
Data Consistency in Transactional Storage
Systems: A Centralised Semantics
Shale Xiong1

Department of Computing, Imperial College London, UK
shale.xiong14@ic.ac.uk

Andrea Cerone2

Department of Computing, Imperial College London, UK
andrea.cerone@ic.ac.uk

Azalea Raad
MPI-SWS, Germany
azalea@mpi-sws.org

Philippa Gardner
Department of Computing, Imperial College London, UK
p.gardner@ic.ac.uk

Abstract
We introduce an interleaving operational semantics for describing the client-observable behaviour
of atomic transactions on distributed key-value stores. Our semantics builds on abstract states
comprising centralised, global key-value stores and partial client views. Using our abstract states,
we present operational definitions of well-known consistency models in the literature, and prove
them to be equivalent to their existing declarative definitions using abstract executions. We explore
two applications of our operational framework: (1) verifying that the COPS replicated database
and the Clock-SI partitioned database satisfy their consistency models using trace refinement, and
(2) proving invariant properties of client programs.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Operational Semantics, Consistency Models, Transactions, Distributed
Key-value Stores

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.21

Funding Shale Xiong: The Department of Computing, Imperial College London, and EPSRC
Fellowship VeTSpec: Verified Trustworthy Software Specification (EP/R034567/1)
Andrea Cerone: EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream Systems
(EP/K008528/1), and EPSRC Fellowship VeTSpec: Verified Trustworthy Software Specification
(EP/R034567/1)
Azalea Raad: ERC Horizon 2020 Consolidator Grant ‘RustBelt’ (grant agreement no. 683289)
Philippa Gardner : EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream Systems
(EP/K008528/1), and EPSRC Fellowship VeTSpec: Verified Trustworthy Software Specification
(EP/R034567/1)

1 Introduction

Transactions are the de facto synchronisation mechanism in modern distributed databases.
To achieve scalability and performance, distributed databases often use weak transactional
consistency guarantees known as consistency models. Many consistency models were originally

1 Shale Xiong has moved to Arm Research, shale.xiong@arm.com.
2 Andrea Cerone has moved to Football Radar, andrea.cerone@footballradar.com.

© Shale Xiong, Andrea Cerone, Azalea Raad and Philippa Gardner;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 21; pp. 21:1–21:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shale.xiong14@ic.ac.uk
mailto:andrea.cerone@ic.ac.uk
mailto:azalea@mpi-sws.org
mailto:p.gardner@ic.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
shale.xiong@arm.com
andrea.cerone@footballradar.com
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Data Consistency in Transactional Storage Systems: A Centralised Semantics

invented by engineers using (some quite informal) definitions specific to particular real-world
reference implementations, e.g. [3, 4, 6, 8, 21, 33, 38, 42]. More recently, general definitions
of consistency model have been defined independently of particular implementations, either
declaratively using execution graphs [1, 9] or operationally using abstract states or execution
graphs [16, 27, 35]. Our challenge is to define a general semantics for weak consistency
models with which we can both verify reference implementations and analyse the behaviour
of client programs with respect to a particular consistency model.

The declarative approach for defining consistency models using execution graphs has
been substantially studied [1, 9, 11, 12, 14]. In such graphs, nodes describe the read-write
sets of atomic transactions and edges describe the known dependencies between transactions.
They capture different consistency models by: (1) constructing candidate executions of the
whole program comprising transactions in which reads may contain arbitrary values; and
(2) applying the consistency-model axioms to rule out candidate executions deemed invalid
by the axioms. Such axioms may state, for example, that every read is validated by a write
that has written the read value. The most well-known execution graphs are dependency
graphs [1] and abstract executions [9, 11]. Dependency graphs tend to be used to analyse
client programs, e.g. Fekete et al. [23] derived a static analysis checker for a particular
weak consistency model called snapshot isolation; Bernardi and Gotsman [7] developed a
static analysis checker for several weak consistency models assuming the so-called snapshot
property3; and Beillahi et al. [5] developed a tool based on Lipton’s reduction theory [31]
for checking robustness4 properties against snapshot isolation. Abstract executions, on the
other hand, tend to be used to verify implementation protocols, e.g. abstract executions
are the standard by which many system engineers demonstrate that their protocols satisfy
certain consistency models [3, 33, 42]. Execution graphs provide little information about
how the state evolves throughout the execution of a program, and therefore seem unsuitable
for invariant-based program analysis of client programs.

The operational approach for defining weak consistency models has been much less
studied. Crooks et al. [16] introduced a trace semantics over abstract centralised kv-stores,
abstracting the behaviour of the underlying concrete distributed kv-stores, in order to
capture the consistency models associated with ANSI/SQL isolation levels. They describe
the equivalence of several implementation-specific definitions of consistency model in the
literature, but their reliance on the total transaction order suggests that it will be difficult to
adapt their work to reason about client programs. Kaki et al. [27] provide an operational
semantics over an abstract centralised store, again focusing on ANSI/SQL isolation levels.
They develop a program logic and prototype tool for reasoning about client programs, but
cannot express fundamental weak consistency models. Nagar and Jagannathan [35] introduce
an operational semantics based on abstract-execution graphs, focussing on consistency models
for distributed transactions. They provide robustness results for client programs using model
checking, but their analysis is indirect in that they move back and forth between abstract
executions and dependency graphs. All these approaches have their merits. However, none
provide a direct state-based operational semantics for distributed atomic transactions with
which to verify distributed implementations and analyse client programs using the usual
weak consistency models; see Section 1.1 for further details on this related work.

3 The snapshot property, also known as atomic visibility, states that transactional reads appear to read
from an atomic snapshot of the database and transactional writes appear to commit atomically, i.e.
intermediate transactional states are not observable by clients, even if the underlying distributed protocol
has a more fine-grained behaviour.

4 A particular program (or set of programs) behaves as if the consistency model is serialisability

S. Xiong et al. 21:3

We introduce an interleaving operational semantics for describing the client-observable
behaviour of atomic transactions updating distributed key-value stores (Section 3). Our
semantics is based on a notion of abstract states comprising a centralised key-value store
(kv-store) with multi-versioning and a client view. Kv-stores are global in that they record all
versions of a key; by contrast, client views are partial in that a client may see only a subset
of the versions. Our client views are partly inspired by the views in the ‘promising’ C11
semantics [28]. An execution step depends simply on the abstract state, the read-write set
of the atomic transaction, and an execution test, determining if a client with a given view
can commit a transaction. Different execution tests give rise to different consistency models,
which we show to be equivalent to well-known declarative definitions of consistency models
based on abstract executions (reported here and proven in [46]) and thus those based on
dependency graphs [14]. Our execution tests are analogous to the commit tests in [16], except
that [16] requires analysing the whole trace rather than just the current abstract state.

As in [16, 27, 35], we assume that transactions satisfy the last-write-wins resolution policy,
a policy widely used in many real-world distributed kv-stores. This means that when a
transaction observes several updates to a key, the atomic snapshot contains the value written
by the last update. We also assume that our transactions satisfy the snapshot property. This
is a common assumption in distributed transactional databases, e.g. in online shopping
applications, a client only sees one snapshot of the database and only has knowledge that
their transaction has successfully committed. The work in [35] also assumes the snapshot
property, whereas [16] and [27] do not as their focus is on ANSI/SQL isolation levels [6]. Our
execution tests uniformly capture many well-known consistency models (Section 4) including
causal consistency (CC) [9, 33, 40], parallel snapshot isolation (PSI) [3, 42], snapshot isolation
(SI) [6] and serialisability (SER) [37]. The work in [35] is as expressive as our work here; by
contrast, [16] is more expressive, capturing e.g. the read committed consistency model [6],
while [27] is less expressive, capturing SI but not PSI.

Using our operational semantics, we verify that database protocols satisfy their expected
consistency models and prove invariant properties of client programs under such consistency
models (Section 5). Specifically, we prove the correctness of two database protocols using our
general definitions: the COPS protocol for fully replicated kv-stores [33] which satisfies CC
(reported in Section 5.1 and proved in [46]), and the Clock-SI protocol for partitioned kv-stores
[21] which satisfies SI (given in [46]). These results had been previously shown for specific
consistency definitions devised for the specific reference implementations under consideration.
We also prove invariant properties of library clients (Section 5.2): the robustness of the
single-counter library against PSI, the robustness of the multi-counter library and the banking
library [2] against SI, and the mutual exclusion of a lock library against PSI. We believe our
robustness results are the first to take into account client sessions: with sessions, we show
that multiple counters are not robust against PSI. Interestingly, without sessions, Bernardi
and Gotsman [7] show that multiple counters are robust against PSI using static-analysis
techniques which are known not to be applicable to sessions. These results indicate that
our operational semantics provides an interesting abstract interface between distributed
databases and clients. This was an important goal for us, resonating with recent work that
does just this for standard shared-memory concurrency [17, 19, 25, 36].

1.1 Related Work
Operational semantics for defining weak consistency models for distributed atomic trans-
actions have hardly been studied. To our knowledge, the key papers are [16, 35, 27]. We
also mention the log-based semantics of Koskinen and Parkinson [29], which only focuses on

ECOOP 2020

21:4 Data Consistency in Transactional Storage Systems: A Centralised Semantics

serialisability but has some resonance with our work.
Crooks et al. [16] proposed a state-based trace semantics for describing weak consistency

models that employs concepts similar to our client views and execution tests, called read states
and commit tests respectively. In their semantics, a one-step trace reduction is determined
by the entire previous history of the trace. By contrast, our reduction step only depends on
the current kv-store and client view. They capture more consistency models than us, e.g.
read committed, because they do not assume the snapshot property due to their focus on
ANSI/SQL isolation levels. They use their semantics to demonstrate that several definitions
of snapshot isolation given in the literature [6, 18, 22] in fact collapse into one. They do not
verify protocol implementations and do not prove invariant properties of client programs.
We believe [16] can be used to verify implementations. We believe it might be difficult to
use [16] to prove invariant properties of client programs since their commit tests use total
traces. In contrast, our execution tests use partial client views.

Nagar and Jagannathan [35] proposed a fine-grained interleaving operational semantics
on abstract executions, and provide robustness results for client programs using a prototype
model-checking tool. They do this by converting abstract executions to dependency graphs
and checking the violation of robustness on the dependency graphs. We have two concerns
with this approach. First, despite assuming atomic visibility of transactions, they present a
fine-grained semantics at the level of the individual transactional operations rather than whole
transactions, in order to capture eventual consistency [9]. In contrast, our semantics is coarse-
grained in that the interleaving is at the level of whole transactions, and we instead capture
read atomic [4], a variant of eventual consistency [9] for atomic transactions. Second, all the
literature that performs client analysis on abstract executions [7, 12, 13, 14, 35], including
the approach of Nagar and Jagannathan, achieves this indirectly by over-approximating the
consistency-model specifications using dependency graphs. It is unknown how to do this
precisely [14]. In contrast, we prove robustness results directly by analysing the structure
of kv-stores, without over-approximation. We also give precise reasoning about the mutual
exclusion of locks, which we believe will be difficult to prove using abstract executions.

Kaki et al. [27] proposed an operational semantics for SQL transactions over an abstract,
centralised, single-version store, with consistency models given by the standard ANSI/SQL
isolation levels [6]. They develop a program logic and prototype tool for reasoning about client
programs, and so can capture invariant properties of the state. They can express SI, but they
do not capture the weaker consistency models such as PSI which is an important consistency
model for distributed databases. Kaki et al. have explored these weaker consistency models
in follow-on work [26], but they focus on an axiomatic semantics for abstract executions over
CRDTs not an operational semantics over kv-stores.

Finally, Koskinen and Parkinson [29] proposed a log-based semantics for verifying imple-
mentations that satisfy serialisability, based not only on kv-stores but also on other ADTs.
Their work comprises a centralised global log and partial client-local logs, similar to our
kv-stores and views. Their model focuses on serialisability. There is no evidence that it can
be easily extended to tackle weaker consistency models.

2 Overview

We introduce our centralised operational semantics for describing the client-observable beha-
viours of atomic transactions updating distributed kv-stores. We show that our interleaving
semantics provides an abstract interface for both verifying distributed protocols and proving
invariant properties of client programs.

S. Xiong et al. 21:5

k 7→ 0
t0

∅

(a) Initial kv-
store

k 7→ 0
t0

{t1}
1

t1

∅

(b) the kv-store
after t1

k 7→ 0
t0

{t1}
1

t1

∅

(c) A view of cl2
with the initial-
isation version

k 7→ 0
t0

{t1}
1

t1

∅

(d) A view of
cl2 with both ver-
sions

k 7→ 0
t0

{t1, t2}
1

t1

∅
1

t2

∅

(e) lost update: given
the view in Figure 1c,
the kv-store after t2

Figure 1 Lost update anomaly: single counter.

