L.
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Figure 1.2.: An abstract heap in which abstract cell x has promise p.

to give concise axiomatic descriptions of real libraries. This thesis includes two such

libraries, the first being the Document Object Model. DOM was originally standardised

entirely with English prose [71], until the work of Gardner, Smith, Wheelhouse and Zarfaty

gave an axiomatic specification using context logic [35, 65]. We revisit this specification

in chapter 4 to demonstrate the techniques of structural separation logic, and recast the

previous axiomatic semantics using the smaller footprints that our techniques allow. We

demonstrate that our specifications for DOM are useful for verifying client programs that

use the library. By developing a photo library program that manages encoded photographic

data within an XML file, we show how our techniques can reason about typical uses of

the DOM. Moreover, our example requires the use of normal heap memory, demonstrating

that we can uniformly handle a mixture of flat heap and structured data reasoning.

Most DOM library commands might be termed “naturally local”. The commands work
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on sub-trees identified via globally unique node identifiers. Each identifier gives a precise

handle with which we can extract the data in question, and provides a natural focus for

the update. Not all libraries behave this way. Some use global properties of the data

structure to select the location of an update, even when that update is focused on a small

region. For example, when analysing an element of a list locally, a command may want

to know that the element was 5th in the list. The footprint of the command must then

contain sufficient data to deduce this fact. Another common example is paths. Paths are

used in tree manipulating libraries to identify sub-trees. Commands access resource by

following the path, then acting on the data at the end of it. These paths can meander

around the tree quite freely, but the resultant update is generally local to the sub-tree

at the end of the path. Choosing footprints for such commands is thus difficult. The

commands need the resource required to follow the path, but will only update a small

fraction of it. Requiring that command axioms include all the path resource in addition

to the structure needed for the update both complicates the specifications, and drastically

limits the number of sub-tree resources that can be disjointly considered simultaneously.

To combat this, we add promises to structural separation logic. Promises allow abstract

heap cells to retain some information about the structure from which they were allocated.

In figure 1.2, there is sub-data at path p within cell R. The abstract cell x has retained

this information, noting that it has been allocated from within a tree at path p. This

information has been associated with the data at R as an obligation not to change the

path to x until it has been deallocated.

These promises and obligations allow us to give an axiomatic semantics to our second

major example, the POSIX file system library. From the large POSIX specification, we

distill a core subset that describes the file system tree, and the commands that manipulate

it. We create a novel model for this subset, and use structural separation logic with

promises and obligations to give an axiomatisation. Commands are specified using resource

associated with path promises, allowing intuitive axioms that focus on the resource at the

end of the path. As in DOM, our axiomatisation is useful for proving properties of client

programs. We use our logic to reason about an example software installer. This program

demonstrates the key file system manipulations that software installers must perform. We

show that it either completes the installation task correctly (with respect to the file system

manipulations), or that no meaningful changes have been made to the file structure. We

will also revisit the DOM specifications, and show how promises can further tighten the

footprints of some commands.

That structural separation logic can reason about both DOM and POSIX is a strong

statement of its usefulness. Both libraries were originally defined only via English speci-
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fications, and both are implemented in a variety of ways. They are very widely used by

client programs, with our photo library and software installer examples being two typical

scenarios. They both use use structured data, but the natural footprints of commands

are quite different. In our examples, we see that despite the differences in resource us-

age, the work required to prove the client programs is very similar. Structural separation

logic works at the level of the structured data abstraction, and so allow reasoning about

structured data libraries alongside normal, implementation focused, heap reasoning. This

is brought out especially in the photo library example, which naturally mixed abstraction

layers.

Overall, our contributions can be seen in two parts. First, we offer formal machinery

that enables local reasoning with abstract data at a natural level. Our techniques enhance

existing methods and reasoning tools, and are built to co-exist with advances in other local

Hoare logics. Second, we use our techniques to both specify libraries that use abstract

data, and prove clients programs that use the libraries. We have not only enhanced

on previous library specifications, but can now provide specifications for libraries not

previously analysed in this way. With the techniques and examples of this thesis, we hope

to provide library developers with a sound formal system for saying what their libraries

do, and programmers with a wider range of feedback methods for software development.

1.1. Contributions

The contributions of this thesis are in five chapters.

Chapter 2 - A Reasoning Framework: A framework supporting our novel contribu-

tions.

We introduce a reasoning framework, specialising the views system introduced by

Dinsdale-Young, Birkedal, Gardner, Parkinson and Yang [22]. Our framework con-

sists of imperative machines, described using a simple concurrent programming lan-

guage, with operational semantics for programs using structured heaps as states.

We introduce an assertion language that describes sets of structured heaps, but add

instrumentation to the addresses and values. The choice of instrumentation is left

to the user, but is added to enable reasoning when the underlying machine states

contain insufficient facts for certain types of proofs (one example being fractional

permissions for heap cells). We show how these sets can act as views, and so demon-

strate a sound Hoare reasoning system.
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Chapter 3 - Structural Separation Logic: A uniform theory for reasoning about

combinations of abstract structured data, which allows smaller command axioms

than previously possible, as well as the easy mixing of high-level (abstract data) and

low-level (standard heap) reasoning.

Our core contribution, structural separation logic, is a novel program logic for spec-

ifying libraries that manipulate structured data, and for reasoning about the pro-

grams that use them. We achieve this by splitting data via structural addresses.

Structural addresses allow data to be broken into smaller sub-data, with the ad-

dress recording the relationships between the data. Sub-data can be allocated at a

structural body address, promoted to a cell within an abstract heap addressed by a

structural abstract address, treated much like a heap assertion in separation logic,

and then deallocated to compose again with the body address. Abstract heap cells

allow both smaller command axioms than previous work in this area [15], and nat-

urally support a mix of abstract data and normal heap data. This allows hybrid

reasoning, combining the abstract reasoning of context logic with the low-level rea-

soning of separation logic. We give a detailed treatment of reasoning with abstract

addresses via simple examples of lists and trees.

Chapter 4 - The Document Object Model: An case study that revisits previous ax-

iomatic DOM specifications, showing that structural separation logic enables smaller

axioms than previous techniques, along with a mix of high- and low-level reasoning.

We give an axiomatic specification for a subset of the Document Object Model using

structural separation logic, building upon previous work [35, 36, 65]. The DOM is

a library for tree manipulation, most often used within web browsers as the pro-

gramming interface between a web page, and script programs that manipulate it.

We take the previously identified featherweight DOM fragment of the specification

[35, 36], which was axiomatised with context logic, and show how structural sep-

aration logic can both provide tighter footprints than previous work and integrate

reasoning about DOM manipulation with heap manipulation. Following the work of

Smith in extending featherweight DOM to specify the entirety of the DOM standard

[65], we expect our work on featherweight subset to extend easily to full DOM core

level 1. We give an photo library example, that shows a typical usage of the DOM li-

brary alongside standard heap reasoning. This shows how structural separation logic

can naturally handle both flat heap and structured data reasoning simultaneously.

Chapter 5 - Promises: A general sharing model for abstract structured data, allowing
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local views of abstract data to retain information about the larger environment.

Structural addresses allow rich data to be split into the sub-data that a command

requires to function correctly, and the rest of the data that a command does not.

However, some libraries use global properties to find local data. For example, paths in

trees are often used to identify the sub-tree on which a command will act. Including

all the global data needed to locate sub-data increases the size of command axioms,

both decreasing the comprehensibility of axioms and limiting concurrency. (as while

data is being used in the footprint of a command, it cannot be used in the footprint

of another thread). To combat these problems, we introduce promises. Promises

allow sub-data that has been abstractly allocated to retain some information about

the context from which it came. For example, an abstract heap cell containing a

sub-tree might use a promise to indicate the path at which the sub-tree can be found

in the complete tree. Here, we examine naturally stable promises, where the facts

given by promises cannot be invalidated by any library command. We examine a

richer notion in chapter 7.

Chapter 6 - The POSIX File System (joint work with Gian Nitzk): A large case

study of specifying and structured data library using structural separation logic and

promises, using a novel sub-set of the POSIX standard.

This chapter uses structural separation logic with promises and obligations to give

a specification to the POSIX file system library. We identify a subset of POSIX

concerned with representing the core file system tree and the commands over it.

From this, we distill Featherweight POSIXFS : a subset of the POSIX file system

specification about which we can formally reason. We design an assertion language

for POSIXFS based upon trees and heaps, and use structural separation logic to

provide axiomatic semantics for our commands. We expect the reasoning we used

for this subset to extend naturally to the entire POSIX file systems specification.

Resources used by the file system library are identified with paths. We use naturally

stable promises to describe sub-data located at the end of paths. This avoids break-

ing the intuitive notion that a command on file f acts only on file f . We illustrate

our approach with an installer example. We prove that a simple software installation

program either successfully installs a package onto a system, or leaves the file system

untouched.

Chapter 7 - Obligations: A richer sharing model for structured data with, allowing a

wider range of libraries to be specified.
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Some useful promises are not naturally stable. For example, the promise that a given

element exists at index n within a list is not naturally stable, as the elements in the

list prefix up to n could be extended or deleted. We extend promises with a sym-

metric notion of obligations. Just as promises provide information about the wider

context of some local data, obligations inhibit certain manipulations of local data to

ensure that promises held by the wider context are true. This allows the library to

include commands that could invalidate promises, as any use such a command will

be guarded by the obligations. We use obligations to reduce the size of our DOM

specifications.

Taken together, our contributions introduce library reasoning for structured data. Our

design for structural separation logic allows it to be easily added to many existing - and

still to be developed - local reasoning systems. Our goal is that that the data assertions

and axioms for a library such as DOM can be easily added to a logic that focuses on a

programming language such a C or Java, enriching it with reasoning for the library with

minimal effort. We obtain a useful separation of concerns, with structural separation logic

focusing on reasoning intuitively about structured data, supported by (and supporting)

the broader program logic to which it has been added.

This thesis provides foundational concepts and examples. Building upon this work, we

intend to give complete axiomatic semantics for the various levels of DOM, and extend

our work on POSIX. We also hope to accelerate reasoning about libraries and languages

that have strong relationships, such as joining our DOM reasoning with the JavaScript

reasoning of Gardner, Maffeis and Smith [34]. This would allow formal reasoning about

web programs in their entirety.

This work will be helped by building on existing separation logic tools. Our abstract

heaps easily act as a superset of the symbolic heaps used by tools such as Verifast [45] and

the line of automated separation logic tools initiated by Smallfoot [7] (such as SpaceInvader

[74] and jStar [25]). We have carried out initial experiments that suggest we can easily

integrate with these systems. Resource reasoning about language features can continue to

be handled by a tool’s normal proof theory. Structured or abstract cells can be handled by

a custom engine for structural separation logic, tailored to the domain of the library being

used. We can thus develop a system that can “plug-in” to existing tools for separation

logic, providing them with easy abstract reasoning for libraries whilst in turn benefiting

from their continued advancement.
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1.2. Technical background

In 1969, Hoare introduced his eponymous Hoare logic [42] for reasoning about imperative

programs. Building on previous work by Floyd [29], Hoare logic is based upon Hoare triples

of the form {P} C {Q}. A triple associates assertions P and Q with a program C, where

P describes the pre-condition and Q the post-condition of the program. These assertions

are first-order logical formulæ that describe the states of the program before and after

execution. The meaning of the triple is that, if program C is run in a state described by P

then, if it successfully terminates, the resulting state will be described by Q. This partial

correctness interpretation says nothing about programs that do not terminate2. Hoare’s

original work did not consider what happens if a program fails, a property of the reasoning

he called “conditional correctness”.

However, using first-order logic as the assertion language proved inadequate for reason-

ing about programs that use heap (or dynamically allocated) memory. This is because

programs with such memory are susceptible to aliasing, where several variables reference

the same piece of memory. With first-order logic, it is difficult to express the effects of

commands, as what might appear to be a simple update confined to one heap cell could

have unbounded effects via aliasing. For example, the assertion x ↪→ 5 ∧ y ↪→ 6 describes a

global state in which the heap cell at x references value 5, and the heap cell at y references

value 6. If a program performs an update to the cell at x, the assertion does not tell us

whether the cell at y will also be updated, as we do not know if x and y are aliases.

A similar problem occurs when describing structures. If the assertion list(l, x) describes

a linked-list l starting at memory address x, then the assertion list(l1, x) ∧ list(l2, y) should

intuitively describe two disjoint lists. However, this is not the case. The assertion does

not rule out sharing between l1 and l2 in memory. Updating list l1 may inadvertently

update some of list l2. Adding anti-aliasing and sharing information proved to be difficult,

and ensured that Hoare-style reasoning about heap-manipulating programs languished for

many years.

1.2.1. Separation logic

In 2001, O’Hearn, Reynolds and Yang introduced separation logic [52], whose assertion

language builds on previous work with the logical of bunched implications [53]. They

extended first-order logic with linear heap cell assertions: the assertion x 7→ 5 describes a

state in which the heap memory cell addressed by variable x contains value 5. They also

2Hoare simultaneously introduced a totally correct interpretation of triples that guarantees termination,
but we will not be using this.
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added the separating conjunction, ∗, which combines heap memory in a disjoint manner.

The assertion x 7→ 5 ∗ y 7→ 6 describes a state in which x references 5, y references 6, and in

which x and y do not refer to the same heap cell. The ∗ enforces this disjointness between

heap resources. As such, a single heap cell assertion x 7→ 5 describes partial heaps, which

may be be extended via ∗. Note that the assertion x 7→ 5 ∗ x 7→ 5 describes no heaps at

all, as it is impossible to have two disjoint heap cells that both have address x.

The original work on separation logic focused on the flat heap (or RAM ) memory

model, a finite partial function between positive integers (acting as “memory addresses”)

and integers in general (acting as “memory values”). These mappings, known as heaps, are

comprised of a set of heap cells. We will make extensive use of diagrams to demonstrate

these heaps. Figure 1.3 shows the heap 1 7→ 2 ∗ 2 7→ 4 ∗ 6 7→ 5, containing addresses 1, 2

and 6 with values 2, 4 and 5 respectively. Any heap can be separated into smaller heaps by

considering it as the union of the smaller heaps. These small heaps can be composed with

the ∗ operator. In the original literature, heap union is described via disjoint function

union notation, t. In keeping with the notation of [22], we overload ∗ to act as function

union at the model level, in addition to its behavior on assertions.

61 2

2 4 5

Figure 1.3.: A simple flat heap with three heap cells.

One typical problem in heap-manipulating programs is the access of cells that are not

allocated. This causes a memory fault, resulting in undefined program behaviour. In

focusing on reasoning about heaps, the authors of separation logic recast the interpretation

of Hoare triples to ensure that any program proven with separation logic had no memory

faults. This fault-avoiding interpretation for a triple {P} C {Q} is that, if program C
is run in a state given by P , it will not encounter a memory fault and, if it terminates, it

will do so in a state described by Q. Soundness of separation logic was originally proven

by O’Hearn and Yang in [75], working with the flat heaps model and a small imperative

language with standard operational semantics.

The combination of this interpretation and the resource disjointness given by ∗ founded

a school of local reasoning for programs. In local reasoning, program proofs are designed

to use the minimum amount of resource needed to show correctness. The behaviours of

primitive commands are given via axioms with pre-conditions describing only the resource
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needed to show that the command does not fault, and its effect on the state. This concept

is known as the footprint of the command, so called because it states what resource the

command “treads on”. Two examples for flat heaps are the allocation of a new heap cell,

and the update of a heap cell to a new value:

{emp} x := alloc {∃X.(X 7→ 0 ∧ x = X)}
{x 7→ X ∧ y = Y} [x] := y {x 7→ Y}

Notice that the allocation pre-condition requires no resource, since creating a new cell

does not alter any others. Changing the value of a heap cell affects only that cell, so

the pre-condition for update does not mention any others. These small axioms can be

extended to account for more memory by adding resource with ∗. As ∗ ensures that the

resource is disjoint, we know that the commands could not have accessed it. The frame

rule exploits this knowledge to add resource to the pre- and post-condition of a triple.

{P} C {Q}
{P ∗R} C {Q ∗R}

If the variables modified by

C are not mentioned in R

The added resource R is known as the frame. Applying the rule is often known as

“framing on” or “framing off” resource (depending on the context). The side-condition

ensures that variables added by a frame cannot be altered by the program, which would be

unsound as the R in the post-condition would not account for the changes. It is possible to

pick R that describes resource already described by the pre-condition. The interpretation

of triples ensures this is still meaningful, as the pre-condition becomes unsatisfiable by

the definition of ∗, and the interpretation is given in terms of states described by the

pre-condition. If the pre-condition describes no states, a Hoare triple is valid, but gives

no information about the program behaviour.

The elegance of the separation logic frame rule and footprint concept has allowed a

flourishing area of automated reasoning tools. By design, each axiom can affect only a

small part of a heap. It is therefore often possible for computers to easily determine the

effect a command has on an assertion, and so automatically either generate a separation

logic proof, or verify an existing one. The first separation logic tool, Smallfoot [7], could

prove properties about simple heap manipulating programs using data abstractions such

as lists and binary trees. Smallfoot’s progeny, tools such as SpaceInvader [74] and jStar

[25] are now capable of automatically verifying that large programs are free of memory

faults, including the majority of the Linux kernel [24]. There has also been extensive work

in proof assistants. One example is Verifast [45] which, when provided with intermediary

“ghost” verification instructions, can prove detailed properties about complex programs,
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such as implementations of electronic identity cards and device drivers.

Concurrency

Concurrent programs contain more than one thread of execution. A typical problem in

concurrent programming with heaps is data races where, for example, two threads access

the same memory simultaneously. This can leave memory in an inconsistent state, or

cause the threads to read invalid data. If we can prove that the code executed by two

threads never accesses the same memory, the program can never encounter a data race.

The separation afforded by ∗ provides exactly the mechanism to do this, and allows the

parallel rule of separation logic. This rule, given below, states that if two programs C1

and C2 can be proven correct via triples {P1} C1 {Q1} and {P2} C2 {Q2}, it is safe to

concurrently execute C1 and C2 in states described by P1 ∗ P2. This type of concurrency

is known as disjoint, as the two threads are given resource separated via ∗.

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 || C2 {Q1 ∗Q2}

If the variables modified by Ci are not

mentioned in Pj or Qj for {i, j} = {1, 2}

This rule was proven sound by Brooks in [12]. However, this method does not allow any

resource sharing using the flat heap model, as we can never pass a heap cell to two threads.

To combat this, Bornat, Calcagno, O’Hearn and Parkinson introduced permission systems

[10]. The most well-known permission system associates a fractional permission with each

heap cell. A permission is a rational number in the (0, 1] interval. Heap cells can then

themselves be separated by dividing the permission into two, and associating each half

with a copy of the cell. This is possible only if π1, π2 ∈ (0, 1], and π1 + π2 ≤ 1:

x
π1+π27−→ v ⇐⇒ x

π17→ v ∗ x π27→ v

Each of these fractional x heap cells can be passed to a different thread. A thread can

update a heap cell if it is contained in its footprint with permission 1. If it has less than

permission 1 it can be read, but never written to. Notice this remains disjoint concurrency,

as the resource passed to the threads is still separated via ∗.

Abstract separation logic

A general framework for program reasoning with separation was not provided until ab-

stract separation logic [17], introduced by Calcagno, O’Hearn and Yang. Resource models
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in abstract separation logic are separation algebras: cancellative, commutative monoids

(H, ∗, u) where H is interpreted as the set of resources and ∗ joins resources. This defini-

tion induces a notion of disjointness between data, in that if h1 ∗h2 is defined then h1 and

h2 are disjoint. Abstract separation logic provides a generalised soundness proof for local

reasoning with separation algebras, and also shows how mixed heaps can be constructed.

By taking the cross-product of two separation algebras, one can create heaps involving

more than one type of resource. The abstract separation logic approach was the ancestor

of several modern formalisms for local reasoning, one of which we will use in this thesis

[22].

One non-flat-heap model that has become common is variables as resource. Intro-

duced by Bornat, Calcagno and Yang in [10], it treats program variables as linear resource

(much like heap cells). This removes the need for the side-condition on the frame and

parallel rules. It also improves the uniformity of models for the logic, which no longer

need to have separate parts for the heap and variable store. However, it increases the

complexity of any axiom that works with variables, and decouples variables from their

natural syntactic scoping. Despite this, we will this system to handle variables through-

out this thesis, as the uniformity allows us to focus on library reasoning by implementing

variables within our structured heaps.

1.2.2. Data abstraction

The assertions of separation logic with flat heaps describe individual allocated memory

cells. Structures, such as lists or binary trees, can be described with inductive predicates.

These predicates provide a representation of the structure using the separation logic mem-

ory model, and are somewhat analogous to “implementing” the structure in a language

like C. One standard list representation is a singly-linked structure. The list predicate

list(α, x) is parameterised by an algebraic list α and the memory location of the first heap

cell of the linked list. Algebraic lists are of the form 1 ⊗ 2 ⊗ 3, with empty lists denoted

∅. The standard definition is given in figure 1.4.

The list predicate describes complete lists (that is, those linked lists that are null ter-

minated). To describe only part of a list, we can use a listseg predicate. The definition of

listseg(α, x, y) below describes part of a singly-linked list carrying the contents of algebraic

list α, starting at address x and ending at address y.
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list(α, x) ,
α = ∅ ∧ x = 0

∨
∃v, β, y. α = v ⊗ β ∧ x 7→ v ∗ (x+ 1) 7→ y ∗ list(β, y)

116 32 4 1071

3 10 4 0 5 6 2 3

Figure 1.4.: The list predicate for a singly-linked list implementation using binary cells.
A diagram of a heap satisfying the predicate list([3⊗ 2⊗ 5⊗ 4], 1) is given
below the predicate definition.

listseg(α, x, y) ,

α = ∅ ∧ x = y

∨
∃v, β, z. α = v ⊗ β ∧ x 7→ v ∗ (x+ 1) 7→ z ∗ listseg(β, z, y)

Programs will often need to gain access to the contents of a structure, such as the indi-

vidual heap cells that contain the elements inside a list(α, x) instance. To achieve this with

inductive predicates requires that they be rolled and unrolled, replacing the body with the

name and vice versa. This rolling and unrolling allows inductive predicates to be separated

into more primitive components. The equivalence ∃y. listseg(α, x, y) ∗ list(β, y) ⇐⇒
list(α⊗ β, x) is justified by unrolling the list instance of figure 1.4, then rolling it back

into a listseg and a list instance. This would allow for example, two threads to process

the same list concurrently (each thread taking half of the list).

Unfortunately, inductive predicates exhibit poor modularity. As the predicate definition

is always available, proofs are tied to the choice of implementation given by the predicate

body. Consider a list library, that provides client code with functions for interacting with

a list. The memory representation of a list should be private to the implementation, so it

can be changed. With inductive predicates, nothing prevents the proof of client code from

unrolling a predicate and becoming dependent on specific library implementation choices.

To combat this loss of modularity, Parkinson and Bierman introduced abstract predicates

[57]. Their theory allows the bodies of predicates to be hidden from parts of a proof. The

Hoare judgement becomes ∆ ` {P} C {Q}, where ∆ is a predicate environment containing

a mapping from predicate names to definitions. When its definition is not in scope, an

abstract predicate becomes a “black box”; essentially, just a name and some parameters.
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The abstract predicate is part of an assertion, but can never be unrolled to give a body.

Proof rules are provided to weaken and strengthen the predicate environment. By having

client proofs operate on weak environments, and using strengthening to add predicate

definitions when entering non-client code, modularity is restored. The library can replace

the definition of the predicate at will and, as long as the predicate signature is unchanged,

existing client proofs are still valid.

Unfortunately, this modularity comes at the price of locality. Without access to the

implementation, an abstract predicate cannot be unrolled into separate components. Re-

call the list in figure 1.4, which we can to obtain a listseg for some prefix of the list.

Were list abstract, clients could not unroll it, and so could not split the list represen-

tation. Whilst it is possible to provide axioms regarding abstract predicates, such as

∃y. listseg([α], x, y) ∗ list([β], y) ⇐⇒ list([α⊗ β], x), each must be justified by appeal to

an implementation. The choice of predicate must have sufficient parameters to allow safe

abstract joining and splitting, which can restrict implementation choices.

We can see an example of this problem by making the list(α, x) and listseg(α, x, y)

predicates abstract. Without the predicate body, clients can only split of lists into smaller

list and listseg instances via axioms. The addresses x and y allow the reconnection of the

split data, and work well for linked lists. However, we can conceive of implementations

for which these parameters are insufficient to allow reconnection. For example, the list

may be backed by a complex structure such a B-tree. In this scenario, splitting a list

involves splitting the tree at the implementation level. Rejoining two split trees would

require significantly more parameters than are present on the predicates.

Fundamentally, this problem arises as the separation model is chosen for language mem-

ory, and not the data model of the abstraction. Facts about the memory model leak across

the abstraction boundary, revealing or limiting implementation choices. Thus, the locality

exhibited by the predicates is always an expression of the locality of the underlying heap.

This problem can be partially mitigated by allowing sharing. The concurrent abstract

predicates of Dinsdale-Young, Dodds, Gardner, Parkinson and Vafeiadis [23], although de-

signed primarily for concurrent programming, enable such sharing. This system augments

the logic with permissions and tokens over shared regions. Shared regions are intuitively

groups of heap cells that are given a name and can be shared between threads. They

behave additively with respect to separation, so that multiple copies of the same shared

region can exist at once (although they all reflect the same underlying heap memory).

To avoid inconsistencies, and ensure that concurrent uses of the regions are safe, access

to shared regions is guarded via tokens. Updates to the region are performed by actions

which are enabled by having certain tokens. The logic guarantees this enforces a sound
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protocol for access to the regions.

Shared regions allow a form of reasoning where the separation at the abstract level

does not match the separation of an implementation. The example given in [19] is a set

module, where the abstract predicates are in(i) and out(i). These predicates allow sets

to be described in terms of which elements are in the set and which are not. They are

separate at the abstract level, allowing assertions of the form in(1) ∗ out(2) ∗ in(3). This

describes a set of numbers which certainly contains 1 and 3, certainly does not contain

2, and about which we have no other knowledge. The implementation of the predicates

in and out can be, e.g. a linked list containing all the elements contained within the set.

The linked list describing the overall set is placed in a shared region, and each predicate is

defined in terms of a copy of it, along with tokens allowing the element corresponding to

the predicate to be removed (in the in case) or added (in the out case). Thus, the predicate

in(1) has a copy of the region and tokens permitting the entry 1 to be removed from the

list. The apparent disjointness at the abstract level is not reflected in the implementation,

something the authors termed a fiction of disjointness.

Even with concurrent abstract predicates, the theory of separation is still fixed. It must

be explained by the underlying language memory model, with the richer separability being

enabled by the sharing. Fictional separation logic by Jensen and Birkedal [46] attempts to

solve this problem in a sequential setting. It allows the assertions of multiple separation

algebras to co-exist in a single proof. The basic triples for fictional separation logic are

of the form I. {P} C {Q}, and carry an implicit parameter of Σ, a separation algebra.

The I is an interpretation map, which takes assertions of the algebra Σ into normal heap

assertions. Libraries expose triples to clients with an existentially quantified separation

algebra and interpretation map. This gives the library author freedom to expose an

interface using a notion of separation appropriate to the module.

This works very well for certain types of abstractions. However, even at the abstract

level, the notion of separation is still a commutative operation. To enable fine-grained

reasoning, the ∗ operation must allow granular data to be isolated. For rich data, finding

a separation algebra that is flexible enough to allow these sub-data to be accessed can be

hard. For example, when working with n-ary trees, one often wants to access a specific

sub-tree as a separate resource. Trying to find a separation algebra that allows this sub-

tree to be separated elegantly, and without disturbing the rest of the tree structure, is

difficult, and is one of the contributions of this thesis.
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Views

Fictional separation logic allows proofs that expose abstractions via a separation model

that is entirely different to that of the standard heap. A similar approach was taken by

Dinsdale-Young, Birkedal, Gardner, Parkinson and Yang in Views [22]. Sub-titled “com-

positional reasoning for concurrent programs”, the views framework provides a general

Hoare-style reasoning system. The key idea of the framework is to split the data represen-

tation in two. The states of the underlying machines are described independently from the

abstract states used for reasoning. These machine states need not be easily separable nor

compositional. Instead, rather than reasoning with machine states, reasoning is performed

on views. It is these views which are compositional, abstract representations of the states,

typically including rich instrumentation.

A view model is a commutative semi-group (Views, ∗), in which every element of Views

is a view. Views compose with ∗, but this composition need only make sense with respect

to the instrumentation being used. Many views represent no machine data at all, instead

representing objects used to enable the reasoning (such as the tokens of CAP). The name

view is apropos, as each object represents a “perspective” on the current states of the

machine along with the current “state” of the program reasoning. A view is converted

to a set of machine states via a reification operation, shown in figure 1.5. Reification

transforms a view into the set of machine states it represents. The reification of view p,

bpc, denotes all the machine states described by the view p.
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Reification

453 2 1 6✽

v + 1vu + 1uw + 1y zx + 1 z + 1 wy + 1x

3 w 4 0 5 y 2 z 1 v 6 0

⎧
⎨
⎩

⎧
⎨
⎩

x, y, z,

w, u, v
∈ 

+

Figure 1.5.: Views uses a two tiered system. The set of views is used to give assertions
describing machine states. In this example, each view is a complete list.
Reification transforms them into sets of machine states, in this case choosing
to represent the abstract lists as singly-linked-lists. Notice the generation of
all possible machine states that represent the abstract structure.
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Views are used as the pre- and post-conditions of Hoare triples. For each axiom, one

must show that the effect of the command is described by the axiom triple, and that the

axiom is stable (that is, does not disturb other resource). Let views p and q be a choice of

pre- and post-condition of some command c, {p} c {q}. The choice is good only if, for

all possible views r, the effect of the command on all states in bp ∗ rc is contained within

bq ∗ rc. The link between triples and commands is thus between the reifications of p and

q when extended by any possible frame r. Locality and compositionality is “baked in” to

the system at every level.

The framework provides a semantic consequence rule that allows a view to be altered.

The semantic consequence p4 q is justified if, no matter what frame view r is chosen, all

the machine states of bp ∗ rc are contained within those of bq ∗ rc. It is informally justified

because, from the perspective of the machine, nothing important has changed; all that

has occurred is a “view shift”. It can be seen as a “ghost update” step, which updates the

in the instrumentation. The check that the containment works under all frames ensures

that these changes do not conflict with instrumentation on possible frames. Semantic

consequence will play a key role in justifying the formalism of abstract heaps in our

structural separation logic.

The views framework can represent many disparate reasoning systems, from the original

separation logic through to complex modern logics for concurrency such as CAP [23],

traditional logics for concurrency such as Rely-Guarantee [47] or Owicki-Gries [55]. It

provides a consistent logical framework in which to setup results and prove soundness.

We will make extensive use of the views framework throughout this thesis.

1.2.3. Context logic

Meanwhile, in 20053, an alternate local reasoning approach for abstract data was being

developed. Encouraged by separation logic, but concerned about fine-grained reasoning for

structured data, Calcagno, Gardner and Zarfaty introduced context logic [15]. Context

logic enables local reasoning with data models that that are abstractions of the data being

manipulated. The memory models are not heaps, but rather representations of lists, trees,

and similar structures.

Contexts are a well known tool in computing theory. There are a variety of types,

several of which have been considered as models for context logics. The first presentation

was single-holed contexts, with typical models being inductively defined data (such as

the algebraic list used in figure 1.4), extended with a single context hole. The separating

3Approximately the same time as abstract predicates were introduced.
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Figure 1.6.: An abstract list [3 ⊗ 2 ⊗ 5 ⊗ 4] decomposed via separating application into
the context [3 ⊗ − ⊗ 4] and sub-list 2 ⊗ 5, representing the entire list as
[3⊗−⊗ 4] ◦ (2⊗ 5).

application operator ◦ allows data to be pulled apart, leaving a context with a hole and

some sub-data, as in figure 1.6.

Using contexts to represent data enables different forms of locality than the separation

concepts seen so far. Most importantly, it is top-down, allowing us to use a data model

that matches the abstraction level of the data it is manipulating. Freed from the need

to provide a *, the separating application can be non-commutative. There is a difference

between a context (which has a hole) and data (which fits in a hole). The relationships

between data and sub-data can be recorded via the context hole, without consideration

for a representation within some machine memory. This is reflected in the frame rule of

context logic, which just adds a context over an entire datum.

{P} C {Q}
{R ◦ P} C {R ◦Q}

If the variables modified by

C are not mentioned in R

Context logic was used by Gardner, Smith, Wheelhouse and Zafarty to give an axiomatic

specification to a subset of the Document Object Model Library Core Level 1 standard

[35, 36]. Smith later extended this subset to the entire standard. The commands of

DOM manipulate a tree structure that is described abstractly. Contexts could give local

footprints to many of the commands, but certain situations (such as appendChild) still

required more resource that would be expected.

Moreover, using single-holed contexts also restricts some types of locality. Context

applications can be nested in an associative fashion, but a single datum cannot contain

more than one hole. The lack of commutatively mean there is no natural analogue of the

parallel rule from separation logic. The first of these problems was addressed by Calcagno,

Dinsdale-Young and Gardner in [14]. They extended the single-holed models to support

multiple labeled holes. These multi-holed contexts were developed for technical results
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Figure 1.7.: Two multi-holed contexts that describe the same list. The separating appli-
cations bind the holes x and y within the lists. Two contexts may use the
same hole as long as composition is unambiguous.

regarding adjoint elimination, but provide for richer splittings of data, as in figure 1.7.

By naming holes, composition gains quazi-commutativity, such that in cases like the top

of figure 1.7 the order of composing 2 and 5 into the larger list is irrelevant. However,

composition is still not commutative. There is a difference between P x Q and Q x P , as

P must have an x hole, but Q need not. Composition remains a notion of “filling holes”,

with holes in contexts bound by the composition operation, so that the bottom result of

figure 1.7 is allowable.

Multi-holed contexts allow data analysis at a finer level than single-holed. Consider a

command appendChild(p, c), acting on a tree. It moves the sub-tree with top node c

to be the last child of node p.

c

p p

c

appendChild(p, c)

Figure 1.8.: The action of the command appendChild(p, c).
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This command can fail, in a manner analogous to a memory fault, if the node identified

by p or c does not exist in a tree. However, even assuming that both nodes exist in a tree,

this command can still fail if the node c is an ancestor of node p. Were this possible, it

would create a “tree’ where c is a sub-tree of itself.

To axiomatise this command, we need to describe the two safe cases: one where the

node p is an ancestor of the node c, and one where the two nodes have no parent/child

relationship. To capture the two cases using contexts, we must find a single splitting of

the data that describes both. Such a case can be found by taking a covering context : one

that captures the smallest tree containing both p and c. This allows the pre-condition to

be expressed as (C x p[t]) y c[t′], one case of which is below. This would not be possible

with single-holed contexts, as one possible splitting here is that C contains both the x and

y hole.

c

   C

y

p y

Figure 1.9.: To give a single description of the states safe for appendChild(p, c) with
multi-holed contexts, a covering context must be used to capture the entire
sub-tree containing both node p and c. In this case, the covering context C
is for the case where c is not a child of p.

Multi-holed contexts still have limitations. The axiom for the pre-condition of

appendChild would ideally be in terms of the node at p and the sub-tree at c. The

covering context is not touched by the command, but must be in the footprint due to the

nature of contexts. Moreover, the concurrency rule is still inapplicable. These problems

occur because of the non-commutative nature of separating application, which acts as a

binder to the multi-holed context to its left.

1.3. Introducing structural separation logic

We now give a high-level introduction to the concepts of structural separation logic,

the main technical contribution of this thesis. Structural separation logic fuses the natural
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Figure 1.10.: A structured heap, with regular heap cells at addresses 1, 2 and 6, and a list
heap cell at address L containing the list [3⊗ 2⊗ 5⊗ 3].

heap reasoning of separation logic with the natural abstract reasoning of contexts, and

does so without complicating assertions with additional machinery. Contexts and heap

cells are freely mixed in assertions, and are connected with a standard associative and

commutative ∗ conjunction. Abstract and flat heap data can be reasoned about using the

same techniques. We can give tighter axioms to library specifications and more compact

proofs of code that use them.

We achieve this by working with structured heaps at the operational level, and abstract

heaps at the reasoning level. Structured heaps allow us to avoid considering the imple-

mentation of data structures. They are similar to the flat heaps of separation logic but,

rather than consisting of heap cells with simple values like integers, are of a mix of cells

storing flat and rich values. For example, alongside standard values, a cell can contain an

entire list (see figure 1.10).

A model of imperative machines is given that treats these structured cells like any other

memory. Commands reference the data by address, and perform imperative update within

the structured value, changing it atomically from one structured datum to another. The

use of rich values is optional, so that structured heaps behave as standard heaps if needed.

A key contribution is a reasoning model for structured data using abstract heaps and

structural addresses. Abstract heaps are like structured heaps, but contain abstract heap

cells storing sub-data from within some structure. Structural addresses enable this in two

ways. Firstly, data can contain a structural body address, giving a location in which sub-

data can be applied. Secondly, abstract heaps cells are addressed via a structural abstract

address, linking the sub-data to the body address from which it came. Abstract heap cells

are created by abstractly allocating sub-data from within some structure into a freshly

addressed abstract cell. They can be destroyed by abstractly deallocating an abstract cell
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Figure 1.11.: An abstract heap, where the sub-list 2 ⊗ 5 has been abstractly allocated at
structural address x

back into the matching body address. In figure 1.11, the list of figure 1.10 on the preceding

page has been split by abstract allocation to create a new abstract heap cell at address x.

When this heap cell is no longer needed, it will be deallocated, restoring the complete list.

In the reasoning, abstract heap cells allow sub-data to be treated exactly like any other

heap cell. When needed, a rule within the proof theory performs the “allocation”. Axioms

for commands on structured data then work with the smallest abstract heap cells that

contain their footprint. Once the operation is complete, abstract deallocation removes the

abstract cell, and recombines the data. Abstract allocation and deallocation are performed

by directly updating the assertions, and do not requiring additional machinery in the

assertion language.

Such updates to the model are enabled by our adoption of the views framework [22].

As discussed in section 1.2.2, views provides us with local and compositional reasoning.

However, the key facility the framework gives us is reification, and with that, semantic

consequence. Reification allows the abstract heaps we use for Hoare reasoning to be

interpreted as structured heaps. Reification removes abstract heap cells and collapses the

data they contain back into the corresponding body address. Moreover, it also handles

partial abstract heaps. It is possible to construct abstract heaps that are missing the

abstract heap cells needed to represent complete data. Reification provides these by

completing the data in every possible way. Our use of reification is illustrated in figure

1.12.

The semantic consequence relation of views enables abstract allocation and deallocation.

Note that our structural addresses are a form of instrumentation on heaps. By designing

these addresses so that two abstract heaps reify to the same structured heaps if they differ

only by uses of abstract allocation and deallocation, we can update the splitting of the

heap using only semantic consequence steps.
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Figure 1.12.: If all abstract heap cells are present, reification rejoins them. Abstract heaps
are also completed in all possible ways, to account for possible missing data.
The results are thus sets of machine heaps.
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There has been previous work with similar goals to structural separation logic. Wheel-

house’s segment logic [38, 70] restored an associative ∗ operation to working with contexts.

He achieved this by splitting data into a set of segments, where each segment was either

rooted or labelled with a context hole. Models of assertions were sets of segments, which

were separated by ∗. These models are somewhat similar to the abstract heaps of struc-

tural separation logic.

Unfortunately, reasoning with segment logic can be somewhat cumbersome. The struc-

ture of the models was not simple heaps, but rather segment algebras. To ensure ∗ was as-

sociative, binders had to be introduced into assertions, so that a segment L 7→ [3⊗2⊗5⊗4]

could not directly be represented as L 7→ [3 ⊗ α ⊗ 5 ⊗ 4] ∗ α 7→ 2. Instead, reve-

lation (from the ambient calculus [18]) and freshness quantification was used, so that

L 7→ [3 ⊗ 2 ⊗ 5 ⊗ 4] = Nα. α R (L 7→ [3 ⊗ α ⊗ 5 ⊗ 4] ∗ α 7→ 2). By adding these to the

assertion language, new rules were needed in the reasoning to manage them.

The combination of these bindings, and the non-heap model, means that the local

reasoning provided by segment logic comes with rather a lot of baggage. With the advent

of the views philosophy, the key ideas behind segment logic were refined, and formed

the genesis of structural separation logic. The key advantages and disadvantages of each

techniques reflect the technology available at their creation.

The design of structural and abstract heaps allows several data models to be combined

together. Normal “low-level” separation logic reasoning can be performed alongside the

use of a library representing, e.g. lists. Moreover, as the complexity of the reasoning

is hidden behind reification operations, the assertion language remains simple. Abstract

allocation and deallocation occur via a proof rule, justified by the properties of reifica-

tion. These results mean that structural separation logic axioms for a library could easily

be added to most other separation logic reasoning systems, from the original work of

O’Hearn [63], through Parkinson’s separation logic for Java [56] and even Smith’s work on

JavaScript [34]. The theory “bolts on” the side, giving extra expressively with minimal

effort. We also expect that integration with tools such as Verifast [45] and JStar [25] will

be straightforward. Our abstract heaps can exist alongside the symbolic heaps used by

the tools, so as we develop automation for structural separation logic, we can extend and

cooperate with the development of automation in separation logic.
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2. A reasoning framework

This chapter presents a local reasoning framework for programs that manipulate structured

heaps, providing a foundation for the rest of this thesis. Like a standard heap, a structured

heap associates addresses with values. Unlike a standard heap, the values can have rich

structure. In the below example, the addresses x, y, z, 1 and 3 map to to simple flat values,

but the addresses L and M map to complete lists and R maps to a complete tree.
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Our framework gives reasoning for imperative machines. Imperative machines provide a

model for programming built from structured heaps, a concurrent programming language,

and an operational semantics. They formalise structured heaps as sets of addressed values.

Their definition is flexible, allowing many types of addresses, values and commands to be

used. This enables the representation of programming libraries.

We give a program reasoning system based on instrumented structured heaps. Like struc-

tured heaps, these are formed of addresses and values, but are decorated with additional

instrumentation to facilitate reasoning. Instrumented states are collected into sets called

views, which can be converted into sets of structured heaps by a process of reification. This

reification interprets the instrumentation, and allows views to represent possible states at

each point in program execution. The views used by us are those of the Views framework

[22], discussed in section 1.2.2. They allow us to build a semantic reasoning system, and

construct Hoare triples that specify interesting program properties. We extend the work

of [22] with a syntactic assertion language that describes views, and can be used as the

pre- and post-conditions of a local Hoare calculus.
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To aid understanding, the examples are designed to link our framework to well known

local reasoning techniques. We show how to reason about programs manipulating variables

as resource, flat heaps, and resource with permissions. Variables as resource is a commonly

used technique for managing variables in separation logic style proofs [11]. Our term flat

heaps refers to the original work on separation logic [63]. Augmenting resources with

fractional permissions [10] has become a standard method for reasoning about shared

resource. The full generality of our framework will be used to in upcoming chapters.

We will not use the full generality of structured heaps in this chapter, focusing on

introducing the concepts of the framework via flat heaps. The purpose of this thesis is

to extend the reasoning about these well understood heaps to reasoning about libraries

that manipulate highly structured data. We will only hint at these uses here, but in

future chapters, structured heaps will allow us to give imperative machines that directly

manipulate this rich data. We will use them as the basis of structural separation logic in

chapter 3, DOM in chapter 4 and POSIX file-systems in chapter 6. The reasoning system

and soundness proofs presented here will be reused without change on these more complex

values.

2.1. Imperative machines

Imperative machines are abstract computational systems consisting of three parts: a state,

a program, and an operational semantics. Their definition is parametric in several places,

allowing different types of addresses and values to be used.

2.1.1. Structured heaps

Our imperative machines have state. These states are structured heaps, in which data is

represented by addressed values.

Parameter 1 (Machine addresses and values). Assume a non-empty countable set

of machine addresses MachineAddrs, ranged over by a, a1, · · · , an. Assume

also a non-empty countable set of machine values MachineVals, ranged over by

v, v1, · · · , vn.

Neither the set of addresses nor values need be infinite. There also need be no relation-

ship between the sets MachineAddrs and MachineVals.
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Example 1 (Machine addresses and values). The following are some example choices

for machine addresses and values.

Program variables: Let MachineAddrs be a set of program variable names, and

MachineVals be the integers Z and booleans {true, false}. This is one

choice of addresses and values for program variables (e.g. x = 5). Notice that

MachineAddrs 6⊂ MachineVals, as we do not store variable names within

variables, nor do we consider integers or booleans as variable names. This rela-

tionship is different from separation logic, where addresses are contained within

values.

Flat heaps: Let MachineAddrs = N+, and MachineVals = N. These choices

are suitable for flat heaps, the style of model used in the original separation

logic papers [63]. Notice both that MachineAddrs is infinite in size, and that

MachineVals ⊂MachineAddrs.

Trees: Let MachineAddrs = {>} (a single address), and MachineVals be a set

of trees. If the tree nodes have distinct identifiers, are given names, and have

arbitrarily many children, then they are suitable for constructing DOM trees.

If tree nodes have no identifiers, but have names distinct between siblings and

arbitrarily many children, then these choices are suitable for a simple file-system

directory structure. We will investigate systems of these types in chapters 4 and

6 respectively.

Flat heap and variables: We can combine multiple address/value choices together.

For example, MachineAddrs could be variable names and the natural num-

bers. The set MachineVals would then be Z ∪ {true, false}. This gives us a

single heap which can store both variables and flat values. We refer to these as

primitive heaps, and they will be our primary example in this chapter.

Addresses and values are paired together to form heap cells. The state of an imperative

machine is a set of heap cells, where each address unique. We call this a structured heap,

or just heap if the context is clear. We will often give diagrams to structured heaps. An

example for primitive heaps is given in figure 2.1.

It is sometimes convenient to prevent heaps from containing certain heap cells. One

example of this is a type system for variables, where some variables must store values

of a certain type. Another is when combing two sets of addresses, as in the primitive
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571x y 4

1 5 5 04 7

Figure 2.1.: Example rendering of a primitive heap, containing variable heap cells x 7→ 1
and y 7→ 5 and flat heap cells 1 7→ 4, 4 7→ 7, 7 7→ 5 and 5 7→ 0.

heaps above, where we want to ensure that flat heap cells only contain values from N.

The definition of structured heaps accounts for these possibilities by being a subset of all

definable structured heaps.

Parameter 2 (Structured heaps). Given a set of machine addresses MachineAddrs

and machine values MachineVals (parameter 1), assume a set of structured heaps

StructHeaps, ranged over by s1, · · · , sn, with type:

StructHeaps ⊆ {s | s : MachineAddrs
fin
⇀MachineVals}

Imperative machines allow programs that cause machines to “go wrong”. The notion

of “wrong” is situation specific, but is a common feature of languages and machines. For

example, the commands of the flat heap example will “go wrong” when instructed to

access an address not present in the structured heap. The singleton heap 5 7→ 3 contains

no 4 address. When the command x := [4] is run, it will try to access address 4, and

fail. Another example is the DOM tree library. Each DOM node in the tree has a unique

identifier. Attempting to access an identifier not present in the tree will fail.

Whenever a machine attempts to perform an impossible operation, it enters a fault

state. A choice of commands may have several ways of faulting. For example, DOM

commands will also fail if instructed to create a node with a name containing certain

reserved characters. We are not interested in the specific modes of failure, so there is only

one fault state.

Definition 1 (Fault state). Given a set of structured heaps StructHeaps (param-

eter 2), let  be the single fault state, where  6∈ StructHeaps.

Structured heaps plus the fault state form the set of outcome states, representing the

final result of a program.
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Definition 2 (Outcome states). Given a set of structured heaps StructHeaps (pa-

rameter 2) and a fault state  (definition 1), the set of outcome states is defined

as:

Outcomes , StructHeaps ∪ { }

Our examples will almost all use program variables. We define a simple set of variables

and values.

Definition 3 (Program variables). Assume a set of program variables PVars =

{x, y, z, a, i, foo, · · · }. Assume also a set of program values PVals = Z∪{true, false}.

Example 2 (Variables as resource). By selecting the machine addresses and values

(parameter 1) as PVars and PVals respectively, we can define the structured heaps

(parameter 2) for variables as resource [11] as:

StructHeaps , {s | s : PVars
fin
⇀ PVals}

Example 3 (Flat heaps). To model flat heaps, select MachineAddrs = N+ and

MachineVals = N. The structured heaps are:

StructHeaps , {s | s : N+ fin
⇀ N}

Example 4 (Primitive heaps). Flat heaps alone are not useful, as programs cannot

reference heap addresses. It is standard to use program variables to store these ad-

dresses. We thus combine the variable store and flat heap examples, calling the result

primitive heaps.

We use program variables and values from definition 3, and so let

MachineAddrs = PVars ∪ N+, and MachineVals = PVals (recalling that

Z ⊂ PVals). The heap definition is:
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StructHeaps ,

{
s

s : PVars ∪ N+ fin
⇀ PVals,

∀a ∈ dom(s). a ∈ N+ =⇒ s(a) ∈ N

}
Notice that flat heap addresses are only associated with natural numbers, preventing

heaps from mapping flat heap addresses to negative numbers or booleans.

Comment 1. In many presentations of similar work, machine states are often split

in two, with the heap and variable store being different. Heaps are treated as linear

resource, variables as “pure” facts. I will use only linear resource, adopting the vari-

ables as resource approach from [11]. This allows the imperative machine states to

be of a uniform type, and so simplifies the reasoning. It is possible to use a separate

variable store with the work in this thesis but, as handling variables is orthogonal to

my library reasoning programme, I opt for presentational simplicity.

2.1.2. Programming language

Imperative machines programs are written using a simple concurrent WHILE language.

Programs consist of basic operations (the atomic commands and skip), flow control con-

structs (sequencing, conditional choice and looping), and parallel composition.

Definition 4 (Basic programming language). The programs of the basic program-

ming language Programs, ranged over by C,C1, · · · ,Cn, are defined by induction as

follows: for all b in BoolExprs and c ∈ AtomicCmds (to be given by parameters

3 and 5 respectively)

C ::= c Atomic Commands

| skip No operation

| C1; C2 Sequencing

| if (b) C1 else C2 Conditional choice

| while (b) C Conditional loop

| C1 || C2 Parallel composition

The if and while commands are parametrised by boolean expressions. These expres-

sions are evaluated to determine which branch of a conditional choice to take, and to
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guard loops. In most situations, the boolean expressions will be a subset of some richer

expression language. However, we only mandate the existence of boolean expressions, as

they are all we need to give an operational semantics to the language.

Parameter 3 (Boolean expressions). Assume a set of boolean expressions

BoolExprs, ranged over by b1, · · · ,bn.

A boolean expression is evaluated on a structured heap, resulting in a boolean truth

value or a fault. Faults indicate a failure of evaluation. The heaps in which boolean

expression evaluation faults are dependent on the choice of expression language. Typical

reasons for faulting are an expression referencing an unassigned variable or type errors

such as performing arithmetic on strings but, as discussed, we consider them all be a

single fault type. We make the assumption that expression evaluation never alters the

state, and is deterministic.

Parameter 4 (Boolean expression evaluation). Given a set of boolean expres-

sions BoolExprs (parameter 3) and structured heaps StructHeaps (parameter

2), assume a boolean expression evaluation function [[·]](·) : BoolExprs →
StructHeaps→ {true, false, }. The evaluation of boolean expression b in state s

is written as [[b]](s).

Example 5 (Expressions for primitive heaps). We define boolean expressions for

our primitive heap example in terms of basic expressions. Basic expressions are

either a variable lookup (e.g. x), a literal value (e.g. true or 5), or the sum of two

other expressions. Formally, the basic program expressions Exprs, ranged over

by e, e1, · · · , en, are defined inductively as: for all x ∈ PVars, v ∈ PVals

e ::= v Literal value

| x Program variable

| e1 + e2 Integer sum

Literal value expressions evaluate to the literal itself. The evaluation of a program

variable expression just looks up the variable in the heap, and faults if it is not present.

Integer sums evaluate to the summation of evaluating the operands (faulting if the

results are not integers). Formally, using the expressions Exprs, primitive heaps
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StructHeaps (example 4) and program values PVals (example 2), the evaluation

function for basic expressions ([·])(·) : Exprs → StructHeaps → PVals ∪ { } is

defined as:

([v])(s) , v

([x])(s) ,

s(x) if x ∈ dom(s)

 otherwise

([e1 + e2])(s) ,

([e1])(s) + ([e2])(s) if ([e1])(s), ([e2])(s) ∈ Z

 otherwise

Boolean expressions are then defined in terms of these basic expressions. The

primitive boolean expression is just a basic expression, which will evaluate to fault

unless the basic expression evaluates to a boolean value. The others are standard,

but note that equality comparison is between boolean expressions rather than basic

expressions. This allows programs to include idiomatic boolean expressions like ¬b =

true. Formally, using the expressions Exprs, the boolean expressions for primitive

heaps, BoolExprs, are defined inductively as: for all e, e1, e2 ∈ Exprs

b ::= | e Basic expression

| ¬b Negation

| b1 = b2 Equality

| e1 < e2 Inequality

The evaluation for the boolean expressions is standard. Type checking is performed,

with faults occurring when the types are incorrect. Formally, the evaluation function

for boolean expressions [[·]](·) : BoolExprs → StructHeaps → {true, false, } is

defined as:
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[[e]](s) ,

([e])(s) if ([e])(s) ∈ {true, false}

 otherwise

[[¬b]](s) ,

¬[[b]](s) if [[b]](s) ∈ {true, false}

 otherwise

[[b1 = b2]](s) ,

[[b1]](s) = [[b2]](s) if [[b1]](s), [[b2]](s) 6=  

 otherwise

[[e1 < e2]](s) ,

([e1])(s) < ([e2])(s) if ([e1])(s), ([e2])(s) ∈ Z

 otherwise

The basic programming language of definition 4 is also parameterised by atomic com-

mands. These commands mutate the heaps, and are atomic as they do so in an in-

stantaneous and uninterruptible fashion. Command choices range from simple variable

assignment, through heap cell allocation and deallocation (in flat heaps), to commands

found in complex libraries such as DOM and POSIX.

Parameter 5 (Atomic commands). Assume a set of atomic commands

AtomicCmds, ranged over by c,c1, · · · ,cn.

Each atomic command is associated with an action that defines its behaviour. An action

is a total function, transforming input heaps into sets of output heaps. Commands can

thus be non-deterministic.

Parameter 6 (Atomic command actions). Given a set of outcome states (definition

2), for each atomic command c ∈ AtomicCmds (parameter 5), assume an atomic

command action [〈c〉](·) : StructHeaps→ P(Outcomes).

It is occasionally desirable that some commands do not fault, yet never terminate when

executed in a state (for example, concurrency primitives such as lock). This is modeled

by taking the atomic action in such states to be the empty set.

Example 6 (Commands and actions for primitive heaps). We give a standard set of

commands for interacting with flat heaps and variables: assignments of expressions

48



to variables; allocation and deallocation of flat heap cells; assignment to flat heap

cells; and the dereferencing of flat heap cells. Formally, given program variables

PVars (definition 3) and expressions Exprs (example 5), the commands are: for all

x ∈ PVars and e, e1, e2 ∈ Exprs

x := e Variable assignment

x := alloc() Cell allocation

free(e) Cell deallocation

[e1] := e2 Cell update

x := [e] Cell dereference

Given that f [d 7→ c] denotes a function that behaves as f , except that d maps

to c, the atomic command actions for the commands are: for all x ∈ PVars and

e, e1, e2 ∈ Exprs

[〈x := e〉](s) ,

{s[x 7→ ([e])(s)]} if ([e])(s) 6=  

{ } otherwise

[〈x := alloc()〉](s) , {s[x 7→ i, i 7→ v] | i ∈ (N+ \ dom(s)), v ∈ N}

[〈free(e)〉](s) ,

{s�dom(s)\{([e])(s)} if ([e])(s) ∈ dom(s)

{ } otherwise

[〈[e1] := e2〉](s) ,


{s[([e1])(s) 7→ ([e2])(s)]} if

([e1])(s) ∈ dom(s),

([e2])(s) 6=  

{ } otherwise

[〈x := [e]〉](s) ,

{s[x 7→ s(([e])(s))]} if ([e])(s) ∈ dom(s)

{ } otherwise

The assignment action is terminating and deterministic (as expression evaluation

is deterministic). Faults in evaluating the expression become faults of the command

action.

The action for allocation adds a new cell to the heap at a fresh address. This address

is assigned to the variable, and is chosen non-deterministically from those not already

used by the heap. As there are infinitely many addresses to pick (recall the heap

domain is N+), this command never faults. The contents of the new heap cell is also
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non-deterministically selected from all possible values. This models the behaviour of

heap cell allocation in a ‘C’-like language that has no memory constraints.

The deallocation action removes a cell from the heap. This command can fault if

the evaluation of the expression does, or if the contents are not the address of a heap

cell. It is deterministic. Similarly, the cell update command alters the contents of a

heap cell referenced by an expression. If either expression faults, or the first expression

does not reference a flat heap cell, the command faults. The cell dereference action

is similar to normal variable assignment, but looks up the result of evaluating the

expression in the heap. We could provide an expression for heap cell dereference,

but instead use a command. This will simplify reasoning about commands that use

expression evaluation.

2.1.3. Operational semantics

We give the meaning of programs via an operational semantics. Our semantics defines a

small-step transition system, relating pairs of programs and structured heaps to triples

of action labels, continuation programs and outcomes. The action label indicates what

interactions a step may have with the structured heap. These actions will form a trace

which, along with the heap at each step, can be seen as the meaning of a program. As

in [12], these trace semantics are necessary to provide program reasoning for the parallel

composition rule. Moreover, by associating actions with each step taken during evaluation,

the soundness of the reasoning will be easier to prove.

Definition 5 (Action labels). Given a set of boolean expression BoolExprs (param-

eter 3) and atomic commands AtomicCmds (parameter 5), the set of action labels

ActionLbls, ranged over by α, α1, · · · , αn, consists of labels for: the identity action;

the action of evaluation for each boolean expression to either true, false or fault; and

the action of each atomic command:

ActionLbls ,

Label denotes. . .

{id} no interaction with heap

∪ {E>(b) | b ∈ BoolExprs} evaluation of b on heap, resulting in true

∪ {E⊥(b) | b ∈ BoolExprs} evaluation of b on heap, resulting in false

∪ {E (b) | b ∈ BoolExprs} evaluation of b on heap, resulting in fault

∪ {A(c) | c ∈ AtomicCmds} execution of atomic command c on heap
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The use of different labels for the outcome of evaluating boolean expressions will ease

the proof when showing soundness of the if and while rules in our reasoning system.

With these labels, we can define the single-step transition relation for our operational

semantics. It represents one “computation step” of an imperative machine.

Definition 6 (Single-step labelled transition relation). Given programs Programs

(definition 4), structured heaps StructHeaps (parameter 2), atomic command ac-

tions [〈c〉](·) (parameter 6), action labels ActionLbls (definition 5), and outcome

states Outcomes (definition 2), the labelled single-step transition relation

−→ ⊂ (Programs×StructHeaps)× (ActionLbls×Programs×Outcomes),

with elements ((C1, s1), (α,C2, s2)) ∈−→ written C1, s1
α−→ C2, s2, is defined by the

following rules:

Atomic command:

so ∈ [〈c〉](s)

c, s
A(c)−→ skip, so

Seq skip:

(skip; C), s
id−→ C, s

Seq reduce:

C1, s
α−→ C′1, so

(C1; C2), s
α−→ (C′1; C2), so

If true:

[[b]](s) = true

if (b) C1 else C2, s
E>(b)−→ C1, s

If false:

[[b]](s) = false

if (b) C1 else C2, s
E⊥(b)−→ C2, s

If fault:

[[b]](s) =  

if (b) C1 else C2, s
E (b)
−→ skip, 

While true:

[[b]](s) = true

while (b) C1, s
E>(b)−→ (C1; while (b) C1), s

While false:

[[b]](s) = false

while (b) C1, s
E⊥(b)−→ skip, s

While fault:

[[b]](s) =  

while (b) C1, s
E (b)
−→ skip, 
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Par left reduce:

C1, s
α−→ C′1, so

(C1 || C2)
α−→ (C′1 || C2), so

Par right reduce:

C2, s
α−→ C′2, so

(C1 || C2)
α−→ (C1 || C′2), so

Par left skip:

(skip || C), s
id−→ C, s

Par right skip:

(C || skip), s
id−→ C, s

There is no transition for the program skip. This program is considered to be

completely executed, and to have terminated.

Via the small-step transition relation, we define a multi-step program evaluation rela-

tion which takes programs through many small-steps to a final outcome. It is effectively

the reflexive, transitive closure of the single-step evaluation relation, but checks that the

outcome of each step is not fault before taking another. If any step does produce fault,

the multi-step evaluation relation immediately relates the program to fault.

Definition 7 (Multi-step program evaluation relation). Given programs Programs

(definition 4), structured heaps StructHeaps (parameter 2) outcome states

Outcomes (definition 2), and the labelled single-step transition relation (defi-

nition 6), the multi-step program evaluation relation  ⊂ (Programs ×
StructHeaps) × Outcomes, with elements ((C, s), so) ∈ written C, s  so, is

defined by the following rules:

C, s α−→ C′, so so ∈ StructHeaps C′, so  so
′

C, s so
′

skip, s s

C, s α−→ C′, 
C, s  

Notice not all programs will have an outcome in the multi-step evaluation; specifically,

programs with infinite loops never reduce to an outcome. However, programs that fault

always have an outcome, as they immediately reduce to the fault state. Programs therefore

do one of three things: diverge, never terminating nor faulting; terminate, ending with

some structured heap; or fault, failing somehow. We call the process of a machine applying

the transition rules program execution (or running a program).
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By examining the transition labels on each step used in the multi-step evaluation, we can

see a program execution as a trace of interactions with the heap. Every label indicates ei-

ther no interaction (the id label), an interaction that does not update the heap (evaluating

a boolean expression, the E labels), or arbitrary update (performing an atomic command,

A(c)). As programs may not terminate, traces need not be finite. Each program can be

associated with many traces due to command non-determinism.

Example 7 (Traces). The simple program x := 1; y := 2 has the trace

A(x := 1),A(y := 2), indicating the two actions on the heap are per-

formed in order. The program while (true) skip has the infinite trace

E>(true), id, E>(true), id, E>(true), id, · · · . By examining the literal expression

true, it is evident no heap access is performed. The program x := 1 || y := 2

has the two possible traces A(x := 1),A(y := 2) and A(y := 2),A(x := 1), be-

cause parallel composition interleaves evaluation in a non-deterministic order.

2.2. Abstracting program states

We now turn to reasoning about imperative machines, providing local reasoning in the

style of separation logic. To give pre- and post-conditions for programs, we first build

an abstract representation of structured heaps. These are sets of instrumented structured

heaps. The types of instrumentation depend on the goals of the reasoning being performed.

