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Computing precise (fully �ow- and context-sensitive) and exhaustive (as against demand-driven) points-to in-

formation is known to be computationally expensive. Prior approaches to �ow- and context-sensitive points-

to analysis (FCPA) have not scaled; for top-down approaches, the problem centers on repeated analysis of the

same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not

scaled while preserving precision. Bottom-up approaches for points-to analysis require modelling unknown

pointees accessed indirectly through pointers that may be de�ned in the callers.

We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to rela-

tions as memory updates and generalizes them using the counts of indirection levels leaving the unknown

pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure sum-

maries in terms of memory updates and control �ow between them. Their compactness is ensured by the

following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes

redundant memory updates and minimizes control �ow (without over-approximating data dependence be-

tweenmemory updates), and call inlining enhances the opportunities of these optimizations. We devise novel

operations and data �ow analyses for these optimizations.

Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability

in program analysis is not the amount of data but the amount of control �ow that it may be subjected to in

search of precision. The e�ectiveness of GPGs lies in the fact that they discard asmuch control �ow as possible

without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason

why the GPGs are very small even for main procedures that contain the e�ect of the entire program. This

allows our implementation to scale to 158kLoC for C programs.

At a more general level, GPGs provide a convenient abstraction of memory and memory transformers in

the presence of pointers. Future investigations can try to combine it with other abstractions for static analyses

that can bene�t from points-to information.
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1 INTRODUCTION

Points-to analysis discovers information about indirect accesses in a program. Its precision in-
�uences the precision and scalability of client program analyses signi�cantly. Computationally
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intensive analyses such as model checking are noted as being ine�ective on programs containing
pointers, partly because of imprecision of points-to analysis [2].

1.1 The Context of this Work

We focus on exhaustive as against demand-driven [4, 8, 27, 28] points-to analysis. A demand-
driven points-to analysis computes points-to information that is relevant to a query raised by a
client analysis; for a di�erent query, the points-to analysis needs to be repeated. An exhaustive
analysis, on the other hand, computes all points-to information which can be queried later by a
client analysis; multiple queries do not require points-to analysis to be repeated. For precision of
points-to information, we are interested in full �ow- and context-sensitive points-to analysis. A
�ow-sensitive analysis respects the control �ow and computes separate data �ow information at
each program point. This matters because a pointer could have di�erent pointees at di�erent pro-
grampoints because of rede�nitions. Hence, a �ow-sensitive analysis provides more precise results
than a �ow-insensitive analysis but can become ine�cient at the interprocedural level. A context-
sensitive analysis distinguishes between di�erent calling contexts of procedures and restricts the
analysis to interprocedurally valid control �ow paths (i.e. control �ow paths from program entry
to program exit in which every return from a procedure is matched with a call to the procedure
such that all call-return matchings are properly nested). A fully context-sensitive analysis does
not lose precision even in the presence of recursion. Both �ow- and context-sensitivity enhance
precision and we aim to achieve this without compromising e�ciency.
A top-down approach to interprocedural context-sensitive analysis propagates information from

callers to callees [36] e�ectively traversing the call graph top-down. In the process, it analyzes a
procedure each time a new data �ow value reaches it from some call. Several popular approaches
fall in this category: the call-stringsmethod [25], its value-based variants [13, 20] and the tabulation-
based functional method [21, 25]. By contrast, bottom-up approaches [3, 5, 7, 11, 18, 22, 25, 30–36]
avoid analyzing a procedure multiple times by constructing its procedure summary which is used
to incorporate the e�ect of calls to the procedure. E�ectively, this approach traverses the call graph
bottom-up.1 A �ow- and context-sensitive interprocedural analysis using procedure summaries is
performed in two phases: the �rst phase constructs the procedure summaries and the second phase
applies them at the call sites to compute the desired information.

1.2 Our Contributions

This paper advocates a new form of bottom-up procedure summaries, called the generalized points-
to graphs (GPGs) for �ow- and context-sensitive points-to analysis. GPGs represent memory trans-
formers (summarizing the e�ect of a procedure) and contain GPUs (generalized points-to updates)
representing individual memory updates along with the control �ow between them. GPGs are
compact—their compactness is achieved by a careful choice of a suitable representation and a se-
ries of optimizations as described below.

(1) Our representation of memory updates, called the generalized points-to update (GPU) leaves
accesses of unknown pointees implicit without losing precision.

(2) GPGs undergo aggressive optimizations that are applied repeatedly to improve the compact-
ness of GPGs incrementally. These optimizations are similar to the optimizations performed

1We use the terms top-down and bottom-up for traversals over a call graph; traversals over a control �ow graph are

termed forward and backward. Hence these terms are orthogonal. Thus, both a forward data �ow analysis (e.g. available

expressions analysis) and a backward data �ow analysis (e.g. live variables analysis) could be implemented as a top-down

or a bottom-up analysis at the interprocedural level.
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by compilers and are governed by the following possibilities of data dependence between
two memory updates (illustrated in Example 1 in Section 2.2)
• Case A. The memory updates have a data dependence between them. It could be
– Case 1. a read-after-write (RaW) dependence,
– Case 2. a write-after-read (WaR) dependence, or
– Case 3. a write-after-write (WaW) dependence.
A read-after-read (RaR) dependence is irrelevant.
• Case B. The memory updates do not have a data dependence between them.
• Case C.More information is needed to �nd out whether the memory updates have a data
dependence between them.

These cases are exploited by the optimizations described below:
• Strength reduction optimization exploits case A1. It simpli�es memory updates by using
the information from other memory updates to eliminate data dependence between them.
• Redundancy elimination optimizations handle cases A2, A3, and B. They remove redun-
dant memory updates (case A3) and minimize control �ow (case B). Case A2 is an anti-
dependence and is modelled by eliminating control �ow and ensuring that it is not viewed
as a RaW dependence (Example 6 in Section 3.1).
• Call inlining optimization handles case C by progressively providing more information. It
inlines the summaries of the callees of a procedure. This enhances the opportunities of
strength reduction and redundancy elimination and enables context-sensitive analysis.
• Type-based non-aliasing. We use the types speci�ed in the program to resolve some addi-
tional instances of case C into case B.

Our measurements suggest that the real killer of scalability in program analysis is not the
amount of data but the amount of control �ow that it may be subjected to in search of pre-
cision. Our optimizations are e�ective because they eliminate data dependence wherever
possible and discard irrelevant control �ow without losing precision. Flow and context in-
sensitivity discard control �ow but over-approximate data dependence causing imprecision.

(3) Interleaving call inlining and strength reduction of GPGs facilitates a novel optimization that
computes �ow- and context-sensitive points-to information in the �rst phase of a bottom-up
approach. This obviates the need for the usual second phase.

In order to perform these optimizations:

• We de�ne operations of GPU composition (to create new GPUs by eliminating data depen-
dence between two GPUs), and GPU reduction (to eliminate the data dependence of a GPU
with the GPUs in a given set).
• We propose novel data �ow analyses such as two variants of reaching GPUs analysis (to
identify the e�ects of memory updates reaching a given statement) and coalescing analysis
(to eliminate the redundant control �ow in the GPG).
• We handle recursive calls by re�ning the GPGs through a �xed-point computation. Calls
through function pointers are proposed to be handled through delayed inlining.

At a practical level, ourmain contribution is amethod of �ow-sensitive, �eld-sensitive, and context-
sensitive exhaustive points-to analysis of C programs that scales to large real-life programs.
The core ideas of GPGs have been presented before [6]. This paper provides a complete treat-

ment and enhances the core ideas signi�cantly. We describe our formulations for a C-like language.

1.3 The Organization of the Paper

Section 2 describes the limitations of past approaches as a background to motivate our key ideas
that overcome them. Section 3 introduces the concept of generalized points-to updates (GPUs)
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that form the basis of GPGs and provides a brief overview of GPG construction through a moti-
vating example. Section 4 describes the strength-reduction optimization performed on GPGs by
formalizing the operations such as GPU composition and GPU reduction and de�ning data �ow
equations for reaching GPUs analyses. Section 5 describes redundancy elimination optimizations
performed on GPGs. Section 6 explains the interprocedural use of GPGs by de�ning call inlining
and shows how recursion is handled. Section 7 shows howGPGs are used for performing points-to
analysis. Section 8 describes the handling of structures, unions and the heap. Section 9 describes
the handling of function pointers. Section 10 presents empirical evaluation on SPEC benchmarks
and Section 11 describes related work. Section 12 concludes the paper.

2 EXISTING APPROACHES AND THEIR LIMITATIONS

This section begins by reviewing some basic concepts and then describes the challenges in con-
structing procedure summaries for points-to analysis. It concludes by describing the limitations of
the past approaches and outlining our key ideas. For further details of related work, see Section 11.

2.1 Basic Concepts

In this section we describe the nature of memory, memory updates, and memory transformers.

2.1.1 Abstract and Concrete Memory. There are two views of memory and operations on it.
Firstly we have the concrete memory view (or semantic view) corresponding to run-time opera-
tions where a memory location always points to exactly one memory location or NULL (which is
a distinguished memory location). Unfortunately this is, in general, statically uncomputable. Sec-
ondly, as is traditional in program analysis, we can consider an abstract view of memory where an
abstract location represents one or more concrete locations; this con�ation and the uncertainty of
conditional branches means that abstract memory locations can point to multiple other locations—
as in the classical points-to graph. These views are not independent and abstract operations must
over-approximate concrete operations to ensure soundness. Formally, let L and P ⊆ L denote the
sets of locations and pointers respectively. The concrete memory after a pointer assignment is a
function M : P → L. The abstract memory after a pointer assignment is a relation M ⊆ P × L. In
either case, we view M as a graph with L as the set of nodes. An edge x → y in M is a points-to
edge indicating that x ∈ P contains the address of y ∈ L. Unless noted explicitly, all subsequent
references to memory locations and transformers refer to the abstract view.
The (abstract) memory associated with a statement s is an over-approximation of the concrete

memory associated with every occurrence of s in the same or di�erent control �ow paths.

2.1.2 Memory Transformer. Aprocedure summary for points-to analysis should representmem-
ory updates in terms of copying locations, loading from locations, or storing to locations. It is called
a memory transformer because it updates the memory before a call to the procedure to compute
the memory after the call. Given a memoryM and a memory transformer ∆, the updated memory
M ′ is computed by M ′ = ∆(M ) as illustrated in Example 2 (Section 2.3).

2.1.3 Strong andWeak Updates. In concretememory, every assignment overwrites the contents
of thememory location corresponding to the LHS of the assignment. However, in abstract memory,
we may be uncertain as to which of several locations a variable (say p) points to. Hence an indirect
assignment such as ∗p = &x does not overwrite any of its pointees, but merely adds x to the
possible pointees. This is a weak update. Sometimes however, there is only one possible abstract
location described by the LHS of an assignment, and in this case we may, in general, replace the
contents of this location. This is a strong update. There is just one subtlety which we return to
later: prior to the above assignment we may only have one assignment to p (say p = &a). If
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this latter assignment dominates the former, then a strong update is appropriate. But if the latter
assignment only appears on some control �ow paths to the former, then we say that the read of
p in ∗p = &x is upwards exposed (live on entry to the current procedure) and therefore may have
additional pointees unknown to the current procedure. Thus, the criterion for a strong update in an
assignment is that its LHS references a single location and the location referenced is not upwards
exposed (for more details, see Section 4.3.2). An important special case is that a direct assignment
to a variable (e.g. p = &x ) is always a strong update.
When a value is stored in a location, we say that the location is de�ned without specifying

whether the update is strong or weak and make the distinction only where required.

2.2 Challenges in Constructing Procedure Summaries for Points-to Analysis

In the absence of pointers, data dependence between memory updates within a procedure can be
inferred by using variable names without requiring any information from the callers. In such a
situation, procedure summaries for some analyses, including various bit-vector data �ow analyses
(such as live variables analysis), can be precisely represented by constant gen and kill sets or graph
paths discovered using reachability [15]. In the presence of pointers, these (bit-vector) summaries
can be constructed using externally supplied points-to information.
Procedure summaries for points-to analysis, however, cannot be represented in terms of con-

stant gen and kill sets because the association between pointer variables and their pointee loca-
tions could change in the procedure and may depend on the aliases between pointer variables
established in the callers of the procedure. Often, and particularly for points-to analysis, we have
a situation where a procedure summary must either lose information or retain internal details
which can only be resolved when its caller is known.

Example 1. Consider procedure f on the right. For many calls, f () simply returns &a but until

01 int a,b,∗x,∗∗p;

02 int ∗ f() {

03 x = &a;

04 ∗p = &b;

05 return x;

06 }

we are certain that ∗p does not alias with x , we cannot perform this
constant-propagation optimization. We say that the assignment 04
blocks this optimization. There are four possibilities:

• If it is known that ∗p and x always alias then we can optimize f

to return &b.
• If it is known that ∗p and x alias on some control �ow paths con-
taining a call to f but not on all, then the procedure returns &a
in some cases and &b in other cases. While procedure f cannot be optimized to do this, a
static analysis can compute such a summary.
• If it is known that they never alias we can optimize this code to return &a.
• If nothing is known about the alias information, then to preserve precision, wemust retain
this blocking assignment in the procedure summary for f .

The �rst two situations correspond to case (A1) in item (2) in Section 1.2. The third and the
fourth situations correspond to cases (B) and (C) respectively.
The key idea is that information from the calling context(s) can determine whether a poten-

tially blocking assignment really blocks an optimization or not. As such we say that we postpone
optimizations that we would like to do until it is safe to do them.

The above example illustrates the following challenges in constructing �ow-sensitive memory
transformers: (a) representing indirectly accessed unknown pointees, (b) identifying blocking as-
signments and postponing some optimizations, and (c) recording control �ow betweenmemory up-
dates so that potential data dependence between them is neither violated nor over-approximated.
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Thus, the main problem in constructing �ow-sensitive memory transformers for points-to anal-
ysis is to �nd a representation that is compact and yet captures memory updates and the minimal
control �ow between them succinctly.

2.3 Limitations of Existing Procedure Summaries for Points-to Analysis

A common solution for modelling indirect accesses of unknown pointees in a memory transformer
is to use placeholders2 which are pattern-matched against the input memory to compute the output
memory. Here we describe two broad approaches that use placeholders.
The �rst approach, which we call a multiple transfer functions (MTF) approach, proposed a pre-

cise representation of a procedure summary for points-to analysis as a collection of partial transfer
functions (PTFs) [3, 11, 32, 35].3 Each PTF corresponds to a combination of aliases that might oc-
cur in the callers of a procedure. Our work is inspired by the second approach, which we call a
single transfer function (STF) approach [18, 30, 31]. This approach does not customize procedure
summaries for combinations of aliases. However, the existing STF approach fails to be precise. We
illustrate this approach and its limitations to motivate our key ideas using Figure 1. It shows a
procedure and two memory transformers (∆′ and ∆′′) for it and the associated input and output
memories. The e�ect of ∆′ is explained in Example 2 and that of ∆′′, in Example 3.

Example 2. Transformer ∆′ is constructed by the STF approach [18, 30, 31]. It can be viewed
as an abstract points-to graph containing placeholders ϕi for modelling unknown pointees of
the pointers appearing in ∆′. For example, ϕ1 represents the pointees of y and ϕ2 represents
the pointees of pointees of y, both of which are not known in the procedure. The placeholders
are pattern matched against the input memory (e.g. M1 or M2) to compute the corresponding
output memory (M ′1 andM

′
2 respectively). A crucial di�erence between a memory and amemory

transformer is: a memory is a snapshot of points-to edges whereas a memory transformer needs
to distinguish the points-to edges that are generated by it (shown by thick edges) from those
that are carried forward from the input memory (shown by thin edges).
The two accesses ofy in statements 1 and 3 may or may not refer to the same location because

of a possible side-e�ect of the intervening assignment in statement 2. If x and y are aliased in
the input memory (e.g. inM2), statement 2 rede�nes the pointee of y and hence p and q will not
be aliased in the output memory. However, ∆′ uses the same placeholder for all accesses of a
pointee. Further, ∆′ also suppresses strong updates because the control �ow ordering between
memory updates is not recorded. Hence, points-to edge s−→c in M ′1 is not deleted. Similarly,

points-to edge r −→a inM ′2 is not deleted and q spuriously points to a. Additionally, p spuriously

points-to b. Hence, p and q appear to be aliased in the output memoryM ′2.

The use of control �ow ordering between the points-to edges that are generated by a memory
transformer can improve its precision as shown by the following example.

Example 3. In Figure 1, memory transformer ∆′′ di�ers from ∆′ in two ways. Firstly it uses a
separate placeholder for every access of a pointee to avoid an over-approximation of memory
(e.g. placeholders ϕ1 and ϕ2 to represent ∗y in statement 1, and ϕ5 and ϕ6 to represent ∗y in
statement 3). This, along with control �ow, allows strong updates thereby killing the points-to
edge r −→a and hence q does not point to a (as shown in M ′′2 ). Secondly, the points-to edges

2Placeholders have also been known as external variables [18, 30, 31] and extended parameters [32]. They are parameters

of the procedure summary and not necessarily of the procedure for which the summary is constructed.
3In level-by-level analysis [35], multiple PTFs are combined into a single function with a series of condition checks for

di�erent points-to information occurring in the calling contexts.
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Procedure f Example 1 Example 2

Control �ow graph Input MemoryM1 Input MemoryM2

Startf

p = ∗y
∗x = q
q = ∗y

1
2
3

Endf

y

q

x

r a

s c

b

y

x

q

r a

b

Memory Transformer ∆′
Output Memory
M ′1 = ∆′(M1)

Output Memory
M ′2 = ∆′(M2)

The memory

transformer ∆′ is

compact but imprecise

because it uses the same

placeholder for every

access of a pointee. Thus

it over-approximates the

memory.

p

y

q

x

ϕ1 ϕ2

ϕ3 ϕ4

p

y

q

x

r a

s c

b

p

y

x

q

r a

b

Memory Transformer ∆′′
Output Memory
M ′′1 = ∆′′(M1)

Output Memory
M ′′2 = ∆′′(M2)

The memory

transformer ∆′′ shows

that precision can be

improved by using a

separate placeholder for

every access of a

pointee. However, the

size of the memory

transformer increases.

p

y

q

x

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

2

1

3

p

y

q

x

r a

s c

b

///

p

y

x

q

r a

b

///

Fig. 1. An STF-style memory transformer ∆′ and its associated transformations. ∆′′ is its flow-sensitive

version. Unknown pointees are denoted by placeholders ϕi . Thick edges in a memory transformer represent
the points-to edges generated by it, other edges are carried forward from the input memory. Labels of the
points-to edges in ∆′′ correspond to the statements indicating the sequencing of edges. Edges that are killed

in the memory are struck o�.

generated by the memory transformer are ordered based on the control �ow of a procedure,
thereby adding some form of �ow-sensitivity which ∆′ lacks. To see the role of control �ow,
observe that if the points-to edge corresponding to statement 2 is considered �rst, then p and q
will always be aliased because the possible side-e�ect of statement 2 will be ignored.

