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Abstract

Distributed dataflow systems allow users to express a wide range
of computations, including batch, streaming, and machine learning.
A recent trend is to unify different computation types as part of
a single stream/batch application that combines latency-sensitive
(“stream”) and latency-tolerant (“batch”) jobs. This sharing of state
and logic across jobs simplifies application development. Examples
include machine learning applications that perform batch train-
ing and low-latency inference, and data analytics applications that
include batch data transformations and low-latency querying. Ex-
isting execution engines, however, were not designed for unified
stream/batch applications. As we show, they fail to schedule and ex-
ecute them efficiently while respecting their diverse requirements.

We present Neptune, an execution framework for stream/batch
applications that dynamically prioritizes tasks to achieve low la-
tency for stream jobs. Neptune employs coroutines as a lightweight
mechanism for suspending tasks without losing task progress. It
couples this fine-grained control over CPU resources with a locality-
and memory-aware (LMA) scheduling policy to determine which
tasks to suspend and when, thereby sharing executors among het-
erogeneous jobs. We evaluate our open-source Spark-based im-
plementation of Neptune on a 75-node Azure cluster. Neptune
achieves up to 3× lower end-to-end processing latencies for latency-
sensitive jobs of a stream/batch application, while minimally im-
pacting the throughput of batch jobs.
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Figure 1: Evolution of stream and batch frameworks

1 Introduction

Over the past decade, distributed dataflow frameworks have en-
abled users to process vast amounts of data on clusters of ma-
chines [22, 58]—we track their evolution in Figure 1. Early imple-
mentations were dedicated to either batch [4, 8, 46, 61] or stream
processing [7, 11, 16]. The former focused mainly on high process-
ing throughput, whereas the latter had also to achieve low pro-
cessing latency. Acknowledging the limitation, both for users and
cluster operators, of having to manage multiple systems and copy
data across them, unified distributed dataflow frameworks evolved
to support both batch and stream processing [1, 2, 16, 42, 61]. This
evolution is in line with the current momentum towards unified an-
alytics in general, combining large-scale data processing with state-
of-the-art machine learning and AI [54]. Towards this direction,
these systems have also exposed unified programming interfaces
to seamlessly express stream and batch applications [2, 3, 12].

As the next step in this unification, users have begun to combine
latency-sensitive stream jobs with latency-tolerant batch jobs in a
single application [19, 34].We term these applications “stream/batch”
where “stream” refers to the latency-sensitive jobs of the application
and “batch” to the remaining ones. Examples of such applications
can be found in the domains of online machine learning, real-time
data transformation and serving, and low-latency event monitoring
and reporting.

Consider the stream/batch application in Figure 2, which imple-
ments a real-time detection service for malicious behavior at an
e-commerce company [51]. A batch job trains a machine learning
model using historical data, and a stream job performs inference to
detect malicious behavior. The stream/batch application therefore
allows for the jobs to share application logic and state (e.g., using
the same machine learning model between training and inference).
This sharing facilitates application development and management.
In addition, combined cluster resources can be used more efficiently
by the different job types.

In this work, we show that supporting stream/batch applications
presents new opportunities in terms of job scheduling. The stream
jobs of these applications must be executed with minimum delay to
achieve low latency, which means that batch jobs may have to be

https://doi.org/10.1145/3357223.3362724
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Figure 2: Stream/batch application for online malicious behavior
detection (A batch job trains a model using historical data; a stream job
performs inference to detect malicious behavior.)

preempted. Prior to unified stream/batch applications, stream and
batch jobs had to be deployed separately in a cluster and cooperate
with each other through general-purpose resource managers such
as YARN [56] or Mesos [30]. This may result in low utilization of
resources when dedicating parts of the cluster to each system, loss
of progress when having to kill batch jobs to prioritize stream ones,
or high preemption times [17, 21, 24, 30, 56, 58].

Given that batch and stream jobs share the same runtime, our
key idea is to employ application-specific mechanisms and policies
that dynamically prioritize stream jobs without unduly penalizing
batch jobs. As we show in §2, existing schedulers for stream/batch
applications, such as Spark’s Fair scheduler [10], do not take ad-
vantage of this opportunity and only prioritize jobs based on static
priorities, which introduces queuing delays for latency-sensitive
tasks [32, 37, 39].

We describeNeptune, a new execution framework for stream/-
batch applications that dynamically prioritizes latency-sensitive
jobs, while achieving high resource utilization. Our paper makes
the following contributions:

(i) Lightweight suspendable tasks.To prioritize latency-sensitive
tasks,Neptune suspends tasks that belong to batch jobs on-demand.
As a lightweight task preemption mechanism, Neptune uses corou-
tines, which avoid the overhead of thread synchronization. Corou-
tines can suspend batch tasks within milliseconds, thus reducing
head-of-line blocking for latency-sensitive tasks. When tasks are
resumed, they preserve their execution progress. To the best of our
knowledge, Neptune is the first distributed dataflow system to use
coroutines for task implementation and scheduling (§4).

(ii) Locality/memory-aware scheduling policy. To satisfy the
requirements of stream/batch applications when they share the
same executors, Neptune uses a locality- and memory-aware (LMA)
scheduling policy for task suspension. It load-balances by equaliz-
ing the number of tasks per node, thus reducing the number of
preempted tasks; it is locality-aware by respecting a task’s prefer-
ences; and minimizes memory pressure due to suspended tasks by
considering real-time executor metrics (§5).

(iii) Spark-based execution framework. Neptune is designed
to natively support stream/batch applications in Apache Spark [61],
one of the most widely-adopted distributed dataflow frameworks.

Users express stream/batch applications using the existing unified
Spark API and add only one configuration line to indicate jobs as
“stream” or “batch”. The implementation of Neptune is available
as open-source1 (§6).

Our experimental evaluation demonstrates the benefits of Nep-
tune for stream/batch applications (§7). On a 75-node Azure cluster
using machine learning and streaming benchmarks, Neptune re-
duces end-to-end latencies by up to 3× compared to Spark and
increases the throughput by up to 1.5×. Using the locality- and
memory-aware (LMA) policy, Neptune achieves close to optimal
performance for both latency-critical and latency-tolerant tasks
with a modest memory impact. Through micro-benchmarks, we
confirm that suspendable tasks can efficiently pause and resume
with sub-millisecond latencies and that, in scenarios with memory
pressure, LMA scheduling policy can better utilize resources.