Example We use a simple transactional library, Counter(k), to introduce our operational
semantics. Clients of this library can manipulate the value of counter k via two transactional
operations: Inc (k) , [x := [k] ; [k] := x+1] and Read (k) , [x := [k]]. The x := [k] reads the
value of k in local variable x; and [k] := x+1 writes x+1 to k. The code of each operation is
wrapped in square brackets, denoting a transaction that executes atomically.

Consider a replicated database where a client only interacts with one replica. For such
a database, the behaviour of the atomic transactions is subtle, depending heavily on the
particular consistency model under consideration. Consider the client program PLU below:

PLU , cl1 : Inc (k) || cl2 : Inc (k)

where we assume that clients cl1 and cl2 work on different replicas and, for simplicity,
each replica has a kv-store with just one key k. Initially, key k holds value 0 in all replicas.
Intuitively, as transactions are executed atomically, after both calls to Inc (k) have terminated,
the counter should hold value 2. Indeed, this is the only outcome allowed under the
serialisability (SER) consistency model, where transactions appear to execute in a sequential
order, one after another. The implementation of SER in distributed kv-stores is known
to come at a significant performance cost. Implementers are, therefore, content with
weaker consistency models [3, 6, 8, 21, 32, 33, 38, 42]. For example, if replicas provide no
synchronisation mechanism for transactions, it is possible for both clients to read the same
initial value 0 for k at their distinct replicas, update it to 1, and eventually propagate their
updates of k to other replicas. Thus, both replicas remain unchanged with value 1 for k.
This weak behaviour is known as the lost update anomaly, which is allowed under causal
consistency (CC), but not under parallel snapshot isolation (PSI) and snapshot isolation (SI).

Centralised Operational Semantics Our operational semantics provides transitions over
abstract states, comprising a centralised, multi-versioned kv-store, which is global in that
it records all the versions written by all its clients, and a client view, which is partial in
that it records only those versions in the kv-store observed by a client. Each transition
of our operational semantics either updates a client-local variable stack using a primitive
command, or updates the kv-store and client view using an atomic transaction. The atomic
transactions are subject to an execution test, which analyses the state to determine if the
associated update is allowed under the given consistency model.

We show how the lost update anomaly in PLU is modelled in our operational semantics. A
centralised kv-store provides an abstraction of the real-world replicated key-value store of our
example. It is a function mapping keys to a version list, recording all the values written to
the key together with information about the transactions that accessed it. The total order of
versions on a key k is always known due to the resolution policy of the distributed database,
for example last-write-wins. In the PLU example, our initial centralised kv-store comprises a
single key k with one initialisation version (0, t0, ∅). This version represents the initialisations
in both replicas where k holds value 0, the version writer is the initialising transaction t0
(this version was written by t0), and the version reader set is empty (no transaction has read

ECOOP 2020

21:6 Data Consistency in Transactional Storage Systems: A Centralised Semantics

this version). Figure 1a depicts this initial centralised kv-store, with the version represented
as a box sub-divided in three sections: the value 0, the writer t0, and the reader set ∅.

Suppose that cl1 first invokes Inc (k) on Figure 1a. It does this by choosing a fresh
transaction identifier t1, then reading the initial version of k with value 0 and writing a new
value 1 for k. The resulting kv-store is depicted in Figure 1b, where the initial version of
k has been updated to reflect that it has been read by t1 and a new version with value 1
is installed at the end of the list. Now suppose that client cl2 invokes Inc (k) on Figure 1b.
As there are now two versions available for k, we must determine the version from which
cl2 fetches its value. This is where the partial client view comes into play. Intuitively, a
view of client cl2 comprises those versions in the kv-store that are visible to cl2, i.e. those
that can be read by cl2. If more than one version is visible, then the newest (right-most)
version is selected, modelling the last-write-wins resolution policy used by many distributed
key-value stores. In our example, there are two candidate views for cl2 when running Inc (k)
on Figure 1b: one containing only the initial version of k as depicted in Figure 1c, and
the other containing both versions of k as depicted in Figure 1d5. Given the cl2 view in
Figure 1c, client cl2 chooses a fresh transaction identifier t2, reads the initial value 0 and
writes a new version with value 1, as depicted in Figure 1e. Such a kv-store does not contain
a version with value 2, despite two increments on k, producing the lost update anomaly. Had
we used the the cl2 view in Figure 1d instead, client cl2 would have read the newest value 1
and written a new version with value 2.

The lost update anomaly is allowed under the CC consistency model, and disallowed under
SER, SI and PSI. To distinguish these cases, we use an execution test which directly restricts
the updates that are possible at the point where the transaction commits. A simple way of
doing this is to require that a client writing a transaction to k have a view containing all
versions of k available in the global state. This prevents the situation where the view of cl2
is that given in Figure 1c. This execution test corresponds to what is known in the literature
as write-conflict freedom [11], which ensures that at most one concurrent transaction can
write to a key at any one time.

The situation becomes more complicated when the library contains multiple counters
where each client can read and increment several counters in one session. For instance,
consider the following client program:

PLF , cl1 :
[
x := [k1] ; [k1] := x + 1

]
;
[
y := [k2] ; [k2] := y + 1

]
|| cl2 :

[
x := [k1] ; y := [k2]

]
|| cl3 :

[
x := [k1] ; y := [k2]

]
.

where, for simplicity, the kv-store has just the keys k1 and k2 (Figure 2a). Suppose that
cl1 executes both transactions first, writing 1 to k1 and k2 using fresh transaction identifiers
t1 and t′1, respectively. This results in k1 and k2 having two versions with values 0 and 1
each, as illustrated in Figure 2b. Client cl2 next executes its transaction, identified by t2,
using a view that contains both versions of k1 but only the initial version of k2. This means
that cl2 reads 1 for k1 and 0 for k2, i.e. cl2 observes the increment of k1 happening before
that of k2. Symmetrically, cl3 executes its transaction, identified by t3, using a view that
contains both versions for k2 but only the initial version of k1. As such, cl3 reads 0 for k1 and
1 for k2, i.e. cl3 observes the increment of k2 happening before that of k1. This behaviour is
known as the long fork anomaly (Figure 2b).

The long fork anomaly is disallowed under strong models such as SER and SI, but is
allowed under weaker models such as PSI and CC. To capture such consistency models and

5 As we explain in Section 3.1, we always require the client view to include the initial version of each key.

S. Xiong et al. 21:7

k1 7→ 0
t0

∅
k2 7→ 0

t0

∅
(a) Initial kv-store

k1 7→ 0
t0

{t1, t3}
1

t1

{t2}
k2 7→ 0

t0

{t′1, t2}
1

t′1

{t3}
(b) Transactions t2 and t3 observe the update to k1 and k2
in different order (long fork anomaly)

t0

t1

t3

(c) An illustration of dependencies between transactions with respect to the time line of the starts and
commits of these transactions (the dashed lines can be stretched)

Figure 2 Long fork anomaly: multiple counters

disallow the long fork anomaly of PLF, we must strengthen the execution test associated with
the kv-store. For SER, we simply strengthen the execution test by ensuring that a client
can execute a transaction only if its view contains all versions available in the global state.
For SI, the execution test is more subtle, requiring that a client view be a set of versions,
i.e.closed with respect to the commit order of transactions. This means that if a client view
includes a version written by a transaction t, then it must include all versions written by
transactions that committed before t. Our kv-stores do not contain all the information about
the commit order. However, we have enough information to determine the following commit
order between transactions: (1) if a transaction, e.g. t3 in Figure 2, reads a version written
by another transaction, e.g. t0, then it must start after the commit of the transaction that
wrote the version, e.g. t3 must start after the commit of t0 (Figure 2c); (2) if a transaction
writes a newer version of a key, e.g. t1 for k1, then it must commit after the transactions
that wrote the previous versions of the key,e.g. t0 (Figure 2c); and (3) if a transaction reads
an older version of a key, e.g. t3 for k1, it must start before the commit of all transactions
that write the newer versions of k, e.g. t1 (Figure 2c).

In Section 4, we formally define the execution tests associated with several consistency
models on kv-stores and client views. In [46], we show the equivalence of our operational
definitions of consistency models and the existing declarative definitions based on abstract
executions [11], and hence those based on dependency graphs [1].

Verifying Implementation Protocols The first application of our operational semantics
is to show that implementation protocols of distributed key-value stores satisfy certain
consistency models. We do this by representing the implementation protocol using our
centralised operational semantics: our abstract states provide a faithful abstraction of
replicated and partitioned databases, and our execution tests provide a faithful abstraction of
the synchronisation mechanisms enforced by these databases when committing a transaction.
We verify the correctness of our representation using trace refinement. Thus, a distributed
protocol satisfies the particular consistency model associated with the particular execution
test of our representation. We demonstrate that the COPS protocol [33] for implementing
a replicated database satisfies our definition of CC (reported in Section 5.1 and proved in
[46]), and the Clock-SI protocol [21] for implementing a partitioned database satisfies our
definition of SI (given in [46]). Since our definitions of consistency model are equivalent
to those in the literature [46], we have demonstrated that COPS and Clock-SI satisfy the
accepted general definitions of the respective consistency models. This contrasts with the
previous results in [33] and [21] which demonstrated that these protocols satisfy specific
consistency models defined for those particular implementations.

Proving Invariant Properties of Client Programs The second application of our operational
semantics is to prove invariant properties for transactional libraries (Section 5.2). One well-

ECOOP 2020

21:8 Data Consistency in Transactional Storage Systems: A Centralised Semantics

known property is robustness. A library is robust against a (weak) consistency model M if, for
all its client programs P and all kv-stores K, if K is obtained by executing P under M, then
K can also be obtained under SER, i.e. library clients have no observable weak behaviours.
We prove the robustness of the single counter library against PSI, and the robustness of
a multi-counter library and the banking library of [2] against SI. We prove robustness
against SI by proving general invariants that guarantee robustness against a new model we
propose, WSI, which lies between PSI and SI. As we discuss in Section 5.2, although existing
techniques [35, 12, 7] in the literature can verify such robustness properties, they typically do
so by examining full traces. By contrast, we establish invariant properties at each execution
step of our operational semantics, thus allowing a simpler, more compositional proof.

We also demonstrate the use of our operational semantics to prove library-specific invariant
properties. In particular, we show that a lock library is correct against PSI, in that it satisfies
the mutual exclusion guarantee, even though it is not robust against PSI. To do this, we
encode this guarantee as an invariant of the lock library, establishing the invariant at each
transition step of the operational semantics. By contrast, establishing such library-specific
properties using the existing techniques is more difficult. This is because existing techniques
[35, 12] do not directly record the library state; rather, they record full execution traces,
making them less amenable for reasoning about such properties.

3 Operational Model

We define an interleaving operational semantics for atomic transactions (Section 3.2) on
abstract states comprising global kv-stores and partial client views (Section 3.1). Our
semantics is parametrised by an execution test which induces a consistency model (Section 4).

3.1 Abstract States: Key-Value Stores and Client Views
The abstract states of our operational semantics comprise a global, centralised kv-store and
a partial client view. A kv-store comprises key-indexed lists of versions which record the
history of the key with values and meta-data of the transactions that accessed it: the writer
and readers.

We assume a countably infinite set of client identifiers6, ClientID 3 cl. The set of
transaction identifiers, TxID 3 t, is defined by TxID , {t0}] {tncl | cl ∈ ClientID ∧ n ≥ 0},
where t0 denotes the initialisation transaction and tncl identifies a transaction committed
by client cl with n determining the client session order: SO , {(t, t′) | ∃cl, n,m. t = tncl ∧
t′ = tmcl ∧n < m}. Subsets of TxID are ranged over by T, T ′, · · ·. We let TxID0 , TxID\{t0}.
I Definition 1 (Kv-stores). Assume a countably infinite set of keys, Key 3 k, and a countably
infinite set of values, Value 3 v, which includes the keys and an initialisation value v0. The
set of versions, Version 3 ν, is Version , Value × TxID × P(TxID0). A kv-store is a
function K : Key→ List (Version), where List (Version) 3 V is the set of lists of versions.

Each version has the form ν=(v, t, T), where v is a value, the writer t identifies the
transaction that wrote v, and the reader set T identifies the transactions that read v. We
write val(ν), w(ν) and rs(ν) to project the components of ν. Given a kv-store K and a
transaction t, we write t ∈ K if t is either the writer or one of the readers of a version in K;
we write |K (k)| for the length of the version list K (k), and K (k, i) for the ith version of k in
kv-store K.