The output memoriesM ′′1 andM ′′2 computed using ∆′′ are more precise than the correspond-
ing output memoriesM ′1 andM

′
2 computed using ∆′.

Observe that, although ∆′′ is more precise than ∆′, it uses a larger number of placeholders and
also requires control �ow information. This a�ects the scalability of points-to analysis.
A fundamental problemwith placeholders is that they use a low-level representation of memory

expressed in terms of classical points-to edges. Hence a placeholder-based approach is forced to
explicate unknown pointees by naming them, resulting in either a large number of placeholders
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Startд

r = &a
∗q = &m

01
02

q = &b03

e = ∗p
q = &e

04
05

Endд

Startf

p = &c
q = &d
d = &n

06
07
08

call g()09

∗q = &o10

Endf

Variables Types

m,n,o int

a,b,c,d,e int∗

p,q,r int∗∗

All variables are global

Fig. 2. A motivating example. Procedures are represented by their control flow graphs (CFGs).

(in the STF approach) or multiple PTFs (in the MTF approach). The need of control �ow ordering
further increases the number of placeholders in the former approach. The latter approach obviates
the need of ordering because the PTFs are customized for combinations of aliases.

2.4 Our Key Ideas

We propose a generalized points-to graph (GPG) as a representation for a memory transformer
of a procedure; special cases of GPGs also represent memory as a points-to relation. A GPG is
characterized by the following key ideas that overcome the two limitations described in Section 2.3.

• A GPG leaves the placeholders implicit by using the counts of indirection levels. Simple
arithmetic on the counts allows us to combine the e�ects of multiple memory updates.
• A GPG uses a �ow relation to order memory updates. An interesting property of the �ow
relation is that it can be compressed dramatically without losing precision and can be trans-
formed into a compact acyclic �ow relation in most cases, even if the procedure it represents
has loops or recursive calls.

Section 3 illustrates them using a motivating example and gives a big-picture view.

3 THE GENERALIZED POINTS-TO GRAPHS AND AN OVERVIEW OF THEIR

CONSTRUCTION

In this section, we de�ne a generalized points-to graph (GPG) which serves as our memory trans-
former. It is a graph with generalized points-to blocks (GPBs) as nodes which contain generalized
points-to updates (GPUs). The ideas and algorithms for de�ning and computing these three rep-
resentations of memory transformers can be seen as a collection of abstractions, operations, data
�ow analyses, and optimizations. Their relationships are shown in Figure 3. A choice of key ab-
stractions enables us to de�ne GPU operations which are used for performing three data �ow
analyses. The information computed by these analyses enables optimizations over GPGs.
This section presents an overview of our approach in a limited setting of ourmotivating example

of Figure 2. Towards the end of this section, Figure 8 �eshes out Figure 3 to list speci�c abstractions,
operations, analyses, and optimizations.

3.1 Defining a Generalized Points-to Graph (GPG)

We model the e�ect of a pointer assignment on an abstract memory by de�ning the concept of
generalized points-to update (GPU) in De�nition 1. We use the statement label s to capture weak
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GPG Optimizations

Data Flow Analyses over GPGs

GPU Operations

Abstractions

Fig. 3. Inter-relationships between ideas and algorithms for defining and computing GPUs, GPBs, and GPGs.
Each layer is defined in terms of the layers below it. Figure 8 fleshes out this picture by listing specific
abstractions, operations, data flow analyses, and optimizations.

Given variablesx andy and i > 0, j ≥ 0, a generalized points-to update (GPU)x
i |j
−−→s y represents

a memory transformer in which all locations reached by i − 1 indirections from x in the
abstract memory are de�ned by the pointer assignment labelled s, to hold the address of all
locations reached by j indirections from y. The pair i |j represents indirection levels and is
called the indlev of the GPU (i is the indlev of x , and j is the indlev of y). The letter γ is used
to denote a GPU unless named otherwise.

Definition 1. Generalized Points-to Update.

versus strong updates and for computing points-to information.4 De�nition 1 gives the abstract

semantics of a GPU. The concrete semantics of a GPU x
i |j
−−→s y can be viewed as the following C-

style pointer assignment with i − 1 dereferences of x5 and j dereferences of &y:

∗ ∗ . . . ∗ x = ∗ ∗ . . . ∗&y

(i − 1) j

A GPU γ : x
i |j
−−→s y generalizes a points-to edge6 from x to y with the following properties:

• The direction indicates that the source x with indlev i identi�es the locations being de�ned
and the target y with indlev j identi�es the locations whose addresses are read.
• The GPU γ abstracts away i − 1 + j placeholders.
• The GPU γ represents may information because di�erent locations may be reached from x

and y along di�erent control �ow paths reaching the statement s in the procedure.

We refer to a GPU with i = 1 and j = 0 as a classical points-to edge as it encodes the same informa-
tion as edges in classical points-to graphs.

4We omit the statement labels in GPUs at some places when they are not required.
5Alternatively, i dereferences of &x . We choose i − 1 dereference from x because the left-hand side cannot be &x .
6Although a GPU can be drawn as an arrow just like a points-to edge, we avoid the term ‘edge’ for a GPU because of the

risk of confusion with a ‘control �ow edge’ in a GPG.
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Pointer
GPU

Relevant memory graph

assignment after the assignment

s : x = &y x
1 |0
−−−→s y x y

s : x = y x
1 |1
−−−→s y x y

s : x = ∗y x
1 |2
−−−→s y x y

s : ∗x = y x
2 |1
−−−→s y x y

Fig. 4. GPUs for basic pointer assignments in C. In the memory graphs, a double circle indicates the location
whose address is being assigned, a thick arrow shows the generated edges. Unnamed nodes may represent

multiple pointees (implicitly representing placeholders).

A generalized points-to block (GPB), denoted δ , is a set of GPUs abstracting memory updates.
A generalized points-to graph (GPG) of a procedure, denoted ∆, is a graph (N ,E) whose nodes
in N are labelled with GPBs and edges in E abstract the control �ow of the procedure. By
common abuse of notation, we often con�ate nodes and their GPB labellings.

Definition 2. Generalized Points-to Blocks and Generalized Points-to Graphs.

Example 4. The pointer assignment in statement 01 in Figure 2 is represented by a GPU r
1 |0
−−→
01

a

where the indirection levels (1|0) appear above the arrow and the statement number (01) appears
below the arrow. The indirection level 1 in “1|0” indicates that r is de�ned by the assignment
and the indirection level 0 in “1|0” indicates that the address of a is read. Similarly, statement 02

is represented by a GPU q
2 |0
−−→
02

m. The indirection level 2 for q indicates that some pointee of q is

being de�ned and the indirection level 0 indicates that the address ofm is read.

Figure 4 presents the GPUs for basic pointer assignments in C. (To deal with C structs and
unions, GPUs are augmented to encode lists of �eld names—for details see Figure 18).
GPUs are useful rubrics of our abstractions because they can be composed to construct new

GPUs with smaller indirection levels whenever possible thereby converting them progressively to
classical points-to edges. The composition between GPUs eliminates the data dependence between
them and thereby, the need for control �ow ordering between them. Section 3.2 brie�y describes
the operations of GPU composition and GPU reduction which are used for the purpose; they are
de�ned formally in later sections.
A GPU can be seen as a atomic transformer which is used as a building block for the generalized

points-to graph (GPG) as a memory transformer for a procedure (De�nition 2). The GPG for a
procedure di�ers from its control �ow graph (CFG) in the following way:

• The CFG could have procedure calls whereas the GPG does not.7 Besides, a GPG is acyclic
in almost all cases, even if the procedure it represents has loops or recursive calls.
• The GPBs which form the nodes in a GPG are analogous to the basic blocks of a CFG except
that the basic blocks are sequences of statements but GPBs are (unordered) sets of GPUs.

7In the presence of recursion and calls through function pointers (Sections 6.2 and 9), we need an intermediate form of

GPG called an incomplete GPG containing unresolved calls that are resolved when more information becomes available.
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A concrete semantic reading of a GPB δ is de�ned in terms of the semantics of executing a
GPU (De�nition 1). Execution of δ implies that the GPUs in δ are executed non-deterministically
in any order. This gives a correct abstract reading of a GPB as a may property. But a stronger
concrete semantic reading also holds as a must property: Let δ contain GPUs corresponding to

some statement s . De�ne Xs ⊆ δ by Xs = {x
i |j
−−→s y ∈ δ }, Xs , ∅. Then, whenever statement s is

reached in any execution, at least one GPU in Xs must be executed. This semantics corresponds to
that of the points-to information generated for a statement in the classical points-to analysis. This
gives GPBs their expressive power—multiple GPUs arising from a single statement, produced by
GPU-reduction (see later), represent may-alternative updates, but one of thesemust be executed.8

Example 5. Consider a GPB {γ 1 :x
1 |0
−−→
11

a,γ 2 :x
1 |0
−−→
11

b,γ 3 :y
1 |0
−−→
12

c,γ 4 :z
1 |0
−−→
13

d ,γ 5 :t
1 |0
−−→
13

d , }. After ex-

ecuting this GPB (abstractly or concretely) we know that the points-to sets of x is overwritten to
become {a,b} (i.e. x de�nitely points to one of a and b) because GPUs γ 1 and γ 2 both represent
statement 11 and de�ne a single location x . Similarly, the points-to set of y is overwritten to
become {c} because γ 3 de�nes a single location c in statement 12. However, this GPB causes the
points-to sets of z and t to include {d } (without removing the existing pointees) because γ 4 and
γ 5 both represent statement 13 but de�ne separate locations. Thus, x andy are strongly updated
(their previous pointees are removed) but z and t are weakly updated (their previous pointees
are augmented).

The above example also illustrates how GPU statement labels capture the distinction between
strong and weak updates.
Themay property of the absence of control �ow between the GPUs in a GPB allows us to model

a WaR dependence as illustrated in the following example:

Example 6. Consider the code snippet on the right. There is a WaR data dependence between

01 y = x;

02 x = &a;

statements 01 and 02. If the control �ow is not maintained, the statements could
be executed in the reverse order and y could erroneously point to a.

We construct a GPB {y
1 |1
−−→
01

x ,x
1 |0
−−→
02

a} for the code snippet. The may property of this GPB

ensures that there is no data dependence between these GPUs. The execution of this GPB in

the context of the memory represented by the GPU x
1 |0
−−→
12

b, computes the points-to information

{y−→b,x −→a}. It does not compute the erroneous points-to information y−→a thereby preserving

the WaR dependence. Thus, WaR dependence can be handled without maintaining control �ow.

3.2 An Overview of GPG Operations

Figure 5 lists the GPG operations based on the concept of generalized points-to updates (GPUs).
Each layer is de�ned in terms of the layers below it. For each operation, Figure 5 describes the
types of its operands and result, and lists the section in which the operation is de�ned.

3.2.1 GPU Composition. In a compiler, the sequence p = &a; ∗p = x is usually simpli�ed to
p = &a;a = x to facilitate further optimizations. Similarly, the sequence p = &a;q = p is usually
simpli�ed to p = &a;q = &a. While both simpli�cations are forms of constant propagation, they
play rather di�erent roles, and in the GPG framework, are instances of (respectively) SS and TS

variants of GPU composition (Section 4.2).

8A subtlety is that a GPB δ may contain a spurious GPU that can never be executed because the �ow functions of points-to

analysis are non-distributive [15].
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A generalized points-to update (GPU) γ :x
i |j
−−→s y Sec

. 3.
1

GPU composition γ 1◦
τγ 2

◦τ : γ × γ → γ (partial function)
Sec

. 4.
2

GPU reduction γ ◦R

◦ : γ × R → 2γ
Sec

. 4.
3

Fig. 5. A hierarchy of core operations involving GPUs. Each operation is defined in terms of the layers below
it. The set of GPUs reaching a GPU γ (computed using the reaching GPUs analyses of Sections 4.4 and 4.5)
is denoted by R. By abuse of notation, we use γ , δ , and R also as types to indicate the signatures of the

operations. The operator “◦ ” is overloaded and can be disambiguated using the types of the operands.

Suppose a GPUγ 1 precedesγ 2 on some control �ow path. If there is a RaW dependence between
γ 1 andγ 2 then, a GPU compositionγ 2 ◦

τγ 1 computes a newGPUwhere τ is SS or TS. The resulting
GPUγ 3 is a simpli�ed version of the consumer GPUγ 2 obtained by using the points-to information
in the producer GPU γ 1 such that:

• The indlev of γ 3 (say i |j) does not exceed that of γ 2 (say i ′|j ′), i.e. i ≤ i ′ and j ≤ j ′. The two
GPUs γ 2 and γ 3 are equivalent in the context of GPU γ 1.
• The type of GPU composition (denoted τ ) is governed by the role of the common node (later
called the ‘pivot’) between γ 1 and γ 2. The forms of GPU composition important here are TS
and SS compositions. In TS composition, the pivot is the target of GPU γ 2 and the source of
γ 1, whereas in SS composition, the pivot is the source of both γ 1 and γ 2.

Both forms of GPU composition are partial functions—either succeeding with a simpli�ed GPU or
signalling failure. A comparison of indlevs allow us to determine whether a GPU composition is
possible; if so, simple arithmetic on indlevs allows us to compute the indlev of the resulting GPU.

Example 7. For statement sequence p = &a; ∗p = x , the consumer GPU γ 2 :p
2 |1
−−→
2

x (statement

2) is simpli�ed to γ 3 :a
1 |1
−−→
2

x by replacing the source p of γ 2 using the producer GPU γ 1 :p
1 |0
−−→
1

a

(statement 1). GPU γ 3 can be further simpli�ed to one or more points-to edges (i.e. GPUs with
indlev 1|0) when GPUs representing the pointees of x (the target of γ 3) become available.

The above example illustrates the following:

• Multiple GPU compositions may be required to reduce the indlev of a GPU to convert it to
an equivalent GPU with indlev 1|0 (a classical points-to edge).
• SS and TS variants of GPU composition respectively allow a source or target to be resolved
into a simpler form.

3.2.2 GPU Reduction. We generalize the above operation as follows. If we have a set RGIns
of GPUs (representing generalized-points-to knowledge from previous statements and obtained
from the reaching GPUs analyses of Sections 4.4 and 4.5) and a single GPU γ s ∈ δ s , representing a
GPU statement s , then GPU reduction γ s ◦RGIns constructs a set of one or more GPUs, all of which
correspond to statement s . This is considered as the information generated for statement s and is
denoted by RGGens . It is a union of all such sets created for every GPUγ s ∈ δ s and is semantically
equivalent to δ s in the context of RGIns and, as suggested above, may bene�cially replace δ s .
GPU reduction plays a vital role in constructing GPGs in two ways. First, inlining the GPG

of a callee procedure and performing GPU reduction eliminates procedure calls. Further, GPU
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reduction helps in removing redundant control �ow wherever possible and resolving recursive
calls. In particular, a GPU reduction γ s ◦RGIns eliminates the RaW data dependence of γ s on
RGIns thereby eliminating the need for a control �ow between γ s and the GPUs in RGIns .

3.3 An Overview of GPG Construction

Recall that a GPG of procedure f (denoted ∆f ) is a graph whose nodes are GPBs (denoted δ )
abstracting sets of memory updates in terms of GPUs. The edges between GPBs are induced by
the control �ow of the procedure. ∆f is constructed using the following steps:

(1) creation of the initial GPG, and inlining optimized GPGs of called procedures9 within ∆f ,
(2) strength reduction optimization to simplify the GPUs in ∆f by performing reaching GPUs

analyses and transforming GPBs using GPU reduction based on the results of these analyses,
(3) redundancy elimination optimizations to improve the compactness of ∆f .

This section illustrates GPG construction intuitively using the motivating example in Figure 2. The
formal details of these steps are provided in later sections.

3.3.1 Creating a GPG and Call Inlining. In order to construct a GPG from a CFG, we �rst map
the CFG naively into a GPG by the following transformations:

• Non-pointer assignments and condition tests are removed (treating the latter as non-deterministic
control �ow). GPG �ow edges are induced from those of the CFG.
• Each pointer assignment labelled s is transliterated to its GPU (denoted γ s ). Figure 4 pre-
sented the GPUs for basic pointer assignments in C.
• A singleton GPB is created for every pointer assignment in the CFG.

Then procedure calls are replaced by the optimized GPGs of the callees. The resulting GPG may
still contain unresolved calls in the case of recursion and function pointers (Sections 6.2 and 9).

Example 8. The initial GPG for procedure д of Figure 2 is given in Figure 6. Each assignment
is replaced by its corresponding GPU. The initial GPG for procedure f is shown in Figure 7 with
the call to procedure д on line 09 replaced by its optimized GPG. Examples 9 to 11 in the rest of
this section explain the analyses and optimizations over ∆f and ∆д at an intuitive level.

3.3.2 Strength Reduction Optimization. This step simpli�es GPB δ s for each statement s by

• performing reaching GPUs analysis; this performs GPU reduction γ ◦RGIns for each γ ∈ δ s
which computes a set of GPUs that are equivalent to δ s , and
• replacing δ s by the resulting GPUs.