2 Supporting Unified Applications

We begin with background on distributed dataflow platforms in §2.1.
We then describe the requirements for unified stream/batch appli-
cations and the associated opportunities in §2.2. Finally, we explore
the design space when scheduling such applications in §2.3.

2.1 Distributed dataflow platforms

Distributed dataflow platforms, such as Hadoop [4], Spark [61],
Flink [16], and Dryad [33], have enabled users to analyze large
datasets using clusters of machines. In these platforms, user compu-
tation is expressed as a graph of operators that processes dataflows.

Application programming interface. To develop user programs,
or applications, distributed dataflow platforms permit the mixture
of SQL-style relational queries with functional or imperative code.
The platform then distributes the computation on the entire cluster.
Lately, we witness a shift towards a unification of APIs. This allows
users to express both stream and batch computation through a
single API, such as Spark’s Structured Streaming API [12], Flink’s
Table API [3], or the external API layer of Apache Beam [2]. List-
ing 1 shows an example of the use of a unified API to implement a
stream/batch application, as described below.

Execution model. An application consists of multiple jobs, and
each job is converted to a directed acyclic graph (DAG) of oper-
ators. Operators in the DAG are grouped into stages. Each stage
corresponds to a collection of tasks that perform computation over
different partitions of data. At each stage boundary, data is writ-
ten to a local cache residing in memory or disk by tasks in the
upstream stages and then transferred over the network to tasks in
the downstream stages.

For efficiency reasons, most platforms follow an executormodel in
which tasks are dispatched to long-running executors (as opposed
to instantiating a container for each task). Executors are deployed
on worker nodes and typically run for the entire lifetime of an
application. Each executor provides slots that represent the compute
capabilities of the node. Each slot can execute a single task. An
application scheduler assigns tasks to executors, respecting data
dependencies, resource constraints and data locality [28, 29, 59].

1Neptune is publicly available at: https://github.com/lsds/Neptune

https://github.com/lsds/Neptune
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Listing 1: Application for real-time detection

1 val trainData = context.read("malicious−train−data")

Batch

2 val pipeline = new Pipeline().setStages(Array(
3 new OneHotEncoderEstimator(/∗ range column to vector ∗/),
4 new VectorAssembler(/∗ merge column vectors ∗/),
5 new Classifier(/∗ select estimator ∗/)))
6 val pipelineModel = pipeline.fit(trainData)
7 val streamingData = context

Stream

8 .readStream("kafkaTopic")
9 .groupBy("userId") /∗ some aggregations omitted ∗/
10 .schema() /∗ input schema ∗/
11 val streamRates = pipelineModel
12 .transform(streamingData) /∗ apply model to input ∗/
13 streamRates.start() /∗ start streaming ∗/

Evolution of executionmodel.As discussed in §1, early dataflow
systemswere dedicated to either stream or batch computation. Thus,
an application comprising both stream and batch jobs would have to
be executed by separate engines, e.g., following a “lambda” architec-
ture [38]. This dichotomy poses a burden to users, who must deploy
multiple frameworks, and to cluster operators, who must split clus-
ter resources among these engines. To this end, dataflow platforms
evolved to support both stream and batch applications. Using a
unified stream/batch platform, such as Spark [61] or Flink [16], the
application in Listing 1 can now be executed by a single engine.

2.2 Hybrid stream/batch applications

Along with the evolution of dataflow platforms towards unified
stream/batch engines, users started combining latency-sensitive
stream and latency-tolerant batch jobs as part of the same applica-
tion. Such unified designs simplify development and operational-
ization: users can reuse code with consistent semantics, avoid the
complexity of interacting with external systems, and have a single
application to monitor and tune.

Use case: Real-time malicious behavior detection. Listing 1
shows the implementation of the real-time malicious behavior de-
tection service [51] from Figure 2. The service is realized as a hybrid
stream/batch application with multiple jobs: a batch job performs
model training by iterating over the historical training data to re-
flect the latest changes and saves a model (lines 1–6), which, in
turn, is shared in memory with a real-time streaming job that uses
the model for real-time prediction (lines 7–13). The streaming job
computes a series of aggregations on the real-time Kafka input and
then queries the model to detect malicious behavior (line 12).

Requirements. To support stream/batch applications, an execu-
tion engine must combine the different requirements of stream and
batch jobs regarding latency2 and throughput, while achieving high
resource utilization. In Listing 1, the output of the latency-sensitive
streaming job must be computed with low latency to ensure fast
reaction times; the latency-tolerant batch job must run with high
throughput to efficiently utilize the remaining resources and re-
flect the most recent state in the model, as the training data is
continuously updated.

2In a dataflow system, latency is the time between receiving a new record and produc-
ing output for this record.

When all resources are occupied, a streaming job may have to
wait for other tasks to finish before starting processing, which leads
to increased latency due to the queuing delay. Therefore, a platform
for stream/batch applications must minimize queuing delays for
latency-sensitive jobs, even under high resource utilization. At the
same time, the throughput of batch jobs should not be compromised.
Therefore, resources must be shared across jobs depending on their
needs, while avoiding starvation andmaintaining high utilization. A
unified execution engine must ensure high throughput and resource
utilization despite the heterogeneity of job types.

The fact that jobs in stream/batch applications are part of a single
application executed by one execution engine allows us to employ
application-aware techniques to meet the above requirements.

2.3 Scheduling alternatives

Next we discuss how the jobs of a stream/batch application
(see Figure 2) are handled by existing distributed dataflow platforms,
such as Spark, showcasing their well-known limitations [32, 37, 39].

Figure 3 illustrates the scheduling problem that a distributed
dataflow system faces. Here the stream/batch application consists
of a real-time inference job and a historical data training job. Rectan-
gles at the top represent job stages, and each task in a stage requires
one resource unit. Execution time is normalized in time units (T ).
Light blue rectangles represent tasks of the (stream) inference job;
dark blue ones represent (batch) training tasks. Note that training
tasks require up to 3 times more time and 2 times more resources
than the inference tasks and can thus introduce significant queuing
delays to the latter.

In an ideal scheduling scenario, stream tasks would start execu-
tion immediately to achieve the lowest latency, which is 2T . The
remaining resources would be used by batch tasks for high resource
utilization and throughput.

A basic approach that avoids queuing and achieves low latency
employs static resource allocation in which each job uses a dedicated
set of resources (DIFF-EXEC in the figure). This corresponds to ap-
proaches that either use separate engines for stream and batch, or
use a single engine but submit separate applications for each job. It
is a common solution in existing production environments that use
general-purpose resource managers and have dedicated resource
queues for latency-critical jobs [17, 21, 25].