6 We use the notation A 3 a to denote that elements of A are ranged over by a and its variants a′, a1, · · ·.

S. Xiong et al. 21:9

We assume that the version list of each key has an initialisation version carrying the
initialisation value v0, written by the initialisation transaction t0 with an initial empty reader
set. We focus on kv-stores whose consistency model satisfies the snapshot property, ensuring
that a transaction reads and writes at most one version for each key:

∀k, i, j. (rs(K (k, i)) ∩ rs(K (k, j)) 6= ∅ ∨ w(K (k, i)) = w(K (k, j)))⇒ i = j (snapshot)

This is a standard assumption for distributed databases, e.g. in [3, 4, 6, 8, 21, 33, 38, 42].
Finally, we assume that the kv-store agrees with the session order of clients, in that a client
cannot read a version of a key that has been written by a future transaction within the same
session, and the order in which versions are written by a client must agree with its session
order, i.e. for any k, i, j, t, t′:

t = w(K (k, i)) ∧ t′ ∈ rs(K (k, i))⇒ (t′, t) /∈ SO ? (wr-so)

t = w(K (k, i)) ∧ t′ = w(K (k, j)) ∧ i < j ⇒ (t′, t) /∈ SO ? (ww-so)

A kv-store is well-formed if it satisfies these assumptions. Henceforth, we assume kv-stores
are well-formed, and let KVS denote the set of well-formed kv-stores.

A global kv-store provides an abstract centralised description of updates associated with
distributed kv-stores that is complete in that no update has been lost in the description. By
contrast, in both replicated and partitioned distributed databases, a client may have incom-
plete information about updates distributed between machines. We model this incomplete
information by defining a client view, or just view, of the kv-store which provides a partial
record of the updates observed by a client. We require that a client view be atomic in that
it can see either all or none of the updates of a transaction. This client view was partly
inspired by the views of the ‘promising’ C11 operational semantics [28].

I Definition 2 (Views). A view of a kv-store K ∈ KVS is a function u ∈ Views (K) ,
Key→ P(N) such that, for all i, i′, k, k′:

0 ∈ u (k) ∧ (i ∈ u (k)⇒ 0 ≤ i < |K (k)|) (in-range)
i ∈ u (k) ∧ w(K (k, i))=w(K (k′, i′))⇒ i′ ∈ u (k′) (atomic)

Given two views u, u′ ∈ Views (K), the order between them is defined by u v u′ def⇔ ∀k ∈
dom(K). u (k) ⊆ u′(k). The set of views is Views ,

⋃
K∈KVS Views (K). The initial view,

u0, is defined by u0(k) = {0} for every k ∈ Key.

Our operational semantics updates configurations, which are pairs comprising a kv-store
and a function describing the views of a finite set of clients.

I Definition 3 (Configurations). A configuration, Γ ∈ Conf, is a pair (K,U) with K ∈ KVS

and U : ClientID fin−⇀ Views (K). The set of initial configurations, Conf0 ⊆ Conf, contains
configurations of the form (K0,U0), where K0 is the initial kv-store defined by K0(k) ,
(v0, t0, ∅) for all k ∈ Key.

Given a configuration (K,U) and a client cl, if u = U (cl) is defined then, for each k,
the configuration determines the sub-list of versions in K that cl sees. If i, j ∈ u (k) and
i < j, then cl sees the values carried by versions K (k, i) and K (k, j), and it also sees that
the version K (k, j) is more up-to-date than K (k, i). It is therefore possible to associate a
snapshot with the view u, which identifies, for each key k, the last version included in the
view. This definition assumes that the database satisfies the last-write-wins resolution policy,
employed by many distributed key-value stores. However, our formalism can be adapted
straightforwardly to capture other resolution policies.

ECOOP 2020

21:10 Data Consistency in Transactional Storage Systems: A Centralised Semantics

I Definition 4 (View Snapshots). Given K ∈ KVS and u ∈ Views (K), the view snapshot of
u in K is a function, snapshot (K, u) : Key→ Value, defined by:

snapshot (K, u) , λk. val(K (k,max<(u (k))))

where max<(u (k)) is the maximum element in u (k) under the natural order < on N.
When clear from the context, we simply refer to a view snapshot as a snapshot.

3.2 Operational Semantics
Core Programming Language We assume a language of expressions built from values v and
program variables x, defined by: E ::= v | x | E + E | · · ·. The evaluation JEKs of expression E
is parametric in the client-local stack s: JvKs , v JxKs , s(x) JE1 + E2Ks , JE1Ks+ JE2Ks · · ·.
A program P comprises a finite number of clients, where each client is associated with a
unique identifier cl ∈ ClientID, and executes a sequential command C, defined by:

C ::= skip |Cp |
[
T
]
|C ; C |C + C |C ∗ Cp ::= x := E |assume (E)

T ::= skip |Tp |T ; T |T + T |T ∗ Tp ::= Cp |x := [E] | [E] := E

Sequential commands (C) comprise skip, primitive commands (Cp), atomic transactions
(
[
T
]
), and standard compound constructs: sequential composition (;), non-deterministic

choice (+) and iteration (∗). Primitive commands include variable assignment (x := E) and
assume statements (assume (E)) which can be used to encode conditionals. They are used for
computations based on client-local variables and can hence be invoked without restriction.
Transactional commands (T) comprises skip, primitive transactional commands (Tp), and
the standard compound constructs. Primitive transactional commands comprise primitive
commands as well as lookup (x := [E]) and mutation ([E] := E) used, respectively, to read
and write a single key to a kv-store, and can only be invoked within an atomic transaction.

A program P is a finite partial function from client identifiers to sequential commands.
For clarity, we often write C1 ‖ . . . ‖ Cn for a program with n clients identified by cl1 . . . cln,
with each client cli executing Ci. Each client cli is associated with a client-local stack,
si ∈ Stack , Var→ Value, mapping program variables (ranged over by x, y, · · ·) to values.

Transactional Semantics In our operational semantics, transactions are executed atomically.
It is still possible for an implementation, e.g. COPS [33], to update the underlying distributed
kv-stores while the transaction is in progress. It just means that, given the abstractions
captured by our global kv-stores and partial client views, such an update is modelled as
an instantaneous atomic update. Intuitively, given a configuration Γ=(K,U), when a client
cl executes a transaction

[
T
]
, it performs the following steps: (1) it constructs an initial

snapshot σ of K using its view U (cl) as described in Definition 4; (2) it executes T in isolation
over σ accumulating the effects (the reads and writes) of executing T; and (3) it commits T
by incorporating these effects into K.
I Definition 5 (Transactional snapshots). A transactional snapshot, σ ∈ Snapshot , Key→
Value, is a function from keys to values.
When clear from the context, we simply refer to a transactional snapshot as a snapshot.

The rules for transactional commands (Figure 3) are defined using an arbitrary transac-
tional snapshot. The rules for sequential commands and programs (Figure 4) are defined
using a transactional snapshot given by a view snapshot. To capture the effects of executing
a transaction T on a snapshot σ of kv-store K, we identify a fingerprint of T on σ which
captures the first values T reads from σ, and the last values T writes to σ and intends to
commit to K. Execution of a transaction in a given configuration and variable stack may
result in more than one fingerprint due to non-determinism (non-deterministic choice).

S. Xiong et al. 21:11

TPrimitive
(s, σ)

Tp (s′, σ′) o = op (s, σ, Tp)
(s, σ,F), Tp (s′, σ′,F <C o), skip

F <C (R, k, v) ,

{
F ∪ {(R, k, v)} if ∀l, v′. (l, k, v′) /∈F
F otherwise

F <C (W, k, v) , (F\{(W, k, v′) | v′ ∈ Value})∪{(W, k, v)}
F <C ε , F

(s, σ) x:=E (s [x 7→ JEKs] , σ) (s, σ) assume(E) (s, σ) where JEKs 6= 0

(s, σ) x:=[E] (s [x 7→ σ (JEKs)] , σ) (s, σ) [E1]:=E2 (s, σ [JE1Ks 7→ JE2Ks])

op (s, σ, x := E) , ε op (s, σ, assume (E)) , ε
op (s, σ, x := [E]) , (R, JEKs, σ (JEKs)) op (s, σ, [E1] := E2) , (W, JE1Ks, JE2Ks)

Figure 3 The semantics of transactional commands
CPrimitive

s
Cp
s′

cl ` (K, u, s), Cp
(cl,ι)−−−→ET (K, u, s′), skip

s x:=E s [x 7→ JEKs]

s
assume(E)

s where JEKs 6= 0

CAtomicTrans
u v u′′ σ = snapshot (K, u′′) (s, σ, ∅), T ∗ (s′,_,F), skip canCommitET (K, u′′,F)

t ∈ NextTxID (cl,K) K′ = UpdateKV (K, u′′,F , t) vShiftET (K, u′′,K′, u′)

cl ` (K, u, s),
[
T
] (cl,u′′,F)−−−−−−→ET (K′, u′, s′), skip

PProg
u = U (cl) s = E (cl) C = P (cl) cl ` (K, u, s), C λ−→ET (K′, u′, s′), C′

` (K,U , E), P λ−→ET (K′,U [cl 7→ u′] , E [cl 7→ s′]), P [cl 7→ C′])
Figure 4 The semantics of sequential commands and programs

I Definition 6 (Fingerprints). Let Op denote the set of read (R) and write (W) operations
defined by Op , {(l, k, v) | l ∈ {R, W} ∧ k ∈ Key ∧ v ∈ Value}. A fingerprint F is a set of
operations, F ⊆ Op, such that: ∀k ∈ Key, l ∈ {R, W} . (l, k, v1), (l, k, v2) ∈ F ⇒ v1 = v2.

A fingerprint contains at most one read operation and at most one write operation for a
given key. This reflects our assumption regarding transactions that satisfy the snapshot
property: reads are taken from a single snapshot of the kv-store; and only the last write of a
transaction to each key is committed to the kv-store.

The rule for primitive transactional commands, TPrimitive, is given in Figure 3. The
rules for the compound constructs are straightforward and given in [46]. The TPrimitive
rule updates the snapshot and the fingerprint of a transaction: the premise (s, σ)

Tp (s′, σ′)
describes how executing Tp affects the local state (the client stack and the snapshot) of
a transaction; and the premise o = op (s, σ, Tp) identifies the operation on the kv-store
associated with Tp, where the empty operation ε is used for those primitive commands that
do not contribute to the fingerprint.

The conclusion of TPrimitive uses the combination operator <C : P(Op)× (Op]{ε})→
P(Op), defined in Figure 3, to extend the fingerprint F accumulated with operation o

associated with Tp, as appropriate: it adds a read from k if F contains no entry for k, and it
always updates the write for k to F , removing previous writes to k.

Command and Program Semantics We give the operational semantics of commands
and programs in Figure 4. The command semantics describes transitions of the form
cl ` (K, u, s), C λ−→ET (K′, u′, s′), C′ stating that, given the kv-store K, client view u and
stack s, a client cl may execute command C for one step, updating the kv-store to K′, the
stack to s′, the view to u′ and the command to its continuation C′. The label λ is either

ECOOP 2020

21:12 Data Consistency in Transactional Storage Systems: A Centralised Semantics

of the form (cl, ι) denoting that cl executed a primitive command that required no access
to K, or (cl, u′′,F) denoting that cl committed an atomic transaction with final fingerprint
F under the view u′′. The semantics is parametric in the choice of the execution test ET,
which is used to generate the consistency model under which a transaction can execute. In
Section 4, we give several examples of execution tests for well-known consistency models. In
[46], we prove that the consistency models generated by our execution tests are equivalent to
their corresponding existing definitions using abstract executions.

The rules for compound constructs are straightforward and given in [46]. The rule for
primitive commands, CPrimitive, depends on the transition system

Cp ⊆ Stack× Stack
which describes how the primitive command Cp affects the stack. The CAtomicTrans rule
describes the execution of an atomic transaction under the execution test ET.

We explain the CAtomicTrans rule in detail. The first premise states that the current
view u of the executing command may be advanced to a newer view u′′ (see Definition 2).
Given the new view u′′, the transaction obtains a snapshot σ of the kv-store K, and executes
T locally to completion (skip), updating the stack to s′, while accumulating the fingerprint F ,
as described by the second and third premises of CAtomicTrans. Note that the resulting
snapshot is ignored as the effect of the transaction is recorded in the fingerprint F . The
canCommitET (K, u′′,F) premise ensures that, under the execution test ET, the final fingerprint
F of the transaction is compatible with the (original) kv-store K and the client view u′′,
and thus the transaction can commit. Observe that the canCommit check is parametric in
the execution test ET. This is because the conditions checked upon committing depend on
the consistency model under which the transaction is to commit. In Section 4, we define
canCommit for several execution tests associated with well-known consistency models.