In some cases, the reaching GPUs analysis needs to block certain GPUs from participating in
GPU reduction (as in Example 1 in Section 2.2) to ensure the soundness of strength reduction.
When this happens, redundancy elimination optimizations need to know if the blocked GPUs
in a GPG are useful for potential composition after the GPG is inlined in the callers. These two
con�icting requirements (of ignoring someGPUs for strength reduction but remembering them for
redundancy elimination) are met by performing two variants of reaching GPUs analysis: �rst with
blocking, and then without blocking. There is no instance of blocking in our motivating example,
hence we provide an overview only of reaching GPUs analysis without blocking.
E�ectively, strength reduction simpli�es each GPB as much as possible given the absence of

knowledge of aliasing in the caller (Example 1 in Section 2.2). In the process, data dependences are
eliminated to the extent possible thereby paving way for redundancy elimination (Section 3.3.3).

9 This requires a bottom-up traversal of a spanning tree of the call graph starting with its leaf nodes.
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CFG Initial GPG ∆д
∆д after strength
reduction

∆д after redundancy
elimination

Startд

r = &a
∗q = &m

01
02

q = &b03

e = ∗p
q = &e

04
05

Endд

Startд

r a
1 |0

01
δ01

q m
2 |0

02
δ02

q b
1 |0

03
δ03

e p1 |2

04
δ04

q e
1 |0

05
δ05

Endд

Startд

r a
1 |0

01
δ 01

b
m

q

1 |0
02

2 |0
02

δ 02

q b
1 |0

03
δ 03

e p1 |2

04
δ 04

q e
1 |0

05
δ 05

Endд

Startд

r a

b m

q

1 |0
01

1 |0

02

2 |0
02

δ11

e p

q

1 |2

04
1 |0 05

δ12
δ16

Endд

δ16 =

{

r
1 |0
−−−→
01

a,e
1 |2
−−−→
04

p,q
1 |0
−−−→
05

e

}

Fig. 6. Constructing theGPG for procedureд (see Figure 2). The edgeswith double lines are not di�erent from
the control flow edges but have been shown separately because they are introduced to represent definition-

free paths for the sources of all GPUs that do not appear in GPB δ16. Thus, it is a definition-free path for the

sources (b,1) and (q,2) of GPUs b
1 |0
−−−→
02

m and q
2 |0
−−−→
02

m.

In order to reduce the indlevs of the GPUs within a GPB, we need to know the GPUs reaching
the GPB along all control �ow paths from the Start GPB of the procedure. We compute such GPUs
through a data �ow analysis in the spirit of the classical reaching de�nitions analysis except that
it is not a bit-vector framework because it computes sets of GPUs by processing pointer assign-
ments. This analysis annotates nodes δ s of the GPG with RGIns ,RGOuts ,RGGens and RGKills .
It computes RGIns as a union of RGOut of the predecessors of s . Then it computes RGGens by
performing GPU reduction γ ◦RGIns for each GPU γ ∈ δ s . By construction, all resulting GPUs are
equivalent to γ and have indirection levels that do not exceed that of γ . Because of the presence of
γ ∈ δ s , some GPUs in RGIns are killed and are not included in RGOuts . This process may require a
�xed-point computation in the presence of loops. Since this step follows inlining of GPGs of callee
procedures, procedure calls have already been eliminated and hence this analysis is e�ectively
intraprocedural.
There is one last bit of detail which we allude to here and explain in Section 4.3.2 where the

analysis is presented formally: For the start GPB of the GPG, RGIn is initialized to boundary de�ni-
tions10 that help track de�nition-free paths to identify variables that are upwards exposed (i.e. live

10The boundary de�nitions represent boundary conditions [1].
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CFG Initial GPG ∆f
∆f after strength
reduction

∆f after redundancy
elimination

Startf

p = &c
q = &d
d = &n

06
07
08

call g()09

∗q = &o10

Endf

Startf

p c
1 |0

06
δ06

q d
1 |0

07
δ07

d n
1 |0

08
δ08

r a

b m

q

1 |0
01

1 |0

02

2 |0
02

δ13

δ16

e p

q

1 |2

04
1 |0 05δ14

q o
2 |0

10
δ10

Endf

∆д

Startf

p c
1 |0

06
δ06

q d
1 |0

07
δ07

d n
1 |0

08
δ08

r a

b m

d

1 |0
01

1 |0

02

1 |0
02

δ13

δ16

e c

q

1 |1

04

1 |0 05δ14

e o
1 |0

10
δ10

Endf

Startf

r a

b

d

e

c

m

n

oq

p

1 |0
01

1 |0

05

1 |0

02
1 |0 02

1 |0
08

1 |0

06

1 |0

10

δ15

δ17

Endf

δ16 is as in Figure 6.

δ17 =
{
r

1 |0
−−−→
01

a,d
1 |0
−−−→
02

m,

d
1 |0
−−−→
08

n,p
1 |0
−−−→
06

c,

q
1 |0
−−−→
05

e ,e
1 |0
−−−→
10

o
}

Fig. 7. Constructing the GPG for procedure f (see Figures 2 and 6). GPBs δ13 through δ14 in the GPG are
the (renumbered) GPBs representing the inlined optimized GPG of procedure д. The statement labels in the

GPUs of these GPBs remain unchanged. Redundancy elimination of ∆f coalesces all of its GPBs creating
a new GPB δ15. GPB δ17 is required for modelling definition-free paths. The edges with double lines are
control flow edges shown separately because they are introduced to represent definition-free paths.

on entry to the procedure and therefore may have additional pointees unknown to the current pro-
cedure). This is required for making a distinction between strong and weak updates (Sections 2.1.3
and 4.3.2). For the purpose of this overview, we do not show boundary de�nitions in our example
below. They are explained in Example 16 in Section 4.3.2.

Example 9. We intuitively explain the reaching GPUs analysis for procedure д over its initial
GPG (Figure 6). The �nal result is shown later in Figure 11. Since we ignore boundary de�nitions
for now, the analysis begins with RGIn01 = ∅. Further, since we compute the least �xed point,
RGOut values are initialized to ∅ for all statements. The GPU corresponding to the assignment
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in statement 01 γ 1 :r
1 |0
−−→
01

a, forms RGOut01 and RGIn02. For statement 02, RGIn02 = {r
1 |0
−−→
01

a} and

RGGen02 = {q
2 |0
−−→
02

m}. RGKill02 = ∅ and RGOut02 is computed using RGIn02 which also forms

RGIn03 which is {r
1 |0
−−→
01

a,q
2 |0
−−→
02

m}. For statement 03, γ 3 :q
1 |0
−−→
03

b forms RGGen03. In the second

iteration of the analysis over the loop, we have RGIn01 = RGOut03 = {r
1 |0
−−→
01

a,q
2 |0
−−→
02

m,q
1 |0
−−→
03

b}.

RGIn02 is also the same set. Composing γ 2 : q
2 |0
−−→
02

m with q
1 |0
−−→
03

b in RGIn02 results in the GPU

b
1 |0
−−→
02

m. Also, the pointee information of q is available only along one path (identi�ed with

the help of boundary de�nitions that are not shown here) and hence the assignment causes a

weak update and the GPU q
2 |0
−−→
02

m is also retained. Thus, RGGen02 is now updated and now

contains two GPUs: b
1 |0
−−→
02

m and q
2 |0
−−→
02

m. This process continues until the least �xed point is

reached. Strength reduction optimization after reaching GPUs analysis gives the GPG shown in
the third columnof Figure 6 (the fourth column represents theGPG after redundancy elimination
optimizations and is explained in Section 3.3.3).

3.3.3 Redundancy Elimination Optimizations. This step performs the following optimizations
across GPBs to improve the compactness of a GPG.
First, we performdeadGPU elimination to remove redundant GPUs in δ s , i.e. those that are killed

along every control �ow path from s to the End GPB of the procedure. If a GPUγ < RGOutEnd , then
γ is removed from all GPBs. In the process, if a GPB becomes empty, it is eliminated by connecting
its predecessors to its successors.

Example 10. In procedure д of Figure 6, pointer q is de�ned in statement 03 but is rede�ned in

statement 05 and hence the GPU q
1 |0
−−→
03

b is eliminated. Hence the GPB δ 03 becomes empty and

is removed from the GPG of procedure д (∆д ). Note that GPU q
2 |0
−−→
02

m does not de�ne q but its

pointee and hence is not killed by statement 05. Thus it is not eliminated from ∆д .

For procedure f in Figure 7, the GPU q
1 |0
−−→
07

d in δ 07 is killed by the GPU q
1 |0
−−→
05

e in δ 14. Hence

the GPU q
1 |0
−−→
07

d is eliminated from the GPB δ 07 which then becomes empty and is removed from

the optimized GPG. Similarly, the GPU e
1 |1
−−→
04

c in GPB δ 14 is removed because e is rede�ned by

the GPU e
1 |0
−−→
10

o in the GPB δ 10 (after strength reduction in ∆f ). However, GPU d
1 |0
−−→
08

n in GPB

δ 08 is not removed even though δ 13 contains a de�nition of d expressed by GPU d
1 |0
−−→
02

m. This is

because δ 13 also contains GPU b
1 |0
−−→
02

m which de�nes b, indicating that d is not de�ned along all

paths. Hence the previous de�nition of d cannot be killed—giving a weak update.

Finally, we eliminate the redundant control �ow in the GPG by perform coalescing analysis
(Section 5.2). It partitions the GPBs of a GPG (into parts) such that all GPBs in a part are coalesced
(i.e., a new GPB is formed by taking a union of the GPUs of all GPBs in the part) and control �ow
is retained only across the new GPBs representing the parts. Given a GPB δ s in part π i , we can
add its adjacent GPB δ t to π i provided the may property (Section 3.1) of π i is preserved. This is
possible if the GPUs in π i and δ t do not have a data dependence between them.
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The data dependences that can be identi�ed using the information available within a procedure
(or its callees) are eliminated by strength reduction. However, when a GPU involves an unresolved
dereference which requires information from calling contexts, its data dependences with other
GPUs is unknown. Coalescing decisions involving such unknown data dependences are resolved
using types. The control �ow is retained only when type matching indicates the possibility of RaW
or WaW data dependence. In all other cases the two GPBs are coalesced.
The new GPB after coalescing is numbered with a new label because GPBs are distinguished

using labels formaintaining control �ow. A callee GPGmay be inlined at multiple call sites within a
procedure. Hence,we renumber theGPB labels after call inlining and coalescing. Note that strength
reduction does not create new GPBs; it only creates new (equivalent) GPUs within the same GPB.
The statement labels in GPUs remain unchanged because they are unique across the program.

Coalescing two GPBs that do not have control �ow between them may eliminate a de�nition-
free path for the GPUs in it (see the Example 11 below). We handle this situation as follows: We
create an arti�cial GPB by collecting all GPUs that do not have a de�nition-free path in the GPG.
We add a path from start to end via this GPB. This introduces a de�nition-free path for all GPUs
that do not appear in this GPB.

Example 11. For procedure д in Figure 6, the GPBs δ 1 and δ 2 can be coalesced: there is no

data dependence between their GPUs because GPU r
1 |0
−−→
01

a in δ 1 de�nes r whose type is int ∗∗

whereas the GPUs in δ 2 read the address ofm, pointer b, and pointee of q. The type of latter two
is int ∗. Since types do not match, there is no data dependence.
The GPUs in δ 2 and δ 4 contain a dereference whose data dependence is unknown. We there-

fore use the type information. Since both q and p have the same types, there is a possibility of

RaW data dependence between the GPUs q
2 |0
−−→
02

m and e
1 |2
−−→
04

p (p and q could be aliased in the

caller). Thus, we do not coalesce the GPBs δ 2 and δ 4. Also, there is no RaW dependence between
the GPUs in the GPBs δ 4 and δ 5 and we coalesce them; recall that potential WaR dependence
does not matter because of the may-property of GPBs (see Example 6).
The GPB resulting from coalescing GPBs δ 1 and δ 2 is labelled δ 11. Similarly, the GPB resulting

from coalescing GPBs δ 4 and δ 5 is labelled δ 12. The loop formed by the back edge δ 2 → δ 1 in
the GPG before coalescing now reduces to a self loop over δ 11. Since the GPUs in a GPB do not
have a dependence between them, the self loop δ 11 → δ 11 is redundant and is removed.
For procedure f in Figure 7, after performing dead GPU elimination, the remaining GPBs

in the GPG of procedure f are all coalesced into a single GPB δ 15 because there is no data
dependence within the GPUs of its GPBs.

As exempli�ed in Example 10, the sources of the GPUs b
1 |0
−−→
02

m and q
2 |0
−−→
02

m in procedure д are

not de�ned along all paths from Startд to Endд leading to a weak update. This is modelled by
introducing a de�nition-free path (shown by edges with double lines in the fourth column of
Figure 6). Thus for procedure д, we have GPB δ 16 that contains all GPUs of ∆д that are de�ned
along all paths to create a de�nition-free path for those that are not. Similarly, for procedure f ,

we have a de�nition-free path for the source of GPU b
1 |0
−−→
02

m (as shown in the fourth column

of Figure 7). The GPB δ 17 contains all GPUs of ∆f except b
1 |0
−−→
02

m. GPU q
2 |0
−−→
02

m which has a

de�nition-free path in ∆д , reduces to d
1 |0
−−→
02

m in ∆f . Since d is also de�ned in δ 08, it does not

have a de�nition-free path in ∆f .
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k-limiting
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Allocation
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Fig. 8. The big picture of GPG construction as a fleshed out version of Figure 3. The arrows show the depen-
dence between specific instances of optimizations, analyses, operations, and abstractions. The results of the
two variants of reaching GPUs analysis are required together. The optimization of empty GPB removal does
not depend on any data flow analysis. The labels in parentheses refer to relevant sections.

3.4 The Big Picture

In this section, we have de�ned the concepts of GPUs, GPBs, and GPGs as memory transformers
and described their semantics. We have also provided an overview of GPG construction in the
context of our motivating example.
Figure 8 is a �eshed out version of Figure 3. It provides the big picture of GPG construction by

listing speci�c abstractions, operations, data �ow analyses, and optimizations and shows depen-
dences between them. The optimizations use the results of data �ow analyses. The two variants of
reachingGPUs analysis are the key analyses; they have been clubbed together because their results
are required together. They use the GPU operations which are de�ned in terms of key abstractions.
Empty GPB removal does not require a data �ow analysis.

4 STRENGTH REDUCTION OPTIMIZATION

In this section, we formalize the basic operations that compute the information required for per-
forming strength reduction optimization of GPBs in a GPG.
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p : x
k |l
−−−→s y

c : z
i |j
−−→
t

x ⇒ r : z
i |(l+j−k )
−−−−−−−−→

t
y

A generic illustration of TS composition An example

s : x = &y

t : z = x

⇓

s : x = &y

t : z = &y

p : x
k |l
−−−→s y

c : x
i |j
−−→
t

z ⇒ r : y
(l+i−k ) |j
−−−−−−−−→

t
z

A generic illustration of SS composition An example

s : x = &y

t : ∗x = z

⇓

s : x = &y

t : y = z

• The pivot x is the target of c and the source

of p.

• There is a RaW dependence if j ≥ k .

• r is computed by adding j −k to indlev of both

source and target of p.

• The pivot x is the source of both c and p.

• There is a RaW dependence if i > k .

• r is computed by adding i − k to indlev of both

source and target of p.

Fig. 9. Composing a consumer GPU c with a producer GPU p to compute a new GPU r which is equivalent
to c in the context of p. Both SS and TS compositions exploit a RaW dependence of statement at t on the
statement at s because the pointer defined in p is used to simplify a pointer used in c .

4.1 An Overview of Strength Reduction Optimization

Recall that the construction of a GPG of a procedure begins by transliterating each pointer as-
signment labelled s in the CFG of the procedure into a GPB δ s containing the singleton GPU
corresponding to the assignment. Then the GPUs are simpli�ed by composing them with other
GPUs. This simpli�cation progressively converts a GPU to a classical points-to edge; as noted
in Section 2.2. Some simpli�cations can be done immediately while others are blocked awaiting
knowledge of aliasing in the callers and so are postponed. They are reconsidered in the calling
context after the GPG is inlined as a procedure summary in its callers. The strength reduction
optimization then replaces every GPU γ ∈ δ s with its simpli�ed version.
Based on the knowledge of a (producer) GPU p, a consumer GPU c is simpli�ed through an op-

eration calledGPU composition denoted c ◦τ p (where τ is SS or TS). A consumer GPUmay require
multiple GPU compositions to reduce it to an equivalent GPU with indlev 1|0 (a classical points-to
edge). This is achieved by GPU reduction c ◦R which involves a series of GPU compositions with
appropriate producer GPUs in R in order to simplify the consumer GPU c maximally. The set
R of GPUs used for simpli�cation provides a context for c and represents generalized-points-to
knowledge from previous statements. It is obtained by performing a data �ow analysis called the
reaching GPUs analysis which computes the sets RGIns , RGOuts , RGGens , and RGKills . The set
RGGens is semantically equivalent to δ s in the context of RGIns and may bene�cially replace δ s .
We have two variants of reaching GPUs analysis for reasons indicated earlier and described below.