In our example, we assign 25% of resources to the stream job ex-
ecutor and the rest to the batch job executor. Although the latency
for the stream job is low, it is still 2× higher than the optimal, as
separate executors cannot guarantee low latency. As resources can-
not be shared across jobs, the application completes in 7T , which is
the worst of all scenarios. Jobs could be allowed to go over capacity,
but that would result in either higher queuing delays for stream
jobs or wasted work for batch jobs, as we discuss below. Moreover,
this approach does not permit the sharing of application state or
logic across jobs.

By default, unified stream/batch engines such as Spark [13] and
Flink [16] schedule applications with multiple jobs in a FIFO fashion,
based on job priorities and job submission times. If the training job
gets triggered first, it will consume all cluster resources and when
the inference job arrives, it will get queued behind it, leading to an
increased latency of 6T .
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Figure 3: Resource usage over time for the detection application under different scheduling policies
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Figure 4: Stream task queuing latency

FAIR is an alternative scheduling policy that runs tasks in a round-
robin fashion. All jobs receive an equal, possibly weighted, share of
resources. Stream jobs submitted while a batch job is running can
obtain resources right away and experience good response times.
In our example, FAIR achieves better utilization (the application
completes in 5T ) and reduces the stream job’s response time by 2T ,
compared to FIFO. FAIR, however, cannot guarantee low queuing
delays. The achieved latency is 2× higher than the optimal, because
FAIR treats all jobs as equal without respecting latency requirements.

To avoid queuing delays for stream tasks, it is possible to employ
non work-preserving preemption by killing tasks of batch jobs. This
can be combined with any of the above strategies. In Figure 3, KILL
together with FAIR shows minimal queuing, but requires restart-
ing killed tasks and losing their progress. This leads to the second
worst effective resource utilization and thus throughput—the ap-
plication completes in 6T . Even if jobs supported work-preserving
preemption, one would have to account for the extra overhead of
checkpointing task state.

NEPTUNE, our solution shown in the rightmost part of Figure 3,
prioritizes stream tasks by suspending running batch tasks, minimiz-
ing queuing delays (2T runtime for the stream job). When resources
become available, batch tasks are resumed without losing progress,
thus achieving high resource utilization (5T for application com-
pletion) without any checkpointing overhead.

Measuring queuing delay. To assess the effect of different sched-
uling policies on the queuing delay in practice, we run the stream/-
batch application from Listing 1 in Spark for varying sizes of train-
ing jobs (by increasing the number of files they consume). Figure 4
shows the 95th percentile of queuing latency for the stream tasks.
The results indicate that Spark’s default policies, FIFO and FAIR,
cannot achieve low queuing delays for the latency-sensitive stream

tasks as we increase the training load (and, thus, resource utiliza-
tion). In contrast, Neptune results in minimal queuing delays, even
under high resource utilization by efficiently suspending batch
tasks. As we show in §7, this leads to significant gains both in terms
of end-to-end latencies and task throughput.

3 Neptune Design

The design of Neptune, our solution to support the execution
of stream/batch applications, is shown in Figure 5. To reduce the
queuing of latency-sensitive tasks during execution, Neptune uses
suspendable tasks, which employ efficient coroutines to yield and
resume execution. Neptune uses a centralized scheduler to assign
application tasks to executors, which periodically send metrics back
to the scheduler in the form of heartbeats. The scheduler enacts
policies that trigger task suspension and resumption, which are ex-
ecuted locally on each executor. The scheduling policies guarantee
job requirements (see §2.2) and satisfy higher-level objectives such
as balancing cluster load.

3.1 Defining stream/batch applications

In Neptune, stream/batch applications can be expressed with
Spark’s lower-level Resilient Distributed Dataset (RDD) API or its
higher-level DataFrame API. All jobs in Neptune share a common
execution environment, also known as context. A context maintains
the connection to application executors and is used to create jobs
and broadcast variables. Each executor can only have a single active
application context.

A user specifies the requirements for a stream/batch application
by tagging jobs using a local job property. At submission time, a
stream or a batch job is configured with a neptune.priority prop-
erty set to high or low, respectively. This and other local properties
(e.g., to select a job resource pool/queue under FAIR scheduling),
are inheritable variables, maintained at the job level and automati-
cally transmitted to each child stage and task. The propagation is
achieved through the application context when submitting a job,
which passes the properties to the job scheduler responsible for
stage execution.

3.2 Scheduling stream/batch applications

In traditional dataflow frameworks, a scheduler builds an execution
plan for an application and executes its jobs. The scheduler in Nep-
tune also enacts policies that suspend and resume tasks according
to their requirements.
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already-running ones according to its scheduling policy.)

Figure 5 shows how the Neptune scheduler is comprised of two
main components: the DAG Scheduler and the Task Scheduler. The
DAG Scheduler computes the execution plan of each job in the
form of a directed acyclic graph (DAG) (step 1).3 Each DAG vertex
represents a stage, which groups tasks that can execute the same
computation in parallel. During the execution of the application, the
DAG Scheduler keeps track of the tasks that are already completed.
When all data dependencies of a stage are met, it adds the tasks of
that stage to a priority queue of tasks ready to be executed next
(step 2). Within the task queue, tasks are ordered based on whether
they are stream or batch, dictated by their user-defined priority, as
discussed in §3.1 (step 3). For example, a stage of a latency-sensitive
stream job is always placed before a stage of a latency-tolerant
batch job in the queue. For stages that are not tagged by the user,
Neptune uses FIFO ordering based on submission time.

Tasks that are ready-to-execute are then passed to the Task
Scheduler. To execute tasks of stream stages without delay, Nep-
tune introduces suspendable tasks. Any task implemented as sus-
pendable can be interrupted and later resumed without loss of
progress (see §4). When a new task arrives, it is immediately exe-
cuted if there are sufficient free resources available (step 4). Other-
wise, running batch tasks are suspended, as dictated by the sched-
uling policy, to free up resources for stream tasks to start their
execution immediately (step 5). To avoid losing the progress made
by a preempted task, the oldest suspended task is scheduled for
execution when a stream task terminates.