Client cl is now ready to commit the transaction resulting in the kv-store K′ with the
client view u′′ shifting to a new view u′ and proceeds as follows: (1) it picks a fresh transaction
identifier t ∈ NextTxID (cl,K); (2) computes the new kv-store K′ = UpdateKV(K, u′′,F , t;
and (3) checks if the view shift is permitted under ET using vShiftET (K, u′′,K′, u′). Note
that as with canCommit, the vShift check is parametric in the execution test ET. This
is because the conditions checked for shifting the client view depend on the consistency
model. In Section 4 we define vShift for several execution tests associated with well-known
consistency models. The set NextTxID (cl,K) is given by: {tncl | ∀m. tmcl ∈ K ⇒ m < n}.
The function UpdateKV (K, u,F , t) describes how the fingerprint F of transaction t executed
under view u updates kv-store K: for each read (R, k, v) ∈ F , it adds t to the reader set of
the last version of k in u; for each write (W, k, v), it appends a new version (v, t, ∅) to K (k).
The function UpdateKV is well-formed, because a fingerprint contains at most one write
operation and one read operation for a given key (see [46] for the full details).

I Definition 7 (Transactional update). The function UpdateKV (K, u,F , t) is defined as:

UpdateKV (K, u, ∅, t) , K

UpdateKV (K, u, {(R, k, v)}] F , t) , let i = max<(u (k)) and (v, t′, T) = K (k, i) in
UpdateKV

(
K
[
k 7→ K (k)

[
i 7→ (v, t′, T] {t})

]]
, u,F , t

)
UpdateKV (K, u, {(W, k, v)}] F , t) , let K′ = K [k 7→ K (k) :: (v, t, ∅)] in UpdateKV

(
K′, u,F , t

)
where V [i 7→ ν] , ν0 :: · · · :: νi−1 :: ν :: νi+1 :: · · · :: νn for all version lists V = ν0 :: · · · :: νn and
indexes i : 0 ≤ i ≤ n.

The last rule, PProg (Figure 4), captures the execution of a program step using a client
environment, E ∈ CEnv, which is a function from client identifiers to stacks associating each
client with its stack. We assume that the domain of a client environment contains the domain

S. Xiong et al. 21:13

of the program throughout the execution: dom(P) ⊆ dom(E). Program transitions are simply
defined in terms of the transitions of their constituent client commands. This yields an
interleaving semantics for transactions of different clients: a client executes a transaction in
an atomic step without interference from the other clients.

4 Consistency Models Using Execution Tests on Kv-stores

We define what it means for a kv-store to be in a consistent state. Many different consistency
models for distributed databases have been proposed in the literature, e.g. [3, 6, 8, 21, 32, 33,
38, 42], which capture different trade-offs between performance and application correctness.
Example consistency models range from serialisability, a strong model which only allows kv-
stores obtained from a serial execution of transactions with inevitable performance drawbacks,
to eventual consistency, a weak model which imposes few conditions on the structure of
kv-stores, leading to good performance but anomalous behaviours. We define consistency
models for our kv-stores, by introducing the notion of an execution test, specifying whether a
client is allowed to commit a transaction in a given kv-store. An execution test ET induces a
consistency model as the set of kv-stores obtained by having clients non-deterministically
commit transactions, so long as the constraints imposed by ET are satisfied. We explore a
range of execution tests associated with well-known consistency models in the literature. In
[46], we demonstrate that our operational definitions of consistency models over kv-stores
using execution tests are equivalent to the established declarative definitions of consistency
models over abstract executions [9, 11].
IDefinition 8 (Execution tests). An execution test, ET, is a set of tuples, ET ⊆ KVS×Views×
Fp×KVS×Views, such that for all (K, u,F ,K′, u′)∈ET: (1) u∈Views (K) and u′∈Views (K′);
(2) canCommitET (K, u,F); (3) vShiftET (K, u,K′, u′); and (4) for all k∈K and v∈Value,
if (R, k, v)∈F then K (k,max<(u (k))) =v.

Intuitively, (K, u,F ,K′, u′) ∈ ET means that, under the execution test ET, a client with
initial view u over kv-store K can commit a transaction with fingerprint F to obtain the
resulting kv-store K′ (given by Definition 7) while shifting its view to u′. Note that the last
condition in Definition 8 enforces the last-write-wins policy [45]: a transaction always reads
the most recent writes from the initial view u.
I Definition 9 (Consistency models). The consistency model induced by an execution test
ET is defined as: CM(ET) ,

{
K
∣∣ ∃K0,U0, E , P. (K0,U0, E), P _−→∗ET (K,_,_),_

}
.

The largest execution test is denoted by ET>, where for all K,K′, u, u,F :
canCommitET> (K, u,F) def⇔ true and vShiftET>

(
K, u,K′, u′

) def⇔ true

The consistency model induced by ET> corresponds to the Read Atomic model [4], a
variant of Eventual Consistency [9] for atomic transactions.

We present several examples of execution tests which give rise to consistency models on
kv-stores. Recall that the snapshot property and the last-write-wins policy are hard-wired
in our framework. As such, we can only define consistency models that satisfy these two
constraints. Although this prohibits interesting consistency models such as Read Committed,
we can express a large number of consistency models employed by distributed kv-stores.

Notation Given relations r, r′ ⊆ A× A, we write: r ?, r+ and r∗ for the reflexive, transitive
and reflexive-transitive closures of r, respectively; r−1 for the inverse of r; a1

r−→ a2 for
(a1, a2) ∈ r; and r; r′ for {(a1, a2) | ∃a. (a1, a) ∈ r ∧ (a, a2) ∈ r′}.

Recall that an execution test ET is a tuple (K, u,F ,K′, u′) such that canCommitET (K, u,F)
and vShiftET (K, u,K′, u′) hold (Definition 8). We proceed with several auxiliary definitions
that allow us to define canCommit and vShift for several consistency models.

ECOOP 2020

21:14 Data Consistency in Transactional Storage Systems: A Centralised Semantics

ti

tj

t

WR

WW
RW

Figure 5 An example of dependencies between transactions with respect to the time line of the
starts and commits of these transactions (dashed line being able to stretched)

ET canCommitET (K, u,F) , closed(K, u, RET) vShiftET (K, u,K′, u′)
MR true u v u′

RYW true ∀t ∈ K′ \ K. ∀k, i. (w(K′(k, i)), t) ∈ SO ? ⇒ i∈u′(k)
CC RCC , SO ∪WRK vShiftMR∩RYW (K, u,K′, u′)
UA RUA ,

⋃
(W,k,_)∈FWW−1

K (k) true
PSI RPSI , RUA ∪RCC ∪WWK vShiftMR∩RYW (K, u,K′, u′)
CP RCP , SO; RW?

K ∪WRK; RW?
K ∪WWK vShiftMR∩RYW (K, u,K′, u′)

SI RSI , RUA ∪RCP ∪ (WWK; RWK) vShiftMR∩RYW (K, u,K′, u′)
SER RSER ,WW−1

K true
Figure 6 Execution tests of consistency models defined by canCommit and vShift predicates,

where SO is as given in Section 3.1.

Prefix Closure The set of visible transactions of a kv-store K and a view u is: visTx (K, u) ,
{w (K (k, i)) | i ∈ u (k)}. Given a relation on transactions, R ⊆ TxID × TxID, a view u is
closed with respect to a kv-store K and R, written closed (K, u,R), if and only if:

visTx (K, u) =
(
(R∗)−1 (visTx (K, u))

)
\ {t | ∀k ∈ K, i. t 6= w (K (k, i))}

That is, if transaction t is visible in u (t ∈ visTx (K, u)), then all transactions t′ that are
R∗-before t (t′ ∈ (R∗)−1 (t)) and are not read-only t′ /∈ {t′′ | ∀k, i. t′′ 6= w (K (k, i))} are also
visible in u (t′ ∈ visTx (K, u)).

Dependency Relations We next define transactional dependency relations for kv-stores.
Figure 7a illustrates an example kv-store and its transactional dependency relations. Given
a kv-store K, a key k and indexes i, j such that 0 ≤ i < j < |K (k)|, if there exists ti, Ti, t
such that K (k, i) =(_, ti, Ti), K (k, j) =(_, tj ,_) and t ∈ Ti, then for every key k:
(1) there is a Write-Read dependency from ti to t, written (ti, t) ∈WRK (k), which intuitively

means that ti commits before t starts, as depicted in Figure 5;
(2) there is a Write-Write dependency from ti to tj , written (ti, tj) ∈ WWK (k), which

intuitively means that ti commits before tj commits, as depicted in Figure 5; and
(3) if t6=tj , then there is a Read-Write anti-dependency from t to tj , written (t, tj)∈RWK (k),

which intuitively means that t starts before tj commits, as depicted in Figure 5.
In centralised databases, where there is a global notion of time, these dependency relations
can be determined by the start and commit time of transaction as in Figure 5. However,
in general, there is no global notion of time in distributed databases. In such settings, the
write-read dependency WR is induced when a transaction reads from another transaction; the
write-write dependency WW is given by the last-write-wins resolution policy, ordering the
transactions that write to the same key; and the read-write anti-dependency RW is derived
from WR and WW: if (t, t′) ∈ WR and (t, t′′) ∈ WW, then (t′, t′′) ∈ RW. We adopt the
same names as the dependency relations of dependency graphs [1] to underline the similarity.
However, our relations here do not depend on those relations in dependency graphs.

We give several definitions of execution tests using vShift and canCommit in Figure 6.

S. Xiong et al. 21:15

k1 7→
t0

{t1}

t2

∅
WR

WW

RW

(a) Dependencies of kv-stores

k1 7→ v0
t0{
t2cl
} v1

t1{
t1cl
}

(b) Disallowed by MR

k1 7→ v0
t0{
t1cl, t

2
cl

} v1
t1cl

∅
v1

t2cl

∅

(c) Disallowed by RYW

k 7→ v0
t0

{t, t′}
v1

t

∅
v1

t′

∅

(d) Disallowed by UA

k1 7→ v0
t0

{t}
v1

t1cl

∅
k2 7→ v0

t0

∅
v2

t2cl

{t1cl′}
k3 7→ v0

t0

∅
v3

t2cl′

{t}

(e) Disallowed by CC

k1 7→ v0
t0

∅
v1

t1cl

∅
v2

t1cl′

{t}
k2 7→ v0

t0

{t}
v3

t1cl

∅

(f) Allowed by CC and UA but not PSI

k1 7→ v0
t0{
t2cl2
} v1

t{
t1cl1
} k2 7→ v0

t0{
t2cl1
} v1

t′{
t1cl2
}

(g) Long fork, disallowed by CP

k1 7→ v0
t0

{t4}
v1

t1

∅
v2

t2

∅
k2 7→ v0

t0

{t2}
v3

t3

{t4}
v4

t4

∅

(h) Allowed by UA and CP but not SI

k1 7→ v0
t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅

(i) Write skew, disallowed by SER
Figure 7 Behaviours disallowed under different consistency models. Figure 7a shows the depend-

encies of transactions in kv-stores (values omitted).

Monotonic Reads (MR) This consistency model states that, when committing, a client
cannot lose information in that it can only see increasingly more up-to-date versions from a
kv-store. This prevents, for example, the kv-store of Figure 7b, since client cl first reads the
latest version of k in t1cl, and then reads the older, initial version of k in t2cl. As such, the
vShiftMR predicate in Figure 6 ensures that clients can only extend their views. When this is
the case, clients can always commit their transactions, and thus canCommitMR is simply true.

Read Your Writes (RYW) This consistency model states that a client must always see all the
versions written by the client itself. The vShiftRYW predicate thus states that after executing
a transaction, a client contains all the versions it wrote in its view. This ensures that such
versions will be included in the view of the client when committing future transactions. Note
that under RYW the kv-store in Figure 7c is prohibited as the initial version of k holds value
v0 and client cl tries to update the value of k twice. For its first transaction t1cl, it reads the
initial value v0 and then writes a new version with value v1. For its second transaction t2cl,
it reads the initial value v0 again and writes a new version with value v1. The vShiftRYW

predicate rules out this example by requiring the client view after committing t1cl to include
the version it wrote. When this is the case, clients can always commit their transactions,
and thus canCommitRYW is simply true.

The MR and RYW models, together with the monotonic writes (MW) and write follows reads
(WFR) models, are collectively known as session guarantees. Due to space constraints, the
definitions associated with MW and WFR are given in [46].