In some cases, the location read by c could be di�erent from the location de�ned by p due to the
presence of a GPU b (called a barrier) corresponding to an intervening assignment. TheGPU pmay
be updated by the GPU b depending on the aliases in the calling context (Section 2.2). This could
happen because the indlev of the source of p or b is greater than 1 indicating that the pointer being
de�ned by this GPU is still not known. In such a situation (characterized formally in Section 4.5.1),
replacing δ s by RGGens during strength reduction may be unsound. To ensure soundness, we
need to postpone the composition c◦τ p explicitly by eliminating those GPUs from R which are
blocked by a barrier.11 We do this by performing a variant of reaching GPUs analysis called the
reaching GPUs analysis with blocking that identi�es GPUs blocked by a barrier (Section 4.5). We
distinguish the two variants by using the phrase reaching GPUs analysis without blocking for the
earlier reaching GPUs analysis. For strength reduction, it is su�cient to perform reaching GPUs

11Formally the term ‘barrier’ applies to a GPU, but we abuse this and refer to its associated statement as a barrier too.
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Possible SS Compositions Possible TS Compositions

Statement
sequence

Memory graph after
the stmt. sequence

GPUs Statement
sequence

Memory graph after
the stmt. sequence

GPUs

i < k j < k

Ex. ss1

∗x = &y
x = &z

x

y

z

p: x
2 |0
−−→y

c : x
1 |0
−−→z

(invalid)

Ex. ts1

∗x = &y
z = x

x

y
z

p: x
2 |0
−−→y

c : z
1 |1
−−→x

(invalid)

i > k j > k

Ex. ss2

x = &y
∗x = &z

x y z

p: x
1 |0
−−→y

c : x
2 |0
−−→z

r : y
1 |0
−−→z

Ex. ts2

x = &y
z = ∗x

x y

z

p: x
1 |0
−−→y

c : z
1 |2
−−→x

r : z
1 |1
−−→y

i = k j = k

Ex. ss3

∗x = &y
∗x = &z

x

y

z

p: x
2 |0
−−→y

c : x
2 |0
−−→z

(invalid)

Ex. ts3

x = &y
z = x

x

yz

p: x
1 |0
−−→y

c : z
1 |1
−−→x

r : z
1 |0
−−→y

Fig. 10. Illustrating the validity of SS and TS compositions based on the indlevs of pivot (x in these examples)
in the consumer GPU c and producer GPU p.

analysis with blocking. However, redundancy elimination optimizations need to know whether
the blocked GPUs in a GPG are useful for potential composition after the GPG is inlined in the
callers. These two con�icting requirements force us to perform both the variants of reaching GPUs
analysis: �rst with blocking, and then without blocking.
Section 4.2 de�nes GPU composition as a family of partial operations. Section 4.3 de�nes GPU

reduction. Section 4.4 provides data �ow equations for reaching GPUs analysis without blocking
while Section 4.5 provides data �ow equations for reaching GPUs analysis with blocking.

4.2 GPU Composition

Wede�ne GPU composition as a family of partial operations. These operations simplify a consumer
GPU c using a producer GPU p and compute a semantically equivalent GPU.

4.2.1 The Intuition Behind GPU Composition. The composition of a consumer GPU c and a pro-
ducer GPU p, denoted c ◦τ p, computes a resulting GPU r by simplifying c using p. This is possible
when c has a RaW dependence on p through a common variable called the pivot of composition.
This requires the pivot to be the source of p but it could be the source or the target of c .

We name the compositions as TS or SS where the �rst letter indicates the role of the pivot in
c and second letter indicates its role in p. If the pivot is the target of c and the source of p, the
composition is called a TS composition. If the pivot is the source of both c and p, the composition is
called an SS composition.We remark for completeness that there are two furtherGPU-composition
operations which can be applied when the pivot is the target of p. These are called ST and TT

compositions which are optional and we do not use them here. However, TS and SS compositions
are su�cient to convert a GPU to a classical points-to edge.
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Figure 9 illustrates TS and SS compositions. For TS composition, consider GPUs c :z
i |j
−−→
t

x and

p :x
k |l
−−→s y with a pivot x which is the target of c and the source of p. The goal of GPU composition

is to join the source z of c and the target y of p by using the pivot x as a bridge. This requires the
indlevs of x to be made the same in the two GPUs. For example, if j ≥ k (other cases are explained
later in the section), this can be achieved by adding j − k to the indlevs of the source and target

of p to view the base GPU p in its derived form as x
j |(l+j−k )
−−−−−−−→y. This balances the indlevs of x in

the two GPUs allowing us to create a simpli�ed GPU r :z
i |(l+j−k )
−−−−−−−→y. (Given a GPU x

i |j
−−→s y, we can

create a GPU x
(i+1) |(j+1)
−−−−−−−−→s y based on the type restrictions on the indlevs of x and y.)

4.2.2 Defining GPU Composition. Before we de�ne the GPU composition formally, we need to
establish the properties of validity and desirability that allow us to characterize meaningful GPU
compositions. We say that a GPU composition is admissible if and only if it is valid and desirable.

(a) A composition r = c ◦τ p is valid only if c reads a location de�ned by p and this read/write
happens through the pivot of the composition.

(b) A composition r = c ◦τ p is desirable only if the indlev of r does not exceed the indlev of c .

Validity requires the indlev of the pivot in c to be greater than the indlev of pivot in p. For the
generic indlevs used in Figure 9, this requirement translates to the following constraints:

j ≥ k (TS composition) (1)

i > k (SS composition) (2)

Observe that SS composition condition (2) prohibits equality unlike the condition for TS compo-
sition (1). This is because of the fact that SS composition involves the source nodes of both the
GPUs and when i = k , c overwrites the location written by p; for a location written by p to be
read by c in its source, i must be strictly greater than k .

Example 12. The following (attempted) compositions in Figure 10 are invalid because c does
not read a location de�ned by p.

• In example ss1 (SS composition), k = 2 and i = 1 violating Constraint (2). GPU c rede�nes
x instead of reading a location de�ned by p.
• In example ss3 (SS composition), k = i = 2 violating Constraint (2). GPU c rede�nes ∗x
instead of reading a location de�ned by p.
• In example ts1 (TS composition), k = 2 and j = 1 violating Constraint (1). GPU c reads x
instead of reading ∗x de�ned by p. In other words, there is no data dependence between c
and p which is evident from the fact that the order of the statements can be changed and
yet the meaning of the program remains same.

The following compositions in Figure 10 are valid because c reads a location de�ned by p.

• In example ss2 (SS composition), k = 1 and i = 2 satis�es Constraint (2).
• In example ts2 (TS composition), k = 1 and j = 2 satis�es Constraint (1).
• In example ts3 (TS composition), k = 1 and j = 1 satis�es Constraint (1).

The desirability of GPU composition characterizes progress in conversion of GPUs into classical
points-to edges by ensuring that the indlev of the new source and the new target in r does not
exceed the corresponding indlev in the consumer GPU c . This requires the indlev in the simpli�ed
GPU r and the consumer GPU c to satisfy the following constraints. In each constraint, the �rst
term in the conjunct compares the indlevs of the sources of c and r while the second term compares
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(

z
i |j
−−→
t

x
)

◦ ts
(

v
k |l
−−→s y

)

≔



z
i |(l+j−k )
−−−−−−−→

t
y (v = x ) ∧ (l ≤ k ≤ j )

fail otherwise

(

x
i |j
−−→
t

z
)

◦ ss
(

v
k |l
−−→s y

)

≔



y
(l+i−k ) |j
−−−−−−−→

t
z (v = x ) ∧ (l ≤ k < i )

fail otherwise

Definition 3. GPU Composition c◦τ p

those of the targets (see Figure 9):

(i ≤ i ) ∧ (l + j − k ≤ j ) or equivalently l ≤ k (TS composition) (3)

(l + i − k ≤ i ) ∧ (j ≤ j ) or equivalently l ≤ k (SS composition) (4)

Example 13. Consider the statement sequence x = ∗y; z = x . A TS composition of the cor-

responding GPUs p : x
1 |2
−−→y and c : z

1 |1
−−→x is valid because j = k = 1 satisfying Constraint 1.

However, if we perform this composition, we get r : z
1 |2
−−→y. Intuitively, this GPU is not useful

for computing a points-to edge because the indlev of r is “1|2” which is greater than the indlev of
c which is “1|1”. Formally, this composition is �agged undesirable because l = 2 which is greater
than k = 1 violating Constraint 3.

We take a conjunction of the constraints of validity (1 and 2) and desirability (3 and 4) to char-
acterize admissible GPU compositions.

l ≤ k ≤ j (TS composition) (5)

l ≤ k < i (SS composition) (6)

Note that an undesirable GPU composition in a GPG is valid but inadmissible. It will eventually
become desirable after the producer GPU is simpli�ed further through strength reduction opti-
mization after the GPG is inlined in a caller’s GPG.
De�nition 3 de�nes GPU composition formally. It computes a simpli�ed GPU r = c ◦τ p by bal-

ancing the indlev of the pivot in both the GPUs provided the composition (TS or SS) is admissible.
Otherwise it fails—being a partial operation. Note that TS and SS compositions are mutually ex-
clusive for a given pair of c and p because a variable cannot occur both in the RHS and the LHS
of a pointer assignment in the case of pointers to scalars.12

4.3 GPU Reduction

GPU reduction c ◦R uses the GPUs in R to compute a set of GPUs Red whose indlevs do not
exceed that of c . The result of GPU reduction c ◦R must ensure the semantic equivalence of Red
with c in the context of R. The set R is computed using reaching GPUs analysis without blocking

12 Since our language is modelled on C, GPUs for statements such as ∗x = x or x = ∗x are prohibited by typing rules; GPUs

for statements such as ∗x = ∗x are ignored as inconsequential. Further, we assume as allowed by C-standard unde�ned
behaviour that the programmer has not abused type-casting to simulate such prohibited statements. Section 8 considers

the richer situation with structs and unions where we can have an assignment x → n = x which might have both TS and

SS compositions with a GPU p that de�nes x .
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Input: c // The consumer GPU to be simpli�ed

R // The context (set of GPUs) in which c is to be simpli�ed

Output: Red // The set of simpli�ed GPUs equivalent to c

01 GPU_reduction (c , R)

02 { Red = ∅

03 W = {c }
04 while (W , ∅)
05 { extractw fromW
06 composed = false

07 for each γ ∈ R

08 { if (r = w ◦ tsγ ) succeeds

09 { W = W ∪ {r }
10 composed = true

11 }

12 else if (r = w ◦ ssγ ) succeeds

13 { W = W ∪ {r }
14 composed = true

15 }

16 }

17 if (¬ composed )

18 Red = Red ∪ {w }

19 }

20 return Red

21 }

Definition 4. GPU Reduction c ◦R

(Section 4.4). In some cases, we need to restrict R using the reaching GPUs analysis with blocking
(Section 4.5) to ensure this semantic equivalence.

For c ◦R, the indlev of c is reduced progressively using the GPUs from R through a series of

admissible GPU compositions. For example, a GPU x
1 |2
−−→y requires two TS compositions to trans-

form it into a classical points-to edge: �rst one for identifying the pointees of y and second one

for identifying the pointees of pointees of y. Similarly, for a GPU x
2 |1
−−→y, an SS composition is

required to identify the pointees of x which are being de�ned and a TS composition is required to
identify the pointees of y whose addresses are being assigned. Thus, the result of GPU reduction
is a �xed-point of cascaded GPU compositions in the context of R.

4.3.1 Defining GPU Reduction c ◦R. De�nition 4 gives the algorithm for GPU reduction. The
worklistW is initialized to {c }. A reduced GPU is added toW for further GPU compositions. When
a GPU w cannot be reduced any further, the �ag composed remains false and w is added to Red
(lines 17 and 18 of De�nition 4). This algorithm assumes that the graph induced by the GPUs in
R is acyclic. This holds for scalar pointers. However, in the presence of structures the graph may
contain cycles via �elds of structures; Section 8.4 extends the algorithm to handle cycles.
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Example 14. Consider the statements on the right. For c : x
1 |2
−−→
23

y, R = {y
1 |0
−−→
21

a,a
1 |0
−−→
22

b}.

21 y = &a;

22 a = &b;

23 x = ∗y;

The reduction c ◦R involves two consecutive TS compositions. The �rst com-

position involves y
1 |0
−−→
21

a as p, resulting in r = x
1 |1
−−→
23

a which is added to the

worklist. In the second iteration of the while loop on line 04 of De�nition 4,

the reduced GPU x
1 |1
−−→
23

a in the previous iteration now becomes the consumer

GPU. It is composed with a
1 |0
−−→
22

b which results in a reduced GPU x
1 |0
−−→
23

b. This GPU is added to

the worklist. However, since it cannot be reduced further as it is already in the classical points-to

form, the loop terminates. The �ag composed remains false for the �nal GPU x
1 |0
−−→
23

b because no

further composition is possible and Red = {x
1 |0
−−→
23

b}.

The termination of GPU reduction is guaranteed by the following reasons:

• A GPUw extracted from the worklist will never be added to it again. If there is no reduction,
thenw is added to Red directly. This is ensured by setting the �ag composed appropriately.
• Reduction of indlev of source and target of a GPUw is performed independently, hence there
is no oscillation across iterations of �xed-point computation.
• The process terminates only when the GPUs in Red are either in their simpli�ed form or no
more GPUs are available in R for further GPU compositions.
• The order in which a GPU γ is selected from R for composition with w does not matter
because of the following properties of R that are established by the reaching GPUs analysis
with and without blocking (Sections 4.4 and 4.5).
Consider two GPUs γ 1 and γ 2 in R. Then γ 1 and γ 2 cannot compose with each other: If the
composition γ 2 ◦γ 1 were possible, it would have been performed during the reaching GPUs
analysis (Section 4.4) and γ 2 would not exist in R because it would be replaced by the result
of the composition. Similarly if the composition γ 1 ◦γ 2 were possible, γ 1 would not exist in
R. Hence we examine the possible reasons of existence of both γ 1 and γ 2 in R and explain
why the order of performing the compositionsw ◦γ 1 andw ◦γ 2 does not matter.
(a) There is no data dependence between γ 1 and γ 2 because there is no pivot between them

or one does not follow the other on any control �ow path. Hence a composition between
them is ruled out. In this case, the order between w ◦γ 1 and w ◦γ 2 is irrelevant because
of the absence of data dependence between γ 1 and γ 2.

(b) There is data dependence betweenγ 1 andγ 2 potentially enabling a composition.Without
any loss of generality, consider the composition γ 2◦γ 1. Then there are two possibilities
that may have prohibited the composition:
(i) γ 2 ◦γ 1 is inadmissible because it is undesirable. Then, w ◦γ 1 also is undesirable be-

cause the desirability constraint is based solely on the indlev of γ 1 (Constraints 3
and 4). Thusw may compose only with γ 2 and the issue of an order betweenw ◦γ 1

andw ◦γ 2 does not arise.
(ii) γ 2 ◦γ 1 is admissible but has been postponed because of a barrier (introduced in Sec-

tion 2.2 and explained later in Section 4.5) betweenγ 2 andγ 1. In this case, the barrier
also prohibits a composition of w with γ 1 and it can compose only with γ 2. Thus
the issue of an order betweenw ◦γ 1 andw ◦γ 2 does not arise.

4.3.2 Modelling Caller-Defined Pointer Variables. In abstract memory, we may be uncertain as
to which of several locations a variable points to. Hence, for an indirect assignment (∗p = &x say),
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GPU reduction returns a set of GPUs which de�ne multiple pointers (or di�erent pointees of the
same pointer) leading to a weak update. In this case we do not overwrite any of its pointees, but
merely add &x to the possible values they can contain. Sometimes however, we may discover that
p has a single pointee within the procedure and conclude that there is only one possible abstract
location de�ned by the assignment. In this case we may, in general, replace the contents of this
location. This is a strong update. However, this is necessary but not su�cient for a strong update
because the pointer may not be de�ned along all paths—there may be a path along which the
pointer (or some pointee of the pointer) may not be de�ned within the procedure but may be
de�ned in a caller. In the presence of such a de�nition-free path in a procedure, even if we �nd a
single pointee of p in the procedure, we cannot guarantee that a single abstract location is being
de�ned. This makes it di�cult to distinguish between strong and weak updates. Also, the e�ect of
de�nition-free paths has to be taken into account during strength reduction optimization: if γ 1 is
simpli�ed to γ 2, γ 2 can replace γ 1 provided there is no de�nition-free path reaching γ 1; otherwise
γ 1 should also be included with γ 2 to allow the composition of γ 1 with the GPUs in a caller.

Example 15. Figure 6 shows the set of GPUs corresponding to statement 02 (δ 02 in the GPG
after strength reduction) of procedureд of Figure 2. There is a de�nition-free path forq meaning

that δ 11 in the optimized ∆д must include GPU q
2 |0
−−→
02

m along with its reduced GPU b
1 |0
−−→
02

m.

We identify de�nition-free paths by introducing boundary de�nitions (explained below) which
also help us to preserve de�nition-free paths that may be eliminated by coalescing.
The boundary de�nitions are introduced for global variables and formal parameters because

they could be read in a procedure before being de�ned. They are symbolic in that they are not
introduced in the GPG of a procedure but are included in RGIn of the Start GPB during reaching

GPUs analysis. They are of the form x
ℓ |ℓ
−−→
00

x ′ where x ′ is a symbolic representation of the initial

value of x at the start of the procedure and ℓ ranges from 1 to themaximumdepth of the indirection
level which depends on the type of x , and 00 is the label of the Start GPB. For type (int ∗∗), ℓ ranges
from 1 to 2. Variable version x ′ is called the upwards exposed [15] version of x . This is similar to
Hoare-logic style speci�cations in which postconditions use (immutable) auxiliary variables x ′

to be able to talk about the original value of variable x (which may have since changed). Our
upwards-exposed versions serve a similar purpose, so that logically on entry to each procedure
the statement x = x ′ provides a de�nition of x .

A reduced GPU x
i |j
−−→s y along any path kills the boundary de�nition x

i |i
−−→
00

x ′ on that path indicat-

ing that (i − 1)th pointees of x are rede�ned. Including boundary de�nitions at the start ensures

that if a boundary de�nition x
i |i
−−→
00

x ′ reaches a program point s , there is a de�nition-free path from

Start to s; its absence at s guarantees that the source of x
i |i
−−→
00

x ′ has been de�ned along all paths

reaching s . This leads to a simple necessary and su�cient condition for strong updates: All GPUs
corresponding to a statement s must de�ne the same location.
The boundary de�nitions also participate in GPU compositions therebymodelling the semantics

of de�nition-free paths. They enable strong updates thereby improving the precision of analysis.

Example 16. Consider reaching GPUs analysis for the GPB corresponding to statement 02
in the initial GPG of procedure д (δ 02 in Figure 6). We include the boundary de�nitions for
each global variable and the parameters of a procedure as RGIn of the Start GPB of the GPG
of procedure д. Although Figure 6 does not show boundary de�nitions for simplicity, they are
shown in Figure 11 for variable q (boundary de�nitions of other variables are not required for
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strong updates in this example). These boundary de�nitions capture the e�ect of de�nition-free
paths to distinguish between weak and strong updates.