Many separation logics (e.g. [63]) require no instrumentation. However, concurrent sepa-

ration logic benefits from fractional permissions - rational numbers associated with values

indicating ownership. In chapter 3, we will use rich instrumentation to enable us to split

abstract structured data.

2.2.1. Instrumented structured heaps

Structured heaps provide the state of imperative machines. We now define instrumented

structured heaps. Sets of these can informally be seen as the “states” of the program

reasoning, and will be used to abstract the possible states of an imperative machine.

These sets will provide the pre- and post-condition triples of our Hoare logic. A single

instrumented structured heap consists of instrumented addresses mapping to instrumented

values.
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Parameter 7 (Instrumented addresses and values). Assume a set of instrumented

addresses InstAddrs, ranged over by a,a1, · · · ,an. Assume also a set of instru-

mented values InstVals, ranged over by v,v1, · · · ,vn.

Parameter 8 (Instrumented structured heaps). Given sets of instrumented addresses

InstAddrs and values InstVals (parameter 7), assume a set of instrumented

structured heaps InstHeaps, ranged over by s, s1, · · · , sn, with type:

InstHeaps ⊆ {s | s : InstAddrs
fin
⇀ InstVals}

Define also the empty instrumented structured heap 0s as the function with

empty domain and co-domain, 0s , {} 7→ {}.

Example 8 (Instrumented primitive heaps). Primitive heaps (example 4) can be

used without any instrumentation, as in the original separation logic work [52]. The

structured heaps used for the reasoning are therefore identical to the structured heaps

used by the machine. Let InstAddrs = PVars ∪ N+, and InstVals = PVals, and

define the instrumented structured heaps as:

InstHeaps ,

{
s

s : PVars ∪ N+ fin
⇀ PVals,

∀a ∈ dom(s). a ∈ N+ =⇒ s(a) ∈ N

}

Example 9 (Primitive heaps with fractional permissions). Recall the fractional

permissions introduced in section 1.2.1. We can create instrumented structured

heaps that use these permissions by pairing values with some π ∈ (0, 1]. Let

InstAddrs = PVars∪N+ as in example 8, but now define InstVals = PVals×Q.

The instrumented structured heaps become:

InstHeaps ,

{
s

s : InstAddrs
fin
⇀ InstVals,

∀a ∈ dom(s). a ∈ N+ =⇒ (s(a)↓1∈ N ∧ s(a)↓2∈ (0, 1])

}
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This definition mirrors that of the heaps for normal primitive heaps but checks that

each fraction associated with the flat heap cells is in the range (0, 1].

An instrumented heap can be reified into a set of structured heaps. Reification gives

an interpretation of the instrumented heap, typically based upon the instrumentation it

is using. There are no constraints a reification function. The choice endows a meaning

or interpretation to instrumented heaps, which will later define the kinds of properties

we can prove. We first define primitive reification, which works on a single instrumented

heap. Full reification will be defined on sets of heaps as the pointwise lift of this function.

Parameter 9 (Primitive reification function). Given instrumented heaps InstHeaps

(parameter 8) and structured heaps StructHeaps (parameter 2), assume a primi-

tive reification function T·U : InstHeaps→ P(StructHeaps).

Notice that primitive reification does not generate outcome states, only structured

heaps. Thus, the reification of an instrumented heap never includes the fault state. This

fault avoiding reification ensures that the machine states described by instrumented heaps

are always useful.

The behaviour of primitive reification is dependent on both the instrumentation asso-

ciated with heaps, and what the user of this framework wishes the abstraction to mean.

Sometimes, as in the primitive heap case (example 4), we need no instrumentation. In

this case, reification will be simple.

Example 10 (Reification for primitive heaps). The instrumented primitive heaps of

example 8 have no instrumentation. Pick the structured heaps as those of 4, and then

select the primitive reification function as TsU = {s}.

As the reification function is a free choice, we can create quite different interpretations

of the same underlying instrumented heaps.

Example 11 (Alternative reification for primitive heaps). An alternative choice of

primitive reification for primitive heaps interprets the instrumented heap as every

primitive structured heap which is consistent with the data in the instrumented heap:

TsU = {s ∈ StructHeaps | ∀a ∈ dom(s). s(a) = s(a)}
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Here, the instrumented heap {1 7→ 5} primitively reifies to every heap in which

1 addresses value 5. We will see how the choice of primitive reification in example

10 generates program reasoning similar to classical separation logic. This alternative

choice generates reasoning similar to intuitionistic separation logic. For the rest of

this chapter, we will work with the first choice unless otherwise stated.

Often, instrumentation must be removed to generate machine heaps, as in the case of

the fractional permissions (example 9).

Example 12 (Reification for primitive heaps with fractional permissions). Fractional

permissions are used purely to facilitate reasoning correctness. They have no bearing

on the underlying structured heaps, so we pick a primitive reification function that

just erases the permission:

TsU = λa. s(a)↓1

Instrumented heaps can describe partial machine states. For example, the instrumented

heap x
0.5→ 1 (example 9) describes only half permission on a heap cell, implying that the

other half is missing. It is thus natural to compose instrumented heaps. To this end, we

introduce primitive instrumented heap composition, allowing two instrumented heaps to

be joined. Full composition will be the pointwise lift of this to sets of instrumented heaps.

Parameter 10 (Primitive instrumented heap composition). Given instrumented

heaps InstHeaps with their unit 0s (parameter 8), assume a primitive instru-

mented heap composition operator:

� : InstHeaps→ InstHeaps⇀ InstHeaps

where the operator is associative and commutative with unit 0s. That is, for

all s, s1, s2, s3 ∈ InstHeaps (s1 � s2)� s3 = s1 �(s2 � s3), s1 � s2 = s2 � s1 and

s�0s = s.

The choice of primitive composition function depends on the instrumentation being

used. Indeed, a key use of instrumentation is to restrict the set of valid compositions.

In the separation logic example (example 17), a good choice is disjoint function union,

allowing two heaps to be composed only if they share no addresses in common. However,
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when using fractional permissions, two heaps can compose even if they have addresses

in common, as long as the sum of the permissions associated with these is at most 1.

Good choices of composition are those that enable flexible decomposition, as composition

implicitly defines separation (s = s1 � s2 can be read both as “s1 � s2 compose to give s”,

but also as “s decomposes to give s1 � s2, where s1 and s2 are separate”).

Example 13 (Primitive composition for primitive heaps). For instrumented primitive

heaps (example 8), primitive composition joins heaps with disjoint domains (that is,

that share no variables or heap cells):

s1 � s2 ,

s1 ∪ s2 if dom(s1) ∩ dom(s2) = ∅

undefined otherwise

Example 14 (Primitive composition with fractional permissions). For primitive

heaps using fractional permissions (example 9), primitive composition joins instru-

mented states by taking the function union, but in the case of an address being in

both, adding the permission. If any permission would exceed 1, composition is unde-

fined.

s1 � s2 ,



undefined if ∃a ∈ dom(s1) ∩ dom(s2) s.t. s1(a)↓2 +s2(a)↓2> 1

λa.



s1(a) if a ∈ dom(s1) \ dom(s2)

s2(a) if a ∈ dom(s2) \ dom(s1)

(s1(a)↓1, s1(a)↓2 +s2(a)↓2) if s1(a)↓1= s2(a)↓1
undefined otherwise

Notice that the addition of fractional permissions has allowed more separation than

is possible with composition for primitive heaps (example 13).

2.2.2. Views

We are now in a position to define views over instrumented structured heaps. The views

system, introduced in [22] with a summary given in section 1.2.2, is a program reasoning
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framework based around state abstractions also known as views. Our views are formed

from choices of instrumented heaps, with the associated primitive reification and compo-

sition functions. We call this collection of objects an addressed value view.

Definition 8 (Addressed value view). Given a set of structured heaps StructHeaps

and instrumented structured heaps for them InstHeaps (parameter 2 and parameter

8 respectively), a primitive reification function T·U : InstHeaps→ P(StructHeaps)

(parameter 9) and a primitive composition function with unit 0s, � : InstHeaps→
InstHeaps ⇀ InstHeaps (parameter 10), an addressed value view consists of a

set of views Views, a reification function b·c, a binary composition operator

∗, and a unit element 0:

Addressed value view =

(
Views, b·c : Views→ P(StructHeaps),

∗ : Views→ Views⇀ Views, 0

)

with the properties:

1. Views , P(InstHeaps) is a set of views, ranged over by p, p1, · · · , pn, p, q, r.

2. The reification function, b·c : Views → P(StructHeaps) is defined as the

pointwise lift of primitive reification:

bpc ,
⋃
{TsU | s ∈ p}

3. The composition function ∗ : Views → Views ⇀ Views is the pointwise

lift of primitive composition:

p ∗ q , {s1 � s2 | s1 ∈ p, s2 ∈ q}

4. 0 is a unit of ∗, defined as 0 , {0s}.

Addressed value views are views in the sense of [22], and are similar to those the authors

constructed from separation algebras. However, we allow a choice of primitive reification

function in our construction rather than always using the identity, and use our instru-

mented heaps rather than arbitrary cancellative monoids for constructing the views.

Each view is a “perspective” on the possible underlying machine states. A single view

does not tell us which machine state we will be in, and typically provides a conservative
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approximation. The compositional nature of views means that these perspectives can be

joined, generally resulting in richer knowledge of, and capabilities over, the underlying

states. If two views are incompatible, then we have conflicting facts about the machine

states, and thus no useful information at all.

Comment 2. I find it helpful to anthropomorphise views. Consider a view as an

entity that holds a set of opinions about the world. The opinions are the instrumented

states, and the world is the set of machine states that reify from them. Composition

attempts to form an agreement between two views about the actual states of the

world, with the resultant entity having somehow merged the knowledge of both. In

this sense, ∗ is forming a consensus between parties about what the machine is actually

doing. When the parties either hold opinions about different parts of the world (i.e.

separation logic), or have the same opinions about the same part (i.e. separation logic

with fractional permissions), this is easy. When the parties have differing opinions

about the same parts of the world, forming a consensus can be harder, corresponding

to more complex logics such as Rely-Guarantee [47] or CAP [23].

We define a set of useful functions and relations over addressed value views.

Definition 9 (Operations on views). Given an addressed value view

(Views, T·U,�, 0) (definition 8), and recalling that Views is formed of sets of

instrumented structured heaps InstHeaps (parameter 8), we define notions of

entailment, disjunction, conjunction and negation on the set Views as:

1. Entailment: The entailment relation on views, |= ⊂ Views×Views, is the

subset relation: |= , ⊆.

2. Disjunction: The disjunction function on views,
∨

: P(Views)→ Views, is

standard set union:
∨
,
⋃

.

3. Conjunction: The conjunction function on views,
∧

: P(Views)→ Views,

is standard set intersection:
∧
,
⋂

.

4. Negation: The negation function on views, ¬ : Views → Views, is the

standard set complement: ¬p , InstHeaps \ p.

One can informally consider views as “logical formulæ” with instrumented states as their

“models”. For example, the first operation (entailment) ensures that every instrumented

state in the left hand side is contained within the right hand side. This reflects the
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operation of logical entailment, in that it holds if all “models” of the left view are “models”

of the right. Disjunction gives a view which contains every “model” of the parameters.

The other two have similar readings.

Comment 3. Whilst this informal notion of views as logical formulæ with instru-

mented states as models can aid understanding, it is important to note it is not a logic

in any standard sense. Critically, I provide no syntactic proof rules that deduce truths

about views (only rules that deduce truths about programs). Their manipulation re-

mains purely “semantic”, in that one must consider the contents and reifications of

their component instrumented heaps.

Two useful sets of views are the boolean expression truth views. These views reify to

the structured heaps in which a given boolean expression will evaluate to true (or false).

These views will be used to define the pre- and post-conditions of the if and while rules

of the program logic (theorem 1), which will require analysis of boolean guard expressions.

Definition 10 (Boolean truth views). Let b ∈ BoolExprs be any boolean expression

(parameter 3) with associated boolean expression evaluation function [[·]](·) (parameter

4). The truth views of b are defined as:

exprTrue(b) , {s ∈ InstHeaps | ∀s ∈ TsU. [[b]](s) = true}
exprFalse(b) , {s ∈ InstHeaps | ∀s ∈ TsU. [[b]](s) = false}

Boolean expression evaluation (parameter 4) is deterministic, and results in one of true,

false or fault. Therefore, if an expression evaluates to either true or false, it cannot evaluate

to fault. We define the boolean safety view as the disjunction of the two truth views, and

so describe the structured heaps in which a boolean expression can never evaluate to fault.

Definition 11 (Boolean safety view). Let b ∈ BoolExprs be any boolean expression

(parameter 3), and ∨ be disjunction on views (definition 9). The associated boolean

expression safety view is defined as:

safe(b) , exprTrue(b) ∨ exprFalse(b)
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Example 15 (Primitive heaps expression safety). In addition to boolean expressions,

our primitive heaps example also has basic expressions (example 5). We can define

an expression safety view for these. Let e ∈ Exprs be any basic expression. The

associated basic expression safety view is defined as:

safe(e) , {s ∈ InstHeaps | ∀s ∈ TsU. ([e])(s) 6=  }

2.3. Program reasoning

We now introduce our program reasoning framework, utilising views as the pre- and post-

conditions for programs.

2.3.1. Semantic Hoare triples

We call a triple consisting of a program with associated pre- and post-condition views a

semantic Hoare triple.

Definition 12 (Semantic Hoare triples). Given an addressed value view

(Views, b·c, ∗, 0) (definition 8), and programs Programs (definition 4), the set of

semantic Hoare triples ViewTriples, ranged over by vt, vt1, · · · , vtn, is defined

as:

ViewTriples , Views×Programs×Views

An element (p,C, q) ∈ ViewTriples is written {p} C {q}.

We use the term semantic because the pre-and post-conditions are views, rather than

syntactic assertions. The intended meaning of a semantic Hoare triple {p} C {q} is that,

when C is run with a heap contained within the reification of view p, then it will never

fault and, if the program terminates, the outcome will be a heap reified from view q.

To formalise this interpretation, first recall the action labels of definition 5. Each label

represents the interaction of a program step with a structured heap: either no interaction;

the evaluation of an expression; or the application of an atomic command. In a similar

vein, we can define the interaction of a label with a pair of views p, q representing the

program state before and after the action associated with the label. This action judgement

considers the effect of the action on the structured heaps generated by reifying p and q.
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More than this, it considers the effects when those views are composed with an arbitrary

frame r ∈ Views.

We do this as we are developing a local Hoare reasoning framework. Commands are

specified using views that describe only the resource they need. They are free to update

the resource in their pre- and post-conditions as needed, but must not disturb resource

their specification does not mention. By “baking” all possible frames r into the judgement,

unchanged on both sides, we are assured that unmentioned resource is not meaningfully

changed, a property called stability.

Definition 13 (Action judgement). Given a set of action labels (definition 5) and

an addressed value view (Views, b·c, ∗, 0) (definition 8), the action judgement · |�
{·}{·} ⊆ ActionLbls×Views×Views is the largest relation such that:

α |� {p}{q} ⇐⇒ ∀r ∈ Views. [α](bp ∗ rc) ⊆ bq ∗ rc

where, given that [〈c〉] is the action of atomic command c (parameter 6), the function

[·] (·) : ActionLbls→ P(StructHeaps)→ P(StructHeaps) is defined as:

[id] (S) , S

[E>(b)] (S) , {s ∈ S | [[b]](s) = true}
[E⊥(b)] (S) , {s ∈ S | [[b]](s) = false}
[E (b)] (S) , {s ∈ S | [[b]](s) =  }
[A(c)] (S) ,

⋃
{[〈c〉](s) | s ∈ S}

Informally, the action judgement α |� {p}{q} says that applying action α to the states

described by p results in states described by q. Notice that the action judgement associated

with boolean expression evaluation requires that the post-condition have restricted the set

of heaps to those that result in the outcome indicated on the label. These actions are used

to direct the flow control in cases of if and while, and this filtering of heaps matches the

operational effect of the label. For example, operationally, the first branch of if retains

only those states which evaluate the guard expression to true. By having the action

judgement perform the same filtering, soundness of the reasoning is easier to prove.

The “baking in” of the frame ensures the locality of the action judgement, and the

stability of resource not mentioned. Locality is a key property. Assume that α |� {p}{q}.
Then, by definition, both of the follow properties hold.

1. Extensibility: We can compose p and q with any arbitrary view r, and the judge-
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ment will still hold. This property allows knowledge about interactions with “small”

heaps to be extended to knowledge about larger heaps, which is the essence of the

frame rule of local reasoning.

2. Locality: The action labelled α is local to the resource described by p and q. These

resources must be all it needed, and all it can have meaningfully changed. To see p is

all that is needed, imagine the action needed more resource than can be reified from

p. By picking r = 0, the command would then fault on heaps from bpc. However,

fault is not contained in any reification (parameter 9), so cannot be within bqc, and

so the judgement could not have held. To see that nothing else is altered, pick

arbitrary r. For all non-divergent commands, it must be the case that q ∗ r is also

defined. If the action had altered resource outside of p, we would then be able to find

some r that represented this resource, yet must be unchanged when composed with

q. Thus, the types of changes the action could perform on resource not represented

by p must be trivial, and so r must be stable.

Via the action judgement, we formalise the meaning of a semantic triple (definition 12).

Definition 14 (Semantic triple judgement). Given structured heaps StructHeaps

(parameter 2) and action labels ActionLbls (definition 5), for all programs C1 ∈
Programs (definition 4) and views p1, q ∈ Views (definition 8), the semantic triple

judgement � {·} · {·} ⊆ ViewTriples is defined as the largest relation such that

� {p1} C1 {q} if and only if:

1. if C1 = skip, then the action judgement id |� {p1}{q} holds.

2. if C1 6= skip, then for all action labels α ∈ ActionLbls and structured heaps

s1 ∈ bp1c, if there is some s2 ∈ StructHeaps and C2 ∈ Programs such that

C1, s1
α−→ C2, s2, then there exists some p2 ∈ Views such that:

a) α |� {p1}{p2}

b) � {p2} C2 {q}

Consider figure 2.2, which gives an example program C with associated views, traces

and view reifications. The views column represents a list of views generated by unfolding

the semantic triple judgement � {p1} C {q}. The judgement forces the views to be a good

abstraction of the possible structured heaps at each state, no matter what program trace

actually occurs. Notice that the reified views always contain the possible trace states at

each step.
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foo();

if (b) {

  foo();

} else {

  skip;

}

bar();

while (b2) {

  baz();

}

TracesViews

p1

p2

p3

p4

p5

p6

p7

p8

p10

p9

q

p1

p2

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Trace states are contained

in reification for any choice of r

r{ *
r }

r*{ }r

p3 r*{ }r

p4 r*{ }r

p5 r*{ }r

p6 r*{ }r

p7 r*{ }r

p8 r*{ }r

p9 r*{ }r

p10 r*{ }r

q r{ *
r }

Figure 2.2.: Demonstration of the relationship between a program, views, the possible pro-
gram action traces, and reified views. This figure represents the unfolding of
the semantic triple judgement � {p1} C {q} (definition 14) and the relation-
ship between the structured heaps reified from the views and possible traces
of the program.
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2.3.2. Deriving valid semantic Hoare triples

It is prohibitively complex to construct valid semantic Hoare triples by analysing an entire

program. Instead, we provide a set of semantic inferences that allow the construction of

correct triples. We start with the program primitives; i.e. those programs not composed

from smaller programs.

Proposition 1 (Skip judgement). For any view p ∈ Views, � {p} skip {p} is a valid

semantic triple judgement.

Proof. As C = skip, the judgement falls into the first case of definition 14. Hence, we

must show id |� {p}{p}. This holds trivially, as ∀r. bp ∗ rc ⊆ bp ∗ rc always.

Atomic commands are given semantic triple specifications via axioms. All atomic com-

mands must have at least one axiom.

Parameter 11 (Atomic command axioms). Given a set of atomic commands

AtomicCmds (parameter 5) and an addressed value view (Views, b·c, ∗, 0) (definition

8), assume a set of atomic command axioms Axioms ⊆ (Views×AtomicCmds×
Views) such that for each c ∈ AtomicCmds, there exists p, q ∈ Views with

(p,c, q) ∈ Axioms.

These axioms must sound, in that they are valid abstractions of the command actions.

This atomic soundness property must be proven for each atomic command.

Parameter 12 (Atomic soundness). Given a set of atomic commands AtomicCmds

(parameter 5) and the action judgement (definition 13), the atomic soundness

property of axioms states that, for every (p,c, q) ∈ Axioms, A(c) |� {p}{q} holds.

Example 16 (Primitive heap axiomatisation). We now give axioms for the com-

mands of primitive heaps (example 6). These commands involve expressions that can

access variables in the heap. When the specific expression is unknown, the number of

variables involved in the command action is equally unknown. The axioms for these

commands must express sufficient additional resource to safely evaluate the expres-

sion. To accomplish this, we add additional resource to the specifications of such

commands and use the expression safety view of definition 11 to ensure this resource
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contains all the needed variables are present.

With an expression and a view containing sufficient variable resource to ensure non-

faulting evaluation of the expression, we can describe a view that describes when the

expression evaluates to a certain value. Formally, given a set of expressions Exprs

evaluated by ([·])(·) (definition 5) into program values PVals, and an addressed value

view (Views, b·c, ∗, 0), the expression evaluation view ⇒ : Exprs → PVals →
Views, written e⇒ i, is defined as

e⇒ v , {s | TsU = heaps,∀h ∈ heaps. ([e])(h) = v}

Notice that the view e⇒ v always entails the safety view, (e⇒ v) |= safe(e) by defi-

nition. By using conjunction between some view p and the expression evaluation view,

e.g. p ∧ e⇒ v, we describe a view which has the variables of p and safely evaluates e

to v.

Let x→ v be the singleton view with variable x mapping to value x, and i 7→ j be

the singleton view with flat heap cell at address i mapping to value j. The axioms

are then defined as follows: for all x ∈ PVars, v ∈ PVals, e, e1, e2 ∈ Exprs and

o ∈ Views

{(x→ v ∗ o) ∧ e⇒ i} x := e {x→ i ∗ o}

{x 7→ v} x := alloc()
{∨

i∈N+,j∈N x 7→ i ∗ i 7→ j
}

{i 7→ j ∗ (o ∧ e⇒ i)} free(e) {o}

{i 7→ j ∗ (o ∧ e1⇒ i ∧ e2⇒ k)} [e1] := e2 {i 7→ k ∗ o}

{i 7→ j ∗ ((x→ v ∗ o) ∧ e⇒ i)} x := [e] {i 7→ j ∗ x→ j ∗ o}

The first axiom, variable/expression assignment, is an example of the extra resource

needed by expressions. Consider the atomic actions of this command (definition 6).

The expression e is evaluated, which by definition can use arbitrary variable resource.

The result of the evaluation is placed in heap cell x. No other resource is read or

updated by the action, and so is not mentioned.

We mirror this in the axiom. The first conjunct of the pre-condition, x 7→ v ∗ o,
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describes a heap that contains the cell addressed by x with some value. It also contains

arbitrary additional heap cells that are disjoint from x, given by o, that describe

additional variables needed to evaluate e. The second conjunct, e⇒ i, gives all views

that describe heaps evaluating e to i. By conjoining them, the pre-condition describes

exactly heaps with variable x and arbitrary other variables, that safely evaluate e to

i. As there is an axiom for every choice of i, it does not matter what specific value

the expression evaluates to.

The post-condition view x→ i ∗ o is similar to the pre-condition, except that the x

variable cell now contains the result of evaluating e, and has dropped the conjunction.

The unchanged nature of the other cells is assured by the presence of o. The second

conjunct is unnecessary, as the first conjunction contains all the information needed.

As i was chosen for the entire axiom, the correct result is bound to the variable.

To show atomic soundness, we must show that the post-condition captures the

effect of the atomic command on the pre-condition, and that the action is still well-

described whenever the conditions are extended with arbitrary view r. The post-

condition described above is exactly the effect of the atomic action. Preservation of

frames is assured as the command does not touch any cells other than x or those

mentioned in o. If the frame r mentions one of these cells, the pre-condition becomes

the empty set, and so the action judgement holds vacuously.

Turn now to allocation, x:= alloc(). Recall that the atomic action for this com-

mand (definition 6) is given as:

[〈x := alloc()〉](s) , {s[x 7→ i, i 7→ v] | i ∈ N+ \ dom(s), v ∈ N}

The action creates a new flat heap cell at any unused positive integer address with

any natural number as a value, and updates the variable x to the address added.

It is thus non-deterministic; we do not know the address that will be created, nor

the value it will contain. To prove atomic soundness of the axiom, consider the pre-

condition. It describes the singleton instrumented heap with variable x mapping to

any value. The post-condition describes an infinite set of instrumented heaps, covering

every combination of a single flat-heap cell address/value alongside x mapping to that

address. This infinity of possibilities is the standard method for handling the non-

local nature of allocation; we do not know which other addresses are used, but we do

know there will be free addresses available, and that the command will choose one of

them.
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Formally, we show:

∀r ∈ Views. [x := alloc()]bx 7→ v ∗ rc ⊆

 ∨
i∈N+,j∈N

(x 7→ i ∗ i 7→ j) ∗ r


Fix arbitrary r ∈ Views. Then, by reification being the pointwise lift of primitive

reification (example 10), and composition being function union (example 13):

b{x 7→ v} ∗ rc = {{x 7→ v} t sr | sr ∈ brc, x 6∈ dom(sr)}

Pick an arbitrary member sp ∈ b{x 7→ v} ∗ rc. Then

[〈x := alloc()〉](sp) = {sp[x 7→ i, i 7→ v′] | i ∈ N+ \ dom(sp), v
′ ∈ N}

This result set is non-empty, as each sp is a finite function on an infinite domain.

Pick an arbitrary sq ∈ [〈x := alloc()〉](sp). Note that

 ∨
i∈N+,j∈N

(x 7→ i, i 7→ j) ∗ r

 =

 {x 7→ i, i 7→ j} t sr

i ∈ N+, j ∈ N,
sr ∈ brc,
x 6∈ dom(sr),

i 6∈ dom(sr) ∪ {x}


Call this set S. The result follows if sq is a member of S. Observe that sp is any

heap in which x exists alongside arbitrary other cells sr added by r. The heap sq is

any heap in which x points to an arbitrary i ∈ N+ not present in sr, and in which i

points to an arbitrary v ∈ N. The set S is by definition every such heap, ergo sq ∈ S
as required.

The cases for cell deallocation, assignment and dereference are similar.

The skip rule and axioms provide valid semantic judgements for the most primitive pro-

grams. To construct judgements about composite programs, we provide a set of semantic

inference rules. These inferences take simpler valid judgements and program fragments

and build more complex judgements.

Theorem 1 (Semantic inference rules). Given a set of boolean expressions BoolExprs

(parameter 3), programs Programs (definition 4) and addressed value view (Views, b·c, ∗, 0)

(definition 8), the rules in the following two groups of semantic inference rules are

valid, in that if the assumed semantic Hoare triple judgements hold then the conclusion
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semantic Hoare triple judgement holds. The rules are: for all b ∈ BoolExprs, programs

C,C1,C2 ∈ Programs and p, p1, p2, q, r, o ∈ Views

Program rules: These rules are driven by the syntax of the program.

1. Sequencing rule: If � {p} C1 {o} and � {o} C2 {q}, then � {p} C1; C2 {q}.

2. If rule: If p |= safe(b), � {p∧exprTrue(b)} C1 {q} and � {p∧exprFalse(b)} C2 {q},
then � {p} if (b) C1 else C2 {q}.

3. While rule: If p |= safe(b) and � {p ∧ exprTrue(b)} C {p}, then

� {p} while (b) C {p ∧ exprFalse(b)}

4. Parallel Composition rule: If � {p1} C1 {p2} and � {p2} C2 {q2}, then �

{p1 ∗ p2} C1 || C2 {q2 ∗ q2}.

Abstraction rules: These rules are driven by the structure of the views abstracting the

state.

1. Frame rule: For all r ∈ Views, if � {p} C {q} then � {p ∗ r} C {q ∗ r}

2. Disjunction rule: Let I be some index set. If, for all i ∈ I, � {pi} C {qi}, then

� {
∨
i∈I pi} C {

∨
i∈I qi}.

3. Consequence rule: For all p′, q′ ∈ Views, if p |= p′, q′ |= q and � {p′} C {q′} then

� {p} C {q}.

Proof. The semantic triple judgement � {p1} C1 {q} (definition 14) is defined co-inductively.

The proof is therefore co-inductive. Unpacking the definition, we must show that:

1. If the program has finished (that is, it is skip), the structured heaps reified from the

triple pre-condition p1 are contained within those reified from the post-condition q,

when considered under all frames. Formally, C1 = skip implies id |� {p1}{q}.

2. If the program has not finished, and so takes a step to a new state, then there is

some view that both abstracts the structured heap after the step, and functions as

a pre-condition for the continuation program. Formally, for all s1 ∈ bp1c, if there

are some α,C2 and s2 such that C1, s1
α−→ C2, s2, then is some view p2 such that

α |� {p1}{p2} and � {p2} C2 {q}.

Referring again to figure 2.2, this proof justifies the existence of the sequence of views

that abstract the structured heaps. In essence, the uses of co-induction create a simulation

relation, demonstrating that for every “step” the assumed judgements take with the action

judgement, the conclusion judgement can match the “step”.
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1. Sequencing rule: We proceed by co-induction. Assume ¬ � {p} C1 {o} and

 � {o} C2 {q}. Consider C1. It is either skip, or another command.

If it is skip, then by the single-step transition relation, the program C1; C2 takes

an id-labelled step to C2. By ¬ and the definition of the semantic triple judge-

ment (definition 14), id |� {p}{o}. By  and definition 14, the entire judgement

� {p} C1; C2 {q} must hold.

If C1 is not skip, then by the single-step labelled transition relation (definition 6),

there is some C′1 such that C1; C2 transitions via some action labelled α to C′1; C2.

Moreover, by ¬ there is some s ∈ Views such that α |� {p}{s} and � {s} C′1 {o}.
The co-inductive hypothesis can now be applied to � {s} C′1;C2 {q}, completing the

result.

2. If rule: Assume ¬ p |= safe(b),  � {p ∧ exprTrue(b)} C1 {q}, and ® � {p ∧
exprFalse(b)} C2 {q}.

By examination of the transitions of if ( · ) · else ·, three outcomes can occur.

Expression b may evaluate to fault, and thus the program takes an E (b)-labelled

step to fault. It may evaluate to true, in which case an E>(b)-labelled step is taken

to the program C1. It may evaluate to false, in which case an E⊥(b)-labelled step is

taken to C2. If the program does not reduce to fault, the state is not altered.

Take the first outcome, E (b). By the fault-free property of reification (parameter 9),

no reification can contain the fault state. Therefore, the expression evaluation on the

pre-condition states must not fault (otherwise, the post-condition could not represent

the result). That this does not occur is ensured by ¬ , and the boolean expression

safety view (definition 11); by the definition of views as sets of instrumented heaps,

and of entailment as set containment, any instrumented heap in p cannot reify to

fault.

Take the second outcome, E>(b). For this to occur, on some heaps reified from p, b

evaluates to true. The semantics state that if (b) C1 else C2, s
E>(b)−→ C1, s, where

s ∈ bpc and ([b])(s) = true on those states in p. The semantic triple judgement re-

quires us to show the existence of p2 such that E>(b)|�{p}{p2} and � {p2} C1 {q}. By

the definition of conjunction and the action judgement, E>(b)|�{p}{p∧exprTrue(b)}
holds, and � {p ∧ exprTrue(b)} C1 {q} holds by  . Therefore, selecting p2 =

p ∧ exprTrue(b), both requirements of the triple judgement are fulfilled.

The third outcome, E⊥(b), is similar, but using ® .

3. While rule: Assume ¬ p |= safe(b) and  � {p ∧ exprTrue(b)} C {p}.
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By examining the transitions for while ( b ) C, three outcomes can occur: b

evaluates to true, b evaluates to false, or the evaluation of b faults. If it faults

during evaluation, the program takes an E (b) step to the fault state. If it evaluates

to true, then the program takes an E>(b) step to C; while (b) C. If it evaluates to

false, the program takes an E⊥(b) step to skip. If the evaluation does not fault, the

state is not altered.

The first outcome, E (b), is discharged as in the if case.

For the second outcome, E>(b), we must demonstrate some p2 such that E>(b) |�
{p}{p2} and � {p2} C; while (b) C {q} hold. Pick p2 as p ∧ exprTrue(b). Then,

E>()|�{p}{p ∧ exprTrue(b)} holds by the action being E>(b) and the exprTrue(b)

conjunction. The semantic triple � {p ∧ exprTrue(b)} C; while (b) C {q} holds

by a combination of  and the sequencing rule already proven.

For the third outcome, E⊥(b), the semantics takes an E⊥(b) step to skip, and we

know the structured heap evaluates b to false. We must show that E⊥(b) |� {p}{p2}
and � {p2} skip {q}. Pick p2 = p ∧ exprFalse(b). We must thus show E⊥(b) |�
{p}{p∧ exprFalse(b)}, which is true by the definition of the action judgement in the

E⊥(b) case. We must also show � {p∧ exprFalse(b)} skip {p∧ exprFalse(b)}, which

is true by the skip rule (proposition 1).

4. Parallel Composition rule: We proceed by co-induction. Assume that ¬ �

{p1} C1 {q1} and  � {p2} C2 {q2}.

It must be the case that C1 || C2 takes an α-labelled transition for some α. By

examination of the transition system, there are three cases: either C1 is skip, C2 is

skip, or neither are skip. If either program is skip, the small-step semantics allow the

program to take an id. If either one is non-skip, the semantics allow that program

to take a α step.

If Ci = skip, Cj = C′ for {i, j} ∈ {1, 2}, and the semantics reduces the skip case,

then id |� {pi}{qi} holds by the hypothesises, and thus id |� {pi ∗ pj}{qi ∗ pj} by the

definition of the action judgement. � {qi ∗ pj} Cj {qi ∗ qj} holds by the frame rule

inference (which we prove sound shortly).

If, say, C1 is not skip, it takes some α action to C′1 (the case for C2 is similar). By

¬ , α |� {p1}{p′1} for some p′1, and � {p′1} C′1 {q1}. The judgement � {p2} C2 {q2}
still holds, ergo � {p′1 ∗ p2} C′1 || C2 {q1 ∗ q2} holds by the co-inductive hypothesis.

To prove the abstraction rules:

71



1. Frame rule: We proceed by co-induction.

Assume that ¬ � {p} C {q}. If C = skip, then id |� {p}{q} by ¬ , and by the defi-

nition of the action judgement, id |�{p ∗ r}{q ∗ r} for all r. Ergo, � {p ∗ r} C {q ∗ r},
as required.

If C 6= skip, then by ¬ then for all action labels α and s ∈ bpc such that C, s α−→
C′, s′ for some state s′. Moreover, there is some view p2 such that α |� {p}{p2} and

s′ ∈ bp2c. By definition of the action judgement, α |� {p ∗ r}{p2 ∗ r} must hold, and

� {p2} C′ {q}. Then, � {p2 ∗ r} C′ {q ∗ r} holds by the co-inductive hypothesis.

2. Disjunction rule: To prove the rule of disjunction, we require two preliminary

lemmas. First, that ∗ distributes over disjunction.

p ∗
∨
{qi}i∈I = p ∗

⋃
{qi}i∈I (Definition of disjunction)

=
⋃
{p ∗ qi}i∈I (Pointwise definition of ∗)

=
∨
{p ∗ qi}i∈I (Definition of disjunction)

Second, that disjunction is a morphism with respect to reification.

b
∨
{pi}i∈Ic = b

⋃
{pi}i∈Ic (Definition of disjunction)

=
⋃
b{pi}ci∈I (Pointwise definition of reification)

Now assume the hypothesis for the rule: that ¬ for all i ∈ I, � {pi} C {qi}. Proceed

by co-induction. If C = skip then by ¬ , for each i, id |� {pi}{qi}. Unpacking this

judgement, ∀r ∈ Views.bpi ∗ rc ⊆ bqi ∗ rc holds. Call this result  .

We must show id |� {
∨
i∈I pi}{

∨
i∈I qi}. This is equivalent to

∀r ∈ Views.
⌊
r ∗
∨
i∈I pi

⌋
⊆
⌊
r ∗
∨
i∈I qi

⌋
. By disjunction distribution, this is equal

to ∀r ∈ Views.
⌊∨

i∈I r ∗ pi
⌋
⊆
⌊∨

i∈I r ∗ qi
⌋
. By disjunction morphism, this is equal

to ∀r ∈ Views.
⋃
i∈I br ∗ pic ⊆

⋃
i∈I br ∗ qic. For each element of the left hand side,

its presence in the right hand side is ensured by  and the commutativity of ∗.

If C 6= skip, then the program takes some α-labelled step to C′ and for each pi there

is some ri such that α |� {pi}{ri} and � {ri} C′ {qi}. By similar reasoning to the

skip case, we have α |� {
∨
i∈I pi}{

∨
i∈I ri}, and the co-inductive hypothesis provides

� {
∨
i∈I ri} C′ {

∨
i∈I qi}.

3. Consequence rule: To prove the rule of consequence, we require the action

preservation lemma: that the entailment p |= q is no more than is allowed by the

identity action, id |� {p}{q}. For all r ∈ Views:
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p |= q , p ⊆ q by definition

therefore p |= q =⇒ p ∗ r ⊆ q ∗ r ∗ pointwise

therefore p |= q =⇒ bp ∗ rc ⊆ bq ∗ rc b·c pointwise

therefore p |= q =⇒ id |� {p}{q} definition of action judgement

Proceed by co-induction. Assume that, for all p′, q′ ∈ Views, ¬ p |= p′,  q′ |= q and

® � {p′} C {q′}.

Consider C. If C = skip, then by ® id|�{p′}{q′}. We must show id|�{p}{q}. To see

this, consider ¬ and the action preservation lemma, which implies that id |� {p}{p′}
holds. Note that id |� {p}{p′} together with id |� {p′}{q′} implies id |� {p}{q′} by

the definition of the action judgement. Using this, with  and action preservation,

produces id |� {p}{q}, as required.

If C 6= skip then by ® , there is some action α, view p2 and program C′ such that

α |�{p′}{p′2} and � {p′2} C′ {q′}. We must show α |�{p}{p′2}, and � {p′2} C′ {q}. The

first holds by ¬ , id |� {p}{p′} together with id |� {p′}{q′}, and action preservation.

The second holds by the co-inductive hypothesis.

In addition to these rules, the rule of conjunction is often included in Hoare reasoning.

Definition 15 (Semantic rule of conjunction). Let I be some index set. If, for all

i ∈ I, � {pi} C {qi}, then � {
∧
i∈I pi} C {

∧
i∈I qi}.

We do not include this rule amongst those of theorem 1 as it is not always sound. Our

views represent sets of instrumented machine states, where the choice of instrumentation

is not restricted. It is therefore possible that two valid proofs for the same program

use different choices of instrumentation. In this case, there would be two valid triples

� {p1} C {q1} and � {p2} C {q2}. For the rule of conjunction to be sound, the triple

� {p1 ∧ p2} C {q1 ∧ q2} must be correct. However, recall that conjunction is defined as

intersection of views (which are sets of instrumented heaps). It may be the case that p1∧p2

describes a non-empty view, yet q1 ∧ q2 describes an empty view. The only programs for

which such a post-condition is sound are divergent, so the rule can be used to generate

unsound results. In chapter 3 we will see an example of instrumentation that is natural

and useful, but for which the rule of conjunction does not hold.

73



We can ensure the soundness for the rule of conjunction with a condition on choices of

actions and reification (and hence the action judgement). We call the property primitive

conjunctivity.

Definition 16 (Primitive conjunctivity). A set of actions labels ActionLbls (defi-

nition 5) have the primitive conjunctivity property if: for all α ∈ ActionLbls

and sets of views p and q (definition 8) indexed by I, ∀i ∈ I. α |� {pi}{qi} =⇒
α |� {

∧
i∈I pi}{

∧
i∈I qi}.

This property ensures that, if an action was permitted in each of the potential conjuncts,

the same action must be permitted in the resultant conjunction. If this property holds,

then the semantic rule of conjunction is sound.

Lemma 1 (Soundness of the semantic rule of conjunction). Assume that primitive con-

junctivity holds. Then, the rule of conjunction is sound.

Proof. We proceed by co-induction. Assume that ¬ for all i ∈ I, � {pi} C {qi}. Further-

more, assume  primitive conjunctivity (definition 16). If C = skip then by ¬ , for each

pi, the program takes an id step, id |� {pi}{qi}. By  , id |� {
∧
i∈I pi}{

∧
i∈I qi} holds.

If C 6= skip then by ¬ , for each pi there exists some α, ri and C′ such that both

α |�{pi}{ri} and � {ri} C′ {qi}. By  , α |�{
∧
i∈I pi}{

∧
i∈I r

′
i} holds. By the co-inductive

hypothesis, � {
∧
i∈I r

′
i} C′ {

∧
i∈I qi}.

2.3.3. Semantic consequence

The consequence rule in theorem 1 uses the entailment relation of definition 9. Informally,

entailment p1 |= p2 is justified by the instrumented states of p1 being a subset of those in p2.

We can show that everything that can be accomplished with p1 can still be accomplished

with p2. We can define a similar relationship using the underlying machine states. The

views framework calls this the semantic consequence relation. Semantic consequence is

similar to entailment, but where entailment p |= q works with relationships between the

instrumented states in p and q, semantic consequence works with relationships between

the uninstrumented machine state sets described by the views, bpc and bqc.

Definition 17 (Semantic Consequence). The semantic consequence relation 4 ⊂
Views×Views is defined such that:
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(p, q) ∈ 4 ⇐⇒ id |� {p}{q}

An element (p, q) ∈ 4 is written write p4 q.

By unpacking the use of the action judgment in this definition, we see p4 q ⇐⇒ ∀r ∈
Views. bp ∗ rc ⊆ bq ∗ rc. The relation allows an view shift from p to q, as long as the

update does not change the machine level states under any frame. The embedding of r into

the check is required to ensure that any change to the instrumentation does not invalidate

instrumentation elsewhere. For example, consider fractional permissions. Without the

“baked in” frame, the semantic consequence x
0.5→ v4 x

1→ v would be allowed, as both

views have the same reification. However, that update has invalidated many previously

allowable frames, such as x
0.25→ v.

We can replace the entailment relation of definition 9 with semantic consequence. More-

over, any relationship allowed by entailment is equally allowed by semantic consequence.

Lemma 2 (Semantic consequence is an entailment relation). The semantic consequence

relation 4 is a sound replacement for the entailment relation |= of definition 9. Moreover,

it subsumes |=, |= ⊆ 4.

Proof. Recall the proof of soundness of the consequence rule in theorem 1. The proof

obligation required for soundness was that all actions were preserved by the entailment,

p |= q =⇒ id |�{p}{q}. This is evidently true of the semantic consequence relation, which

is defined as id |� {p}{q}.

Comment 4 (Intuitionistic separation logic). Recall the two reification operations

for primitive heaps in examples 10 and 11. Under the first definition of reification,

semantic consequence coincides with the entailment relation.

With the second definition, however, semantic consequence can do more than en-

tailment. As this reification is “completing”, it endows semantic consequence with a

weakening ability, so that p1 ∗ p24 p1. This works because this reification will provide

p2:
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p1 ∗ p24 p1

⇐⇒ ∀r ∈ Views. bp1 ∗ p2 ∗ rc ⊆ bp1 ∗ rc
⇐⇒ ∪s1∈p1∗p2∗r {s1 ∈ StructHeaps | ∀a ∈ dom(s1). s1(a) = s1(a)}

⊆ ∪s2∈p1∗r{s2 ∈ StructHeaps | ∀a ∈ dom(s2). s2(a) = s2(a)}

The resultant set inclusion states that all heaps which are consistent with p1 ∗p2 ∗r
are contained within those which are consistent with p1 ∗ r, where consistent means

that, for any shared addresses, the values stored in those cells are the same. The set

inclusion holds as the domain of p1 ∗ p2 ∗ r is strictly larger than that of p1 ∗ r by the

definition of primitive composition for primitive heaps.

That resource can be “forgotten about”, p∗ q4 p, is one of the defining characteris-

tics of intuitionsitic separation logic. Therefore, under semantic consequence, program

reasoning with this choice of reification behaves intuitionistically. A small change to

the reification function has large a effect on what can be proven.

2.3.4. The magic wand and weakest pre-conditions

The “magic wand” connective in separation logic forms a left adjoint of the separating

conjunction with respect to entailment. That is, if A∗B |=C, then A |=B−∗C. Informally,

if B−∗C holds, then the data described by it could be extended by B to result in data

described by C. One common use of the magic wand is to express parametric weakest

pre-conditions. The parametric weakest pre-condition of a program is some pre-condition

p parametric in an assertion q, such that when the program is run in states satisfying

the pre-condition, the resulting states satisfy q. Moreover, this pre-condition must be the

weakest. The existence of parametric weakest pre-conditions for the axioms imply that a

Hoare logic is complete for straight line code.

In our framework1, the magic wand does not always carry the intuition from Separation

Logic. The standard definition would be:

Definition 18 (Magic wand). The magic wand −∗ : Views×Views connective is

defined as follows:

1And indeed, in views in general, where magic wand is sometimes not definable.
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p−∗ q ,
∨
{o ∈ Views | o ∗ p |= q}

However, this does not account for view update performed by semantic consequence.

We can recover the desired property with a connective identical to magic wand, but using

semantic consequence rather than entailment. Due to our notation, we call this the “magic

flower”:

Definition 19 (Magic Flower).

p4−∗ q ,
∨
{o ∈ Views | o ∗ p4 q}

Lemma 3 (Magic flower adjointness). The magic flower is a left adjoint to semantic

consequence, (p4−∗ q) ∗ p4 q.

Proof. By calculation.

(p4−∗ q) ∗ p =
∨
{o ∈ Views | o ∗ p4 q} ∗ p Expand flower definition

=
∨
{o ∈ Views ∗ p | o ∗ p4 q} ∗ distributes over disjunction

=
⋃
{o ∈ Views ∗ p | o ∗ p4 q} Definition of disjunction

4 q Definition of set comprehension

Aside from a short demonstration of weakest pre-condition construction, we will not use

the magic wand nor flower in this thesis. Partially, this is because we have not found it

useful outside of weakest pre-condition construction. Also, our long term research aim is

automation, where proofs that use adjoints have been problematic.

2.4. Syntactic proof theory

The reasoning system presented in the last section is semantic, in the sense that inferences

are made by analysing the underlying meaning of views. To aid reasoning, we now provide

a syntactic proof theory. As far as possible, we use standard approaches to write assertions

which act as the pre- and post-conditions of syntactic Hoare triples. These are manipulated
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using a local Hoare logic with the standard syntactic deduction rules. We prove this system

sound by interpreting it into the views of the previous section.

2.4.1. Assertion language

When constructing proofs, it is standard to link information between the pre- and post-

conditions via logical variables. Logical variables are unrelated to program variables.

Parameter 13 (Logical variables and values). Given a set of program variables

PVars (definition 3), assume a non-empty set of logical variables LVars, ranged

over by x,x1, · · · ,xn, that is disjoint from program variables, LVars ∩ PVars = ∅.
Assume also a non-empty set of logical values LVals, ranged over by V, V1, · · · , Vn.

Logical variables are associated with logical values via logical environments.

Definition 20 (Logical environments). Given a set of logical variables LVars and

values LVals, the set of logical environments LEnvs, ranged over by Γ,Γ1, · · · ,Γn,

is the set of partial functions from logical variables to logical values:

LEnvs = {Γ | Γ : LVars⇀ LVals}

To allow simple computation with logical variables and values, we include logical ex-

pressions. These expressions always include literals for logical values, logical variable

lookup, and equality. They are extended with specific operations that aid reasoning in

specific situations. Common extensions include set and string manipulation. The mean-

ing of logical expressions is given by an evaluation function. This function can perform

any interpretation, but must have standard behaviour with respect to literals and logical

variables.

Parameter 14 (Logical expressions and interpretation). Given a set of logical vari-

ables LVars and values LVals (parameter 13), and a set of logical environments

LEnvs (definition 20), assume a set of logical expressions LExprs, ranged over by

E,E1, · · · ,En, where LVars∪LVals∪{E1 = E2 | E1,E2 ∈ LExprs} ⊆ LExprs. As-

sume also a logical expression evaluation function 〈[·]〉(·) : LExprs → LEnvs ⇀

LVals that, for all Γ ∈ LEnvs,x ∈ LVars, satisfies the equations:
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〈[V ]〉(Γ) = V

〈[x]〉(Γ) = Γ(x)

〈[E1 = E2]〉(Γ) = 〈[E1]〉(Γ) = 〈[E2]〉(Γ)

We now give a syntactic assertion language. By itself, an assertion in this language has

no meaning, and is considered just a block of text with a certain format.

Definition 21 (Syntactic assertion language). The syntactic assertion language

Assts, ranged over by P,Q,R, P1, · · · , Pn, is defined by induction as follows:

P ::= P1 ∗ P2 Separating conjunction

| emp Empty assertion

| P1 ∧ P2 Conjunction

| P1 ∨ P2 Disjunction

| ¬P Negation

| false Falsity

| P1 ⇒ P2 Implication

| ∃x. P Existential logical variable

| btrue(b) Boolean truth filter

| bfalse(b) Boolean false filter

| bsafe(b) Boolean expression safety

| E Logical expression

| − Domain specific assertions

A syntactic assertion is given meaning via an interpretation into a view. The interpre-

tation function is a parameter of our framework, allowing for the user-defined behaviour

of domain specific assertions. However, any choice for it must provide a standard set

of behaviours for the assertions of definition 21. The interpretation also takes a logical

environment, allowing the evaluation of logical expressions. Interpretation of logical ex-

pressions will result in the empty view (that is, false) if the logical expression itself cannot

be evaluated.

Parameter 15 (Assertion interpretation). Assume a assertion interpretation

function L·M· : LEnvs→ Assts→ Views that satisfies the following equations
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LP ∗QMΓ = LP MΓ ∗LQMΓ

LempMΓ = 0

LP ∧QMΓ = LP MΓ ∧ LQMΓ

LP ∨QMΓ = LP MΓ ∨ LQMΓ

L¬P MΓ = ¬LP MΓ

LfalseMΓ = ∅

LP ⇒ QMΓ = (InstHeaps \ LP MΓ) ∪ LQMΓ

L∃x. P MΓ =
∨
v∈LValsLP M

Γ[x 7→v]

Lbtrue(b)MΓ = exprTrue(b)

Lbfalse(b)MΓ = exprFalse(b)

Lbsafe(b)MΓ = safe(b)

LEMΓ =

InstHeaps if 〈[E]〉(Γ) = true

∅ otherwise

The majority of definition 15 is standard. Of note is the existential logical variable

quantification, ∃x. P . This interprets to the infinite disjunction of the interpretations

of P under all possible bindings to x. This is the semantic interpretation of existential

quantification used in [22]: if there is some value one can assign to the logical variable

such that P is satisfiable, it will be contained within this disjunct. The logical expression

assertion evaluates logical expressions, and treats them as boolean outcomes. It is useful

for the analysis of logical variables, so that (for example) P ∧ v = 5 is a valid assertion,

equivalent to P if v is 5, and equivalent to false otherwise.

It is useful to determine if one syntactic assertion entails another. We thus lift the

entailment relation of definition 9 to syntactic assertions.

Definition 22 (Entailment assertion). Given the entailment relation |= (definition

9), assertions Assts (definition 21) and logical environments LEnvs (definition 20),

the entailment assertion |=Γ ⊆ Assts×Assts is defined as:

(P ,Q) ∈ |=Γ ⇐⇒ ∀Γ ∈ LEnvs. LP MΓ |=LQMΓ

An element (P ,Q) ∈ |=Γ is written P |=ΓQ.

Similarly, we will want to determine when two assertions semantically entail each other.

Definition 23 (Semantic consequence assertion). Given the semantic consequence

relation 4 (definition 17), assertions Assts (definition 21) and logical environments

LEnvs (definition 20), the semantic consequence assertion 4Γ ⊂ Assts×Assts

is defined as:
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(P ,Q) ∈ 4Γ ⇐⇒ ∀Γ ∈ LEnvs. LP MΓ4LQMΓ

An element (P ,Q) ∈ 4Γ is written P 4ΓQ.

2.4.2. Local Hoare reasoning

Just as definition 12 built semantic Hoare triples with views, we build syntactic Hoare

triples with assertions.

Definition 24 (Syntactic Hoare triples). Given a set of assertions Assts (definition

21) and programs Programs (definition 4), the set of syntactic Hoare triples

SynTrip is defined as:

SynTrip , Assts×Programs×Assts

We can then give syntactic axioms, mirroring the semantic axioms of definition 11.

Parameter 16 (Syntactic axioms). Given a set of atomic commands AtomicCmds

(parameter 5), assume a set of syntactic axioms SynAxioms ⊆ Assts ×
AtomicCmds × Assts, such that, for each c ∈ AtomicCmds, there exists some

P,Q ∈ Assts with (P,c, Q) ∈ SynAxioms.

Example 17 (Primitive heap logic). To give a syntactic presentation of our primitive

heap example (example 16), we must first provide logical variables, values and expres-

sions (parameters 13 and 14 respectively). For primitive heaps, we require the ability

to link pre- and post-conditions via logical variables. For this, we need only use set

of program values for logical values, LVals = PVals. The set of logical expressions

is the minimal set given by the definition. The interpretation is the smallest function

satisfying the definitional equations.

We can then define the domain specific syntactic assertions for primitive heaps with

variables as resource. There are two standard cells: a variable-as-resource cell, and

the flat heap cell. There is also an expression evaluation assertion. This links the

result of evaluating an expression to the result of evaluating a logical expression. It
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will be used to determine the outcome of evaluating expressions.

The assertions are defined as: for all x ∈ PVars,E,E1,E2 ∈ LExprs, e ∈ Exprs

x→ E Variable cell

E1 7→ E2 Flat heap cell

e⇒E Expression evaluation cell

Recalling the view syntax of example 16, their interpretations are:

Lx→ EMΓ = x 7→ 〈[E]〉(Γ)

LE1 7→ E2MΓ = 〈[E1]〉(Γ) 7→ 〈[E2]〉(Γ)

Le⇒EMΓ = e⇒〈[E]〉(Γ)

It will often be useful to describe a variable where we do not know the value. We

can derive such an assertion as:

x→ − , ∃x.x→ x

The syntactic axioms are: for all x ∈ PVars, e ∈ Exprs, x,y, z ∈ LVars, P ∈
Assts

{(x→ x ∗ P ) ∧ e⇒y} x := e {x→ y ∗ P}
{x→ x} x := alloc() {∃x,y.(x→ x ∗ x 7→ y)}

{x 7→ y ∗ (P ∧ e⇒x)} free(e) {P}
{x 7→ y ∗ (P ∧ e1⇒x ∧ e2⇒ z)} [e1] := e2 {x 7→ z ∗ P}
{y 7→ z ∗ ((x→ x ∗ P ∧ e⇒y))} x := [e] {y 7→ z ∗ x→ z ∗ P}

Every syntactic axiom must correspond to some semantic axiom (definition 11) in that

for every interpretation of the syntactic axiom, we can find a semantic axiom that justifies

it.

Parameter 17 (Syntactic small axiom soundness). Assume that for each syntactic

small axiom (P ,c, Q) ∈ SynAxioms and for any logical environment Γ ∈ LEnvs,

there exists some semantic axiom (LP MΓ,c, LQMΓ) ∈ Axioms.

The axioms for primitive heaps 17 can be seen as sound simply by interpreting them

into their underlying views.
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Program proofs are constructed using syntactic proof rules. These rules are standard

from local Hoare logics, but extend the consequence rule into a semantic consequence rule

by using the semantic consequence relation of definition 17. This presentation is used by

[22], and allows for proofs that change the instrumentation associated with assertions.

Definition 25 (Syntactic proof rules). Given assertions Assts (definition 21) and

the syntactic entailment and semantic consequence relations |=Γ and 4Γ (definition

22 and definition 23 respectively), there are two classes of proof rules: those driven by

analysis of program syntax, and those driven by analysis of assertion syntax. They

are: for all assertions P,Q,R,O ∈ Assts

Program syntax rules

Skip rule:

` {P} skip {P}

Axiom rule:

(P ,c, Q) ∈ SynAxioms

` {P} c {Q}
Sequencing rule:

` {P} C1 {O} ` {O} C2 {Q}
` {P} C1; C2 {Q}

If rule:

P |=Γ bsafe(b) ` {P ∧ btrue(b)} C1 {Q} ` {P ∧ bfalse(b)} C2 {Q}
` {P} if (b) C1 else C2 {Q}

While rule:

P |=Γ bsafe(b) ` {P ∧ btrue(b)} C {P}
` {P} while (b) C {P ∧ bfalse(b)}
Parallel rule:

` {P1} C1 {Q1} ` {P2} C2 {Q2}
` {P1 ∗ P2} C1 || C2 {Q1 ∗Q2}

Assertion syntax rules
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Frame rule:

` {P} C {Q}
` {P ∗R} C {Q ∗R}

Disjunction rule:

` {P1} C {Q1} ` {P2} C {Q2}
` {P1 ∨ P2} C {Q1 ∨Q2}

Consequence rule:

P 4Γ P
′ ` {P ′} C {Q′} Q′4ΓQ

` {P} C {Q}

Conjunction rule*:

` {P1} C {Q1} ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧Q2}

Existential elimination rule:

` {P} C {Q}
` {∃x. P} C {∃x. Q}

* The conjunction rule is only valid if the underlying view system has the primitive conjuctivity

property (definition 16).

We now show that any syntactic triple derived with our proof system is a valid triple.

Theorem 2 (Soundness of the syntactic rules). Given logical environments LEnvs (defini-

tion 20), assertions Assts (definition 21) and programs Programs (definition 4), for all

logical environments Γ ∈ LEnvs, assertions P ,Q ∈ Assts and programs C ∈ Programs,

` {P} C {Q} implies � {LP MΓ} C {LQMΓ}.

Proof. The proof is by induction on the structure of the derivation. It is straightforward, as

most of the syntactic rules have an equivalent semantic rule in theorem 1. We demonstrate

only one example of this case. We also give the existential case, which has no associated

semantic rule.

Sequential case: For any logical environment Γ ∈ LEnvs, the assertions P ,Q and O

interpret to some views p, q and o respectively. By the premises, ` {P} C1 {O} and

` {O} C2 {Q} hold. By the inductive hypothesis � {p} C1 {o} and � {o} C2 {q}
hold. By the semantic inference rules, � {p} C1; C2 {q} holds. This is equal to �

{LP MΓ} C1; C2 {LQMΓ}, hence ` {P} C1; C2 {Q} is valid.

Existential case: Assume that, for all Γ ∈ LEnvs, ` {P} C {Q}. By the induc-

tive hypothesis, � {LP MΓ} C {LQMΓ} holds. By the assumption and inductive hypothesis,

it must be that, for all Γ and V , both LP MΓ[x7→V ] and LQMΓ[x7→V ] hold. Therefore, by the

semantic conjunction rule, � {
∨
V ∈LValsLP M

Γ[x7→V ]} C {
∨
V ∈LValsLQM

Γ[x 7→V ]} holds. The
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conclusion pre-condition ∃x. P inteprets as
∨
v∈LValsLP M

Γ[x7→V ], and similarly for Q. The

result follows.

2.4.3. Additional language rules

The programming language we have defined is simple, supporting only a minimal set of

standard commands. This is sufficient for demonstrating our reasoning and for giving

examples, as the techniques of this thesis are focused on axiomatic specifications for li-

braries. The specific choices of language features (such as local variables and functions)

are orthogonal to our contributions. To ease the presentation of examples, we will occa-

sionally assume some of these richer features, but will never require them for our library

specifications.

We expect our techniques to apply to richer languages without difficulty. Partially, this

is due to our use of views [22]. The views system provides a general pattern for developing

reasoning systems. For example, results from the views paper show how any separation

algebra can be directly lifted into a view system. Existing separation logic work, such

as that on Java [56] or JavaScript [34] should be easily recast into a view. Our library

reasoning can then be directly applied. In the long term, we will use this approach to

provide richer automated reasoning, by linking with separation logic reasoning tools such

as Verifast [45].

2.5. Summary

This chapter has introduced addressed value views, a specialisation of the views framework

[22]. We will build on this foundation in the rest of our thesis, using it to provide the core

program logic for structural separation logic. There are few novel contributions in this

chapter, as it merely specialises existing work to our specific needs. However, two minor

contributions are included:

1. Views for a WHILE language: Section 2.3 gives reasoning rules for the standard

WHILE language features, if and while. As opposed to [22], which was given in

terms of more abstract language with non-deterministic choice and iteration, this

allows views-style reasoning about standard example programs.

2. Syntactic proof theory: Section 2.4 offers a syntactic proof theory for views,

adding a standard syntactic assertion language and associated syntactic Hoare rules.

This enables standard rules such as existential elimination, which are not given in

the views publications.
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3. Structural separation logic

We now turn to programming with and reasoning about libraries that manipulate abstract

data. Rather than creating data structures such as lists and trees, by imposing shapes on

heap cells via inductive or abstract predicates, we define structured heaps that store rich

data in single cells. For example, by picking structured heap values that are “entire lists”,

heaps can store a list or tree at a single address. The first and last diagrams below store a

whole list at address L, whilst the centre stores a whole tree at address R (the other cells

are simple variables):

vL

4

5

2

3

vL

4

5

3

twR

5

2 3

14

2 a 3 2

Along with these rich values, we define collections of atomic commands that manipulate

these values directly. For example, the command remove(2), which removes a value from

a list, transforms the above left-hand list heap into the right-hand list. Our choices of

structured heaps and commands are designed to give imperative machines that match the

mental model programmers have of libraries. We will give two library examples in section

3.1, working with lists and unranked trees of integers.

Reasoning about these libraries requires more than standard separation. The interesting

structure is not in the domain of the heap, but rather in the values. Standard techniques

from separation logic (section 1.2.1) are not sufficient, as we want to split the structured

values into smaller sub-data. The data splitting approaches of context or segment logic

(section 1.2.3) are also insufficient, as we want to retain the simple shape of, and reasoning

associated with, heaps. This chapter introduces structural separation logic to enable fine-

grained reasoning about these structures whilst retaining the natural heap reasoning style
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Figure 3.1.: Abstract allocation and deallocation for the sub-data 2 of the list stored at L.

of separation logic.

Structural separation logic consists of two key contributions. The first is abstract heaps.

Abstract heaps are an instrumentation for structured heaps that enables fine-grained rea-

soning about structured heaps. They are similar in shape to structured heaps, but allow

the reasoning to create abstract heap cells at structural addresses. When fine grained ac-

cess to sub-data of some rich value is desired, that sub-data can be “cut out” from its

current location, and promoted to a fresh abstract heap cell. This process, which exists

only to facilitate program reasoning, abstract allocation and deallocation, is our second

contribution.