We now give the definitions of well-known consistency models in distributed data-
bases, including CC [9, 33, 40], PSI [3, 42], SI [6] and SER [37]. The vShift relation
for these consistency models, given in Figure 6, is simply vShiftMR∩RYW(K, u.K′, u′) =
vShiftMR(K, u.K′, u′) ∩ vShiftRYW(K, u.K′, u′). The canCommitET (K, u,F) relation is defined
by canCommitET (K, u,F) , closed(K, u,RET) where RET is given for each exection test in
Figure 6 as a combination of SO and the dependency relations. We use two less-known
consistency models, update atomic (UA) and consistent prefix (CP). In [7, 10, 11], the definition
of SI on abstract executions can be separated into the conjunction of UA and CP. Similarly,
the definition of PSI on abstract executions can be separated into the conjunction of UA and
CC [11]. Interestingly, this is not quite the case for the consistency definitions presented here.

ECOOP 2020

21:16 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Causal Consistency (CC) This model states that, if a client view includes a version ν

written by t prior to committing a transaction, then it must also include the versions which
t observes. Clearly, t observes all versions that t reads. Moreover, t observes all previous
transactions from the same client. This is captured by canCommitCC in Figure 6, defined as
closed(K, u,RCC) with RCC , SO∪WRK. For example, the kv-store of Figure 7e is disallowed
by CC: the k3 version with value v3 depends on the k1 version with value v1. However, t
must have been committed by a client whose view included v3 of k3, but not v1 of k1.

Update Atomic (UA) This consistency model has been proposed in [11] and implemented
in [32]. UA disallows concurrent transactions writing to the same key, a property known
as write-conflict freedom: when two transactions write to the same key, one must see the
version written by the other. Write-conflict freedom is enforced by canCommitUA which allows
a client to write to key k only if its view includes all versions of k, i.e. its view is closed with
respect to the WW−1 (k) relation for all keys k written in the fingerprint F . This prevents
the kv-store of Figure 7d, as t and t′ concurrently increment the initial version of k by 1. As
client views must include the initial versions, once t commits a new version ν with value v1
to k, then t′ must include ν in its view as there is a WW edge from the initial version to ν.
As such, when t′ increments k, it must read from ν and not the initial version.

Parallel Snapshot Isolation (PSI) This consistency model states that: (1) if a client view
includes a version ν written by t prior to committing a transaction, then it must also include
the versions that t observes; and (2) there are no write-conflicts.

On abstract executions, where there is a total order over transactions, PSI can be formally
defined as the composition of CC and UA [11]. By contrast, it is not possible to define
canCommitPSI as the conjunction of the canCommitCC and canCommitUA relations. This is for
two reasons. First, the conjunction would only mandate that u be closed with respect to
RCC and RUA individually, but not with respect to their union. Recall that closure is defined
in terms of the transitive closure of a given relation and thus the closure of RCC and RUA

is smaller than the closure of RCC ∪ RUA. As such, we define canCommitPSI as closure with
respect to RPSI which includes RCC ∪ RUA. Second, recall that CC requires that if a client
view includes a version ν written by t′ prior to committing a transaction, then it must also
include the versions which t′ observes. For example, the view of the client of transaction t in
Figure 7f must include versions written by t0 and t1cl′ , satisfying canCommitCC. Also, recall
that UA requires that if a transaction writes to a key k then it must observe all previous
versions of k. For example, the client cl′ that writes the third version of k1 in Figure 7f must
observe t1cl, satisfying canCommitUA. However, although the client of transaction t observes
t1cl′ , it is not able to observe t1cl using the combination of CC and UA. This is fixed by including
the the write-write dependency relation WWK (e.g. (t1cl, t1cl′) ∈ WWK) in RPSI. Note that
Figure 7f shows an example kv-store that satisfies canCommitCC and canCommitUA, but not
canCommitPSI. Under PSI, the view of the client of t should include the versions written by
t1cl, and therefore read v3 for key k2.

Consistent Prefix (CP) If the total order in which transactions commit is known, then CP
can be described as a strengthening of CC [14]: if a client sees the versions written by a
transaction t, then it must also see all versions written by transactions that commit before t.
Although kv-stores only provide partial information about the order of transaction commits,
this is sufficient to formalise CP.

We can approximate the order in which transactions commit using WRK,WWK,RWK and
SO. This approximation is perhaps best understood in terms of an idealised implementation
of CP on a centralised system, where the snapshot of a transaction is determined at its

S. Xiong et al. 21:17

start point and its effects are made visible to future transactions at its commit point. In
this implementation, if (t, t′) ∈WR, then t must commit before t′ starts, and hence before
t′ commits. Similarly, if (t, t′) ∈ SO, then t commits before t′ starts, and thus before t′
commits. Recall that, if (t′′, t′) ∈ RW, then t′′ reads a version that is later overwritten by
t′, i.e. t′′ cannot see the write of t′, and thus t′′ must start before t′ commits. As such, if
t commits before t′′ starts ((t, t′′) ∈ WR or (t, t′′) ∈ SO), and (t′′, t′) ∈ RW, then t must
commit before t′ commits. In other words, if (t, t′) ∈ WR; RW or (t, t′) ∈ SO; RW, then t
commits before t′. Finally, if (t, t′) ∈ WW, then t must commit before t′. We therefore
define RCP , (WRK; RW?

K ∪ SO; RW?
K ∪WW), approximating the order in which transactions

commit. As shown in [14], the set (R+
CP)−1(t) contains all transactions that must be observed

by t under CP. We thus define canCommitCP by requiring closure with respect to RCP.
The CP model disallows the long fork anomaly in Figure 7g, where cl1 and cl2 observe

the updates to k1 and k2 in different orders. Assuming without loss of generality that
t2cl1 commits before t2cl2 , then cl2 sees the k1 version with value v0 before committing t2cl2 .
However, as tWRK−−−→t1cl1

SO−→t2cl1
RW−−→t′WR−−→t1cl2 and t2cl2 must see the versions written by t1cl2 before

committing, then t2cl2 must also see the k1 version with value v2, leading to a contradiction.

Snapshot Isolation (SI) On abstract executions, where there is a total order over transac-
tions, SI can be defined as the composition of CP and UA. However, as with PSI, we cannot
define canCommitSI as the conjunction of their associated canCommit predicates. Rather,
we define canCommitSI as closure with respect to RSI which includes RCP ∪ RUA. Observe
that Figure 7h shows an example kv-store that satisfies canCommitUA and canCommitCP, but
not canCommitSI. Additionally, we include WW; RW in RSI. This is because, when the
centralised CP implementation (discussed before) is strengthened with write-conflict freedom,
then a write-write dependency between transactions t and t′ does not only mandate that t
commit before t′ commits, but also before t′ starts. Consequently, if (t, t′) ∈WW; RW, then
t must commit before t′ does.

(Strict) serialisability (SER) Serialisability is the strongest consistency model in settings
that abstract from aborted transactions, requiring that transactions execute in a total
sequential order. The canCommitSER thus allows clients to commit transactions only when
their view of the kv-store is complete, i.e. the client view is closed with respect to WW−1.
This requirement prevents the kv-store in Figure 7i: if, without loss of generality, t1 commits
before t2, then the client committing t2 must see the k1 version written by t1, and thus
cannot read the outdated value v0 for k1.

Weak Snapshot Isolation (WSI): A New Consistency Model Kv-stores and execution
tests are useful for investigating new consistency models. One example is the consistency
model induced by combining CP and UA, which we refer to as Weak Snapshot Isolation (WSI).
Because WSI is stronger than CP and UA by definition, it forbids all the anomalies forbidden
by these consistency models, e.g. the long fork (Figure 7g) and the lost update (Figure 7d).
Moreover, WSI is strictly weaker than SI. As such, WSI allows all SI anomalies, e.g. the
write skew (Figure 7i), and further allows behaviours not allowed under SI such as that
in Figure 7h. The kv-store K is reachable by executing transactions t1, t2, t3 and t4 in
order. In particular, t4 is executed using u={k1 7→ {0}, k2 7→ {0, 1}}. However, K is not
reachable under ETSI. This is because t4 cannot be executed using u under SI: t4 reads the
k2 version written by t3; but as (t2, t3) ∈ RW and (t1, t2) ∈WW, then u should contain the
k1 version written by t1, contradicting the fact that t4 reads the initial version of k1. The
two consistency models are very similar in that many applications that are correct under SI
are also correct under WSI. We give examples of such applications in Section 5.2.

ECOOP 2020

21:18 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Correctness of ET Our definitions of consistency models over kv-stores and client views
are equivalent to well-known definitions of consistency models over abstract executions [11],
and hence over dependency graphs [14]. Given a model M in Figure 6, let CM(ETM) denote
the consistency model induced by execution test ETM of M . For example, when M = CC,
then CM(ETCC) denotes the consistency model induced by execution test ETCC of CC. Also, let
CM(AM) denote the consistency model of M defined on abstract excutions, induced by the
set of axioms AM [11]. For example, when M = CC, then CM(ACC) denotes the consistency
mode of CC induced by the CC axioms on abstract executions.

I Theorem 10. For all consistency models M in Figure 6, CM(ETM) = CM(AM).

The full proof is given in [46], where we define an intermediate operational semantics
on abstract executions parametrised by axioms, and each step corresponds to an atomic
transaction. This is in contrast to [35] which defines a more fine-grained operational semantics.

5 Applications

We use our operational semantics to verify distributed protocols (Section 5.1) and prove
invariants of transactional libraries (Section 5.2).

5.1 Application: Verifying Database Protocols
Kv-stores and client views faithfully abstract the state of geo-replicated and partitioned data-
bases, and execution tests provide a powerful abstraction of the synchronisation mechanisms
enforced by these databases when committing a transaction. This makes it possible to use
our semantics to verify the correctness of distributed database protocols. We demonstrate
this by showing that the replicated database, COPS [33], satisfies CC. We refer the reader to
[46] for the full details. In [46], we also apply the same method to verify that Clock-SI [21],
a partitioned database, satisfiesSI.

COPS Protocol COPS is a fully replicated database, with each replica storing multiple
versions of each key as shown in Figure 8a. Each COPS version ν such as (k1, v1, (t1, r1), ∅)
in Figure 8a, contains a key (k1), a value (v1), a unique time-stamp (t1, r1) denoting when a
client first wrote the version to the replica, and a set of dependencies (∅), written deps (ν).
The time-stamp associated with a version ν has the form (t, r), where r identifies the replica
that committed ν, and t denotes the local time when r committed ν. Each dependency in
deps (ν) comprises a key and the time-stamp of the versions on which ν directly depends. We
define the DEP relation, (t, r) DEP−−−→(t′, r′), to denote that the version with time-stamp (t, r)
is included in the dependency set of the version with time-stamp (t′, r′). COPS assumes a
total order over replica identifiers. As such, versions can be totally ordered lexicographically.

The COPS API provides two operations: (1) put (k, v) for writing to a single key k;
and (2) read (K) for atomically reading from a set of keys K. Operations from a client are
processed by a single replica. Each client maintains a context, which is a set of dependencies
tracking the versions the client observes.

We demonstrate how a COPS client cl interacts with a replica through the following
example: Pcops , cl : put (k1, v1) ; read ([k1, k2]). For brevity, we assume that there are two
keys, k1 and k2, and two replicas, r1 and r2, where r1 < r2 (Figure 8a). Initially, client cl
connects to replica r1 and initialises its local context as ctx=∅. To execute its first single-write
transaction, cl requests to write v1 to k1 by sending the message (k1, v1, ctx) to its associated
replica r1 and awaits a reply. Upon receiving the message, r1 produces a monotonically

S. Xiong et al. 21:19

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅)

r1
(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v
′
1, (t1, r2), ∅) (k2, v

′
2, (t2, r2), {(k1, t1, r2)})

r2

(a) Client cl1 commits a new version of k1 with value v1 to replica r1; other clients commit versions to r2.
The new versions in r1 and r2 have not yet been synchronised.

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅) (k1, v
′
1, (t1, r2), ∅)

(k2, v
′
2, (t2, r2), {(k1, t1, r2)})

r1

(b) Replica r1 optimistically reads the newest versions for
k1, k2, one by one, during which time it receives synchron-
isation messages from r2.

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅) (k1, v
′
1, (t1, r2), ∅)

(k2, v
′
2, (t2, r2), {(k1, t1, r2)})

r1

(c) Replica r1 re-fetches a causally consist-
ent snapshot for k1, k2 using the dependency
sets.

Figure 8 COPS protocol

increasing local time t1, and uses it to install a new version ν=(k1, v1, (t1, r1), ctx), as shown
in Figure 8a. Note that the dependency set of ν is the cl context (ctx=∅). Replica r1 then
sends the time-stamp (t1, r1) back to cl1, and cl1 in turn incorporates (k1, t1, r1) in its local
context, i.e. cl observes its own write. Finally, r1 propagates the written version to other
replicas asynchronously by sending a synchronisation message using causal delivery: when
a replica r′ receives a version ν′ from another replica r, it waits for all ν′ dependencies to
arrive at r′, and then accepts ν′. As such, the set of versions contained in each replica is
closed with respect to the DEP relation. In the example above, when other replicas receive ν
from r1, they can immediately accept ν as deps (ν) =∅. Note that replicas may accept new
versions from different clients in parallel.