The GPU γ 2 :q
2 |0
−−→
02

m is composed with GPUs from RGIn02 which contains a GPU q
1 |0
−−→
03

b in-

dicating that pointer b is being de�ned by statement 02. However, this is not the case of strong
update as b is not the only pointer that is being de�ned by the assignment. There is a de�nition-
free path along which pointee of q is not available indicating that q may have a de�nition the
callers of procedure д which is also required in statement 02 of д but is currently unavailable.

The presence of boundary de�nition q
1 |1
−−→
00

q′ in RGIn02 indicates the presence of a de�nition-free

path and the composition of this GPU results in a reduced GPU q′
2 |0
−−→
02

m which is also a part of

δ 02. The GPU q′
2 |0
−−→
02

m has been represented by the GPU q
2 |0
−−→
02

m in Figure 6 because it ignores

boundary de�nitions.

At the call site in procedure f , after the composition of GPU q
1 |0
−−→
07

d and q
2 |0
−−→
02

m (the upwards-

exposed version q′ is replaced by q during call inlining; for more details see Section 6), the set
of reduced GPUs corresponding to statement 02 in procedure f (GPB δ 13) contains two GPUs

b
1 |0
−−→
02

m and d
1 |0
−−→
02

m (Figure 7). Since, the assignment de�nes two pointers d and b, no GPU is

removed and hence the GPU d
1 |0
−−→
08

n in GPB δ 08 is retained owing to a weak update.

An important observation is that boundary de�nitions only appear in RGIn and RGOut of the
reaching-GPUs analysis—they never appear in the GPBs or in RGGen, although the upwards-
exposed versions of variables could be involved in the GPUs in RGGen. Also, the algorithm for
GPU reduction does not change with the introduction of boundary de�nitions because a GPU can
be composed with boundary de�nitions just like with any other GPUs.

4.4 Reaching GPUs Analysis without Blocking

In this section, we present the data �ow equations for computing RGIn and RGOut for every GPB
δ in the GPG of a procedure. These equations ignore the e�ect of barriers; Section 4.5 incorporates

the e�ects of barriers and performs reaching GPUs analysis with blocking to compute RGIn and

RGOut for every GPB δ .
The reaching GPUs analysis is an intraprocedural forward data �ow analysis in the spirit of the

classical reaching de�nitions analysis. It computes the set RGIns of GPUs reaching a given GPB
δ s by processing the GPBs that precede δ s on control �ow paths reaching δ s . Then it incorporates
the e�ect of δ s on the GPUs in RGIns through GPU reduction to compute a set of GPUs after s
(RGOuts ). The result of GPU reduction, denoted RGGens , is semantically equivalent to that of δ s .
The GPUs in RGGens have indlevs that do not exceed the indlevs of the corresponding GPUs in δ s .
Thus, δ s can be replaced by RGGens as a part of strength reduction optimization after the analysis
reaches its �xed point.
RGOuts is computed using RGGens and RGKills . RGGens contains all GPUs computed by GPU

reduction γ ◦RGIns (for all γ ∈ δ s ). RGKills contains the GPUs to be removed. They are under-
approximated when a strong update cannot be performed.When a strong update is performed, we
kill those GPUs of RGIns whose source and indlev match that of the shared source of the reduced
GPUs (identi�ed byMatch(γ ,RGIns )). For a weak update, Kill(RGGens ,RGIns ) = ∅.
GPU reduction allows us to model Kill (i.e., GPU removal from RGIn) in the case of strong

update as follows: The reduced GPUs should de�ne the same pointer (or the same pointee of a
given pointer) along every control �ow path reaching the statement represented by γ . This is
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GPUs in procedure д (�nal values after �xed-point computation).

Stmt s RGIns RGGens RGKills RGOuts

01

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02 r a
1 |0

01
r r ′

1 |1

00

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02

02

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02

b
m

q′
2 |0

02

1 |0

02

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02

03

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02 q b
1 |0

03
q q′

1 |1

00

r a

b mq

q′

1 |0
01

1 |0

03

2 |0 02

1 |0

02

04

r a

b mq

q′

1 |0
01

1 |0

03

1 |1

00

2 |0 02

1 |0

02 e p ′
1 |2

04
e e ′

1 |1

00

r a

b

e

mq

q′

p ′

1 |0
01

1 |0

03

2 |0 02

1 |0

02

1 |2

04

1 |1

00

05

r a

b

e

mq

q′

p ′

1 |0
01

1 |0

03

2 |0 02

1 |0

02

1 |2

04

1 |1

00

q e
1 |0

05
q b

q′

1 |0

03

1 |1
00

r a

b

e

mq

q′

p ′

1 |0
01

1 |0 05

2 |0 02

1 |0

02

1 |2

04

Fig. 11. The data flow information computed by reaching GPUs analysis for procedure д of the motivating

example given in Figure 2. In RGIn and RGOut, we show only one boundary definition q
1 |1
−−−→
00

q′ because

other boundary definitions do not participate in GPU reduction for this example. However, the boundary
definitions that are removed are shown in RGKill.

captured by the requirement |Def(X ,γ ) | = 1 in the de�nition of Kill(X ,R) in De�nition 5 where
Def(X ,γ ) extracts the source nodes and their indirection levels of the GPUs (i.e. pair (x ,i ) for GPU
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RGIns ≔



{
x

ℓ |ℓ
−−→s x ′ | x ∈ P ,0 < ℓ ≤ κ

}
s = Start,κ is the largest indlev

⋃

p ∈ pred (s )
RGOutp otherwise

RGOuts ≔ (RGIns − RGKills ) ∪ RGGens

RGGens ≔ Gen (δ s , RGIns )

RGKills ≔ Kill (RGGens , RGIns )

Gen(X ,R) ≔
⋃

γ ∈X
γ ◦R

Kill(X ,R) ≔
{
γ 1 | ∃γ ∈ X such that |Def(X ,γ ) |=1 ∧ γ 1 ∈Match(γ ,R)

}

Match(x
i |j
−−→s y,R) ≔

{
γ ∈ R | γ = u

k |l
−−→
t

v, x = u, i = k
}

Def
(

X ,w
k |l
−−→s z

)

≔

{
(x ,i ) | x

i |j
−−→s y ∈ X

}

Definition 5. Data flow equations for Reaching GPUs Analysis without Blocking

x
i |j
−−→s y) inX that are constructed for the same statement s . The GPUs that are killed are determined

by the GPUs in RGGens and not those in δ s .

Example 17. Figure 11 gives the �nal result of reaching GPUs analysis for procedure д of our

motivating example. We have shown the boundary GPU q
1 |1
−−→
00

q′ for q. Other boundary GPUs

are not required for strong updates in this example and have been omitted. This result has been
used to construct GPG ∆д shown in Figure 6. For procedure f , we do not show the complete

result of the analysis but make some observations. The GPU q
2 |0
−−→
10

o is composed with the GPU

q
1 |0
−−→
05

e to create a reduced GPU e
1 |0
−−→
10

o. Since, only a single pointer (in this case e) is being de�ned

by the assignment, this is a case of strong update and hence kills e
1 |1
−−→
04

c . The GPU to be killed

is identi�ed by Match(e
1 |0
−−→
10

o,RGIn10) which matches the source and the indlev of the GPU to

be killed to that of the reduced GPU. Thus, kill is determined by the reduced GPU (in this case

e
1 |0
−−→
10

o) and not the consumer GPU (in this case q
2 |0
−−→
10

o).

4.5 Reaching GPUs Analysis with Blocking

Given a GPB δ s , strength reduction seeks to replace a consumer GPU c ∈ δ s with the GPUs
obtained by reducing c . During GPU reduction, it is possible that c has an admissible composition
with some producer GPU p, but the location read by c could be di�erent from the location de�ned
by p due to the presence of a barrier GPU b (Sections 2.2 and 4.1). The barrier may change the
pointer chain established by p thereby altering the data dependence between p and c . In this
case, c should not be composed with p and should be left unsimpli�ed. If c◦τ p is performed, then
RGGens will not contain c . Hence, when strength reduction optimization replaces δ s by RGGens ,
c will be replaced by the result of composition, possibly leading to unsoundness.
To ensure soundness, we perform a variant of reaching GPUs analysis that identi�es barriers

and excludes blocked GPUs from the set of reaching GPUs. The unblocked GPUs are contained
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int a,b,∗p,∗q,∗∗x;

01 void h()

02 { p = &a; /* GPU p */

03 ∗x = &b; /* GPU b */

04 q = p; /* GPU c */

05 }

int a,b,∗p,∗q,∗∗x;

01 void h()

02 { ∗x = &a; /* GPU p */

03 p = &b; /* GPU b */

04 q = ∗x; /* GPU c */

05 }

If x points-to p then q points-to b else q points-to a . If x points-to p then q points-to b else q points-to a .

(a) Composition across an indirect GPU b (b)Composition with an indirect GPU across the GPU b

Fig. 12. Risk of unsoundness in GPU reduction caused by a barrier GPU.

in the sets RGIns and RGOuts computed through a data �ow analysis. The data �ow information

RGGens computed by this analysis is then used to replace δ s thereby ensuring the soundness of
strength reduction optimization.

4.5.1 The Need of Blocking. The location read by a GPU c could be di�erent from the location
de�ned by p because of a combined e�ect of the GPUs in a calling context and the GPUs corre-
sponding to the intervening assignments on a control �ow path from p to c which may update the
GPU p. We characterize these situations by building on Section 2.2 and de�ning the notion of a
barrier GPU which blocks certain GPUs so that GPU compositions leading to potentially unsound
strength reduction optimization are postponed. After inlining the GPG in a caller, more informa-
tion may become available. Thus, it may resolve any uncertain data dependence between c and
p—so a composition which was earlier postponed may now safely be performed. This is explained
in the rest of the section.
We de�ne a barrier as follows. Let an indirect GPU refer to a GPU whose indlev of the source

is greater than 1 (i.e., the pointer being de�ned by the GPU is not known). Then, a GPU b corre-
sponding to an assignment between c and p on some control �ow path is a barrier if:

• b is an indirect GPU. This is a composition across an indirect GPU b (Figure 12(a)).
• p is an indirect GPU (b need not be an indirect GPU). This is a composition with an indirect
GPU across the GPU b (Figure 12(b)).

We illustrate these situations in the following example.

Example 18. Consider the procedure in Figure 12(a). The composition between the GPUs for
statements 02 and 04 is admissible. However, statement 03 may cause a side-e�ect by indirectly
de�ning p (if x points to p in the calling context). Thus, q in statement 04 would point to b if x

points to p; otherwise it would point to a. If we replace the GPU q
1 |1
−−→
04

p by q
1 |0
−−→
04

a (which is the

result of composing q
1 |1
−−→
04

p with p
1 |0
−−→
02

a), then we would miss the GPU q
1 |0
−−→
04

b if x points to p

in the calling context—leading to unsoundness. Since the calling context is not available during
GPG construction, we postpone this composition to eliminate the possibility of unsoundness.

This is done by blocking the GPU p
1 |0
−−→
02

a by an indirect GPU x
2 |0
−−→
03

b which acts as a barrier. This

corresponds to the �rst case described above.
For the second case, consider statement 02 of the procedure in Figure 12(b) which may indi-

rectly de�ne p (if x points to p). Statement 03 directly de�nes p. Thus, q in statement 04 would
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point to b if x points to p; otherwise it would point to a. We postpone the composition c :q
1 |2
−−→
04

x

with p :x
2 |0
−−→
02

a by blocking the GPU p where the GPU p
1 |0
−−→
03

b acts as a barrier.

A barrier GPU is likely to have a WaW or WaR dependence with some preceding GPUs which
cannot be ascertained without the alias information in the calling context. In the absence of alias
information from the calling context, we use the type information to identify some such GPUs as
non-blocking. The barrier blocks such GPUs, so that the compositions of c with them are post-
poned (Section 2.2). Consider a GPU p originally blocked by a barrier b where p or b is an indirect
GPU. After inlining the GPG in its callers and performing reductions in the calling contexts, the
following situations could arise:

(1) The indlev of the source of the indirect GPU (p or b) is reduced to 1 thereby identifying the
pointer being de�ned by the GPU. In this case, b ceases being a barrier and so no longer
blocks p leading to the following two situations:
(a) b rede�nes the pointer de�ned by p, killing p thereby obviating the composition c ◦τ p.
(b) b does not rede�ne the pointer de�ned by p thereby allowing the composition c ◦τ p.

(2) The indlev of the source of the indirect GPU (p or b) remains greater than 1. In this case, b
continues to block p awaiting further inlining.

In case 1(a), an eager reduction of c without blocking p would cause c to be replaced by the
result of composition c ◦τ p, thereby causing unsoundness. Reaching GPUs analysis with blocking
helps to postpone the composition until all information becomes available. Our measurements
(Section 10) show that situation 1(a) rarely arises in practice because it amounts to de�ning the
same pointer multiple times through di�erent aliases in the same context.

Example 19. Case 1(a) above could arise if x points to p in the calling context of the procedure

in Figure 12(a). As a result, GPU p
1 |0
−−→
02

a is killed by the barrier GPU p
1 |0
−−→
03

b (which is the simpli-

�ed version of the barrier GPU x
2 |0
−−→
03

b) and hence the composition is prohibited and q points to

b for statement 04. Case 1(b) could arise if x points to any location other than p in the calling

context. In this case, the composition between q
1 |1
−−→
04

p and p
1 |0
−−→
02

a is sound and q points to a for

statement 04. Case 2 could arise if pointee of x is not available even in the calling context. In

this case, the barrier GPU x
2 |0
−−→
03

b continues to block p
1 |0
−−→
02

a.

Example 20. To see how reaching GPUs analysis with blocking helps, consider the example in

Figure 12(b). The set of GPUs reaching the statement 04 is RGIn04 = {x
2 |0
−−→
02

a,p
1 |0
−−→
03

b}. The GPU

x
2 |0
−−→
02

a is blocked by the barrier GPU p
1 |0
−−→
03

b and hence RGIn04 = {p
1 |0
−−→
03

b}. Thus, GPU reduction

forw :q
1 |2
−−→
04

x (in the context of RGIn04) computes Red as {w } with the �ag composed set to false

because w cannot be reduced further within the GPG of the procedure. However, w is still not
a points-to edge and can be simpli�ed further after the GPG is inlined in its callers. Hence we

postpone the composition ofw with p :x
2 |0
−−→
02

a until p is simpli�ed.

4.5.2 Data Flow Equations for Computing RGIn and RGOut. A barrier may not necessarily
block all preceding GPUs. We use the type information to identify absence of data dependence
between a barrier and the GPUs reaching it. This allows us to minimize blocking by identifying
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RGIns ≔



{
x

ℓ |ℓ
−−→s x ′ | x ∈ P ,0 < ℓ ≤ κ

}
s = Start,κ is the largest indlev

⋃

p ∈ pred (s )
RGOutp otherwise

RGOuts ≔
(

RGIns −
(

RGKills ∪ Blocked(RGIns ,RGGens )
))

∪ RGGens

Blocked (I ,G ) ≔



∅ G = ∅

{γ | γ ∈ I ,DDep(IndGPUs(G ), {γ })} |IndGPUs(G ) | > 1

{γ | γ ∈ IndGPUs(I ),DDep(G, {γ })} otherwise

IndGPUs (X ) ≔ {x
i |j
−−→s y | x

i |j
−−→s y ∈ X ,i > 1}

RGGens ≔ Gen
(

δ s , RGIns
)

RGKills ≔ Kill
(

RGGens , RGIns
)

DDep(B, I ) ⇔ TDef(B) ∩ (TDef(I ) ∪ TRef(I )) , ∅

TDef(X ) ≔
{
typeof(x ,i ) | x

i |j
−−→s y ∈ X

}

TRef(X ) ≔
{
typeof(x ,k ) | 1 ≤ k < i,x

i |j
−−→s y ∈ X

}
∪

{
typeof(y,k ) | 1 ≤ k < j,x

i |j
−−→s y ∈ X

}

Note: The de�nitions of Gen and Kill are same as in De�nition 5

Definition 6. Data flow equations for Reaching GPUs Analysis with Blocking.

GPUs that need not be blocked. A barrier b ∈ RGGens may block a producer GPU p ∈ RGIns
if it writes into a location read by or written by p. Thus, they could share a WaW or a WaR data
dependence. Recall that a barrier GPU b is either an indirect GPU or a GPU that follows an indirect
GPU (Section 4.5.1). Thus the following GPUs should be blocked:

• If RGGens contains an indirect GPU b, then all GPUs reaching δ s that share a data depen-

dence with b should be blocked regardless of the nature of other GPUs (if any) in RGGens .

• If RGGens does not contain an indirect GPU and is not ∅, then all indirect GPUs reaching

δ s that share a data dependence with a GPU in RGGens should be blocked.

We de�ne a predicate DDep(B, I ) to check the presence of data dependence between the set of
GPUs B and I (De�nition 6). When the types of b ∈ B and p ∈ I match13, we assume the possibility
of data dependence and b blocksp. TDef(B) is the set of types of locations beingwritten by a barrier
whereas (TDef(I ) ∪ TRef(I )) represents the set of types of locations de�ned or read by the GPUs
in I thereby checking a WaW and WaR dependence. The type of the ith pointee of x is given by
typeof(x ,i ) de�ned as illustrated below.

Example 21. If the declaration of a pointer x is ‘int ∗∗ x’, then typeof(x ,1) is ‘int ∗∗’ and
typeof(x ,2) is ‘int ∗’. Note that typeof(x ,0) is not a pointer and typeof(x ,3) is unde�ned because
x cannot be dereferenced thrice.

13Although C11 standard allows type casting for pointers, there is no guarantee of the expected behaviour if there is

alignment mismatch. For example, the runtime behaviour of assigning ‘int ∗’ to ‘float ∗’ depends on the compiler and

the architecture. However, assigning ‘void ∗’ to ‘int ∗’ does not result in misalignment. In our implementation, we trust

the types recorded in the GIMPLE IR used by gcc and assume that there is no unde�ned behaviour of the program.
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The data �ow equations in De�nition 6 identify the GPUs in RGGens that can act as a barrier.