Abstract allocation and deallocation is illustrated in figure 3.1. On the left-hand side is

a structured heap without any abstract heap cells. If we wanted to isolate the list element

2 for analysis, we can apply abstract allocation. This process finds a new abstract address

x, cuts the element 2 from the list, and places it a new abstract heap cell at address x.

The cutting is achieved using an approach similar to multi-holed contexts (section 1.2.3),

and so leaves behind a body address in the place of the element 2. Once the analysis is

complete, this body address enables abstract deallocation, in which the abstract heap cell

is destroyed, and its contents replace the body address x, a process we call compression.

Abstract allocation is like machine allocation, in that we do not know exactly which

structural address will be picked, but we do know there will be one available to choose

regardless of the addresses used in any frame. Like machine allocation, this ensures that

no possible frames can be invalidated by the creation of abstract heap cells.

Abstract allocation enables the isolation of fine grained data in abstract heap cells.

These abstract cells can then be used to give small footprints to commands that operate

on rich data. Consider a command remove(x) that removes x from a list. Via abstract

heap cells we can give an axiom to the command that describes the precise effect of
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Figure 3.2.: Derivation using abstract allocation.

removing a single list element. Proofs using abstract heaps can describe the effect of

commands only on the data used, such as in figure 3.2, in which the logical variable α

is used to contain the address used for abstract allocation. The proof first uses abstract

allocation to isolate the list element 2 in an abstract heap cell. The resultant abstract heap

behaves exactly like a normal heap, so we can use the standard frame rule to set aside the

rest of the list at L. The axiom for remove can then be applied, the frame restored, and

abstract deallocation used to merge the (now empty) data at α back into the list.

The abstract heap cells and body addresses, despite being only instrumentation (and

hence invisible to program commands), do create different instrumented structured heaps.

The various abstract heaps in figure 3.3 are all distinct, as they have differing uses of

structural addresses to cut up the data. However, once all the abstract heap cells are

compressed, they do represent the same structured heap. As our framework uses the view

system, each of these heaps are related by semantic consequence (section 2.3.3). The

structural addressing, being instrumentation, can be updated by semantic consequence.

This allows abstract allocation and deallocation to be achieved in the proof theory by the

semantic consequence rule of the program logic.

Structural separation logic can be created for many types of structured data, and can

be used to give small axioms for many types of libraries. The data and libraries we
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Figure 3.3.: Different abstract heaps for the same list. Each list heap (and tree heap)
is identical in terms of content, but has different structural addressing. The
heaps are all semantic consequences of each other.

demonstrate in this chapter are simple, allowing us to focus on the technical details of

structural separation logic. Here, we introduce two example libraries, those of lists and

trees. The tree case is similar to the list case in terms of constructing heaps, but has a

quite different set of commands. Later, we use the techniques from this chapter to reason

about larger libraries such as DOM (chapter 4) and the POSIX file system (chapter 6).

3.1. Structured data libraries

We begin by constructing imperative machines for lists and trees. We give an abstract

representation of the data, and library commands that work directly on this abstract

representation.

3.1.1. List library

We consider finite lists of unique positive integers, defined in two parts: partial lists are

sequences of numbers; and lists are partial lists wrapped in delimiters that indicate they

are complete. We split the definition this way to emphasise the structured nature of lists

as being composed of many partial lists. It will also prove convenient for defining the

atomic commands. We use unique elements to ensure each command can operate on a

guaranteed distinct element, which reduces the verbosity of our library commands1.

Definition 26 (Lists). The set of lists Lists, ranged over by l, l1, · · · , ln is defined

by induction as: for all i ∈ N+

1This choice is purely to simplify the presentation, and is not a requirement of structural separation logic
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pl ::= i | pl1 ⊗ pl2 | ∅ Partial lists

l ::= [pl] Lists

where ⊗ is associative with left and right identity ∅, and each list contains only

distinct numbers. Lists are equal up to the properties of ⊗.

Example lists are [1⊗ 5⊗∅], [6⊗ 2] and [∅]. The ⊗ operator being associative but not

commutative ensures the lists are ordered. The identity property means that [1⊗5⊗∅] is

equal to [1⊗ 5]. Note that [5⊗ 5] is not one of these lists, as the elements are not unique.

List modules typically allow programmers to work with many lists, creating, updating

and destroying them as necessary. For simplicity, we initially consider a module that works

on just a single list and will consider the multiple list case in section 3.5.2. We therefore

build list heaps by extending the variables as resource heaps (introduced in example 2)

with a single list address mapping to a complete list structure.

Definition 27 (List heaps). Given sets of program variables PVars and program

values PVals (definition 3), and lists Lists, and assuming a single heap list address

L, where L 6∈ PVars, the set of list machine heaps ListHeaps, ranged over by

lh, lh1, · · · , lhn, is defined as:

ListHeaps , {lh | lh : (PVars
fin
⇀ PVals) t ({L} → Lists)}

Notice that the list portion of the heap is a total function from a singleton domain; there

is always exactly one list in the heap. An example list heap instance is given in figure 3.4.

Consider the commands that might manipulate a list. Common operations are append-

ing an element to the back of a list, removing an element, searching the list for an element,

and finding elements adjacent to other elements. Rather than aim for the most realistic

collection of commands here, we pick a small set designed to demonstrate a range of struc-

tural manipulations. We choose the following list commands, and in chapters 4 and 6 we

will examine more realistic libraries.

1. append(i): Appends the value of variable i to the list, making it the last element.

Faults if the value of i is already in the list, or if it is not a positive integer.

2. remove(i): Removes the value of variable i from the list. Faults if the value of i is

not in the list.
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Figure 3.4.: An instance of a list heap (definition 27), storing the variables x and y and
the list L with value [3⊗ 2⊗ 5⊗ 4].

3. i := getFirst(): Assigns to i the first element of the list, or 0 if the list has no

elements.

4. j := getRight(i): Assigns to j the first element in the list that is directly to the

right of the value contained in i. If the value of i is the last element of the list,

assigns 0. Faults if the value of i is not in the list.

Recall that in primitive heaps (example 4), faults occur only when the heap contained

insufficient addresses (that is, a missing variable or unallocated heap cell). These list

commands can also fault based upon the values contained within heap addresses.

Definition 28 (List update commands). Given a set of program variable names

PVars (definition 3) and program expressions Exprs (example 5), the atomic com-

mands of the list update language are those of the variable system (example 2),

and the following additional commands: for all i, j ∈ PVars, e ∈ Exprs

c := append(e)

| remove(e)

| i := getFirst()

| j := getRight(e)

Given partial lists PartialLists (definition 26), the actions of the list commands

are: for all i, j ∈ N+, pl, pl1, pl2 ∈ PartialLists
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[〈append(e)〉](s) ,


{s[L 7→ [pl ⊗ ([e])(s)]]} if s(L) = [pl], ([e])(s) ∈ N

6 ∃pl1, pl2. pl = pl1 ⊗ ([e])(s)⊗ pl2
{ } otherwise

[〈remove(e)〉](s) ,

{s[L 7→ [pl1 ⊗ pl2]]} if s(L) = [pl1 ⊗ ([e])(s)⊗ pl2]

{ } otherwise

[〈i := getFirst()〉](s) ,

{s[i 7→ i]} if s(L) = [i⊗ pl]

{s[i 7→ 0]} if s(L) = [∅]

[〈j := getRight(e)〉](s) ,


{s[j 7→ j]} if s(L) = [pl1 ⊗ ([e])(s)⊗ j ⊗ pl2]

{s[j 7→ 0]} if s(L) = [pl ⊗ s(i)]

{ } otherwise

Notice how each command operates on the entire list heap cell, yet does not interact

with the majority of the list. For example, the successful remove case analyses the list

as [pl1 ⊗ ([e])(s) ⊗ pl2], and results in the list [pl1 ⊗ pl2]. The partial lists pl1 and pl2

are unchanged, as elements are unique so there an be no further instances of e, thus their

structure is unanalysed. A normal programmer’s intuition for these commands is that they

act only on the element(s) being operated on; the result of evaluating e in the remove case.

This is not obviously reflected in the operational actions, but will be clearly visible in the

axiomatic semantics.

This small set of commands can be used to write implementations for many library com-

mands we do not axiomatise. The specifications we will derive for these implementations

could equally well have been included as axioms for the commands. These implementa-

tions are both a sanity check and shortcut. Given a command implementation, if our

axioms allow us to derive the specification we would expect, then we have more confidence

that our subset is useful (as it proves useful programs) and complete (in that we have

sufficient primtive commands to achieve all needed manipulations of the data structure).

Moreover, if our reasoning is sound, there is no need to prove the soundness of additional

axioms for these commands. We take this approach in both our DOM and POSIX file

system examples (chapters 4 and 6 respectively).

Command implementations are also a convenient source of demonstrations for our rea-

soning. A command i := getLast() can be implemented by using getFirst, and re-
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i := getLast() , local j {
i := 0;

j := getFirst();

while (j 6= 0)

i := j;

j := getRight(i)

}

b := contains(k) , local i {
i := getFirst();

b := false;

while (i 6= 0)

if (i = k)

b := true;

else

skip;

i := getRight(i);

}

Figure 3.5.: Example programs for list commands.

peatedly applying getRight until 0 is returned. Similarly, a command contains(k) that

determines if an element stored in variable i exists in the list can be given. Both of these

examples are presented in figure 3.5.

In these examples, we assume a simple local variable construction, local p1, ..., pn

{ C }, which restricts the scope of variables p1 through pn to the program C. We justify

using such a language extension in section 2.4.3, and it is used only to aid readability of

the examples. It does not change the expressivity of the system in a meaningful fashion.

3.1.2. Tree library

The techniques we used to build the imperative machine for lists can also be used to build

a similar machine for trees. We consider trees as finite, unranked trees consisting of nodes

uniquely identified by positive integers.

Definition 29 (Trees). The set of trees Trees, ranged over by t, t1, · · · , tn, is defined

inductively as follows: for all i ∈ N+

t ::= i[t] | t1 ⊗ t2 | ∅

where ⊗ is associative with left and right identity ∅, and each tree contains unique

node identifiers. Trees are equal up to the properties of ⊗.

Some example trees are given in figure 3.6. Notice that a tree may have many root

nodes, and that their children are ordered. For convenience, we often write i[∅] as just i.
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Figure 3.6.: The example trees 5[2[∅]⊗ 3[4[∅]⊗ 1[∅]]], 3[7[∅]] and 1[∅]⊗ 6[3[∅]⊗ 7[∅]].
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Figure 3.7.: An instance of a tree heap (definition 30), storing the variable z, and the tree
5[2⊗ 3[4⊗ 1]].

As in lists, we work with a tree module that manipulates just a single tree. This is

a surprisingly realistic scenario. For example, web browsers typically work with a single

DOM tree representing the web-page. There is also only a single file system on many

operating systems.

Definition 30 (Tree heaps). Given program variables PVars (definition 3) and trees

Trees (definition 29), and assuming a single heap tree address R 6∈ PVars, the set

of tree heaps TreeHeaps, ranged over by th, th1, · · · , thn, is defined as:

TreeHeaps , {th | th : (PVars
fin
⇀ PVals) t ({R} → Trees)}

Notice that the tree at address R may contain many root nodes; there is a distinction

between roots of the tree, and addresses in the heap. One can think of this as being two

different namespaces: entire trees are stored in the heap at an address, and, once in the
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tree values, there may be many roots. A tree heap instance is given in figure 3.7.

As in lists, we pick commands designed to demonstrate different types of structural

manipulations, rather than the most realistic library. The command createNode demon-

strates how the tree can grow in size by the creation of nodes. The commands appendNode

and removeSubtree demonstrate structural manipulations that can fault based on specific

properties of the tree being analysed. The getChild command demonstrates analysis of

the tree children. Their behaviors are:

1. nID := createNode(): Creates a node using a fresh identifier, without a parent,

and assigns the new node identifier to the variable nID.

2. appendNode(pID, cID): Moves the subtree identified by the value of cID to be the

last child of the node identified by pID. Faults if either pID or cID do not identify

nodes within the tree, or if the node identified by cID is an ancestor of the node

identified by pID.

3. nID := getChild(pID, i): Assigns the identifier of the i ++ 1th child of the node

identified by pID to nID. If i is negative, or the node has fewer than i + 1 children,

assigns 0 to nID. Faults if nID does not identify a node.

4. removeSubtree(nID): Deletes the subtree identified by nID from the tree. Faults if

nID does not identity a node within the tree.

The notion of partial lists was useful in giving actions to the list commands in definition

28. For example, the remove(i) command analysed the list as [pl1⊗ s(i)⊗ pl2], and gave

the result [pl1 ⊗ pl2]. Notice that pl and pl2 were just “carried” between the input and

result. Their specific properties are ignored, so the command will work with any choice for

them. It will be similarly convenient to give actions to tree commands using single holed

tree contexts. As trees are structurally more complex, contexts will allow us to extract

sub-trees from a tree whilst ignoring the surrounding data. Tree contexts are intuitively

“trees with a hole”, and have an associated composition function that fills the hole to form

a complete tree. Note that, by construction, there will be exactly one context hole in a

single-holed tree context.

Definition 31 (Single-holed tree contexts). Given a set of trees Trees (defini-

tion 29), the set of single-holed tree contexts TreeContexts, ranged over by

ct, ct1, · · · , ctn, is defined inductively as follows: for all i ∈ N+, t ∈ Trees

ct ::= i[ct] | ct⊗ t | t⊗ ct | −
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where − is the context hole, ⊗ is associative with left and right identity ∅, and

each tree context contains unique node identifiers. Tree contexts are equal up to the

properties of ⊗.

Definition 32 (Tree context composition). Given sets of single-holed tree contexts

TreeContexts (definition 31) and trees Trees (definition 29), the tree context

composition function comp : TreeContexts → Trees ⇀ Trees is defined by

induction on the structure of tree contexts as:

comp(i[ct], t) , i[comp(ct, t)]

comp(ct⊗ t1, t2) , comp(ct, t1)⊗ t2
comp(t1 ⊗ ct, t2) , t1 ⊗ comp(ct, t2)

comp(−, t) , t

If the result would have duplicate node identifiers, comp is undefined. The instance

comp(ct, t) is written ct ◦ t.

The action for getChild in definition 34 will require the ability to calculate the length

of a list of siblings.

Definition 33 (Tree length). Given a set of trees Trees (definition 29), the tree

length function len : Trees→ N, returning the number of nodes in a tree, is defined

by induction on trees in the standard way.

The tree module consists of the following atomic commands and associated actions,

defined in terms of the above functions.

Definition 34 (Tree update commands). Given a set of program variable names

PVars (definition 3) and program expressions Exprs (example 5), the atomic com-

mands of the tree update library are those of the variable system (example 2), the

following additional commands: for all nID, cID, pID, t, i ∈ PVars, e ∈ Exprs
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c ::= nID := createNode()

| appendNode(pID, cID)

| nID := getChild(pID, e)

| removeSubtree(nID)

Given sets of trees Trees (definition 29) and single-holed tree contexts

TreeContexts (definition 31), the actions of the tree commands are as follows:

for all c, i, p,∈ N+, t, t1, t2, t3 ∈ Trees, ct, ct1, ct2 ∈ TreeContexts

[〈nID := createNode()〉](s) ,

{
s[R 7→ t1, nID 7→ i]

i ∈ N+, t1 = s(R)⊗ i[∅],

6 ∃ct, t2. s(R) = ct ◦ i[t2]

}

[〈appendNode(pID, cID)〉](s) ,


{s[R 7→ ct2 ◦ p[t2 ⊗ c[t1]]} if

s(pID) = p,

s(cID) = c,

s(R) = ct1 ◦ c[t2]

ct1 ◦∅ = ct2 ◦ p[t2]

{ } otherwise

[〈nID := getChild(pID, e)〉](s) ,



{s[nID 7→ c]} if

s(pID) = p, ([e])(s) = i

s(R) = ct ◦ p[t1 ⊗ c[t2]⊗ t3]],

i = len(t1)

{s[nID 7→ 0]} if

s(pID) = p, ([e])(s) = i,

s(R) = ct ◦ p[t],

i < 0 ∨ i ≥ len(t)

{ } otherwise

[〈removeSubtree(nID)〉](s) ,

{s[R 7→ ct ◦∅} if s(nID) = i, s(R) = ct ◦ i[t]

{ } otherwise

The actions in definition 34 are largely straightforward. The only complexity is within

appendNode, which must check that the node cID is not an ancestor of the node pID. If

it were, performing the append would create a cyclic “tree”. This property is ensured by
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c := count(n) , local d {
c := 0;

d := getChild(n, c);

while (d 6= 0)

c := c + 1;

d := getChild(n, c)

}

Figure 3.8.: Example tree program.

first splitting into the new child, and a surrounding context via ct1 ◦c[t2]. The context ct1

is re-analysed by extracting the parent (having first filled the child’s position with empty),

ct1 ◦∅ = ct2 ◦ p[t2]. This ensures that we cannot find the parent as a descendant of the

child, which is equivalent to the property we need.

As in the list module, we can define additional commands in terms of the given set. A

command count(n) that returns the number of children of node n is given in figure 3.8.

3.2. Abstract heaps

The list and tree libraries (definition 28 and definition 34 respectively) allow programs

that manipulate the abstract structures without concern for the implementation. Our

use of partial lists and single-holed contexts show that whilst the command actions are

on entire heap cells, they do not access most of the data in a cell. The majority of the

commands can be tracked to only the local sub-data they use. We now define abstract

heaps, which provide a principled approach to reasoning about updates on local sub-data.

Abstract heaps extend the structured heaps of an imperative machine (parameter 2) with

structural addresses. These addresses enable addressable values and abstract heap cells.

Addressable values are instrumentation for machine values that allow them to be cut-up

and re-joined on structural addresses via compression and decompression. In figure 3.9,

decompression uses address x cuts a list into super-data, containing the body address x,

and sub-data that was removed via the cut. With decompression, we can localise sub-data

on which we want to act. The cut data can be re-joined by compression on x.

We then use structural addresses to add abstract heap cells to structured heaps. This

extends the heap domain beyond just MachineAddrs, allowing it to store sub-data in

these “virtual” cells, using structural addresses as abstract address. Abstract heap cells

are purely instrumentation, invisible to the program, and exist to allow fine-grained access
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Figure 3.9.: Compression and decompression

to sub-data during program proofs. We call the process of creating and removing abstract

heap cells abstract allocation, and it is illustrated in figure 3.1. Abstract allocation “picks”

some fresh structural address not in use in the heap as either a body nor heap address,

uses decompression to cut the data on the chosen address, and promotes the resulting

sub-data to a heap cell. Abstract deallocation reverses this process.

Abstract heaps are built upon a choice of imperative machine. We first demonstrate their

construction via our list and tree examples. We give body addresses and compression to the

data structures, creating abstract lists and abstract trees. We then use this instrumentation

to give an informal notion of how abstract heaps can be built in these cases. Having

introduced the concepts with lists and trees, we will then generalise body addresses and

compression to data in general. Using this general presentation, we will formalise abstract

heaps.

We require a choice of structural addresses to act as both body and abstract heap

addresses in our examples. We will use the same set of structural addresses for all data.

Definition 35 (Structural addresses). Assume a countably infinite set of structural

addresses StructAddrs, ranged over by x,y, z, · · · .

3.2.1. Abstract lists and trees

Abstract lists

To define abstract heaps for lists, we must give an approach for compression and decom-

pression of list data using structural addresses. We call addressable list data abstract

lists, and define them using multi-holed contexts. We use structural addresses to label the

context holes, and the holes themselves act as body addresses.
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Definition 36 (Abstract lists). Given a set of structural addresses StructAddrs

(definition 35), the set of abstract partial lists AbsPartialLists, ranged over by

pl,pl1, · · · ,pln, and the set of abstract lists AbsLists, ranged over by l, l1, · · · , ln
is defined by induction as: for all i ∈ N,x ∈ StructAddrs

pl ::= i | pl1 ⊗ pl2 | ∅ | x Abstract partial lists

l ::= [pl] Abstract lists

where ⊗ is associative with left and right identity ∅, and each list contains only

distinct numbers and body addresses. Abstract (partial) lists are equal up to the

properties of ⊗.

Notice we define a set of AbsLists and AbsPartialLists. This is because, in abstract

heaps, whilst the root address L will store abstract lists, the abstract heap cells will store

only partial lists.

It will be useful to extract the set of body addresses present in an abstract list.

Definition 37 (Addresses of abstract lists). Given a set of abstract lists AbsLists

(definition 36) using structural addresses StructAddrs (definition 35), the ad-

dresses function addrs : (AbsLists ∪ AbsPartialLists) → P(StructAddrs)

is defined by induction as:

addrs(i) , ∅
addrs(pl1 ⊗ pl2) , addrs(pl1) ∪ addrs(pl2)

addrs(∅) , ∅
addrs(x) , {x}
addrs([pl]) , addrs(pl)

We define compression for abstract lists using standard context substitution on body

addresses. As addresses are unique, at most one will be removed by compression.

Definition 38 (Compression for abstract lists). Given a set of abstract lists AbsLists

(definition 36) using structural addresses StructAddrs (definition 35), the com-

pression function comp : StructAddrs → (AbsLists ∪ AbsPartialLists) →
(AbsLists ∪ AbsPartialLists) ⇀ (AbsLists ∪ AbsPartialLists) is defined by

induction on the structure of abstract lists as:
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comp(x, i,pl) , i

comp(x,pl1 ⊗ pl2,pl3) , comp(x,pl1,pl3)⊗ comp(x,pl2,pl3)

comp(x,∅,pl) , ∅

comp(x,y,pl) ,

pl if x = y

y otherwise

comp(x, [pl1] ,pl2) , [comp(x,pl1,pl2)]

If the result would not be a member of AbsLists, it is undefined. The application

comp(x, l1, l2) is written l1 x l2. We overload comp to also act on partial lists.

The compression operation implicitly defines decompression. Consider three abstract

lists, l1, l2 and l3, where l1 x l2 = l3. We can read the equality in both directions, stating

that l1 and l2 compress using x to form l3, and also that l3 decompresses via x into l1

and l2. This gives a notion of super-data and sub-data. As l3 decompresses to l1 and l2,

we consider l1 to be super-data of l2 and, symmetrically, l2 to be sub-data of l1.

Abstract heaps for lists

Decompression allows us to cut-up our data and build abstract heaps. Abstract heaps are

an instrumented version of structured heaps, and form the models of our local reasoning

for rich structured data. We will formally define them in section 3.4. However, they are

quite intuitive objects. For this list case, an abstract heap is an extension of the list heap

(definition 27), adding abstract heap cells. We define abstract heaps in two parts. First,

we give pre-abstract heaps for lists, which extend the structured heaps for lists by using

abstract lists as values, and allowing abstract heap cells containing abstract partial lists.

hl : (PVars
fin
⇀ PVals) t ({L}⇀ AbsLists) t (StructAddrs

fin
⇀ AbsPartialLists)

Notice that, whilst L maps to AbsLists, the structural addresses map to partial lists.

Via abstract deallocation, we shall create abstract heap cells using abstract partial lists

only. We can never remove the entire list from L, so it can store only abstract lists.

Pre-abstract lists are not yet usable for reasoning, as they may not represent consistent

data. Figure 3.10 gives the three typical problems. Pre-abstract list heap (a) contains two

x body addresses. This is ambiguous, as it connects the same sub-data to two different

super-data. This is nonsense, as data cannot belong to two super-data simultaneously- this
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Figure 3.10.: Invalid abstract list heaps.

would create a cyclical data structure. Pre-abstract list heap (b) has structural address x

present as a body address in the value at address y. Similarly, the address y is present as

a body address in the value at address x. This is a cycle, where the addressing connects

sub-data to itself. Data cannot be super-data of itself, so this is nonsense. Finally, pre-

abstract list heap (c) correctly uses structurally addresses, but after abstract cell x is

compressed, will represent an invalid list containing two 3 elements. Structural addresses

must always compress to valid instances of the data structure.

The abstract list heaps are those pre-abstract list heaps without these problems. They

represent structured list heaps that have used structural addresses to sensibly cut-up lists,

so that by repeatedly apply abstract deallocation, they return to a normal structured list

heap. However, these abstract heaps may be partial, where some of the sensibly cut-up

data is absent. In these cases, an abstract heap is useful if we can find some additional

resource that, when added, results in a abstract heap that can be deallocated to a normal

heap.

Figure 3.11 represents three valid abstract lists heaps. Abstract list heap (a) is a normal

structured list heap, using no structured addressing. Such heaps are always good abstract

heaps. Abstract list heap (b) represents one abstract allocation, where address x has been

used. By deallocating x, we return to a normal heap. Abstract list heap (c) represents

a single abstract heap cell. Even though there is nothing to deallocate, it is still a valid

abstract heap, as we can find resource (e.g. the cell L from (b)) that, when added, would

allow it to collapse to a structured heap. These three heaps are, respectively, the models

of the pre-conditions at each step of figure 3.2.

As abstract heaps are the models of our reasoning, we must provide an interpretation

102



L

4

5

2

3

x

2

(a)

xL

4

5

x

3 2

(b) (c)

Figure 3.11.: Valid abstract list heaps.

of them as machine heaps via the reification process used in the framework (chapter 2).

We use a reification of completion. The completion process takes a heap, augments it with

additional data, them uses abstract deallocation repeatedly until no further addresses can

be deallocated. If the result is a structured heap, it is kept as a result. The completion of

pre-abstract heap x 7→ 2 is given in figure 3.12.

Abstract trees

Just as with lists, body addresses can be added to trees to enable the creation of abstract

tree heaps. We will follow this pattern for all future examples: given a data structure, we

add structural addresses to the structure, define an addrs function, and give a notion of

compression comp.

Definition 39 (Abstract trees). Given a set of structural addresses StructAddrs

(definition 35), the set of abstract trees AbsTrees, ranged over by t, t1, · · · , tn, is

defined inductively as follows: for all i ∈ N+, x ∈ StructAddrs

t ::= i[t] | t1 ⊗ t2 | ∅ | x

where ⊗ is associative with left and right identity ∅, and each tree contains only dis-

tinct tree identifiers and body addresses. Abstract trees are equal up to the properties

of ⊗.

The addresses and compression functions for abstract trees are defined similarly to the

list case.
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Figure 3.12.: Part of the completion for an abstract list heap x 7→ 2. The set is infinite,
consisting of all possible lists containing element 2. We do not consider
program variables.

Definition 40 (Addresses of abstract trees). Given a set of abstract trees AbsTrees

(definition 39) on structural addresses StructAddrs (definition 35), the addresses

function for abstract trees addrs : AbsTrees → P(StructAddrs) is defined

similarly to definition 37.

Definition 41 (Compression for abstract trees). Given a set of abstract trees

AbsTrees (definition 39) on structural addresses StructAddrs (definition 35), the

compression function for abstract trees comp : StructAddrs→ AbsTrees→
AbsTrees⇀ AbsTrees is defined similarly to definition 38. As there, the instance

comp(x, t1, t2) is written t1 x t2.

Abstract tree heaps are very similar to the abstract list heaps introduced earlier. The

type of the pre-abstract tree heaps is:

ht : (PVars
fin
⇀ PVals) t ({R}⇀ AbsTrees) t (StructAddrs

fin
⇀ AbsTrees)
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The abstract tree heaps are, as in the list case, the pre-abstract tree heaps with well-

formedness conditions. They must not have ambiguity nor cycles in their structural ad-

dressing, no can the addressing hide invalid data. Three example abstract tree heaps, all

representing the same structured heap, are:
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With these heaps, we can use abstract allocation to create local-reasoning style proofs,

such as the following for c := getChild(3, 1).

c := getChild(3, 1)

c := getChild(3, 1)

⎧
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51° 49' 88'' Φ

  0° 17' 68'' λ
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Figure 3.13.: A map of the Imperial College South Kensington campus area, and its po-
sition within the United Kingdom. Below the map are three methods of
finding the department of Computing: (a) some street directions from a
known location, (b) latitude and longitude, and (c) the department’s unique
name.

3.2.2. Formalising abstract heaps

We have introduced abstract lists and abstract trees, using compression on structural body

addresses to enable the cutting up of rich data. This allowed us to also introduce abstract

heaps, where the structural abstract addresses act as instrumentation atop structured

heaps. We now generalise these concepts, giving a notion of compression for arbitary rich

data, and using it to formalise the construction of abstract heaps.

To add compression to lists and heaps, we used multi-holed contexts. The context holes

acted as body addresses within data, and context application was compression. We now

show that, with minor changes, the multi-holed context algebras of [21] can be used to

give a generally useful notion of addressing in data. We will not focus on the context-like

nature of compression and holes, instead treating them as structural addresses in data.

We explain why via an analogy of maps.

Figure 3.13 contains a map of the area around the Department of Computer Science
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at Imperial College London. The dot at the top represents a nearby monument, the

Albert Memorial statue. The central via an buildings are the college. For the purposes

of this analogy, let the area mapped be our data. Below the map are three possible

descriptions for the location of the department. On the left are a set of walking directions:

Start at the statue, follow the highlighted roads, and you will arrive at the department.

Secondly, there are longitude and latitude co-ordinates. Finally, we have simply the name

of the department. All three identify the department in the mapped area: the first by a

relationship with something else, the second by some property of the current building that

houses it, and the third by a unique characteristic. Because all tell us how to identify a

smaller area within the map, we consider the department sub-data of the mapped area.

However, we do not consider all of these descriptions to be addresses. A good address is

one that identifies the target, no matter the frame of reference. Notice that the college is

sub-data of the mapped area, but the area itself is sub-data of the entire United Kingdom.

The walking directions are therefore not good directions in general; their starting point

is just “Albert Memorial Statue”, and there are many such statues in the UK. They will

take you to a different place when when starting at the wrong statue. The co-ordinates

are also not a good address. Were the department to move, they would no longer allow

one to find it, as they identify the building rather than the department itself. However,

the name of the department will aways identify it. It may not tell you how to find it, but

it will certainly allow you to determine you have reached the right place.

We will use addresses to refer to sub-data within structures, and therefore need addresses

that identify not just single data, but entire sub-structures. Moreover, the data will be

mutated by program commands. We therefore need addresses that will be robust under

mutation. They must survive the creation, destruction, and update of the data they are

addressing. Much like the “department name” address above, we cannot use addresses

that are tied to some transient property of the data.

Structural addresses will give us these properties. Compression and decompression using

unique body addresses, when added as instrumentation, ensures that no machine command

will have knowledge of them. We can think of these labels as “temporary signs”, in that

when we want to identify some sub-data, we erect a structural address, which gives us

both a handle for the sub-data, and its relationship with the super-data. When we no

longer need the sub-data, the signs are torn down, and may be reused elsewhere. Consider

the following version of the figure 3.13 map. It represents the same area as before, but

using structural addressing and decompression, a region within it has been highlighted.
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x

x

We have no knowledge of the building that stands there, not even its name. However,

the decompression using a structural address means it is clearly deliniated within the data.

As long as the address x is not removed or duplicated, we will be able to find the region

just by looking for x. Addresses need not tell us specifically how to find sub-data, They are

not necessarily instructions, but rather unique “tags” or “handles’. As instrumentation

layed over values, we will be able to identify them as distinct elements inside many types

of data.

To capture our informal description, we define structural addressing algebras. These

extend some set of values with structural addressing. Structural addressing algebras form

the basis of abstract heap construction. If Values are the machine values of some struc-

tured heap, and (Values,StructAddrs,Data, addrs, comp) is a structural addressing

algebra on Values, then Data are the values stored in the associated abstract heaps.

The addresses StructAddrs form the body addresses of the data. The definition of

compression and decompression are given by comp. The addresses function addrs helps

limit the system to sane choices of comp.

Definition 42 (Structural addressing algebra). Given an arbitrary countable set of

values Values, a structural addressing algebra on Values consists of a countably

infinite set of structural addresses StructAddrs (definition 35), a countable set of

addressable data Data, an addresses function addrs, and a compression function

comp:
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Structural addressing

algebra
=

 StructAddrs,Data,

addrs : Data→ P(StructAddrs),

comp : StructAddrs
fin→ Data→ Data⇀ Data


where StructAddrs is ranged over by x,y, z, · · · , Data is ranged over by

d, d1, · · · , dn, and the instance comp(x, d1, d2) is written d1 x d2. The following prop-

erties hold:

1. Value containment : Values are addressable data, Values ⊆ Data.

2. Unaddressed values: For all v ∈ Values, addrs(v) = ∅

3. Address properties: For all d1, d2 ∈ Data and x ∈ StructAddrs, if d1 x d2 is

defined then:

a) Containment : x ∈ addrs(d1).

b) Non-overlap: addrs(d1) ∩ addrs(d2) ⊆ {x}

c) Preservation: (addrs(d1) \ {x}) ∪ addrs(d2) = addrs(d1 x d2)

4. Identity : For all d ∈ Data and x ∈ StructAddrs, there exists some dx ∈
Data such that dx x d = d.

5. Arbitrary addresses: For all d1 ∈ Data and x,y ∈ StructAddrs where x ∈
addrs(d1) and y 6∈ addrs(d1) or y = x, there exists dy ∈ Data such that d1 x dy

is defined, and that for all d2 ∈ Data, if d1 x d2 is defined, then d1 x dy y d2 =

d1 x d2.

6. Compression left-cancellativity : For all d1, d2, d3 ∈ Data and x ∈
StructAddrs, if d1 x d2 = d1 x d3, then d2 = d3.

7. Compression quasi-associativity : For all d1, d2, d3 ∈ Data and x,y ∈
StructAddrs where y ∈ addrs(d2) and either y 6∈ addrs(d1) or x = y,

(d1 x d2) y d3 = d1 x (d2 y d3).

8. Compression quasi-commutativity : For all d1, d2, d3 ∈ Data and x,y ∈
StructAddrs where x 6∈ addrs(d3) and y 6∈ addrs(d2), (d1 x d2 y )d3 =

(d1 y d3) x d2.

where undefined terms are considered equal.

These algebras are a minor variant on the multi-holed context algebras of [21]. Specifi-
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cally, we have no longer require a number of the identity properties previously used. We

also require that the algebra be built upon some set of values, representing unaddressed

data.

The following properties of structural addressing algebras are useful:

• Body addresses are optional: The value containment property allows us work

with abstract heaps that contain complete values (that is, values not containing any

body addresses). This will ensure that normal structured heaps are a subset of ab-

stract heaps. The unaddressed values property ensures that the choice of addressing

does not conflict with data already present in values.

• We can always find an address on which to decompress: The arbitrary ad-

dresses property states that, if data can be decompressed, it can be decompressed

using infinitely many addresses. Consider the decompression d1 x d2. We can find

an infinite subset of s ⊂ StructAddrs such that addrs(d1) ∩ s = ∅, as each data

is finite, and there are infinitely many addresses. For any y ∈ s, there must be

some dy whered1 x dy and d1 x y y d2 is defined and equal to d1 x d2 by the arbi-

trary addressing property. This last equality ensures that the new address has not

meaningfully altered the structure of the data, as no matter what data is eventually

placed into the address y, it will give the same outcome as it did for address x.

This will allow abstract allocation where, if it happens that we chose an address that

was already in use, we can find another. This will be useful in constructing abstract

heaps, as abstract allocation will always require a fresh address to allocate a new

abstract heap cell.

• Data can be extended: The address preservation, quazi-associativity and quazi-

commutativity properties ensure that incomplete data are separate and can be ex-

tended.

Take some d ∈ Data that we wish to work with. To extend it “downward” with

further sub-data, we can find some dd and x where d x dd is defined. To extend it

upward with further super-data, we can find some du and y where du y d is defined.

Quazi-associativity means that we need not consider which extension we knew about

first: du y (d x dd) and (du y d) x dd are always equal. Notice that it may not be

defined even if both parts are individually defined: address preservation ensures that

the contained addresses will be the same regardless of which compression occurs first,

but it may be that du and dd are incompatible (e.g. both contain the same node

identifier in the tree case).
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Quazi-commutativity is similar, but covers the case where we have more than one

sub-data; e.g. d x dd1 and d y dd2 both being defined for some data, and x 6= y. In

this case, d x dd1 y dd2 = d y dd2 x dd1. Notice that whichever compression occurs

first, address preservation ensures that the other address will not be destroyed.

These two cases ensure that we are free to extend data by collapsing new data into

body addresses. The order of these extensions is irrelevant, as long as we do not

introduce ambiguous addressing. Moreover, extending data via one address does not

remove an existing ability to extend it via another. We can manipulate these data

separately.

Both the abstract lists and abstract trees we defined are structural addressing algebras.

Both follow follow directly from the definitions (e.g. structural addresses in definition 35

and abstract lists 36), and from compression being defined as linear substitution (definition

38).

Lemma 4 (Structural addressing algebra for lists). Given lists Lists and abstract lists

AbsLists (definition 26) and definition 36 respectively) and structural addresses StructAddrs

(definition 35), the tuple (Lists,AbsLists,StructAddrs, addrs, comp) is a structural

addressing algebra.

Lemma 5 (Structural addressing algebra for trees). Given trees Trees and abstract

trees AbsTrees (definition 29 and definition 39 respectively) and structural addresses

StructAddrs (definition 35), the tuple (Trees,AbsTrees,StructAddrs, addrs, comp)

is a structural addressing algebra.

We now formalise abstract heaps using structural addressing algebras. These heaps

build upon a choice of structured heaps, using a structural address algebra to give notions

of compression to the values, and structural addresses to add abstract heap cells.

Abstract heaps are the instrumented heaps associated with a choice of structured heap.

Throughout this section, we will assume some choice of the following:

Assumptions 1 (Objects for abstract heap construction). Assume the following param-

eters:

• A choice of underlying imperative machine on which to build an abstract heap. This

includes machine addresses MachineAddrs, values MachineVals and structured

heaps StructHeaps (parameters 1 and 2).

• The structural addresses of definition 35.
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Figure 3.14.: One complete, and two incomplete abstract heaps. Heap (a) represents an
abstract heap where all addresses used are present. Heap (b) has body
address x matching with abstract heap address x. However, the body address
z has no corresponding heap address. Heap (c) has body addresses w and
z with no matching heap addresses. Moreover, the heap address y has no
matching body address.

• A choice of structural addressing algebra (definition 42) on MachineVals using

StructAddrs: (MachineVals,StructAddrs,Data, addrs, comp).

We build the definition of an abstract heap for the objects in assumptions 1. As abstract

heaps are a superset of standard structured heaps, the set of instrumented addresses for

them are the machine addresses plus a set of structural addresses.

Definition 43 (Abstract heap addresses). Given the objects of assumptions 1, the

set of abstract heap addresses Addrs, ranged over by a,a1, · · · ,an, is defined as:

Addrs ,MachineAddrs ∪ StructAddrs

The values stored in abstract heaps are drawn from the data of the structural algebra.

Consider figure 3.14. Abstract heaps may be complete. Either they use just machine

addresses and values or, as in case (a) of the figure, they are use structural addressing but

data compress together to form machine values. Abstract heaps may also be partial, as

in cases (b) and (c). These heaps consist of abstract heap cells with no matching body

address or values containing body addresses that are not present in the heap domain.

We build the definition of abstract heaps in two stages. First, we define pre-abstract

heaps, which are the näıve definition formed using the data of a structural addressing alge-

bra as instrumented data. These heaps will have the undesirable properties we examined

in the list case (figure 3.10). We test for these properties by defining the collapse process,
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Figure 3.15.: On the left, an ambiguous pre-abstract heap, where the same address is used
by two bodies. On the right, a cyclic pre-abstract heap, where structural
addressing creates data that is connected to itself.

which compresses the structural addresses within abstract heaps (in essence, undoing ab-

stract allocation). We then define the abstract heaps as these pre-abstract heaps which

collapse to a concrete structured heaps.

Definition 44 (Pre-abstract heaps). Given the objects of assumptions 1 and ad-

dresses Addrs (definition 43), the set of pre-abstract heaps PreAbsHeaps, ranged

over by ph,ph1, · · · ,phn, have the type:

PreAbsHeaps =
{

ph | ph : Addrs
fin
⇀ Data

}
Pre-abstract heaps can be seen the union of three types of heap.

1. By construction, they contain all normal structured heaps (this follows from the

value containment property of structural addressing algebras definition 42, and the

addresses of definition 43).

2. They contain heaps with sensible uses of structural addressing. This means the val-

ues are either complete values, or structured data representing decompressed values

that could be compressed together again.

3. They contain nonsensical uses of addressing, or use addressing to disguise badly

formed data. These heaps describe no structured data at all. Their use of structural

addresses may be ambiguous, where multiple values contain the same body address.

They may also be cyclic, such that addressing connects data to itself. These cases

are illustrated in figure 3.15.

The set of abstract heaps will be defined as those pre-abstract heaps with sensible

addressing (points 1 and 2 above). We will filter out the nonsensical heaps via the collapse
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operation. The single-step collapse relation describes collapsing one sub-data associated

with some structural address in the heap domain into the matching body address of one

super-data in the co-domain. It does this only if there is exactly one place in which the

compression can occur (so that ambiguous addresses remain uncompressed).

Definition 45 (Single-step collapse relation). Given the objects of assumptions 1,

the single-step collapse relation ↓⊂ PreAbsHeaps × PreAbsHeaps is defined

such that, for all ph1,ph2 ∈ PreAbsHeaps, (ph1,ph2) ∈↓ if and only if both:

1. there exists some x ∈ StructAddrs and some unique a ∈ Addrs such that

x ∈ dom(ph1), a ∈ dom(ph1), a 6= x, x ∈ addrs(ph1(a)) and ph1(a) x ph1(x)

is defined;

2. the abstract cell at address x has been compressed into the matching

body address, and removed from the heap; that is, ph2 = ph1[a 7→
ph1(a) x ph1(x)]�dom(ph1)\{x}.

An element (ph1,ph2) ∈↓ is written ph1 ↓ ph2. The fact 6 ∃ph2. ph1 ↓ ph2 is

written ph1 6↓.

This single-step collapse removes exactly one structural address from a pre-abstract heap.

The repeated use of the single-step collapse is expressed in the collapse relation.

Definition 46 (Collapse relation). Given the objects of assumptions 1 and the single-

step collapse relation of definition 45, the collapse relation, ↓∗⊂ PreAbsHeaps×
PreAbsHeaps, is the reflexive, transitive closure of the single-step collapse relation

↓. If (ph1,ph2) ∈↓∗, we write ph1 ↓∗ ph2.

The collapse relation can reveal invalid pre-abstract heaps, by reducing them to a form

where no further collapses are possible. As this process essentially performs repeated

abstract deallocation, if it “gets stuck” at any point, then the starting point cannot have

been created via sensible uses of abstract allocation. For example, the heap R 7→ 5[2⊗x]∗
x 7→ 3[1] ∗y 7→ 7[x] is stuck; it can collapse no further. The only body address (x) is used

ambiguously, and the single-step collapse relation will collapse only if there is a unique

heap cell into which it can compress. Analogously, the heap x 7→ 5[2⊗y] ∗y 7→ 3[x⊗ 1] is

cyclic, and has two collapses that go no further: x 7→ 5[2⊗3[x⊗1]] or y 7→ 3[5[2⊗y]⊗1].

Take any pre-abstract heap ph and machine heap h. If ph ↓∗ h, then it must be that

the structural addressing used in ph was consistent, as every address could be compressed
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away until only complete data remained. If this is possible, then h is the only machine

heap that the collapse process can generate from ph. We give the details of the proof in

the appendix, section A.2. However, the result is easy to state.

Theorem 3 (Unique collapse). For all ph1 ∈ PreAbsHeaps, if there exists

h ∈ StructHeaps such that ph1 ↓∗ h, then for all ph2 ∈ PreAbsHeaps, ph1 ↓∗ ph2

and ph2 6↓ implies ph2 = h.

This theorem is about pre-abstract heaps that are complete, in that they collapse to a

structured heap. However, as stated, we will also work with partial pre-abstract heaps

(figure 3.14). These heaps are critical, as they will represent abstract heaps where some

of the data has been “framed off’, and so will form the models of our local reasoning. We

must therefore determine which pre-abstract heaps represent partial abstract heaps, a goal

we achieve with completion. Completion adds in arbitrary extra resource to the domain

of a pre-abstract heap, then determines if the result can collapse to a structured heap. If

this was possible, then the partial heap must represent a portion of at least one useful

abstract heap. If there is no additional resource we can add to which allows a pre-abstract

heap to collapse to a structured heap, then it must be nonsense.

The completion process must consider adding both abstract heap cells and machine

addressed heap cells. Recall figure 3.14. The heap labelled (b) will require an abstract

heap cell addressed by z to complete the tree structure. The heap labelled (c) will require

three heap cells to complete the tree structure: abstract cells w and z, plus a machine cell

at R.

Definition 47 (Pre-abstract heap completions). Given the objects of assumption 1

and pre-abstract heaps PreAbsHeaps (definition 44), the completions of a pre-

abstract heap, (|·|) : PreAbsHeaps→ P(StructHeaps), are defined as:

(|ph1|) ,
{
s ∈ StructHeaps ph2 ∈ PreAbsHeaps, (ph1 t ph2) ↓∗ h

}
A pre-abstract heap ph is called completable if (|ph|) 6= ∅.

We define the abstract heaps as all those pre-abstract heaps which have completions.

Definition 48 (Abstract heaps). Given the objects of assumption 1, the abstract

heaps AbsHeaps, ranged over by h,h1, · · · ,hn, are those pre-abstract heaps which

are completable.
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AbsHeaps , {ph ∈ PreAbsHeaps | (|ph|) 6= ∅}

Both ambiguous and cyclic pre-abstract heaps have no completions, and are thus not

abstract heaps. Recall figure 3.15. The ambiguous left-hand heap can never collapse

to a machine heap, as the collapse process will never be able to completely remove the

abstract cell x because it exists twice as a body address. The right-hand heap will never

complete, as the collapse process will eventually reduce it to either x 7→ 5[2⊗ 3[x⊗ 1]] or

y 7→ 3[5[2 ⊗ y] ⊗ 1]. It will collapse no further, as to get rid of, e.g., body address x, it

would have to have an abstract heap cell addressed x, which is not possible as x already

exists.

Lemma 6 (Abstract heaps are unambiguous). All h ∈ AbsHeaps are unambiguous, in

that there are no x ∈ StructAddrs such that there exists a1,a2 ∈ Addrs with x ∈ h(a1)

and x ∈ h(a2).

Lemma 7 (Abstract heaps are acyclic). All h ∈ AbsHeaps are acyclic, in that there

are no structural addresses x ∈ StructAddrs and (possibly empty) chain of single-step

collapse steps such that h ↓∗ hn with x ∈ addrs(hn(x)).

The proofs of these lemmas are in in the appendix, lemmas 28 and 29. Therefore, ab-

stract heaps are either: complete machine heaps using no structural addressing; abstractly

addressed heaps that collapse to complete machine heaps, so the addressing is merely a

re-expression of the concrete data; or heaps in which structural addresses are present, but

some super- or sub-data is not present. We can see any of these situations as describing a

heap which is consistent. It may be that the heap is incomplete, but there must exist at

least one extension to it that would result in a concrete structured heap.

3.3. Reasoning about abstract heaps

Reasoning with abstract heaps follows the pattern introduced in chapter 2. We first

show that abstract heaps are instrumented structured heaps (parameter 8), and have

primitive reification and composition compatible with the notion of views (definition 8).

This ensures that our framework can be used with abstract heaps, and so provides us with

a sound Hoare logic for program verification.

We select InstHeaps = AbsHeaps in our framework. As the completion function on

abstract heaps removes all structural addressing, generating the set of heaps consistent

with the addresses, we pick the it to act as primitive reification.
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Definition 49 (Primitive reification for abstract heaps). Given the completion func-

tion (|·|) (definition 47), the primitive reification function for abstract heaps,

T:UAbsHeaps→ P(StructHeaps), is defined as:

ThU = (|h|)

Primitive composition for abstract heaps is disjoint function union, if the usage of struc-

tural addresses remains sensible.

Definition 50 (Primitive composition for abstract heaps). The primitive compo-

sition function for abstract heaps, • : AbsHeaps → AbsHeaps ⇀ AbsHeaps,

is defined as:

h1 •h2 ,

h1 t h2 if h1 t h2 ∈ AbsHeaps

undefined otherwise

We must prove associativity, commutativity and unit properties for primitive heap com-

position. The following lemma is helpful in this.

Lemma 8 (Sub-heaps of an abstract heap are abstract heaps). Let h ∈ AbsHeaps. Then,

for all ph1,ph2 ∈ PreAbsHeaps if h = ph1 •ph2 then ph1,ph2 ∈ AbsHeaps.

Proof. By definition, a pre-abstract heap ph ∈ PreAbsHeaps is an abstract heap if we

can find some ph′ and h ∈ StructHeaps such that ph t ph′ ↓∗ h.

Assume that h = ph1 •ph2, ph1,ph2 ∈ AbsHeaps. By definition, this means h =

ph1 t ph2. Moreover, as h ∈ AbsHeaps, there exists ph3 ∈ PreAbsHeaps and h ∈
StructHeaps such that htph ↓∗ h. Take ph1, and let ph′1 = ph2tph3. By associativity

and commutativity of t, it follows that ph1 t ph′1 ↓∗ h, ergo ph1 ∈ AbsHeaps. Similar

reasoning generates ph2 ∈ AbsHeaps.

Lemma 9 (Primitive composition associates and commutes). The primitive composition

operator for abstract heaps • (definition 50), associates and commutes with unit {} → {}.

Proof. Let h1,h2,h3 ∈ AbsHeaps. Then:

• Associativity: We must show (h1 •h2) •h3 = h1 •(h2 •h3). Assume (h1 •h2) •h3

is defined. Then, by lemma 8, the definition of • and the associativity of t, (h2th3) is
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a defined abstract heap. Theorem 3 and associativity of t ensures that h1t(h2th3)

is defined, and equal to (h1 •h2) •h3. The result follows.

• Commutativity: We must show h1 •h2 = h2 •h1. This follows directly from the

definition of • as disjoin function union, and the commutativity thereof.

• Unit: We must show h1 • {} → {} = h1. This follows directly, as h1 • {} → {} =

h1 t {} → {} = h1.

Therefore, abstract heaps with the above notions of reification and composition is an

addressed value view (definition 8). This, along with the results of our framework (chapter

2) ensures a sound local Hoare reasoning system.

Definition 51 (Abstract heaps build addressed value views). Taking the set of in-

strumented heaps as AbsHeaps, primitive reification as (|·|) (definition 49), primitive

composition as • (definition 50 and the identity as the identity function {} → {}, the

following addressed value view is generated:

(P(AbsHeaps), b·c, ∗, 0)

Reification

We have selected the completion function (definition 47) as our reification operation. This

is a natural choice, as it means partial heaps are interpreted as all the machine heaps

which they could plausibly represent. However, this choice does result in intuitionistic

reasoning, similar to example 11. This is because the completions provide arbitrary ad-

ditional resource, rather than just the resource needed to account for partial structured

data. We can define an extensional notion of completions as an alternative, which adds

only heap cells needed to account for missing structural addresses.

Definition 52 (Extensional Pre-abstract heap completions). Given the objects

of assumption 1, the extensional completion of a pre-abstract heap (|·|) :

PreAbsHeaps→ P(StructHeaps) is defined as:
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(|ph|) ,

 s ∈ StructHeaps

ph′ ∈ PreAbsHeaps, (ph t ph′) ↓∗ s,
∀a ∈ dom(ph′). a ∈ StructAddrs

=⇒ ∃b ∈ dom(ph). a ∈ addrs(ph(b)),

6 ∃a ∈ dom(ph′). ph(a) = s(a)


There are two new conditions on this when compared to definition 47. The first states

that new abstract heap cells are added only to account for body addresses that had

no abstract heap cell with a matching structural address. The second ensures that no

heap cells are added that remain unchanged during the collapse process (and so were not

needed for collapsing). Therefore, the only data added is that which enables a previously

impossible collapse step.

We call this different completion extensional as it extends the structured data to ac-

count for partial data. We call the choice of definition 49 intuitionistic to match the

previous separation logic terminology. In this thesis, we use intuitionistic completions

unless otherwise stated.

Comment 5. The intuitionistic approach extends data to complete it, and extends

the heap with arbitrary cells. The extension approach is designed to only extend

data, but can still generate new heap cells to ensure that all abstract heap cells have

a machine heap cell into which they can collapse. I choose to use the intuitionistic

approach, as the extensional definition seems rather a “half way house”. It can be

used to provide arbitrary additional structured data with, for example, heaps such as

x 7→ ∅ (an abstract list heap consisting of one abstract cell with no contents), but

provides at most one machine heap cell. I do not find it useful to allow one and not

the other, and given that we must provide some level of completions to give meaning

to partial abstract heaps, working with the intuitionistic case seems the most natural

choice.

3.3.1. Data assertions

That abstract heaps form an addressed value algebra (definition 51) ensures our framework

provides a sound Hoare logic using abstract heaps as models. We need only create an

assertion language to describe them. We use two types of syntactic assertion. The first

type, abstract data assertions, describes abstractly addressed data, and will largely be
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defined on a model-by-model basis. These assertions describe the contents of structured

and abstract heap cells, and there will be different assertion languages for lists, for trees,

and for the DOM and POSIX examples of later chapters. However, all these languages

must support a set of common operations, including compression.

The second type, abstract heap assertions, will be common to all libraries, and

describes abstract heaps themselves. These assertions are parameterised on the data

assertions. The abstract heap assertions describe entire abstract heaps, including the cells

and separation between them.

Abstract data assertions

The set of assertions describing structurally addressed data consists of assertions useful

for all types of data, and those chosen for specific data models.

Definition 53 (Assertions about arbitrary structurally addressed data). Given a set

of logical variables LVars (parameter 13) and logical expressions LExprs (parameter

14), the set of data assertions DataAssts, ranged over by φ, φ1, · · · , φn, is defined

by induction as: for all α,x ∈ LVars, E ∈ LExprs

φ ::= φ1 ∧ φ2 Conjunction

| φ1 ∨ φ2 Disjunction

| φ1 ⇒ φ2 Implication

| false Falsity

| ∃x. φ Existential logical variable

| E Logical expression

| φ1 α φ2 Address compression

| �α Address availability

| ψ Data-model specific assertions

where the data-model specific assertions are defined on a data model by data model

basis.

The majority of these assertions are standard. Of note are address compression and

address availability. Address compression φ1 α φ2 describes data created by compressing

sub-data φ2 into super-data φ1 on the body address contained in logical variable α. This is

a binding operation, so that α is bound within φ1. Recalling that decompression is defined

in terms of compression, address compression also allows us to describe data which can be

decompressed. The assertion will be used to describe situations where φ2 can be abstractly
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allocated. The address availability assertion �α describes data containing body address

α. Ergo, it describes incomplete data; data in which some sub-data can be compressed.

This will be used to describe abstract deallocation.

The data assertions are interpreted with logical environments into sets of data.

Definition 54 (Data assertion interpretation). Given logical expressions with evalu-

ation function 〈[·]〉(Γ) (parameter 14) on logical environments LEnvs (definition 20),

data assertions DataAssts (definition 57), and data Data of some structural ad-

dressing algebra (definition 42), the assertion interpretation function L·M· : LEnvs→
DataAssts→ P(Data) must satisfy: for all φ1, φ2 ∈ DataAssts,Γ ∈ LEnvs

Lφ1 ∧ φ2MΓ , Lφ1MΓ ∩ Lφ2MΓ

Lφ1 ∨ φ2MΓ , Lφ1MΓ ∪ Lφ2MΓ

Lφ1 ⇒ φ2MΓ , (Data \ Lφ1MΓ) ∪ Lφ2MΓ

LfalseMΓ , ∅
L∃x. φMΓ ,

⋃
x∈LValsLφM

Γ[x7→x]

LEMΓ , 〈[E]〉(Γ)

Lφ1 α φ2MΓ , {d1 x d2 | d1 ∈ Lφ1MΓ, d2 ∈ Lφ2MΓ,x = Γ(α)}
L�αMΓ , {d ∈ Data | Γ(α) ∈ addrs(d)}
LψMΓ , Defined on model-by-model basis

The majority of the interpretations are standard. As stated, address compression de-

scribes data that results can be de-compressed into two two sub-data on an address.

Address availability describes data that will accept some sub-data into the specified struc-

tural address. The data model specific assertions will depend on the data structure being

considered, and will typically be syntactic versions of the data structure algebra.

3.3.2. Abstract heap assertions

Recall the heap cell assertions used in our primitive heap example (example 17). We

define a similar abstract heap cell assertion here, where the values of the cell are described

using the data assertions of definition 57. We also include standard variable cells, and the

assertion that describes expression evaluation.

Definition 55 (Abstract heap assertions). Given program variables PVars (defi-

nition 3), logical expressions LExprs (parameter 14), addresses Addrs (definition
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43), data assertions DataAssts (definition 57), the abstract heap cell assertions are

defined as: for all x ∈ PVars,E ∈ LExprs,a ∈ Addrs, φ ∈ DataAssts, e ∈ Exprs

P ::= x→ E Variable cell

| E 7→ φ Heap cell

| e⇒E Expression evaluation

Given a logical expression evaluation function 〈[·]〉(Γ), (parameter 14), the assertion

interpretations are:

Lx→ EMΓ , {{x→ V } | V ∈ 〈[E]〉(Γ)}
LE 7→ ψMΓ , {{a 7→ d} | a = 〈[E]〉(Γ), d ∈ LψMΓ}
Le⇒EMΓ , {v ∈ Views | ∀s ∈ bvc. ([e])(v) = 〈[E]〉(Γ)} ∩ safe(()e)

Notice that, as Addrs contains both normal and structural addresses, we need only one

assertion to describe both standard heap cells and abstractly addressed cells. Abstract

heap assertions allow us to describe entire abstract heaps.

3.3.3. Abstract allocation

We have now given the constructions of abstract heaps, shown how they form models of

our reasoning framework (chapter 2), and created a general assertion language for them.

We now demonstrate how abstract heap cells are created and destroyed in the reasoning

process. The key observation is that two abstract heaps differing only by uses of abstract

allocation and deallocation of some data are identical under reification on abstract heaps.

Recalling figure 3.1 (the diagram of which is reproduced below for convenience), both sides

of the allocation have identical reifications, as ↓ collapses x and produces the original list

(definition 49).
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Recall the semantic consequence relation defined in 17. It allows the instrumentation

associated with heaps to be altered in proofs, as long as their reifications are not mean-

ingfully changed under any frames. This is precisely the property we require for abstract

allocation, if we can be assured that allocating a new abstract heap cell does not clash with

any others. We can guarantee this with the standard technique of existentially quantifying

over possible addresses (which we have previously used for primitive heap allocation in

example 6 and tree node allocation in definition 62). The following semantic equivalence,

which we call the abstract allocation and deallocation property, is therefore justified:

Theorem 4 (Abstract allocation and deallocation). Given the semantic consequence re-

lation 4Γ (definition 23), data assertions DataAssts (definition 57), abstract heap as-

sertions Assts (definition 55) and logical variables LVars (parameter 13), the following

semantic equivalence is valid: for all α, β ∈ LVars, φ1, φ2 ∈ DataAssts, and γ is not

free in φ1 or φ2

(
α 7→ φ1 β φ2

)
4 4Γ ∃γ.

(
α 7→ (φ1 β γ ∧ �γ) ∗ γ 7→ φ2

)
This is the natural property we want for the reasoning. Whenever a proof requires

granular data access, we can allocate an abstract heap cell for any addressable sub-data.

Whenever the proof no longer needs such fine access, we can collapse the sub-data away.

Reading the equivalence left-to-right, it states “If we can find some heap cell at address

α with data that can, via some address, be decompressed into φ1 and φ2, then we can

perform the decompression and allocate a cell γ containing φ2 whilst knowing for certain

that it will compose with the φ1 left behind in cell α”. The converse reading is also valid,

stating that if we have two heap cells that can be compressed, we can deallocate the

abstract cell. Notice the use of existential quantification on the address being allocated.

This is critical, as this re-expression of the heap must not invalidate any frames. When

deallocating, we do not need the existential quantifier, as the address is bound by the

compression operation. We use a fresh logical variable γ to capture the fresh address, as

it is possible that φ2 contains an unbound instance of β. Context application ensures that

γ takes the place of β in φ1.

Proof. (Theorem 4). First, unroll the equivalence via the consequence assertion to obtain

the following pair of semantic consequences, equivalent to the proposition. The left to

right case is:

∀Γ ∈ LEnvs.
(
L
(
α 7→ (φ1 β φ2)

)
MΓ4L∃γ.

(
α 7→ (φ1 β γ ∧ �β) ∗ γ 7→ φ2

)
MΓ
)
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The right to left case is:

∀Γ ∈ LEnvs.
(
L∃γ.

(
α 7→ (φ1 β γ ∧ �β) ∗ γ 7→ φ2

)
MΓ4L

(
α 7→ (φ1 β φ2)

)
MΓ
)

To show the proposition, we must show that both of these semantic consequences hold.

Fix some arbitrary Γ ∈ LEnvs, x = Γ(α),y = Γ(β),y = Γ(γ). By further unpacking the

definition of assertion interpretation and semantic consequence, for the left to right case,

we must show: for all r ∈ Views

⌊{
x 7→ (d1 y d2) • r | d1 ∈ Lφ1MΓ[β 7→y], d2 ∈ Lφ2MΓ[β 7→y]

}⌋
⊆⌊∨

y∈StructAddrs .
{
x 7→ d1 • z 7→ d2 • r | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[γ 7→z]

}⌋
For the right to left case, we must show the converse of the above. Hence, we are

actually showing equality between the two sets. By unpacking the definition of reification

and disjunction, we obtain the following for the left hand side:⌊{
x 7→ (d1 y d2) • r | d1 ∈ Lφ1MΓ[β 7→y], d2 ∈ Lφ2MΓ[β 7→y]

}⌋
=

{
Tx 7→ (d1 y d2) • rU | d1 ∈ Lφ1MΓ[β 7→y], d2 ∈ Lφ2MΓ[β 7→y]

}
and the following for the right:

⌊∨
z∈StructAddrs .

{
x 7→ d1 • z 7→ d2 • r | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[γ 7→z]

}⌋
=

⌊⋃
z∈StructAddrs .

{
x 7→ d1 • z 7→ d2 • r | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[β 7→z]

}⌋
=

⋃
z∈StructAddrs .