To execute its second multi-read transaction, client cl requests to read from the k1, k2
keys by sending the message {k1, k2} to replica r1 and awaits a reply. Upon receiving
this message, r1 builds a DEP-closed snapshot (a mapping from {k1, k2} to values) in
two phases as follows. First, r1 optimistically reads the most recent versions for k1 and
k2, one at a time. This process may be interleaved with other writes and synchron-
isation messages. For instance, Figure 8b depicts a scenario where r1: (1) first reads
(k1, v1, (t1, r1), ∅) for k1 (highlighted); (2) then receives two synchronisation messages from r2,
containing versions (k1, v

′
1, (t1, r2), ∅) and (k2, v

′
2, (t2, r2), {(k1, t1, r2)}); and (3) finally reads

(k2, v
′
2, (t2, r2), {(k1, t1, r2)}) for k2 (highlighted). As such, the current snapshot for {k1, k2}

are not DEP-closed: (k2, v
′
2, (t2, r2), {(k1, t1, r2)}) depends on a k1 version with time-stamp

(t1, r2) which is bigger than (t1, r1) for k1. To remedy this, after the first phase of optimistic
reads, r1 combines (unions) all dependency sets of the versions from the first phase as a
re-fetch set, and uses it to re-fetch the most recent version of each key with the biggest
time-stamp from the union of the re-fetch set and the versions from the first phase. For
instance, in Figure 8c, replica r1 re-fetches the newer version (k1, v

′
1, (t1, r2), ∅) for k1. Finally,

the snapshot obtained after the second phase is sent to the client, where it is added to the
client context. For their specific setting, Lloyd et al. [33] informally argue that the snapshot
sent to the client is causally consistent. By contrast, in what follows we verify the COPS
protocol with our general definition of CC.

COPS Verification We define an operational semantics for the COPS protocol, which uses
fine-grained single reads and writes of a key. Using our semantics, we then show that COPS
traces can be refined to traces in our semantics using ETCC in three steps: (1) every COPS
trace can be transferred to an equivalent normalised COPS trace, in which multiple reads of
a transaction are not interleaved by other transactions; and (2) the normalised COPS trace
can be refined to a trace in our semantics, in which (3) each step satisfies ETCC.

The COPS operational semantics describes transitions over abstract states Θ comprising

ECOOP 2020

21:20 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Θ0
cl,r1:(W,k1,(t1,r1))−−−−−−−−−−−−→ Θ1

cl,r1:s−−−−→ Θ2
cl,r1:(R,k1,(t1,r1))−−−−−−−−−−−−→ Θ3

r1:sync−−−−→ Θ4
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→

Θ5
cl,r1:p−−−−→ Θ6

ι−→ Θ7
cl,r1:(R,k1,(t1,r2))−−−−−−−−−−−−→ Θ8

ι′−→ Θ9
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→ Θ10

cl,r1:e−−−−→ · · ·
(a) The COPS trace that produces Figures 8b and 8c

Θ′5
ι−→ Θ′6

ι′−→ Θ′7
cl,r1:p−−−−→ Θ′8

cl,r1:(R,k1,(t1,r2))−−−−−−−−−−−−→ Θ′9
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→ Θ′10

cl,r1:e−−−−→ · · ·
(b) The normalised COPS trace

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
v′1

(t1, r2)

_
k2 7→ v0

(t0, r0)

_
v′2

(t2, r2)

_

cl, u : {k1 7→ {0, 1, 2}, k2 7→ {0, 1}},
F :
{(

R, k1, v
′
1

)
,
(

R, k2, v
′
2

)}
−−−−−−−−−−−−−−−−−−−−−−→

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
v′1

(t1, r2)

_ ∪ {trd}
k2 7→ v0

(t0, r0)

_
v′2

(t2, r2)

_ ∪ {trd}

(c) The step encoding the multi-read transaction depicted above: the kv-store before update encodes
Figure 8a, and the views (highlighted) encoding of the client contexts before and after the update

Figure 9 COPS traces and trace refinement

a set of replicas, a set of client contexts and a program. For instance, the COPS trace that
produces Figures 8b and 8c is depicted in Figure 9a, stating that given client cl and replica
r1, (1) cl writes version (W, k1, (t1, r1)) to r1; (2) cl starts a multi-read transaction (s); (3) cl
reads (R, k1, (t1, r1)) from r1; (4) r1 receives synchronisation messages (sync); (5) cl reads
(R, k2, (t2, r2)) from r1; (6) cl enters the second re-fetch phase of the multi-read transaction
(p); (7) an arbitrary step ι interferes; (8) cl re-fetches version (R, k1, (t1, r2)) from r2 and puts
it in the snapshot; (9) an arbitrary step ι′ interferes; (10) cl puts the version (R, k2, (t2, r2))
in the snapshot; and (11) cl reads the values in the snapshot and commits the transaction
(e).

Recall that a multi-read transaction does not execute atomically in the replica, as captured
by multiple read transitions in the trace. For example, steps ι and ι′ in Figure 9a interleave
the multi-read transaction of cl. Note that the optimistic reads are not observable by the
client and thus it suffices to show that the reads from the second re-fetch phase are atomic.
To show this, we normalise the trace as follows. For each multi-read transaction, we move
the reads in the re-fetch phase to the right towards the return step e, so that they are no
longer interleaved by others. An example of a normalised trace is given in Figure 9b. In each
multi-read transaction, the re-fetch phase can only read a version committed before the p
step. For example, in Figure 9a (top) the multi-read transaction of cl can only read versions
in Θ5 and before. As such, normalising does not alter the returned versions of transactions.
After normalisation, transactions in the resulting trace appear to execute atomically.

We next show that a normalised COPS trace can be refined to a trace in our operational
semantics. To do this, we encode an abstract COPS state Θ as a configuration in our
semantics (Figure 9c). We map all the COPS replicas to a single kv-store. The writer of
a version in the kv-store is uniquely determined by the time-stamp of the corresponding
COPS version, while the reader set is given by creating new transaction identifiers for the
read-only transactions such as the identifier trd in Figure 9c. For example, the COPS state in
Figure 8a can be encoded as the kv-store depicted in Figure 9c. Since the context of a client
cl identifies the set of COPS versions that cl sees, we can project COPS client contexts to
our client views over kv-stores. For example, the contexts of cl before and after committing
its second multi-read transaction in PCOPS is encoded as the client views depicted in Figure 9c.

We finally show that every step in the kv-store trace satisfies ETCC. Note that existing

S. Xiong et al. 21:21

verification techniques [11, 16] require examining the entire sequence of operations of a
protocol to show that it implements a consistency model. By contrast, we only need to look
at how the state evolves after a single transaction is executed. In particular, we check the
client views over the kv-store. Intuitively, we observe that when a COPS client cl executes a
transaction then: (1) the cl context grows, and thus we obtain a more up-to-date view of the
associated kv-store, i.e. vShiftMR holds; (2) the cl context always includes the time-stamp of
the versions written by itself, and thus the corresponding client view always includes the
versions cl has written, i.e. vShiftRYW holds and (3) the cl context is always closed to the
relation DEP, which contains the relation SO ∪WRK, i.e. closed (K, u,RCC) holds. We have
thus demonstrated that COPS satisfies CC (see [46] for the full details).

5.2 Application: Invariant Properties of Transactional Libraries
With our operational semantics, we are able to prove invariant properties of kv-stores, such
as: the robustness of the single counter library against PSI; the robustness of a multi-counter
library (Section 2) and the well-known banking library [2] against SI; and the correctness of
a lock library against UA and hence PSI, even though the lock library is not robust for these
consistency models. The robustness of the multi-counter and banking library follow from a
general proof of the robustness of the so-called WSI-safe libraries against WSI, and hence SI.
Our robustness results are the first to be proved for client sessions, in contrast with static
analysis techniques for checking robustness [7, 12, 14, 35] that did not support client sessions.

Single-counter Library: Robustness A transactional library is a set of transactional opera-
tions, e.g. the counter library, Counter (k) , {Inc (k), Read (k)}, given in Section 2. Client
programs of the transactional library can access the underlying kv-store using only the
operations of the library. A transactional library is robust against an execution test ET if, for
all client programs P of the library, the kv-stores K obtained under ET can also be obtained
under SER, i.e. given initial kv-store K0, initial view environment U0 and an arbitrary client
environment E , for any reachable kv-store K such that (K0,U0, E) , P _−→∗ET (K,_,_) ,_, then
K∈CM(SER). Our robustness results use the following theorem (Theorem 11) that a kv-stores
obtained under a trace satisfies serialisability if and only if it contains no cycles.

I Theorem 11. A kv-store K∈CM(SER) iff (SO∪WRK∪WWK∪RWK)+ ∩ Id = ∅.

I Theorem 12. The single counter library, Counter (k) , {Inc (k), Read (k)} given in
Section 2, is robust against PSI.

Proof (sketch). In the single-counter library, Counter (k), a client reads from k by calling
Read (k), and writes to k by calling Inc (k) which first reads the value of k and subsequently
increments it by one. As PSI enforces write-conflict freedom (UA), we know that if a
transaction t updates k (via Inc (k)) and writes version ν to k, then it must have read the
version of k immediately preceding ν: ∀t, i > 0. t=w(K (k, i))⇒ t ∈ rs(K (k, i−1)). Moreover,
as PSI enforces monotonic reads (MR), the order in which clients observe the versions of k (via
Read (k)) is consistent with the order of versions in K (k). As such, the invariant illustrated
below always holds (i.e. the kv-store is always has the depicted shape), where {ti}ni=1 and⋃n
i=0 Ti denote disjoint sets of transactions calling Inc (k) and Read (k), respectively:

(0, t0, T0 ∪ {t1}) :: (1, t1, T1 ∪ {t2}) :: · · ·
:: (n−1, tn−1, Tn−1 ∪ {tn}) :: (n, tn, Tn)

k 7→ 0
t0

T0] {t1}
1

t1

T1] {t2}
· · ·
· · ·

· · ·
n− 1

tn−1

Tn−1] {tn}
n

tn

Tn

ECOOP 2020

21:22 Data Consistency in Transactional Storage Systems: A Centralised Semantics

We define the 99K relation depicted above by extending the relation R , SO ∪ {(t, t′) |
∃i. (t=ti ∧ (t′=ti+1 ∨ t′∈ Ti)) ∨ (t ∈ Ti ∧ t′=ti+1)} to a strict total order (i.e. a total, irre-
flexive and transitive relation). Note that 99K contains SO ∪ WRK ∪ WWK ∪ RWK and
thus (SO ∪WRK ∪WWK ∪ RWK)+ is irreflexive, i.e. Counter (k) is robust against PSI. By
contrast, a multi-counter library on a set of keys K, Counters(K) ,

⋃
k∈K Counter (k), is

not robust against PSI. Recall from Section 2 that unlike in SER and SI, clients of the
multi-counter library under PSI can observe the increments on different keys in different
orders (see Figure 7g). Hence, the multi-counter library is not robust against PSI. J

WSI-safe Libraries: Robustness Our next task is to show that the multi-counter library
and the banking library from [2] are robust against SI. We do this by defining the notion
of WSI-safe transactional libraries, and proving a general robustness result for such libraries
against WSI, and thus SI. The proof of this general result uses the following two acyclic
properties of kv-stores, where ET> is the most permissive execution test (Definition 9).

I Theorem 13. Any kv-store K ∈ CM(ET>) satisfies (SO∪WRK)+ ∩ Id = ∅.

Proof (sketch). From the definition of CM (Definition 9) we know a kv-store K ∈ CM(ET>)
must be reachable with a given program. This means that Theorem 13 can be seen as an
invariant property. We prove it by induction on the length of a trace. For the base case, the
initial kv-store K0 trivially contains no cycles. For the inductive case, since local computation
steps do not rely on the kv-store, let us focus on the case where the last transaction step
has the form: (K,U , E) , P (cl,u,F)−−−−−→ET (K′,U ′, E ′) , P′, where K contains no R , (SO∪WRK)
cycles by the inductive hypothesis. Let t be the new transaction in K′. We then proceed by
contradiction and assume that K′ has a R cycle. As K contains no R cycles, this cycle must
involve t, i.e. t R−→ t1

R−→ · · · R−→ tn
R−→ t, where t1, · · · , tn are distinct. As t is the last

transaction and t /∈ K, we cannot have t SO−−→ t1. Similarly, all versions written by t have
empty reader sets, and . thus we cannot have t WRK′−−−−→ t1. This then leads to a contradiction
as t SO∪WRK′−−−−−−→ t1. Therefore, the new kv-store K′ satisfies (SO∪WRK′)+ ∩ Id = ∅. J

I Theorem 14. Any kv-store K ∈ CM(ETCP) satisfies ((SO∪WRK); RW?
K)+ ∩ Id = ∅.