Suspended tasks are maintained locally on the same worker be-
cause using them on different workers would require taskmigration.
Migration would incur the extra costs of transferring input data or
intermediate outputs and would require a policy to decide when to
migrate. Since Neptune preempts batch tasks (which are of arbi-
trary length) to prioritize the execution of stream tasks (which are

3The compilation step that translates a user-submitted application to a set of DAGs is
omitted from the figure.

typically short) and reacts in milliseconds to maintain high resource
utilization, it does not support task migration by design.

3.3 Executing stream/batch tasks

Task execution in Neptune is performed by a set of executors,
which are also responsible for task suspension and resumption, as
dictated by the job scheduler. Each executor has c cores and can run
c concurrent tasks. Periodically, executors also send heartbeats to
the scheduler with information about task state and performance
metrics such as memory usage, CPU utilization, and garbage col-
lection and disk spilling activity.

Executors maintain queues of running and suspended tasks.
When a task is assigned to an executor, it is added to the running
task queue and is executed immediately when there are available
cores in the executor; otherwise, when a stream task preempts a
running task, the executor first marks the batch task as paused,
moves it from the running to the suspended queue, and prepares
the new task for execution with low delay. As tasks complete and re-
sources are freed, the scheduler resumes suspended tasks (the oldest
suspended task is resumed first). The executor then shifts the tasks
from the suspended to the running queue and continues execution.

Discussion. Although Neptune is implemented on top of Apache
Spark, our design, as shown in Figure 5, is applicable to other
dataflow frameworks for stream/batch applications, such as Apache
Flink [16] and Storm [11], that follow a similar architecture. We
opted to have Neptune’s first implementation on Spark, hence we
cannot claim concrete gains on other systems. We expect Flink,
which uses a continuous-operator execution model, to benefit even
more from task suspension, as operators typically run longer than
Spark’s scheduled tasks.

4 Suspendable Tasks

To minimize the queuing delay for stream jobs with a low impact on
batch jobs, Neptune requires an efficient preemption mechanism
for suspending tasks and resuming them without loss of progress.
This mechanism should be transparent to users and not require a
bespoke programming model, e.g., that requires users to trigger
periodic checkpoints within tasks [26].

A classical approach to suspend tasks would rely on thread syn-
chronization. Worker threads that execute tasks would use the wait
and notify primitives to suspend and resume. Thread synchroniza-
tion primitives typically require system calls, and the preemption
is performed by the OS scheduler, which moves threads between
a wait and a running queue. As the number of threads increases,
thread synchronization with OS involvement therefore can become
a bottleneck and introduce extra delays (see §7.4).

To obtain a scalable and efficient mechanism for task suspension,
Neptune instead uses stackful coroutines [47]. Coroutines are re-
sumable functions that can suspend execution at yield points inside
the computation. A regular function can be considered a special
case of a coroutine that does not suspend execution and returns to
the caller after completion. When a coroutine suspends execution,
it returns a status handle to the caller, which can be later used to
resume execution.

Unlike checkpointing mechanisms [17, 24], coroutines suspend
tasks quickly because the state of local variables is saved in a call
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Listing 2: Collect coroutine task

1 val collect : (TaskContext , Iterator [T]) −> ( Int , Array[T]) =
2 coroutine {( context : TaskContext , itr : Iterator [T]) =>
3 val result = new mutable.ArrayBuffer[T]
4 while ( itr .hasNext) /∗ iterate records ∗/
5 | result . append( itr .next) /∗ append record to dataset ∗/
6 | if ( context . isPaused () ) /∗ check task context ∗/
7 ⌊ ⌊ yieldval (0) /∗ yield value to caller ∗/
8 result . toArray /∗ return result dataset ∗/

stack represented as arrays. Stackful coroutines can also call each
other and return to the same resume site. This is important for
implementing dataflow tasks composed of functions that call each
other (e.g., shuffle tasks, as explained below). Coroutines can di-
rectly replace existing subroutine tasks by maintaining the same
API, offering task preemption transparently to users.

Neptune uses stackful coroutines to implement suspendable
tasks, which have a yield point after the processing of each record.
As an example, Listing 2 shows the implementation of the collect

task that returns all dataset elements. Notice the yield point in line 7.
The coroutine task receives the taskContext and a record iterator as
arguments (line 2). In the iteration loop (lines 4–7), the new record is
first appended to the result dataset (line 5). Every task is associated
with an individual task context, which determines whether the
task will be suspended, as dictated by the scheduling policy. If the
task context is marked as paused, it returns a value to the caller
to express whether the task was suspended gracefully (line 7);
otherwise, it continues execution. In a similar manner, coroutines
can implement simple task logic, such as aggregations, or more
complex logic, such as nested coroutine calls.

The executor component runs the suspendable tasks. Figure 6
shows how an executor creates a suspendable ShuffleMapTask in-
stance by invoking a call function (step 1). The suspendable task
uses a coroutine stack to store its context, local variables, and
state, including the partition and jobId. Depending on the num-
ber of output partitions, type of aggregation and serializer, the
ShuffleMapTask internally calls a Writer method either from a se-
rialized sort (i.e., BypassMergeSortShuffleWriter) or deserialized
sort (i.e., SortShuffleWriter) class (step 2). The Writer is another
coroutine with a separate stack storing its local variables and state,
including the ShuffleId, mapId, and the record iterator. The Writer
coroutine can return to the same caller as the ShuffleMapTask. Once
launched, the Writer executes up to a point and then receives a
pause call from the executor (omitted from the figure). The Writer

then yields a value to the executor, indicating the reason for its
suspension (step 3). The executor can then resume the same task
instance (up to the next yield point or to completion) or invoke
another function (step 4).

The above is a typical example of function composition that can
be expressed with stackful coroutines. Coroutine composition en-
ables both the calling and called coroutines to yield, adding multiple
suspension points, which is necessary for suspending tasks with
more complex logic.

Discussion. Although suspendable tasks are both efficient to sus-
pend/resume and transparent to users, they keep state in memory,
which may increase memory pressure on executors. We observe,
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Figure 6: Neptune coroutine composition (The executor runs a corou-
tine ShuffleMapTask, which instantiates a coroutine SortShuffleWriter.
Both can yield to the executor when the TaskContext is paused.)

Figure 7: Available machine memory in a production cluster within
Microsoft (The cluster is comprised of tens of thousands of machines with
each group corresponding to different hardware configurations. Data is
over four days.)

however, that typical production clusters tend not to be constrained
by memory.