{
Tx 7→ d1 • z 7→ d2 • rU | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[β 7→z]

}
The result follows if these two are sets equal for any choice of r. That is, we must prove:

{
Tx 7→ (d1 y d2) • rU | d1 ∈ Lφ1MΓ[β 7→y], d2 ∈ Lφ2MΓ[β 7→y]

}
=⋃

z∈StructAddrs .
{
Tx 7→ d1 • z 7→ d2 • rU | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[γ 7→z]

}
The easier case is right-to-left. Pick any element Tx 7→ d1 • z 7→ d2 • rU from the right-

hand side. Then:

Tx 7→ d1 • z 7→ d2 • rU = Tx 7→ (d1 z d2) • rU
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R 7→ 1[2⊗ 3]
= ∃α. ((R 7→ 1[2⊗ α) α 3)
4Γ ∃α. ((R 7→ 1[2⊗ α] ∧ �α) ∗ α 7→ 3)
4Γ ∃α. (R 7→ 1[2⊗ α] ∗ α 7→ 3)

Figure 3.16.: Example of abstract allocation splitting a tree heap (definition 39) with three
nodes by abstractly allocating a new heap cell α containing the 3 node.

This follows by the definition of reification as completions (defined in terms of compres-

sion), the confluence of completion, the fact that z ∈ addrs(d1) by d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z],

and the address irrelevence property that ensures d1 y z z d2 = d1 y d2. Then, Tx 7→
(d1 y d2) • rU is in the left hand side by observation (note that the choice of y is irrele-

vant, as it is bound on the left).

Left-to-right is harder, as the introduction of the new abstract cell z could plausibly

conflict with some cells in the frame r. To justify this, we use the same argument that

supports allocation of normal heap cells primitive heaps (example 16). As every datum is

finite, and r is a finite map, there are only finitely many “used” structural addresses. By

the infinite addresses and address irrelevance properties of structural addressing algebras

(definition 42), we can thus replace y with some alternative no matter what choice of r is

made. So:

{
⌊
x 7→ (d1 y d2) • r

⌋
| d1 ∈ Lφ1MΓ[β 7→y], d2 ∈ Lφ2MΓ[β 7→y]}

= {bx 7→ d1 • z 7→ d2 • rc | d1 ∈ Lφ1 β γ ∧ �γMΓ[β 7→y,γ 7→z], d2 ∈ Lφ2MΓ[γ 7→z]}

for some choice of z, noting that φ1 β γ ∧ �γ is non-empty when φ1 is non-empty by

the arbitrary addresses property of structural addressing algebras. As, regardless of the

choice of r, we can find some z, the inclusion will holds as we consider every z in the

union.

As the abstract allocation relation is contained within semantic consequence, we can

use the rule of semantic consequence to perform abstract allocation within a proof. For

example, the derivation of figure 3.16 is justified by theorem 4.

Comment 6. I see the allocation of abstract heap cells as similar to the use of con-

sequence for (un)rolling inductive predicates in separation logic (discussed in section

1.2.2). Just as an inductive predicate “unrolls” to allow access to the internals of the
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structure, we can “allocate” the internals of some rich data. As inductive predicates

roll up, we deallocate. Thanks to semantic consequence, the same proof rule justifies

both styles of reasoning.

3.3.4. Axiomatic specifications for lists and trees

We now give data assertions and axioms for our list library (definition 26). To give these

axioms, we will extend the standard logical values to include abstract lists, and logical

expressions to include a list membership expression E1 ∈ E2 which tests if the list describe

by E1 is a sublist of the list described by E2. This will be used in the append command

(definition 58) to show that an element does not already exist in the list.

Definition 56 (Logical values and expressions for lists). Given the set of addresses

Addrs (definition 43) and abstract lists AbsLists (definition 36), the set of logical

values for lists LVals is defined as:

LVals , Z ∪ B ∪Addrs ∪AbsLists

Logical values are thus the standard variable types plus partial lists. The set of log-

ical expressions and their interpretations are those provided by framework (parameter

14), along with list membership:

E1 ∈ E2

The interpretation of this expression, in terms of the interpretation of the standard

expressions (parameter 14):

〈[E1 ∈ E2]〉(Γ) ,

true if〈[E1]〉(Γ) = i, 〈[E2]〉(Γ) = l3, l3 = ∃l1, l2. l1 ⊗ i⊗ l2

false otherwise

The assertions specific to lists are a simple lift of the abstract list data (definition 36).

Definition 57 (Assertions on lists). Given a set of logical expressions LExprs and

values LVals for lists (definition 56), the set of list specific data assertions, pro-

viding the model-specific choices for definition , are: for all E ∈ LExprs, α ∈ LVals
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ψ ::= E Element/Logical expression

| ψ1 ⊗ ψ2 List concatenation

| ∅ Empty list

| [ψ] Complete list

| α Body address

The data assertion interpretation function is extended by:

LEMΓ , 〈[E]〉(Γ)

Lψ1 ⊗ ψ2MΓ , {l1 ⊗ l2 | l1 ∈ Lψ1MΓ, l2 ∈ Lψ2MΓ}
L∅MΓ , {∅}
L[ψ]MΓ , {[pl] | pl ∈ LψMΓ}
LαMΓ , {x | x = Γ(α)}

where, if the results are not sets of abstract lists, the interpretation is undefined.

These assertions allow us to give syntactic axioms to the list commands. Recall the

abstract heaps for lists of definition 27, and the abstract heap assertions (definition 55).

Definition 58 (List update command axioms). The syntactic axioms for the

commands of the list module (given in definition 28) are as follows: for all P ∈
Assts, P

{
(L 7→ [a ∧ ¬∃α. � α] ∗ P )

∧ e⇒ i ∧ i 6∈ a

}
append(e) {L 7→ [a⊗ i] ∗ P}

{α 7→ i ∗ P ∧ e⇒ i} remove(e) {α 7→ ∅ ∗ P}
{i→ - ∗ L 7→ [i⊗ α]} i := getFirst() {i→ i ∗ L 7→ [i⊗ α]}
{i→ - ∗ L 7→ [∅]} i := getFirst() {i→ 0 ∗ L 7→ [∅]}

{(j→ - ∗ α 7→ i⊗ j ∗ P ) ∧ e⇒ i} j := getRight(e) {j→ j ∗ α 7→ i⊗ j ∗ P}
{(j→ - ∗ L 7→ [α⊗ i] ∗ P ) ∧ e⇒ i} j := getRight(e) {j→ 0 ∗ L 7→ [α⊗ i] ∗ P}

The semantic axioms are these syntactic axioms interpreted through all logical

environments.

The axiom pre-conditions reflect the resource required to ensure fault freedom. Consider

the pre-condition for append(i), given by: (L 7→ [a ∧ ¬∃α. � α] ∗ P ) ∧ e⇒ i ∧ i 6∈ a. It

demands the resource needed to evaluate e, but also the entire list. This is because

the command will fault if the result of evaluating eis already in the list. The only way
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to ensure that the command does not fault is to analyse every element of the list. We

can capture this using the complete list assertion [a] with logical variable a, but must

additionally ensure that no data has been abstractly allocated (as the element could then

be in another abstract heap cell). This is enforced by the assertion ¬∃α. � α, which states

that no structural addresses exist in the value of a. This idiom occurs frequently enough

for us to introduce a predicate for it:

Definition 59 (Complete data predicate). The is complete predicate is defined as:

is complete , ¬∃α. � α

The remove command requires only the element to be removed, so the pre-condition

assertion α 7→ i only needs to refer to the partial list with just element i. As e is a pro-

gram expression, it must evaluate to a natural number in this situation, so the abstract

cell must contain a single element. This axiom demonstrates the advantage of the “ab-

stract allocation” approach. The resulting pre-condition is concise, and clearly defines

the behavior of the command. Similarly, getFirst is well described. If there is a first

element, it requires only the evidence of that element (the i), and the rest of the list can

be removed by allocation using α. If there is no first element, it requires the empty list

as evidence. These axioms exactly describe the actions given to the operation semantics

in definition 28, but by virtual of being written in a local manner, we claim are a more

intuitive description of the command behaviours.

Soundness of the commands is shown as in the examples of chapter 2. Notice however

that some list commands have multiple axioms. This is expected, as richer libraries have

commands with state dependent behaviours. In these cases, it is important that at most

one of the pre-conditions holds at any one time. If multiple pre-conditions were applicable,

the choice of which to use would fall to the person constructing the proof. This results in

situations where the program must behave as the proof wanted when multiple options are

available, rather than the proof behave as the program requires.

Lemma 10 (Atomic soundness of list commands). Given structural addressing algebra on

abstract lists (Views, b·c, ∗, 0) (definitions 42 and 36 respectively), the list commands are

atomically sound with respect to their axioms (definition 58), thus satisfying the atomic

soundness requirement of the framework (definition 12).

Proof. Atomic soundness requires that, for each semantic axiom {p} c {q},
∀r ∈ Views. [〈c〉]bp ∗ rc ⊆ bq ∗ rc. We show soundness of the first three commands

128



(getRight is similar).

1. append(i): For any frame r ∈ Views, interpretation and reification of the pre-

condition results in sets of heaps with the form {L 7→ [pl]} t h where h contains

enough resource to evaluate e, and where no frame nor completion can affect the

contents of pl as it must contain no structural addresses. The translation of the

conjunct i 6∈ l ensures that i 6∈ pl. Therefore, the action of append on these heaps

is to add a new element i to the end of the list, resulting in heaps of the form

{i 7→ i,L 7→ [pl ⊗ i]} t h. This is exactly the translation and reification of the

post-condition.

2. remove(i): For any frame r, interpretation and reification of the pre-condition

results in sets of heaps with the form {L 7→ [pl1⊗i⊗pl2]}th where h contains enough

resource to evaluate e. Notice that the value of variable i is always present in the

list, which has been filled in by the completion process or the frame r with arbitrary

partial lists. The atomic action of remove updates the list removing i, expressly

maintaining pl1 and pl2. Interpretation and reification of the post-condition gives

heaps of the form {i 7→ i,L 7→ [pl1 ⊗ pl2]} t h, as required.

3. i := getFirst(): There are two cases for getFirst. For any frame r, interpre-

tation and reification of i→ - ∗ L 7→ [i⊗ α] results in sets of heaps with the form

{i 7→ j,L 7→ [i ⊗ pl]} t h. The atomic action of the getFirst command on these

heaps is to assign the value of i to variable i; no other update is performed. In-

terpretation and reification of the post-condition using the same frame r results in

heaps of the form {i 7→ i,L 7→ [i⊗ pl]} t h, exactly the outcome of the action.

The second pre-condition, i→ - ∗L 7→ [∅], results in heaps of the form {i 7→ j,L 7→
[∅]}th. To avoid an angelic axiom, soundness requires that these forms be different

from that of the first pre-condition, which is evidently true (one contains only lists

with at least one element, the other only empty lists). The argument then proceeds

as in the first case.

3.3.5. Assertions and axioms for trees

As we did when defining the underlying data algebra, we follow the pattern used for our list

example when defining assertions and axioms for other structures. We first defining logical

variables and expressions, then the data assertions and interpretations, finally giving the

command axioms. This pattern will be adopted in all future examples.
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The logical expression |E| allows the calculation of the length of a tree sibling list. This

is required to axiomatise the getChild command.

Definition 60 (Logical values and expressions for trees). Given a set of addresses

Addrs (definition 43) and abstract trees AbsTrees (definition 39) , the set of logical

values for trees LVals is:

LVals = Z ∪ B ∪Addrs ∪Trees

The set of logical expressions and their interpretations are those provided by frame-

work (parameter 14), along with a sibling list length expression: for all E ∈ LExprs

|E|

The interpretation of this expression is:

〈[|E|]〉(Γ) ,

len(t) if 〈[E]〉(Γ) = t, t ∈ Trees

undefined otherwise

Definition 61 (Assertions on trees). Given a set of logical expressions LExprs (def-

inition 14), the set of tree specific data assertions are defined as: for all E ∈ LExprs

ψ ::= E[ψ] Node

| ∅ Empty tree

| ψ1 ⊗ ψ2 Tree concatenation

| α Body address

The assertion interpretations are:

LE[ψ]MΓ , {〈[E]〉(Γ)[t] | t ∈ LψMΓ}
L∅MΓ , {∅}

Lψ1 ⊗ ψ2MΓ , {t1 ⊗ t2 | t1 ∈ ψ1, t2 ∈ ψ2}
LαMΓ , {x | x = Γ(α)}

where, if the result would not be an abstract tree (definition 39), it is undefined.

With these assertions, we can axiomatise the tree commands.
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Definition 62 (Tree update command axioms). The syntactic axioms for the com-

mands of the tree module given in definition 34 are as follows: for all P ∈ Assts, P

exact

{nID→ - ∗ R 7→ α}
nID := createNode()

{∃n. (nID→ n ∗ R 7→ α⊗ n[∅])}

{pID→ p ∗ cID→ c ∗ α 7→ p[β] ∗ γ 7→ c[t ∧ is complete]}
appendNode(pID, cID)

{pID→ p ∗ cID→ c ∗ α 7→ p[β ⊗ c[t]] ∗ γ 7→ ∅}

{(pID→ p ∗ nID→ - ∗ α 7→ p[t⊗ n[β]⊗ γ] ∗ P ) ∧ e⇒ i ∧ |t| = i}
nID := getChild(pID, e)

{pID→ p ∗ nID→ n ∗ α 7→ p[t⊗ n[β]⊗ γ] ∗ P}

{(pID→ p ∗ nID→ - ∗ α 7→ p[t] ∗ P ) ∧ e⇒ i ∧ i < 0 ∨ |t| ≤ i}
nID := getChild(pID, e)

{pID→ p ∗ i→ i ∗ nID→ 0 ∗ α 7→ p[t] ∗ P}

{nID→ n ∗ α 7→ n[t ∧ is complete]}
removeSubtree(nID)

{nID→ n ∗ α 7→ ∅}

The semantic axioms are these syntactic axioms interpreted through all logical

environments.

The axiom for createNode uses an existentially quantified node identifier for the newly

created node. This ensures uniqueness in the same way it did for allocation in primitive

heaps (example 16). We do not know what additional nodes will be present in the tree, as

they have been “set aside” leaving only body address α. However, as all trees are finite,

there will infinitely many unused node identifiers, one of which will be bound to n. The

appendNode pre-condition uses the is complete predicate for the same reason as the pre-

condition of list append - we must be sure that no sub-data has been abstractly allocated.

However, here, the reason is that we must ensure that the parent node is not a descendent

of the child. By ensuring that the sub-tree of child c is complete, and by knowing that

the parent p is allocated in abstract cell α, the separating conjunction assures us that

relationship is impossible.

Here, the analysis of data captured in logical variables is used to determine which case
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of getChild is appropriate. We must be assured that node n is the ith child. This is

accomplished by using the logical expression for sibling length calculation on the prefix

siblings-list captured in t.

Lemma 11 (Atomic soundness of tree commands). Given the views Views from a struc-

tural addressing algebra on abstract trees (definition 42 and definition 39 respectively),

the tree commands are atomically sound with respect to their axioms (definition 62), thus

satisfying the atomic soundness requirement of the framework (definition 12).

We elide the proof, as it is similar in structure to previous atomic soundness proofs

(e.g. example 16). The two interesting facets are in appendNode and removeChild. The

append command uses pre-condition {i→ i ∗ α 7→ p[β] ∗ γ 7→ c[t ∧ is complete]}. Notice

that the children of node c must be complete (that is, have no abstractly allocated sub-

tree). This is required to show that the parent node is not a sub-tree of the child (which

would create a cycle). We will examine this case in more detail in chapter 7.

In the pre-condition for removeSubtree, we also capture the entire sub-tree and ensure

that no body addresses are present. This is so that destroying the tree does not destroy

a body address. Were it possible to destroy a body address, the axiom could invalidate

certain frames. Consider the alternative pre-condition nID→ n ∗ α 7→ n[β]. By picking

the frame β 7→ m[∅], this defective axiom would transform nID→ n ∗ α 7→ n[β] ∗ β 7→ m[∅]

into nID→ n ∗ α 7→ ∅ ∗ β 7→ m[∅]. The completions of the pre-condition always have a

node labelled m as the child of node n, so there can never be a node m elsewhere in the

tree. Completions of the post-condition under this frame would have to to generate a

location for β, which would ensure that every tree contained a node m. But, the action

of the command is to destroy n and all of its children, so the post-condition should never

contain a node m! By destroying the β body address, we would have invalidated any

frames containing a β cell, which is counter to atomic soundness.

3.3.6. Proofs of examples

We now have all the machinery to prove programs using our abstract list and tree libraries.

We show the admissible commands given in sections 3.1.1 and 3.1.2 have their natural

specifications. For lists, the commands of figure 3.8 have the following specifications:
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{i→ - ∗ L 7→ [a ∧ is complete]}
i := getLast()

{∃i. (i→ i ∗ L 7→ [a ∧ is complete] ∧ ((∃b. a = b⊗ i) ∨ (a = ∅ ∧ i = 0)))}

{k→ k ∗ b→ - ∗ L 7→ [a]}
b := contains(k)

{k→ k ∗ ((k ∈ a ∧ b→ true) ∨ (k 6∈ a ∧ b→ false)) ∗ L 7→ [a]}

The getLast specification is perhaps surprising. A suitable small axiom would include

the list resource L 7→ [α ⊗ i], that is, the last element only. However, we are using an

implementation here, which requires all the previous elements in order to find the last.

This shows that, even when implementable, the specifications for some commands may be

smaller when given by axiomatisation.

In giving the programs, we introduced a local variable construction to ease the examples.

The corresponding reasoning rule is below. It is applicable only if

P ∗ p1→ - ∗ · · · ∗ pn→ - is satisfiable (that is, if P does not already mention the newly

local variables).

{P ∗ p1→ - ∗ · · · ∗ pn→ -} C {Q ∗ p1→ - ∗ · · · ∗ pn→ -}
{P} local p1, ..., pn {C} {Q}

The proof that getLast satisfies this specification is in figure 3.17; the proof for contains

is in the appendices, section A.1.1. We highlight a small part of the proof in detail, as

it outlines an idiom common to many structural separation logic proofs. The first step

is case analysis, where logical variables capturing structure are broken down into their

possibilities. In this case, a may or may not be an empty list, so we consider both possi-

bilities with the rule of disjunction. If it is empty, we apply the “empty list” instance of

the getFirst axiom. Otherwise, we must use abstract allocation to localise the surplus

data. It can then be framed off, and the axiom applied.

This pattern is very common in all our program proofs. We first manipulate the data

representation to localise the data of interest to a command. This often involves disjunc-

tions of possibilties. We then apply abstract allocation to set aside unneeded data. Finally,

we apply an axiom, then reverse the previous steps with abstract deallocation. In general,

we typically elide many of these steps as straightforward, much as separation logic proof

sketches do not detail each use of entailment in unrolling inductive predicates.
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{
i→ - ∗ L 7→ [a ∧ is complete]

}
i := getLast() , local j {
i := 0;{

i→ 0 ∗ j→ - ∗ L 7→ [a ∧ is complete]
}

Use excluded middle to split possibilitities for a{
i→ 0 ∗ j→ - ∗ (L 7→ [∅] ∨ ∃b,c. a = b⊗ c ∧ L 7→ [a⊗ b] ∧ is complete])

}
Apply frame rule on i and use rule of disjunction

Apply axiom{
j→ - ∗ L 7→ [∅]

}
j := getFirst();{
j→ 0 ∗ L 7→ [∅]

}

Use abstract allocation to isolate first element{
∃α. j→ - ∗ ∃b,c. a = b⊗ c ∧ L 7→ [(b⊗ α α c)]])

}{
∃α. j→ - ∗ ∃b,c. a = b⊗ c ∧ L 7→ [b⊗ α]] ∗ α 7→ c)

}
Apply frame rule to isolate list{

j→ - ∗ L 7→ [b⊗ α])
}

j := getFirst();{
j→ b ∗ L 7→ [b⊗ α])

}{
∃α. j→ 0 ∗ ∃b,c. a = b⊗ c ∧ L 7→ [b⊗ α] ∗ α 7→ c)

}
Restore “framed off” data, and take disjunction of result{

∃j,b,r,i. i→ i ∗ j→ j ∗ L 7→ [a ∧ is complete] ∧
((a = b⊗ j⊗ r ∧ j 6= 0) ∨ (a = ∅ ∧ j = 0 ∧ i = 0) ∨ (a = b⊗ i ∧ j = 0)

}
while (j 6= 0)

i := j;

j := getRight(i)

}{
∃i. (i→ i ∗ L 7→ [a ∧ is complete] ∧
((∃b. a = b⊗ i) ∨ (a = ∅ ∧ i = 0)))

}

Figure 3.17.: Proof that getLast satisfies its specification
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The tree command of figure 3.8 has the following specification:

{n→ n ∗ c→ - ∗ α 7→ n[t] ∧ |t| = c}
c := count(n)

{n→ n ∗ c→ c ∗ α 7→ n[t] ∧ |t| = c}

The proof of this specification, which uses the idiom detailed above, is below. The

complexity of the loop invariant results from the two possibilities at each loop interaction.

Broken down, it contains:

• n→ n ∗ c→ e ∗ d→ d contains the state of the program variables, bound to logical

variables.

• α 7→ n[t] ∧ |t| = c: Describes the tree resource we currently have: the node n whose

children are being counted, and a logical variable t that captures this resource. The

length of this tree is captured in logical variable c. Because the length function |t|
has returned a value, we can infer that the list must contain no body addresses (as

the function | · | is undefined in those cases.

• The two possibilities for relating the length c of the data captured in t to the

variables. Either:

– d = 0 ∧ e = c The identifier returned by the last call to getChild is 0, thus

the current counter variable must contain the length of the list; or

– d 6= 0 ∧ ∃b,r. t = b⊗ d⊗ r ∧ e = |b|) The identifier returned by the last call

to getChild was not 0. Thus, we can break the list down into a prefix b,

followed by the element returned d, followed by the rest of the list r. The

length of the prefix must have been assigned to the counter variable.

As in the getLast proof, the full text would require case analysis of each possibility.

We elide these cases, as they are straightforward to perform, providing little insight into

the reasoning.
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{
n→ n ∗ c→ - ∗ α 7→ n[t] ∧ |t| = c

}
c := count(n) , local d {
c := 0;

d := getChild(n, c){
∃d. n→ n ∗ c→ 0 ∗ d→ d ∗ α 7→ n[t] ∧
|t| = c ∧ ((c = 0 ∧ d = 0) ∨ (c > 0 ∧ d 6= 0))

}
{

∃d,e. n→ n ∗ c→ e ∗ d→ d ∗ α 7→ n[t] ∧
|t| = c ∧ ((d = 0 ∧ e = c) ∨ (d 6= 0 ∧ ∃b,r. t = b⊗ d⊗ r ∧ e = |b|))

}
while (d 6= 0)

c := c + 1;

d := getChild(n, c)

}{
n→ n ∗ c→ c ∗ α 7→ n[t] ∧ |t| = c

}
Weakest pre-conditions

As discussed in section 2.3.4, we can give weakest pre-conditions for our frame using the

magic flower. This is necessary in structural separation logic, as normal entailment is

cannot re-express data using abstract addresses. For example, using the natural lifting

of 4−∗ to the syntactic assertion language, the weakest pre-conditions for createNode()

from our tree example is:

{∃α,n. ((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ R 7→ α ∗ nID→ j}
nID := createNode()

{Q}

The derivation, starting with the axiom, is:
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{R 7→ α ∗ nID→ j}
nID := createNode()

{∃n. (R 7→ α⊗ n[∅] ∗ nID→ n)}
{((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ R 7→ α ∗ nID→ j}

nID := createNode()

{((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ ∃n. (R 7→ α⊗ n[∅] ∗ nID→ n)}
{∃α,n. ((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ R 7→ α ∗ nID→ j}

nID := createNode()

{∃α.n. ((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ (R 7→ α⊗ n[∅] ∗ nID→ n)}
{∃α,n. ((R 7→ α⊗ n[∅] ∗ nID→ n)4−∗Q) ∗ R 7→ α ∗ nID→ j}

nID := createNode()

{Q}

Notice that, were −∗ used rather than 4−∗, the application of the consequence rule could

not allocate and deallocate the α addressed sub-data. The only post-conditions Q that

would work would be those with α already extant. It is clear that createNode can always

be safely used, so that pre-condition would not be the weakest in any useful sense.

Similar weakest pre-conditions can be constructed for the list library, and other tree

commands.

3.3.7. Rule of conjunction

Recall the requirement of conjunction, primitive conjunctivity, given in definition 16, which

were dependent on the choice of primitive reification function. The primitive reification

function for abstract heaps (definition 47) does not satisfy these requirements. Therefore,

when using semantic consequence or semantic strengthening to perform abstract alloca-

tion, the rule of conjunction is not sound.

Lemma 12 (The conjunction rule is unsound). The rule of conjunction is unsound when

reasoning about abstract heaps.

Proof. By counter-example. Consider the tree assertion α 7→ a[b[∅]] and the program

skip. This program run with that assertion as a pre-condition evidently terminates.

Assume that the rule of conjunction is sound. Then, the following two derivations are

both valid via the rules of semantic consequence and skip:
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{
α 7→ a[b[∅]]

}
skip

{
α 7→ a[b[∅]]

}

{
α 7→ a[b[∅]]

}{
∃β. (α 7→ a[β] ∗ β 7→ b[∅])

}
skip{
∃β. (α 7→ a[β] ∗ β 7→ b[∅])

}{
∃β. (α 7→ a[β] ∗ β 7→ b[∅])

}
By the rule of conjunction, the following triple must hold:

{α 7→ a[b[∅]] ∧ α 7→ a[b[∅]]} skip {α 7→ a[b[∅]] ∧ ∃β. (α 7→ a[β] ∗ β 7→ b[∅])}

However, whilst the pre-condition of this is defined (and equal to α 7→ a[b[∅]]), the

post-condition is unsatisfiable. Even though both haves have the same reification, they

are different instrumented heaps. Therefore, there are no heaps in common between the

first conjunct (describing all heaps with one address pointing to a[b[∅]]) and the second

(which splits the data across two cells). This means the program must not terminate.

But, skip always terminates.

The unsoundness of the conjunction rule here is not surprising. Abstract allocation is

inherently angelic; the choice of where and when to split is given to the constructor of the

proof. There are many different ways to cut up the same data, and so the uses of abstract

allocation and deallocation may differ between two proofs of the same program, and so

the post-conditions may describe abstract heaps with different structural addresses.

3.4. Comparison to previous structured data reasoning

In section 1.2, we gave an overview of previous work that enables local reasoning about

structured data. Here, we more directly compare these methods with structural separation

logic, indicating the relative strengths and weaknesses. We will focus on the appendNode

tree library command given in section 3.1.2. This one command demonstrates many of the

challenges of structured data: abstract data representation of trees, localisation of sub-

data in terms of the nodes being considered, and consideration of relationships between

those nodes (demonstrating that the parent is not an ancestor of the child).

We will compare the proof of the single command appendNode(p, c) using structural

separation logic, inductive predicates, abstract predicates, and context logic. In all three

cases, the proof consists of three steps:
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1. Data localisation: The representation of the tree is manipulated so that the sub-

tree p and c are separate from other data. The irrelevant tree structure must be

“framed off”, ready for the application of the appendNode axiom.

2. Axiom application: The axiom is applied, and the representation updated.

3. Data unification: The “framed off” data is restored, and the representation of the

tree is manipulated to reconnect the sub-data with the surrounding data.

As seen in definition , structural separation logic uses an entirely abstract data repre-

sentation. The localisation phase consists of identifying the sub-data using composition

operator, d1 α d2, then applying abstract allocation and the frame rule. The axiom is

a straight forward update of the data representation, using completeness in the data

to ensure the non-ancestral relationship between the child and parent nodes hold. The

derivation of the progam, using a simple example tree, is: let V = (p→ b ∧ c→ d ∗ E)

{V ∗ β 7→ b[δ] ∗ δ 7→ d[complete]} appendNode(p, c) {V ∗ β 7→ b[δ ⊗ d] ∗ δ 7→ ∅}
{V ∗ ∃β, γ, δ. α 7→ a[β ⊗ δ] ∗ β 7→ b[δ] ∗ γ 7→ c ∗ δ 7→ d[complete]}

appendNode(p, c)

{V ∗ ∃β, γ, δ. α 7→ a[β ⊗ δ] ∗ β 7→ b[δ ⊗ d] ∗ γ 7→ c ∗ δ 7→ ∅}
{V ∗ α 7→ a[b[c]⊗ d]} appendNode(p, c) {V ∗ α 7→ a[b[c⊗ d]]}

3.4.1. Inductive predicates

We now compare the above to inductive predicates. The standard technique ([63], [69])

for representing a structured data using inductive predicates is to link an algebraic tree

repesentation (such as the abstract tree of definition 39) to an underlying heap structure.

By picking a heap representation, we can give a tree predicate that represents the alge-

braic structure via a set of heap cells with varying pointer relationships. The difficulty

comes in localising the data into smaller sub-tree representations. This is accomplished by

unfolding the predicate, revealing implementation details. These details, typically an un-

derlying heap structure, are either manipulated directly or are repackaged into predicates

representing the sub-data.

One typical example of a tree representation is the five-pointer style. Each tree node

is represented with a heap cell of five fields: left, right, up, first child and last child. The

address of the heap cell is punned as the identifier of the node. The left and right pointers

reference the nodes directly left and right siblings (and are null if the node is the first or

last of a sibling list). The up field references the nodes parent (and is null if the node is a
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root), and the first and last child fields reference the first and last child in a linked list of

children. The tree(x,t) predicate then states that algebraic tree t is represented in the

heap starting at address x can be given as: let first and last extract the identifier of the

first and last element of a node list

tree(x,t) , node(t, 0, 0, 0)

node(n[t], l, r, u) ,
first(t) = fc ∧ last(t) = lc ∧
n 7→ l,r,u, fc, lc ∗ nodelist(t,n, 0, 0)

nodelist(n[t], l, r, u) , node(n[t], l, r, u)

nodelist(t⊗ u, l, r, u) , ∃i. nodelist(t, l, i, u) ∗ nodelist(u, i, r, u)

nodelist(∅, l, r, u) , emp ∧ l = 0 ∧ r = 0

Whilst standard, this representation is unwieldy. Notice that a node predicate represents

the resource for a node and all its children. To represent a node in the tree without

capturing the entire sub-tree, we must include an additional “solo” node predicate. Such

a predicate will be required to represent the parent node in appendNode(p, c), as the

child node c may be a descendent of p, and so must not be captured in the representation

of p.

solo node(n, l, r, u, fc, lc) , n 7→ l,r,u, fc, lc

We these, we might assume we can axiomatise the appendNode(p, c) command as by

including the solo node for the parent c, the entire tree for c, and solo node for the last

child of p (which must be updated to have c hooked to the end of it, giving a pre-condition

like:

V ∗solo node(p, l,r,u, fc, lc)∗node(c,cl,cr,cu)∗solo node(lc, lcl, lcr, lcu, lcfc, lclc)

Alas, even this is not sufficient: we must include the parent of the c node, to update

its child pointers, and we must consider the case where c is already a child of p. We do

not consider these here as these problems, whilst tedious, are surmountable. The critical

point is that even once an inductive predicate for the tree is devised, we have only a data

representation. We can give an axiom to appendNode, but to use this axiom, we must

still localise the data of interest inside a representation. Thus, we must repeatedly unfold,

and refold the predicates, until we have represented p via the solo tree predicate, c using

the node predicate. One typical step will be extracting a solo node predicate from a node

predicate by unfolding the node one step, and folding the heap cell exposed into node:

140



node(n[t], l, r, u) ⇐⇒ solo node(n, l, r, u, first(t), last(t)) ∗ nodelist(t,n, 0, 0)

This rewriting is both tedious and error prone. Therefore, comparing structural sepa-

ration logic to inductive predicates we see that inductive predicates:

1. Allow verification of implementation: As the representation can be broken open to

reveal the underlying heap structure, inductive predicates allow the underlying im-

plementation code to be verified with respect to the representation. Structural sep-

aration logic, operating entirely on abstract representations, does not immediately

allow this. However, with Raad [59], we are currently working on implementation

verification via refinement.

2. Suffer from difficult localisation: The folding and unfolding of the predicates is

tedious and error prone when seen against the comparatively simple approach of

abstract allocation.

3. Break abstraction: Data localisation requires unfolding the tree predicate in order

to extract the sub-data. This ties client proofs to the specific implementation of the

tree structure. Structural separation logic, working entirely on abstract data, does

not suffer from this problem.

4. Use non-uniform presentation: The correct choice of unfolding for the predicates to

localise the sub-data is innately tied to the choice of predicates. Thus, the techniques

of data localisation differ from library to library. Structural separation logic offers

abstract allocation as a uniform approach to localising data.

3.4.2. Abstract predicates

Abstract predicates restore abstraction to the presentation of inductive predicates by hid-

ing the predicate bodies from client programs. However, this means predicates cannot be

folded and unfolded directly. Data localisation must thus be provided by axioms, which

then must be justified by any underlying implementation.

We can consider abstract predicates simply by erasing the right-hand sides from the

inductive predicates in section 3.4.1. One localisation axiom is the unfolding of the node

predicate into solo node and nodelist, but one must include many more, as we have to

provide such an axiom for every splitting a proof may want. The signatures of these

predicates, in terms of the parameters they take, must be sufficient to allow these ax-

ioms to unambiguously split and rejoin data. Thus, the parameters on, for example,
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node(n[t], l, r, u), leak some of the pointer implementation details into the abstraction.

Ever more clever choices of predicates can be devised to minimise this, but due to the

underlying need to be justified by a heap structure, this problem always remains. Thus,

in comparison to structural separation logic, abstract predicates:

1. Allows verification of several implementations: Abstract predicate do hide some im-

plementation concerns from clients, allowing several implementations to be verified.

We hope our upcoming refinement approach will allow a similar result for structural

separation logic.

2. Non-uniform presentation: As with inductive predicates, the choice of representa-

tions is ad-hoc, and the localisation created on a structure by structure basis.

3. Implementation details leak into predicate signatures: The parameters on “abstract”

predicates are needed to ensure that predicates representing sub-data can be re-

connected with the predicates representing super-data. These parameters must be

sufficient for any underlying implementation to reconnect the data. Thus, the num-

ber and choice of parameters is directly linked to expected implementations, whilst

offering minimal value to the abstraction.

Comment 7. This final point is perhaps the key problem solved by structural sepa-

ration logic. We allow predicates to be split and reconnected using the mechanism of

structural addresses. It is reasonable to see structural separation logic as the first step

in a new theory of abstract predicates where separation and connectivity is abstracted,

rather than just representation.

3.4.3. Context logic

Context logic is much closer to the level of abstraction we can achieve with structural

separation logic. It avoids all implementation considerations by operating directly on the

abstract representation of the structure. The key difference from structural separation

logic is the data localisation phase, where separation is now context application. For

example, the derivation for our example program is:
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{Vc ∧ C ◦x b[c] ◦y d} n := appendNode(p, c) {Vc ∧ C ◦x b[c⊗ d] ◦y ∅}
{Vc ∧ C ◦x b[c] ◦y da[b[c]⊗ d]}

n := appendNode(p, c)

{Vc ∧ C ◦x b[c⊗ d] ◦y ∅}
{Vc ∧ a[b[c]⊗ d]} n := appendNode(p, c) {Vc ∧ a[b[c⊗ d]]}

Separation can only occur in an order, depth last manner. In comparison to structural

separation logic, context logic:

1. Has non-commutative separation: The separating application connective is not

commutative, meaning data must be extracted “depth-last” (with the deepest sub-

data coming at the end). This means one cannot reorder the representation of

sub-data to fit specific axioms or reasoning rules. Most importantly, this means one

cannot give a parallel composition rule. It also results in larger axioms, viz: the

covering context needed to handle appendNode here (explained in detail in section

1.2.3).

2. Cannot directly co-exist with heaps: Separating application ensures that the

data presentation is not simply a bag of heap cells. Thus, normal heap style rea-

soning cannot naturally co-exist with the context structured data. One problematic

consequence of this is having more than instance of a data structure is difficult, such

as a list and a tree together. Structural separation logic, by reusing the standard

heap mechanism, allows heterogeneous data to be combined into a single reasoning

system.

3.4.4. Overview of advantages

Structural separation logic unifies the natural abstract reasoning of context logic with

the natural “bag” model of separation. Taking the most useful parts of each pre-existing

technique, it offers improvements in:

• Abstraction of implementation: The specific choices of an implementation are en-

tirely hidden, with only the abstract structure exposed in proofs.

• Abstraction of separation: The connectivity information used by the underlying

data structures, such as the pointers in sub-section 3.4.1, are hidden, with data

separability abstracted via a uniform equational theory of compression.

• Natural folding and unfolding behaviour: The localising of sub-data is achieved via

a simple abstract allocation.
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• Separation-logic style composition: The composition operation of ∗ both commutes

and associates. This enables abstract heaps to co-exist with the standard heaps of

other separation logic techniques.

3.5. Extensions and alternatives

We now give a short summary of alternative choices and extensions that can be made in

the development of structural separation logic.

3.5.1. The generalised frame rule

We now examine how the generalised frame rule of the views framework allows an alter-

nate method of performing abstract allocation and deallocation. This allows us to relate

our approach to the reasoning of segment logic [38, 70]. We also extend views with a

relational frame rule, allowing us to compare our approach of semantic consequence with

this alternate choice.

Recall the frame rule of theorem 1. The views framework [22] provides a generalised ver-

sion of this rule that can apply functions to the pre- and post-condition. These generalised

frame functions functions must satisfy certain properties.

Definition 63 (Generalised frame functions). Given an addressed value view

(Views, T·U,�, 0) (parameter 8), transition labels ActionLbls (definition 5) and

atomic command actions [〈c〉] (parameter 6) a function f : Views → Views is a

generalised frame function if it preserves all actions under all frames:

∀p, q ∈ Views, α ∈ ActionLbls.

(∀r ∈ Views. [〈α〉]bp ∗ rc ⊆ bq ∗ rc)
=⇒

(∀r ∈ Views. [〈α〉]bf(p) ∗ rc ⊆ bf(q) ∗ rc)

Given a generalised frame function, we can generalise the frame rule.

Proposition 2 (Generalised frame rule). Given an addressed value view (Views, T·U,�, 0)

(parameter 8) and the semantic triple judgement (definition 14) if, given p, q ∈ Views,

� {p} C {q} holds then for all generalised frame functions f , the semantic triple judgement

� {f(p)} C {f(q)} holds.
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By defining a family of frame functions fr(p) = p ∗ r for all r, it is evident the generalised

frame rule subsumes the standard frame rule. It also admits function with very “non-

frame” like behaviour. We can define a generalised frame function for abstract heaps that

performs a single-step collapse on a structural address.

Definition 64 (Hiding frame function). The hiding frame function for address x,

↓x: Views⇀ Views is defined as:

↓x (p) =

∅ if ∃h ∈ p. 6 ∃h′. h ↓ h′, dom(h′) = dom(h) \ {x}

{h′ | h ∈ p,h ↓ h′, dom(h′) = dom(h) \ {x}} otherwise

Lemma 13 (The hiding frame function is a frame function). The hiding frame function

of definition 64 is a generalised frame function in the sense of definition 63.

Proof. Note that the hiding frame function performs exactly one step of the collapse

process, or (if there is no abstract address to use), produces the empty view. As reification

is defined in terms of collapse, the result then follows by the definition of reification and

theorem 3, which ensures that bf(p) ∗ rc = bp ∗ rc and bf(q) ∗ rc = bq ∗ rc, and the fact

that the empty view reifies to the empty set (ensuring the implication holds vacuously if

an invalid address is chosen for hiding).

The hiding frame function obviates the need to use semantic consequence for abstract al-

location and deallocation. Assuming the straightforward lift of ↓x to a syntactic assertion,

it enables a proof structures like:

{α 7→ 2} remove(2) {α 7→ ∅} Axiom

{L 7→ [3⊗ α⊗ 5] ∗ α 7→ 2} remove(2) {L 7→ [3⊗ α⊗ 5] ∗ α 7→ ∅} Gen. frame

{↓α (L 7→ [3⊗ α⊗ 5] ∗ α 7→ 2)} remove(2) {↓α (L 7→ [3⊗ α⊗ 5] ∗ α 7→ ∅)} Consequence

{L 7→ [3⊗ 2⊗ 5]} remove(2) {L 7→ [3⊗ 5]}

This proof recalls those using Wheelhouse’s segment logic [38]. In fact, when lifted to a

syntactic assertion of f , it gives a frame rule exactly matching the hiding rule of [38] (see

figure 3.18).

However, proofs in this style are more rigid and carry more baggage than those using

semantic consequence. They can allocate and deallocate at most one address at a time

and they cannot leave data in an allocated state, as the same function must be applied to

both the pre- and post-condition. Moreover, the hiding function ↓x is left in the data, and
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{P} C {Q}
{Hα. P} C {Hα. Q}

{P} C {Q}
{↓α P} C {↓α Q}

Figure 3.18.: On the left, the hiding rule of segment logic. On the right, the collapsing
frame function of definition 64 used as a generalised frame function.

must be removed by consequence. Given that, one may as well use semantic consequence

to perform the entire process.

The relationship between semantic consequence and the generalised frame

rule

Even though we choose semantic consequence to enable abstract allocation, proofs using

the hiding frame function are sufficiently similar to warrant examining the links more

closely. Most obviously, semantic consequence is a relation on pre- and post-conditions,

whereas the generalised frame rule uses functions over them. This artificially restricts

use of the rule. For example, it is difficult to design functions that mutate the pre-

condition, but leave the post-condition untouched. To ease these restrictions, we can

move to relational transformations.

We define relational view transformers, ≈, as the relational analogue of generalised

frame functions. To enable a sound rule using these relations, we require some conditions.

The first requirement, left totality, eliminates cases {p′} C {q′} where p′ ≈ p but there is

no q such that q′ ≈ q. Were such relations allowed, we could pick a relation showing the

divergence of any code. The second is the natural extension of the generalised frame rule

requirement.

Definition 65 (Relational view transformers). Given a set of views Views, a relation

≈⊆ Views × Views is a relational view transformer if it is both left total and

preserves all actions under frames. That is, for all p ∈ Views, there exists some

q ∈ Views such that p ≈ q; and

∀
p, q ∈ Views,

α ∈ ActionLbls.

(∀r ∈ Views. [〈α〉]bp ∗ rc ⊆ bq ∗ rc)
=⇒

(∀r, p′, q′ ∈ Views. p ≈ p′ ∧ q ≈ q′ =⇒ [〈α〉]bp′ ∗ rc ⊆ bq′ ∗ rc)

With relational view transformers, we can define a relation frame rule.
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Proposition 3 (Relational frame inference). Assume ≈ is a relational view transformer,

and p, p′, q, q′ ∈ Views. If p′ ≈ p, q′ ≈ q and {p′} C {q′}, then {p} C {q}.

This rule is sound using reasoning similar to the proof of the normal frame rule (theorem

1), and using the properties of relational frame transformers. Note that if ≈ is functional,

then this rule collapses to the generalised frame rule. This definition is similar to one

proposed by Parkinson during development of the Views framework.

With semantic consequence, if we know p4 p′, q′4 q, then we can justify the triple

{p} c {q} using the triple {p′} c {q′}. With relational view transformers, if we know

p′ ≈ p and q′ ≈ q, we can justify the same relationship between triples. The only difference

between the relational frame rule and the semantic consequence rule is the order of the

pre-condition relationship. Consider then relations R which are symmetric and reflexive.

Lemma 14 (View strengthening and weakening relations). Let ∼⊂ Views×Views be a

symmetric, reflexive relation. Then, ∼ satisfies the requirements of a semantic consequence

relation if and only if it satisfies the requirements of a relational frame relation.

Proof. Right direction: We first show that if ∼ is a semantic consequence relation, it is

a relational view transformer. We thus have the following properties by assumption: ¬ ∼
is symmetric;  ∼ is reflexive; and ® ∀p, q ∈ Views. p ∼ q =⇒ ∀r ∈ Views. bp ∗ rc ⊆
bq ∗ rc.

We must show the conditions of definition 65: That ∼ is left total, and that it preserves

actions:

∀
p, q ∈ Views,

α ∈ ActionLbls.

(∀r ∈ Views. [〈α〉]bp ∗ rc ⊆ bq ∗ rc)
=⇒

(∀r, p′, q′ ∈ Views. p ∼ p′ ∧ q ∼ q′ =⇒ [〈α〉]bp′ ∗ rc ⊆ bq′ ∗ rc)

Left totality is straightforward, as all reflexive relations are left total. For the action

preservation property, note that by symmetry, if p ∼ q then q ∼ p. Hence by ® , if p ∼ q,
then ∀r ∈ Views. bp ∗ rc = bq ∗ rc. Assume the premise of our goal implication, that

¯ ∀r ∈ Views[〈α〉]bp ∗ rc ⊆ bq ∗ rc.
We must show (∀r, p′, q′ ∈ Views. p ∼ p′ ∧ q ∼ q′ =⇒ [〈α〉]bp′ ∗ rc ⊆ bq′ ∗ rc). As

p ∼ p′ and q ∼ q′, bp ∗ rc = bp′ ∗ rc, and bq ∗ rc = bq′ ∗ rc for all r. Therefore, that

[〈α〉]bp′ ∗ rc ⊆ bq′ ∗ rc is given by ¯ .

Left direction: We now show that if ∼ is a relational view transformer, it is a seman-

tic consequence relation. We thus have the following properties by assumption: ¬ ∼ is

symmetric;  ∼ is reflexive; ® ∼ is left-total and; ¯ ∀s, t ∈ Views, α ∈ ActionLbls.
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(∀r ∈ Views. [〈α〉]bs ∗ rc ⊆ bt ∗ rc) =⇒
(∀r, s′, t′ ∈ Views. s ∼ s′ ∧ t ∼ t′ =⇒ [〈α〉]bs′ ∗ rc ⊆ bt′ ∗ rc)

We must show it satisfies the conditions of definition 17. In ¯ , pick α = id, s = p and

t = p. Expanding, we derive:

(∀r ∈ Views. bp ∗ rc ⊆ bp ∗ rc) =⇒
(∀r, s′, t′ ∈ Views. p ∼ s′ ∧ p ∼ t′ =⇒ bs′ ∗ rc ⊆ bt′ ∗ rc)

The first term of the first implication is a tautology, and so the entire assertion is

equivalent to:

(∀r, s′, t′ ∈ Views. p ∼ s′ ∧ p ∼ t′ =⇒
⌊
s′ ∗ r

⌋
⊆
⌊
t′ ∗ r

⌋
)

Now pick s′ = p and t′ = q. Expanding, we derive:

(∀r ∈ Views. p ∼ p ∧ p ∼ q =⇒ bp ∗ rc ⊆ bq ∗ rc)

The first conjunction is discharged by  (reflexivity). The second contains no mention

of r. Ergo:

p ∼ q =⇒ ∀r ∈ Views. bp ∗ rc ⊆ bq ∗ rc

which was to be shown.

That the rules are interchangeable with reflexive and symmetric relations is perhaps

not surprising. Take the program C and views p>, q>, p, q. Imagine a valid derivation, a

fragment of which has the form below:

...{
p>
}

C
{
q>
}

{p} C {q}

We can see the centre triple as partaking in forms of strengthening or weakening on p,

depending on if we read it bottom to top, or top to bottom (the arguments equally apply

to q). Reading bottom to top, we see p as getting weaker; p> must encompass p. Reading

top to bottom, we see p as getting stronger; p> is more expansive than p

Without the frame rule, generalised frame rule, or relational frame rule, the strength-

ening reading is trivial; p> = p is the only valid choice. However, with the various frame
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Figure 3.19.: Structured heap containing multiple lists.

rules, our choices for strengthen the pre-condition are much wider. The standard frame

rule strengthens p with more memory cells, justified via the inability of the machine to

detect memory locations not accessed. These rules are not well explored; the views frame-

work [22] includes a penalised frame function that expresses the weakening rule used by

Rely-Guarantee [47].

For structural separation logic, abstract allocation is used only to change the presenta-

tion of the data. We make certain sub-data more accessible, but never change the meaning

of heap from the machines perspective. As we are neither strengthening or weakening our

view, either rule is equally applicable for abstract allocation. We choose to use semantic

consequence, as it can be used both for abstract allocation and the folding and unfolding

of inductive predicates in separation logic. As we will be using both compression/de-

compression and inductive predicates in our examples, the uniformity of style is useful.

3.5.2. Disjoint structural addresses

We now consider reasoning for libraries that need knowledge of the machine heap address

that is storing their data. In our structured heap abstraction, such situations arise often.

When multiple copies of a data structure are allowed, the heap address can be used to

identify the specific instance being analysed. Recall the list example of section 3.1.1. This

works with exactly one list, so that the programmer to create multiple lists in the heap.

When faced with the assertion α 7→ 5, there is no ambiguity about which list contained 5.

The command remove(5) would remove the only element 5 there could possibly be.

This is unrealistic. It is quite reasonable to have many lists in the heap, each of which

may have an element 5. These lists are created, destroyed and updated as needed with

program commands. Typically, lists are associated with a unique address, and commands
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are parameterised with the address of the list being accessed.

We can build an imperative machine for multiple lists using the list data structures we

have already defined (definition 26). The machine heaps to support this are similar to

those of the single list case, but contain zero or more lists.

Definition 66 (Multiple-list machine heaps). Assume a set of list heap addresses

ListAddrs, ranged over by l, k,m, · · · , where ListAddrs ∩ PVars = ∅. The set of

multiple-list machine heaps ListHeaps, ranged over by lh, lh1, · · · , lhn, is:

ListHeaps , {lh | lh : (ListAddrs
fin
⇀ Lists) t (PVars

fin
⇀ PVals)}

We visualise such a heap, with two variables x and y and three lists a 7→ [3⊗ 2⊗ 5⊗ 4],

d 7→ [7⊗ 2], and b 7→ [3⊗ 5⊗ 9] in figure 3.19. Note that whilst individual lists must have

distinct elements, different lists may have the same elements. To manipulate these heaps,

we alter the list library given in chapter 3 to support multiple lists:

1. l := createList(): Picks a machine fresh heap address, allocating it within the

heap, associating it with an empty list, and assigning it to variable l. Cannot fault.

2. destroyList(l): Removes the entire list identified by the value of l from the heap.

Faults if the value of l does not identify a list.

3. l.append(e): Appends the result of evaluating e to the list identified by the value

of l, making it the last element. Faults if l does not identify a list, if the evaluation

of e is either already in that list, or if the evaluation of e is not a natural number.

4. l.remove(e): Removes the result of evaluating e from the list identified by the value

of l. Faults if l does not identify a list, or if the evaluation of e is not present in

that list.

For brevity, we omit the similar commands for l.getFirst(e) and l.getRight(e);

they follow this pattern.

The construction of abstract heaps over these machine heaps is not, by itself, useful.

Consider the assertion α 7→ 3. It gives no information about the list to which element 3

belongs. Instead, we consider associating each abstract address with the address of the

list into which it will ultimately compress:

αl 7→ v
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Figure 3.20.: Abstract heap using tagged addresses to manage multiple lists.

This abstract cell assertion states that address α was allocated from within the list l.

With it, we can axiomatise the commands for working with multiple lists.

Formalisation

We call this approach tagged structural addresses, and formalise it for data in general,

later focusing it on the list specific case. Given a set of structural addresses, we create

new sets, each containing structural addresses tagged with a machine address. Tagged

structural addresses are constructed atop the standard structural addresses:

Definition 67 (Tagged structural addresses). Let a ∈MachineAddrs be a machine

address. The set of structural addresses tagged with a, ranged over by xa,ya, za,

is defined as:

StructAddrsa = {xa | x ∈ StructAddrs}

From a structural addressing algebra (StructAddrs,Data, addrs, comp), we create

new algebras for each machine address, using the tagged structural addresses

(StructAddrsa,Dataa, addrsa, compa). This construction is straight-forward, simply

substituting the corresponding tagged address for each use of a structural address. When

building the abstract heap, the data stored at a machine address will always use the set

of data tagged with appropriate machine address, as seen in figure 3.20. Such abstract

heaps are:
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Definition 68 (Abstract heaps over tagged data). The set of abstract heaps using

tagged data and addresses AbsHeaps is defined as:

AbsHeaps ⊆


h h :

(PVars
fin
⇀ PVals)

t

⊔
a∈MachineAddrs

 {a}⇀ Dataa

t
StructAddrsa

fin
⇀ Dataa




By construction, these abstract heaps require that body addresses within data must

be tagged with the machine address into which the data will collapse. As we are simply

changing the set of abstract addresses, we require no new machinery for the collapse process

or reification. The normal compression function will ensure that the collapse relation can

only place tagged abstract addresses into the appropriate places. The completion process

will then ensure that the needed additional cells are provided.

The assertion language is essential identical to the single machine address case. We

update the logical environments to ensure that any tagged logical variable refers to an

underlying structural address that shares the tag. This prevents a logical variable αa from

actually storing a structural address xb, where a 6= b.

Definition 69 (Logical environment). Given a logical environment Γ ∈ LEnvs (def-

inition 20), the tagged logical environment LEnvsT : LVars ⇀ LVals is defined as:

for all α, a,x, b

ΓT (x) =


xa if x = αa,Γ(αa) = xa

undefined if x = αa,Γ(αa) = xb, a 6= b

Γ(x) otherwise

We assume the use the tagged logical environment rather than a normal logical envi-

ronnent through all definitions. Abstract allocation then requires a small change to use

these tagged logical variables, but no new underlying theory. This is because, than being

a definition, abstract allocation is a result of the semantic consequence relation 17. This

was by careful design of the abstract heaps and reification function, which ensured that as

long as the collapse of two heaps resulted in identical machine heaps, they were semantic
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consequences of each other. We have the same property here. By design, these tagged

structural addresses can be used to compress and de-compress data as before, as long as

the correct addresses are chosen for the data.

We can therefore easily update the relation to use the set of structural addresses ap-

propriate to the data being allocated. This can always be determined by looking at the

address of the heap cell the sub-data is being allocated from.

Proposition 4 (Abstract allocation on tagged addresses). The following semantic equiv-

alence is valid: for all a ∈MachineAddrs(
a 7→ φ1 αa φ2

)
4 4Γ ∃αa. (a 7→ (φ1 ∧ �αa) ∗ αa 7→ φ2)(

αa 7→ φ1 βa φ2

)
4 4Γ ∃βa. (αa 7→ (φ1 ∧ �βa) ∗ βa 7→ φ2)

The proof that this proposition holds is similar to that of theorem 4.

Tagged structural addressing for multiple lists

By creating tagged data and tagged addressing algebras using ListAddrs, we obtain

abstract heaps for multiple lists. With these heaps, we can construct the axioms for the

multiple list commands, which are given in figure 3.21. The creation and destruction

commands are very similar to those for normal heap cells. The append command works

on an entire list cell, the address of which is passed as a parameter. The remove is the

most changed, using an abstract heap cell with a tagged address to indicate that α is

allocated from data stored in the l machine cell. Abstract allocation then behaves in the

intuitive manner. In the list instance, the following two semantic consequences hold:

l 7→ [1⊗ 2⊗ 3]4<Γ ∃αl.(l 7→ [1⊗ αl] ∗ αl 7→ 2⊗ 3)

αl 7→ 2⊗ 34<Γ ∃βl.(αl 7→ 2⊗ βl ∗ βl 7→ 3)

Notice that, out of an abstract cell addressed by αl, one can only allocated new abstract

cells of with addresses of the form βl. This is because, by construction, such a cell is storing

data where the only body addresses are tagged with l.

3.6. Summary

This chapter has introduced structural separation logic, a program reasoning system

for libraries manipulating structured data. Structural separation logic consists of two key

contributions:
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{l→ -}
l := createList()

{∃l. l 7→ [∅] ∗ l→ l}

{l 7→ [e ∧ is complete] ∗ l→ l}
destroyList(l)

{l→ l}

{l 7→ [e ∧ is complete] ∗ l→ l ∗ P ∗ e⇒r ∧ r 6∈ e}
l.append(e)

{l 7→ [e⊗ r] ∗ l→ l ∗ P}

{αl 7→ i ∗ l→ l ∗ P ∧ e⇒ i}
l.remove(e)

{αl 7→ ∅ ∗ l→ l ∗ P}

Figure 3.21.: Example small axioms for the multiple list library

• A model with abstract separation: Section 3.4 defines an algebra for structured

data (definition 42) that, when combined with abstract heaps (definition 48), gives a

model for splitting entirely abstract data into bags of sub-data that can be considered

independently, then reconnected.

• A logic with abstract allocation: Section 3.3 shows how this model can be used as

the basis of a separation logic, with splittings managed via abstract allocation.

As discussed in section 3.4, these enable several advances of previous techniques for

local abstract data reasoning.

1. Abstraction of separability: Structural separation logic offers an abstraction

of separability (or perhaps connectivity) for structured data. Most clearly demon-

strated in section 3.4, this allows a greater level of abstraction for data than previous

separation logic techniques utilising abstract predicates.

2. General approach for abstract data: Section 3.4 provides a uniform approach

for separation logic reasoning with abstract structured data. As demonstrated in

section 3.4, our use of separating conjunction offers advantages over the previous

work in context logic, enabling both smaller axioms and concurrent reasoning.

3. Coexistence with existing separation logic techniques: Unlike previous work

in this area, the abstract heap concept of structural separation logic can reason

about programs that manipulate both high-level abstract data and low-level heap
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structures. This will prove valuable in the upcoming case studies of chapter 4 and

6.
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4. The Document Object Model

This chapter uses structural separation logic to present an axiomatic specification for the

W3C Document Object Model library standard [71]. The Document Object Model (here-

after DOM) library is typically used to analyse and update HTML or XML documents.

The standard provides an abstract representation of the trees, and describes a wide range

of commands for manipulating these trees. The most common use of DOM is manipulat-

ing the content of web pages. Every modern web browser comes with an implementation

of DOM that should adhere to the standard, and this implementation is exposed to script

programs within a page. This allows code delivered with a web page to alter the struc-

ture of the tree representing the browsers internal view of the HTML, and hence the

presentation of the web page.

As a library, DOM is exclusively focused on the manipulation of structured data. In

figure 4.1, we see the DOM tree generated by parsing a simple HTML document. It consists

of a set of nodes of varying types. The DOM standard describes the types of nodes and

their relationships, and gives a comprehensive set of commands for manipulating them.

These commands are similar to those of our tree update library (section 3.1), but are much

more extensive.

DOM is very widely adopted. For one, every web browser contains an implementation.

That implementations follow the standard is critical, the same script will be delivered to

many different web browsers, and script authors expect the behavior to be the same in

each case. However, DOM is is also used outside of browsers, for creating and processing

XML files. XML has become a commonly used standard for data interchange, and most

platforms provide a DOM library. Giving an axiomatic specification to the DOM library

gives an unambiguous semantics to a widely used specification, a valuable outcome.

DOM is an attractive example for formalisation with structural separation logic. It takes

the essence of our small tree examples, and scales it to a real-world problem, allowing us

to show our reasoning scales as well. Moreover, it enables reaosning about usages of

the DOM library inside other local reasoning logics. Smith, Gardner, and Maffeis are

currently extending their separation logic reasoning for JavaScript [34] towards a more

complete version of the language, capable of reasoning about real web programs. To
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<html>

  <head>

    <title>Adam's page</title>

  </head>

  <body>

    Lorum ipsum…

  </body>

</html>

#document 7

html 4

head 11 body 15

title 14

Lorum ipsum...

#text 10

Adam's Page

#text 8

Figure 4.1.: Parsing HTML or XML with a DOM parser results in a DOM tree. Each
node is uniquely identified, and there are three node types: a #document
node, which is the root of the tree, element nodes which have a name and
children, and #text nodes, which have associated text.

ensure soundness of these programs, they will require separation logic reasoning for the

DOM, something we can now provide.

DOM has previously been studied in the context of local reasoning. As the standard

is very large, Gardner, Wheelhouse, Smith and Zarfaty identified a subset they called

featherweight DOM. We will base our analysis on the same subset, and demonstrate that

structural separation logic can provide significantly smaller footprints than were possible

with context logic. We will also show the advantages we gain via close integration with

heap reasoning, by creating an example that uses both the DOM library and normal heap

manipulation.

This chapter follows the pattern set out for the simple tree library given in section

3.1. In section 4.1, we introduce a data structure and structured heap for representing

DOM, using the structures introduced by featherweight DOM [35] as the starting point. In

section 4.1.1, we introduce the DOM commands, adopted from featherweight DOM, and

give operational actions to four of them. Together, these objects provide an imperative

machine for programming with the DOM library. We give examples programs for this

machine by implementing additional commands not present in the featherweight subset.

In section 4.2.1, we define a structural addressing algebra (definition 42) for DOM, and

so give the abstract heaps (definition 48). These enables us to use structural separation

logic to reasoning about DOM programs. We axiomatise the featherweight DOM command
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set, and prove the examples given in the previous section. In creating our axiomatisation,

we uncovered that featherweight DOM slightly deviates from the English specification.

We identify why and demonstrate that we have corrected the oversight.

This chapter concludes in section 4.4 with an example of hybrid reasoning. We give an

program that uses normal heap operations alongside the DOM library, in the form of a

photo library processor. We consider a photographic library stored in an XML file. The

file contains a list of photos, each associated with a name and some image data. As XML

is a plain text format, and the image data is an arbitrary list of bytes, an encoding is used

to represent the image in the XML. Our example program uses the DOM to iterate over

the images in the file. It must decode the image data into a standard format, but as the

images are all of different sizes, it is standard to use heap memory to store the decoded

data. Proving the example memory safe requires a combination of proof techniques, using

the DOM reasoning to verify that the XML data is used in a proper manner, and standard

heap reasoning to ensure the memory containing the image is used correctly.

4.1. DOM library

There are currently three major versions of the DOM standard. Like [35], we focus our

reasoning on a fragment of DOM Core Level 1, which defines the general shape of the trees

and majority of commands for manipulating them. Later versions are mostly concerned

with event handling and minor updates to the tree shape. We will not work with the

entirety of the standard, instead using a small variant on the featherweight interface

identified in [35] that extends the subset with document nodes. By using this fragment, we

focus on the core difficulties of the reasoning without handling the verbosity of the entire

document. This fragment was extended to the entire standard by Smith [65]. We expect

a similar extension of our work to be equally possible.

DOM Core Level 1 describes the library in object-oriented manner, defining both a data

structure and operations for manipulating it via a set of interfaces. Acknowledging that

not all languages support object-orientation, the library also provides “a simplified view

that allows all manipulation to be done via the Node interface”. We will base our tree data

structure upon the relationships between the objects in the object-oriented interfaces, and

base our commands upon the single Node interface.

The standard defines a DOM document as a collection of nodes related by structural

invariants. Each of the node types has some common structure:

Name: Every node has a name, not necessarily distinct across a document.
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Node identifier: Every node has an identifier, which is distinct across a document.

Associated data: Each node has some associated data, the type of which depends on

the node type.

Node lists: Every node is associated with a set of forest identifiers. When asked,

the node must provide an element of this set, which will be used to obtain any

children the node may have. The standard mandates that queries for children are

always against the live state of a node, so it is impossible to simply return a static

snapshot of children. At each query for a forest identifier, it is unknown whether

an element already in the set will be returned, or whether the set will extended

with fresh identifiers, and one of those returned. This non-determinism is due to

under-specification in the standard.