Proof (sketch). We proceed as in the proof of Theorem 13. For the inductive case, consider
(K,U , E) , P (cl,u,F)−−−−−→ET (K′,U ′, E ′) , P′, where K contains no R , ((SO∪WRK); RW?

K) cycles
by the inductive hypothesis. Let us then assume K′ has a R cycle which must include the
new transaction t. There are then two cases as follows where t1, · · · , tn are distinct:
(1) t R−→ t1

R−→ · · · R−→ tn
R−→ t

This cycle cannot exist as t is the last transaction in K′. More concretely, as in Theorem 13
we know we cannot have t SO−−→ t1 or t WRK′−−−−→ t1. For analogous reasons, we cannot have
t

SO−−→ t′
RWK′−−−−→ t1 or t WRK′−−−−→ t′

RWK′−−−−→ t1, for some transaction t′ ∈ K.
(2) t1

R−→ · · · R−→ tn
(SO∪WRK′)−−−−−−−→ t

RWK′−−−−→ t1
From ETCP the view u of t must contains all versions written by t1, · · · , tn. As such, we
cannot have t RWK′−−−−→ t1 as by RWK′ we know u is behind the versions written by t1.

Specific libraries [2, 5, 7] have been shown to be robust against SI by individually checking
all final results of all their client programs. By contrast, we identify the notion of a WSI-safe
library and prove that such a library is robust against WSI, and hence SI, by showing that
the acyclic invariant given in Theorem 11 is preserved by each transition step.

S. Xiong et al. 21:23

k 7→ · · ·
· · ·

· · ·
_

t

T
· · ·
· · ·

· · ·
_

t′

T ′] {t′′}
_

t′′

_

(a) t
WR∗
−−−→ t′′ replaces t

WW−−→ t′′

k1 7→ · · ·
· · ·

· · ·
_

_

T ∪ {t}
· · ·
· · ·

· · ·
_

t′

_
k2 7→ · · ·

· · ·

· · ·
_

t

_
· · ·
· · ·

· · ·

(b) t
WW−−→ t′ replaces t

RW−−→ t′ where t has a write
Figure 10 WSI-safety

I Definition 15 (WSI-safe). A library is WSI-safe if and only if, for all its client programs P
and all kv-stores K, if K is obtained by executing P under WSI7, then for all t, k, i, i′:

t ∈ rs (K (k, i)) ∧ t 6= w (K (k, i′))⇒ ∀k′, j. t 6= w (K (k′, j)) , (1)
t 6= t0 ∧ t = w (K (k, i))⇒ ∃j. t ∈ rs (K (k, j)) , (2)
t 6= t0 ∧ t = w (K (k, i)) ∧ ∃k′, j, j′. t ∈ rs (K (k′, j))⇒ t = w (K (k′, j′)) . (3)

That is, (1) if a transaction t reads from k but does not write to it, then t must be a
read-only transaction; (2) if t writes to k, then it must also read from it, a property known
as no-blind writes8; and (3) if t writes to k, then it must also write to all keys it reads from.
The read-only transactions, satisfying (1), can be reordered to be next to the write that they
are reading. Their behaviour is, thus, serialisable in that the write they are reading is current.
Under WSI and SI, transactions satisfying strict no-blind writes (i.e. (2) and (3)) enforce a
total order over transactions on a key, which is enough to obtain serialisable behaviour.

It is straightforward to see that the multi-counter library given in Section 2 is WSI-safe;
we will show that the banking example in [2] is WSI-safe. The example in [7] is WSI-safe.
In [5], there are many examples of libraries that are shown to be robust against SI: the
smaller examples are WSI-safe; the larger examples have not been checked.

I Theorem 16 (WSI robustness). A WSI-safe library is robust against WSI.

Proof (sketch). Pick a WSI-safe library L, a client program P of L and a kv-store K obtained
from executing P under WSI, i.e. (K0,U0, E) , P _−→∗ETWSI

(K,_,_) ,_. From Theorem 11 it
suffices to prove that (SO ∪WRK ∪WWK ∪ RWK)+ is acyclic. We proceed by contradiction.
Let us assume there exists t1 such that t1

(SO∪WRK∪WWK∪RWK)+

−−−−−−−−−−−−−−−−→ t1. From Theorem 13 we
know (SO ∪ WRK)+ is acyclic. Moreover, thanks to no-blind-writes in (2) and UA, any
WWK (k) edge on a key k can be replaced by WR+

K(k)), as illustrated in Figure 10a. As
such, (SO ∪WRK)+ ∪WWK is acyclic and thus this cycle is of the form: t1

R∗−→RW−→R∗−→ · · · R
∗

−→
RW−→R∗−→ t1, where R , SO ∪ WR ∪ WW. From (3) we know an RWK (k1) edge on a key
k1 starting from a writing transaction t can be replaced by a WW edge, as illustrated in
Figure 10b. Moreover, from (2) we know we can replace WW edges by WR+. We thus have:

t1
R′∗−→RW−→R′+−→ · · · R

′+

−→RW−→R′∗−→ t1, where R′ , SO ∪WR, i.e. t1
(R′;RW?)∗−−−−−−−→ t1. This, however,

leads to a contradiction by Theorem 14.

Using Theorem 16, we can prove the robustness of the banking library in [2] against
WSI, and hence SI. Alomari et al. [2] informally showed that this example is robust: they
identified a notion of dangerous dependency between transactions which, they argued, can
lead to violation of robustness of SI; and they argued that this banking example contains
no such dangerous dependencies. The original banking example worked with a relational

7 That is, for initial kv-store K0, initial view environment U0 and arbitrary client environment E ,
(K0,U0, E) , P _−→∗ETWSI (K,_,_) ,_).

8 From UA, it is immediate that j = i− 1.

ECOOP 2020

21:24 Data Consistency in Transactional Storage Systems: A Centralised Semantics

database with three tables account, saving and checking. The account table maps customer
names to customer IDs (Account(Name, CID)); the saving table maps customer IDs to their
saving balances (Saving(CID, Balance)); and the checking table maps customer IDs to their
checking balances (Checking(CID, Balance)). The balance of a saving account must be
non-negative, but a checking account may have a negative balance.

For simplicity, we encode the saving and checking tables as a single kv-store, and omit
the account table as it is an immutable lookup table. We model a customer ID as an integer
n ∈ N, and assume that the balances are integer values. We then define the key associated
with customer n in the checking table as nc , 2n, and define the key associated with n in the
saving table as ns , 2n+1, i.e. Key ,

⋃
n∈N {nc, ns}. Moreover, if n identifies a customer

with (_, n)∈Account(Name, CID), then (n, val (K (ns, |K (ns)| −1)))∈Saving(CID, Balance)
and (n, val (K (nc, |K (nc)| −1))) ∈ Checking(CID, Balance).

The banking library provides five transactional operations:

balance(n) , [x := [nc] ; y := [ns] ; ret := x + y]
depositCheck(n, v) , [if (v ≥ 0){x := [nc] ; [nc] := x + v }]

transactSaving(n, v) , [x := [ns] ; if (v + x ≥ 0){ [ns] := x + v }]

amalgamate(n, n′) ,
[
x := [ns] ; y := [nc] ; z := [n′c] ;
[ns] := 0; [nc] := 0; [n′c] := x + y + z

]

writeCheck(n, v) ,

x := [ns] ; y := [nc] ;
if(v > 0 && x + y < v){ [nc] := y− v− 1 }
else{ [nc] := y− v } [ns] := x

The balance(n) operation returns the total balance of customer n in ret. The depositCheck
(n, v) deposits v to the checking account of customer n when v is non-negative, otherwise it
leaves the checking account unchanged. When v ≥ 0, transactSaving(n, v) deposits v to
the saving account of n. When v < 0, transactSaving(n, v) withdraws v from the saving
account of n only if the resulting balance is non-negative, otherwise the saving account
remains unchanged. The amalgamate(n, n′) operation moves the combined checking and
saving balance of costumer n to the checking account of customer n′. Lastly, writeCheck(n, v)
cashes a cheque of customer n in the amount v by deducting v from its checking account. If
n does not hold sufficient funds (i.e. the combined checking and saving balance is less than
v), customer n is penalised by deducting one additional pound. In [2], the authors argue that
to make this library robust against SI, the writeCheck(n, v) operation must be strengthened
by writing back the saving account balance (via [ns] := x), even though this is unchanged.

The banking library is more complex than the multi-counter library. Nevertheless, all
banking transactions are either read-only or satisfy the no-blind writes property. Hence, the
banking library is WSI-safe, and so robust against WSI and SI.

Lock Library: Mutual-exclusion Guarantee Finally, we demonstrate that, although a
distributed lock library is not robust against UA, we can nevertheless prove an invariant
property stating that only one client can hold the lock at a given time, thus establishing a
mutual exclusion guarantee. The distributed lock library provides the following operations
on a key k:

tryLock (k) , [x := [k] ; if (x=0){ [k] := ClientID; m := true }else{ m := false }]
lock (k) , do{ tryLock (k) }until(m=false) unlock (k) , [[k] := 0]

The tryLock operation reads the k value; if the value is zero (i.e. the lock is available), then
it sets it to the client ID and returns true; otherwise it leaves it unchanged and returns

S. Xiong et al. 21:25

false. The lock operation calls tryLock until it successfully acquires the lock. The unlock
operation simply set the k value to zero.

Consider the program PLK where clients cl and cl′ compete to acquire the lock k:

PLK , (cl : (lock (k) ; ...; unlock (k))∗ ‖ cl′ : (lock (k) ; ...; unlock (k))∗)

The locking program in PLK is correct, in that only one client can hold the lock at a time,
when executed under serialisability. Since all the operations are trivially WSI-safe, PLK is
robust and hence correct under WSI as well as stronger models such as SI. However, PLK

is not robust under UA or PSI: lock may read an old value of key k until it reads its most
up-to-date value and acquires it. Nevertheless, we show that PLK is correct under UA (and
hence PSI) in that it satisfies a mutual exclusion guarantee where only one client can hold
the lock at a time. We capture this guarantee by the following invariant, stating that for all
positive i (i > 0):

val(K (k, i)) 6= 0⇔ val(K (k, i− 1)) = 0 (4)
val(K (k, i)) = 0⇒ w(K (k, i)) = w(K (k, i− 1)) (5)

It is straightforward to show that, under UA, only one client can hold the lock (4), and the
same client releases the lock (5). Assume a kv-store K satisfies this invariant. Given the lock
program in PLK, if the latest value of k is 0, then all clients are competing to acquire k, and
thanks to UA only a client cl with full view of k can install a new version with its unique
client ID. This will stop other clients from acquiring k as the latest value is now non-zero.
Subsequently, when cl executes its next transaction, i.e. unlock (k), it releases the lock and
installs a new version with value zero.

Invariants vs. Execution Graphs We have demonstrated how invariant properties of
transactional libraries can be used to prove their robustness, as well as library-specific
guarantees such as mutual exclusion. Although existing work can establish the robustness of
a library using execution graphs (e.g. dependency graphs of [1]), they typically do this by
checking the final results of all its client programs. By contrast, thanks to our operational
model, we achieve this by establishing an invariant property at each execution step, thus
allowing a simpler, more compositional proof. Moreover, whilst it is straightforward for us to
prove library-specific guarantees (e.g. mutual exclusion for locks) by simply encoding them
as an invariant of the library, establishing such properties using execution graphs is much
more difficult. This is because execution graphs do not directly record the library state and
merely record the execution shape, thus making it harder to reason about such guarantees.

6 Conclusions and Future Work

We have introduced an interleaving operational semantics for describing the client-observable
behaviour of atomic transactions over distributed kv-stores, using abstract states comprising
global, centralised kv-stores, partial client views, and transition steps parametrised by an
execution test which directly captures when a transaction is able to commit on a state.
Using these execution tests, we provide a general definition of consistency model and provide
example instantiations including CC, PSI, SI and SER. In [46], we prove that our definitions
are equivalent to the existing definitions in the literature that use execution graphs [11].