Figure 7 shows the available machine memory in a Microsoft
production cluster comprised of tens of thousands of machines.
We took measurements every few seconds over the course of four
days, and plot the CDF of the available machine memory, grouped
by machines with the same hardware configuration. The available
memory in 90% of the machines is at least 75 GB and in some
configurations over 150 GB. Tasks in this cluster typically require
less than 10 GB of memory each, which means that several more
tasks can be started at each machine in terms of memory. Similar
trends hold at other companies. For example, in production Spark
clusters at Facebook, 95% of the machines utilize no more than 70%
of the machine’s memory [52].

In cloud deployments, users often overprovision their memory
resources [20] (and, if not, they can always allocate more memory to
their VMs)—Neptune takes advantage of this to reduce the latency
of higher-priority stream tasks. In cases whenmemory does become
the bottleneck, Neptune’s LMA scheduling policy, described in §5,
ensures that machines with the least memory pressure are picked
to suspend tasks.

Another noteworthy point is how fast coroutines can yield,
which is determined by the amount of processing per data record.
Although optimizations such as function pipelining can increase
yield times, we find that the difference is typically negligible in
practice. In our experiments (§7.4), we only observe increased yield
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Algorithm 1: LMA scheduling policy

Input: List Executors, // In descending preference order
1 List ExecutorsMetricsWindow // Executor metrics

2 Upon event HeartBeat hb from Executor e do
3 ExecutorsMetricsWindow[e].push(hb.metrics)

4 Executors.updateOrdering

5 return

6 Upon event Submit Task t do
// Cache local executor

7 Executor texec ← hostToExecutor.get(t.cacheLocation)

8 if texec is None or texec .freeMemory < threshold then

// Executor with the least pressure
9 texec ← Executors.head

10 if texec has availableCores then
// Launch task t on free cores

11 texec .Launch(t )
12 else

// Suspend task tp and launch t
13 Task tp ← texec .tasks.filter(LowPriority)
14 texec .PauseAndLaunch(t , tp )
15 return

times for the handling of large file partitions when queries are non-
selective. As we explain, this is caused by the file reader mechanism
in Spark and can be mitigated.

5 LMA scheduling policy

Suspendable tasks (§4) provide the mechanism for efficient task
preemption. The scheduler, however, must decide which tasks to
preempt andwhen. These scheduling decisions are crucial to achieve
low latency for stream tasks with minimum disruption to batch
tasks, while accounting for task locality and cluster load balance.

As described in §3.2, when a new job stage is submitted, it is
first added to a queue of tasks pending for execution. Once the
stage dependencies are met, a list of tasks is submitted to run. Batch
tasks run immediately as long as there are enough free resources,
otherwise they wait for resources to become available. For stream
tasks, Neptune’s scheduler uses the LMA (locality- and memory-
aware) scheduling policy, outlined in Algorithm 1.

LMA considers the stream task’s locality preferences4 and the ex-
ecutors’ memory conditions. To avoid executors with high memory
pressure, it uses metrics such as memory usage, disk spilling, and
garbage collection activity. These metrics are collected periodically
through the heartbeats between the executors and the scheduler
(line 2) and are smoothened over configurable windows (line 3) to
update a preference order of executors (line 4).

When deciding where to place a task, LMA first checks whether
the task has a preference to a specific executor. If so, and the ex-
ecutor’s free memory is above a threshold (we use twice the task’s
memory demand to make sure there is sufficient memory in the
executor), this executor is picked; otherwise, LMA selects the ex-
ecutor with the least memory pressure (lines 7–9). If the selected
executor has available CPU cores, the algorithm sends a launch
message to the executor (line 11); otherwise, it selects a batch task

4These are locality preferences to nodes that already hold locally the data that will be
used for computation.

to preempt (line 13), and sends a pause & launch message (line 14).
This message suspends the batch task and starts the new one in a
single network round trip.

To prevent low priority jobs from being suspended indefinitely,
Neptune also has an anti-starvation mechanism (omitted from the
pseudocode). For each task, Neptune tracks the number of times
that it has been suspended. If the task has been paused more than a
given number of times, it is run uninterrupted for a period of time,
ensuring progress of every stage. Note that the same mechanism,
along with application-specific knowledge, can be used to bound
the delay incurred by important batch tasks, such as tasks that
update shared state.

6 Implementation

We implementedNeptune by extending Apache Spark version 2.4.0.
Our changes (approximately 20,000 lines of Scala code) are in the
Spark scheduler and execution engine. Neptune’s code is publicly
available at: https://github.com/lsds/Neptune. Figure 8 depicts Nep-
tune’s integration with Spark. The modified Spark components
and the new Neptune ones are in blue.

Spark includes a Driver that runs on a master node and an
Executor on each worker node, all running as separate processes.
The Executor uses a thread pool for running tasks. An application
consists of stages of tasks, scheduled to run on executors. Every
application maintains a unique SparkContext, the entrypoint for
job execution.

DAG scheduler. On application submission, the application’s
SparkContext hands over a logical plan to the DAGScheduler, which
translates it to a directed acyclic graph (DAG). Each DAG is split
into stages at shuffle boundaries. The DAGSchedulermaintainswhich
RDDs and stage outputs are materialized, determines the locations
for running each task, and decides on an execution schedule. Nep-
tune extends the DAGScheduler to allow stages with different re-
quirements, expressed as priority levels (§3.1). Neptune currently
supports two priority levels, high and low, for stream and batch
jobs, respectively.

Task scheduler. Each DAG stage consists of a set of tasks and
tasks are submitted for execution by the TaskScheduler. Neptune
extends the TaskScheduler to support the suspension of running
tasks and the launch of new ones in a single round trip (through a
pause & launch task message).

Scheduling policy. Neptune uses Spark’s existing policy for
scheduling batch tasks and the LMA policy, described in §5, to
determine where to place stream tasks and when to suspend run-
ning batch tasks. As tasks terminate and the paused task queue in
a worker node is not empty, the oldest suspended task is resumed,
as long as there are no stream tasks pending.

Executor. On new task launch, an executor deserializes the task
content, creates a TaskMemoryManager, initializes a runner, and fi-
nally executes the task on a thread pool. Neptune extends the
executor with an extra suspended task queue and the transition
logic between task states. A pause & launch call suspends a run-
ning task and marks the TaskContext as paused, yielding in the next
record iteration. The executor then adds the task in the paused
queue and frees the unused resources from the TaskMemoryManager.

https://github.com/lsds/Neptune
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Figure 8:Neptune integration in Spark (As part of the master node, the
Neptune scheduler assigns tasks to worker nodes. On each worker node,
Neptune maintains a queue of running and suspended tasks.)