DOM Core level 1 provides twelve node types, of which we consider the three most com-

monly used. These three are sufficient to demonstrate the reasoning, and write effective

examples. The additional node types are similar, and can be added to the presentation

with minimal difficulty. The three node types we model are:

Element nodes: Element nodes are the most common DOM node, representing a named

node with children. They have arbitrary names, with the caveat that the name cannot

contain the character #, which is reserved as a prefix of for the names of other node types.

The data of these nodes is an ordered list of child nodes, which we call the child forest.

Our basic notation for elements is:

NameIdentifier[Child Forest]Set of forest identifiers

Text nodes: Text nodes represent blocks of text, such as This is a text node’s

contents. These are always named #text. The data is a possibly empty string. Al-

though text nodes have no children, they still have a set of forest identifiers. Whenever

these identifiers are used to query for a child, the query will report that there are no

children. Our basic notation for text nodes is:

#textIdentifier[String]Set of forest identifiers

Document nodes: Each document has exactly one document node, which is always the

root of the DOM tree. They are named #document, and contain at exactly one associated

child node, called the document element. The set of forest identifiers may seem redundant

(there is only ever one element), but is required by the DOM standard.
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#document ID

Name ID

Textual data

#text ID

...

documentElement ID

...

Element node Text node

Document node

...

FIDs

FIDs

FIDs

FIDs

Figure 4.2.: The three node types we model in our DOM structure. The nodes with dashed
outlines represent nodes that are optional.

Alongside the document node, we store the set of orphaned elements and text nodes,

which we call the grove1. The grove is where newly created nodes will be placed. Also,

DOM has no commands to dispose a node. Whenever a node is no longer needed, it

is returned to the grove and “forgotten about”. It is thus natural to consider DOM as

garbage collected. Our basic notation for document nodes is:

#documentIdentifier[Document element]Set of forest identifiers & Grove node set

The node types are rendered in figure 4.2. The relationships between the node types

defines the structure of a DOM document. Each document always has exactly one docu-

ment node, acting as the root. This document node has exactly one element node child.

This document element node is a normal element, and may have zero or more children.

Text nodes can only appear at the leaves of the tree. Orphaned nodes are placed within

the grove, but are not considered roots of the DOM tree. An example of this structure is

given in figure 4.3.

1As we are working with a minor extension to featherweight DOM that includes document nodes, our
choice of grove definition is slightly different from previous work [35].
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#document 7

html 4

head 11 body 15

title 14

Lorum ipsum...

#text 10

Adam's Page

#text 8

p 12 h3 13

New text...

#text 6

GroveDocument

Tree
{1}

{2}

{3}

{} {}

{}

{}{}

{}

{}

Mandatory document node

and document element

Figure 4.3.: Example structure of a DOM document. The shading indicates the key struc-
tured of a DOM tree. Notice that some nodes have empty forest identifier
sets. This is a valid choice, assuming those nodes have not yet been queried
for a forest identifier.

4.1.1. An imperative machine for DOM

We now build an imperative machine for DOM, formalising the document structure and

command subset. We use the following objects to represent node identifiers, forest iden-

tifiers, the null (that is, invalid) node identifier, and a set of characters suitable for the

strings of DOM.

Parameter 18 (Primitive DOM sets). Assume the following objects:

• A countably infinite set of node identifiers NodeIDs, ranged over by

n, n1, · · · , nn,m, o.

• A countably infinite set of forest identifiers ForestIDs, ranged over by

fid ,fid1, · · · ,fidn, such that ForestIDs∩NodeIDs = ∅. Subsets of ForestIDs

are ranged over fs, fs1, · · · , fsn.
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• A set of DOM characters DOMChars, ranged over by c, c1, · · · , cn.

• A distinguished value null such that null 6∈ NodeIDs ∪ ForestIDs.

The data structures representing DOM trees are defined as follows.

Definition 70 (DOM data structure). Given the primitive DOM sets of parame-

ter 18, the set of DOM strings DOMStrings, ranged over by s, s1, · · · , sn, the

set of DOM trees DOMTrees, ranged over by t, t1, · · · , tn, the set of DOM

forests DOMForests, ranged over by f, f1, · · · , fn, the set of DOM groves

DOMGroves, ranged over by g, g1, · · · , gn, and the set of DOM documents

DOMDocs, ranged over by doc, doc1, · · · , docn, are defined by induction as follows:

for all c ∈ DOMChars, n ∈ NodeIDs and fs ∈ P(ForestIDs)

s ::= c | s1 · s2 | ∅s DOM strings

t ::= sn[f ]fs | #textn[s]fs DOM trees

f ::= t | f1 ⊗ f2 | ∅f DOM forests

g ::= t | g1 ⊕ g2 | ∅g DOM groves

doc ::= #documentn[t]fs & g DOM documents, t an element node

where · is associative with left and right identity ∅s, ⊗ is associative with left and

right identity ∅f , and ⊕ is associative and commutative with identity ∅g. All data

are equal up to the properties of ·,⊗ and ⊕, and contain no duplicate node or forest

identifiers.

It is often useful to refer to “DOM data” in general, without knowing whether it is a

string, element, text node, grove or document.

Definition 71 (DOM data). The set of DOM data DOMData, ranged over by

d, d1, · · · , dn, is the union of the DOM data types:

DOMData ,
DOMStrings ∪DOMTrees ∪DOMForests ∪DOMGroves

∪ DOMDocs

By definition 70, DOM strings are lists of DOM characters. DOM trees are either an

element node (with a name, identifier, child forest and forest identifier) or a text node
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x Dy

4 2 #document 7

html 4

head 11 body 15

title 14

Lorum ipsum...

#text 10

Adam's Page

#text 8

p 12 h3 13

New text...

#text 6

{1}

{2}

{3}

{} {}

{}

{}{}

{}

{}

Figure 4.4.: DOM heap structure

(with an identifier and child string). DOM forests are possibly empty lists of DOM trees.

DOM groves are possibly empty sets of DOM trees. DOM documents are a document

node with identifier and forest identifier, but have exactly one child element node (which

we call the document element), and are associated with a grove. This definition is a minor

variant on that of featherweight DOM [35].

We create structured heaps for DOM exactly as we did for simple lists and trees in

section 3.1.

Definition 72 (DOM structured heaps). Given the DOM sets (parameter 18) and

the DOM documents DOMDocs (definition 70), and letting the program variables

PVals = NodeIDs ∪ ForestIDs ∪DOMStrings ∪ {null} ∪ Z ∪ B and the DOM

tree address be D 6∈ PVars, the set of DOM structured heaps, ranged over by

ds, ds1, · · · , dsn, have the type:

StructHeaps ⊆ (PVars
fin
⇀ PVals) t ({D} → DOMDocs)

To simplify the presentation, there is exactly one DOM tree in the heap. This models

the typical use of DOM in a web browser, where a single tree modelling the currently

active page is provided. This can be extended to multiple DOM trees using the tagged
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structural addresses of 3.5.2.

In the heap, there is a delineation between the set of heap addresses, and the set of

DOM identifiers within the heaps. We do not use DOM identifiers as a heap address

at any point. The DOM tree is confined to the value of address D (see figure 4.4). It

is, in principle, possible to store DOM data directly in the heap, with #document and

grove node identifiers being heap addresses. This choice, however, does not treat nodes

uniformly, as is the spirit of DOM. It also comes at the price of uniformity in the reasoning.

Consider such a scenario, where grove nodes are stored directly in the heap. For example,

a command that removed a non-grove node would use abstract allocation to isolate the

node, and behave as:

12x Dy

4 2 #document 7

html 4

{1}

{2}

12xx Dy

4 2 #document 7

{1}

x

html 4

{2}

12yx D

4 2 #document 7

{1}

12xx Dy

4 2 #document 7

{1}

x

Abs alloc

Command

Abs dealloc

p 12

p 12

p 12

p 12

The same command, when applied to a grove node, would behave as:

yx D

4 2 #document 7

html 4

{1}

{2}

12x Dy

4 2 #document 7

html 4

{1}

{2}

p 12

12x Dy

4 2 #document 7

html 4

{1}

{2}

Command

Heap dealloc

164



Ergo, the command would have to account for either a “deep” use of the data (an

abstract heap cell), or a “shallow” use of the data (a grove cell). In the first, the cell is

removed by abstract deallocation. In the second, an actual heap deallocation step would

be required. By isolating all DOM nodes inside the DOM tree cell at address D, and

reasoning about them using only abstract heap cells, we ensure uniformity.

Commands

The commands of our DOM machine are those of the variable system (example 2), plus

the DOM commands of featherweight DOM. These commands were chosen as a subset of

DOM that demonstrates the range of structural behaviours. Moreover, they were chosen

to be minimal and sufficient, in that they can be used to implement many additional

standard DOM commands. We will give some implemented commands in section 4.1.2.

Informally, given a DOM structured heap, the commands behave as follows:

n := createElement(e) : If the expression e evaluates to a DOM string s, allocates a

fresh node identifier n and set of forest identifiers fs, adds sn[∅f ]fs to the end of the

grove of the DOM document, and assigns n to n. Faults if e does not evaluate to a

DOM string, or if the string contains the character #.

n := createTextNode(e) : If the expression e evaluates to a DOM string s, allocates a

fresh node identifier n and set of forest identifiers fs, adds #textn[s]fs to the end

of the grove of the document, and assigns n to n. Faults if e does not evaluate to a

DOM string.

s := n.nodeName : Assigns to s the name of the node structure identified by variable n.

Faults if n does not map to a node identifier, or if n does not identify a node in the

document.

m := n.parentNode : Assigns to m the node identifier of the parent of the node identified

by n. If n identifies a document node, or if it identifies a node in the document

grove, assigns null. Faults if n does not identify a node.

c := n.childNodes : If n identifies a node n, adds zero or more fresh forest identifiers to

the forest identifier associated with n, then assigns an element of the resultant set

to c.

n := f.item(e) : If the expression eevaluates to an integer i, and f maps to a forest

identifier present in the set associated with some node n, returns the i+ 1th node of
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the child forest of n, assigning it to n. If i is less than zero, or greater than or equal

to the length of the child forest, assigns null. Faults if the evaluation of e faults, or

if f does not map to a forest identifier associated with some node.

o := n.removeChild(m) : Removes the node identified by m from the child forest of the

element node identified by n, placing it at the end of the grove list of the document,

and assigning the value of m to o. Faults if either n or m do not identify nodes, if

n identifies a document or text node, or if the node identified by m is not a child of

that identified by n.

o := n.appendChild(m) : If n identifies an element node n and m identifies a element or

text node m that is not an ancestor of n, removes node m from any parent it may

have, places it at the end of the child forest of node n, and assigns m to the variable

o. Faults if n or m do not identify nodes, if m if an ancestor of n, if m identifies a

document node, or if n identifies a text node or a document node with an existing

document element.

s := n.substringData(e1, e2) : If n identifies a text node with associated data string

s, the expressions e1 and e2 evaluate to integer values i and j respectively, where

i ≥ 0 and j ≥ 0, then assigns the sub-string of s beginning at index i and continuing

for j characters to s. If i is greater than the length of the string, assigns the empty

string. If i+ j exceeds the length of the string, assign the sub-string from index i to

the end of the string. Faults if n does not identify a text node, if the evaluation of

either e1 or e2 faults, or if i or j are negative.

n.appendData(e) : If n maps to the identifier of some text node, and eevaluates to some

DOM string s, appends s to the child string of the node identified by n. Faults if

n does not identify a text node, if the evaluation of e faults, or if s is not a DOM

string.

n.deleteData(i, j) : Behaves as n.substringData(i j) but rather than returning the

data, removes it from the string.

In all the commands, we use expressions for non-identifier parameters, but just variables

for identifiers. There are no useful expressions for identifiers other than simple variable

lookup, as they are all generated at runtime non-deterministically (so have no useful

literals), and there are no expression operations on them. Using just variables here allows

us to give simpler axioms.
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The commands break down into four groups. The creation commands createElement

and createTextNode create new element and text nodes, placing them at the grove level.

These commands are straightforward. Notice there is no command to create a document

node, as the heaps we work with must contain exactly one. The query commands nodeName

parentNode, childNode and item extract properties of a node given its node identifier.

Most are straightforward, but the behaviour of n.childNodes is unusual. Rather than

returning a fixed forest identifier, it behaves non-deterministically. Before returning a

forest identifier from the set associated with node n, it first adds zero or more fresh

identifiers to the set. It therefore returns either an existing identifier or a new identifier.

The behaviour is necessary to account for an under-specification in the DOM standard,

which we investigate further in section 4.3.

The structural commands appendChild and removeChild are standard. Note that

removeChild does not destroy the node and the sub-tree, but places it at the grove level.

Finally, the string commands analyse and update the contents of text nodes. They operate

only on the contents of text nodes, rather than on DOM strings in general.

We formalise only a representative subset of of these commands into actions. The

number of cases to consider for even the representation set is large, and the rest behave as

would be expected from their informal definitions above. For lists and trees, we created

the actions using partial lists and single-holed tree contexts respectively (sections 3.1.1

and 3.1.2). Here, we will define the abstract DOM data and compression function that we

will use for the abstract heaps, making use of these to define the actions.

Definition 73 (Abstract DOM data). The set of abstract DOM strings

AbsDOMStrings, ranged over by s, s1, · · · , sn, the set of abstract DOM trees

AbsDOMTrees, ranged over by t, t1, · · · , tn, the set of abstract DOM forests

AbsDOMForests, ranged over by f , f1, · · · , fn, the set of abstract DOM groves

AbsDOMGroves, ranged over by g,g1, · · · ,gn, and the set of abstract DOM

documents AbsDOMDocs, ranged over by doc,doc1, · · · ,docn, are defined by in-

duction as follows: for all c ∈ DOMChars, n ∈ NodeIDs and fs ∈ P(ForestIDs),

x ∈ StructAddrs
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s ::= c | s1 · s2 | ∅s | x Abstract DOM strings

t ::= sn[f ]fs | #textn[s]fs Abstract DOM trees

f ::= t | f1 ⊗ f2 | ∅f | x Abstract DOM forests

g ::= t | g1 ⊕ g2 | ∅g | x Abstract DOM groves

doc ::= #documentn[t]fs & g Abstract DOM documents

| #documentn[x]fs & g t with an abstract element node

where · is associative with left and right identity ∅s, ⊗ is associative with left and

right identity ∅f , and ⊕ is associative and commutative with identity ∅g. All data

are equal up to the properties of ·,⊗ and ⊕, and contain no repeated node or forest

identifiers, nor repeated structural addresses.

The set AbsDOMData, ranged over by d,d1, . . . ,dn, is the union of all these sets:

AbsDOMData =
AbsDOMStrings ∪AbsDOMTrees ∪AbsDOMForests

∪AbsDOMGroves ∪AbsDOMDocs

Definition 74 (Compression for DOM). Given a set of structural addresses

StructAddrs (definition 35) and abstract DOM data AbsDOMData (definition

73), the compression function for the DOM structure comp : StructAddrs →
AbsDOMData → AbsDOMData ⇀ AbsDOMData is defined as substitution,

comp(x,d1,d2) = d1[d2/x]. An application comp(x,d1,d2) is written d1 x d2. If

the result would not be contained within AbsDOMData, the function is undefined.

Giving actions to the item and string manipulation commands requires the ability to

calculate both the length of strings and length of forests. We give functions for this, which

will also prove useful in defining logical expressions for DOM later (definition 81).

Definition 75 (String length). Given the set of abstract DOM strings

AbsDOMStrings (definition 73), the string length function | · |s :

AbsDOMStrings⇀ N is defined as:
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|∅s|s , 0

|c|s , 1

|s1 · s2|s , |s1|+ |s2|
otherwise undefined

Definition 76 (Forest length). Given the set of abstract DOM forests

AbsDOMForests (definition 73), the forest length function | · |f :

AbsDOMForests⇀ N is defined analagously to definition 75.

With these, we can define the DOM commands, and give example actions. The majority

of the complexity in the actions is in maintaining the structural invariants of the tree. For

example, a document node must only be the root, and must always have exactly one child

element node. The actions must preserve these invariants to avoid creating invalid data

structure.

Definition 77 (DOM command actions). Given a set of program variables PVars

(definition 3), the atomic commands of DOM are those of the variable system (ex-

ample 2), and the following additional commands: for all s, n, m, i, c ∈ PVars,

ds ∈ StructHeaps

c , n := createElement(e) | n := createTextNode(e) | s := n.nodeName

| m := n.parentNode | c := n.childNodes | n := f.item(e)

| o := n.removeChild(m) | o := n.appendChild(m)

| s := n.substringData(e, e) | n.appendData(e) | n.deleteData(e, e)

The actions of the variable commands are given in definition 16. The actions of the

DOM commands createElement, appendChild, childNodes and item are defined as:

for all doc ∈ DOMDocs, g1, g2 ∈ DOMGroves, s, s1, s2 ∈ DOMStrings, f, f1, f2 ∈
DOMForests, t1, t2 ∈ AbsDOMTrees, d ∈ AbsDOMData, fs, fs1, fs2 ∈
P(ForestIDs)
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[〈n := createElement(e)〉](ds) ,
{ds[n 7→ n,D 7→ doc & g2] | n ∈ NodeIDs} if

([e])(ds) = s,# 6∈ s,

ds(D) = doc & g1,

g2 = g1 ⊕ sn[∅f ]∅

{ } otherwise

[〈o := n.childNodes〉](ds) ,

{ds[o 7→ o,D 7→ d1 x t1]} if
ds(D) = d1 x t1, t1 = sds(n)[f ]fs1 ,

t2 = sds(n)[f ]fs2 , fs1 ⊆ fs2, o ∈ fs2

{ds[o 7→ o,D 7→ doc2]} if

ds(D) = doc1, doc1 = #documentds(n)[t]fs1 & g,

doc2 = #documentds(n)[t]fs2 & g,

fs1 ⊆ fs2, o ∈ fs2

{ } otherwise

[〈o := f.item(e)〉](ds) ,

{ds[o 7→ o]} if
ds(D) = d x s1n[f1 ⊗ s2o[f3]fs2 ⊗ f2]fs1 , ds(f) ∈ fs1,

([e])(ds) = |f1|f

{ds[o 7→ null]} if
ds(D) = d x sn[f ]fs , ds(f) ∈ fs,

([e])(ds) < 0 or ([e])(ds) ≥ |f |f
{ds[o 7→ o]} if ds(D) = #documentn[so[f ]fs2 ]fs1 & g, ds(f) ∈ fs1, ([e])(ds) = 1

{ds[o 7→ null]} if ds(D) = #documentn[t]fs & g, ds(f) ∈ fs, ([e])(ds) 6= 0

{ds[o 7→ null]} if ds(D) = d x #textds(f)[s]fs , ds(l) ∈ fs

{ } otherwise

[〈o := n.appendChild(m)〉](ds) ,
{ds[o 7→ ds(m),D 7→ t1 x t4 y ∅f ]} if

ds(D) = t1 x t2 y t, t2 = s1ds(n)[f ]fs1 ,

t = s2ds(m)[f ]fs2 , t3 = s1ds(n)[f ⊗ t]fs1
{ } otherwise

These cases span the types of actions needed for the DOM library. As with the tree

library of section 3.1.2, the actions use the context structure to analyse the tree. The
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createElement case simply extends the grove with a fresh node (the createTextNode

case is similar). The n.childNodes case queries the DOM tree, and (due to the non-

determinism), updates it. There are three cases. The first is when we can find the

sub-tree identified by n, capturing it in t1, and ignoring the surrounding context 1. The

action updates the tree with some set of forest identifers that must include at least the

original set fs1, and returns an one of these selements. The second case performs the same

task for the document node; this is needed to handle its non-uniform shape. The final case

is when n does not reference a node within the tree. The rest of the query commands are

in fact more simple than this case. The item command is typical of the index based access

to lists of objects (the string manipulation commands are similar) .The n.appendChild

command restructures the tree, and can fault based on the structural relationships of the

parameters passed (the n.removeChild command is similar).

4.1.2. Examples

Here, we implement several addition DOM commands that are not present in the feather-

weight subset. One example is l := f.length. This command returns the length of the

forest identified by variable n.

l := f.length , local r {
l := 0;

r := f.item(l);

while (r != null)

l := l + 1;

r := f.item(l)

}

Another command is v := n.value. This command returns the value associated with

a node. The only node type in our subset that with a value (in the DOM sense) is text

nodes, whose values are the string stored within them. All other nodes return a null value.

We implement this in two parts. The first obtains the length of a string, using a similar

method to the length of a forest. The second uses the node name to discriminate between

text nodes and other node types to ensure it can return the correct value.
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l := n.stringLength , local r {
l := 0;

r := n.substringData(l, 1);

while (r != null)

l := l + 1;

r := n.substringData(l, 1)

}

s := n.value , local l, name {
name := n.nodeName;

if name = "#text"

l := n.stringLength;

s := n.substringData(0, l)

else

s := null

}

Finally, we use this to create a v := n.childValue command. This command, not part

of the DOM specification, obtains the first child of node n, and assigns the value of this

child node to v. It will prove useful in the photo library example in section 4.4, allowing

a more compact program.

v := n.childValue , local cs, c {
cs := n.childNodes;

c := cs.item(0);

v := c.value

}

4.2. Reasoning about DOM

We now turn to reasoning about the DOM library. We present the reasoning as we did

in the list and tree cases of section 3.1, first defining the structural addressing algebra for

DOM, then giving the assertion language and axioms.

4.2.1. Abstract DOM data

The structural addressing algebra for DOM is built from the abstract DOM data (definition

73), compression function (definition 74), and the addresses function defined below.

Definition 78 (Addresses function for DOM). Given the set of abstract DOM data

AbsDOMData (definition 73) and the set of structural addresses StructAddrs,

the address function for DOM addrs : AbsDOMData → P(StructAddrs) is
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defined by induction to collect the set of structural addresses use within some abstract

DOM data. It is similar to definition 37.

Lemma 15 (DOM contexts are structural addressing algebras). Given DOM data DOMData

(definition 71), structural addresses StructAddrs (definition 35), abstract DOM data

AbsDOMData (definition 73), the DOM addresses function addrs (definition 78) and

DOM compression comp (definition 74), the tuple:

(DOMData,StructAddrs,AbsDOMData, addrs, comp)

is a structural addressing algebra.

Proof. Straightforward from the definitions.

Abstract heaps for DOM are defined exactly as those for lists and trees were (sections

3.2.1 and 3.2.1 respectively). Notice that the DOM heap address D still maps to DOM

documents, albeit abstract documents.

Definition 79 (Abstract heaps for DOM). Given the structural addressing algebra

for DOM (lemma 15), and program variables and values (definition 72), the set of

abstract heaps for DOM are defined as:

AbsHeaps ⊆
(PVars

fin
⇀ PVals) t ({D}⇀ AbsDOMDocs)

t (StructAddrs
fin
⇀ AbsDOMData)

4.2.2. Assertion language

We will reuse the abstract heap assertions of definition 55, and the standard framework

assertions of definition 21 without change. The data assertion language for DOM is the

lift of the data structure algebra of definition 73, plus the connectives required by the data

assertions of structural separation logic (definition 57). We will, however, require a richer

set of logical values and expressions to check various DOM invariants in the axioms.

Definition 80 (Logical values). Given node identifiers NodeIDs, forest identifiers

ForestIDs and the null symbol null (parameter 18) and the set of abstract DOM

data AbsDOMData (definition 73), the set of logical values LVars is defined as:
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LVals , B∪Z∪NodeIDs∪ForestIDs∪{null}∪P(ForestIDs)∪AbsDOMData

The logical expressions consist of length expression, set operations, the safe name and

string expressions, plus a compression expression. The length expression calculates the

length of a DOM string or forest, and will be used to axiomatise item and the string

commands. The standard set operations are used to analyse the sets of forest identifiers.

The safeName(E) expression determines if E evaluates to a string with characters drawn

DOMChars and not containing #. It will be used to check the validity of the name

passed to createElement. The string(E) expression determines if the evaluation of E is a

DOM string, and will be used to validate the parameter to createTextNode. The context

application expression E1 α E2 allows us to use compression and de-compression to to

analyse the contents of logical variables, and will be used in the proofs of our examples.

Definition 81 (Logical expressions and evaluation). Given a set of logical variables

LVars (parameter 13) and logical values LVals (definition 130), the set of logical

expressions LExprs, ranged over by E,E1, · · · ,En, is defined as the standard logical

expressions (definition 14), and the following additional expressions:

E ::= |E]| | E1 ∈ E2 | E1 ∪E2 | safeName(E) | string(E) | E1 α E2

The evaluation function 〈[·]〉(Γ)· : LEnvs→ LExprs⇀ LVals is defined as that of

the variable system (parameter 14), extended with:
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〈[|E|]〉(Γ) ,


|〈[E]〉(Γ)|s if 〈[E]〉(Γ) ∈ DOMStrings

|〈[E]〉(Γ)|f if 〈[E]〉(Γ) ∈ DOMForests

undefined otherwise

〈[E1 ∈ E2]〉(Γ) ,


true if 〈[E2]〉(Γ) is a set, 〈[E1]〉(Γ) ∈ 〈[E2]〉(Γ)

false if 〈[E2]〉(Γ) is a set, 〈[E1]〉(Γ) 6∈ 〈[E2]〉(Γ)

undefined otherwise

〈[E1 ∪E2]〉(Γ) ,

〈[E1]〉(Γ) ∪ 〈[E2]〉(Γ) if 〈[E1]〉(Γ), 〈[E2]〉(Γ) are sets

undefined otherwise

〈[safeName(E)]〉(Γ) ,


true if

〈[E]〉(Γ) = s, s ∈ DOMStrings,

6 ∃s1, s2 ∈ DOMStrings. s = s1 ·# · s2

false otherwise

〈[string(E)]〉(Γ) ,

true if 〈[E]〉(Γ) = s, s ∈ DOMStrings,

false otherwise

〈[E1 α E2]〉(Γ) , 〈[E1]〉(Γ) x 〈[E2]〉(Γ),x = Γ(α)

Definition 82 (DOM data assertions). Given the set of logical variables LVars

(definition 13) and logical expressions LExprs (definition 81), the set of DOM data

assertions DataAssts, ranged over by φ, φ1, φn, is defined by induction as follows:

for all n,d, fs, α ∈ LVars,E, s ∈ LExprs

φ ::= c | φ1 · φ2 | ∅s | sn[φ]fs | #textn[φ]fs | φ1 ⊗ φ2 | ∅f | φ1 ⊕ φ2 | ∅g

| #documentd[φ1]fs & φ2 | α | φ1 α φ2 | φ1 =⇒ φ2 | false | E

We give the semantics of a DOM data assertion via a satisfaction relation, and will give

the set interpretation of assertions in terms of this.
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Comment 8. For large data assertion languages such as DOM, I have found this

approach easier to understand than giving the set interpretation directly (as was done

for the lists of section 3.2.1 and trees of section 3.2.1).

Definition 83 (Satisfaction relation for DOM data). Given the set of logical environ-

ments LEnvs (definition 81), the abstract DOM data AbsDOMData (definition 73)

and the DOM data assertions DataAssts (definition 82), the DOM data assertion

satisfaction relations |=: (LEnvs×AbsDOMData)×DataAssts, with elements

written Γ,d |= φ, is defined by induction as:

Γ, s |= c ⇐⇒ s = c

Γ, s |= φ1 · φ2 ⇐⇒ ∃s1, s2. s = s1 · s2 ∧ Γ, s1 |= φ1 ∧ Γ, s2 |= φ2

Γ, s |= ∅s ⇐⇒ s = ∅s

Γ, t |= Sn[φ2]fs ⇐⇒ ∃s, n, f , fs.
s = 〈[S]〉(Γ) ∧ n = Γ(n) ∧ fs = Γ(fs)

∧ t = sn[f ]fs ∧ Γ, f |= φ

Γ, t |= #textn[φ]fs ⇐⇒ ∃n, s, fs.
n = Γ(n) ∧ fs = Γ(fs)

∧ t = #textn[s]fs ∧ Γ, s |= φ

Γ, f |= φ1 ⊗ φ2 ⇐⇒ ∃f1, f2. f = f1 ⊗ f2 ∧ Γ, f1 |= φ1 ∧ Γ, f2 |= φ2

Γ, f |= ∅f ⇐⇒ f = ∅f
Γ,g |= φ1 ⊕ φ2 ⇐⇒ ∃g1,g2. g = g1 ⊕ g2 ∧ Γ,g1 |= φ1 ∧ Γ,g2 |= φ2

Γ,g |= ∅g ⇐⇒ g = ∅g

Γ,d |= #documentd[φ1]fs & φ2 ⇐⇒ ∃n, t, fs,g.
n = Γ(d), fs = Γ(fs),

∧ d = #documentn[t]fs & g

∧ Γ,d |= φ1 ∧ Γ,g |= φ2

Γ,d |= α ⇐⇒ d = Γ(α)

Γ,d |= φ1 α φ2 ⇐⇒ ∃d1,x,d2.
x = Γ(α),d = d1 x d2 ∧
Γ,d1 |= φ1 ∧ Γ,d2 |= φ2

Γ,d |= φ1 ⇒ φ2 ⇐⇒ Γ,d |= φ1 ⇒ Γ,d |= φ2

Γ,d |= false ⇐⇒ never

Γ,d |= E ⇐⇒ d = 〈[E]〉(Γ)

The standard first-order logic assertions are derived from ⇒ and false in the stan-

dard way.

We define the following useful assertions.
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Definition 84 (Derived assertions). Given the DOM data assertions DOMAssts

(definition 82) and the abstract heap assertions Assts (definition 55), we define the

following derived assertions for DOM:

sn[φ] , ∃l. sn[φ]l

s[φ] , ∃n, l. sn[φ]l

♦fφ , true⊗ φ⊗ true

�fφ , ¬♦f (¬φ)

The first two assertions simply quantify over node or forest identifiers, and are used

to reduce verbosity. The assertion ♦fφ is read “somewhere in this forest, φ holds”. It

describes a DOM forest in which there is some sub-forest satisfying φ. The assertion �fφ

is the dual, read “everywhere in this forest, φ holds”. It describes a forest in which every

sub-forest satisfies φ (as it is not possible to find a sub-forest for which it does not hold).

So far, we have only given syntactic assertions. We now define the assertion interpreta-

tion function.

Definition 85 (Data assertion interpretation). Given the set of DOM data asser-

tions DataAssts (definition 82) and the logical environments LEnvs (definition

20), the set interpretation of a DOM assertion L·M· : DataAssts → LEnvs →
P(AbsDOMData) is defined as:

LψMΓ , {d | Γ,d |= ψ}

Lemma 16 (Data assertions are valid). The DOM data assertions, and the interpretation

above satisfy the behaviour required of the data assertions of structural separation logic in

definition 57.

Proof. Follows by the definition of the satisfaction relation, when compared to the require-

ments of definition 85.

4.2.3. Axioms

We give syntactic axioms for the featherweight DOM library in figure 4.5. The associated

semantic axioms are found by taking the union of the syntactic assertion interpretations

under all logical variables. Atomic soundness of the axioms is similar to tree axioms shown

sound in lemma 11.
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The axioms are mostly straightforward. We examine a few axioms typical; the others

are similar.

1. The createElement(s) command adds a new element to the grove. It has pre-

condition (n→ n ∗ α 7→ ∅g ∗ E) ∧ e⇒ s ∧ safeName(s). It uses an abstract cell α as

the location in which to place the new cell. That α is not deep within the DOM tree,

but is instead at the grove level, is ensured by the pre-condition α 7→ ∅g. Such an α

can only have been allocated from the grove. To satisfy the DOM specification, we

must ensure the name chosen for the node is valid; this is assured with safeName).

The post-condition ∃n,fs. n→ n ∗ α 7→ sn[∅f ]fs ∗ P asserts that the node is created,

using the standard existential quantification for the new node and forest identifers.

2. There are many cases of n.parentNode, the command returning the identifier for the

parent of n. The first two simply require that we provide an abstract cell containing

the node n along with its parent; no other data is required, so is not used in the

axiom. The more interesting is grove case (the third axiom), using pre-condition

n→ n ∗ m→ - ∗ α 7→ #documentn[β]fs & sn[δ]fs2 ⊕ γ. Elements in the grove must

return null when queries for their parent. However, if we used the pre-condition

α 7→ sn[β]fs to capture node n, the axiom could be used to show that every node

has no parent! Instead, we capture the fact that grove nodes are siblings of the

document node to ensure there is no ambiguity.

3. The appendChild axiom is similar to the equivalent command considered for trees

in definition 62. However, here, the axiom leaves the assertion ∅f ∨ ∅g in place of

m once moved. This is because we do not know if the node m has come from a forest

of grove position. By using the disjunct, the choice is left to the frame. Once β is

placed larger environment, and abstract deallocation used, the disjunct will collapse

to either a forest or grove empty case.

Our axioms are significantly smaller and simpler than those of featherweight DOM [35].

For example, the appendChild axiom given there is:

{∅f −◦(c ◦ pnmp[pf]pfid)) ◦ cnmc[cf]cfid}
appendChild(p, c)

{(c ◦ (pnmp[pf]pfid ⊗ cnmc[cf]cfid)}

In this axiom, a covering context c is used to capture the smallest tree with both p

and c as descends. The need for this is discussed in section 1.2.3. Moreover, this axiom

requires the adjoint of context composition to ensure that c is not a descendent of the
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p. Our axiom does not require the covering context, reducing the footprint considerably.

Similarly, the axiom for n.nodeName is given as:

{s→ - ∗ n→ n ∗ sn[f]fs}
s := n.nodeName

{s→ s ∗ n→ n ∗ sn[f]fs}

With structural separation logic, we do not need to include the entire sub-tree under the

node being analysed. This is a clearer specification of the data accessed by the command.

Lemma 17 (Soundness). The DOM small axioms are atomically sound.

The soundness argument is similar to those previous used for heaps, lists and trees.

4.2.4. Proofs of examples

Consider the l := n.length command implementation in 4.1.2. We prove that it satisfies

the triple:

{f→ f ∗ l→ - ∗ α 7→ sn[cs]fs ∧ f ∈ fs}
l := f.length

{f→ f ∗ l→ |cs| ∗ α 7→ sn[cs]fs}

The specification is what would be expected of the command, and the proof the code

meets it is given in figure 4.5. When given an element with a child forest identified by

f, the result of the command is to return the length of the child forest. We follow the

idioms introduced in chapter 3, mostly using the frame rule and semantic consequence

(and hence abstract allocation) implicitly. This improves the readability of the proofs by

eliding uninteresting steps, as the command footprints are generally evident simply by

observation. However, in the this proof, we explicitly use semantic consequence and frame

as a demonstration of the complete reasoning.

We pick a complex case, requiring the re-expression of resource using consequence be-

fore the sub-data is obviously available. Notice that the reasoning still follows the three

idiomatic steps given in section 3.3.6: express the data in an equivalent de-compressable

form; apply abstract allocation; and finally apply the axiom. Here, the chief work is in

transforming the data representation so abstract allocation can be applied. This work

would be equally necessary, and equally verbose, were normal separation or context logic

being used, as the complexity is in managing the disjunction and logical variables.

The specification for the text node string length command states that the command,

given a text node identifier, will return the length of the string contained within it. Note
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{(n→ n ∗ α 7→ ∅g ∗ E) ∧ e⇒ s ∧ safeName(s)}
n := createElement(e)

{∃n,fs. n→ n ∗ α 7→ sn[∅f ]fs ∗ E}

{(s→ - ∗ n→ - ∗ α 7→ ∅g ∗ E) ∧ e⇒ s ∧ string(s)}
n := createTextNode(e)

{∃n,fs. s→ s ∗ n→ n ∗ α 7→ #textn[s]fs}

{s→ - ∗ n→ n ∗ α 7→ sn[β]fs}
s := n.nodeName

{s→ s ∗ n→ n ∗ α 7→ sn[β]fs}

{s→ - ∗ n→ n ∗D 7→ #documentn[α]fs & β}
s := n.nodeName

{s→ #document ∗ n→ n ∗D 7→ #documentn[α]fs & β}

{n→ n ∗ m→ - ∗ α 7→ sp[β ⊗ s’n[δ]fs2 ⊗ γ]fs1}
m := n.parentNode

{n→ n ∗ m→ p ∗ α 7→ sp[β ⊗ s’n[δ]fs2 ⊗ γ]fs1}

{n→ n ∗ m→ - ∗D 7→ #documentp[sn[δ]fs2 ]]fs1 & β}
m := n.parentNode

{n→ n ∗ m→ p ∗D 7→ #documentp[sn[δ]fs2 ]]fs1 & β}

{n→ n ∗ m→ - ∗ α 7→ #documentn[β]fs & sn[δ]fs2 ⊕ γ}
m := n.parentNode

{n→ n ∗ m→ nullα 7→ #documentn[β]fs & sn[δ]fs2 ⊕ γ}

{n→ n ∗ m→ - ∗ α 7→ #documentn[β]fs & γ}
m := n.parentNode

{n→ n ∗ m→ null ∗ α 7→ #documentn[β]fs & γ}

{n→ n ∗ c→ - ∗ α 7→ sn[β]fs1}
c := n.childNodes

{∃fs2. n→ n ∗ c→ c ∗ α 7→ sn[β]fs2 ∧ fs1 ⊆ fs2 ∧ c ∈ fs2}

Figure 4.5.: Axioms for DOM (continued on on the following page)
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{
f→ fid ∗ n→ - ∗ α 7→ sm[fs⊗ sn[γ]fs2 ⊗ β]fs1 ∗ E ∧ e⇒ i

∧ fid ∈ fs1 ∧ i = |fs|

}
n := f.item(i){

f→ fid ∗ n→ n ∗ α 7→ sm[fs⊗ sn[γ]fs2 ⊗ β]fs1 ∗ E
}

{f→ fid ∗ n→ - ∗ α 7→ sm[fs]fs ∗ E ∧ e⇒ i ∧ fid ∈ fs ∧ i < 0 ∨ i ≥ fs}
n := f.item(e)

{f→ fid ∗ n→ null ∗ α 7→ sm[fs]fs}{
f→ fid ∗ i→ i ∗ n→ - ∗ α 7→ #documentm[sn[γ]fs2 ]fs1 & β

∧ fid ∈ fs1 ∧ i = 0

}
n := f.item(i){

f→ fid ∗ i→ i ∗ n→ n ∗ α 7→ #documentm[sn[γ]fs2 ]fs1 & β
}

{n→ n ∗ m→ m ∗ o→ - ∗ α 7→ sn[γ ⊗ s’m[ζ]fs2 ⊗ δ]fs1 ∗ β 7→ ∅g}
o := n.removeChild(m)

{n→ n ∗ m→ m ∗ o→ m ∗ α 7→ sn[γ ⊗ δ]fs1 ∗ β 7→ s’m[ζ]fs2}

{n→ n ∗ m→ m ∗ o→ o ∗ α 7→ sn[γ]fs1 ∗ β 7→ s’m[t ∧ is complete]fs2 ∧ s 6= #text}
o := n.appendChild(m)

{n→ n ∗ m→ m ∗ o→ o ∗ α 7→ sn[γ ⊗ s’m[t]fs2 ]fs1 ∗ β 7→ (∅f ∨∅g)}

{n→ n ∗ m→ m ∗ o→ o ∗ α 7→ sn[γ]fs1 ∗ β 7→ #textm[γ]fs2 ∧ s 6= #text}
o := n.appendChild(m)

{n→ n ∗ m→ m ∗ o→ o ∗ α 7→ sn[γ ⊗#textm[γ]fs2 ]fs1 ∗ β 7→ (∅f ∨∅g)}

{n→ n ∗ s→ - ∗ α 7→ #textn[s · s’ · β]fs ∗ E ∧ e1⇒|s| ∧ e2⇒|s’|}
s := n.substringData(e1, e2)

{n→ n ∗ s→ s’ ∗ α 7→ #textn[s · s’ · β]fs}

{n→ n ∗ s→ - ∗ α 7→ #textn[s · s’]fs ∗ E ∧ e1⇒|s| ∧ e2⇒ j ∧ ∧j > |s’|}
s := n.substringData(e1, e2)

{n→ n ∗ s→ s’ ∗ α 7→ #textn[s · s’]fs}

{n→ n ∗ α 7→ #textn[β]fs ∗ E ∧ e⇒ s}
n.appendData(e)

{n→ n ∗ s→ s ∗ α 7→ #textn[β · s]fs}

{n→ n ∗ α 7→ #textn[s · s’ · β]fs ∗ E ∧ e1⇒|s| ∧ e2⇒|s’|}
n.deleteData(e1, e2)

{n→ n ∗ α 7→ #textn[s · β]fs}

{n→ n ∗ α 7→ #textn[s · s’]fs ∗ E ∧ e1⇒|s| ∧ e2⇒ j ∧ j > |s’|}
n.deleteData(e1, e2)

{n→ n ∗ α 7→ #textn[s]fs}

Axioms for DOM (continued from figure 4.5 on the preceding page)
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{
f→ f ∗ l→ - ∗ α 7→ nmn[cs]fs ∧ f ∈ fs

}
l := f.length , local r {

l := 0;

We demonstrate a detailed analysis of r := f.item(l){
r→ - ∗ f→ f ∗ l→ 0 ∗ α 7→ nmn[cs]fs ∧ f ∈ fs

}
The logical variable cs must have captured a forest
We perform case analysis on the possible values of this
It is either empty, or a node plus additional forest{

r→ - ∗ f→ f ∗ l→ 0 ∗ α 7→ nmn[cs]fs ∧ f ∈ fs
(cs = ∅f ∨ ∃s,m,cs2,fs2,r. cs = sm[cs2]fs2 ⊗ r)

}
We then apply the rule of disjunction to consider both cases.
Assume for this detailed section that cs 6= ∅f .{

r→ - ∗ f→ f ∗ l→ 0 ∗
α 7→ nmn[cs ∧ ∃s,m,cs2,fs2,r. sm[cs2]fs2 ⊗ r]fs ∧ f ∈ fs

}
We must frame off the r forest.{

r→ - ∗ f→ f ∗ l→ 0 ∗
α 7→ nmn[cs ∧ ∃s,m,cs2,fs2,r. sm[cs2]fs2 ⊗ β β r]fs ∧ f ∈ fs

}
Apply existential elimination{

r→ - ∗ f→ f ∗ l→ 0 ∗
α 7→ nmn[cs ∧ sm[cs2]fs2 ⊗ β β r]fs ∧ f ∈ fs

}
Apply abstract allocation.
We must record the structure of cs to reestablish the data invariant.

r→ - ∗ f→ f ∗ l→ 0 ∗
∃β. α 7→ nmn[sm[cs2]fs2 ⊗ β]fs ∗ β 7→ r ∧

f ∈ fs ∧ cs = sm[cs2]fs2 ⊗ β β r


We can now apply the frame rule and the axiom
r := f.item(l);

We undo the above steps, and state the loop invariant
∃l,r,cs1,cs2. f→ f ∗ l→ l ∗ r→ r ∗ (r = 0 ∧ α 7→ nmn[cs ∧ cs1]fs)

∨
(r 6= 0 ∧ α 7→ nmn[cs ∧ cs1⊗ r⊗ cs2]fs) ∧ l = |cs1|

 ∧ f ∈ fs


while (r != null)

l := l + 1;

r := f.item(l);

}{
f→ f ∗ l→ |cs| ∗ α 7→ nmn[cs]fs

}
Figure 4.5.: Proof of l := f.length.
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the use of the is complete prediate to ensure the entire string contents are present for

analysis. We show the code meets this specification in section A.1.2.

{n→ n ∗ l→ - ∗ α 7→ #textn[s ∧ is complete]fs}
l := n.stringLength

{∃l. n→ n ∗ l→ l ∗ α 7→ #textn[s]fs ∧ l = |s|}

The node value command has the specification below. We a specification for the element

and text node case, and show the code meets it (in the text node case) in figure A.1.

{n→ n ∗ s→ - ∗ α 7→ nmid[cs]fs}
s := n.value

{n→ n ∗ α 7→ nmid[cs]fs ∗ (nm = #text ∧ s→ null) ∨ (nm 6= #text ∧ s→ null)}

The first child value command has the following specification. The command is intended

to extract the text from the very common XML idiom <nodeName>Text value</nodeName>.

Notice that the pre-condition and post-condition clearly mirror this. The only complexity

is in the update to the forest identifier set. We show the code meets this specification in

the appendix, section A.1.4.

{n→ n ∗ v→ - ∗ α 7→ nmid[#texttid[val]fs1 ⊗ β]fs2}
l := n.childValue

{∃fs3. n→ n ∗ v→ val ∗ α 7→ nmid[#texttid[val]fs1]fs3 ∧ fs2 ⊆ fs3}

4.3. Unsoundness in previous work

The existing work on featherweight DOM [35], [36] and thesis of Smith [65], gives the

specification of n.childNodes as2:

{n→ n ∗ c→ - ∗ α 7→ sn[β]f}
c := n.childNodes

{n→ n ∗ c→ f ∗ α 7→ sn[β]f}

where f is a single forest identifier, rather than a set. As such, every call to n.childNodes

returns the same forest identifier. This allows the derivation given in figure 4.6, where the

2Here updated to use our notation, but essentially identical.
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specification states that the program always terminates in a state where variables x and

y are identical. However, this behaviour is not guaranteed by the DOM specification.

That the specification returns the same identifier every time is too strong a statement.

Whilst it is correct, in that any DOM implementation with this behaviour is correct, it

is too restrictive, in that there are DOM implementations obeying the specification that

do not behave in this way. We have seen this behaviour in the widely used WebKit

browser engine3. This gives rise to a mismatch between the reasoning and DOM, as

erroneous conclusions can be drawn about certain DOM programs4. The figure 4.6 shows

a derivation which is false on some correct DOM implementations.

To support our interpretation, we examine the standard. In [71], the specification for

the node interface contains a childNodes attribute:

interface Node {
...

readonly attribute NodeList childNodes;
...

};

This attribute5 is described as:

“A NodeList that contains all children of this node. If there are no children,

this is a NodeList containing no nodes.

Our implementation of NodeList is to return a forest identifer that references the node

associated with the node list. This is acceptable, as we can see the forest identifier returned

by n.childNodes as a simple “object” that just exposes the item command.

Even though declared as an attribute, the childNodes property of a node may return

different results on each execution. To see this, we examine the specification for attributes

given by Interface Description Language [54] (henceforth IDL). IDL is a language for

describing object interfaces without committing an underlying implementation program-

ming language, and is used by the DOM standard to define the node interfaces. On the

behaviour of attributes, the IDL specification says:

3It was changed late in 2011 so that the NodeList objects resulting from calls are cached across requests
(see Webkit bug 76591 [2]). The change was due to performance concerns, rather than standards
compliance concerns.

4Although we have not yet found an instance of this problem in any examined code
5Note that readonly describes only that the attribute cannot be assigned to, not that it cannot change

by other means.
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“An interface can have attributes as well as operations; as such, attributes are

defined as part of an interface. An attribute definition is logically equivalent to

declaring a pair of accessor functions; one to retrieve the value of the attribute

and one to set the value of the attribute.”

No restrictions are placed on the behaviour of the accessor functions. They are free

to compute the result in any way that satisfies the documented behaviour of the object.

As the childNodes property says only that the result is “A NodeList that contains all

children of this node”, it is possible to comply with the specification by returning any

object that gives the behaviour; the same one each time, a fresh one each time, or some

combination of the two. Thus, the fragment:

if (n.childNodes != n.childNodes)

print "An odd behavour"

will sometimes legitimately result in “An odd behaviour”. The simple JavaScript program

given in figure 4.6 can be used in any modern web browser to detect the issue.

In our model, we have corrected the problem by associating each node with a set of node

list identifiers. The action of the n.childNodes command non-deterministically extends

this set with zero or more fresh identifiers, and returns an element of the new set. This

behaviour captures all possible outcomes: on each invocation, either a new identifier or

an existing identifier is returned, with no way for the specification to prove which case

occurs.

Comment 9. This is the only oversight I have discovered in the DOM specification

given in [35], [65], and indicates only the innate complexity of interpreting specifi-

cations written in English, especially those dependent on other specifications. The

error arose due to the unnatural behaviour of the attribute feature in IDL. Most

people would have expected an “attribute” to be a consistent property of an object,

such that n.childNodes = n.childNodes is always true. Whether this behaviour

was intended by the IDL authors and not documented, assumed by the DOM authors

and not validated, or is intentional, is unknown.

Two conclusions can be drawn here. The first is that specifications should not give

words a different meaning to that which will be commonly understood by their audi-

ence. The second is that, ideally, authors of axiomatic specifications should validate

as many of their assumptions as possible against implementations of the specification,
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{
n→ - ∗ cn1→ - ∗ cn2→ - ∗D 7→ #documentdn[true]dfs & ∅g

}
n := createElement("Test");{

∃n,fs. n→ n ∗ cn1→ - ∗ cn2→ - ∗
D 7→ #documentdn[true]dfs & Testn[∅f ]fs

}
cn1 := n.childNodes;

cn2 := n.childNodes;{
∃n,lfs. n→ dn ∗ cn1→ fs ∗ cn2→ fs ∗

D 7→ #documentdn[true]dfs & Testn[∅f ]fs

}
if (cn1 == cn2){

true
}

alert("The child node lists are the same");

else{
false

}
alert("The child node lists differ");{
true

}

<!doctype html>

<html>

<script>

var n = document.createElement("Test");

var cn1 = testEle.childNodes;

var cn2 = testEle.childNodes;

if (cn1 === cn2)

alert("The child node lists are the same");

else

alert("The child node lists differ");

</script>

</html>

Figure 4.6.: Demonstration of the specification unsoundness in the n.childNodes of pre-
vious DOM axiomatisations [35]. On WebKit versions prior to change-set
105372, this displays “The child node lists differ”, in violation of the deriva-
tion given. Notation changes are due to the differences between our simple
imperative language and JavaScript, and the fact our subset allows only one
document.
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and not just use the prose. When divergences are found, they can be investigated

more deeply and either identified as a specification, implementation, axiomatisation

bug.

4.4. Hybrid reasoning example

The DOM library is not used solely by web browsers. The ubiquity of libraries such as

DOM has led to XML being adopted as a general data transport format. Many programs

and protocols, rather than creating custom representations for data, now give output in

XML. This allows other programs to consume their results using standard library imple-

mentations, rather than having to decode complex custom formats. XML, a text-only

format, is even even used by programs storing non-text data such as photographs. Storing

arbitrary data in XML requires an encoding, allowing it to be safely represented as text.

One such encoding is base-64.

Base-64 is an encoding for data that would otherwise be stored as raw bytes (that is,

base-256). Each of the 64 possible symbols in base-64 is represented with a printable

character6. These are chosen to be a subset of most plain text formats, so base-64 allows

arbitrary base-256 data to be stored in a text file. Each character in a text file typically

uses 1 byte, so there is a size increase when transcoding from base-256 (8 useful bits per

byte) to base-64 (7 useful bits per byte).

In this example, we consider a photo library XML file. This file represents the output

of some image management tool. It stores a list of photographs, each associated with a

name and the base-64 encoding of the photographic data. We will write and reason about a

program that consumes this file, reading each photograph from the XML file, decoding the

photo data from base-64 into a normal base-256 representation, and processing the decoded

data. This program has several interesting facets as an example. It combines both DOM

reasoning about the XML data with heap reasoning about the base-64 decoding of binary

data. This demonstrates the hybrid reasoning of structural separation logic, something

not straightforwardly achievable in the previous DOM work via context logic [35]. It is

a typical use of the DOM library, analysing a list of nodes via assumptions about the

document structure. The program also demonstrates the ability of structural separation

logic to enable parallel DOM programs in a safe manner.

An example of the photo library XML manipulated by the program is given in figure

6Typically ‘A’ through ‘Z’ (upper-case letters), ‘a’ through ‘z’ (lower-case letters), ‘0’ through ‘9’ (num-
bers), and the characters ’+’ and ‘/’.
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local f, i, p {
i := 0;

c := album.childNodes;

p := c.item(i);

while p 6= null local cs, nameNode, lenNode,

data64Node, name, len, data64, data {
cs := p.childNodes;

nameNode := cs.item(0);

lenNode := cs.item(1);

data64Node := cs.item(2);

name := nameNode.childValue;

len := lenNode.childValue;

data64 := data64Node.childValue;

// Allocate a heap buffer for the data, and decode into it

data := alloc(len);

base64Decode(data64, data);

// Pass the name and buffer to the handler, and cleanup

handleImage(name, data);

freen(data, len);

i := i + 1;

p := c.item(i)

}
}

Figure 4.7.: Example photo library decoder program.

4.8. The program proceeds by using the DOM library to iterate over the each picture

child of the album element. For each picture, it will extract the name of the photo, the

length of the photograph data in base-256, and the data’s base-64 representation. It then

uses the standard heap memory to allocate a buffer large enough to store the decoded

representation of the photo data (as given by the length element). The base-64 data and

the buffer pointer are passed to a base64Decode function that fills the buffer with the

decoded photo data. The program then passes this, along with the name, to a handler

function. The program text is given in figure 4.7.

Reasoning about this program requires handling both DOM data and normal flat heap

cells. We thus extend the DOM heap in the natural way to account for flat heap cells:

StructHeaps ⊆
(PVars

fin
⇀ PVals) t (N+ fin

⇀ N) t ({D}⇀ AbsDOMDocs)

t (StructAddrs
fin
⇀ AbsDOMData)

To represent an buffer, we use an inductive predicate ncells. The instance

ncells(start, len, bytes) represents a contiguous sequence of heap memory cells, starting
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at address start, continuing for len cells, and containing the list of bytes in bytes.

ncells(start, len, bytes) ,

(len = 0 ∧ bytes = ε ∧ emp)

∨(
len > 0 ∧ ∃b, bytes′. bytes = b : bytes′ ∧

start 7→ b ∗ ncells(start+ 1, len− 1, bytes′)

)

We create two additional heap axioms to represent allocating and freeing a new n-cell

buffer.

{c→ - ∗ l→ l}
c := allocn(l)

{∃c,d. c→ c ∗ l→ l ∗ ncells(c, l,d)}

{c→ c ∗ l→ l ∗ ncells(c, l,d)}
freen(c, l)

{c→ c ∗ l→ l}

For the purpose of this example, we assume a logical expression decode64(E) that de-

scribes the byte sequence obtained by base-64 decoding the evaluation of the logical ex-

pression E. We also assume an overload for the expression |E| that allows it calculate the

length of a byte sequence. These are used to specify a command base64Decode(data,

buffer) which takes a variable data containing base-64 encoded data, and a variable

buffer pointing to a run of contiguous heap memory long enough to contain the base-

256 representation of the data contents. The command decodes the data into the buffer,

faulting if the buffer is not large enough.

{data→ d ∗ buffer→ b ∗ ncells(b, len,−) ∧ len ≥ |decode64(d)|}
base64Decode(data, buffer)

{data→ d ∗ buffer→ b ∗ ncells(b, len, decode64(d))}

We now have sufficient predicates and commands to reason about the flat heap part of

the example. We must still describe the contents of the album DOM tree, for which we

use schema predicates. Schema predicates describe the general shape of a document, and

are somewhat analogous to XML schema [40] or the XDuce assertions of [43]. We define

the following predicates to describe the schema of an album document:
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<album>

<picture>

<name>Landscape</name>

<length>12333</name>

<data>TG9ydW0gaXBzdW0uLg...</data>

</picture>

<picture>

<name>Beach</name>

<length>44782</name>

<data>ZG9sb3Igc2l0IGFtZX...</data>

</picture> ...

</album>

Figure 4.8.: Example photo album XML file containing base-64 encoded data. The album

element has a list of picture elements for children. These pictures have three
children: a name, the length of the photograph data in base-256, and the
base-64 encoded photograph data.

sV al(id, name, val) , ∃n,fs. nameid[#textn[val]fs]

pic

(
id, name,

length, data

)
, ∃id1, id2, id3.

pictureid

 sV al(id1,name, name) ⊗
sV al(id2, length, length) ⊗
sV al(id3,data, data)


∧ length = |decode64(data)|

existP ic , ∅ ∨ ∃
id,name,

len,data.
pic(id,name, len,data)

album(n, f) , albumn[�fexistP ic]f

The predicate sV al(id, name, val) describes an element with identifier id and name

name, and a single child text node containing the string val. It is used to describe the

elements name, length and data in the album document. The predicate pic describes

each picture element in the tree, and ensures the claimed data length is actually correct.

Similarly, the existP ic describes either a picture with existentially quantified parameters,

or the empty element. This is used in the album(n, f) predicate, which describes an entire

album element. It uses the “everywhere” assertion of definition 134 along with existP ic

to assert that every child of the album element is either a picture element, or empty. This

album predicate can describe any instance of an album XML file with the shape given in

figure 4.8.

After the decoding of the image data, the name and the resultant byte sequence are

passed to a dummy command handleImage that represents some kind of processing. We
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do not model what this command does, and assume it has the following specification,

which indicates it does not alter the buffer:

{name→ s ∗ buffer→ b ∗ ncells(b, len,d)}
handleImage(name, buffer)

{name→ s ∗ buffer→ b ∗ ncells(b, len,d)}

The decoder program is given in figure 4.9. The pre-condition is album → a ∗ α 7→
album(a, f), and the post-condition is ∃f. album → a ∗ α 7→ album(a, f). This is an

example of a specification saying very little, but the Hoare triple saying a lot. The pre- and

post-condition that form the specification are equally a specification for skip. However,

the value of the triple is in examining the code. This, along with the proof that it meets

the given specification, (also in figure 4.9), states that the program does work (albeit work

unobservable from the specification) and, whatever this is, it does it safely. Our memory

safe interpretation of triples ensures that every DOM and heap command is used in both

a memory safe and structurally correct manner.

There are two notable facets to the proof. The first facet is the use of abstract allocation

and frame to isolate resource. We have mostly applied the rule implicitly, but leave in

one explicit use labelled ¬ . This use allows the while loop, which intuitively focuses

on exactly one picture element to actually focus the assertions on that element. In the

proof, the use of semantic consequence to perform abstract allocation has allowed a concise

restructuring of the heap; we need only one step to isolate and express the sub-data needed,

and can then apply the frame rule as normal. The second facet is the mixture of heap and

structured resource reasoning. The ncell inductive predicate exists alongside the abstract

heap cells, allowing a homogeneous reasoning style for structured and standard heaps.

This type of proof is the strength of structural separation logic. We have mixed standard

separation-logic-style reasoning using normal inductive predicates with reasoning about

highly structured data presented entirely abstractly. Despite this, the style is very similar

across the program. There are no jarring switches in reasoning style, the specifications

remain readable, and the proof is as easy to manage as those of standard separation logic.

Towards concurrency

The DOM library is rarely used in concurrent settings. The standard provides no safety

guarantees for concurrent usage, and web browsers do not currently support shared mem-

ory concurrency at all. However, the proof given above indicates that structural separation

logic could help enable concurrent DOM. The photo library is an example where concur-
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{
album→ a ∗ α 7→ album(a, f)

}
local f, i, p {
i := 0;{

album→ a ∗ f→ - ∗ i→ 0 ∗ p→ - ∗ α 7→ album(a, f)
}

f := album.childNodes;{
∃fid,fs. album→ a ∗ f→ fid ∗ i→ 0 ∗ p→ 0 ∗ α 7→ album(a, fs) ∧ fid ∈ fs

}
p := f.item(i);

Unpack definition of album predicate ∃fid,fs,p,i.


album→ a ∗ f→ fid ∗ i→ i ∗ p→ p ∗

α 7→

 album(a, fs) ∧
albuma[(p = null ∧ ∅) ∨

(∃pre,pst,nm,ln,dt. pre⊗ pic(p,nm, ln,dt)⊗ pst ∧ |pre| = i)]fs





while p 6= null local cs, nameNode, lenNode, data64Node, name, len, data64, data {

Use semantic consequence to allocate the pic node (¬ )
∃fid,fs,p,i,nm,ln,dt, β.


album→ a ∗ f→ fid ∗ i→ i ∗ p→ p ∗ cs→ - ∗ nameNode→ -
lenNode→ - ∗ data64Node→ - ∗ name→ - ∗ len→ - ∗ data64→ - ∗ data→ -

α 7→

 albuma[∃pre,pst.
(pre ∧ �existsP ic)

⊗ β ⊗
(pst ∧ �existsP ic) ∧ |pre| = i

]fs


∗ β 7→ pic(p,nm, ln,dt)




Apply frame rule, existential elimination, and expand pic

cs→ - ∗ nameNode→ - ∗ lenNode→ - ∗ data64Node→ - ∗ name→ - ∗ len→ - ∗ data64→ - ∗ data→ -

∗ β 7→ ∃nmn,lnn,dtn,cfs. picturep

 sV al(nmn,name,nm) ⊗
sV al(lnn, length, ln) ⊗
sV al(dtn, data,dt)


cfs

∧ ln = |decode64(dt)|


cs := p.childNodes;

nameNode := cs.item(0);

lenNode := cs.item(1);

data64Node := cs.item(2);
∃cfid,nmn,lnn,dtn. cs→ cfid ∗ nameNode→ nmn ∗ lenNode→ lnn ∗ data64Node→ dtn ∗ data→ -

∗ name→ - ∗ len→ - ∗ data64→ - ∗ β 7→ ∃cfs. picturep

 sV al(nmn,name,nm) ⊗
sV al(lnn, length, ln) ⊗
sV al(dtn, data,dt)


cfs

∧ cfid ∈ cfs ∧ ln = |decode64(dt)|


name := nameNode.childValue;

len := lenNode.childValue;

data64 := data64Node.childValue;
∃cfid,nmn,lnn,dtn. cs→ cfid ∗ nameNode→ nmn ∗ lenNode→ lnn ∗ data64Node→ dtn ∗ data→ -

∗ name→ nm ∗ len→ ln ∗ data64→ dt

∗ β 7→ ∃cfs. picturep

 sV al(nmn, name,nm) ⊗
sV al(lnn, length, ln) ⊗
sV al(dtn,data,dt)


cfs

∧ ln = |decode64(dt)|


Apply frame rule and existential elimination again{

name→ nm ∗ len→ ln ∗ data64→ dt ∗ data→ - ∧ ln = |decode64(dt)|
}

// Allocate a heap buffer for the data, and decode into it

data := alloc(len);{
∃d. name→ nm ∗ len→ ln ∗ data64→ dt ∗ data→ d ∗ ncells(d, ln,−) ∧ ln = |decode64(dt)|

}
base64Decode(data64, data);

Figure 4.9.: Proof of photo library decoder program (continued on the following page).