The main di�erence between RGOuts (De�nition 6) and RGOuts (De�nition 5) is that the former
uses function Blocked which computes blocked GPUs as follows:

• Case 1 in Blocked equation corresponds to not blocking any GPU because RGGens is empty.

• Case 2 in Blocked equation corresponds to blocking appropriate GPUs reaching s (i.e. RGIns )

because RGGens contains an indirect GPU.
• Case 3 in Blocked equation corresponds to blocking appropriate indirect GPUs reaching s

because RGGens does not contains an indirect GPU and is not ∅.

Example 22. For the procedure in Figure 12(b),RGIn02 = ∅ and RGGen02 is {x
2 |0
−−→
02

a}. Although

RGGen02 contains an indirect GPU, since no GPUs reach 02 (because it is the �rst statement),

RGOut02 is {x
2 |0
−−→
02

a} indicating that no GPUs are blocked.

For statement 03, RGIn03 = {x
2 |0
−−→
02

a} and RGGen03 = {p
1 |0
−−→
03

b}. RGGen03 is non-empty and

does not contain an indirect GPU and thus RGOut03 = {p
1 |0
−−→
03

b} according to the third case in

the Blocked equation in De�nition 6 indicating that the GPU x
2 |0
−−→
02

a is blocked and should not be

used for composition by the later GPUs. The indirect GPU in RGIn03 is excluded from RGOut03.

Note that the indirect GPU x
2 |0
−−→
02

a is blocked by the GPU p
1 |0
−−→
03

b because typeof(x ,2) matches

with typeof(p,1) indicating a possibility of WaW dependence.

For statement 04, RGIn04 = {p
1 |0
−−→
03

b} and RGGen04 is {q
1 |2
−−→
04

x }. For this statement, the compo-

sition (q
1 |2
−−→
04

x ◦ tsx
2 |0
−−→
02

a) is postponed because the GPU x
2 |0
−−→
02

a is blocked. In this case, RGGen04

does not contain an indirect GPU and RGOut04 = {p
1 |0
−−→
03

b,q
1 |2
−−→
04

x }.

Similarly in Figure 12(a), the GPU p
1 |0
−−→
02

a is blocked by the barrier GPU x
2 |0
−−→
03

b because

typeof(p,1) matches with typeof(x ,2). Hence, the composition (q
1 |1
−−→
04

p◦ tsp
1 |0
−−→
02

a) is postponed.

In the GPG of procedure д (of our motivating example) shown in Figure 6, the GPUs r
1 |0
−−→
01

a

and q
1 |0
−−→
03

b are not blocked by the GPU q
2 |0
−−→
02

m because they have di�erent types. However, the

GPU e
1 |2
−−→
04

p blocks the indirect GPU q
2 |0
−−→
02

m because there is a possible WaW data dependence

(e and q could be aliased in the callers of д).

5 REDUNDANCY ELIMINATION OPTIMIZATIONS

Recall that strength reduction simpli�es GPUs and eliminates data dependences between them.
This paves way for redundancy elimination optimizations which remove redundant GPUs and
minimize control �ow. As a consequence, they improve the compactness of a GPG and reduce the
repeated re-analysis of GPBs caused by inlining at call sites. They include:

• Dead GPU and empty GPB elimination.
• Coalescing of GPBs.

Recall that the strength reduction optimization may postpone the reduction of certain GPUs.
This requires us to postpone optimizations such as deadGPU elimination and coalescing in order to
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ensure soundness. In this section, we describe each of the optimizations in detail and characterize
when to postpone them.

5.1 Dead GPU and Empty GPB Elimination

We perform dead GPU elimination to remove a redundant GPU γ ∈ δ s that is killed along every
control �ow path from s to the End GPB of the procedure. However, the following two kinds of
GPUs should not be removed even if they are killed in reaching GPUs analyses: (a) GPUs that are
blocked, or (b) GPUs that are producer GPUs for undesirable compositions that have been post-
poned (Section 4.2.2). For the former, we check that a GPU considered for dead GPU elimination
does not belong to RGOutEnd (the result of reaching GPUs analysis without blocking); for the lat-
ter we check that the GPU is not a producer GPU for a postponed composition. We record such
GPUs in the set �eued computed for every GPG. It is computed during GPU reduction.14 Thus,
we perform dead GPU elimination and remove a GPU γ ∈ δ s if γ < (RGOutEnd ∪�eued).

Example 23. In procedure д of Figure 6, pointer q is de�ned in statement 03 but is rede�ned

in statement 05 and hence the GPU q
1 |0
−−→
03

b is killed and does not reach the End GPB. Since no

composition with the GPU q
1 |0
−−→
03

b is postponed, it does not belong to set �eued either. Hence

the GPU q
1 |0
−−→
03

b is eliminated from the GPB δ 03 as an instance of dead GPU elimination.

Similarly, the GPUs q
1 |0
−−→
07

d (in δ 07) and e
1 |1
−−→
04

c (in δ 14) in the GPG of procedure f (Figure 7)

are eliminated from their corresponding GPBs.

Example 24. For the procedure in Figure 12(a), the GPU p
1 |0
−−→
02

a is not killed but is blocked by

the barrier x
2 |0
−−→
03

b; hence it is present in RGOut05 but not in RGOut05 (05 is the End GPB). This

GPU may be required when the barrier x
2 |0
−−→
03

b is reduced after call inlining (and ceases to block

p
1 |0
−−→
02

a). Thus, it is not removed by dead GPU elimination.

In the process of dead GPU elimination, if a GPB becomes empty, it is eliminated by connecting
its predecessors to its successors.

Example 25. In the GPG of procedure д of Figure 6, the GPB δ 03 becomes empty after dead
GPU elimination. Hence, δ 03 can be removed by connecting its predecessors to successors. This
transforms the back edge δ 03 → δ 01 to δ 02 → δ 01. Similarly, the GPB δ 07 is deleted from the GPG
of procedure f in Figure 7.

5.2 Minimizing the Control Flow by Coalescing GPBs

Strength reduction eliminates data dependence between GPUs rendering the control �ow redun-
dant. Eliminating redundant control �ow is important to make a GPG as compact as possible—in
the absence of control �ow minimization, the size of the GPG of a procedure tends to increase
exponentially because of transitive inlinings of calls in the procedure. This e�ect is aggravated by
the fact that many procedures are called multiple times in the same procedure. Besides, recursion
causes multiple inlinings of the GPGs of procedures in the cycle of recursion (Section 6.2).

14The revised de�nition is available at https://www.cse.iitb.ac.in/ uday/soft-copies/gpg-pta-paper-appendix.pdf.
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5.2.1 Coalescing GPBs by Partitioning a GPG. We eliminate redundant control �ow by coalesc-
ing adjacent GPBs. This amounts to partitioning the set of GPBs in a GPG such that each part
contains the GPBs whose GPUs do not have a data dependence between them and hence can be
seen essentially as executed non-deterministically in any order in accordancewith abstract seman-
tics of a GPB as a may property (Section 3.1).
Since partitioning is driven by preserving and exploiting the absence of data dependence, it is

characterized by the following properties:

• AGPG can be partitioned in multiple ways to minimize the control �ow. The absence of data
dependence is not a transitive relation: Consider GPBs δ l , δm , and δn such thatm ∈ succ (l )
and n ∈ succ (m). Assume that γm ∈ δm does not have a data dependence with γ l ∈ δ l and
γn ∈ δn does not have a data dependence with γm ∈ δm . However, there may be a data
dependence between γ l ∈ δ l and γn ∈ δn . If the data dependence exists, then the following
two partitions have minimal control �ow: Π 1 = {{δ l ,δm } , {δn }} and Π 2 = {{δ l } , {δm ,δn }}.
Our heuristics (described below) construct partition Π 1.
• The possibility of data dependence between GPBs δm and δn matters only if there is control
�ow between them. Otherwise, they are executed in di�erent execution instances of the
program and there is no data dependence between them even if the variables or abstract
locations accessed by them are same. Hence the successors of a GPB can be coalesced with
each other in the same part provided there is no control �ow between them.
• As a design choice, a successor (predecessor) of a GPB is included in the part containing the
GPB i� all successors (predecessors) of the GPB are included in the part: Consider GPBs
δ l , δm and δn such that succ (l ) = {m,n} and neither m is a successor of n nor vice-versa.
Let δ l ∈ π i . Since there is no control �ow between δm and δn , including only one of them
in π i will create a spurious control �ow between them. This ordering could introduce a
spurious data dependence between their GPUs which may cause imprecision (through a
RaW dependence that may create spurious GPUs).
• Coalescing may eliminate a de�nition-free path for the source of a GPU. This may convert
the GPU frommay-def (i.e., source is de�ned along some path) to must-def (i.e., source is de-
�ned along all paths) in the GPG. Consider GPBs δ l , δm , δn , and δo such that succ (l ) = {m,n}
and pred (o) = {m,n}. Let π i = {δ l ,δm ,δn } and π j = {δo }. The source of some GPU γm ∈ δm
may have a de�nition-free path δ l → δn → δo . After coalescing, this de�nition-free path
ceases to exist because of the control �ow edge π i → π j . This may lead to strong updates in-
stead of weak updates thereby leading to unsoundness. Hence, we add a separate de�nition-
free path for such GPUs.

Due to the possibility of multiple partitions satisfying the above criteria, identifying the “best”
partition would require de�ning a cost model. Instead, we compute a unique partition by impos-
ing additional restrictions described below. Our empirical measurements show signi�cant com-
pression by our heuristic partitioning below and any attempt of �nding the best partitioning may
provide only marginal overall bene�ts because the process would become ine�cient. Hence we
use the following greedy heuristics:

• Start GPB and End GPB form singleton parts and no other GPB is included in these parts.
This is required for modelling de�nition-free paths from Start to End to distinguish between
strong and weak updates by a callee GPG in a caller GPG.
• The process of identifying the partition begins with Start GPB. Thus Start forms π 1 ∈ Π . As
a consequence, a part π i ∈ Π grows only in the “forward” direction including only successor
GPBs. It never grows in the “backward” direction by considering predecessors.
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int ∗∗ x;

float ∗∗ y;

short ∗∗ z;

int ∗∗∗ u;

int ∗p,∗q,∗v;

int m,n,o,s,t;

∆f before coalescing ∆f after coalescing ∆f after modelling
de�nition-free paths

Start

δ 1

x m

y n

2 |0

12

2 |0
14

δ 2

z o

x m
2 |0

12

2 |0

32
δ 3

x m

y n

2 |0

12

2 |0
14

δ 4

u v
2 |0

17
δ 5

p s
1 |0

36
δ 6

q t
1 |0

37
δ 7

End

Start

x m

y n

z o

u v

2 |0

12

2 |0

14

2 |0

32

2 |0

17

δ8

p s

q t

1 |0

36

1 |0

37

δ9

End

Start

x m

y n

z o

u v

2 |0

12

2 |0

14

2 |0

32

2 |0

17

δ8

p s

q t

1 |0

36

1 |0

37

δ9

δ10

End

δ10 =
{
x

2 |0
−−−→
12

m,y
2 |0
−−−→
14

n,

u
2 |0
−−−→
17

v ,p
1 |0
−−−→
36

s ,

q
1 |0
−−−→
37

t
}

Fig. 13. An example demonstrating the e�ect of coalescing. The loop formed by the back edge δ5 → δ1
reduces to a self loop over GPB δ8 a�er coalescing. Since self loops are redundant, they are eliminated.
Control flow edges with double lines represent definition-free paths.

• Consider δn and δ s , s ∈ succ (n) such that δn → δ s is a back edge. Then δn and δ s belong
to the same partition π i i� all GPBs in the loop formed by the back edge (i.e. all GPBs that
appear on all paths from δ s to δn) belong to π i .

In principle, partitioning could be performed using a greedy process interleaved with coalesc-
ing such that each part grows incrementally. However, this incremental expansion cannot be done
by coalescing one successor at a time because all successors and all predecessors of all these suc-
cessors must be included in the same partition, and this property needs to be applied transitively.
Hence, we separate the process of discovering the partition (analysis) from the process of coa-
lescing (transformation). We de�ne a data �ow analysis that constructs a part π i inductively by
considering the possibility of including the successors of the GPBs that are already in π i .
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5.2.2 The Role of Data Dependence in Blocking and Coalescing. The main di�erences between
the use of data dependence for blocking (De�nition 6 in Section 4.5) and for coalescing are:

• The motivation behind using data dependence. When analyzing for blocking, we identify the
possibility of a barrier updating a location accessed by a previous GPU. In coalescing we
wish to establish that no control �ow needs to be maintained between two GPUs.
• The way data dependence is used. For blocking, we use the possible presence of data depen-
dence between a barrier and reaching GPUs to block some of the reaching GPUs. For coa-
lescing, we use the guaranteed absence of data dependence between the GPUs of a GPB and
those reaching it from within a part to coalesce the GPB with the part.
• Relevant data dependences. Coalescing removes control �ow between two GPUs enabling
their non-deterministic execution with respect to each other which is oblivious to any data
dependence between the GPUs. Hence, a RaW and WaW dependences need to be preserved
by prohibiting coalescing. However, a WaR dependence is not a�ected by coalescing. On
the other hand, blocking by a barrier does not involve RaW dependence (see the motivation
above) and needs to handle only WaW and WaR dependences.
• The role of dereference in data dependence. For blocking, only the write by a barrier is impor-
tant and not a read. Hence, we check for a dereference only in the source of a barrier GPU.
For coalescing analysis, we need to consider dereferences both in the source and the target.

These di�erences change themodelling of data dependence for coalescing in the following ways:

• We now include a check for a dereference within the predicate for data dependence check.
• Consider a GPB δn for coalescing in a part π i . We now check for both reads and writes in
the GPUs of δn and only writes in the GPUs of π i .

Compare the predicates DDep (De�nition 6) for blocking and DDep (De�nition 7) for coalescing
to see the above di�erences. For establishing the absence of dependence, we match the types of
γ 1 ∈ X with the types of γ 2 ∈ Y . This is meaningful only when γ 1 , γ 2. The term X − Y in the
de�nition of predicate DDep ensures this.

5.2.3 Partitioning Analysis. We de�ne two interdependent data �ow analyses that inductively

• construct part π i using data �ow variables CInn/COutn , and
• compute the GPUs accumulated in G (π i ,n) in data �ow variables GInn/GOutn .

The latter is required to identify the RaW or WaW data dependence between the GPUs in part π i .
Unlike the usual data �ow variables that typically compute a set of facts, CInn/COutn are pred-

icates. If CInn is true, it indicates that δn belongs to the same part as that of all of its predecessors.
If COutn is true, it indicates that δn belongs to the same part as that of all of its successors. Thus
our analysis does not enumerate the parts as sets of GPBs explicitly; instead, parts are computed
implicitly by setting predicates CIn/COut of adjacent GPBs.
The data �ow equations to compute CInn /COutn are given in De�nition 7. The initialization is

true for all GPBs. Predicate coalesce(p,n) uses gpuFlow(p,n) to check if GPUsG (π i ,p) are allowed
to �ow from p to n—if yes, then p and n belong to the same part. If GOutp is ∅, they belong to
the same part regardless of gpuFlow(p,n). The presence of COutp in the equation of coalesce
(De�nition 7) ensures that GPB δp is considered for coalescing with δn only if δp has not been
found to be a “boundary” in coalescing because it cannot coalesce with some successor.
Another striking di�erence between the equations for CIn/COut in De�nition 7 and the usual

data �ow equations is that the data �ow variables CInn and COutn for GPB n are independent of
each other—CInn depends only on the COut of its predecessors and COutn depends only on the
CIn of its successors. Intuitively, this form of data �ow equations attempts to melt the boundaries
of GPB n to explore fusing it with its successors and predecessors.
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CInn ≔



false n is Start
∧

p ∈pred (n)

coalesce(p,n) otherwise

COutn ≔



false n is End
∧

s ∈succ (n)

CIns otherwise

coalesce(p,n)⇔ COutp ∧
(

GOutp = ∅ ∨ gpuFlow(p,n) , ∅
)

GInn ≔


∅ n is Start
⋃

p ∈pred (n)
gpuFlow(p,n) otherwise

GOutn ≔

GInn ∪ δn CInn = true

δn otherwise

gpuFlow(p,n) ≔

∅ ¬CInn ∧ DDep(GOutp ,δn )

GOutp otherwise

DDep(X ,Y )⇔
(

deref(X ) ∨ deref(Y )
)

∧
(

TDef(Y ) ∪ TRef(Y )
)

∩ TDef(X − Y ) , ∅

deref(X )⇔ ∃ x
i |j
−−→s y ∈ X s.t. (i > 1) ∨ (j > 1)

Definition 7. Data flow equations for Coalescing Analysis.

• When CInn is true, it melts the boundary at the top of the GPB and glues it with all its
predecessors that are already in the part. Thus, a part grows in a forward direction.
• When COutn is true, it melts the boundary at the bottom of the GPB and includes all its
successors in the part thereby growing a part in the forward direction.

The incremental expansion of a part in a forward direction in�uences the �ow of GPUs accu-
mulated in a part leading to a forward data �ow analysis for computing G (π i ,n) using data �ow
variables GInn/GOutn . The data �ow equations to compute them are given in De�nition 7. Func-
tion gpuFlow(p,n) in the equation for GIn computes the set of GPUs G (π i ,p) that �ow from p to
n. It establishes the absence of data dependences using predicate DDep de�ned in Section (5.2.2).
If no data dependence exists, the GPUs accumulated in GOutp are propagated to n. The presence
of ¬CInp in equation for gpuFlow ensures that GPUs in GOutp are propagated to δn only if δn has
not been found to be a “boundary” in coalescing because it cannot coalesce with some predecessor.