For the cached data partitions and intermediate task shuffle out-
puts, executors provide a local cache via the CacheManager and the
BlockManager, respectively.

Cluster state. Our LMA scheduling policy (§5) requires additional
information from each executor (e.g., disk spilling activity) to take
memory pressure into account. Neptune augments Spark’s cluster
state by having executors piggyback suchmetrics onto the heartbeat
messages. The cluster manager maintains a sliding-windowmoving
average per metric.

Suspendable tasks. A task is the smallest unit of execution as-
sociated with an RDD partition running on the executors. Every
task in Spark, and consequently Neptune, has the notion of lo-
cality, inherited by the implementation of the underlying RDD.
For example, when using HadoopRDDs to read data from HDFS,
the locality preferences are based on the nodes where the HDFS
blocks reside. A task can be either: a ResultTask that executes a
function on the RDD partition records and sends the output back
to the driver; or a ShuffleMapTask that computes records on the
RDD partition and writes the results to the BlockManager for use
by later stage tasks. To support suspendable tasks in a way that
is completely transparent to the user, Neptune reimplements all
basic ResultTask and ShuffleMapTask functionality in Spark across
programming interfaces using coroutines (§4).

7 Evaluation

Next we evaluate the performance of Neptune. After describing our
setup (§7.1), we present the following experiments: (i) we compare
the execution of stream/batch applications with Neptune and with
existing solutions using typical application benchmarks [18, 31,
55] (§7.2); (ii) we measure the performance impact in terms of
throughput and latency with varying resource demands (§7.3); and
(iii) we explore Neptune’s task suspension mechanism through
micro-benchmarks (§7.4).

7.1 Experimental setup

Cluster setup. We run our experiments on 75 Azure E4s_v3 vir-
tual machine (VM) instances. Each VM has 4 CPU cores, 32 GB of
memory, and 60 GB of SSD storage. We use 4 slots on each VM
for executing tasks. We deploy Apache Spark version 2.4.0 as the
baseline for our experiments. All experiments use the same JVM,
heap size, and garbage collection flags. We warm up the JVM before
taking measurements.

Workloads.We employ the following workloads:
(1) The Yahoo Streaming Benchmark (YSB) models analytics on a
stream of ad impressions [18]. A producer inserts records in a stream
and the benchmark groups the events into 10-second windows per
ad campaign. It then measures how long it takes for all events in the
window to be processed. Our stream/batch application combines
two concurrent instances of YSB, a latency-sensitive and a latency-
tolerant one.
(2) The machine learning (ML) training/inference application uses
online Latent Dirichlet Allocation (LDA) to perform topic model-
ing and inference, similar to our example of Figure 2. LDA is an
unsupervised machine learning method that uncovers hidden se-
mantics (“topics”) from a group of documents, each represented as
a group of tokens. We use the NYTimes dataset for training and a
small subset for inference [31]. The dataset has 300k documents,
100k words, 1k topics and 99.5 million tokens. We use the online
variational Bayes LDA algorithm with parameter values miniBatch-
Fraction=0.05 and maxIterations=50. Gibbs sampling is used to infer
document topic assignments, as in Spark MLlib [53].
(3) TPC-H [55] is a decision support benchmark with 22 analytical
relational queries, which include computation logic such as aggre-
gates, large joins, and arithmetic computations [14]. We use a scale
factor of 10 with data stored in Parquet format [9].

Comparisons.We compare the following systems:
Neptune (orNEP): This is our system using the locality andmemory-
aware (LMA) scheduling policy (see §5) that respects task locality
preferences and load-balances preempted tasks across nodes.
NEP-LB: This is Neptune with a simpler policy that load balances
task preemption based on the nodes’ memory condition but ignor-
ing task locality preferences.
FIFO and FAIR: These are the two non-preemptive scheduling poli-
cies available in Apache Spark today. FIFO policy prioritizes tasks
based on job submission time; FAIR policy assigns resources to jobs
proportionally to their weight. For FAIR, we configure the weight
for stream jobs to be equal to the job parallelism and for batch jobs
to be equal to one.
KILL: This is a preemptive scheduling policy combined with the
FAIR policy. It allows batch tasks to be killed to minimize queuing
delays for stream tasks.
DIFF-EXEC: We deploy two executors per machine, each using half
the CPU cores. One executor is used for high-priority tasks and the
other for low-priority ones.
PRI-ONLY: We execute only the stream tasks in complete isolation
to achieve the ideal latency scenario.
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Figure 9: Yahoo Streaming benchmark (streaming + batch)
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Figure 10: LDA NYTimes dataset (training + inference)

7.2 Application performance

First, we study the effect of Neptune on end-to-end application
performance for different applications.

Yahoo Streaming Benchmark (YSB). We measure the end-to-
end latency for each window as the difference between the last
event processed and the window end times; we measure throughput
as the total number of records processed over time. Our application
consists of two YSB jobs. The latency-sensitive stream job has paral-
lelism to occupy 15% of cluster resources and generates thousands
of events/second. The latency-tolerant batch job can occupy all
cluster resources and generates millions of events/second.

Figure 9a shows the end-to-end latency for the stream job. We
use box plots in which the lower/upper parts of the box represent
the 25th/75th percentiles, respectively; the middle line is the median;
and the whiskers are the 5th and 99th percentiles, respectively.

FAIR scheduling compared to FIFO reduces the 75th and 99th
percentile latencies for the stream job by 5% and 37%, respectively.
It still remains more than 2× higher than for PRI-ONLY with the
stream job in isolation. By preempting batch tasks, KILL reduces
the median latency by 54% compared to the non-preemptive FAIR,
but the 99th percentile is almost 2× higher than FAIR. The reason
is twofold: (i) KILL cannot preempt more than a weighted share of
resources, which is ineffective when too many stream tasks wait
for execution; and (ii) the housekeeping process of killing tasks in
a Spark executor involves releasing locks and cleaning up allocated
memory and pages in the block manager, which is time-consuming.

Neptune with the LMA policy (NEP) achieves latencies com-
parable to PRI-ONLY. NEP-LB that does not consider cache prefer-
ences achieves 61% worse latency compared to NEP for the 99th
percentile—cache preferences affect task latencies, especially at the
higher percentiles. Finally, DIFF-EXEC reduces the median latency
but increases the tail latency. We observe high tail latencies when
executors on the samemachine interfere with each other—Neptune

avoids this by having a single executor per machine and using an
effective task scheduling policy.