192



{
∃d. name→ nm ∗ len→ ln ∗ data64→ dt ∗ data→ d ∗ ncells(d, ln, decode64(dt))

}
// Pass the name and buffer to the handler, and cleanup

handleImage(name, data);{
∃d. name→ nm ∗ len→ ln ∗ data64→ dt ∗ data→ d ∗ ncells(d, ln, decode64(dt))

}
freen(data, len);{
∃d. name→ nm ∗ len→ ln ∗ data64→ dt ∗ data→ d ∗ f→ fid ∗ i→ i

}
i := i + 1;

p := f.item(i)

Unframe, and apply deallocation
∃fid,fs,p,i.


album→ a ∗ f→ fid ∗ i→ i ∗ p→ p ∗ cs→ - ∗ nameNode→ - ∗
lenNode→ - ∗ data64Node→ - ∗ name→ - ∗ len→ - ∗ data64→ - ∗ data→

α 7→


album(a, fs) ∧

albuma[(p = null ∧ ∅) ∨
(∃pre,pst,nm,ln,dt. pre⊗ pic(p,nm, ln,dt)⊗ pst

∧ |pre| = i)]fs






}
}{
∃f. album→ a ∗ α 7→ album(a, f)

}

Continued decoder example from figure 4.9 on the preceding page

rency could be helpful. Rather than processing each picture element in sequence, all

picture elements could be processed in parallel. This could be achieved with only a mild

change the program structure and proof; rather than using the while loop directly, repli-

cate the loop body in parallel composition, one for each element. The safety of this is

guaranteed by structural separation logic, as we can abstractly allocate each picture sub-

tree into a separate cell, as is done in the proof. With context logic, such separation would

not be possible. Along with Raad [59], we are currently examining the possibilities for

concurrent DOM in detail.

4.5. Summary

This chapter has presented a detailed case study regarding using structural separation

logic, replicating previous work on abstract structured data reasoning about DOM. We

have demonstrated:

1. In this entire chapter, that structural separation logic can be used to provide an

accurate specification of a real standard, and is thus at least as suited for this task

as previous context logic work.

2. In section 4.2.3, that compared to previous work on context logic, the command

axioms can be significantly smaller.

3. With the photo library (example 4.4), that hybrid reasoning mixing low- and high-

level programming styles can be reasoned about. Both abstract allocation and nor-
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mal inductive predicates can co-exist, along with different heap data types. This

was not possible with previous techniques

4. With the photo library example and smaller axioms, that structural separation logic

lays the foundations for concurrent reasoning.
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5. Naturally stable promises

We have now demonstrated local reasoning for abstract data via structural separation

logic. This is a useful step towards our goal of specifying libraries but, unfortunately, many

libraries do not manipulate their data in an entirely local manner. Consider libraries with

commands that use wide-ranging analysis to find data for update. These are distinct from

the libraries we have so far seen, which access data via unique identifiers. For example,

to remove an item from a tree, we identify the item via a unique integer. In DOM, each

node is accessed via a unique node identifier, and each forest via a unique forest identifier.

In all these cases, the position in the structure at which an update occurs is entirely

determined by searching the structure for the distinct “handle” to the data. In this

chapter, we consider libraries which do not use unique identifiers. Commands will specify

the data they update by analysing large parts of the entire structure. Even though this

analysis seems global, such libraries can still benefit from local reasoning techniques, as the

updates are still focused on sub-data. This chapter introduces techniques for weakening

the locality provided by structural separation logic, allowing the reasoning to use some

global information about data whilst still manipulating structures in a local fashion.

One common example is tree libraries which use paths to identify resources. Such

situations are common, one ubiquitous example being the POSIX file systems library

⊤

p

3

2

(a) (b)

Figure 5.1.: On the left, a sub-tree found by path analysis in the larger tree. On the right,
a sub-list found by index within the larger list.
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(which we consider in chapter 6). Typically, paths analyse the tree structure from the

root, descending until the end of the path, and so identify a sub-tree. Work is then

performed on that sub-tree. These updates are, in some sense, non-local. The underlying

resource needed for their safe execution is quite global, as the path analysis requires all the

nodes along the path. However, this global resource is used only to identify a position in

the structure where update will be performed. Another example is list elements that are

accessed by index, similar to the f.item(i) command of DOM (chapter 4). Our axiom

pre-condition for that command requires the entire list up to the element at index i. This

prefix list is global information, not returned by the command, but needed to identify the

local resource of interest. The commands use global properties to identify local updates.

Figure 5.1 illustrates the intuitive footprints for two instances of these examples.

Structural separation logic’s abstract allocation operation hides information about the

context surrounding sub-data, making axiomatising these commands difficult. Given a

sub-data, the only information we can deduce from it are the weak facts guaranteed by

the structure of the model. For example, take the assertion α 7→ 2, which describes an

element 2 within a list of distinct numbers. Because this data is a sub-list, the list model

guarantees that it will be completed into a machine list. Ergo, we know that the frame

must describe lists of the form L 7→ [pl1⊗α⊗pl2] (albeit possibly split over many abstract

heap cells). Moreover, as lists cannot contain duplicate elements, we know pl1 and pl2

cannot contain the element 2. This implicit knowledge is all we can deduce from the

α 7→ 2 cell alone. It is not, for example, sufficient to determine that the element 2 is at

some index i of the whole list.

This chapter considers extending the implicit knowledge about data with more explicit

knowledge about the context into which it will fit. Consider figure 5.2 (a). The abstract

heap cell x contains the partial tree 1[4 ⊗ y]. Moreover, the data stored in the cell it is

associated with two promises. The head promise above it indicates that whatever tree

the data ultimately compresses into must place the data at path p. A body promise from

the body address y states that, whatever sub-data ultimately compresses into y, the

path q exists within it. These promises allow the cell x, when considered in isolation,

to have strong guarantees about the context that will surround it. It cannot mutate the

information in the promises, as they are read-only information provided by the frame.

However, it can use the information in them, knowing that the set of possible frames has

been restricted to those which match the shapes of the promises.

Now consider the y cell. We can see from the data within cell x that, whatever data is

stored in cell y, it must contain the path q. Mutations to the data at y must not change

this fact, or the promise will have been broken. Therefore, when considered in isolation,
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⊤
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Figure 5.2.: In figure (a), we see an abstract heap holding two abstract cells with promises.
The cell at x has the head promise that it will compress into data at path p,
and a body promise from y that the sub-data compressing there will contain
path 1/4. The data at y is this sub-data, which has an head promise that
it exists at path p/1. In figure (b), we see a single step of the collapse of
this heap; this collapse checks that the sub-data satifies the promise 1/4, and
that the super-data satifies the promise p/1. As both hold, the compression
is allowed.

the y cell must still enforce this restriction, or the system will be unstable. This chapter

only considers naturally stable libraries, which have commands that can be axiomatised in

a way that never breaks stability. In chapter 7, we will consider specifying libraries that

are not naturally stable.

We give two examples of using promises. First, we demonstrate a tree library that

identifies data with linear paths to show how promises can be used. Then, we adapt the

list library of section 3.1.1 with an item command that allows list elements to be accessed

by index.

Related work

Two strands of previous work are closely related to promises. The first is Rely-Guarantee

reasoning [47], [69]. Rely guarantee allows the modelling of interference in concurrent rea-

soning through relies and guarantees. Hoare judgements take the form R,G ` {P} C {Q}.
Such a judgement states that {P} C {Q} holds if any concurrently executing environment

program follows the relies R, and the program C follows the guarantees G. The relies and
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guarantees are relations on the program state; R states the possible state updates the

environment will do, G the program.

This work was adapted to splittable interference by Deny-Guarantee reasoning [26].

Whilst guarantees still state what a thread can do, denies state what the environment

cannot do. Our promises act similarly to guarantees, as they state what the environment

cannot do (that is, violate the promises). Careful choice of axioms ensures that deny

perimssions are unneeded, as no guarantees can be violated. However, in chapter 7, we

will see obligations, which are conceptually similar to deny permissions.

This chapter is thus perhaps more directly paralleled by passivity systems. Passive data,

introduced to separation logic in [10], enables reasoning with read-only (or passive) data.

The most commonly known formalism is fractional permissions. Ownership of a fractional

heap cell x
0.5→ 5 states that, whatever frame is added on, it cannot have more than half a

fractional permission to the variable x. To ensure stability of the reasoning, no updates

that could mutate x can be performed. A non-unity fraction acts both as a promise (“this

heap cell will retain its value”).

Promises extend this passivity to richer structures. They render structured data passive

with respect to sub-data shapes. That is, certain mutations are allowed, as long as they

preserve the shape information that has been shared via promises. Careful choice of

axiomatisation ensures that when a promise has been issued, it cannot be violated. In

this instance, they carry more information than just a binary “change/don’t change” flag,

due to the rich structure of the data.

5.1. Libraries with non-local data access

We begin by introducing two example libraries which will benefit from promises. The first,

sibling unique trees, is a tree library where sub-trees are identified by paths from the root

of the tree. The second, list indexing, extends our simple list library of section 3.1.1 with

an element access via index command.

5.1.1. Sibling unique trees & paths

Our first library using global information to identify local data is trees with paths. In this

library, sub-trees are identified not by unique handles, but by a path of nodes leading from

the root of the tree to the sub-tree which will be analysed. We define sibling unique trees,

the paths by which nodes in these trees can be identified, tree heaps, and some simple

commands over trees.
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Definition 86 (Trees with sibling unique identifiers). The set SibTrees, ranged over

by st, st1, · · · , stn, is defined inductively as follows: for all i ∈ N+

st ::= i[st] | st1 ⊗ st2 | ∅

where ⊗ is associative and commutative with identity ∅, and each tree contains

sibling-unique tree identifiers. Trees are equal up to the properties of ⊗. We write

nodes of the form i[∅] as i.

The set of rooted sibling unique trees SibRootedTrees, ranged over by

sr, sr1, · · · , srn, is defined as the set of trees with exactly one root node:

SibRootedTrees = {>[st] | st ∈ SibTrees}

Commands manipulating instances of this structure uniquely identify elements by a

path. A path is a sequence of node identifiers.

Definition 87 (Tree path). The set of tree paths TreePaths, ranged over by

pth, pth1, · · · , pthn, is defined as: for all i ∈ N+

pth ::= i | > | i/pth | >/pth

This definition allows the construction of paths like 1/>/2/>. Whilst useless, these

paths are harmless, as paths only identify resource by resolution. Resolution will never

succeed when given such a path.

Definition 88 (Path resolution). The path resolution function resolve :

TreePaths→ SibTrees⇀ SibTrees is defined as:

resolve(i, t1 ⊗ i[t2]) = i[t2]

resolve(>,>[t]) = >[t]

resolve(i/pth, t1 ⊗ i[t2]) = resolve(pth, t2)

resolve(>/pth,>[t]) = resolve(pth, t)

undefined in all other cases

When resolve(pth, t1) = t2 is defined, we say that pth resolves to t2 in t1.
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As an example, take the rooted tree >[2 ⊗ 3[1[4 ⊗ 5]]]. In this tree, the path >/3/1
resolves to the sub-tree 1[4 ⊗ 5]. The path > resolves to the entire tree. The path >/6
does not resolve, as root node has no child 6.

The machines associated with these trees are identical to the tree machines of definition

30, except that they store rooted sibling unique trees.

Definition 89 (Rooted sibling-unique tree heaps). Let R 6∈ PVars be the

tree heap address. Then, the set of rooted sibling-unique tree heaps

RootedSibTreeHeaps is defined as:

RootedSibTreeHeaps , (PVars
fin
⇀ PVals) t ({R} → SibRootedTrees)

The commands over tree heaps use paths to identify the resource they operate on. Two

typical commands are below. We will see many more commands using paths in chapter 6.

1. createNode(ep, en): Creates a new node named with the evaluation of en, as a

child of the node found by resolving the path ep. If the path does not resolve, or

resolves to a node already containing a child named en, the command faults.

2. removeNode(ep): Removes the tree found by resolving the evaluation of ep from the

tree. Faults if the evaluation of ep does not resolve.

Each command identifies a location within the tree with a path from the root of the tree.

To give axioms to these commands, we must demonstrate that the data we are working

with is found at a given path. We will use axioms of the form:

{ep⇒p/n ∧ αp 7→ n[t ∧ is complete] ∗ E}
removeNode(ep)

{αp 7→ ∅ ∗ E}

The pre-condition here describes that the path to the node to be removed is p/n, ergo

the n child of the node found at path p will be removed. It also describes an abstract heap

cell α, containing n, and associated with a path promise p. This promise ensures that α

has been de-compressed from under the node at path p. Any frames that can be applied

to this assertion must not contradict the fact that α is found at path p within the overall

tree.

Such axioms split data into two parts: the normal local data, which will be used for

update, and global data represented by promises, which is only used to place the local

data in context. This global data will be shared with other heap cells, and may be updated
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by other commands. For the promises associated with some data to make sense, we must

ensure that they cannot be broken by updates. This is a stability property.

For the tree path promises of this example, this will be straightforward. Tree path

promises are naturally stable with respect to the tree commands we give. Naturally stable

promises are those which can never be invalidated by the commands of a library, thanks to

a careful choice of axioms. With the two commands of this library, the only operation that

could invalidate a path promise would be the removal of a sub-tree. We will axiomatise

removeNode in a manner that ensures stability by checking that no abstract addresses

are found beneath the node being removed. As promises are associated with structural

addresses, if there are no body addresses in the sub-tree, no promises can be broken.

Natural stability also applies to far more complex command sets. In chapter 6, we will

show that a large subset of the POSIX file system library can be axiomatised in a naturally

stable manner.

5.1.2. Lists access via indexing

We now extend the list library of section 3.1.1 with element access via index. We add a

command much like the j := f.item(e) command of DOM:

j := item(e): If e evaluates to an integer i, this command returns the element at index

i within the list, faulting if either e does not evaluate to an integer, or the list has

no item at index i.

Adding this command requires no changes to the underlying data or list machines. As

with DOM, one natural choice of axiom is:

{α 7→ [b⊗ j⊗ β] ∗ j→ - ∗ E ∧ e⇒ i ∧ |b| = i}
j := item(e)

{α 7→ [b⊗ j⊗ β] ∗ j→ j ∗ E}

Considered in the light of promises, this axiom is unnecessarily large. The only fact

needed by the command is that element j is at index i. The partial list b in the axiom

is used only to demonstrate that fact. Consider instead a promise-bearing cell αe⇐i 7→ φ.

This describes an abstract heap cell α containing data associated with an index promise

e⇐ i. The index promise states that the data has been allocated from some super-data list

(indicated by symbol e) at index i. With this promise, the command can be axiomatised

as:

{
αe⇐i 7→ j ∗ j→ - ∗ E ∧ e⇒ i

}
j := item(e)

{
αe⇐i 7→ j ∗ j→ j ∗ E

}
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This is a smaller axiom. It uses e⇐ i to describe that the node j has i left neighbours,

but makes no statement about the contents of the neighbours. Critically, the axiom does

not own those resources. It only “owns” the fact that they exist and that their length will

not vary. The actual cells to the left remain free to be owned by another heap cell, as long

as the number of them does not change. Again, the promise restricts the set of frames to

ensure that α is only compressed into data that satisfies the promises.

Unfortunately, assertions using the promise e⇐ i are not stable when considered along-

side the remove list command. Consider the assertion:

L 7→ [3⊗ 1⊗ 4⊗ α] ∗ αe⇐3 7→ 2

This describes valid heaps, α is at index 3 of list L. However, we can apply the frame rule

to set aside αe⇐3 7→ 2. This leaves no information that would prohibit us from removing,

for example, element 3 from the list. Once the α cell is framed on again, it notices that

its promise is broken. More concerning, it has been broken at some point, and when that

was is unknown. The α cell may have used that promise whilst it was not actually true.

Comment 10. In general, it is actually worse than this thanks to the “ABA” problem

commonly encountered in concurrent reasoning. For example, if the library had a

command to add elements at arbitrary indexes, it may be that whilst α is allocated,

the element 3 is removed, but then restored (it moves from state A to B to A again,

hence the name of the problem). During the time it is in the B state, α still believes

it is the third item of L, when it is not, but a check at compression time would still

pass.

There is a strong relationship between the commands of a library, and the ability to

create local axioms with naturally stable promises. Some pairings of commands, such a

remove and item, have a tension between their ideal local axioms. In creating a local

item specification, we have broken the local remove specification. We can restore correct

behaviour by reducing the locality of either axiom: either item must be specified in terms

of the entire list prefix that proves the index of an element, or remove must be specified

in terms of the list prefix, to ensure it is not breaking the promises associated with an

abstract heap cell.

In this chapter, we avoid this problem by restricting remove to only the last element

of a list, essentially making it a random access stack. With this change, there are no

commands that can break the index promises. To restore full locality to both commands,
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d

x y

Figure 5.3.: A single datum d ∈ Data, for some Data of a structural separation algebra.

chapter 7 adds obligations to the lists.

5.2. Promises

Promises are added to data to provide global context to each datum. They extend some

choice of structural separation algebra, say (StructAddrs,Data, addrs, comp). Take

some d ∈ Data, and assume it is incomplete, so that (for example) it can be composed

into some super-data, and has two body addresses x and y into which sub-data can be

composed. In figure 5.3, we see such a datum.

Such an incomplete datum can be completed. In structural separation logic, this happens

as part of the completion process (described in section 3.4). To guide this process, we can

augment data with the shapes of the data which will complete it. Call a super-data into

which d collapses a head for d, and sub-data which collapse into x and y bodies for those

addresses. Head and body data must complete d, so that each head data has exactly one

hole, and each body data has no holes. We do not know, a-priori, the body address in the

super-data into which d will collapse. Therefore, we will use a placeholder head address,

e. In figure 5.4, we see such a head datum and two body data.

This single head datum and pair of body data describes only one possibility for the

context surrounding d. We describe the shapes of the contexts by gathering head and

body data into sets. These sets represent the possible heads and bodies that extend d

to be complete. So that we know which represents the head data, and which represent

the body data, we name each set with the address to which it pertains. We use the head

address e to name the head data, and the associated body address for each set of body

data. These named sets are the promises associated with d, as seen in figure 5.5.

We call data paired with promises promise-carrying data. It is a new form of data,

derived from some structural separation algebra and choice of promises. This new data

will form a structural addressing algebra of its own (albeit with some minor differences,

which we describe in section A.3). As such, it requires an addresses function and notion of
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d

fe

x y

h

⋒
A head datum, h

Two body data, e & f

Figure 5.4.: The data d can be extended by a super-data and two sub-data to be complete.
We call these types of data head and body data respectively.

compression. The addresses function is straightforward, simply considering the addresses

of the data that is paired with the promises.

Compression is more interesting. It requires that we check the promises are true.

Consider figure 5.6, which shows the compression between the promise-carrying data

(d, {e : p1,x : p2,y : p3}) and sub-data (f, {e : p4}), using the address y, where each

pi represents the set of data associated with each promise. The super-data d has a body

promise y : p3 for the y address. The sub-data is carrying a head promise e : p4, describ-

ing the complete super-data that will fit over it. It has no body addresses, and so no body

promises.

Compression must do three things:

1. Check the body promise for y associated with d, y : p3, is satisfied by the sub-data

f .

2. Check that the head promise associated with f , y : p3, is satisfied by the super-data

d.

3. Compress the underlying data and remove redundant promises.

Checking that the promises are satisfied involves comparing the data d and fwith the

appropriate promise. In this instance, checking that f satisfies the promises associated

with the y hole in d is straightforward. Because f is already complete, we need only

ensure that f is in p3. Checking that d satisfies the head promise associated with f is

harder, as d has more than just the y body address, and will still be extended by some
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A head promise

Two body promises

⋒ ⋒ ⋒

⋒ ⋒ ⋒

...

⎧
⎨
⎩
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⎩
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⎬
⎭
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⎫
⎬
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Figure 5.5.: By collecting head data and body data into sets and associating these sets
with names, we can describe the shape of the context for d. These named sets
are promises.

super-data. However, it can be considered complete by way of its promises. To check that

d satisfies the head promise p4, we use closure with respect to y. Closure uses promises to

fill in missing data. It is with respect to a specific body address, into which the address e

will be placed. This ensures that the closures matches the shapes used for head promises.

The completion here is illustrated in figure 5.7. The result of this closure can be used to

check the promises p4 hold by standard subset inclusion.

Had we been composing d into some super-data we would have used body closure to

complete it, thus allowing the promises associated with the super-data to be checked.

As normal closure is used to check head promises, body closure is used to check body

d

x y

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ :

...x :
⎧
⎨
⎩

⎫
⎬
⎭

...y :
⎧
⎨
⎩

⎫
⎬
⎭

f

⋒
...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ : ⋒

⋒ ⋒

○y

Figure 5.6.: The compression of promise-carrying data d with sub-data f using address y.
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Figure 5.7.: The closure of a promise-carrying data d with respect to y. Each head data
in the head head promise, and body data int

d
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x y

Figure 5.8.: The body closure of a promise-carrying data fills each body address using the
promises associated with them.

promises. These have no addresses, so this closure fills all addresses, an shown in figure

5.8.

If the promises pass the checks, so that f is within p3, and p4 is a subset of the closure of

d with respect to y, we can perform the compression. The underlying data is compressed

using standard data compression. The promises are merged, with the head promise for f

discarded (as it now has a head), and the body promise associated with y discarded (as

the address no longer exists). The result is (d y f, {e : p1,x : p2}).
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x

p
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⊤
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3
Compression is allowed, as the super-data is
a complete rooted tree, where the address x
is at path p, which matches the head promise
associated with the sub-data.

○
⋒

p

x

p/r
x

⊤

⊤

8
Compression fails, as the super-data involved
in compression does not have the address at
path p, and so does not fulfil the promise.

x

o

⋒

n
⋒

p

○x

⊤⊤

?

The success of compression depends on the
values of n and o. If p = n/o, the com-
pression succeeds, as the super-data provides
the o part of the promise, and uses its own
promise to provide the n. If p 6= n/o, then
compression fails.

Figure 5.9.: Examples of promises for linear paths. The promise
⋒

p

⊤

indicates that

the data is at path p in the tree.

Path promises for sibling-unique trees

As an example of promise-carrying data, consider figure 5.9. This considers the path

promises for the trees with paths library. It shows the combinations of promises that

allow or disallow compression in a variety of cases.

5.2.1. Formalising promises

We now formalise the intuitions of promises given in the last section. Promises are added

to a choice of structural addressing algebra. We will require a method for identifying the

single body addressed used in head data. As this address is, in essence, a placeholder for

the real address which will be used, we nominate a placeholder address from the data. We

remove this from the structural addressing algebra to ensure it is not used in describing

data. This creates two algebras: The original full algebra which will describe promises,

and the underlying algebra, which will describe data (and cannot use the head address).

Definition 90 (Underlying data algebra). Let (StructAddrs,Data, addrs, comp)

be a structural separation algebra where e ∈ StructAddrs. The derived underly-
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ing data algebra is defined as:

(StructAddrse,Datae, addrse, compe)

where e is distinguished as the head address, and

1. StructAddrse = StructAddrs \ {e}

2. Datae = {d ∈ Data | e 6∈ addrs(d)}

3. addrse = addrs

4. compe = comp

Notice that the underlying data algebra will remain a structural separation algebra, as

we have only disabled one address out of a countable infinity. The arbitrary addresses

property of the algebra will ensure that any use of it can be replaced by another of the

addresses.

We now define a set of head data, which are all those sets of data with elements that

have only a single body address e. These head data will describe the shape of possible

head promises. The vacuous head data which describes every possible shape of super-data

that some data can compress into. It will be used to stand in for a missing promise, as it

tells data no more than it already knew implicitly.

Definition 91 (Head data). Given a structural addressing algebra

(StructAddrs,Data, addrs, comp) and underlying data algebra using head

address e, the set of head data HeadData, ranged over by d, d1, · · · , dn, is defined

as:

HeadData = {d ∈ P(Data) | ∀d ∈ d. addrs(d) = {e}}

The vacuous head data VacHeadData ∈ HeadData is defined as:

VacHeadData = {d ∈ Data | addrs(d) = {e}}

The set of head promises are the pairs of the head address and head data. Here, the

head address acts as the name for the promise. With respect to some data d, a head

promise (e, d) is read as “The data d is promised that the head eventually fitting over it

is contained within d”. Notice this does not say “All data within a head promise fit over

the data”. Promises are conservative approximations of the surrounding context of data.
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Parameter 19 (Head promises). Given the set of head data HeadData (definition

91), assume a set of head promises HeadProms, ranged over by πH , · · · , with the

type:

HeadProms ⊆ {e} ×HeadData

We now turn to body promises. Body promises are similar to head promises, but describe

the shape of the sub-data that fit within a datum. These shapes are again described by

sets of data, this time called body data. To ensure that body promises result in complete

data, body data they must contain no addresses. We again describe a vacuous body data,

used to stand in for missing body promises.

Definition 92 (Body data). Given a structural addressing algebra

(StructAddrs,Data, addrs, comp) and underlying data algebra using head

address e, the set of body data BodyData, ranged over by d, d1, · · · , dn, is defined

as:

BodyData = {d ∈ P(Data) | ∀d ∈ d. addrs(d) = ∅}

The vacuous body data VacBodyData ∈ BodyData is defined as:

VacBodyData = {d ∈ Data | addrs(d) = ∅}

Body promises are pairs of structural addresses and body data. With respect to some

data d, a body promise (x, d) is read “The body that fits into address x in d is contained

within d”.

Parameter 20 (Body promises). Given the set of body data BodyData (definition

92), assume a set of body promises BodyProms, ranged over by πB, with the type:

BodyProms ⊆ StructAddrs×BodyData

Given data d and a set of body promises, we can perform body promise closure of the

data. This compresses data into every address within d. If there is a body promise

associated with that address, it uses the promised data. If there is no body promise

for that address, it uses the vacuous body data. Body promise closure is used during
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promise-carrying data compression to check that promises are met.

Definition 93 (Body promise closure of data). Given a structural addressing algebra

(StructAddrs,Data, addrs, comp), associated underlying data algebra using head

address e, and body promises BodyProms (parameter 20), the body promise

closure function ;: Datae → P(BodyProms)→ P(Data) is defined as:

; (d,ΠB) =

 d x1 d1 x2 · · · xn dn

addrs(d) = {x1, · · · ,xn}, i ∈ {1, · · · , n}
∃unique di. (xi, di) ∈ ΠB =⇒ di ∈ di,
6 ∃di. (xi, di) ∈ ΠB =⇒ di ∈ VacBodyData


This function is well-defined by the quasi-commutativity of compression on the

underlying data.

By combining head and body promises, we obtain a general set of promises. From this,

we draw promise sets, which are subsets containing head and body promises, where each

promise name is used at most once. When clear, we will call these promise sets call simply

“promises”.

Definition 94 (Promises). Let HeadData ∪ BodyData be ranged over by

d, d1, · · · , dn. Then, set of promise sets, ranged over by Π,Π1, · · · ,Πn, is defined

as:

Promises =

 Π ∈ P

 HeadProms

∪
BodyProms

 6 ∃x ∈ StructAddrs.

∃d1, d2. {(x, d1), (x, d2)} ⊆ Π


Let Π ∈ Promises. We write the removal of the promise from any address x ∈

StructAddrs from Π as:

Π− x , {(y, d) | (y, d) ∈ Π,y 6= x}

Promise sets are associated with data drawn from the underlying data algebra, and

provide context for each datum. We call the pairing of data and a set of promises promise-

carrying data. Promises are optional, so that the promises paired with a datum need not

have a promise associated with the head address, or any given body address. However,
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every promise must be useful, so must be either a head promise, or a body promise named

for a address within the datum.

Definition 95 (Promise-carrying data). The set of promise-carrying data

PromData, ranged over by pd,pd1, · · · ,pdn is defined as:

PromData ⊆ Datae ×Promises

where every promise is either a head promise, or a promise from some address in

the data: for all (d,Π) ∈ PromData

∀(x, d) ∈ Π. x = e or x ∈ addrs(d)

When defining compression, we will need to check if data satisfies promises. When

checking body promises, we will use the body closure of definition 93. This body closure

uses promises to fill in body addresses. It produces results with the same type as body

promises: sets of complete data. When checking head promises, we will use general closure

with respect to an address. General closure uses promises to complete data, resulting in

sets matching the type of head data: complete heads, with a single body address e. We

achieve general closure with respect to x by first using body closure on the body, whilst

ensuring it fills the address x with e. We then fit each head promise over the result.

Definition 96 (General closure of promise-carrying data). Given a promise-carrying

datum pd ∈ PromData, the closure of pd with respect to x ↻· (·) :

StructAddrs→ PromData→ P(Data) is defined as:

↻x ((d,Π)) =
⋃{

d e d
d ∈ πH ,
d ∈; (d, (Π− e− x) ∪ {(x, {e})})

}

where πH = πH
′

if ∃πH ′. (e, πH
′
) ∈ Π, and πH = VacHeadData otherwise.

This function is well defined via the quasi-commutativity of the underlying data, and

the address irrelevance property of the data.

We can now define compression between promise-carrying data, pd1 x pd2. Compres-

sion not only compresses the underlying data, but checks promises.
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Definition 97 (Compression for promise-carrying data). The compression func-

tion for promise-carrying data, compP : StructAddrs → PromData →
PromData⇀ PromData is defined as: for all pd1 = (d1,Π1) and pd2 = (d2,Π2)

compP (x,pd1,pd2) = (compe(x, d1, d2), (Π1 − x) ∪ (Π2 − e))

where:

1. The underlying data compression is defined: compe(x, d1, d2) defined.

2. Any body promise made to pd1 by pd2 is satisfied. If (x, d) ∈ Π1, then ;

(d2,Π2) ⊆ d.

3. Any head promise made to pd2 by pd1 is satisfied. If (e, d) ∈ Π2, then d ⊆↻x

(pd1)

5.2.2. Abstract heaps using promise-carrying data

We now have the components to build promise-carrying data algebras. These algebras are

the analogy of structural addressing algebras (definition 42), but are built with promise-

carrying data.

Definition 98 (Promise-carrying data algebra). Let

(StructAddrs,Data, addrs, comp) be some structural addressing algebra (defini-

tion 42). Let (StructAddrse,Datae, addrse, compe) be the associated underlying

data algebra (definition 90). Given a choice of promise-carrying data defined using

these previous two algebras PromData, the associated promise-carrying data

algebra is defined as:

(StructAddrsP ,PromData, addrsP , compP )

where

1. The structural addresses are those of the underlying data: StructAddrsP =

StructAddrse.

2. The addresses function is the addresses function of the underlying data, applied

to the underlying data component of a promise-carrying data: addrs(pd) =

addrse(pd↓1).
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3. The compression function compP is that defined on PromData, given in defi-

nition 97.

When unambiguous, compP (x,pd1,pd2) is written pd1 x pd2, and addrsP is writ-

ten addrs.

It is important to remember that we are dealing with data. These richer data are

formed atop of some structural addressing algebra (StructAddrs,Data, addrs, comp)

(definition 42), and so have their own notions of compression and addresses. As we did

with promise-carrying data, we now define an algebra for promise-carrying data.

Definition 99 (Promise-carrying data algebra). Let

(StructAddrs,Data, addrs, comp) be some structural addressing algebra (defini-

tion 42). Let (StructAddrse,Datae, addrse, compe) be the associated underlying

data algebra (definition 90). Let PromData be the set of promise-carrying data

defined using these previous two algebras. Then, the associated promise-carrying

data algebra is defined as:

(StructAddrsP ,PromData, addrsP , compP )

where

1. The structural addresses are those of the underlying data: StructAddrsP =

StructAddrse.

2. The addresses function is the addresses function of the underlying data, applied

to the underlying data component of a promise-carrying data addrsP (pd) =

addrse(pd↓1).

3. The compression function compP is that defined on PromData, given in defi-

nition 97.

When unambiguous, compP (x,pd1,pd2) is written pd1 x pd2, and addrsP is writ-

ten addrs. The data of the underlying algebra are equivalent to data with no promises

d ∈ Datae = (d, ∅, ∅).

This algebra inherits many useful properties from the underlying structural address-

ing algebra. However, we must first ensure that the compression function preserves the

well-formedness of the richer data we are using. For the lemmas, assume a structural ad-
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dressing algebra (StructAddrs,Data, addrs, comp) for the promises, and the associated

underlying data algebra ((StructAddrsP ,PromData, addrsP , compP ).

Lemma 18 (Compression is closed on PromData). Let pd1,pd2 ∈ PromData, x ∈
StructAddrs and pd1 x pd2 be defined. Then, pd1 x pd2 ∈ PromData.

Proof. Assume pd1 = (d1,Π1) and pd2 = (d2,Π2). The result of pd1 x pd2 is:

(d1 x d2, (Π1 − x) ∪ (Π2 − e))

As per the definitions of promises and promise-carrying data (definitions 94 and 95

respectively), this will be valid promise-carrying data if: 1) there are no duplicate promise

addresses; and 2) every promise is addressed to either e or a body address within the

data.

Note first that, by the addressing properties of the underlying structural addressing

algebras, the set addrs(d1 x d2) contains the addresses addrs((d1 \ {x}))∪ addrs(d2). Call

this the address containment property.

1. Proceed by contradiction. Assume an address a that identifies two promises:

{(a, d1), (a, d2)} ⊆ (Π1 − x) ∪ (Π2 − e).

Notice that a 6= e, as by construction e is removed from Π2 in the compression, and

Π1 is well-formed. Ergo a ∈ StructAddrs \ {e}. Therefore, by well-formedness

of pd1 and pd2, a ∈ addrsP (pd1) or a ∈ addrsP (pd2). Assume a = x. Then it

cannot be duplicated, as x is removed from Π1 in the union and Π2 is well-formed.

However, it is also the case that a 6= x. This follows from the address containment

properties, which show that addrs(d1) ∪ addrs(d2) \ {x} = ∅.

2. Proceed by contradiction. Assume there is a promise in (a, d) ∈ (Π1−x)∪ (Π2−e)

such that a 6= e and a 6∈ addrs(d1 x d2). By definition, either a ∈ Π1 or a ∈ Π2. By

the well-formedness of pd1 and pd2, either a ∈ addrs(pd1), or a ∈ addrs(pd2). If

a 6= x, then by the address containment property, it must be that a ∈ addrs(d1 x d2),

which contradicts its existence.

If a = x, then by the construction of (Π1 − x) ∪ (Π2 − e), a addresses a promise in

Π2. Ergo, a ∈ addrs(pd2) by well-formedness. By the address preservation property

of structural addressing algebras, a ∈ addrs(d1 x d2), which again contradicts its

existence.

Of the underlying data algebra properties, the following are maintained.
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Lemma 19 (Value containment). Given Data that is the underlying structural address-

ing algebra for the promise-carrying data algebra, and Values that is the set of values

underlying Data, Values ⊆ Data.

Proof. Follows from the lift of data without promises being equal to promise-carrying data,

and the value containment property of the underlying data.

Lemma 20 (Address properties). For all pd1,pd2 ∈ PromData and x ∈ StructAddrs,

if pd1 x pd2 is defined then:

1. Containment: x ∈ addrsP (pd1).

2. Non-overlap: addrsP (pd1) ∩ addrsP (pd2) ⊆ {x}

3. Preservation: (addrsP (pd1) \ {x}) ∪ addrsP (pd2) = addrsP (pd1 x pd2)

Proof. These follow directly from the addresses function being defined in terms of the

underlying addresses function, which is applied to the underlying data.

Lemma 21 (Compression quasi-associates). Let pd1,pd2,pd3 ∈ PromData and x,y ∈
StructAddrs, with pd1 = (d1,Π1),pd2 = (d2,Π2),pd3 = (d3,Π3). If y ∈ addrsP (pd2)

and either y 6∈ addrsP (pd1) or y = x, then

pd1 x (pd2 y pd3) = (pd1 x pd2) y pd3.

Proof. Assume that x 6= y (the case where x = y is similar). Assume further that the

left-hand side, pd1 x (pd2 y pd3) is defined. Then, it must equal:

(
d1 x (d2 y d3), (Π1 − x) ∪ ((Π2 − y) ∪ (Π3 − e))− e

)
The removal of a promise from a set is idempotent. Therefore, we have:

(
d1 x (d2 y d3), (Π1 − x) ∪ ((Π2 − y − e) ∪ (Π3 − e))

)
As x 6= y, there are no promises named y in Π1. Moreover, as standard set union

associates, we have:

(
(d1 x d2) y d3, ((Π1 − x) ∪ (Π2 − e))− y ∪ (Π3 − e)

)
which is equal to (pd1 x pd2) y pd3 (data quasi-associativity holds by the definition of

structural addressing algebras). Ergo, if the left is defined, the right is defined and equal

to it.
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The proof that compression is quasi-commutative is similar. The underlying data has

a simple left identity property, as x x d = d always. The addition of promises breaks

this simple identity, as data with a head promise will require additionally properties of

super-data. However, there are still identities, which can be seen via construction based

upon the choice of d. We show the existence of left identities below; the right identities

are demonstrated in a similar manner.

Lemma 22 (Existence of left identities). For all pd ∈ PromData and x ∈ StructAddrs,

there exists an pdx ∈ PromData such that pdx x pd = pd.

Proof. Assume pd = (d,Π). We will construct of pdx = (x,Πx) by picking Πx based on

the contents of Π. Without futher information, the compression is:

(x x d, (Πx − x) ∪ (Π− e))

Assume that (e, d) ∈ Π. In this case, we pick Πx = {(x, d), (e, d)}. This is well-formed

by construction. By calculation, using the identity property of data:

(x x d, (Πx − x) ∪ (Π− e))

= (d, ({(x, d), (e, d)} − x) ∪ (Π− e))

= (d, {(e, d)} ∪ (Π− e))

= (d,Π)

as required. The cases where pd has no head promise is similar.

The identity properties were used by structural addressing algebras to show that the

choice of hole is irrelevant. One could always compress another structural address in, so

that d x y was defined if y 6∈ addrs(d). Without the simple identity properties, we cannot

prove this directly. However, we can still show that the choice of address does not matter.

Lemma 23 (Address irrelevance). For all pd1,pd2 ∈ PromData and x ∈ addrsP (pd1),

y 6∈ addrsP (pd2), if pd1 x pd2 is defined, there exists pdy such that pd1 x pdy y pd2 =

pd1 x pd2.

Proof. Knowing that pd1 x pd2, assume that pd1 = (d1,Π1) and pd2 = (d2,Π2). We

will consider the case where (x, d1) ∈ Π1 and (e, d2) ∈ Π2, (ergo, d2 ⊆ d1, d1 ⊆ d2).

We construct pdx in a similar fashion to building the identities for data, by giving it

the promises that match the expectations of pd1 and pd2. Pick pdy = (y,Πy) where

Πy = {(e, d1), (y, d1)}. The result then follows by calculation, as in lemma 35.
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These properties are sufficient to demonstrate that promise-carrying data algebras are

structural addressing algebras. Ergo, they can be used as the underlying method of split-

ting data for structural separation logic.

Corollary 1 (Promise-carrying data algebras are structural addressing algebras). All

promise-carrying data algebras are structural addressing algebras.

Proof. By lemmas 18, 31, 20 33 35 and 36, and the definition of structural separation

algebras (definition 42).

5.3. Reasoning with promises

As stated earlier, the abstract allocation relation is not a specific rule that is added to

the system, but rather one deduced from the semantic consequence relation. The exact

formulation used in chapter 3 no longer holds, as it is not aware of promises. However, a

similar rule can be shown to exist for each use of this enriched framework. It creates and

destroys promises when needed, and also repartitions those already in existence, to ensure

the continued validity of each abstract heap cell. Providing a general form of this rule is

not helpful, as each choice of promise will use heap cells with a notation natural to the

promises being issued. We have seen examples in both the path and list indexing cases.

The assertions are similar, except that we need a notion for describing the promises

associated with data. As a convention, we attach the promise to the heap cell address as

a superscript:

aP1,P2,··· 7→ φ

Such an assertion describes a heap cell addressed by a, containing promise-carrying data

described by φ, where the data is associated the promises set containing promises each

described by Pi. If a heap cell has no promises, we omit the superscript.

The reasoning with these abstract heaps proceeds virtually identically to that seen al-

ready in this thesis, with command axioms given using heap cells annotated with promises.

However, With views p, q and r now describing promise-carrying abstract heaps, stability

must be carefully checked. That is, if a view p contains heap cells annotated with promises,

and a view r contains the heap cells with data fulfilling these promises, we must ensure

that no update is allowed such that r becomes r′, and r′ breaks the promises. As with

all stability, this is ensured by the standard atomic soundness property (parameter 12),

which states that: for all axioms (p,c, q) ∈ Axioms, with command action [〈c〉]
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∀r ∈ Views. [〈c〉]bp ∗ rc ⊆ bq ∗ rc

When the choice of promises and command axioms means that this above can be proven

for every axiom, then we say the promises are naturally stable. This is because they

required no more machinery to use than normal structural separation logic.

Stability also governs the creation and removal of promises via abstract allocation and

deallocation. Recall that abstract allocation is not something added to the reasoning

system. Rather, it is an result of the choice of reification and semantic consequence

relation (described in section 3.3.3). Unlike theorem 4, we cannot give a general form of

abstract allocation here. This is because the validity of an allocation depends on the choice

of promises for the underlying system, and the specific choices made in the allocation. A

typical instance takes the form:

(
αP1,··· ,Pn 7→ φ1 β φ2

)
4 4Γ ∃β.

(
αQ1,··· ,Qn,Qm 7→ (φ1 ∧ �β) ∗ βR1,··· ,Ro 7→ φ2

)
The Qi and Ri promises will be a combination of new promises for the β hole, and

those within Pi which have been distributed between α and β. Our inability to give a

general form of the rule does not affect soundness, as it remains just a use of the sound

semantic consequence rule. Uses must always be justified underlying semantic inclusion

p4 q ⇐⇒ ∀r ∈ Views. bp ∗ rc ⊆ bq ∗ rc.

5.3.1. Axiomatising the library of trees with paths

We now show how promises allow small axioms for our tree library that uses paths. We

add structural addresses to the trees to create abstract trees in the standard way, and

so create abstract rooted trees. We also add the promise head address to paths, creating

abstract paths.

Definition 100 (Abstract rooted trees and paths). The set of abstract trees

AbsTrees, ranged over by t, t1, · · · , tn, is defined inductively as follows: for all

i ∈ N+, x ∈ StructAddrs

t ::= i[t] | t1 ⊗ t2 | ∅ | x

where ⊗ is associative and commutative with identity ∅, and both node identifiers
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and body addresses are unique.

The set of abstract rooted trees RootedTrees, ranged over by rt, rt1, · · · , rtn,

is defined as:

AbsRootedTrees = {>[t] | t ∈ AbsTrees} ∪ StructAddrs

The set of abstract tree paths AbsTreePaths, ranged over by

pth,pth1, · · · ,pthn, is defined as: for all i ∈ N+

pth ::= i | > | e | i/pth | >/pth

where / is associative. Abstract tree paths are equal up to the associativity of /.

We consider a structural addresses to be an abstract rooted tree to ensure that the

entire tree can be abstractly allocated if needed. We use abstract trees to create an

underlying data algebra using head address e, and define HeadData and BodyData as

per definitions 90, 91 and 92.

Notice that if an abstract path contains an abstract address, it must be e and it must

be at the end. We lift path resolution (definition 88) to abstract trees and abstract paths

in the natural way. These paths state how to get directly from the top of the tree to a sub-

tree. They are thus head promises only. We define promises that describe all the possible

head data that resolve a given path to the head promise address. A promise-carrying data

with a path promise will be assured that it will eventually compose into a tree, and be

resolved to by the promised path.

Definition 101 (Path promises for linear paths). The function defining head data

where the head promise address e is at the end of path p, π· : Paths→ HeadData

is defined as:

πp = {d ∈ HeadData | ∀d ∈ d. resolve(p, d) = e}

The set of promises for linear paths are then defined as:

HeadProms = {(e, πp) | p ∈ TreePaths} ∪ {(e,e)}

There are no body promises, so BodyProms = ∅.
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{αp 7→ m[t ∧ 6 ∃α. ♦F (α) ∧ 6 ∃u,v. (u⊗ n⊗ v)] ∗ E ∧ (ep⇒p/m) ∨ (ep⇒m ∧ p = e ∧m = R)}
createNode(ep, en)
{αp 7→ m[t⊗ n[∅]] ∗ E}

{αp 7→ n[t ∧ is complete] ∗ E ∧ ep⇒p/n}
removeNode(ep)
{αp 7→ ∅ ∗ E}

Figure 5.10.: Axioms for tree commands using paths

The set of head promises encompasses all possible heads that resolve any path p. The

unusual case (e,e) describes the promise that the data is the entire tree; the only thing

that can fit over it is an empty context.

The data-specific assertion language for abstract trees is essentially identical to that for

the trees of section 61. We extend logical values with abstract paths. We can now define

promise-carrying heap cell assertions that use promises to indicate the path at which the

body address can ultimately be found.

Definition 102 (Promise-bearing linear path heap cells). The two promise-bearing

linear path heap cells, and their interpretations, are defined as:

LR 7→ φMΓ = {R 7→ (d, ∅)}) | d ∈ LφMΓ}

LαE 7→ φMΓ =


 x 7→ (d,Π)

d ∈ LφMΓ, p = 〈[E]〉(Γ),

Π = πp

 if
Γ(α) = x,

x ∈ StructAddrs

∅ otherwise

With these, the axioms for the tree command using paths are given in figure 5.10. They

use a simple extension to logical expressions allowing the analysis of paths. Notice that the

pre-conditions for the creation commands capture the entire forest being added to. This

must happen to ensure the name of node being created does not clash with any existing

node name. We do not use is complete in these cases, but instead the “somewhere at

forest level” assertion. The axioms allow body addresses deeper within the sub-tree, as

we are only checking to ensure the uniqueness of the new sibling’s name.

These axioms are atomically sound with respect to a natural choice for their actions.

The proofs follow the same pattern demonstrated before in this thesis. The only interesting

220



change is the restrictions on possible completions, and additional stability requirements

induced by promises. We sketch the case for removeNode.

Lemma 24 (Atomic soundness of removeNode). The command removeNode(ep) is atom-

ically sound.

Proof. We must first provide an atomic action for the removeNode(ep command. For

convinience, we define this using abstract trees via the e address: for all s ∈ TreeHeaps

and ep ∈ Paths

[〈removeNode(ep)〉](s) =

{
{s[R 7→ t1 e ∅} if s(R) = rt, rt = t1 e t2, resolve(([ep])(s), t1) = e

undefined otherwise

Consider the pre-condition for removeChild, αp 7→ n[t ∧ is complete] ∗ E ∧ ep⇒p/n.

By the definition of assertion interpretation, this interprets as the view x 7→ (n[t], πp) ∗ e
for some x, n, and t where addrs(t) = ∅, and path p, where the evaluation of ep = p/n,

and e is arbitrary variable resource. The key use of the promise is to restrict the set

of reifications of this resultant view. Because, by definition, x will only compress into

super-data that place x at path p, and completions added by the reification process will

be forced to place x at path x. Therefore, for all r ∈ Views:

bx 7→ (n[t], πp) ∗ e ∗ rc = {R 7→ rt} t varHeap

where the sub-tree n[t] is found in rt by resolving path ep, and varHeap is an arbitrary

heap of variables that can evaluate ep. This is exactly the safe resource for running the

removeNode(ep) command. It updates this heap to {R 7→ rt′} t varHeap, where rt′ is

identical to rt except that the path ep now resolves to a directory without an n node, the

sub-tree it refers to having been removed. By interpreting the post-condition, we see this

must always be contained in the reification of αp 7→ ∅ ∗ E.

The only subtle step in seeing this is that that any choice of r that composed with

pre-condition the will still compose with the post-condition. We must ensure that no r

can have been promised a fact that is no longer true. Fortunately, we have chosen the

axiom to ensure that, regardless of the choice of r, it is stable. The only possible promises

invalidated by this command are those regarding paths that encounter n during resolution.

If such a promise has been issued, the body address it has been issued to must be within

the sub-tree at ep. However, the axiom ensures that no such body addresses exist (via

is complete), so no promises can have been broken.
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5.3.2. List indexing

We now turn to axiomatising the item command for the lists library. We first formalise

the promises we will use.

Definition 103 (Promises for index lists). The list index head data with respect

to x and the list length body data with respect to x are defined as:

⇐ i = {d | d ∈ d, d = [pl1 ⊗ x⊗ pl2], |pl1| = i}
⇒ i = {d | d ∈ d, |d| = i}

The promises for the list library are defined as:

Promises =

⋃
i∈N{(e,⇐ i)} List index promises

∪
⋃
i∈N,x∈StructAddrs{(x,⇒ i} List length promises

Here, we are using more than just head promises. Many promises may accrue as abstract

allocation occurs. To ease notation, we define logical expressions for denoting sets of

promises.

Definition 104 (Logical expressions for list promises). The logical expressions for the

list library with item command and associated interpretation function are extended

with the following expressions:

〈[∅]〉(Γ) , ∅

〈[a⇐ E]〉(Γ) ,

Γ(a)⇐ 〈[E]〉(Γ) if Γ(a) ∈ StructAddrs, 〈[E]〉(Γ) ∈ N

undefined otherwise

〈[a⇒ E]〉(Γ) ,

Γ(a)⇒ 〈[E]〉(Γ) if Γ(a) ∈ StructAddrs, 〈[E]〉(Γ) ∈ N

undefined otherwise

〈[E1, · · · ,En]〉(Γ) , {〈[E1]〉(Γ), · · · , 〈[En]〉(Γ)}

We then define a promise-carrying abstract list heap cell assertion.

Definition 105 (Promise-carrying heap assertion). The abstract heap assertions of

the list library are extended to promise-carrying data with:
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LaEP 7→ φMΓ =

{
a 7→ (d,Π)

a = Γ(a), d ∈ LφMΓ,
Π = 〈[EP ]〉(Γ),

}

The assertion a∅ 7→ φ is written a 7→ φ.

The abstract heap construction using these data is similar to the tree case of section

3.3.5. More interesting is the abstract allocation relation. The enriched notion of com-

pression and data means it can now be used to pick which promises will be issued at point

of allocation. The following are all valid uses, which follows directly from the definitions

of compression and abstract heap construction:

L 7→ [1⊗ 2⊗ 3] 4<Γ ∃α.(L 7→ [1⊗ α⊗ 3] ∗ α 7→ 2

L 7→ [1⊗ 2⊗ 3] 4<Γ ∃α.(Lα⇐1 7→ [1⊗ α⊗ 3] ∗ αe⇐1 7→ 2)

∃α.(Lα⇐1 7→ [1⊗ α⊗ 3] ∗ αe⇐1 7→ 2)

4<Γ

∃α, β.(Lβ⇒1
α⇐1 7→ [β ⊗ α⊗ 3] ∗ αe⇐1 7→ 2 ∗ βe⇒1 7→ 1)

∃α, β.(Lβ⇒1,α⇒1
α⇐1 7→ [β ⊗ α⊗ 3] ∗ αe⇐1

e⇒1 7→ 2 ∗ βe⇒1 7→ 1)

4<Γ

∃α, β, γ.(Lβ⇒1,α⇒1
α⇐1,γ⇐2 7→ [β ⊗ α⊗ γ] ∗ αe⇐1

e⇒1 7→ 2 ∗ βe⇒1 7→ 1 ∗ γe⇐2 7→ 3)

The axiom for the list indexing command is given below. It uses the index head promise

to ensure it is returning the correct element. The length of j is checked to ensure we are

capturing only a single list element in j.

{αe⇐i 7→ j ∗ j→ - ∗ E ∧ e⇒ i ∧ |j| = 1}
j := item(e)

{αe⇐i 7→ j ∗ j→ j ∗ E}

For ensure these list index promises are naturally stable, we must ensure no command

can break them. The only mutative commands, and thus the only commands that could

break the promise, are append and remove. The append command evidently cannot break

a promise; it only ever extends the end of a list, so cannot perturb the index of any

body address. However, the remove command could alter such an index, by removing an

element earlier in the list.
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To restore natural stability, we simply alter remove command to mirror append: only

the last element of a list can be removed. The new axiom is thus:

{L 7→ [α⊗ i] ∗ E ∧ e⇒ i}
remove(e)

{L 7→ [α] ∗ E}

This is a strong restriction, reducing the list to a stack, and showing the limits of

naturally stable promises. In chapter 7, we restore full list behaviour by introducing

obligations.

5.4. Summary

We have demonstrated promises, a method for recording additional contextual information

about structured data that has been abstractly allocated. Promises allow us to consider

more libraries than are possible with pre-existing techniques alone, by contributing:

1. Smaller axioms for commands: Promises allow even smaller command axioms

than the techniques shown in previous chapters, as seen by the list commands of

section 5.3.2. This allows more natural specifications of the behaviours of the com-

mands, and furthers the number of safe concurrent programs that can be proven.

2. Passive access to structured data: Promises act as passive data; information

about the state that cannot be mutated. They are thus act similarly to a permission

system, but instead of allowing read-only access to the entirety of a datum (thus

rendering it immutable), allow properties of that datum to be shared instead.

3. Local reasoning for paths: Promises allow the assertions demonstrating the posi-

tion of some data in a structure to be handled separately from the data itself. This

is most evident with the paths example, section 5.3.1, where the data at a path can

be separated from a structure, whilst the nodes along a path need not be. This

allows multiple sub-data to be separated at once, and enables true local reasoning

for libraries using paths. This is not possible in previous work on context logic.
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6. POSIX file systems

Much of the content in this chapter is joint work with Gian Nizk.

This chapter uses structural separation logic with promises to present a novel axiomatic

semantics for the POSIX file system library. The primary difficulty with file system rea-

soning is that most commands access files via paths. Rather than accessing resource via

a globally unique identifier, these paths are resolved with respect to the entire file-system

tree. Local reasoning is therefore normally difficult, as each command has a (potential)

footprint of the entire tree. We will use promises to show how, despite paths, structural

separation logic allows local reasoning about file systems.

File systems are an abstraction between the storage mechanisms of a machine, and the

programs that run on that machine. Regardless of the particular hardware used, a file

system provides users with the intuitive notion of data stored in a tree-like hierarchy of

directories and files. There are several choices of file system abstraction, the two dominant

being those of Windows and of POSIX. We focus on the POSIX interfaces as they are

both ubiquitous (present in all major operating systems either by default or as an add-on)

and comprehensively standardised in [1].

This standardisation of POSIX, whilst detailed, is presented mostly in English. It is

complex and contains several subtleties that programmers can miss. Computer users

often experience problems caused by programmers incorrectly using a file system API.

Mistakes are common in client programs. For example, without care, software installers

can make assumptions about file system structures that are not true, causing them to

fail and leave the programs they are installing unusable. This chapter attempts focuses

on these problems by providing a specification that allows the verification of client code.

This is distinct from most formal systems for file systems, which focus on the verification

of implementations.

The POSIX specification, even the sub-part dealing with file systems, is too large to

consider at once. We therefore provide a compositional specification of a core subset of

the POSIX file system, distilling from the large specification a set of data structures and

commands that captures the essence of the library, whilst being as faithful as possible to the
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Music Documents

Classical

adagio.mp31812.mp3

010010110...

Thesis.pdf

011010110...

010010110...

Figure 6.1.: An example file-system tree, with the linear path
>/Music/Classical/adagio.mp3 highlighted.

standard. We term our subset featherweight POSIXFS. We provide an imperative machine

for featherweight POSIXFS, focusing on the file system, which intuitively represents the

contents of the hard disk, and the process heap, which represents the contents of the heap

memory used by programs accessing the file system. We exclude advanced features such

as asynchronous IO and sockets, to focus on the fundamental structure of files within trees

of directories. We select a subset of commands relevant to our fragment. This subset is

closed, in that the commands within it do not create structures outside our model, and

natural, in that the commands are regularly used in file system programs.

Our fragment initially considers only linear paths. These paths take the shortest route to

a file during resolution, matching the inductive structure of the directory tree exactly. An

example file-system tree is given in figure 6.1, with the path /Music/Classical/adagio.mp3

highlighted. We use promises to axiomatise the commands that identify files via paths,

and so demonstrate natural small axioms for our command subset.

We use featherweight POSIXFS to verify a software installer example, using structural

separation logic to reason locally about updating a widget directory. Software installers

provide a common class of client programs for file systems. Newly obtained software is

typically provided as a bundle, downloaded or copied onto the user’s file system. The goal

of a software installer is take this bundle and place the contents at the correct points in

the user’s file system such that the software can run. Installers also perform other tasks,

such as removing previous versions of the software and purging incompatible files that may

have been generated by it. We verify an example software installer, demonstrating that

it behaves sensibly: if the installer fails, the file system will be unchanged; if it succeeds,
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the program will be successfully installed; and there will be no other outcomes.

Whilst there has been substantial work on the formal specification of file systems, it has

mostly focused on refinement, giving specifications that are suitable for creating verified

implementations. Our work most closely mirrors the Z specification of given by Morgan

and Suffrin [50]. This work predates the POSIX standardisation, and has been the basis of

most formal work since. For example, based on these specifications, [30] used Z notation

to formally specify a set of operations covering primitive file-manipulation functionality,

mechanising them in the Z/Eves theorem prover, and refining them to an implementation

in Java. This work was part of an effort to build a verified POSIX file system [32], in

response to the mini-verification challenge by Joshi and Holzmann [48] to verify a file

system associated with a Mars lander.

An alternative approach is given in [41], formalizing an abstract file system by means

of partial functions from paths to data. However, this work does not focus on modelling

a standardised file system such as POSIX, but rather a more generic file store. As with

Z specifications, the main motivation is to verify implementations rather than client pro-

grams.

One system verifying the usage of file system libraries is Forest [28], a Haskell domain-

specific language for describing and manipulating file stores. Forest uses classical tree logics

to define the semantics of a core calculus for file-system tree shapes, creating a declarative

and type-based file system programming paradigm. Again, this is not a specification for

a standardised library like POSIX.

6.1. Distilling featherweight POSIXFS

The POSIX standard is very large, with issue 7 of the base specifications spanning nearly

four thousand pages. It covers many different types of operating system abstraction, of

which the file system is just one. The prose is a mix of English descriptions for the

formal concepts, C language source code to describe some programming interfaces, and

English rationales for certain decisions. Though rigorously defined, the standard is not

presented in a way amenable to formal analysis. We therefore first analyse the standard

to extract featherweight POSIXFS, a tractable subset, focusing on file systems, which we

can formalise for analysis. In forming this subset, we refer to many definitions within the

standard [1].

227



6.1.1. Pruning the file-system tree

Despite being presented as a tree by most user interfaces, the file-system defined by POSIX

is actually a directed graph. The nodes of the graph are the seven types of file, enumerated

in standard reference 3.164. Despite the name, these are not what are generally thought

of as files, but instead are just “objects that can be written to, or read from, or both”. Each

file has a unique file serial number (standard reference 3.175), commonly called an inode.

The graph edges are given by directory files (reference 3.129). Each directory file contains

an unordered list of directory entries (reference 3.130). Each entry is a named hard link

(reference 3.191) to another file, and the same file may have multiple incoming hard links.

The result is a file system hierarchy (reference 4.5). One directory file is distinguished as

the root directory (reference 3.324). The overall result is a graph similar to that of figure

6.2, using inode 1 as the root.

Playlist : 4mySocket : 7favorite.mp3 : 6Music : 2 Documents : 5

1

D

Classical : 4

2

SYM

adagio.mp3 : 61812.mp3 : 3

4

D

010010110...

3

F

pFifo : 8

5

D

→ 011010110 →

7

SKT

6

F

011010110...

⟷ 010010010...

8

FIFO

Figure 6.2.: An example file-system, as permitted by the POSIX specification.

Of the seven types of file, we will initially model just regular files (labelled by the

subscript F in the diagram) and directories (labelled D). We will outline a possible for-

malisation of symbolic links in chapter 7. The other types of file (block special, character

special, FIFO, and socket) are less commonly used. We believe that they can be added to

our subset without difficulty if needed. By removing these file types from consideration,

we simplify file systems to those shaped like figure 6.3.
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Playlist : 4favorite.mp3 : 6Music : 2 Documents : 5
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adagio.mp3 : 61812.mp3 : 3
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010010110...

3

F

5
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Figure 6.3.: An example file system, considering only regular files and directories.

Figure 6.3 more closely resembles the common intuition of a file-system structure. The

directory files consist of file names referring either other directories or regular files. The

regular files contain byte sequences. However, there may be many hard links to the same

file. This is typically desirable, as many different directories may want to reference the

same file. Unfortunately, if hard links point to directories rather than regular files, cyclic

file systems can be created. Whilst this is allowed by POSIX, it is disallowed by almost

every POSIX implementation due to the complexities of file systems with “loops” in their

structure. We restrict our system so that hard links reference regular files only.

With this restriction, a file system can be seen as a tree of directories. Within this tree

structures, files are referenced (possibly many times) by their inodes, resulting in a heap

of files. We will represent the directory tree using an inductive data structure. Our subset

will not permit programs to open directories as if they were general files (an operation

that is rare). We therefore remove their inodes from this structure without affecting the

usefulness of our fragment, and obtain a file-system tree like figure 6.4.
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Figure 6.4.: An example file system, considering only trees of directories, with regular files
at the fringe.

Formalisation

We work with file systems under the restrictions above. We first formalise the file-system

tree. Two general sets of data are necessary for this.

Parameter 21 (File systems data for trees). Assume a set of file names for directory

entries FNames (reference 3.170), ranged over by a, b, c, with a distinguished root

name > ∈ FNames. Assume also a countably infinite set of inode identifiers

INodes (reference 3.175), ranged over by ι, κ, · · · .

To maximise the number of POSIX implementations we can specify, we do not impose a

limit on the length of file names. Therefore, the POSIX constant NAME MAX, which defines

the system limit on name length, is infinite in our setting. We now define the set of

directories. Directories can be defined as an inductive data type, representing the trees of

directory files (reference 3.129), each containing zero or more directory entries (reference

3.130). We choose our representation by referencing the standard’s specification of the

internal directory structure (section “format of directory entries” in dirent.h). This
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gives us free reign to pick a representation of directories that is as general as the standard,

as long as we can determine the inode and name for each directory entry. Our subset

does not give inodes to directories, so entries in the directory tree are either other named

directories or named file links to an inode.

Definition 106 (Unrooted directories). The set of unrooted directories UDirs,

ranged over by ud, ud1, · · · , udn, is defined as: for all a ∈ (FNames\{>}), ι ∈ INodes:

ud ::= ∅ Empty directory

| a : ι File-link entry named a

| a[ud] Directory entry named a

| ud1 + ud2 Directory composition

where + is commutative and associative with identity ∅, and the directory entries

have sibling unique names. Unrooted directories are equal up to the properties of +.

We also define rooted directories, which represent the single starting point of the file

system hierarchy. Together, rooted and unrooted directories form the set of general direc-

tories.

Definition 107 (Rooted directories). The set of rooted directories RDirs, ranged

over by rd, rd1, · · · , rdn, is defined as:

RDirs , {>[ud] | ud ∈ UDirs}

The set of directories Dirs, ranged over by d, d1, · · · , dn is defined as:

Dirs , UDirs ∪RDirs

Every entry within the file-system tree is typed as either a directory or regular file. A

file-link entry, a : ι, has type F. A directory entry a[ud] has type D. We also give a type

to entries that do not exist, N. This will be used to represent files that cannot be found

in a directory tree.