Example 26. Figure 14 gives the data �ow information for the example of Figure 13. GPBs
δ 1 and δ 2 can be coalesced because COut1 is true and GOut1 is ∅. Thus, DDep(1,2) returns
false indicating that types do not match and hence there is no possibility of a data dependence
between the GPUs of δ 1 and δ 2. Similarly, GPBs δ 1 and δ 3 can be coalesced. Thus COut1, CIn2,
and CIn3 are true. We check the data dependence between the GPUs of GPBs δ 2 and δ 4 using the
type information. However, DDep(2,4) returns false because the term (GOut2 − δ 4) is ∅. Thus,
GPBs δ 2 and δ 4 belong to the same part and can be coalesced. For GPBs δ 3 and δ 4, the possibility
of data dependence is resolved based on the type information. The term (GOut3 − δ 4) returns

z
2 |0
−−→
32

o whose typeof(z,1) does not match that of the pointers being read in the GPUs in δ 4. Thus,
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Name for GPUs. Statement ids do not matter

γ 1 x
2 |0
−−→
12

m γ 2 y
2 |0
−−→
14

n γ 3 z
2 |0
−−→
32

o γ 4 u
2 |0
−−→
17

v γ 5 p
1 |0
−−→
36

s γ 6 q
1 |0
−−→
37

t

GPB n TDef (n) TRef (n) GInn GOutn CInn COutn

δ 1 ∅ ∅ {γ 1,γ 2,γ 3,γ 4} {γ 1,γ 2,γ 3,γ 4} F T

δ 2 {int∗,�oat∗} ∅ {γ 1,γ 2,γ 3,γ 4} {γ 1,γ 2,γ 3,γ 4} T T

δ 3 {short∗, int∗} ∅ {γ 1,γ 2,γ 3,γ 4} {γ 1,γ 2,γ 3,γ 4} T T

δ 4 {int∗,�oat∗} ∅ {γ 1,γ 2,γ 3,γ 4} {γ 1,γ 2,γ 3,γ 4} T T

δ 5 {int∗∗} ∅ {γ 1,γ 2,γ 3,γ 4} {γ 1,γ 2,γ 3,γ 4} T F

δ 6 {int∗} ∅ ∅ {γ 5} F T

δ 7 {int∗} ∅ {γ 5} {γ 5,γ 6} T F

Fig. 14. The data flow information computed by coalescing analysis for example in Figure 13. The CIn and
COut values indicate that GPBsδ1,δ2,δ3,δ4,δ5 can be coalesced. Similarly, GPBsδ6 and δ7 can be coalesced.
GPBs δ5 and δ6 must remain in di�erent coalesced groups.

GPBsδ 3 andδ 4 can be coalesced. GPBsδ 4 andδ 5 both contain aGPUwith a dereference, however
DDep(δ 4,δ 5) returns false indicating that there is no type matching and hence no possibility of
data dependence, thereby allowing the coalescing of the two GPBs. The DDep(δ 5,δ 6) returns

true (type of source of the GPU x
2 |0
−−→
12

m ∈ GOut5 matches the source of the GPU p
1 |0
−−→
36

s ∈ δ 6)

indicating a possibility of data dependence in the caller through aliasing and hence the two GPBs
cannot be coalesced. Thus, the �rst part in the partition contains only GPBs δ 1, δ 2, δ 3, δ 4, and
δ 5. GPB δ 6 now marks the �rst GPB of the new part. GPBs δ 6 and δ 7 can be coalesced as there
is no data dependence between their GPUs. The loop δ 5 → δ 1 before coalescing now reduces to
self loop over GPB δ 8 after coalescing. The self loop is redundant and hence eliminated. GPBs
δ 5 and δ 1 can be coalesced because all the GPBs of the loop belong to the same part.

Observe that some GPUs appear in multiple GPBs of a GPG (before coalescing). This is because
we could have multiple calls to the same procedure. Thus, even though the GPBs are renumbered,
the statement labels in the GPUs remain unchanged resulting in repetitive occurrence of a GPU.
This is a design choice because it helps us to accumulate the points-to information of a particular
statement in all contexts.

Example 27. In the example of Figure 6, GPBs δ 1 and δ 2 can be coalesced becauseDDep(δ 1,δ 2)
returns false indicating that there is no type matching and hence no possible data dependence
between their GPUs. Thus, COut1 and CIn2 are set to true. The loop formed by the back edge
δ 2 → δ 1 reduces to a self loop over GPB δ 11 after coalescing. The self loop is redundant and
hence it is eliminated. For GPBs δ 2 and δ 4, DDep(δ 2,δ 4) returns true because typeof(q,2) (for

the GPU q
2 |0
−−→
02

m in δ 02) matches typeof(p,2) (for the GPU e
1 |2
−−→
04

p in δ 04) which is int ∗. This

indicates the possibility of a data dependence between the GPUs of GPBs δ 2 and δ 4 (q and p

could be aliased in the caller) and hence these GPBs cannot be coalesced. Thus, COut2 and CIn4
are set to false. For GPBs δ 4 and δ 5, DDep(δ 4,δ 5) returns false because there is no possible data
dependence. Hence COut4 and CIn5 are set to true and the two GPBs can be coalesced.

Recall that our coalescing heuristics requires us to prohibit

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: January 2018.



Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers :39

• coalescing with Start and End GPBs so that de�nition-free paths can be modelled, and
• coalescing of the source and target GPBs of a back edge unless all GPBs in the loop formed
by the back edge are included in the same part.

The data �ow equations for Coalescing (CIn/COut in De�nition 7) do not have any provision of
these requirements; they are enforced separately during the actual transformation.

5.2.4 Preserving Definition-Free Paths. Consider a GPU γ that reaches the exit of a GPG along
some path but not all. It means that there is some path in the GPG along which the source of
γ is not de�ned (i.e., the source of γ is may-de�ned in the GPG). According to our heuristics of
coalescing, a GPB is coalesced either with all its successors or with none. Hence, after coalescing
with all successors, a de�nition-free path may get subsumed and γ may reach the exit of a GPG
along all paths indicating that the source of γ is now must-de�ned. This would lead to a strong
update instead of a weak update thereby introducing unsoundness. Hence, we need to add an
explicit de�nition-free path for such GPUs. The GPUs with de�nition-free paths are identi�ed

by the corresponding boundary de�nitions. A de�nition-free path for the source of GPU : x
i |j
−−→s y

exists in a GPG only if the boundary de�nition x
i |i
−−→
00

x ′ reaches the exit of the GPG.

Example 28. In the example of Figure 13, the de�nition-free path is shown by edges with dou-

ble lines in the GPG obtained after coalescing. The GPU z
2 |0
−−→
32

o does not reach the exit along the

path δ 1 → δ 2 → δ 4 → δ 5 → δ 6 → δ 7 which forms the de�nition-free path. We add a de�nition-
free path between Start and End GPBs of a GPG with a GPB that contains all GPUs that do not

have any de�nition-free path. Thus, we have a GPB δ 10 which contains all GPUs except z
2 |0
−−→
32

o.

Example 29. In Figures 6 and 7, de�nition-free paths are shown by edges with double lines in

the GPGs of procedures f andд obtained after coalescing. For procedureд, the GPUsb
1 |0
−−→
02

m and

q
2 |0
−−→
02

m undergo a weak update and hence do not kill their corresponding boundary de�nitions.

This indicates that the source of these GPUs are may-de�ned and hence a de�nition-free path
is required for these GPUs. Thus, we add a de�nition-free path between Start and End GPBs of

∆д with GPB δ 16 which contains the set of GPUs {r
1 |0
−−→
01

a,e
1 |2
−−→
04

p,q
1 |0
−−→
05

e}.

For procedure f , the boundary de�nition b
1 |1
−−→
00

b ′ reaches the exit of ∆f indicating that b is

may-de�ned. Hence a de�nition-free path is added with GPB δ 17 containing all GPUs of ∆f

except b
1 |0
−−→
02

m. GPU q
2 |0
−−→
02

m, which has a de�nition-free path in ∆д , reduces to d
1 |0
−−→
02

m in ∆f .

However, d is de�ned in δ 08 also, hence it does not have a de�nition-free path in ∆f .

6 CALL INLINING

In order to construct the GPG of a procedure, the optimized GPGs of its callees are inlined at the
call sites and the resulting GPG of the procedure is then optimized. After a GPG is inlined at a
call site, its GPBs undergo another round of optimization in the calling context. This repeated
optimization in the context of each transitive caller of a GPG, gives us our e�ciency.
The GPG of a procedure can be constructed completely only when (a) all callees are known, and

(b) their GPGs have been constructed completely. The �rst condition is violated by a call through
function pointer and the second condition is violated by a recursive call. We classify procedure
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Startp

y = &a01 q();02

Endp

Startq

y = &b11

p ();12

Endq

main

p

q

∆1
p ∆2

p ∆3
p ≡ ∆p

∆1
q ∆2

q ∆3
q ≡ ∆q

∆⊤

(a) Mutually recursive procedures (b) Call graph and the order of constructing GPGs

Fig. 15. Constructing GPGs for recursive procedures by successive refinements.

calls into the following three categories and explain the handling of the �rst two in this section.
The third category is handled in Section 9 because it requires the concepts introduced in Section 7.

• Callee is known and the call is non-recursive.
• Callee is known and the call is recursive.
• Callee is not known.

6.1 Callee is Known and the Call is Non-Recursive

In this case, the GPG of the callee can be constructed completely before the GPG of its callers if
we traverse the call graph bottom up.

We inline the optimized GPGs of the callees at the call sites in the caller procedures. GPB labels
are used for maintaining control �ow within a GPG. Hence, we renumber the GPB labels after
call inlining and coalescing. Note that if a GPG is inlined multiple times then each inlining uses
a fresh numbering. Since the statement labels are unique across procedures, their occurrences in
GPUs do not change by inlining even if a GPG is inlined at two di�erent call sites within the same
procedure. As noted earlier, this is a design choice because it helps us to accumulate the points-to
information of a particular statement in all contexts.
When inlining a callee’s (optimized) GPG, we add two new GPBs, a predecessor to its Start GPB

and a successor to its End GPB. These new GPBs contain respectively:

• GPUs that correspond to the actual-to-formal-parameter mapping.
• A GPU that maps the return variable of the callee to the receiver variable of the call in the
caller (or zero GPUs for a void function).

SomeGPUs in the GPG of the calleemay have upwards-exposed versions of variables. For example,
if the callee reads a global variable x de�ned in the caller, it would have aGPU referring to the initial
value x ′ (see Section 4.3.2). Hence when a GPG is inlined in a caller procedure, we substitute the
callee’s upwards-exposed variable x ′ occurring in a callee’s GPU by the original variable x when
the GPU is included in the caller’s GPG. Note that x may be a global variable or a formal parameter.
Inlining of procedure calls with the callee’s optimized GPG allows reaching GPUs analyses to

remain intraprocedural analyses. However, recursive and indirect calls need to be handled specially.
These cases are discussed in Section 6.2 immediately below and Section 9.
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Input: p,∆1
p , ∆

i
p // A recursive procedure, its �rst incomplete GPG containing only

// recursive calls, and its ith GPG in the �xed-point computation

Output: ∆i+1
p // Optimized (i + 1)th GPG for procedure p

01 Refine_GPG (p,∆1
p ,∆

i
p )

02 {

03 Rprev = RGOutEnd (∆
i
p )

04 Rprev = RGOutEnd (∆
i
p )

05 Compute ∆i+1
p by inlining recursive calls in ∆1

p with their latest GPGs

06 Perform both variants of reaching GPUs analysis over ∆i+1
p

07 Rcurr = RGOutEnd (∆
i+1
p )

08 Rcurr = RGOutEnd (∆
i+1
p )

09 if
(

(Rcurr , Rprev) ∨ (Rcurr , Rprev)
)

10 Push callers of p on the worklist

11 Perform strength reduction and redundancy elimination optimizations over ∆i+1
p

12 return ∆i+1
p

13 }

Definition 8. Computing GPGs for Recursive Procedures by Successive Refinement

6.2 Callee is Known and the Call is Recursive

Consider Figure 15 in which procedure p calls procedure q and q calls p. The GPG of q depends on
that of p and vice-versa leading to incomplete GPGs: the GPGs of the callees of some calls either
have not been constructed or are incomplete. We handle this mutual dependency by successive
re�nement of incomplete GPGs of p and q through a �xed-point computation.
A set of recursive procedures is represented by a strongly connected component in a call graph

which is formed by a collection of back edges that represent recursive calls. Since we traverse a
call graph bottom up, the construction of GPGs for a set of recursive procedures begins with the
procedures that are the sources of back edges. The GPGs of some callees of these procedures (i.e.
the callees that are targets of back edges in the call graph) have not been constructed yet. We
handle such situations by using a special GPG ∆⊤ that represents the e�ect of a call when the
callee’s GPG is not available. The GPG ∆⊤ is the ⊤ element of the lattice of all possible procedure
summaries. It kills all GPUs and generates none (thereby, when applied, computes the ⊤ value—
∅—of the lattice for may points-to analysis) [15]. Semantically, ∆⊤ corresponds to the call to a
procedure that never returns (e.g. loops forever). It consists of a special GPB called the call GPB
whose �ow functions are constant functions computing the empty set of GPUs for both variants
of reaching GPUs analysis.
We perform the reaching GPUs analyses over incomplete GPGs containing recursive calls by re-

peated inlining of callees starting with∆⊤ as their initial GPGs, until no further inlining is required.
This is achieved as follows: Since data �ow analysis over incomplete GPGs under-approximates
the e�ect of some calls through ∆⊤, the data �ow values so computed need to be re�ned further.
This is achieved by inlining the calls by including incomplete GPGs of the callees to compute a
new GPG over which the data �ow analysis is repeated. Let ∆1

p denote the GPG of procedure p in
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∆1
q

∆2
q ∆3

q

Unoptimized Optimized Unoptimized Optimized

δ 1

y
1 |0
−−→
11

bδ 2

p ()δ 3

δ 4

δ 1

y
1 |0
−−→
11

bδ 2

∆⊤δ 3

δ 4

∆⊤

δ 1

y
1 |0
−−→
11

bδ 2

y
1 |0
−−→
01

aδ 3

δ 4

δ 1

y
1 |0
−−→
01

aδ 3

δ 4

∆1
p

∆2
p ∆3

p

Unoptimized Optimized Unoptimized Optimized

δ 5

y
1 |0
−−→
01

a

δ 6

q()

δ 7

δ 8

δ 5

y
1 |0
−−→
01

a

δ 6

∆⊤

δ 7

δ 8

δ 5

y
1 |0
−−→
01

a

δ 9

δ 8

δ 5

y
1 |0
−−→
01

a

δ 6

y
1 |0
−−→
01

a

δ 7

δ 8

δ 5

y
1 |0
−−→
01

a

δ 9

δ 8

Fig. 16. Series of GPGs of procedures p and q of Figure 15. They are computed in the order shown in Fig-
ure 15(b). See Example 30 for explanation.

which all the calls to the procedures that are not part of the strongly connected component are
inlined by their respective optimized GPGs. Note that the GPGs of these procedures have already
been constructed because of the bottom up traversal over the call graph. The calls to procedures
that are part of the strongly connected component are retained in ∆1

p . In each step of re�nement,

the recursive calls in ∆1
p are inlined either

• by ∆⊤ when no GPG of the callee has been constructed, or
• by an incomplete GPG of a callee in which some calls are under-approximated using ∆⊤.

Thus we compute a series of GPGs ∆i
p , i > 1 for every procedure p in a strongly connected com-

ponent until the termination of �xed-point computation. For this purpose, we initialize a worklist
with all procedures in a strongly connected component. This worklist is ordered by the postorder
relation between the procedures in the call graph. A procedure is added to the worklist based on
the following criterion; the process terminates when the worklist becomes empty. Once ∆i

p is con-

structed, we decide to construct ∆
j
q for a caller q of p if the data �ow values of the End GPB of

∆i
p di�er from those of the End GPB of ∆i−1

p . This is because the overall e�ect of a procedure on

its callers is re�ected by the values reaching its End GPB (because of forward �ow of informa-
tion in points-to analysis). If the data values of the End GPBs of ∆i−1

p and ∆i
p are same, then they

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: January 2018.



Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers :43

would have identical e�ect on their callers. Thus, the GPGs are semantically identical as procedure
summaries even if they di�er structurally. This step is described in De�nition 8.
The convergence of this �xed-point computation di�ers subtly from the usual �xed-point com-

putation in the following manner: in each step of computation, the GPGs continue to change. And
yet, we stop the �xed-point computation when the data �ow values of the End GPB converge
across the changing GPGs, not when the resultant GPGs converge.

Example 30. In the example of Figure 15, the sole strongly connected component contains
procedures p and q. Since procedure q is the source of the back edge in the call graph, the GPG
of procedure q is constructed �rst. There are no calls in procedure q to procedures outside the
strongly connected component. Thus, ∆1

q contains a single call to procedure p whose GPG is not

constructed yet and hence the construction of ∆2
q requires inlining of ∆⊤. Since ∆⊤ represents

a procedure call which never returns, the GPB Endд becomes unreachable from the rest of the

GPBs in ∆2
q . The optimized ∆2

q is ∆⊤ because all GPBs that no longer appear on a control �ow
path from the Start GPB to the End GPB are removed from the GPG, thereby garbage-collecting
unreachable GPBs. ∆1

p contains a single call to procedure q whose incomplete GPG ∆2
q , which is

∆⊤, is inlined during construction of∆
2
p . The optimized version of∆2

p is shown in Figure 16. Then,

∆2
p is used to construct ∆3

q . Reaching GPUs analyses with and without blocking are performed

on ∆2
q and ∆3

q . The data �ow values for ∆2
q are Rprev = Rprev = ∅ whereas the data �ow values

for ∆3
q are Rcurr = Rcurr = {y

1 |0
−−→
01

a}. Since the data �ow values have changed, caller of q i.e., p

is pushed on the worklist and ∆3
p is constructed by inlining ∆3

q . The data �ow values computed

for ∆2
p and ∆3

p are identical Rprev = Rprev = Rcurr = Rcurr = {y
1 |0
−−→
01

a} and hence caller of p i.e.,

procedure q is not added to the worklist. The worklist becomes empty and hence the process
terminates. Note that the data �ow values of ∆2

q and ∆3
q di�er and yet we do not construct the

GPG ∆4
q . This is because ∆

4
q constructed by inlining ∆3

p will have the same e�ect as that of ∆3
q

constructed by inlining ∆2
p since the impact of ∆2

p and ∆3
p is identical.