We have used our semantics to verify that protocols of real-world distributed databases
satisfy particular consistency models, e.g. that the replicated database COPS [33] satisfies
CC, and the partitioned database Clock-SI [21] satisfies SI. These results contrast with

ECOOP 2020

21:26 Data Consistency in Transactional Storage Systems: A Centralised Semantics

those of [21, 33], which justify the correctness of implementations using consistency model
definitions that are specific to the implementations. We have also proved several invariant
properties for clients, showing that the clients of several libraries (single-counter, multi-
counter and banking libraries) are robust against the appropriate models, and showing that
certain clients of a lock library satisfy a mutual exclusion property under PSI, even though
they are not robust against PSI. We thus believe that our semantics provides an interesting
abstract interface between distributed implementations and clients. We plan to validate
further the usefulness of our semantics by verifying other well-known protocols of distributed
databases [4, 30, 34, 43], exploring robustness results for OLTP workloads such as TPC-C
[44] and RUBiS [39], and exploring other program analysis techniques such as transaction
chopping [13, 41], invariant checking [24, 47] and program logics [27]. We also plan to develop
tools to generate litmus tests for implementations and to analyse client programs.

Our work assumes the snapshot property and the last-write-wins policy, common assump-
tions in real-world distributed databases. Under these assumptions, we are not aware of
a consistency model that we cannot express using our semantics. There are consistency
models that do not satisfy these assumptions, e.g. read committed [4] captured in [16]. In
future, we will explore whether it is possible to weaken our assumptions to express such weak
consistency models. This might be possible by introducing ‘promises’ in the style of [28].

There are many resonances between the high-level behaviour of distributed systems and
the low-level behaviour of weak memory. Indeed, our partial client views were inspired by
the views of the ‘promising’ C11 semantics in [28]. In future, we plan to explore whether our
semantics of atomic transactions can be loosened to describe the more fine-grained behaviour
of transactions on weak memory [38, 15]. We are also interested in the work of Doherty
et al. [20], describing an operational semantics and a program logic for the release-acquire
(RA) fragment of C11, which, interestingly, is based on dependency graphs. We believe that
we can adapt our semantics to model the RA fragment, using simple read-write primitives
rather than atomic transactions and a variant of our definition of causal consistency.

References
1 Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for

Distributed Transactions. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1999. URL: http://pmg.csail.mit.edu/papers/adya-phd.pdf.

2 M. Alomari, M. Cahill, A. Fekete, and U. Rohm. The cost of serializability on platforms that
use snapshot isolation. In 2008 IEEE 24th International Conference on Data Engineering,
pages 576–585, April 2008. doi:10.1109/ICDE.2008.4497466.

3 Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-monotonic snapshot isolation:
Scalable and strong consistency for geo-replicated transactional systems. In Proceedings of the
2013 IEEE 32nd International Symposium on Reliable Distributed Systems, SRDS ’13, page
163–172, USA, 2013. IEEE Computer Society. doi:10.1109/SRDS.2013.25.

4 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with ramp transactions. ACM Trans. Database Syst., 41(3), July 2016.
doi:10.1145/2909870.

5 Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. Checking robustness against
snapshot isolation. CoRR, abs/1905.08406, 2019. URL: http://arxiv.org/abs/1905.08406,
arXiv:1905.08406.

6 Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A
Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD’95, pages 1–10. ACM, 1995. doi:10.1145/
223784.223785.

http://pmg.csail.mit.edu/papers/adya-phd.pdf
https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1109/SRDS.2013.25
https://doi.org/10.1145/2909870
http://arxiv.org/abs/1905.08406
http://arxiv.org/abs/1905.08406
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785

S. Xiong et al. 21:27

7 Giovanni Bernardi and Alexey Gotsman. Robustness against Consistency Models with Atomic
Visibility. In Proceedings of the 27th International Conference on Concurrency Theory, pages
7:1–7:15, 2016. doi:10.4230/LIPIcs.CONCUR.2016.7.

8 Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, and
Norman May. Distributed Snapshot Isolation: Global Transactions Pay Globally, Local
Transactions Pay Locally. The VLDB Journal, 23(6):987–1011, December 2014. doi:10.1007/
s00778-014-0359-9.

9 Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sagiv. Eventually Consistent
Transactions. In Proceedings of the 21nd European Symposium on Programming. Springer,
March 2012. doi:10.1007/978-3-642-28869-2_4.

10 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
sequence protocol: A robust abstraction for replicated shared state. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic, pages 568–590, 2015. doi:10.4230/LIPIcs.ECOOP.2015.568.

11 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A Framework for Transactional
Consistency Models with Atomic Visibility. In Luca Aceto and David de Frutos Escrig, editors,
26th International Conference on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 58–71, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2015/5375, doi:10.4230/LIPIcs.CONCUR.2015.58.

12 Andrea Cerone and Alexey Gotsman. Analysing Snapshot Isolation. In Proceedings of the
2016 ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC’16,
pages 55–64. ACM, 2016. doi:10.1145/2933057.2933096.

13 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Transaction chopping for parallel
snapshot isolation. In Proceedings of the 29th International Symposium on Distributed Com-
puting - Volume 9363, DISC 2015, page 388–404, Berlin, Heidelberg, 2015. Springer-Verlag.
doi:10.1007/978-3-662-48653-5_26.

14 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic Laws for Weak Consistency.
In Roland Meyer and Uwe Nestmann, editors, Proceedings of the 27th International Conference
on Concurrency Theory, volume 85 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:18, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CONCUR.2017.26.

15 Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions and
weak memory in x86, power, arm, and C++. In Jeffrey S. Foster and Dan Grossman, editors,
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 211–225. ACM,
2018. doi:10.1145/3192366.3192373.

16 Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is Believing: A Client-
Centric Specification of Database Isolation. In Proceedings of the 2017 ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC’17, pages 73–82, New York, NY,
USA, 2017. ACM. doi:10.1145/3087801.3087802.

17 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A Logic for
Time and Data Abstraction. In Richard E. Jones, editor, Proceedings of the 28th European
Conference on Object-Oriented Programming, volume 8586 of Lecture Notes in Computer
Science, pages 207–231. Springer, July 2014. doi:10.1007/978-3-662-44202-9_9.

18 Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation. In
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06, page
715–726. VLDB Endowment, 2006. doi:10.5555/1182635.1164189.

19 Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. Concurrent Abstract Predicates. In Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP’10, pages 504–528. Springer-Verlag, 2010. doi:
10.1007/978-3-642-14107-2_24.

ECOOP 2020

https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1007/978-3-642-28869-2_4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
http://drops.dagstuhl.de/opus/volltexte/2015/5375
http://drops.dagstuhl.de/opus/volltexte/2015/5375
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/2933057.2933096
https://doi.org/10.1007/978-3-662-48653-5_26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.5555/1182635.1164189
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24

21:28 Data Consistency in Transactional Storage Systems: A Centralised Semantics

20 Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. Verifying C11 programs
operationally. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, PPoPP ’19, pages 355–365, New York, NY, USA, 2019. ACM. doi:10.1145/
3293883.3295702.

21 Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-SI: Snapshot Isolation for Parti-
tioned Data Stores Using Loosely Synchronized Clocks. In Proceedings of the 32nd Leibniz
International Proceedings in Informatics (LIPIcs), SRDS’13, pages 173–184, Washington, DC,
USA, 2013. IEEE Computer Society. doi:10.1109/SRDS.2013.26.

22 Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database replication using
generalized snapshot isolation. In Proceedings of the 24th IEEE Symposium on Reli-
able Distributed Systems, SRDS ’05, page 73–84, USA, 2005. IEEE Computer Society.
doi:10.1109/RELDIS.2005.14.

23 Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making Snapshot Isolation Serializable. ACM Transactions on Database Systems, 30(2):492–
528, June 2005. doi:10.1145/1071610.1071615.

24 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause
i’m strong enough: Reasoning about consistency choices in distributed systems. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, page 371–384, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2837614.2837625.

25 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’15, pages 637–650. ACM, 2015. doi:10.1145/
2676726.2676980.

26 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. Safe replic-
ation through bounded concurrency verification. Proc. ACM Program. Lang., 2(OOPSLA),
October 2018. doi:10.1145/3276534.

27 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone Together:
Compositional Reasoning and Inference for Weak Isolation. Proceedings of the ACM on
Programming Languages, 2(POPL):27:1–27:34, December 2017. doi:10.1145/3158115.

28 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A Promising Se-
mantics for Relaxed-memory Concurrency. In Proceedings of the 44th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’17, pages 175–189,
New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3009837.3009850,
doi:10.1145/3009837.3009850.

29 Eric Koskinen and Matthew Parkinson. The push/pull model of transactions. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, page 186–195, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2737924.2737995.

30 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, page 265–278, USA, 2012. USENIX Association. URL: http://www.cs.otago.ac.
nz/cosc440/readings/osdi12-final-162.pdf.

31 Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun.
ACM, 18(12):717–721, December 1975. doi:10.1145/361227.361234.

32 Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, Indranil Gupta, and José
Meseguer. ROLA: A New Distributed Transaction Protocol and Its Formal Analysis. In
Alessandra Russo and Andy Schürr, editors, Fundamental Approaches to Software Engineering,
pages 77–93, Cham, 2018. Springer. doi:10.1007/978-3-319-89363-1_5.

https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1109/SRDS.2013.26
https://doi.org/10.1109/RELDIS.2005.14
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3158115
http://doi.acm.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2737924.2737995
http://www.cs.otago.ac.nz/cosc440/readings/osdi12-final-162.pdf
http://www.cs.otago.ac.nz/cosc440/readings/osdi12-final-162.pdf
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-319-89363-1_5

S. Xiong et al. 21:29

33 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, page 401–416, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2043556.2043593.

34 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation, pages 313–328, Lombard, IL,
2013. USENIX. URL: https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/lloyd.

35 Kartik Nagar and Suresh Jagannathan. Automated Detection of Serializability Violations
Under Weak Consistency. In Proceedings of the 29th International Conference on Concurrency
Theory, pages 41:1–41:18, 2018. doi:10.4230/LIPIcs.CONCUR.2018.41.

36 Aleksandar Nanevski, Yuy Ley-wild, Ilya Sergey, and Germán Andrés Delbianco. Communic-
ating State Transition Systems for fine-grained concurrent resources, pages 290–310. Lecture
Notes in Computer Science. springer-verlag, 2014. doi:10.1007/978-3-642-54833-8_16.

37 Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, October 1979. doi:10.1145/322154.322158.

38 Azalea Raad, Ori Lahav, and Viktor Vafeiadis. On Parallel Snapshot Isolation and Re-
lease/Acquire Consistency. In Amal Ahmed, editor, Proceedings of the 27th European Sym-
posium on Programming, pages 940–967, Cham, 2018. Lecture Notes in Computer Science.
doi:10.1007/978-3-319-89884-1_33.

39 The RUBiS benchmark, 2008. URL: https://rubis.ow2.org/index.html.
40 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Proceedings of the 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, page 386–400, Berlin, Heidelberg, 2011. Springer-
Verlag. doi:10.1007/978-3-642-24550-3_29.

41 Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Transaction Chopping:
Algorithms and Performance Studies. ACM Transactions on Database Systems, 20(3):325–363,
September 1995. URL: http://doi.acm.org/10.1145/211414.211427, doi:10.1145/211414.
211427.

42 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional Storage for
Geo-replicated Systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP’11, pages 385–400, New York, NY, USA, 2011. ACM. URL: http://doi.
acm.org/10.1145/2043556.2043592, doi:10.1145/2043556.2043592.

43 Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. Wren: Nonblocking Reads in a
Partitioned Transactional Causally Consistent Data Store. In Proceedings of the 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN’18, pages
1–12, 2018. doi:10.1109/DSN.2018.00014.

44 The TPC-C benchmark, 1992. URL: http://www.tpc.org/tpcc/.
45 Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009. doi:

10.1145/1435417.1435432.
46 Shale Xiong. Parametric Operational Semantics for Consistency Models. PhD thesis, Imperial

College London, April 2021. URL: http://www.shalexiong.com/thesis.pdf.
47 Peter Zeller. Testing properties of weakly consistent programs with repliss. In Proceedings

of the 3rd International Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC’17, pages 3:1–3:5, New York, NY, USA, 2017. ACM. URL: http://doi.acm.
org/10.1145/3064889.3064893, doi:10.1145/3064889.3064893.

ECOOP 2020

https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/322154.322158
https://doi.org/10.1007/978-3-319-89884-1_33
https://rubis.ow2.org/index.html
https://doi.org/10.1007/978-3-642-24550-3_29
http://doi.acm.org/10.1145/211414.211427
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/211414.211427
http://doi.acm.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1109/DSN.2018.00014
http://www.tpc.org/tpcc/
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
http://www.shalexiong.com/thesis.pdf
http://doi.acm.org/10.1145/3064889.3064893
http://doi.acm.org/10.1145/3064889.3064893
https://doi.org/10.1145/3064889.3064893

	Introduction
	Related Work

	Overview
	Operational Model
	Abstract States: Key-Value Stores and Client Views
	Operational Semantics

	Consistency Models Using Execution Tests on Kv-stores
	Applications
	Application: Verifying Database Protocols
	Application: Invariant Properties of Transactional Libraries

	Conclusions and Future Work