Definition 108 (Entry types). The set of entry types DETypes is defined as:

DETypes = {F,D,N}
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We define the inodes function to extract the set of used inodes from a directory. This

function will be useful in checking well-formedness of our structures.

Definition 109 (Inodes function). The inodes function inodes : Dirs →
P(INodes) is defined by induction on directories to collect the set of inodes used.

It is similar to definition 37.

Rooted directories form the file-system tree. The heap of regular files consist of inode

identifiers pointing to byte sequences (reference 3.317). Byte sequences are lists of bytes

(reference 3.84).

Definition 110 (Bytes). The set of bytes Bytes, ranged over by b, b1, · · · , bn, is

defined as the integers in the [0, 255] interval. The set of byte sequences ByteSeqs,

ranged over by bs, bs1, · · · , bsn, is defined as: for all b ∈ Bytes

bs ::= b | b · bs | ∅

where · is associative with identity ∅. Byte sequences are equal up to the properties

of ·.

Definition 111 (Byte sequence length). The byte sequence length function | · | :
ByteSeqs→ N is defined as the length of the input byte sequence, and is standard.

We now define a file-system heap as the structure which represents a file system. It

consists of a rooted directory and a heap of regular files. This heap must contain at least

the files referenced by the file-link entries in the file-system tree.

Definition 112 (File-system heaps). Let F be the directory tree address, where

F 6∈ INodes. The set of file systems FileSystems, ranged over by fs, fs1, · · · , fsn,

is defined as:

FileSystems ,

{
fs

fs : ({F} → RDirs) t (INodes
fin
⇀ ByteSeqs),

inodes(fs(F)) ⊆ dom(fs)

}
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If a regular file is not referenced by any directory entries, and is not currently in use,

the standard says that it will be destroyed. We choose not to model this destruction of

regular files by commands, instead assuming that file-system heaps are garbage collected.

This allows our presentation to focus on the core behaviours of commands, rather than

resource cleanup.

6.1.2. Paths

Commands that access the file-system tree identify the data they work on via pathnames

(POSIX standard [1] reference 3.266, more often simply called paths). A path is a list

of pathname components (reference 3.267) separated by the ‘/’ character. A pathname

component is either a directory or regular file name, the reserved name ‘.’ or the reserved

name ‘..’ (reference 3.169).

As our subset allows neither hard links to directories nor symbolic links (for the mo-

ment), paths consisting of filenames match the inductive structure of the file-system tree.

They are resolved in the tree, with each component indicating the next sub-tree for res-

olution, and the final component indicating the target. However, paths containing the ‘.’

and ‘..’ characters are not inductively related to the tree. Whereas a normal pathname

component states the next directory or file in the path, the ‘.’ name indicates a hard

link to the directory that contains it. The ‘..’ name is a hard link to the parent of the

directory. In POSIX, all directories must contain ‘.’ and ‘..’. As we do not currently allow

hard links to directories, we do not consider ‘.’ or ‘..’. Our paths are thus linear, taking

the shortest route through the file-system tree to the entry they identify.

Linear paths are either relative or absolute. Relative paths can be used to resolve an

entry in any part of the tree. Absolute absolute paths always start at the root. POSIX

gives this root directory the path ‘/’. For typesetting clarify, we label the root path ‘/’ as

>. Ergo, absolute linear paths are of the form >/list/of/file/names.

Definition 113 (Linear Paths). The set of relative linear paths RelativePaths,

ranged over by rp, rp1, · · · , rpn, is defined as: for all a ∈ FNames

rp ::= a | rp/a

The set of absolute linear paths AbsolutePaths, ranged over by

ap, ap1, · · · , apn, is defined as:
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AbsolutePaths = {>} ∪ {>/rp | rp ∈ RelativePaths}

The set of linear paths Paths, ranged over by p, p1, · · · , pn, is defined as Paths =

RelativePaths ∪AbsolutePaths

Paths locate entries within a directory tree via a process of path resolution (standard

reference 4.12). Path resolution starts at the root of the file system, and follows each path

component down one level of the structure to find the entry. The resolution of linear paths

matches the inductive structure of the file system hierarchy. Paths do not always resolve

in a given directory tree, corresponding to the file not being found.

Definition 114 (Path resolution). The path resolution function resolve :

Paths → Dirs ⇀ Dirs is defined as: for all a ∈ FNames, rp ∈
RelativePaths, d, d1, d2 ∈ Dirs

resolve(a, d+ a : ι) = a : ι

resolve(a, d1 + a[d2]) = a[d2]

resolve(>,>[d]) = >[d]

resolve(a/rp, d1 + a[d2]) = resolve(rp, d2)

resolve(>/rp,>[d]) = resolve(rp, d)

otherwise undefined

We will need to concatenate paths to perform certain operations.

Definition 115 (Path concatenation). The path concatenation function

pathConcat : Paths→ Paths⇀ Paths is defined as:

pathConcat(p, a) = p/a

pathConcat(p1, a/p2) = pathConcat(p1/a, p2)

where, if the pathname component > would appear in the result as anything

other than the first component, the result is undefined. The path concatenation

pathConcat(p1, p2) is written p1/p2.
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6.1.3. Process heap

The heaps of definition 112 represent the state of the storage device holding the file system.

We will also need runtime structures representing normal heap memory, and specific file-

system data held by programs. We call this the process heap. The process heap consists

of the structures created by opening files and enumerating directories, along with normal

heap memory.

An open file description (reference 3.253) is a record holding information about the

regular files opened by a program. This record contains the inode of the file, and the

offset within the file that read and write operations will begin from. Open file descriptors

are created by the open commands, used by read, write, and lseek and are destroyed

by the close command (all given in definition 119).

Definition 116 (Open file description). The set of open file descriptions

OpenFileDescriptions, ranged over by fd, fd1, · · · , fdn, is defined as:

OpenFileDescriptions , INodes× N

Programs almost never open directories as if they were files. Instead, they enumerate

the contents with special directory management commands. All such interaction with

directories is via directory streams (reference 3.131). These represent the state of an open

directory in the form of a entry set, recording the entries that were in a directory when it

was opened. They are used to support the opendir, readdir and closedir commands

(all given in definition 119).

Definition 117 (Directory streams). The set of directory streams

OpenDirStreams, ranged over by ds, ds1, · · · , dsn is defined as:

OpenDirStreams , P(FNames)

The process heap is a structured heap holding open file descriptions and directory

streams. These structures are referred to via open file descriptors (reference 3.166)1.

The heap also includes a standard heap, as commands that read and write to files use

standard heap memory as the destination and source of these commands.

1Not to be confused with open file descriptions, definition 116.
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Definition 118 (Process heap). Assume a countably infinite set of open file de-

scriptors OpenFileDescriptors, ranged over by n,m, · · · . The set of process

heaps Ph, ranged over by ph,ph1, · · · ,phn, is defined as:

Ph ,

 ph ph :
OpenFileDescriptors

fin
⇀

 OpenDirStreams

∪
OpenFileDescriptions


t N+ fin

⇀ N



6.1.4. Selection of commands

The POSIX standard defines over 160 commands that manipulate the file system. Not all

of these commands are relevant to the set of file types we model. Moreover, many of the

commands are redundant, in that they can be implemented using the other commands. We

pick a core command set that is: closed, in that it allows all the expected manipulations

of the file system structure we define; and natural, in that the commands we choose are

those typically used by programs.

We classify our core commands into structural commands that manipulate the file-

system tree, primitive IO commands that read and write the contents of files in the

heap, state commands for querying file attributes, and heap commands that allocate and

deallocate linear blocks of normal heap memory.

Definition 119 (Core POSIX fragment). The set of core POSIX commands

FSCommands consists of the structural commands StructCommands, ranged

over by cSTR, IO commands IOCommands, ranged over by cIO, state com-

mands StateCommands, ranged over by cSTA, and regular heap commands

HeapCommands, ranged over by cH . These are defined as: for all program

expressions path, existing, new, flags, dir, flags, fd, size, buffer, offset, whence

and program variables ndir, nfd, nsize, noffset, s and ptr
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cSTR ::= mkdir(path) | rmdir(path)
| link(existing, new) | unlink(path)
| rename(existing, new)

cIO ::= ndir := opendir(path)

| fn := readdir(dir) | closedir(dir)
| fd := open(path, flags)

| c := read(fd, buf, sz)

| c := write(fd, buf, sz)

| noffset := lseek(fd, offset, whence)

| close(fd)

cSTA ::= s := stat(path)

cH ::= ptr := malloc(size)

free(ptr)

cFS ::= cSTR | cIO | cSTA | cH

Structural commands

Structural commands are those concerned with manipulating the directory tree. They

never access the file heap nor the process heap.

mkdir(path) When path evaluates to p/a, this command creates a new empty directory

named a inside the directory resolved to by p. If p does not resolve, or p/a does

resolve, the command faults.

rmdir(path) Removes the empty directory resolved to by path. If path does not resolve,

resolves to a directory with children, or resolves to the root directory, the command

faults.

link(existing, new) When the value of existing is p1/a and that of new is p2/a, link

creates a file-link entry a in the directory named by p2 linking the same inode as

p1/a. If p1 or p2 do not resolve to existing directories, if p1/a resolves to a directory,

or if p2/a resolves at all, the command faults.
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unlink(path) Removes the file link resolved to by path. If path does not resolve to a

file link, the command faults.

rename(existing, new) The command moves the directory entry resolved to by existing

so it becomes the directory entry resolved to by new. This happens through the fol-

lowing cases:

1. Renaming a file to a new file: If existing resolves to a file link to inode ι,

new is of the form p/a and p resolves to a directory without an entry named a,

then the directory entry resolved to by existing is removed and a new file-link

entry named by a is created, resolved to by new, referencing inode ι.

2. Renaming a file to the same name as an existing file: If existing resolves

to a file link to inode ι and new resolves to any file link, then the directory

entries resolved to by existing and new are removed and a new file-link entry

is created, resolved to by new, referencing inode ι.

3. Renaming a directory to a new directory: If existing resolves to a directory

that is not an ancestor of new, new is of the form p/a and p resolves to a

directory without an entry named a, then the directory entry resolved to by

existing is removed and a new directory type entry is created, resolved to by

new, with the same contents as that originally resolved to by existing.

4. Renaming a directory to the same name as an existing directory: If existing

resolves to a directory that is not an ancestor of new and new resolves to a

directory with no children, then the directory entries resolved to by existing

and new are removed and a new directory type entry is created, resolved to by

new, with an identical form to that originally resolved to by existing.

5. Renaming something to itself: If new and existing have the same path value,

and it resolves to some entry, then rename does not affect the file system.

In all other cases, rename faults.

Input/Output commands

These commands are concerned with the contents of files. Whilst some examine the

directory tree to set some initial resource state, most access just the file and process

heaps.

ndir := opendir(path) Creates a fresh directory stream in the process heap containing

the names of the entries within the directory resolved to path and assigns the address
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of the stream to ndir. If path does not resolve to a directory, the command faults.

fn := readdir(dir) Returns an entry from an open directory stream. When the process

heap has a directory stream entry for dir, then:

1. when the directory stream is non-empty, non-deterministically selects and re-

moves an entry, assigning the value to fn;

2. when it is empty, assigns ε (the empty file name) to fn.

If dir does not evaluate to a directory stream address or the open directory heap

does not have an entry for dir, the command faults.

closedir(dir) Removes the open directory stream referenced by dir from the open

directory heap. If dir is not a directory stream address or the open directory heap

does not have an entry for dir, the command faults.

nfd := open(path, flags) Either opens or creates a new file.

1. If the directory entry resolved to by path is of the form a : ι, open creates

a fresh file descriptor (say, n) in the open file heap associated with the open

file description (ι, 0), and assigns n to nfd. Additionally, if flags is O TRUNC,

this command sets the contents of file ι in the file heap to be the empty byte

sequence.

2. If path does not resolve, is of the form p/a, p resolves to a directory, and

flags = O CREAT, then: a new entry is added to the file heap with a fresh

inode (say, ι) and the empty byte sequence as contents; and, a file-link entry

named a is created in the directory resolved by p linking the inode ι. Then

open proceeds as in case 1.

If flags is not 0, O TRUNC or O CREAT, path resolves to a directory type entry, or

path is of the form p/a such that p does not resolve, the command faults.

c := read(fd, buff, size) If fd refers to a file descriptor with inode ι and offset offset

in the file heap, this command reads from file ι at most size bytes, starting at offset ,

into the heap buffer pointed to by buff. If offset + size bytes exceeds the length

of the file, reads only until the end. Assigns to c the number of bytes read into

the buffer. The command updates the file offset by adding the length of the byte

sequence actually read. If the open file heap has no entry for fd, size is not a

natural number, or if the buffer pointed to by buff is not of at least length size,

the command faults.
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c := write(fd, buff, size) If fd refers to a file descriptor with inode ι and offset

offset , writes size bytes from the heap buffer buff to the file associated with ι,

starting at offset , assigning size to nsize. Any contents present in the file between

the offset and the length of str are overwritten, and the file length is extended if

needed. If the file offset is greater than the length of the file, then the command

first writes as many 0 bytes to the file as needed to make the length of the contents

equal to the file offset. The file offset is updated by adding size. If the process heap

has no entry for fd, buff is not a heap buffer of at least length size, the command

faults.

noffset := lseek(fd, offset, whence) Moves the file offset for an open file descrip-

tor. If the open file heap maps fd to an entry (ι, o), and the file heap maps ι to

an entry with contents s then lseek changes the open file heap mapping for fd to

(ι, o′) and noffset is set to o′, where o′ calculated as:

1. if whence is SEEK SET, o′ is offset;

2. if whence is SEEK CUR, o′ is offset + o;

3. if whence is SEEK END, o′ is offset + |s|.

Note that the command is allowed to set the new file offset to a value greater than

the length of the file. If o′ is negative, whence is none of SEEK SET, SEEK CUR and

SEEK END, or the open file heap has no mapping for fd, then lseek faults.

close(fd) Closes the open file descriptor fd, by removing it from the process heap. If

the open file heap does not contain an entry fd, the command faults.

Status command

Our single status command just examines the directory tree. We distinguish this from a

structural command because it does not modify the file system.

t := stat(path) If the directory entry resolved to by path is a file-link entry, then

assigns the file type constant F to t. If it is of directory type, assigns D to t. If the

path path does not resolve in the tree, assigns the file type N.

Heap commands

The two heap commands allocate and deallocate linear blocks of heap memory. The

commands use a malloc block head which stores the length of the block that has been
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allocated. This block head is a single integer stored in the address just below that of the

memory that is returned.

ptr := malloc(size) If size evaluates to a positive integer size, allocates size + 1

fresh contiguous heap cells starting at address ptr. At address ptr, stores size. In

addresses [ptr+1, ptr+size], stores non-deterministic bytes. Assigns ptr+1 to ptr.

Faults if the evaluation of size is not a positive integer.

free(ptr) : If ptr evaluates to a positive integer ptr, and the heap contains a positive

integer size at address ptr − 1, deallocates from the heap all cells in the range

[ptr − 1, ptr + size]. Faults if ptr is not a positive integer, ptr − 1 is not a positive

integer, or the heap does not contain a cell for every address in the [ptr−1, ptr+size]

range.

Our core POSIX commands are simplified versions of the true POSIX commands, but

retain the behaviours pertinent to our subset. We have adapted the specifications to work

with a simple imperative language, eliding many artifacts of C. We omit error return codes

and treat any errors as faults2. Our command descriptions correspond to the behaviour

specified by POSIX that is relevant to our file system model choices. The only exceptions

are the readdir command, and the malloc and free commands, which we simplify. As

specified by POSIX, readdir is non-deterministic:

“If a file is removed from or added to the directory after the most recent call to

opendir . . . , whether a subsequent call to readdir returns an entry for that

file is unspecified.”

Therefore, mutations made to a directory that is opened via opendir can be reflected in

calls to readdir in one of three ways:

1. All changes are reflected, so that files that have been added to the directory are

returned and files that have been removed are not.

2. Some changes are reflected, so that if files are added or removed, whether they will

be returned is unknown.

3. No changes are returned. The state of the directory as it was when opendir was

used is always the state used.

2We have studied errors, and include them in an upcoming paper based upon this chapter. However,
they draw the focus away from the core specification and use of structural separation logic. We thus
omit them here.
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Ideally, our model would capture the full non-determinism of readdir. However, the

first two choices raise troubling questions about behaviour. To simplify this initial pre-

sentation, we pick the third option: readdir will return the elements that were present

in the directory at the point it was initially opened with opendir.

The POSIX standard for malloc(size) and free states that malloc should return the

starting address of a block of memory of length size. It also states that, when this address

is passed to free, the entire block should be deallocated. To enable this, we must store

the length of the block, so that free can ensure the entire block is removed. Moreover, the

standard states that if an address not returned by malloc is passed to free, the behaviour

is undefined.

We give a valid specification for malloc and free, but do not capture the entire non-

determinism of the standard. Specifically, we implement the behaviour by storing the

length of a block in the heap, at the address immediately below the returned heap block.

This, in theory, enables programs using our choices to obtain deterministic behaviour not

allowed by the standard (such as manually resizing blocks of memory). To capture the full

spirit of POSIX here, we would require a more abstract representation of heap memory

returned by malloc. As this is not the focus of the chapter, we choose the simpler, less

general, behaviour.

6.2. Imperative machines for featherweight POSIXFS

Having selected the featherweight POSIXFS subset, we now develop an imperative ma-

chine for programming with it. This machine is formed of a heap containing variables,

a file system heap (definition 112), and a process heap (definition 118). The large range

of types used by POSIX means the selection of variable values is much richer than our

previous examples. We have seen each of the types before, except the empty file name

constant ε. This will be used by commands which would normally return a file name, but

cannot due to the state of the file system.

Definition 120 (Variable values). Let ε 6∈ FNames be the empty filename. The

set of variable values PVals, ranged over by v, v1, · · · , vn is defined as:

PVals , Z t {true, false} t FNames t {ε} t INodes tDETypes

tByteSeqs tPaths tOpenFileDescriptors
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Some commands are parameterised with values that are not addresses or paths. For

instance, the lseek command takes a parameter whence instructing it in what direction

to seek. Following POSIX, we define symbolic constants to capture these parameters. The

constants are SEEK SET, SEEK CUR, SEEK END (for lseek) and O TRUNC (for open). We will

assume that these constants exist in any variable store (corresponding to, for example,

them being set up by a runtime or included in some global definitions file).

We enrich the standard set of program expressions with expressions for path manipula-

tion. This includes the POSIX commands basepath and dirpath, which determine the

final path component and the prefix leading to the final path component respectively. In

POSIX, these are commands. However, as they do not mutate the heap, it we give them

as expressions.

Definition 121 (Program expressions). The set of program expressions Exprs,

ranged over by e, e1, · · · , en, is extended from that of example 5 by:

e ::= e1 · e2 Byte sequence concatenation

| |e| Byte sequence length

| e1/e2 Path concatenation

| basepath(e) | dirpath(e) Path analysis

The evaluation of expressions is mostly standard. We give only the cases for path

analysis.

Definition 122 (Evaluation of path expressions). The expression evaluation function

([·])(·) for the expressions of definition 121 is standard, except for: for all e such that

for all e1, e2 with ([e1])(s), ([e2])(s) ∈ Paths:

([e1/e2])(s) = ([e1])(s)/([e2])(s) if ([e2])(s) 6∈ AbsolutePaths

([basepath(e)])(s) = a if ([e])(s) = p/a

([dirpath(e)])(s) = p if ([e])(s) = p/a

([basepath(e)])(s) = > if ([e])(s) = >
([dirpath(e)])(s) = > if ([e])(s) = >

The structured heaps for featherweight POSIXFS fuse a variable store, a file system

and a process heap.
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Definition 123 (Structured heaps). The set of structured heaps for POSIXFS

PFSHeaps, ranged over by fsh, fsh1, · · · , fshn, are defined as:

PFSHeaps , {fsh | fsh : (PVars
fin
⇀ PVals) t FileSystems tPh}

6.2.1. Command actions

In this chapter, we will not prove the soundness of our reasoning with respect to an

underlying set of command actions3. Omitting the actions does not weaken the rigour of

our argument, as the POSIX standard itself does not provide a set of operational semantics.

Ergo, any set we create will have to be created by us, and justified against the English

prose. We are also responsible for creating the small axioms. Any mismatch between the

two would therefore be a surprise, as we are writing the operational semantics purely to

justify the axiomatic semantics!

When a library is specified without a pre-existing formal operational semantics, we feel

that giving only the axioms more closely fits our library reasoning agenda. This is because

we are not trying to capture a specific operational implementation, but the most general

specification that we can give to the library commands. Soundness of the reasoning should

instead be justified both with respect to the prose of the library document, but also against

implementations of the library both via refinement techniques and empirical testing. We

will discuss our ongoing work with refinement in the conclusions of chapter 8.

Comment 11. Using actions and axioms, as I did in DOM, is useful when there is

a preexisting formalism against which one can check our choices (e.g. [65] for DOM).

It is also useful when presenting work to audiences who may be very familiar with

operational semantics, but less so with axiomatic. Presenting both allows an easier

route to understanding for some people.

6.3. Reasoning

We now define the reasoning for featherweight POSXIFS. We proceed as in previous

chapters, first introducing the data types needed to build the abstract heap, then creating

an assertion language, and finally presenting the small axioms.

3Recall that atomic command actions, parameter 6, give the operational semantics of commands.
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6.3.1. Abstract file systems

The only rich data type in the file systems presentation is the directory structure. We

add structural addressing to this using contexts to create abstract directories. Notice that

we will not need structural addresses for the process heap (definition 118), as these values

have a flat structure.

Definition 124 (Abstract directories). The set of abstract unrooted directories

AbsUDirs, ranged over by ud,ud1, · · · ,udn, is defined as: for all a ∈ (FNames \
{>}),x ∈ StructAddrs

ud ::= ∅ | a : ι | a[ud] | ud1 + ud2 | x

where + is associative and commutative with identity ∅, directory entries are sibling

unique, and body addresses are unique. Abstract unrooted directories are equal up

to the properties of +.

The set of abstract rooted directories AbsRDirs, ranged over by

rd, rd1, · · · , rdn, is defined as:

AbsRDirs , {>[ud] | ud ∈ AbsUDirs} ∪ StructAddrs

The set of abstract directories AbsDirs, ranged over by d,d1, · · · ,dn, is defined

as:

AbsDirs , AbsUDirs ∪AbsRDirs

Allowing a structural address to be used as an abstract rooted directory ensures that

the entire directory tree can be abstractly allocated if needed.

The addresses function and composition for this data are defined in the standard manner.

Definition 125 (Addresses function for directories). The addresses function addrs :

AbsDirs→ P(StructAddrs) is defined by induction to extract the set of structural

addresses present in an abstract directory. It is similar to 37.

Definition 126 (Abstract directories composition). The abstract directories com-

position function comp : StructAddrs → AbsDirs → AbsDirs ⇀ AbsDirs is
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defined as substitution of a directory entry for the given structural address, if the

result is contained within AbsDirs. It is similar to 38.

This reasoning for featherweight POSIXFS will use path promises in a similar manner

to the example of section 5.1.1. As we use linear paths, these promises state the linear

path from which the data associated with the promise was allocated. As we are using

linear paths, which take the shortest route from the top of the file system tree to the data,

these promises will be head promises, given in terms of paths that lead to e. Along with

the standard paths We use an empty abstract path ∅p, which represents that e is at the

very root of the tree. This will describe the situation when the entire file-system tree has

been abstractly allocated.

Definition 127 (Abstract paths). Given the set of absolute paths AbsolutePaths

(definition 113), the set of abstract paths AbstractPaths, ranged over by

p,p1, · · · ,pn, is defined as:

AbstractPaths = {p/ e | p ∈ AbsolutePaths} ∪ {∅p/e}

We lift path resolution to abstract paths on abstract directory trees in the natural way.

The only non-evident case is for the path ∅p/e, which only resolves as resolve(∅p/e,e) =

e.

Definition 128 (Promises for file systems). Given a structural addressing algebra

formed of abstract directories and the associated composition and addresses function,

we construct the underlying data algebra (StructAddrse,Dirse, addrse, compe)

as per definition 90. Then, the at path head data @ : AbstractPaths →
P(AbsRDirs) is defined as:

@p = {rd ∈ AbsRDirs | resolve(p, rd) defined, addrs(rd) = {e}}

The set of HeadProms for file systems is a set of rooted directories in which an

abstract path resolves.

HeadProms , {(e,@p) | p ∈ AbstractPaths}

There are no body promises: BodyProms , ∅. The set of promise sets Promises

is formed as per definition 94.
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Notice that these head promises always refer to a directory into which either another

directory or file link can be composed. These promises are naturally stable with respect to

the file system commands, for the same reason that the path promises were self stable in

section 5.1.1. With these “at path” promises, we define the abstract heap for file systems.

Notice that the process heap is unchanged from the imperative machine definition. Process

heaps are entirely flat, and require no structural addressing. Notice we use the data and

structural addresses from the underlying data algebra.

Definition 129 (Pre-abstract heap). The set of pre-abstract heaps for POSIXFS

PFSHeaps, ranged over by fsh, fsh1, · · · , fshn, are defined as:

AbsPFSHeaps ,

 fsh fsh :

(PVars
fin
⇀ PVals)

t ({>}⇀ (AbsRDirse ×Promises))

t Ph

t (StructAddrse
fin
⇀ (AbsDirse ×Promises))


The set of abstract heaps for featherweight POSIXFS is those pre-abstract heaps with

completions which satisfy the path promises.

6.3.2. Assertion language

As in previous chapters, we define the assertion language by giving logical values, logical

expressions, data specific assertions and, finally, abstract heap assertions. The logical

values and expressions for file system reasoning are richer than previous examples. This

due to the variety of data types we are manipulating, and the amount of analysis needed in

certain axioms (mostly focusing on paths and sets). Paths will be used to denote the path

promise on a cell. Ergo, we allow the abstract “empty path” ∅p to enable the abstract

allocation of the entire file system tree.

Definition 130 (Logical values). The set of logical values LVals are defined as

follows:

LValues , PVals ∪ P(PVals) ∪AbsDirs ∪ P(AbsDirs)

∪ Paths ∪ {∅p} ∪ P(AbsolutePaths) ∪ {∅p} ∪ StructAddrs
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The logical expressions allow the standard set of logical expressions, plus normal set

operations, byte sequence analysis, and path analysis. The later two are used for axioma-

tising the read and write commands, and the structural commands respectively. We

allow sets of program values and directories to enable logical variables to store sets of

entries, which is useful for showing invariants of certain directory structures.

Definition 131 (Logical expressions and evaluation). The set of logical expres-

sions LExprs, ranged over by E,E1, · · · ,En, is defined inductively as: for all

V ∈ PVals, l, l1, l2 ∈ LVars

E ::= V | l | E1 ∈ E2 | E1 ∪E2 | E1 \E2 Variables literals, and sets

| E1 ·E2 | |E| Byte sequence concat. and length

| E1/E2 Path concatenation

| basepath(E) | dirpath(E) Path analysis

The logical expression evaluation function 〈[·]〉(Γ)· : LEnvs → LExprs ⇀

LVals is defined as:

〈[V ]〉(Γ) , V

〈[l]〉(Γ) , Γ(l)

〈[E1 ∈ E2]〉(Γ) ,


true if 〈[E1]〉(Γ) ∈ 〈[E2]〉(Γ), 〈[E2]〉(Γ) is a set

false if 〈[E1]〉(Γ) 6∈ 〈[E2]〉(Γ), 〈[E2]〉(Γ) is a set

undefined otherwise

〈[E1 ∪ E2]〉(Γ) ,

〈[E1]〉(Γ) ∪ 〈[E2]〉(Γ) if 〈[E1]〉(Γ), 〈[E2]〉(Γ) are sets

undefined otherwise

〈[E1 \ E2]〉(Γ) ,

〈[E1]〉(Γ) \ 〈[E2]〉(Γ) if 〈[E1]〉(Γ), 〈[E2]〉(Γ) are sets

undefined otherwise

〈[E1 ·E1]〉(Γ) , 〈[E1]〉(Γ) · 〈[E2]〉(Γ)

〈[|E|]〉(Γ) , |〈[E]〉(Γ)|
〈[E1/E2]〉(Γ) , 〈[E1]〉(Γ)/〈[E2]〉(Γ)

〈[basepath(E)]〉(Γ) , basepath(〈[E]〉(Γ))

〈[dirpath(E)]〉(Γ) , dirpath(〈[E]〉(Γ))
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The set of data assertions are the lift of the file system data type to the assertion

language, plus the required assertions of structural separation logic.

Definition 132 (File system data assertions). The set of file-system tree asser-

tions FSTreeAssts, ranged over by φ, φ1, · · · , φm, are defined as:

φ ::= ∅ Empty entry

| E[φ] Directory type entry

| E1 : E2 File type entry

| φ1 + φ2 Entry list

| >[φ] File system root

| E Logical expression

| φ1 α φ2 Address separation

| �α Address availability

| φ1 ⇒ φ2 Implication

| false Falsity

| ∃x.φ Existential

As we did in satisfaction relation for DOM (definition 83), we define the meaning of

file-system tree assertions relationally.

Definition 133 (File-system tree assertion interpretations). The file-system tree

assertions interpretation relation, �⊂ (LEnvs × AbsDirse) × FSTreeAssts,

with elements ((Γ,d), φ) written Γ,d � φ is defined as:
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Γ,d � ∅ ⇐⇒ d = ∅
Γ,d � E[φ] ⇐⇒ ∃d1. d = 〈[E]〉(Γ)[d1] ∧ Γ,d1 � φ

Γ,d � E1 : E2 ⇐⇒ d = 〈[E1]〉(Γ) : 〈[E2]〉(Γ)

Γ,d � φ1 + φ2 ⇐⇒ ∃d1,d2. d = d1 + d2 ∧ Γ,d1 � φ1 ∧ Γ,d2 � φ2

Γ,d � >[φ] ⇐⇒ ∃d1. d = >[d1] ∧ Γ,d1 � φ

Γ,d � E ⇐⇒ d = 〈[E]〉(Γ)

Γ,d � φ1 α φ2 ⇐⇒ ∃d1,x,d2.
Γ(α) = x ∧ d = d1 x d2 ∧
Γ,d1 � φ1 ∧ Γ,d2 � φ2

Γ,d � �α ⇐⇒ Γ(α) = x ∧ x ∈ addrs(d)

Γ,d � φ1 ⇒ φ2 ⇐⇒ (Γ,d � φ1) =⇒ (Γ,d � φ2)

Γ,d � false ⇐⇒ never

Γ,d � ∃x.φ ⇐⇒ ∃x. Γ[x 7→ x],d � φ

These assertions satisfy the requirements of data specific assertions by construction.

With them, we define a set of useful derived assertions.

Definition 134 (Derived Assertions). The set of derived assertions for file systems

reasoning are defined as:

♦φ , ∃α. (true α φ)

entry(a) , a[true] ∨ ∃i. (a : i)

top entry(a) , true + entry(a)

top address , ∃α.α ∈ StructAddrs ∧ (true + α)

names(s) , ∀a. (a ∈ s ⇐⇒ true + entry(a))

�
i
b , (i = 0 ∧∅) ∨

(
i > 0 ∧ b ·

(
�
i−1
b

))

The assertion ♦φ is the somewhere in the tree assertion, stating that φ holds at some

level of the tree structure. The assertion entry(a) describes an entry in the file system; a

file or directory named a. The assertion top entry(a) states that somewhere in a list of

directory entries is the entry named a (either as a file link, or a directory); it is used by e.g.

mkdir to ensure the new directory name does not already exist. Asserting top address is

similar, but states there is some structural address present; that is, some children may be
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missing due to abstract allocation. The assertion names(s) describes that every name in

the set s is present as an entry. Finally, the assertion �
i
b describes repeated byte sequence

composition, repeating the byte sequence b exactly i times.

We now define the abstract heap assertions, using distinct assertions for each type of

data. Notice that only abstract heap cells are annotated with promises, as the root of

the file system heap is always at the root path. The annotations on each abstract address

indicate the path at which they will compress into their super-data.

Definition 135 (Abstract heap cells). The set of abstract heap assertions are

those of definition 55, extending with the following additional assertions:

P ::= > 7→ φ Root of file-system tree

| αE 7→ φ Abstract directory cell

| x F7→ E Regular file Cell

| x PH7→ E File descriptor heap cell

| x 7→ E Regular heap cell

The assertion interpretation function is defined as:

L> 7→ φMΓ = {> 7→ (rd, ∅) | rd ∈ LφMΓ}

LαE 7→ φMΓ =


{x 7→ (d, (e,@p/e) | d ∈ LφMΓ} if

Γ(α) = x,x ∈ StructAddrse,

〈[E]〉(Γ) = p,

p ∈ AbsPaths ∪ {∅p}

∅ otherwise

Lx F7→ EMΓ =

{ι 7→ 〈[E]〉(Γ)} if Γ(x) = ι, ι ∈ INodes

∅ otherwise

Lx PH7→ EMΓ =

{ofd 7→ 〈[E]〉(Γ)} if Γ(x) = ofd, ofd ∈ OpenFileDescriptors

∅ otherwise

Lx 7→ EMΓ =

{x 7→ 〈[E]〉(Γ)} if Γ(x) = x, x ∈ N+

∅ otherwise

To axiomatise memory allocation, we require an inductive predicate representing an

contiguous block of regular heap memory.
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Definition 136 (n-cells heap predicate). The n-cells heap predicate ncells is

defined as:

ncells(start, len, data) ,

(len = 0 ∧ data = ∅ ∗ emp)

∨

∃b, bs.

(
len > 0 ∧ data = b · bs ∗

start 7→ b ∗ ncells(start+ 1, len− 1, bs)

)

6.3.3. Axioms

The axioms for featherweight POSIXFS are given in figure 6.5. There are several common

themes across the axioms.

Expression resource: The assertion E appears in almost all the assertions, and is used

in conjunction with the expression mapping assertion ⇒ to evaluate expressions.

Mixing of flat and structured data: All commands working on the file system direc-

tory tree use addresses bearing path promises. However, there are many commands

operating on the process heap that deal only with flat resource. Structural separa-

tion logic allows the mixing of both.

Path analysis: Many POSIX commands identify resource by a path expression passed

to the command. This expression must be broken down into the path components

used by individual entries. This is achieved with two predicates:

path(path,p,b,a) , path⇒p/b/a ∨ (path⇒>/a ∧ p = ∅p ∧ b = >)

path(path,p,a) , path⇒p/a

The two path predicates analyse a program expression, determining the path com-

ponents that comprise it. The name is overloaded, with the first path(path,p,b,a)

describes a program expression path that breaks down into a prefix path p, followed

by a directory entry b and then entry a. The assertion allows p to be empty, so

that b = > and the path describes a root entry in the file system. This predicate is

typically used to describe an entry a that does not exist, so that we need to know

the target directory b in which it will be created. The second path(path,p,a) is

typically used to identify an existing file a at path p.
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Checking for an existing file: Any axiom that will be adding a new directory entry

must ensure the name does not clash with that of an existing file. To ensure this, we

must capture all elements of the directory and ensure there are no body addresses.

We achieve this with the can create(a) predicate:

can create(a) , ¬top entry(a) ∧ ¬top address

This describes directory entries which do not contain an entry named a. Note that

to ensure this, we must ensure no structural addresses are present in the directory, as

this would mean the entry could be in a abstract heap cell. This is used to check that

a directory in which a new entry will be created can indeed accept that directory,

such as a[t ∧ can create(b)], which describes a directory a, with contents captured

in logical variable t that certainly does not contain the entry b. The directory is then

a safe place to create the file named a. Notice that ¬top address does not prohibit

there being addresses deeper inside the directory. They just cannot be directly in

the directory.

Optional body addresses: Some axioms use optional body addresses, where a body

address may or may not be present based upon the specific splitting used in a proof.

The predicate maybe(α) is used to describe that the address α may or may not exist

within a directory tree.

maybe(α) , (α ∨∅)

With these predicates, the axioms are largely straightforward translations of the POSIX

specification, and match the English versions described earlier. We detail a few, the rest

are similar.

mkdir(path): This axiom specifies the directory creation command, and is typical of

the file system entry creation command axioms of featherweight POSIXFS. It uses

analysis of the path expression, breaking it into three components: the parent path,

which leads up the directory in which the new entry will be added; the parent

directory name, under which the new entry will be created; and the new entry name,

which will be added to the parent as an empty directory. This pattern allows the

file-system tree resource to be described using an assertion of the form αp 7→ b[φ].

This describes that the directory b in which the new entry will be created is found

at path p. The assertion φ uses the pattern described above to ensure that no entry
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with the target name already exists. Notice that, in the case of b = >, the path p

must be the special empty path; this allows creation in the root directory.

rmdir(path): Removing a directory from the file-system tree is much simpler than adding

one, as removing empty resource cannot affect the stability of the reasoning. Simple

path analysis is performed, showing that the target directory is present at path

p. This directory is then removed in the post-condition. Notice that the rmdir

command can never remove the root directory, as the first path component of path

cannot be ∅p by the construction of paths.

link(existing, new): This command creates a new file-link entry at path new, linking

to the inode of the file at path existing. The pre-condition uses a subtle variation

of the common pattern to ensure the new file-link name is not taken. Part of the

assertion is βp2 7→ d[c ∧ (maybe(α) + can create(b))]. This describes the directory

into which the new entry, named b will be placed. Rather than disallowing all body

addresses within this directory, the assertion excludes all addresses except α, which

is used to address the existing source file link. If we did not allow this, the axiom

would not allow the creation of the new link inside the directory that contains the

source: instances like link(>/a/b, >/a/c). Such instances are allowed by POSIX,

and so much be allowed by us.

rename(old, new): Rename is one of the more complex axioms, due to the number of

cases it must consider. This is due to the permutations of resource that old and new

may point to, enumerated in the description of section 6.1.4. When one considers

each combination of old and new as directories or files as being a distinct command,

each case is actually reasonably simple. The most complex cases are the second and

four, where the destination is a directory. In these situations, the source is essentially

deleted, and then recreated. This incurs the complexity of ensuring there will be no

name clash at the new path.

fd := open(path, flags): As described in section 6.1.4, has three behaviours governed

by flags. In all cases, extends the process heap with a new entry for the opened

file. In the creation case, creates file system hierarchy entries as well.

c := read(fd, buff, sz): Uses the process heap and file heap to read into the heap

buffer. There are three cases, based upon the offset recorded in the file heap, and

the length of the file data. A heap buffer of sufficient length must be provided.
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dir := opendir(path): The opendir command captures the contents of a directory

for later enumeration with readdir. To ensure that every entry is captured, the

assertion ¬top address is used in the pre-condition. Then, all the names are captured

in the logical variable a.

fn := readdir(dir): The non-determinism we permit for directory enumeration is built

into the readdir axiom. It uses the snapshot of the directory stored in the process

heap to non-deterministically select an element known to be in the directory when

opendir is called. This element is removed from the set in the process heap, and

assigned to the return variable.

t := stat(path): There are three stat axioms, corresponding to the directory entry,

file-link entry and “not found” entry cases. The first two are straight-forward, but the

“not found” case requires some subtle analysis. As there is always a root directory

in the file system, showing that a path p does not resolve is equivalent to finding a

prefix of path p that does resolve, and a postfix that does not. The axiom contains

the analysis:

path = p1/d/a/p2 ∨ path = p1/d/a ∨ ((path = >/a/p2 ∨ path = >/a) ∧ p1 = ∅p ∧ d = >)

This breaks the path into the prefix p1/d/a, and the postfix p2. The abstract heap

cells show that the prefix path does resolve, but does not contain a. Thus, the

postfix of the path cannot resolve, and so the overall path cannot resolve.

6.3.4. Admissible and common commands

Of the POSIX file system commands applicable to our fragment, we have given a core

subset of 14 of them. Of the others, many can be implemented using our subset. One

example is remove(path). The behaviour of remove is that, when given a path: if it

resolves to a file, invokes unlink(path); if the path resolves to an empty directory, invokes

rmdir(path). If the given path does not exist, the command returns -1 to indicate an

error. We can easily implement and verify remove using our core fragment, as shown in

figure 6.3. There are two success cases with the following specifications. We prove that

remove meets the first of these specifications in figure 6.3.

{
path⇒p/a ∧ ret→ - ∗ αp 7→ a : i ∗ E

}
ret := remove(path){
ret→ 0 ∧ αp 7→ ∅ ∗ E

}
{

path⇒p/a ∧ ret→ - ∗ αp 7→ a[∅] ∗ E
}

ret := remove(path){
ret→ 0 ∗ αp 7→ ∅ ∗ E

}
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{
path(path,p,b,a) ∧ αp 7→ b[c ∧ can create(a)] ∗ E

}
mkdir(path){

αp 7→ b[c + a[∅]] ∗ E
}

{
path⇒p/a

∧ αp 7→ a[∅] ∗ E

}
rmdir(path){
αp 7→ ∅ ∗ E

}
{

path(existing,p1,a) ∧ path(new,p2,d,b)
∧ αp1 7→ a : i ∗ βp2 7→ d[c ∧ (maybe(α) + can create(b))] ∗ E

}
link(existing, new){

αp1 7→ a : i ∗ βp2 7→ d[c + b : i] ∗ E
}

{
path(path,p,a) ∧ αp 7→ a : i ∗ E

}
unlink(path){
αp 7→ ∅ ∗ E

}
{

path(existing,p1,a) ∧ path(new,p2,b)
∧ αp1 7→ a : i1 ∗ βp2 7→ b : i2 ∗ E

}
rename(existing, new){
αp1 7→ ∅ ∗ βp2 7→ b : i1 ∗ E

}
{

path(existing,p1,a) ∧ path(new,p2,d,b)
∗ αp1 7→ a : i ∗ βp2 7→ d [c ∧ (maybe(α) + can create(b))] ∗ E

}
rename(existing, new){

αp1 7→ ∅ ∗ βp2 7→ d[c + b : i] ∗ E
}

{
path(existing,p1,a) ∧ path(new,p2,b) ∧ αp1 7→ a[c ∧ is complete] ∗ βp2 7→ b[∅] ∗ E

}
rename(existing, new){
αp1 7→ ∅ ∗ βp2 7→ b[c] ∗ E

}
{

path(existing,p1,a) ∧ path(new,p2,d,b)
∧ αp1 7→ a[c1 ∧ is complete] ∗ βp2 7→ d [c2 ∧ (maybe(α) + can create(b))] ∗ E

}
rename(existing, new){

αp1 7→ ∅ ∗ βp2 7→ d[c2 + b[c1]] ∗ E
}

{
path(existing,p,a) ∧ path(new,p,a) ∧ αp 7→ (c ∧ entry(a)) ∗ E

}
rename(existing, new){

αp 7→ c ∗ E
}

Figure 6.5.: Axioms for featherweight POSIXFS, continued on the next three pages.
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{
path⇒p/d ∧ dir→ - ∗ αp 7→ d[c ∧ ¬top address ∧ names(a)] ∗ E

}
dir := opendir(path){

∃h.
(
dir→ h ∗ αp 7→ d[c ∧ names(a)] ∗ h PH7→ a

)
∗ E

}
{

a 6= ∅ ∧ dir→ h ∧ fn→ - ∗ h PH7→ a ∗ E
}

fn := readdir(dir){
b ∈ a ∧ dir→ h ∗ fn→ b ∗ h PH7→ (a \ {b}) ∗ E

}
{

dir→ h ∗ fn→ - ∗ h PH7→ ∅ ∗ E
}

fn := readdir(dir){
dir→ h ∗ fn→ ε ∗ h PH7→ ∅ ∗ E

}
{

dir→ h ∗ h PH7→ a ∗ E
}

closedir(dir){
dir→ h ∗ E

}
{

path(path,p,b,a) ∧ flags⇒ O CREAT

∧ fd→ - ∗ αp 7→ b[c ∧ can create(a)] ∗ E

}
fd := open(path, flags){

∃fd, i. (fd→ fd ∗ αp 7→ b[c + a : i] ∗ i F7→ ∅ ∗ fd PH7→ (i, 0) ∗ E)

}
{

path⇒p/a ∧ flags⇒ 0

∧ fd→ - ∗ αp 7→ a : i ∗ i F7→ bs ∗ E

}
fd := open(path, flags){

∃fd.(fd→ fd ∗ αp 7→ a : i ∗ i F7→ bs ∗ fd PH7→ (i, 0) ∗ E)

}
{

path(path,p,a) ∧ flags⇒ O TRUNC

∧ fd→ - ∗ αp 7→ a : i ∗ i F7→ bs ∗ E

}
fd := open(path, flags){

∃fd.(fd→ fd ∗ αp 7→ a : i ∗ i F7→ ∅ ∗ fd PH7→ (i, 0) ∗ E)

}
{

buf⇒buf ∧ sz⇒ len ∧ |bs2| = o ∧ |bs3| = |bs1|
∧ fd→ fd ∗ c→ - ∗ ncells(buf, len,bs1) ∗ i F7→ bs2 · bs3 · bs4 ∗ fd

PH7→ (i,o) ∗ E

}
c := write(fd, buf, sz){

fd→ fd ∗ c→ len ∗ ncells(buf, len,bs1) ∗ i F7→ bs2 · bs1 · bs4 ∗ fd
PH7→ (i,o + len) ∗ E

}

Axioms for featherweight POSIXFS (continued from figure 6.5 on the preceding page).
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{
buf⇒buf ∧ sz⇒ len ∧ |bs2| = o ∧ |bs3| < |bs1|

∧ fd→ fd ∗ c→ - ∗ ncells(buf, len,bs1) ∗ i F7→ bs2 · bs3 ∗ fd
PH7→ (i,o) ∗ E

}
c := write(fd, buf, sz){

fd→ fd ∗ c→ len ∗ ncells(buf, len,bs1) ∗ i F7→ bs2 · bs1 ∗ fd
PH7→ (i,o + len) ∗ E

}
{

buf⇒buf ∧ sz⇒ len ∧ o ≥ |bs2|
∧ fd→ fd ∗ c→ - ∗ ncells(buf, len,bs1) ∗ i F7→ bs2 ∗ fd

PH7→ (i,o) ∗ E

}
c := write(fd, buf, sz){

fd→ fd ∗ c→ len ∗ ncells(buf, len,bs1) ∗ i F7→ (bs2 · �
o−|bs2|

0 · bs1) ∗ fd PH7→ (i,o + len) ∗ E
}

{
buf⇒buf ∧ sz⇒ len ∧ |bs1| = o ∧ |bs2| = len

∧ fd→ fd ∗ c→ - ∗ ncells(buf, len,v) ∗ i F7→ bs1 · bs2 · bs3 ∗ fd
PH7→ (i,o) ∗ E

}
c := read(fd, buf, sz){

fd→ fd ∗ c→ len ∗ ncells(buf, len,bs2) ∗ i F7→ bs1 · bs2 · bs3 ∗ fd
PH7→ (i,o + len) ∗ E

}
{

buf⇒buf ∧ sz⇒ len ∧ |bs1| = o ∧ |bs2| ≤ len

∧ fd→ fd ∗ c→ - ∗ ncell(buf, len,v) ∗ i F7→ bs1 · bs2 ∗ fd
PH7→ (i,o) ∗ E

}
c := read(fd, buf, sz){

fd→ fd ∗ c→ |bs2| ∗ ncell(buf, len,bs2) ∗ i F7→ bs1 · bs2 ∗ fd
PH7→ (i,o + |bs2|) ∗ E

}
{

buf⇒buf ∧ sz⇒ len ∧ o > |bs|
∧ fd→ fd ∗ c→ - ∗ ncells(buf, len,v) ∗ i F7→ bs ∗ fd PH7→ (i,o) ∗ E

}
c := read(fd, buf, sz){

fd→ fd ∗ c→ 0 ∗ ncells(buf, len,v) ∗ i F7→ bs ∗ fd PH7→ (i,o)

}
{

to⇒o1 ∧ wh⇒ SEEK SET ∧ o1 ≥ 0

∧ fd→ fd ∗ off→ - ∗ fd PH7→ (i,o2) ∗ E

}
off := lseek(fd, to, wh){

fd→ fd ∗ off→ o1 ∗ fd
PH7→ (i,o1) ∗ E

}

Axioms for featherweight POSIXFS (continued from figure 6.5 on page 256).

258



{
to⇒o1 ∧ wh⇒ SEEK CUR ∧ (o1 + o2) ≥ 0

∧ fd→ fd ∗ off→ - ∗ fd PH7→ (i,o2) ∗ E

}
off := lseek(fd, to, wh){

fd→ fd ∗ off→ (o1 + o2) ∗ fd PH7→ (i,o1 + o2) ∗ E
}

{
to⇒o1 ∧ wh⇒ SEEK END ∧ (|s|+ o2) ≥ 0

∧ fd→ fd ∗ off→ - ∗ i F7→ s ∗ fd PH7→ (i,o2) ∗ E

}
off := lseek(fd, to, wh){

fd→ fd ∗ off→ (|s|+ o1) ∗ i F7→ s ∗ fd PH7→ (i, |s|+ o1) ∗ E
}

{
fd→ fd ∗ fd PH7→ (i,offset)

}
close(fd){
fd→ fd

}
{

path⇒path ∧ ((path = p/a) ∨ (path = > ∧ p = ∅p ∧ a = >))
∧ t→ - ∗ αp 7→ a[β] ∗ E

}
t := stat(path){

t→ D ∗ αp 7→ a[β] ∗ E
}

{
path⇒p/a ∧ t→ - ∗ αp 7→ a : i ∗ E

}
t := stat(path){

t→ F ∗ αp 7→ a : i ∗ E
}

 path⇒path
∧ path = p1/d/a/p2 ∨ path = p1/d/a ∨ ((path = >/a/p2 ∨ path = >/a) ∧ p1 = ∅p ∧ d = >)

∧ t→ - ∗ αp1 7→ d[c ∧ ¬top entry(a) ∧ ¬top address] ∗ E


t := stat(path){

t→ N ∗ αp1 7→ d[c] ∗ E
}

{
size⇒ s ∧ ptr→ - ∗ E

}
ptr := malloc(size){

∃p,v. ptr→ p ∗ (p− 1) 7→ s ∗ ncells(p, s,v) ∗ E
}

{
ptr⇒p ∧ (p− 1) 7→ s ∗ ncells(p, s,v) ∗ E

}
free(ptr){

E
}

Axioms for featherweight POSIXFS (continued from figure 6.5 on page 256).
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{
path⇒p/a ∧ ret→ - ∗ αp 7→ a : i ∗ E

}
ret := remove(path) , local t {
ret := 0

t := stat(path);{
path⇒p/a ∧ ret→ 0 ∗ t→ F ∗ αp 7→ a : i ∗ E

}
if t = F{

path⇒p/a ∧ ret→ 0 ∗ αp 7→ a : i ∗ E
}

unlink(path);{
path⇒p/a ∧ ret→ 0 ∗ αp 7→ ∅ ∗ E

}
else if t = D

rmdir(path);

else ret := -1;

}{
ret→ 0 ∗ αp 7→ ∅ ∗ E

}
Figure 6.3.: The code for ret := remove(path), with the proof sketch for the case when

path is a file.

We now consider specifying and reasoning about client programs. Noting that remove

only removes directories if they are empty, we can also specify a command rmdirRec that

recursively descends from a given directory, removing it and all its descendants. The axiom

for this command states that, when provided with the path to a directory, it will remove

that entire subtree from the file system:

{
path⇒p/n ∗ αp 7→ n[c ∧ is complete] ∗ E

}
rmdirRec(path)

{
αp 7→ ∅ ∗ E

}
Another common operation on file systems is the copying of files. Because file sizes can

exceed available process memory, they are often copied chunk by chunk. A specification

for such an operation is:{
path(path,p1,a) ∧ path(target,p2,c,d)

∧ αp1 7→ a : i1 ∗ βp2 7→ d[c ∧ can create(a)] ∗ i1
F7→ sd ∗ E

}
ret := fileCopy(source, target){

∃ i2.α
p1 7→ a : i ∗ βp2 7→ d[c + a : i2] ∗ i1

F7→ sd ∗ i2
F7→ sd ∗ E

}
The pre-condition states that a file exists at the path given by source, and that the file

we will create at target does not yet exist. The disjunction on the value of tgt handles

the case where we may be creating a file in the root directory. The post-condition ensures

that the target file has been created, and a corresponding entry i2 added to the file heap
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with identical contents to that of the source file. The implementation code and associated

proof is in the appendix, section A.1.5.

6.4. Software installer example

One type of program that interacts extensively with the file system is a software installer.

Modern software is typically downloaded by the users in an archive, and is thus initially

unusable. The goal of a software installer is to take this archive and place the contents at

the correct points in the user’s file system, such that the software can run. Most installers

also check that the users computer meets certain requirements (e.g. no conflicting software

is already installed), remove previous versions of the software, and either remove or alter

incompatible configuration files.

Good software installers either successfully complete installation, or make no changes

to the machine. Here, we develop an good installer for the fictional software “Widget

Version 2”. It supersedes “Widget Version 1”, but is unfortunately incompatible with

any V1 configuration files that users may have created. Widget V2 consists of a program

executable, ‘widgProg’ and a data file, ‘widgData’. We follow common conventions for

placing these files in the users file system [64]. The two Widget files will be placed in the

directory ‘>/opt/widget/’. The program will be made usable by creating a hard link

from ‘>/usr/bin/widget’ (the system directory for user provided executables) to the file

‘>/opt/widget/widgProg’.

The installer must contend with the possible existence of Widget V1, as well as unrelated

files that the user may have chosen to store at the paths it wants to use. For example,

a user may have created a directory at ‘>/usr/bin/widget’ - our installer should not

remove this, as that could damage other components of their system. However, we will

remove it if it is just a file, as we assume it to be a Widget V1 executable. Similarly, we

must remove ‘>/opt/widget’ only if it is a directory. Finally, if any user has placed a

Widget V1 configuration file in their home directory, e.g. ‘>/home/usern/.wconf’, we

choose to remove that as well.

Considering these requirements, the Widget V2 installer must:

1© Check to see if entries already exist at the locations we wish to place Widget V2

files, and abort installation if they are not Widget V1 entries.

2© Remove Widget V1 entries, if they were found.

3© Check for a Widget V1 configuration file in each users home directory, removing it

if found.
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4© Copy Widget V2 files to the target location on the file system.

5© Make a link to the Widget V2 executable, so the user can run it.

The installation of a simple, two file program has become quite a complex task. We

therefore specify our intuitions about good behaviour and prove that our installer matches

them. We build a pre-condition for our installer out of several sub-assertions. In these,

the assertion ⊗x∈eφ is the iterated version of +, interpreted as φ1 + · · ·+φ|e| where each φi

has x bound to a distinct member of e. We also extend the logical environment to include

pairs of logical values, instrumented file systems and process heaps, and extend the heap

assertions to include such logical variables. In this way, we can write logical variables that

capture invariants about the entire heap.

v2DirP , widgProg : j + widgData : k

v2FilesP , j
F7→ prog ∗ k F7→ dat

homeP , home

⊗(n,c)∈homesn

 (c ∧ ¬top entry(.wconf))

+ (∅ ∨ ∃i. .wconf : i)

∧ ¬top address




binP , bin

[
(b ∧ ¬top entry(widget)) +

(∅ ∨ entry(widget)) ∧ ¬top address

]

optP , opt

[
(t + (∅ ∨ widget[tw ∧ ¬∃α. ♦α])

∧¬ top address

]

Each of these fragments describes the states that parts of the file system may be in for

the Widget installer to run safely. The directory entries that make up the Widget version

2 program are described by v2DirP ; their corresponding file data by v2FilesP . We require

that these files be in some unspecified place in the file system, with this location is stored

in variable instLoc.

The homeP resource captures all the home directories on the system, along with the

fact that some of them will contain a ‘.wconf’ file containing Widget V1 configuration

data for that user. We use a logical variable, homes to store the pair of all the home

directory names and their contents. This allows us to construct a loop invariant as we

iterate across each directory looking for the ‘.wconf’ file.

The binP resources captures the normal UNIX executables directory, that may or may

not contain a “widget” entry. Notice we require that there be no structural addresses

present in any widget directory that may exist, as any such directory will be deleted.

Also, we require for most of our components that there be no top addresses. This allows
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us to assert the absence of a file (the ¬top entry(· · · ) assertions) safe in the knowledge

that it is not present in another frame. The use of top address does not stop there being

holes deeper within the structures captured by the logical variables, so we are still minimal

in the resource we demand.

We combine these descriptions into a pre-condition for the program. The pre-condition

makes extensive use of structural addresses, localising the proof to just the parts of the file

system touched by the installer. It also snapshots the initial state of resource in a logical

variable w, to show that nothing changes in the event of failure.

Pins ,
instLoc→ iL ∗w ∧ δiL 7→ v2DirP ∗ v2FilesP ∗
α> 7→ homeP ∗ γ>/usr 7→ binP ∗ β> 7→ optP

If the installer fails, we expect that the file system should be unchanged. If it does not

fail, we expect that the program should be successfully installed. There should be no other

outcomes. We describe a successful installation with the following predicates:

v2DirQ , widgProg : j′ + widgDat : k′

v2FilesQ , j′
F7→ prog ∗ k′ F7→ dat

homeQ , home

⊗(n,c)∈homesn

 c

∧ ¬top entry(‘.wconf ′)

∧ ¬top address




binQ , bin[b + widget : j′]

optQ , opt[t + widget[v2DirQ]]

The program post-condition is built from these predicates.

Qins ,

∃ret, j′,k′. ret→ ret ∗ instLoc→ iL ∗
¬ret⇒ w ∧

ret⇒

 δiL 7→ v2DirP ∗ α> 7→ homeQ

∗ β> 7→ optQ ∗ γ>/usr 7→ binQ

∗ v2FilesQ ∗ true


Installation can fail if entries already exist at the paths we wish to use (point 1© above).

In this case, the program assigns variable ret to false and we use the w to show that the

file system is unchanged. If it is true, i.e. the installation was successful, then file system

reflects this: the ‘>/opt/widget’ directory exists and is suitably populated by the new
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{
Pins

}
ret := installWidgetV2 ,
local t1, t2, homeDirH, userDir {

instLoc→ iL
∗ δiL 7→ v2DirP ∗ α> 7→ homeP ∗

γ>/usr 7→ binP ∗ β> 7→ optP ∗ v2FilesP


// Check for preexisting files (points 1© and 2©)

t1 := stat(‘>/usr/bin/widget’);
t2 := stat(‘>/opt/widget’);

(t1→ F ∨ t1→ D ∨ t1→ N) ∗ (t2→ F ∨ t2→ D ∨ t2→ N)
∗ instLoc→ iL ∗ δiL 7→ v2DirP ∗ α> 7→ homeP ∗

γ>/usr 7→ binP ∗ β> 7→ optP ∗ v2FilesP


if t1 = D ∨ t2 = F

// Existing files are of the wrong type, so fail

ret = false;

else

if t1 = F{
t→ F ∗ γ>/usr 7→ bin[b+widget : i]

}
unlink(‘>/usr/bin/widget’);{

t→ F ∗ γ>/usr 7→ bin[b]
}

if t2 = D{
β> 7→ opt[t + widget[tw ∧ is complete]]

}
rmdirRec(‘>/opt/widget’);{

β> 7→ opt[t]
}{

instLoc→ iL ∗ δiL 7→ v2DirP ∗ α> 7→ homeP ∗
γ>/usr 7→ bin[b] ∗ β> 7→ opt[t] ∗ v2FilesP

}
// Remove any stale Widget configuration files (point 3©) α> 7→ home

⊗(n,c)∈homesn

 (c ∧ ¬top entry(.wconf))
+ (∅ ∨ ∃i. .wconf : i)
∧ ¬top address

 
Figure 6.4.: Code and proof for Widget V2 software installer (continued on next page)

Widget V2 files, no user specific configuration files exist, and the ‘>/usr/bin/widget’
executable points to the newly installed program. Notice that any Widget V1 files are

subsumed by the predicate true, awaiting garbage collection, and that the logical variables

t,b, · · · are witness to the fact that no other resource in our pre-condition has changed.

The code for the installer, and proof that it meets this specification

{Pins} installWidgetV2 {Qins}, is given in figure 6.4. As another testament to the

compositional properties of our reasoning, notice that we reuse the rmdirRec, to delete

existing directory subtrees, and fileCopy to copy the binary and data files from the in-

staller directory to the target location. Throughout the sketch we implicitly use the frame

rule and semantic consequence to localise the resource we are acting on.
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homeDirH := opendir(‘>/home’);
userDir = readdir(homeDirH);

homeDirH→ hdir ∗ userDir→ udir ∗ hdir PH7→ us
∗ ∃nh. nh = us ∪ {udir} ∧

α> 7→ home

⊗(n,c)∈homesn


(c ∧ ¬top entry(.wconf)) +(

n ∈ nh =⇒ (∅ ∨ ∃i. .wconf : i)
∧ n 6∈ nh =⇒ ∅

)
∧ ¬top address





while userDir 6= ε
t := stat(‘>/home’/userDir/‘.wconf’);
if t1 = F

unlink(‘>/home’/userDir/‘.wconf’);
userDir := readdir(homeDirH);

closedir(homeDirH);{
α> 7→ home

[
⊗(n,c)∈homesn

[
c ∧ ¬top entry(.wconf)
∧ ¬top address

]] }
{

instLoc→ iL ∗ δiL 7→ v2DirP ∗ α> 7→ homeQ

∗ γ>/usr 7→ bin[b] ∗ β> 7→ opt[t] ∗ j F7→ prog ∗ k F7→ dat

}
// Copy the new Widget files and link the executable

// (Points 4© and 5©)

mkdir(‘>‘/opt/widget’);
fileCopy(instLoc/‘widgProg’, ‘>/opt/widget’);
fileCopy(instLoc/‘widgData’, ‘>/opt/widget’);
link(‘>/opt/widget/widgProg’, ‘>/usr/bin/widget’);
ret := true
∃j,k.

instLoc→ iL ∗ δiL 7→ v2DirP ∗ α> 7→ homeQ

∗ β> 7→ opt

[
t + widget

[
widgProg : j′

+ widgData : k′

]]
∗ γ>/usr 7→ bin[b + widget : j′] ∗ j F7→ prog

∗ k F7→ dat ∗ j′ F7→ prog ∗ k′ F7→ dat


}

∃ret, j′,k′. ret→ ret ∗ instLoc→ iL ∗
¬ret =⇒ w ∧

ret =⇒
(

δiL 7→ v2DirP ∗ α> 7→ homeQ
∗ β> 7→ optQ ∗ γ>/usr 7→ binQ ∗ v2FilesQ

∗ true

)
{

Qins
}

Figure 6.4.: Widget V2 Software Installer program (continued)

265



6.5. Summary

This chapter has introduced a structural separation logic specification for the POSIX file

system library. This forms the second of our two large case studies, demonstrating the

entire process of analysing and formalising a “real world” library using our techniques.