The scheduling policies also affect the batch query throughput,
as shown in Figure 9b. As FIFO is unaware of priorities and fairness,
it achieves the highest throughput, as batch jobs consume all cluster
resources when scheduled. FAIR’s improved latency compared to
FIFO comes at the cost of decreased batch throughput by 10% due
to the prioritization of stream over batch tasks. As expected, due to
the termination of batch tasks, KILL achieves the worst throughput,
namely 32% lower than FIFO. Although DIFF-EXEC runs the batch
jobs on separate executors, it experiences a 24% lower throughput
than FIFO (but 12% higher than KILL). This is because DIFF-EXEC

relies on a static allocation of resources with up to 85% of executors
used for batch jobs. Finally, both NEP and NEP-LB achieve a through-
put comparable to the best performing FIFO policy (within 5%).

Figure 9c shows identical streaming job throughput for all con-
figurations. Spark uses a micro-batching model that accumulates
streaming events and periodically triggers processing for all avail-
able data. Over time, the non resource-demanding stream job com-
putation is amortized, resulting in fixed throughput but varying la-
tency. Thus, for a share of resources, Spark achieves similar through-
put, whether tasks are scheduled immediately or queued.

ML training/inference application. Next we evaluate the topic
modeling application that has a training and an inference job. The
training job generates a new model after a number of iterations
and stores it in HDFS using all available resources. The inference
job is loading the latest trained model in cache and infers topics for
the received documents, consuming up to 15% of cluster resources.

Figure 10a shows the latency achieved for the inference job. As
LDA training tasks are computationally intensive, queuing infer-
ence tasks behind training tasks has a significant impact on task
latency. Although FAIR scheduling reduces the 99th percentile la-
tency by 13% compared to FIFO, it is still 3× higher than the latency
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Figure 11: Performance impact of varying demands
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Figure 12: Memory impact of varying job demands

of running only the inference job (PRI-ONLY). Note that the pre-
emptive KILL policy reduces the median latency by 18% compared
to FAIR, but its 99th percentile latency is 55% higher than running
the job in isolation (PRI-ONLY), as explained above for the YSB
stream/batch application.

NEP achieves a latency that is just 6% and 12% higher than PRI-

ONLY for themedian and the 99th percentiles, respectively.Neptune
without cache awareness (NEP-LB) has a 29% worse latency for the
99th percentile compared to NEP. Although running the jobs in
different executors (DIFF-EXEC) reduces median latency, it incurs
high tail latencies due to executor interference.

Figure 10b reports the achieved throughput for the training job.
Similar to the YSB application, FIFO yields the highest throughput,
entirely ignoring job priorities. FAIR and KILL achieve 10% and 15%
lower throughputs, respectively, compared to FIFO by prioritizing
inference tasks over training. DIFF-EXEC, which uses only up to 85%
of available executors, achieves a 34% lower throughput compared
to FIFO. Unlike YSB, in this application, DIFF-EXEC performs worse
than KILL because reduced resources have more impact on com-
putationally intensive training jobs. Finally, both NEP and NEP-LB

achieve comparable throughput to the best performing FIFO policy,
with an overhead of 1%.

Figure 10c shows identical inference throughput across configu-
rations, as explained for YSB above.

In summary, Neptune achieves latencies comparable to the ideal
PRI-ONLY policy for latency-sensitive jobs, and reduces the through-
put of latency-tolerant jobs by less than 5% compared to the best
performing FIFO policy.

7.3 Varying resource demands

Next we evaluate the performance in terms of throughput and
latency under varying resource demands.
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Figure 13: Latency impact of increasing memory use

Different job resources. The applications above only use part of
the cluster resources for the stream jobs. In this experiment, we use
a cluster of 4 Azure VMs, and we increase the stream job resource
demands from 0% to 100%; batch jobs still use all available resources.
We use Neptune to execute jobs and measure latency, throughput,
and memory consumption.

Stream latency. As we run YSB with different resource demands,
we observe in Figure 11a that Neptune maintains low latency
across all percentages. Since the tasks that must be suspended
increase, this shows the effectiveness of our preemption mecha-
nism. The higher number of preempted tasks, however, incurs a
penalty in throughput: when stream tasks ask for 40% and 100%
of the cluster, throughput drops by 0.8% and 1.1%, respectively,
compared to optimal (0%). Similarly, increasing inference resources
in the LDA application from 0% to 100% does not affect latency in
Neptune (Figure 11b). When inference tasks demand 40% and 100%
of the cluster, throughput drops by 17% and 26%, respectively.

Memory overhead.We also explore the effect of task preemption
inNeptune by measuring memory usage. In Figure 12, we compare
with plain Neptunewithout preemption (Neptune-NPRE). As shown
in Figure 12a, when YSB streaming tasks are first introduced in the
system, the task scheduler schedules fewer batch tasks. Memory
usage drops by 25% for the 99th percentile for Neptune, both with
and without preemption. It then steadily increases in line with the
stream job demands. Across the full range, however, Neptune’s
memory usage is no more than 2% for the 99th percentile compared
to Neptune-NPRE. Similarly for the ML training/inference applica-
tion, even though there is no drop in memory usage, the increase is
nomore than 1.5% for the 99th percentile compared toNeptune-NPRE

(Figure 12b). We conclude that Neptune’s preemption mechanism
only introduces a modest memory overhead.

Memory pressure. We investigate the effectiveness of Neptune
under memory pressure. For this, we synthetically create a memory-
constrained environment. We use the same 4 Azure VMs, and we
reduce each worker’s JVM size to 1 GB. We use a single YSB stream
instance with 30% of the cluster resources and an increasing num-
ber of joins, joining millions of rows as the batch workload. The
worker’s average memory utilization increases from 20% to 40%
and 80% with 2, 4, and 6 joins, respectively.

Figure 13 shows the end-to-end latency for the streaming job
across different scheduling policies. With 2 concurrent joins and
low memory pressure, all policies achieve similar mean latencies of
around 100 ms. As we increase the number of joins to 6 and 8, Nep-
tune achieves 99th latencies that are 1.9× and 3× lower than FIFO

(2.8× and 1.7× lower than KILL), respectively. NEP-LB, ignoring in-
dividual task locality preferences, performs similar to Neptune in
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Figure 14: Neptune task suspension mechanism latency breakdown using TPC-H queries

this context. Using real-time metrics, Neptune manages to predict
accurately the memory pressure of each individual executor, thus
reducing memory bottlenecks to obtain lower tail latencies.

7.4 Task suspension

Nextwe evaluateNeptune’s coroutine-based task suspensionmech-
anism using the TPC-H workload using solely batch tasks [55].

Suspension latency. We first run the TPC-H benchmark on a
cluster of 4 Azure VMs and measure the task duration distribu-
tion for each query. Using a custom TaskEventListener, we re-
run the benchmark and continuously transition tasks from PAUSED

to RESUMED states until completion, while measuring the latency
for each transition. As coroutine tasks can yield after each record
iteration, a task that does heavy per-record computations takes
longer to get suspended. By continuously triggering yield points,
we measure the worst case scenario in terms of transition latency
for each query task.

Figure 14 shows the task runtime and pause/resume latency
distributions for all 22 queries, and whiskers represent the 5th and
99th percentiles, respectively. We observe that, although queries
have different task runtimes ranging from 100s of milliseconds
to 10s of seconds, Neptune pauses and resumes tasks with sub-
millisecond latencies.

An exception is Q14 with a 75th percentile pause latency of
100 ms. This query has no filters other than on the date, which is the
attribute by which data is partitioned. This means that the Parquet
reader has to consume full partitions before the corresponding
Spark tasks can yield. The less selective the query, the longer it
takes to consume each partition (less/no filters are pushed down
to the reader), which results in increased suspension times. This
problem can be mitigated by repartitioning the table, increasing
the task parallelism, or improving readers to be more fine-grained
which is orthogonal to our approach.

Coroutines vs. thread synchronization. Finally, we compare
Neptune’s coroutine-based task preemption with an alternative
approach based on traditional thread synchronization (ThreadSync).
Thread synchronization relies on the preemption performed by the
OS scheduler and is implemented inNeptune using threadwait and
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Figure 15: Latency of task suspension mechanisms

notify calls. We compare Coroutineswith ThreadSync running TPC-H
queries on a 32-core Azure VM with the custom TaskEventListener

alternating tasks from PAUSED to RESUMED states, while increasing
the parallelism of the executor from 2 to 64.

Figure 15 shows the results for the first TPC-H query (with simi-
lar behavior for the rest). With up to 8 parallel tasks, both mecha-
nisms have low latency. As the parallelism increases, however, the
overhead of ThreadSync rises: the 99th percentile of yield latency
increases by 2.6× for 16 threads compared to Coroutines. As the OS
scheduler must continuously arbitrate between wait/run queues,
ThreadSync exhibits worse scaling compared to coroutines, which
bypass the OS.

Note that each stream task typically has a runtime of a few 10s
of milliseconds. At the same time, the gains from coroutine task
suspension compared to thread synchronization are in the range of a
fewmilliseconds and can be as high as 600 ms for the 99th percentile
with 64 threads (omitted from Figure 15). Therefore, the overhead of
suspending a task with thread synchronization can be a significant
part of a stream task’s runtime (up to orders of magnitude higher
in the worst case), considerably affecting its latency. As stream
jobs consist of multiple tasks, potentially triggering 100s of task
suspensions, such overheads accumulate.

8 Related Work

We compare Neptune to existing systems, focusing on distributed
dataflow execution engines and scheduling policies.
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Dataflow execution engines. There are numerous dataflow
frameworks for batch [41, 57, 61] or streaming [7, 11, 16] computa-
tion, which expose a variety of programming models and provide
scalability and fault-tolerance [23, 33, 60]. The recent demand for
hybrid stream/batch applications resulted in several unified APIs
on top of those frameworks [1, 16, 61], such as Spark’s Structured
Streaming [12], Flink’s Table API [3], or external layers such as
Apache Beam [2]. Unlike Neptune, these systems only provide log-
ical abstractions for stream/batch jobs without a unified execution
engine that is aware of job requirements.

SnappyData [40] is a unified engine that supports streaming, an-
alytics and transactions by integrating Spark with a transactional
main-memory database. To realize low-latency transactions, it by-
passes the Spark scheduler. Instead, Neptune builds on Spark’s
execution engine to achieve low latency for arbitrary jobs.

Several recent systems in the context of databases [35, 48] and
machine learning [49] have used coroutines to reduce the latency of
operations, butNeptune is the first system to do so for a distributed
dataflow framework.

Scheduling Policies. A significant amount of research work
has investigated the problem of scheduling jobs in large clusters.
Mesos [30], YARN [56], and Borg [58] are general-purpose resource
managers that schedule jobs from different frameworks and imple-
ment resource sharing policies [5, 6, 28]. They lack, however, an
understanding of the application structure and task dependencies.
Jobs with shorter task durations [43] led to the development of dis-
tributed job schedulers such as Sparrow [44] and Apollo [15]. These
schedulers assume independent jobs and thus perform distributed
scheduling across jobs. In Neptune, we use a centralized scheduler
to target stream/batch applications with jobs that share state and
dependencies. Their requirements cannot be handled efficiently by
application-agnostic schedulers.

More critical jobs can be prioritized with static policies such as
fair scheduling [6], but this does not avoid queuing delays. Sched-
ulers such as Mercury [36], Yaq [50], and Hawk [25] prioritize tasks
based on runtime estimates. Neptune could also exploit estimates
to derive task priorities. Even if such estimates are available and
accurate [45], they rely on the assumption that shorter tasks are of
a higher priority, which is not always the case.

Existing preemptive schedulers can minimize queuing. Non-
work-preserving schedulers require task resubmission, which re-
sults in loss of progress; work-preserving ones [17, 24] require
coarse-grained checkpointing of state, which leads to increased
reaction times (in the order of seconds). Therefore, existing pre-
emptive schedulers either waste cluster resources or fail to provide
the millisecond reaction times needed in unified execution engines.

Finally, schedulers such as MEDEA [27] optimize the placement
of long-running executors in a cluster given a set of constraints. In
Neptune, we dynamically prioritize tasks within executors once
they are already placed. In fact, Neptune could utilize placement
constraints to ensure high-quality container placement in shared
compute clusters.

9 Conclusion

Motivated by emerging trends in dataflow systems, we presented
Neptune, an execution framework to support stream/batch applica-
tions that share executors.Neptune dynamically prioritizes latency-
critical jobs, while effectively utilizing application resources. With
its suspendable tasks based on coroutines, the design of Neptune
paves the way for truly unified stream/batch applications.
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