Our key contributions are:

1. Featherweight POSIXFS: Section 6.1 introduced a novel subset of POSIX, identi-

fying and describing a set of core commands used in file systems. This subset is both

accurate with respect to the POSIX specification, and amiable to formal analysis.

2. Axiomatic specification for POSIX file systems: Using structural separation

logic, section 6.3.3 gives a axiomatic specification of our POSIX subset. The axioms

are accurate to POSIX4, providing an unambiguous description of the behaviour of

the commands.

3. Demonstration of naturally stable promises: Our specifications are given as

local axioms by using path promises. This demonstrates that the promise technique

scales to a real example.

4. Local reasoning for POSIX file systems programs: The installer example of

section 6.4 demonstrates that our specification can be used to reason about non-

trivial file system manipulating programs.

4Expect for the two cases noted, readdir and malloc.
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7. Obligations

The naturally stable promises of chapter 5 allow passive access to information in the

surrounding context. However, they restrict the set of commands that can be considered

to those which can never break promises. This prevents some useful libraries from being

specified, as seen with the list library in section 5.3.2. There, when using promises to state

the list index from which an abstract heap cell was abstractly allocated, the remove had

to be restricted to the last element of a list in order to preserve stability.

This chapter introduces obligations, which act as the dual of promises. Whereas the

promises associated with an abstract heap cell give information about the shape of the

context, obligations associated with a cell restrict the shape of the data within the cell.

Example obligations might be “This abstract heap cell always contains root tree node n”,

or “The number of list elements in this abstract heap cell is at least 3”.

When using obligations, the set of command axioms is unrestricted, subject to the

standard requirement of atomic soundness 12. Proving commands atomically sound means

showing that the obligations can never be violated. Thus, ann appendChild command

acting on a cell with the obligation “Always contains root tree node n” would have to

ensure that, after the command, the cell still contained root node n. A list remove

command acting on a cell with the obiligation “number of list elements is at least 3” could

never reduce the number of cells to less than 3. Obligations thus ensure that promises

are kept. Whenever a non-naturally stable promise is issued during abstract allocation,

an associated obligation is created to ensure the promise is kept. When the promise is

destroyed, so is the obligation.

Our work on obligations is less mature than other chapters of these thesis. Here, we

develop the initial theory of obligations, demonstrating that they restore full function

to the list remove command. We show how to reasoning using obligations. We will

reexamine our DOM specification (chapter 4) in the light of this work, and demonstrate

how the technique could be used to improve the specification, by enabling new behaviours

or by tightening the footprints for commands. At the end of this chapter, we speculate on

how obligations may allow us to reason about symbolic links. Symbolic links are a type of

file that redirect file system path resolution to continue at another point in the file-system
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tree.

Related work

As discussed in section 5, promises can be seen as both a style of rely-guarantee, deny-

guarantee reasoning, and of passivity system. This is similarly true of obligations. Just as

a promise associated with a heap cell is something about the environment the cell can rely

on, an obligation associated with a heap cell is a guarantee to the environment that the

given invariant will always hold. As promises and obligations can be split (by splitting the

abstract heap cells they are attached to), the work is more similar to Deny-Guarantee than

Rely-Guarantee. However, both systems are typically used to enable concurrent update

to the same resource, with the guarantees and rely (denys) being used to ensure a safe

protocol for this update.

Thus, we again prefer to link this work to permission systems. Separation logic, tradi-

tionally using the Boyland-style fractional permissions [10], means that each heap cell in

a footprint can be in two states: write and read, or just read. Promises and obligations

offer similar statements, but over invariants. As discussed in 5, a promise associated with

a heap cell is a “read-only” view of some data. It can be seen as a permission π < 1 on

that data. However, oblilgations are mroe expressive. Rather than the cell that issued the

promise also being associated with π < 1, the obligation states only that it must maintain

some invariant. Consider a heap cell x 7→ v. Using normal permissions, this splits into

x
0.57→ v ∗ x 0.57→ v, rendering both passive. However, if v is structured data using promises

and obligations, it can be split ∃α.xα:I 7→ v1 ∗ αe:I 7→ v2. Here, not only is the data is

splt, but some invariant I is shared. Thus, x can still be updated, as long as I is still true.

7.1. Lists access via indexing

Recall the list indexing promises of section 5.3.2. These promises are naturally stable

only if the remove command can only remove the final list element. This prevents any

issued indexing promises from being broken. Here, we work with the unrestricted remove

command, and prevent promises being broken with with obligations.

We update the two index promises with their associated obligations. Again, one states

the index at which an abstract heap cell can be found, whilst the other states the length

of the data in a cell. Informally, the promise and obligation pairs are:
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α⇐ i If α maps to e, this denotes a promise that the data comes from index

i in the list. If α does not map to e, this denotes an obligation to α to

keep the body address x at index i of the list.

α⇒ n If α maps to e, this denotes an obligation to keep the length of the data

to exactly n. If α does not map to e, this denotes a promise that the

data contained within the cell at α will be of length n.

Using the first as an obligation, we can split the element 4 from the list L 7→ [3⊗ 1⊗ 4⊗ 2

in such a way that the cell L still knows that the element must be at index 3. As , we

write promises as superscripts on heap addresses, we write obligations as subscripts:

Lα⇐3 7→ [3⊗ 1⊗ 4⊗ α] ∗ αe⇐3 7→ 2

By associating this obligation with L, we know we must never alter the data within that

cell in any way that would make the body address α no longer the 3rd child. This, by

itself, would severely restrict what can be done with the α cell. One could never safely

abstractly allocate part of the 3⊗ 1⊗ 4 sub-list, as the resultant L addressed cell would

not have enough information to guarantee that α is at index 3. This problem can be

overcome with the length promise and obligation. To allow, say, 3⊗ 1 to be allocated at

β, we issue it with a length obligation, which grants L a length promise from β:

Lβ⇒2
α:⇐3 7→ [β ⊗ 4⊗ α] ∗ αe⇐3 7→ 2 ∗ βe⇒2 7→ 3⊗ 1

This promise states that the data compressed into the β address of α will always contain

exactly two elements. The promise is given the β name, so that when β is compressed, it

can be removed. The promise will be paired with whichever cell has the β body address,

allowing it to be transfered as the tree is further cut up. For example, if the cell α is split

via abstract allocation. Now, considered in isolation, the assertion Lβ⇒2
α⇐3 7→ [β ⊗ 4⊗ α] is

obliged to always keep α at index 3. It can ensure that this is true because the β cell has

promised it will contain data of length 2.

7.2. Obligations

Obligations are the dual of promises. Whereas promises tell a datum about the shape

of context which fits around it, obligations are restrictions on the datum that ensure it

always conforms to a specific shape. When data is associated with an unstable promise

then, somewhere, a matching obligation exists that ensures the promise will always hold.
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Figure 7.1 extends a promise-carrying datum into a promise- and obligation-carrying da-

tum. Before, in figure 5.5, this datum had three promises: one head promise, and two

body promises. Now, it still has these promises, but has gained a head obligation and two

body obligations.

There is strong symmetry here: promises received from super-data are head promises,

consisting of head data (definition 91) with exactly one address (e). Promises received

from sub-data are body promises, made up of body data (definition 92) containing no holes.

Obligations reverse this relationship: obligations to super-data (head obligations) consist

of body data. Obligations made to sub-data (body obligations) are made up of head data.

d

x y

A head promise 

and obligation

Two body promises

and obligations

⋒ ⋒ ⋒

⋒ ⋒ ⋒

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ :

...... y :x :
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

...y :x :
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ :

⋒ ⋒ ⋒

⋒ ⋒ ⋒

...

⋒

⋒

⋒

⋒

⋒

⋒

Figure 7.1.: A datum with three promises, and three obligations

.

Any data carrying obligations must enforce them, so that the combination of the data

and promises is sufficient to show that the obligation is satisfied. It is not legal to construct

data which does not satisfy its obligations. This implies that a datum must have extracted

sufficient promises from any sub- and super-data to ensure the obligations remain true.

Compression using naturally stable promises could verify that the promises held by

comparing the closure of the data against the promises. This was sufficient, as naturally

stable promises can never be broken; as long as the data currently satisfies the promise,
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f○yd

x y

⋒ ⋒ ⋒

⋒ ⋒ ⋒

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ :

...... y :x :
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

...y :x :
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ :

...

...

⎧
⎨
⎩

⎫
⎬
⎭

⋒
...

⎧
⎨
⎩

⎫
⎬
⎭

⋒ : ⋒

⋒ ⋒

⋒ :

Figure 7.2.: Compression when using obligations

the stability of the reasoning ensures that it must always have satisfied it. With unstable

promises, we instead check promises against the obligations. As the obligations bound the

range of changes that are possible, if the promises are satisfied by the obligations, they

must always have been true.

Index and length promises for lists

As an example of promise- and obligation-carrying data, consider figure 7.3. This considers

the promises and obligations for list indexing and lengths for the list library with an item

command. It shows the combinations of promises and obligations that allow or disallow

compression in a variety of cases.

7.2.1. Formalising obligations

We now formalise the intuitions of obligations introduced in the last section. As stated,

obligations are, in many ways, symmetric to promises. The notions of head and body

data (definitions 91 and 92 respectively) are retained unchanged. However, rather than

head obligations used head data, they will use body data. This is because, rather than

stating what information will be provided by the super-data, they state what information

is provided to to the super-data.

Parameter 22 (Head obligations). Assume a set of head obligations HeadObls,

ranged over by ωH , with the type:
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3 1 4 x

2

⋒

3

○x 8
Whilst the super-data provides exactly 3 left
neighbours, it is not obliged to, and so may
break the promise. Thus, compression is not
allowed.

3 1 4 x

2

⋒

3

⋒

3 x

○x 3
Compression is allowed as super-data pro-
vides exactly 3 left neighbours, and is obliged
to always do so until the x cell is collapsed.

53 1 4 x 2

⋒

3

⋒

3 x

○x 3

Compression is allowed as the super-data
provides exactly 3 left neighbours, and is
obliged to always be so until the x cell is
collapsed. Further cells to the right of the
x body address do not break the obligation.

4 5x 2

⋒

3

⋒

3 x

⋒

2

○x 3
Compression is allowed as the super-data is
obliged to keep x at index 3. It ensures this
via a combination of its own promise to be at
index 2, and the local data stored within it.

z 5x

1

4

1 ⋒

⋒

2

⋒

3 x

○z 3

Here, the x data is not present. However, we
are still obliged to ensure that the body ad-
dress x it is at index 3. The data containing
body address x has this obligation, which it
meets via a promise from its parent to keep
it at index 2, and a promise from z to be
of length 1. The z data is therefore obliged
to be of length 1. Therefore, compression is
allowed.

Figure 7.3.: Examples of promises for list indexing. The promise ⋒

3

indices that

structural address e is at index 3 of list l. The associated obligation to x

is ⋒

3 x

. The promise that the data within z is of length 1 is
1

. The

associated obligation to the super-data is 1
⋒

.
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HeadObls ⊆ {e} ×BodyData

Similarly, body obligations make guarantees to the sub-data that will eventually com-

press into a body address. These obligations describe the shape of heads they will compress

into. Ergo, body obligations use head data.

Parameter 23 (Body obligations). Assume a set of body obligations BodyObls,

ranged over by ωB, with the type:

BodyObls ⊆ StructAddrs×HeadData

The set of obligations is then all groups of body obligations that may include a head

obligation. This is exactly as was defined for promises but in reverse.

Definition 137 (Obligations). Recall that HeadData ∪BodyData is ranged over

by d, d1, · · · , dn. Then, given a set of head and body obligations HeadObls and

BodyObls (parameters 22 and 23), the set of obligation sets (or just obligations),

ranged over by Ω,Ω1, · · · ,Ωn, is defined as:

Obligations =

 Ω ∈ P

 HeadObls

∪
BodyObls

 6 ∃x ∈ StructAddrs.

∃d1, d2. {(x, d1), (x, d2)} ⊆ Ω


Let Ω ∈ Obligations. We write the removal of the obligation for any address

x ∈ StructAddrs from Ω as:

Ω− x , {(y, d) | (y,Ω) ∈ Π,y 6= x}

With obligations, we can extend promise-carrying data to be promise- and obligation-

carrying data. As with promise-carrying data, each obligation must refer to either the

head, or a body address. More strongly, the data and promises in the group must conspire

to satisfy the obligations. It is, by construction, impossible to construction obligation-

carrying data that does not satisfy its obligations.
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Definition 138 (Promise- and obligation-carrying data). The set of promise- and

obligation-carrying data PromObsData, ranged over by pod,pod1, · · · ,podn is

defined as:

PromObsData ⊆ Datae ×Promises×Obligations

where every promise or obligation is either associated with the head, or with a body

address in the data. That is, for all (d,Π,Ω) ∈ PromObsData:

∀(x, d) ∈ Π ∪ Ω. x = e or x ∈ addrs(d)

Moreover, all obligations must be fulfilled: for all ω ∈ Ω

1. If this is a head obligation, then the body closure (definition 93) of this data

satisfies the obligation: ω = (e, d) implies ; (d,Π) ⊆ d.

2. If this is a body obligation to x, then the closure of the data with respect to x

(definition 96) satisfies the obligation: ω = (x, d) implies ↻x ((d,Π)) ⊆ d.

We now defined compression, which no longer checks that the promises hold with respect

to the data, instead checking with respect to the obligations. This ensures that, no matter

what shape the data had been, as long as it was obliged to hold the shapes expected,

the compression can proceed. There is no need to check that the obligations hold, as

obligation-carrying data is always valid. In section A.3, we prove that obligation-carrying

data is a valid structural addressing algebra. The proof is similar to the equivalent proof

in chapter 5.

Definition 139 (Compression for obligation-carrying data). The compression

function for promise- and obligation-carrying data, compO : StructAddrs →
PromObsData→ PromObsData⇀ PromObsData is defined as: for all pod1 =

(d1,Π1,Ω1) and pod2 = (d2,Π2,Ω2)

compO(x,pod1,pod2) =

 compe(x, d1, d2),

(Π1 − x) ∪ (Π2 − e) ,

(Ω1 − x)) ∪ (Ω2 − e))


where:

1. The underlying data compression is defined: compe(x, d1, d2) defined.
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2. If it exists, the head promise made to pd2 by pd1 is satisfied by a body obligation

on pd2: (e, d2) ∈ Π2 =⇒ ∃(x, d1) ∈ Ω1. d1 ⊆ d2.

3. If it exists, the body promise made to pd1 by pd2 is satisfied by the head

obligation on pd2: (x, d1) ∈ Π1 =⇒ ∃(e, d2) ∈ Ω2. d1 ⊆ d2.

An instance compO(x,pod1,pod2) is written pod1 x pod2, overloading the com-

pression notation.

7.3. Reasoning with obligations

We now consider reasoning with obligations, applying the technique to the list indexing

problem. We also revisit the DOM and file-systems example of chapters 4 and 6.

7.3.1. Obligations for list indexing

We now turn to axiomatising the item command for the lists library. We first formalise

the promises and obligations we will use.

Definition 140 (Promises and obligations for index lists). The list index head

data with respect to x and the list length body data with respect to x are

defined as:

⇐ i = {d | d ∈ d, d = [pl1 ⊗ x⊗ pl2], |pl1| = i}
⇒ i = {d | d ∈ d, |d| = i}

The promises for the list library are defined as:

Promises =

⋃
i∈N{(e,⇐ i)} List index promises

∪
⋃
i∈N,x∈StructAddrs{(x,⇒ i} List length promises

The obligations for the list library are defined as:

Obligations =

⋃
i∈N,x∈StructAddrs x⇐ i List index obligations

∪
⋃
i∈N e⇒ i Partial list length obligations

Here, we are using more than just head promises. Many promises and obligations may

accrue as abstract allocation occurs. To ease notation, we define logical expressions for

denoting sets of promises and obligations.
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Definition 141 (Logical expressions for list promises and obligations). The logi-

cal expressions for the list library with item command and associated interpretation

function are extended with the following expressions:

〈[∅]〉(Γ) , ∅

〈[a⇐ E]〉(Γ) ,

Γ(a)⇐ 〈[E]〉(Γ) if Γ(a) ∈ StructAddrs, 〈[E]〉(Γ) ∈ N

undefined otherwise

〈[a⇒ E]〉(Γ) ,

Γ(a)⇒ 〈[E]〉(Γ) if Γ(a) ∈ StructAddrs, 〈[E]〉(Γ) ∈ N

undefined otherwise

〈[E1, · · · ,En]〉(Γ) , {〈[E1]〉(Γ), · · · , 〈[En]〉(Γ)}

We then define a promise- and obligation carrying abstract list heap cell assertion.

Definition 142 (Promise- and obligation carrying heap assertion). The abstract

heap assertions of the list library are extended to promise- and obligation-carrying

data with:

LaEP
EO
7→ φMΓ =

 a 7→ (d,Π,Ω)

a = Γ(a), d ∈ LφMΓ,
Π = 〈[EP ]〉(Γ),

Ω = 〈[EO]〉(Γ)


The assertion a∅∅ 7→ φ is written a 7→ φ. Similarly, a∅O 7→ φ is written aO 7→ φ and

aP∅ 7→ φ is written aP 7→ φ.

We can replicate the set of equivalences given in section 5.3.2 using obligations. Notice

that in all cases, the L cell retains enough information in each case to ensure the obligation.
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L 7→ [1⊗ 2⊗ 3] 4<Γ ∃α.(L 7→ [1⊗ α⊗ 3] ∗ α 7→ 2

L 7→ [1⊗ 2⊗ 3] 4<Γ ∃α.(Lα⇐1 7→ [1⊗ α⊗ 3] ∗ αe⇐1 7→ 2)

∃α.(Lα⇐1 7→ [1⊗ α⊗ 3] ∗ αe⇐1 7→ 2)

4<Γ

∃α, β.(Lβ⇒1
α⇐1 7→ [β ⊗ α⊗ 3] ∗ αe⇐1 7→ 2 ∗ βe⇒1 7→ 1)

∃α, β.(Lβ⇒1,α⇒1
α⇐1 7→ [β ⊗ α⊗ 3] ∗ αe⇐1

e⇒1 7→ 2 ∗ βe⇒1 7→ 1)

4<Γ

∃α, β, γ.(Lβ⇒1,α⇒1
α⇐1,γ⇐2 7→ [β ⊗ α⊗ γ] ∗ αe⇐1

e⇒1 7→ 2 ∗ βe⇒1 7→ 1 ∗ γe⇐2 7→ 3)

The axiom for the list indexing command is essentially unchanged from that given with

promises. Here, it carries an arbitrary set of obligations, as the command is passive,

changing no data and so invalidating nothing.

{αe⇐i
o 7→ j ∗ j→ - ∗ E ∧ e⇒ i ∧ |j| = 1}

j := item(e)

{αe⇐i
o 7→ j ∗ j→ j ∗ E}

The key contribution of obligations is enabling commands that could invalidate promises.

The problematic command was the remove, which in its most general form could break

the item index promise. Here, we can restore the full behavioour by ensuring remove have

an empty set of obligations. It can thus never invalidate a promise.{
α∅∅ 7→ i ∗ E ∧ e⇒ i

}
remove(e){
α∅∅ 7→ ∅ ∗ E

}

With this obligation, remove is atomically sound.

Lemma 25 (The remove command is atomically sound). The remove command is atom-

ically sound, satisfying 12 of the framework.

Proof. Recall the remove(e) action given in definition 28:
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[〈remove(e)〉](s) ,

{s[L 7→ [pl1 ⊗ pl2]]} if s(L) = [pl1 ⊗ ([e])(s)⊗ pl2]

{ } otherwise

The pre-condition of remove(e) is α∅∅ 7→ i ∗ E ∧ e⇒ i. After interpretation, the provides

views of the form x 7→ (i, ∅, ∅)∗varHeap, where varHeap is the arbitrary variable resource

produced by E. The lack of promises and obligations means we have no information about

the frame, but do know that mutations cannot destabilise the reasoning. After notating

that the post-condition also has no promises and obligations, atomic soundness of the

command then follows via a similar argument to that of lemma 10.

More interesting is what would happen if we picked a bad specification for remove:

not having obligations, using an non-empty set of obligations α∅O 7→ · · ·, and changing the

obligations in the axiom all result in unsoundness.

1. Without obligations, changes to data within the α cell could invalidate any promise

regarding list lengths, as there would be no way to know what promises had been

issued depending on the data.

2. If we included arbitrary obligations, so the post-condition contained α∅O 7→ ∅, it

would not abstract the result of the command, as such a cell represents invalid data,

and so a false post-condition.

3. If we had removed the obligations, so the post-condition contained α∅∅ 7→ ∅, then

we could propose a frame of the form βP 7→ α where P is the promise associated

with the obligation that α previously had. This frame would be invalidated by the

update, and so the command would not be atomically sound.

7.3.2. Enhancing the specifications of DOM

Obligations allow us to further tighten DOM axiomatisation we gave in chapter 4. There

are two axioms in the DOM library of 4 that arguably involve more data access than is

restrictly necessary. The first, item, acts much like the item command discussed with

lists. We can thus use list index promises and obligations to reduce the footprint. The

second, appendChild uses

7.3.3. The item command footprint

Recall the item command of DOM, j := f.item(e) which extracts the node at index e

from the forest identified by f. We have already considered a virtually identical situation
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example in section 7.1, albeit on a single list. DOM has many forests rather than a

single list, but it is straightforward to extend the promises and obligations to describe

which forest is under consideration. We can extend the list index head data from e⇐ i,

which describes the single list with the head address at index i, to f⇐ i, which describes

describes all DOM trees where the e address is the ith child of node with forest identifier

f. When used as a head promise, provides exactly what is needed for the item command.

Using promises and obligations of this form, the f.item(i) command can be axiomatised

as: {
f→ fid ∗ n→ - ∗ αfid⇐i

o 7→ sn[γ]fs ∗ E ∧ e⇒ i
}

n := f.item(e){
f→ fid ∗ n→ n ∗ αfid⇐i

o 7→ sn[γ]fs ∗ E
}

The footprint has been reduced to only the node that will be returned. As well as more

concisely statement the effect of the command, it enables more concurrency with respect

to the elements of the forest fid, as each node can be managed in a different thread.

7.3.4. The appendChild command footprint

One example that is not based on the simple examples already presented in this chapter

is the p.appendChild(c) command. This command, which moves the node identified by

c to be the last child of the node identified by p, currently has the axiom:

{p→ p ∗ c→ c ∗ o→ - ∗ α 7→ sp[γ]fs1 ∗ β 7→ s’c[t ∧ is complete]fs2 ∧ s 6= #text}
o := n.appendChild(m)

{p→ p ∗ c→ c ∗ o→ c ∗ α 7→ sp[γ ⊗ s’c[t]fs2 ]fs1 ∗ β 7→ (∅f ∨∅g)}

Notice that the c node must have no body addresses. This states that the sub-tree

under c is complete, which is needed to ensure that the node p is not a descendent of c.

Unfortunately, it also gives appendChild a larger than ideal footprint, ensuing that no

concurrent analysis of the nodes under c is possible.

We can correct this excessive footprint with a “No descendent with identifier n” promise.

An abstract heap making this promise states that it never contains a node with identifier

n, anywhere in the sub-data. This promise is not naturally stable, as the appendChild

command can break it by placing a node with the disqualified identifier into the subtree.

The other axioms cannot break the obligation, and can just carry it unchanged.
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Definition 143 (No such node promise & obligation). The body data no such node

is defined as:

¬n = {d ∈ DOMData | 6 ∃x, d1, d2. d = d1 x n[d2]}

With this, the body promises and head obligations are defined as:

BodyProms = {(x,¬n) | x ∈ StructAddrs, n ∈ NodeIDs}
HeadObls = {(e,¬n) | n ∈ NodeIDs}

There are no body obligations or head promises.

The “no such node” body data ¬n describes all trees which do not contain node identifier

n. The allowable promises thus describe a context containing any tree data without a

specific node. As this is not stable, the associated obligation states that a given cell never

contains the same node.

Using this promise/obligation pair, we can create an axiom where the children of c are

described with a body address and promise stating that, whatever the children are, they

do not contain the target parent node. We can then axiomatise the children of the c node

using body address, retaining on the fact that p is not one of them. This node is moved to

be a child of p, which by the obligation cannot created a cycle. We must check, however,

that the obligations associated with the abstract cell containing p will allow a child c, to

ensure we are not breaking another obligation that may be in force. The appendChild

axiom becomes:

{
p→ p ∗ c→ c ∗ o→ - ∗ αp1

o1
7→ sp[γ]fs1 ∗ β

p2,δ:¬p
o2

7→ s’c[δ]fs2 ∧ s 6= #text ∧ (¬c) 6∈ o1

}
o := n.appendChild(m){

p→ p ∗ c→ c ∗ o→ c ∗ αp1,δ:¬p
o1

7→ sp[γ ⊗ s’c[δ]fs2 ]fs1 ∗ β
p2
o2
7→ (∅f ∨∅g)

}
As before, soundness of appendChild depends upon the sub-tree under node m not con-

taining the target parent node m. We assure this via the final conjunct of the pre-condition,

(¬c) 6∈ o1. This states that the obligations associated with α permit a descendent node

with identifier c. This ensures the stability of the system, as appendChild is the only

axiom which can add a node to a sub-tree. All other commands need only carry the

promises and obligations untouched.

Notice that this axiom is weaker than our original, promise free version. Here, we are us-
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ing only head obligations; this implies that any abstract cell containing no body addresses

must have no obligations. Our original axiom mandated β 7→ s’m[t ∧ is complete]fs2 has

no body addresses, beneath the node with identifier m, and so has no obligations, triv-

ially satisfying (¬c) 6∈ o1. This weaker axiom allows more flexible use of the data. The

following parallel use of appendChild and nodeName is only possible with the obligations

system, in which we elide the program variable resource to avoid clutter:

{α 7→ sp[∅]pfs ⊗ tc[ud[∅f ]dfs]cfs}{
∃β, γ, δ, ε, ζ.

α 7→ β ⊗ γ ∗ β 7→ sp[δ]pfs ∗ γε:¬p 7→ tc[ε]cfs

∗ δ 7→ ∅f ∗ εe:¬p
ζ:¬p 7→ ud[ζ]dfs ∗ ζe:¬p 7→ ∅f

}
{β 7→ sp[δ]pfs ∗ γε:¬p 7→ tc[ε]cfs}

p.appendChild(c)

{βε:¬p 7→ sp[δ ⊗ tc[ε]cfs]pfs ∗ γ 7→ ∅f}

{
εe:¬p
ζ:¬p 7→ ud[ζ]dfs

}
s := d.nodeName{
εe:¬p
ζ:¬p 7→ ud[ζ]dfs

}{
∃β, γ, δ, ε, ζ.

α 7→ β ⊗ γ ∗ βε:¬p 7→ sp[δ ⊗ tc[ε]cfs]pfs ∗ γ 7→ ∅
∗ δ 7→ ∅f ∗ εe:¬p

ζ:¬p 7→ ud[ζ]dfs ∗ ζe:¬p 7→ ∅f

}
{α 7→ sp[⊗tc[ud[∅f ]dfs]cfs∅]pfs}

7.3.5. Symbolic links

We now briefly outline symbolic links for file systems (chapter 6, and speculate on how

obligations may be able to reason about these. Whereas hard links point directly to the

inode of an entry, a symbolic link contains the path to an entry. Consider figure 7.4. The

directory in the bottom right contains a symbolic link file. This symbolic link file refer-

ences the directory at path >/Music/Classical. When resolving paths that go “through”

>/Documents/Music/Classical/, the resolution process will follow the symbolic link,

and continue at the target of it. Therefore, the path>/Documents/Music/Classical/adagio.mp3

resolves to the file with inode 6.
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favorite.mp3 : 6Music Documents

D

Classical

D

adagio.mp3 : 61812.mp3 : 3

D

010010110...

3

F

Music

D

6

F

011010110...

Classical : ⊤/Music/Classical/

S

Figure 7.4.: A POSIX file-system tree where the directory in the bottom right contains a
symbolic link. The hard links traversed by resolution are highlighted.

There are two major obstacles to reasoning with symbolic links:

1. The addition of symbolic links means that paths need not follow the inductive struc-

ture of the file-system tree. Resolving a path may involve traversing symbolic links,

and resolving each symbolic link can involve resolving further symbolic links, ad-

infinitum. POSIX avoids such unbounded path resolution by providing a constant in-

teger SYMLOOP MAX. After SYMLOOP MAX symbolic links have been encountered whilst

resolving a path, resolution fails with an error.

2. Symbolic links also break the intuition that the data used to identify sub-data is dis-

joint from the sub-data itself. With symbolic links, the data to be updated can be

involved in the resolution process. For example, a descendent of a directory d could

be a symbolic link pointing to d itself. By identifying d via a path using that symbolic

link, the contents of d are directly used in identifying d. If we wanted to, for exam-

ple, remove the contents of d using rmdirRec(>/path/to/d/through/symlink), at

some point during the removal the symbolic link will be deleted, and the path will

stop resolving! Such a situation is not possible with the linear paths we are currently

using.

Nonetheless, promises and obligations provide some of the machinery needed to man-

agement symbolic links. Linear paths were described using simple head promises, which
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provide a sub-datum d with the shape of super-data c that resolves the path. Any sym-

bolic links that only use resource in c can be handled using an enriched notion of our

resolve function acting on c. As symbolic links will use sub-data from c that is not a direct

ancestor of d (that is, the symbolic links), obligations would be required to ensure the

stability of the system.

However, the second obstacle remains difficult. Our framework is based upon splitting

data. Even promises and obligations split the data, into local data which can be updated,

and that which is promised from the frame. To solve this problem, we would seem to need

a system that simultaneously allows the local view and a global view of the complete data.

Our framework, with promises and obligations, provides all the needed parts to build this

global view, but currently has no elegant method for analysing it. We will continue to

pursue this problem.

7.4. Summary

This chapter has introduced obligations, a system for restricting the possible updates

to abstract heap cells. Obligations, when combined with promises, combine to give a

general theory of passive access for structured data, where data can be shared among

many abstract heap cells, and updates restricted to ensure this sharing is safe. This

allows:

1. Richer smaller axioms for libraries: Obligations allow a greater range of com-

mands to be specified using promises, by removing the restriction that promises be

naturally stable. We have demonstrated this with the list item and remove com-

mands, which are not possible with either structural separation logic or promises

alone.

2. Smaller axioms for DOM: We can provide even smaller axioms for the DOM

library, allowing a greater separation of DOM tree data. This will enable a much

richer notion of concurrent DOM in future work.

3. Beginnings of permission system for structured data: This system is an

initial attempt at a permission system for structured data. Promises provide one

part of this, offering passive read access to data not directly owned by a thread.

Obligations provide the other. Rather than just use “read” or “read and write”

permissions, obligations allow a richer range of updates by stating “Any change is

permitted, up to the given obligation invariants”.
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As stated, the obligations system is less mature than naturally stable promises and

structural separation logic. One obvious issue is the verbose nature of the bookkeeping,

requiring significant effort during proof construction. We will continue to develop the

obligations system in future work.
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8. Conclusions

This thesis has primarily been concerned with techniques for, and examples of, library

reasoning. By developing reasoning that takes an abstraction first rather than implemen-

tation first approach to specifying libraries, we have been able to give novel axiomatic

semantics for a range of libraries. We have covered simple data structures (such as lists

and trees), updated pre-existing axiomatic specifications for real libraries (with DOM),

and introduced entirely new specifications for complex libraries which are not immediately

amenable to local reasoning (such as POSIX). By allowing a pragmatic mix of standard

heap models and our abstractions, we have enabled easier verification of programs that

use these libraries. This thesis has touched on many aspects of program verification and

has, inevitably, opened many new questions that remain unanswered.

Our primary technical contribution has been structural separation logic, a program logic

for local reasoning with mixed structured and unstructured data. We have provided a

general presentation of structural separation logic, showing how the technique can be

applied to many different libraries that use a mix of highly structured data and normal

heap manipulation. When verifying client programs that use libraries, this mix of high

level abstraction with low level heap manipulation allows easier program verification than

would be possible with separation logic alone. We have demonstrated this both with

our DOM reasoning example in section 4.4, and more extensively with our featherweight

POSIX case study.

By design, the abstract heap cells of our logic inherit the separation afforded by the

separating conjunction. Beyond the simple flat heaps used in our examples, this means we

can interface easily with the developments of the wider separation logic community. One

particular area we wish to interface with is tooling. We can represent abstract heap cells

within existing separation logic tools where, to the tools proof engine, they are harmless

passengers in the assertions and are simply removed by the frame rule. We can then extend

the proof engines to be aware of the abstract cells, including their creation and destruction

via abstract allocation, and update via axioms. We have already begun experiments

with this, embedding a simple version of structural separation logic into the Verifast tool

[45] with promising results. However, the correct long-term solution to representing our
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abstract data remains unclear. We will aggressively pursue automation in future work,

focusing on experimentation and proving real examples.

We have shown how structural separation logic can give an axiomatic specification to

DOM that has smaller footprints than was previously possible. Using structural separation

logic for DOM allows easy composition of DOM reasoning with language reasoning. This

will allow reasoning about web applications, which are written in JavaScript, interacting

with the browsers page representation via the DOM library. There is now significant work

on local program reasoning with JavaScript using variants on the standard separation logic

heap model [34]. Structural separation logic allows this to be combined with our DOM

axioms to obtain a system capable of reasoning about web applications. An initial version

of this work appeared in [66], and we hope to work with Smith et al. in extending this to

a fuller approach.

As with previous DOM axiomatic semantics, our axioms are justified against a high-level

operational semantics. This can be unconvincing, as we author the semantics specifically to

allow verification of the axioms. To obtain a stronger soundness result, it will be necessary

to link our approach an underlying implementation. Structural separation logic is well

placed to achieve this, as we can mix heap implementation code with our abstraction. We

are currently working with Raad on refinement for the DOM library. We have developed

an implementation in C, and by using reasoning techniques for refinement being developed

by her and Wheelhouse, we can show that this soundly refines our axiomatic specifications.

This enables a verified concurrent DOM implementation, the first of its kind.

Local reasoning is not always easily applicable to libraries. Our axioms for POSIX show

that even well-designed libraries do not always localise their data access. Even in these sit-

uations, we believe that the compositionality provided via locality can be a useful concept.

As such, we have introduced promises and obligations to act act as a permission system

for abstract data. They enable data it to be split into read-only global data and read-write

local data, and so allow locality where it would otherwise be impossible. Promises and

obligations are only the first step in understanding richer notions of separation and com-

position on abstract structured data. Our inability to easily specify symbolic links that go

through abstractly allocated data indicate that it may be helpful to have two simultaneous

views of data; one “cut-up” via abstract allocation, and one “complete”, using promises

and obligations, to give context to the localised sub-data.

However, the current form has been sufficient to prove interesting programs that use the

POSIX file system. Our approach is one of the first POSIX specifications focused entirely

on verifying client programs, rather than POSIX implementations. Although our subset is

already useful, the POSIX standard is large. Gzik is working on extending featherweight
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POSIXFS to handle more of the POSIX file-system specification, including additional

commands, richer symbolic link and non-linear path support, and (with us) errors. We

have so far ignored errors without our system, so that any command not correctly used is

treated as a faulting case. POSIX typically reports such command invocations as non-fatal

errors, allowing programs to recover and proceed in another manner. It will be interesting

to see the challenges this poses for reasoning.

This thesis is but a single step in local reasoning for client programs that use libraries.

As users of libraries vastly outnumber authors, such a focus will help enable more software

achieve correctness through verification. We will continue to push this approach in our

research, analysing and axiomatising more libraries. We will continue to extend the theory

to handle the realities of what we find, rather than work only on idealised libraries designed

with verification in mind.
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A. Appendices

In these appendices, we include both some proofs too straightforward for, or similar to,

proofs from the main text, and additional program proofs using structural separation logic.

A.1. Program proofs

This section contains various programs and their associated proofs, demonstrating further

uses of structural separation logic.

A.1.1. Proof for contains{
k→ k ∗ b→ - ∗ L 7→ [a]

}
b := contains(k) , local i {
i := getFirst();{

(a = ∅ ∧ i→ 0) ∨ (∃i,r. a = i⊗ r ∗ i→ i) ∗ L 7→ [a]
}

b := false;
∃i,b,s,r. k→ k ∗ b→ b ∗ L 7→ [a] ∗ i→ i ∧
(a = s⊗ i⊗ r ∧ i 6= 0) ∨ (a = s ∧ i = 0) ∧
((k ∈ s ∧ b = true) ∨ (k 6∈ s ∧ b = false))


while (i 6= 0){

i→ i ∗ k→ k ∗ b→ b ∗ ∃j, β. (α 7→ (i⊗ j⊗ β) ∨ α 7→ [β ⊗ i])
}

if (i = k)

b := true;

else

skip;

i := getRight(i)

}{
k→ k ∗ ((k ∈ a ∧ b→ true) ∨ (k 6∈ a ∧ b→ false)) ∗ L 7→ [a]

}
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A.1.2. Proof of l := n.stringLength{
n→ n ∗ l→ - ∗ α 7→ #textn[s ∧ is complete]fs

}
l := n.stringLength , local r {
l := 0;

r := n.substringData(l, 1);
∃s1,s2,r,l. n→ n ∗ l→ l ∗ r→ r ∗ (r = null ∧ α 7→ #textn[s ∧ s1]fs)

∨
(r 6= ∧ α 7→ #textn[s ∧ s1 · r · s2]fs)

 ∧ l = |s1|


while (r != null)

l := l + 1;

r := n.substringData(l, 1);

}{
∃l. n→ n ∗ l→ l ∗ α 7→ #textn[s]fs ∧ l = |s|

}
A.1.3. Proof of s := n.value in the text node case

{
n→ n ∗ s→ - ∗ α 7→ #textid[val]fs

}
s := n.value , local l, name {
name := n.nodeName;{

n→ n ∗ s→ - ∗ l→ - ∗ name→ #text ∗ α 7→ #textid[val]fs

}
if name = "#text"{

n→ n ∗ s→ - ∗ l→ - ∗ name→ #text ∗ α 7→ #textid[val]fs

}
l := n.stringLength;

s := n.substringData(0, l){
n→ n ∗ s→ val ∗ l→ |val| ∗ name→ #text ∗ α 7→ #textid[val]fs

}
else{

false
}

s := null

}{
n→ n ∗ α 7→ #textid[val]fs ∧ s→ val

}
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{
n→ n ∗ s→ - ∗ α 7→ #textid[val]fs

}
s := n.value , local l, name {
name := n.nodeName;{

n→ n ∗ s→ - ∗ l→ - ∗ name→ #text ∗ α 7→ #textid[val]fs
}

if name = "#text"{
n→ n ∗ s→ - ∗ l→ - ∗ name→ #text ∗ α 7→ #textid[val]fs

}
l := n.stringLength;

s := n.substringData(0, l){
n→ n ∗ s→ val ∗ l→ |val| ∗ name→ #text ∗ α 7→ #textid[val]fs

}
else{

false
}

s := null

}{
n→ n ∗ α 7→ #textid[val]fs ∧ s→ val

}
Figure A.1.: Proof of s := n.value in the text node case.

A.1.4. Proof of v := n.childValue{
n→ n ∗ v→ - ∗ α 7→ nmid[#texttid[val]fs1 ⊗ β]fs2

}
v := n.childValue , local cs, c {

cs := n.childNodes;{
∃fs3,fid. n→ n ∗ v→ - ∗ c→ - ∗ cs→ fid ∗

α 7→ nmid[#texttid[val]fs1 ⊗ β]fs3 ∧ fid ∈ fs3 ∧ fs2 ⊆ fs3

}
c := cs.item(0);{

∃fs3,fid. n→ n ∗ v→ - ∗ c→ tid ∗ cs→ fid ∗
α 7→ nmid[#texttid[val]fs1 ⊗ β]fs3 ∧ fid ∈ fs3 ∧ fs2 ⊆ fs3

}
v := c.value;

}{
∃fs3. n→ n ∗ v→ val ∗ α 7→ nmid[#texttid[val]fs1]fs3 ∧ fs2 ⊆ fs3

}

A.1.5. Code for fileCopy(source, target)

The source code for, and associated proof of, the fileCopy command of section 6.3.4 is:
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{
path(path,p1,a) ∧ path(target,p2,c,d)

∧ αp1 7→ a : i1 ∗ βp2 7→ d[c ∧ can create(a)] ∗ i1
F7→ sd ∗ E

}
ret := fileCopy(source, target) , local s, sourceH, targetH, buffer, c {
buffer := malloc(4096)

sourceH := open(source, 0);

c := read(sourceH, buffer, 4096);

∃ sh,th, i2, sd2, sb, sd3.

sd = sd2 · sb · sd3 ∧ ((|sb| < 4096 ∧ sd3 = ε) ∨ |sb| = 4096)

∧ sourceH→ sh ∗ targetH→ th ∗ buffer→ buf ∗ c→ |sb|
∗ buf− 1 7→ 4096 ∗ ncells(buf, |sb|, sb) ∗ ncells(buf + |sb|, 4096− |sb|,−)

∗ αp 7→ a : i1 ∗ βp2 7→ d[c + a : i2] ∗ i1
F7→ sd

∗ E ∗ i2
F7→ sd2 ∗ sh

PH7→ (i1, |sd2 · sb|) ∗ th
PH7→ (i2, |sd2|)


while c = 4096

write(targetH, buffer, 4096);

c := read(sourceH, buffer, 4096);

// We read less than 4096, so it was the last chunk

∃ sh,th, i2, sd2, sb, sd3.

sd = sd2 · sb · sd3 ∧ |sb| < 4096 ∧ sd3 = ε

∧ sourceH→ sh ∗ targetH→ th ∗ buffer→ buf ∗ c→ |sb|
∗ buf− 1 7→ 4096 ∗ ncells(buf, |sb|, sb) ∗ ncells(buf + |sb|, 4096− |sb|,−)

∗ αp 7→ a : i1 ∗ βp2 7→ d[c + a : i2] ∗ i1
F7→ sd

∗ E ∗ i2
F7→ sd2 ∗ sh

PH7→ (i1, |sd2 · sb|) ∗ th
PH7→ (i2, |sd2|)


s := write(targetH, buffer, c);

close(sourceH); close(targetH); free(buffer)

}
{
∃ i2.α

p1 7→ a : i1 ∗ βp2 7→ d[c + a : i2] ∗ i1
F7→ sd ∗ E ∗ i2

F7→ sd
}

A.2. Unique collapse to heap

Here, we provide the proof of theorem 3, showing that if an abstract heap collapses to a

complete heap, the complete heap is unqiue. This result is confluence. It is well known,

and typically proven via local confluence and Newman’s lemma. Unfortunately, our system

does not satisfy local confluence on all pre-abstract heaps. The pre-abstract heap x 7→
y ∗y 7→ x has two possible collapses, x 7→ x and y 7→ y. Neither can collapse further, but

both are different. However, if ph ↓∗ h, then ↓ is locally confluent on ph. We can thus
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create a proof based upon conditional local confluence.

Lemma 26 (Conditional local confluence). Assume that, for all ph,ph2 ∈ PreAbsHeaps

and h ∈ StructHeaps, ph ↓∗ h and ph ↓ ph2. Then, ph2 ↓∗ h.

Proof. Since ph ↓ ph2, we know that #(ph) > 0. Moreover, since ph ↓∗ h, we know

that ∃ph1. ph ↓ ph1 ↓∗ h. Moreover, by the definition of single-step collapse, dom(ph) \
dom(ph1) = {x} and dom(ph) \ dom(ph2) = {y} (that is, the collapse to ph1 used

abstract address x, and the collapse to ph2 used abstract address y).

Let #(ph) = |dom(ph)∩StructAddrs| (the function giving the number of structural

addresses in the domain of some pre-abstract heap). We proceed by induction on #(ph).

1. #(ph) = 0: The result follows directly, as ph 6↓.

2. #(ph) = n+ 1: We know that ph ↓ ph1 using hole x and ph ↓ ph2 using hole y. If

x = y, the result follows directly.

Assume then, that x 6= y. We demonstrate that there exists some ph3 such that

ph1 ↓ ph3 and ph2 ↓ ph3. With this result, we have ph1 ↓∗ h, ph1 ↓ ph3 and

#(ph1) = n. So, by the inductive hypothesis, we have ph3 ↓∗ h. Hence, ph2 ↓∗ h
as required.

To prove this remaining result, examine the possible ways ph can be constructed such

that ph ↓ ph1 and ph ↓ ph2. There must two abstract heap cells x,y ∈ dom(ph).

There may exist at most two additional heap cells with addresses a1,a2 ∈ dom(ph)

which contain x,y as body addresses.

In figure A.2, we consider all the permutations for the location of the body addresses

x and y. The rows indicate which heap addresses contains x and y as body addresses,

and is labelled by a justification. In each case, this justification either demonstrates

the existence of ph3 or shows that the case is impossible. The justifications are:

Quazi-commutivity: In these cases, construct ph3 by collapsing using y on ph1

and using x on ph2. The result is such that both collapses are into exactly one of

the cells a1 or a2, and the equality of the results follows by quazi-commutativity

of structurally addressed data.

Quazi-associativity: We construct ph3 as in the quazi-commutitive case. How-

ever, here, the equality is given by quazi-associativity of structurally addressed

data.
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Heap cells that may be x and y
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ph(a1) ph(a2) ph(x) ph(y) Justification

1 x,y X,Quazi-commutativity
2 x y X,Pick alternate
3 x y X,Quazi-associativity
4 x y ×,ph 6↓ ph2

5 y x X,Pick alternate
6 x,y X,Quazi-commutativity
7 x y X,Quazi-associativity
8 x y ×,ph 6↓ ph2

9 y x ×,ph 6↓ ph1

10 y x ×,ph 6↓ ph1

11 x,y ×,ph 6↓ ph1

12 x y ×,ph 6↓ ph1

13 y x X,Quazi-associativity
14 y x X,Quazi-associativity
15 y x ×,No final heap
16 x,y ×,ph 6↓ ph2

Figure A.2.: Case analysis for proof of lemma 26. The four central columns indicate the
heap addresses in which the given body addresses are found.

Pick alternate: In these cases, construct ph3 by collapsing using y on ph1 and

using x on ph2. The result is such that x collapsed into a1 and y collapsed

into a2 (or vice versa), and the result follows directly.

ph 6↓ ph2: This permutation cannot occur, as ph could never use y to collapse to

ph2.

ph 6↓ ph1: This permutation cannot occur, as ph could never use x to collapse to

ph1.

No final heap: This permutation cannot occur, as ph1 must satisfy y ∈ ph1(y).

Evidently, there is exactly one y ∈ dom(ph1). The only way to remove y

from the body of ph1(y) is to collapse a y-addressed cell into it, yet collapse

will never perform this here by definition. Ergo, there is no phn such that

ph1 ↓∗ phn and 6 ∃a. y ∈ phn(a). Yet, h satisfies this second property, and

ph1 ↓∗ h. Contradiction.
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Given this local confluence, we can prove a many-step version.

Lemma 27 (Conditional confluence). Assume that, for all ph,ph1 ∈ PreAbsHeaps and

h ∈ StructHeaps, ph ↓∗ h and ph ↓∗ ph1. Then, ph1 ↓∗ h.

Proof. Again, we proceed by induction on the number of abstract addresses in ph, #(ph).

• #(ph) = 0: By definition, ph1 = h, and the result follows.

• #(ph) = n + 1: Then, there exists ph′1 such that ph ↓ ph′1 ↓∗ ph1. Conditional

confluence (lemma 26) ensures that ph′1 ↓∗ h. Now, #(ph′1) = n, ph′1 ↓∗ h and

ph′1 ↓∗ ph2. The inductive hypothesis provides the result.

Theorem 5 (Unique collapse). For all ph1 ∈ PreAbsHeaps, if there exists

h ∈ StructHeaps such that ph1 ↓∗ h, then for all ph2 ∈ PreAbsHeaps, ph1 ↓∗ ph2

and ph2 6↓ implies ph2 = h.

Proof. By conditional confluence (lemma 27), if ph1 ↓∗ h and ph1 ↓∗ ph2, then ph2 ↓∗ h.

We also have that ph2 6↓. The only way this is possible is if ph2 = h.

This result allows us to show that abstract heaps are unambiguous and acyclic.

Lemma 28 (Abstract heaps are unambiguous). All h ∈ AbsHeaps are unambiguous, in

that there are no x ∈ StructAddrs such that there exists a1,a2 ∈ Addrs with x ∈ h(a1)

and x ∈ h(a2).

Proof. We proceed by contradiction. Assume h is ambiguous. Therefore, there exists a1

and a2 with x ∈ addrs(h(a1)) and x ∈ addrs(h(a2)). By the definition of h, there exists

an extension ph ∈ PreAbsHeaps and machine heap h such that h t ph ↓∗ h.

By the definition of heaps, there can be no a ∈ dom(h) such that x ∈ addrs(h(a)) (as

heaps contain no structural addresses). Therefore, there must be x ∈ dom(h t ph), and

some step in the chain of collapses that collapsed the x addressed heap cell into a value.

However, by the definition of collapse, this is not possible, as there is never a unique a

containing x. Ergo, no matter what chain of collapses is used, it must eventually reach a

pre-abstract heap ph′ such that htph ↓∗ ph′,ph′ 6↓ and x ∈ dom(ph′). But, by theorem

3, as h t ph ↓∗ h so ph′ ↓∗ h, which is impossible. Ergo, h was not ambiguous.
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Lemma 29 (Abstract heaps are acyclic). All h ∈ AbsHeaps are acyclic, in that there

are no structural addresses x ∈ StructAddrs and (possibly empty) chain of single-step

collapse steps such that h ↓∗ hn with x ∈ addrs(hn(x)).

Proof. We proceed by contradiction. Assume h is cyclic. By definition, there is some

concrete structured heap h and pre-abstract heap ph such that h t ph ↓∗ h, where h

contains no structural addresses. By the definition of cyclicity, there is some hn such that

x ∈ addrs(hn(x)). There must exist hm such that hn ↓∗ hm, hm 6↓, with x ∈ addrs(hm(x))

as, by definition, collapse will never compress an abstract heap cell into itself and, by

construction, the domain can never contain an addition x by which collapse can remove

the body address x. By theorem 3, it must be the hm = h, which cannot be, as hm

contains structural addresses. Ergo, h was not cyclic.

A.3. Promise- and obligation-carrying data as structural

separation algebras

This section provides the proof that promise- and obligation-carrying data is a structural

addressing algebra. The proofs proceed as in the promises case given in section 5.2.1.

Definition 144 (Promise- and obligation-carrying data algebra). Let

(StructAddrs,Data, addrs, comp) be some structural addressing algebra (defini-

tion 42). Let (StructAddrse,Datae, addrse, compe) be the associated underlying

data algebra (definition 90). Let PromObsData be the set of promise- and

obligation-carrying data defined using these previous two algebras. Then, the

associated promise- an obligation-carrying data algebra is defined as:

(StructAddrsO,PromObsData, addrsO, compO)

where

1. The structural addresses are those of the underlying data: StructAddrsP =

StructAddrse.

2. The addresses function is the addresses function of the underlying data, applied

to the underlying data component of a promise-carrying data addrs(pod) =

addrse(pod↓1).
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3. The compression function compP is that defined on PromObsData, given in

definition 139.

When unambiguous, compO(x,pod1,pod2) is written pod1 x pod2, and addrsO

is written addrs. The data of the underlying algebra are equivalent to data with no

promises and obligations d ∈ Datae = (d, ∅, ∅).

This algebra inherits many useful properties from the underlying structural addressing

algebra. However, we must first ensure that the compression function preserves the well-

formedness of the richer data we are using. For the lemmas, assume a structural addressing

algebra (StructAddrs,Data, addrs, comp) for the promises and obligations, and the

associated underlying data algebra ((StructAddrsO,PromObsData, addrsO, compO).

Lemma 30 (Compression is closed on PromObsData). Let pod1,pod2 ∈ PromObsData,

x ∈ StructAddrs and pod1 x pod2 be defined. Then, pod1 x pod2 ∈ PromObsData.

Proof. Assume pod1 = (d1,Π1,Ω1) and pod2 = (d2,Π2,Ω2). The result of pod1 x pod2

is:

(d1 x d2, (Π1 − x) ∪ (Π2 − e) , (Ω1 − x) ∪ (Ω2 − e)))

As per the definitions of promises, obligations and promise- and obligation-carrying

data (definitions 94, 137 and 138 respectively), this will be valid promise- and obligation-

carrying data if: 1) there are no duplicate promise or obligation addresses; 2) every promise

or obligation is addressed to either e or a body address within the data; and 3) every

obligation is fulfilled.

Note first that, by the addressing properties of the underlying structural addressing

algebras, the set addrs(d1 x d2) contains the addresses addrs((d1 \ {x}))∪ addrs(d2). Call

this the address containment property.

1. Proceed by contradiction. Assume an address a that identifies two promises:

{(a, d1), (a, d2)} ⊆ (Π1 − x) ∪ (Π2 − e).

Notice that a 6= e, as by construction e is removed from Π2 in the compression, and

Π1 is well-formed. Ergo a ∈ StructAddrs \ {e}. Therefore, by well-formedness of

pod1 and pod2, a ∈ addrsO(pod1) or a ∈ addrsO(pod2). Assume a = x. Then it

cannot be duplicated, as x is removed from Π1 in the union and Π2 is well-formed.

However, it is also the case that a 6= x. This follows from the address containment

properties, which show that addrs(d1) ∪ addrs(d2) \ {x} = ∅.
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The case for obligations is similar.

2. Proceed by contradiction. Assume there is a promise in (a, d) ∈ (Π1−x)∪ (Π2−e)

such that a 6= e and a 6∈ addrs(d1 x d2). By definition, either a ∈ Π1 or a ∈
Π2. By the well-formedness of pod1 and pod2, either a ∈ addrsO(pod1), or a ∈
addrsO(pod2). If a 6= x, then by the address containment property, it must be that

a ∈ addrs(d1 x d2), which contradicts its existence.

If a = x, then by the construction of (Π1−x)∪(Π2−e), a addresses a promise in Π2.

Ergo, a ∈ addrsO(pod2) by well-formedness. By the address preservation property

of structural addressing algebras, a ∈ addrs(d1 x d2), which again contradicts its

existence.

The case for obligations is similar.

3. Proceed by contradiction. Assume there is an unfulfilled obligation (a, d) ∈ (Ω1 −
x)∪ (Ω2 −e). Assume first that a = e. Then, by construction, the obligation must

be (e, d) ∈ Ω1. As the obligation is not fulfilled, it must be that ; (d1 x d2, (Π1 −
x) ∪ (Π2 − e)) 6⊆ d. However, we have ; (d1 x d2, (Π1 − x) ∪ (Π2 − e)) ⊆; (d1,Π1).

This must be true, as either pod1 had no promise from x for d2, and so the body

closure considered all possibilities, or pod1 did have a promise, which was fulfilled

by the obligations of pod2. Moreover, ; (d1,Π1) ⊆ d, as pod1 is well-formed. Ergo

the obligation must be met, as ⊆ is transitive.

Assume now that a 6= e. Then, via the proof of case 2) above, it must be that the

obligation is (x, d) for some y ∈ addrs(d1 x d2). As the obligation is not fulfilled, is

must be that↻y ((d1 x d2, (Π1−x)∪(Π2−e))) 6⊆ d. However, by reasoning similar

to the above, this cannot be: ↻y ((d1 x d2, (Π1 − x) ∪ (Π2 − e))) ⊆↻y ((d1,Π1)),

as the body closure around x (even if vacuous) must contain at least the actual data

d2.

Of the underlying data algebra properties, the following are maintained.

Lemma 31 (Value containment). Given Data that is the underlying structural addressing

algebra for the promise- and obligation-carrying data algebra, and Values that is the set

of values underlying Data, Values ⊆ Data.

Proof. Follows from the lift of data without promises or obligations to be equal to promise-

carrying data, and the value containment property of the underlying data.
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Lemma 32 (Address properties). For all pod1,pod2 ∈ PromObsData and x ∈ StructAddrsO,

if pod1 x pod2 is defined then:

1. Containment: x ∈ addrsO(pod1).

2. Non-overlap: addrsO(pod1) ∩ addrsO(pod2) ⊆ {x}

3. Preservation: (addrsO(pod1) \ {x}) ∪ addrsO(pod2) = addrsO(pod1 x pod2)

Proof. These follow directly from the addresses function being defined in terms of the

underlying addresses function, which is applied to the underlying data.

Lemma 33 (Compression quasi-associates). Let pod1,pod2,pod3 ∈ PromObsData

and x,y ∈ StructAddrs, with pod1 = (d1,Π1,Ω1),pod2 = (d2,Π2,Ω2),pod3 =

(d3,Π3,Ω3). If y ∈ addrsO(pod2) and either y 6∈ addrsO(pod1) or y = x, then

pod1 x (pod2 y pod3) = (pod1 x pod2) y pod3.

Proof. Assume that x 6= y (the case where x = y is similar). Assume further that the

left-hand side, pod1 x (pod2 y pod3) is defined. Then, it must equal:(
d1 x (d2 y d3),

(Π1 − x) ∪ ((Π2 − y) ∪ (Π3 − e))− e,
(Ω1 − x) ∪ ((Ω2 − y) ∪ (Π3 − e))− e

)
The removal of a promise or obligation from a set is idempotent. Therefore, we have:(

d1 x (d2 y d3),
(Π1 − x) ∪ ((Π2 − y − e) ∪ (Π3 − e)),

(Ω1 − x) ∪ ((Ω2 − y − e) ∪ (Π3 − e))

)
As x 6= y, there are no promises named y in Π1 (similarly for the obligations). Moreover,

as standard set union associates, we have:(
(d1 x d2) y d3,

((Π1 − x) ∪ (Π2 − e))− y ∪ (Π3 − e),

((Ω1 − x) ∪ (Ω2 − e))− y ∪ (Ω3 − e),

)
which is equal to (pod1 x pod2) y pod3 (data quasi-associativity holds by the defini-

tion of structural addressing algebras). Ergo, if the left is defined, the right is defined and

equal to it.

Lemma 34 (Compression quasi-commutes). Let pod1,pod2,pod3 ∈ PromData and

x,y ∈ StructAddrs, with pod1 = (d1,Π1,Ω1),pod2 = (d2,Π2,Ω2),pod1 = (d3,Π3,Ω3).

If x 6∈ addrsO(pod3) and y 6∈ addrsO(pod2), then (pod1 x pod2) y pod3 = (pod1 y pod3) x pod2.
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Proof. Assume that the left hand side, pod1 x pod2 y pod3 is defined. Then, it must

equal: (
(d1 x d2) y d3,

((Π1 − x) ∪ (Π2 − e))− y ∪ (Π3 − e),

((Ω1 − x) ∪ (Ω2 − e))− y ∪ (Ω3 − e)

)
As Π2 has no promise named y (and similarly for the obligations), we have:(

(d1 x d2) y d3,
((Π1 − x− y) ∪ (Π2 − e)) ∪ (Π3 − e),

((Ω1 − x− y) ∪ (Ω2 − e)) ∪ (Ω3 − e)

)
As Π3 has no promise named x, we then have(

(d1 x d2) y d3,
((Π1 − y) ∪ (Π3 − e))− x ∪ (Π2 − e),

((Ω1 − y) ∪ (Ω3 − e))− x ∪ (Ω2 − e)

)
which is pod1 y pod3 x pod2.

The underlying data has a simple left identity property, as x x d = d always. The

addition of promises and obligations breaks this simple identity, simply by picking any d

with a head promise. However, there are still identities, which can be seen via construction

based upon the choice of d. We show the existence of left identities below; the right

identities are demonstrated in a similar manner.

Lemma 35 (Existence of left identities). For all pod ∈ PromObsData and x ∈ StructAddrs,

there exists an podx ∈ PromObsData such that podx x pod = pod.

Proof. Assume pod = (d,Π,Ω). We will construct of podx = (x,Πx,Ωx) by picking Πx

and Ωx based on the contents of Π and Ω. Without futher information, the compression

is:

(x x d, (Πx − x) ∪ (Π− e), (Ωx − x) ∪ (Ω− e))

Assume that (e, d) ∈ Π and (e, d) ∈ Ω. In this case, we pick Πx = {(x, d), (e, d)}
and Ω = {(x, d), (e, d)}. This is well-formed by construction. By calculation, using the

identity property of data:

(x x d, (Πx − x) ∪ (Π− e), (Ωx − x) ∪ (Ω− e))

= (d, ({(x, d), (e, d)} − x) ∪ (Π− e), ({(x, d), (e, d)} − x) ∪ (Ω− e))

= (d, {(e, d)} ∪ (Π− e), {(e, d)} ∪ (Ω− e))

= (d,Π,Ω)
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as required. The cases where pod has either no head promise or head obligations are

similar.

The identity properties were used by structural addressing algebras to show that the

choice of hole is irrelevant. One could always compress another structural address in, so

that d x y was defined if y 6∈ addrs(d). Without the simple identity properties, we cannot

prove this directly. However, we can still show that the choice of address does not matter.

Lemma 36 (Address irrelevance). For all pod1,pod2 ∈ PromObsData and x ∈ addrsO(pod1),

y 6∈ addrsO(pod2), if pod1 x pod2 is defined, there exists pody such that pod1 x pody y pod2 =

pod1 x pod2.

Proof. Knowing that pod1 x pod2, assume that pod1 = (d1,Π1,Ω1) and pod2 = (d2,Π2,Ω2).

We will consider the case where (x, d1) ∈ Π1, (e, d2) ∈ Ω2, (e, d2) ∈ Π2 and (x, d1) ∈ Ω1,

(ergo, d2 ⊆ d1, d1 ⊆ d2). The cases without head or body obligations to one or the other

are similar.

We construct podx in a similar fashion to building the identities for data, by giving

it the promises and obligations that match the expectations of pod1 and pod2. Pick

pody = (y,Πy,Ωy) where Πy = {(e, d1), (y, d1)} and Ωy = {(e, d1), (y, d1)}. The result

then follows by calculation, as in lemma 35.

If our promise- and obligation-carrying data is a structural addressing algebra, we know

it is safe to use as the data for structural separation logic. We can satisfy the requirements

definition 42 as:

1. Value containment : True by lemma 31.

2. Unaddressed values: Satisfied by the lift of the addresses function in definition 144

and the underlying data.

3. Address properties: Satisfied by lift of the addresses function in definition 144, and

the underlying data properties.

4. Identity : True by lemma 35.

5. Arbitrary addresses: True via lemma 36.

6. Compression left-cancellativity : True by definition of compression and underlying

data.

7. Compression quasi-associativity : True by lemma 33.

8. Compression quasi-commutativity : True by lemma 34.
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Therefore, given any abstract addressing algebra, we can construct a promise- and

obligation-carrying structure, which by the lemmas above will be a weak structural ad-

dressing algebra. This is then a foundation on which we can build abstract heaps.

Corollary 2 (Abstract heaps with promises and obligations are sound). The construction

of abstract heaps using promises and obligations on data is sound.

Proof. As results in chapter 3.
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