The process of �xed-point computation is guaranteed to terminate because of the �niteness of

the set of GPUs Rprev, Rprev, Rcurr, Rcurr: For two variables x and y, the number of GPUs x
i |j
−−→s y

depends on the number of possible indlevs (i |j) and the number of statements. Since the number
of statements is �nite, we need to examine the number of indlevs. For pointers to scalars, the
number of indlevs between any two variables is bounded because of type restrictions. For pointers
to structures (Section 8), indlevs are replaced by indirection lists (indlists). Sections 8.2 and 8.3
summarize indlists restricting them to a �nite number. Hence the number of GPUs is also �nite.

7 COMPUTING POINTS-TO INFORMATION USING GPGS

The second phase of a bottom-up approach which uses procedure summaries created in the �rst
phase, is redundant in our method. This is because our �rst phase computes the points-to infor-
mation as a side-e�ect of the construction of GPGs.
Since we also need points-to information for statements that read pointers but do not de�ne

them, we model them as use statements. Consider a use of a pointer variable in a non-pointer
assignment or an expression. We represent such a use with a GPU whose source is a �ctitious
node u with indlev 1 and the target is the pointee which is being read. Thus a condition ‘if (x ==
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∗y)’ where both x and y are pointers, is modelled as a GPB
{

u
1 |1
−−→s x ,u

1 |2
−−→s y

}

whereas an integer

assignment ‘∗x = 5;’ is modelled as a GPB
{

u
1 |2
−−→s x

}

.

Example 31. Consider the code snippet on the right. There is a non-pointer assignment in

01 x = &a;

02 ∗x = 5;

which the pointee of x (which is the location a) is being de�ned. A client
analysis would like to know the pointees of x for statement 02. We model this

use of pointee of x as a GPU u
1 |2
−−→
02

x . This GPU can be composed with x
1 |0
−−→
01

a

to get a reduced GPU u
1 |1
−−→
02

a indicating that pointee of x in statement 2 is a.

When a use involves multiple pointers such as ‘if (x == ∗y)’, the corresponding GPB contains
multiple GPUs. If the exact pointer-pointee relationship is required, rather than just the reduced
form of the use (devoid of pointers), we need additional minor bookkeeping to record GPUs and
the corresponding pointers.
With the provision of a GPU for a use statement, the process of computing points-to information

can be seen as a two step process:

• creating def-use or use-def chains for pointers to view producer GPUs as de�nitions of point-
ers and consumer GPUs as the use of pointers, and
• performing strength reduction of the consumer GPUs using the information from the pro-
ducer GPUs to reduce the indlevs of the consumer GPUs.

Since our �rst phase does this for constructing procedure summaries, it is su�cient to compute
points-to information in the �rst phase.
This process is easy to visualize if the de�nitions and uses are in the same procedure. Consider

a producer GPU p and a consumer GPU c that are not in the same procedure. We can facilitate
strength reduction involving them by

(a) propagating p to the procedure containing c ,
(b) propagating c to the procedure containing p, or
(c) propagating both p and c to a common procedure.

The propagation of information in cases (a) and (b) is similar to that in a top-down analysis; case
(a) corresponds to a forward analysis and case (b) corresponds to a backward analysis. However,
case (c) is only possible in bottom-up analysis.
A typical second phase of a bottom-up approach involves propagation of information similar to

cases (a) and (b). This is illustrated in Example 32. We use propagation similar to case (c) which is
subsumed in the �rst phase of a bottom-up approach rendering the second phase redundant. It is
illustrated in Example 33.

Example 32. Consider procedures f , д, h and s de�ned in Figure 17. We can facilitate strength
reduction in the following ways for cases (a) and (b):

• Propagating p to the procedure containing c . A top-down forward analysis would propagate

the GPU x
1 |0
−−→
1

a from procedure f to procedure д.

• Propagating c to the procedure containing p. A top-down backward analysis in the spirit of

liveness could propagate the GPU y
1 |1
−−→
4

x from procedure д to procedure f .
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main

s f

h д

Startf Startf

x a
1 |0

1
δ 1

д()δ 2

z c
1 |0

2
δ 3

w z
1 |1

3
δ 4

Endf Endf

Startд Startд

y x
1 |1

4
δ 5

Endд Endд

Starth Starth

x b
1 |0

5
δ 6

Endh Endh

Starts Starts

h()δ 7

p x
1 |1

6
δ 8

д()δ 9

Ends Ends

Fig. 17. Computing points-to information using GPGs. The first column gives the call graph while the other
columns give GPGs before call inlining. The GPG of procedure main has been omi�ed.

We handle case (c) by interleaved call inlining and strength reduction. Call inlining enhances
the opportunities for strength reduction by providing more information from the callers. The inter-

leaving of strength reduction and call inlining gradually converts a GPU x
i |j
−−→s y to a set of points-to

edges {a
1 |0
−−→s b | a is ith pointee of x , b is jth pointee of y}. This is achieved by propagating the use

of a pointer15 and its de�nitions to a common context. This may require propagating:

(1) a consumer GPU (i.e. a use of a pointer variable) to a caller,
(2) a producer GPU (i.e. a de�nition of a pointer variable) to a caller,
(3) both consumer and producer GPUs involving a pointer variable to a caller, and
(4) neither (if they are same in the procedure).

Since statement numbers are unique across all procedures and are not renamed on inlining, the
points-to edges computed across di�erent contexts for a given statement represent the �ow- and
context-sensitive points-to information for the statement.

Example 33. The four variants of hoisting p and c to a common procedure in the �rst phase of
a bottom-up method are illustrated below. E�ectively, they make the second phase redundant.

(c.1) When∆д is inlined in f , c :y
1 |1
−−→
4

x from procedureд is hoisted to procedure f that contains

GPU p : x
1 |0
−−→
1

a thereby propagating the use of pointer x in procedureд to caller f . Strength

reduction reduces c to y
1 |0
−−→
4

a.

15This use could be in a pointer assignment or a use statement.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: January 2018.



:46 Pritam M. Gharat, Uday P. Khedker, and Alan Mycro�

(c.2) When ∆h is inlined in s , p : x
1 |0
−−→
5

b from procedure h is hoisted to procedure s that contains

c :p
1 |1
−−→
6

x thereby propagating the de�nition of x in procedure h to the caller s . Strength

reduction reduces c to p
1 |0
−−→
6

b.

(c.3) When ∆д and ∆h are inlined in s , c :y
1 |1
−−→
4

x in procedure д and p :x
1 |0
−−→
5

b in procedure h

are both hoisted to procedure s thereby propagating both the use and de�nition of x in

procedure s . Strength reduction reduces c to y
1 |0
−−→
4

b.

(c.4) Both the de�nition and use of pointer z are available in procedure f with c :w
1 |1
−−→
3

z and

p :z
1 |0
−−→
2

c . Strength reduction reduces c to w
1 |0
−−→
3

c .

Thus, y points-to a along the call from procedure f and it points-to b along the call from proce-

dure s . Thus, the points-to information {y
1 |0
−−→a,y

1 |0
−−→b} represents �ow- and context-sensitive

information for statement 4.

8 HANDLING HEAP FOR POINTS-TO ANALYSIS USING GPGS

So far we have created the concept of GPGs for pointers to scalars allocated on the stack or in the
static area. This section extends the concepts to data structures containing named �elds created
using C style struct or union and possibly allocated on the heap (as well as on the stack or in static
memory). For clarity, in this section, we show only the set of GPUs reaching a given statement
and do not show the complete GPG of a procedure.
Extending GPGs to handle structures and heap-allocated data requires the following changes:

• The concept of indlevs is generalized to indirection lists (indlists) to handle structures and
heap accesses �eld sensitively.
• Heap locations are abstracted using allocation sites. In this abstraction, all locations allocated
at a particular allocation site are treated alike. This approximation allows us to handle the
unbounded nature of heap as if it were bounded [12]. Hence only weak updates can be
performed on heap locations.16

• When the GPG of a procedure is being constructed, the allocation sites may appear in a caller
procedure and hence may not be known. We deal with this by an additional summarization
based onk-limiting to bound the accesses in a loop. Both these summarization techniques are
required to create a decidable version of ourmethod of constructing procedure summaries in
the form of GPGs. The resulting points-to analysis is a precise �ow-sensitive, �eld-sensitive,
and context-sensitive analysis (relative to these two summarization techniques).17

• Introduction of indlists andk-limiting summarization requires extending the concept of GPU
composition to handle them.
• The allocation-site-based abstraction and k-limiting summarization may create cycles in
GPUs; a simple extension to GPU reduction handles them naturally.

16We also perform weak updates for address-escaped variables (Section 10.1) because they share many similarities with

heap locations. Like heap locations, address-escaped variables could outlive the lifetime of the procedures that create them.

They potentially represent multiple concrete locations because of multiple calls to the procedure. Further, this number

could be unbounded in case of recursive calls.
17 In a top-down analysis, k-limiting is not required because allocation sites are propagated from callers to callees. While

the use of k-limiting in a bottom-up approach seems like an additional restriction, unless the locations involved in a pointer

chain are allocated bym > k distinct allocation sites, there is no loss of precision compared to a top-down approach.
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Pointer assignment GPU Remark

x = malloc(. . .) x
[∗] |[ ]
−−−−→hi The allocation site name is i

x = NULL x
[∗] |[ ]
−−−−→NULL NULL is distinguished location

x = y.n x
[∗] |[n]
−−−−−→y

x .n = y x
[n] |[∗]
−−−−−→y

x = y → n x
[∗] |[∗,n]
−−−−−−→y

x → n = y x
[∗,n] |[∗]
−−−−−−→y

Fig. 18. GPUs with indirection lists (indlist) for basic pointer assignments in C for structures.

The optimizations performed on GPGs and the required analyses remain the same. Hence, the
discussion in these sections is driven mainly by examples that illustrate how the theory developed
earlier is adapted to handle structures (typically, but not necessarily, heap-allocated).

8.1 Extending GPU Composition to Indirection Lists

The indlev “i |j” of a GPU x
i |j
−−→s y represents i dereferences of x and j dereferences of y using the

dereference operator ∗. We can also view the indlev “i |j” as lists (also referred to as indirection list or
indlist) containing i and j occurrences of ∗. This representation naturally allows �eld-sensitive han-
dling of structures by using indirection lists containing �eld dereferences. Consider the statements
x = ∗y and x = y→n involving pointer dereferences. Since x = y→n is equivalent to x = (∗y).n,
we can represent the two statements by GPUs as shown below:

Statement
Field-sensitive
representation

Field-insensitive
representation

Our choice

x = ∗y x
[∗] |[∗,∗]
−−−−−−→y x

1 |2
−−→y x

1 |2
−−→y

x = y→n x
[∗] |[∗,n]
−−−−−−→y x

1 |2
−−→y x

[∗] |[∗,n]
−−−−−−→y

We achieve �eld sensitivity by enumerating �eld names. Having a �eld-insensitive representation
which does not distinguish between di�erent �elds, makes no di�erence for a statement x = ∗y,
but loses precision for a statement x = y→n. Figure 18 illustrates the GPUs corresponding to the
basic pointer assignments involving structures.
The dereference in the pointer expression y → n is represented by an indlist written as [∗,n]

associated with pointer variable y. It means that, �rst the address in y is read and then the address
in �eld n is read. On the other hand, the access y.n as shown in the third row of Figure 18 can be
mapped to location by adding the o�set of �eld n to the virtual address ofy at compile time. Hence,
it can be treated as a separate variable which is represented by a node y.n with an indlist [∗]. We
can also represent y.n with a node y and an indlist [n]. For our implementation, we chose the for-
mer representation. However, the latter representation is more convenient for explaining the GPU
compositions and hence we use it in the rest of the paper. For structures,we ensure �eld sensitivity
by maintaining indlist in terms of �eld names. We choose to handle unions �eld-insensitively to
capture aliasing between its �elds.
Recall that a GPU composition c ◦τ p involves balancing the indlev of the pivot in c and p (Sec-

tion 4.2). With indlist replacing indlev, the operations remain similar in spirit, although now they
become operations on lists rather than operations on numbers. To motivate the operations on
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indlists, let us recall the operations on indlevs: GPU composition c ◦τ p requires balancing indlevs
of the pivot which involves computing the di�erence between the indlev of the pivot in c and p.
This di�erence is then added to the indlev of the non-pivot node in p. Recall that a GPU compo-
sition is valid (Section 4.2.2) only when the indlev of the pivot in c is greater than or equal to the
indlev of the pivot in p. For convenience, we illustrate it again in the following example.

Example 34. Consider p :y
1 |0
−−→x and c :w

1 |2
−−→y where y is the pivot. Then a TS composition

c ◦ tsp is valid because indlev of y in c (which is 2) is greater than indlev of y in p (which is 1).
The di�erence (2 − 1) is added to the indlev of x (which then becomes 1) resulting in a reduced

GPU r :w
1 |(2−1+0)
−−−−−−−→x , i.e. r :w

1 |1
−−→x .

We de�ne similar operations for indlists. A GPU composition is valid if the indlist of the pivot
in GPU p is a pre�x of the indlist of the pivot in GPU c . For example, the indlist “[∗]” is a pre�x
of the indlist “[∗,n]”. The addition (+) of the di�erence (−) in the indlevs of the pivot to the indlev
of one of the other two nodes is replaced by the list-append operation denoted @.
Similarly computing the di�erence (−) in the indlev of the pivot is replaced by the ‘list-di�erence’

or ‘list-remainder’ operation, Remainder : indlist × indlist → indlist ; this takes two indlists as its
arguments where the �rst is a pre�x of the second and returns the su�x of the second indlist

that remains after removing the �rst indlist from it. Given il2 = il1 @ il3, Remainder(il1,il2) = il3.
When il1 = il2, the remainder il3 is an empty indlist (denoted [ ]). A GPU composition is valid only
when il1 is a pre�x of il2; Remainder(il1,il2) is computed only for valid GPU compositions. This is
again a natural generalization of the integer indlev formulation earlier.

Example 35. Consider the statement sequence y = x ;w = y → n;. In order to compose the

corresponding GPUs p :y
[∗] |[∗]
−−−−−→x and c :w

[∗] |[∗,n]
−−−−−−→y we �nd the list remainder of the indlists of

y in the two GPUs. This operation (Remainder([∗], [∗,n]) returns [n] which is appended to the
indlist of node x (which is [∗]) resulting in a new indlist [∗] @ [n] = [∗,n] and thus, we get a

reduced GPUw
[∗] |[∗,n]
−−−−−−→x representing w = x → n.

The formal de�nition of GPU composition using indlists is similar to that using indlevs (De�-
nition 3) and is given in De�nition 9. Note that for TS and SS compositions in the equations, the
pivot is x . Besides, for SS composition, the condition il6 , [ ] (generalizing the strict inequality
‘<’ in De�nition 3) ensures that the consumer GPU does not rede�ne the location de�ned by the
producer GPU. Unlike the case of pointers to scalars, TS and SS compositions are not mutually
exclusive for pointers to structures. For example, an assignment x → n = x could have both TS

and SS compositions with a GPU p de�ning x . The two compositions are independent because SS
composition resolves the source of a GPU whereas TS composition resolves the target of the GPU.
Hence, they can be performed in any order.
A GPU composition is desirable if the indlev of r does not exceed that of c . Similarly, in the

case of indlists, a GPU composition is desirable if indlists of r (say il1 |il2) does not exceed that of
c (say il ′1 |il

′
2), i.e. |il1 | ≤ |il

′
1 | ∧ |il2 | ≤ |il

′
2 | where |il | denotes the length of indlist il . Note that, for

desirability, we only need a smaller length and not a pre�x relation between indlists. In fact, the
indlist in r is always a su�x of the indlist in c as illustrated by the following example.

Example 36. Consider the code snippet on right. The e�ect of statement 22 in the context of

21 : x = &y;
22 : z = x → n;

statement 21 can be seen as an assignment z = y.n. The composition of

GPUs c :z
[∗] |[∗,n]
−−−−−−→

22
x and p :x

[∗] |[ ]
−−−−→

21
y results in the GPU r :z

[∗] |[n]
−−−−−→

22
y. The

indlist of the target (y) of r is not a pre�x of that of target (x ) of c but is a su�x.
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(

z
il1 |il2
−−−−→

t
x
)

◦ ts
(

v
il3 |il4
−−−−→u y

)

≔



z
il1 |il5
−−−−→

t
y (v = x ) ∧ (il2 = il3@il6) ∧ (il5 = il4@il6)

fail otherwise

(

x
il1 |il2
−−−−→

t
z
)

◦ ss
(

v
il3 |il4
−−−−→u y

)

≔



y
il5 |il2
−−−−→

t
z (v = x ) ∧ (il1 = il3@il6) ∧ (il5 = il4@il6)

∧ il6 , [ ]

fail otherwise

Definition 9. GPU Composition c◦τ p using indlist s

struct node ∗ x;

01 struct node {

02 struct node ∗ n;

03 int d;

04 };

05 void g() {

06 struct node ∗ y;

07 while (...) {

08 print x→ d;

09 x = x→ n;

10 }

11 }

12 void f() {

13 struct node ∗ y;

14 y = malloc(. . .);

15 x = y;

16 while (...) {

17 y→ n = malloc(. . .);

18 y = y→ n;

19 }

20 g();

21 }

(a) A program for creating a linked list and traversing it. We have omitted the null assignment for the last node
of the list and the associated GPUs

x x ′

(b) RGOut11 (GPUs reaching
the End of д for k = 3)

[∗]|[∗,n,n]

09д3

[∗]|[∗]

00
д1

[∗]|[∗,n]

09
д2

d n

x

y

d n d n . . .

h14 h17 h17

(c) Linked list created by
procedure f

y

x

h14 h17

(d) RGIn20 (GPUs reaching
the call to д on line 20)

[∗], [ ]

14f1

[∗]|[ ]

15

f2

[n]|[ ]

17f3

[∗]|[ ]

18

f4
[n]|[ ]

17

f5

Fig. 19. An example demonstrating the need of k-limiting summarization technique in addition to allocation-
site-based abstraction for the heap. h14 and h17 are the heap nodes allocated on lines 14 and 17 respectively.

8.2 Summarization Using Allocation Sites

Under the allocation-site-based abstraction for the heap, the objects created by an allocation state-
ment are collectively named by the allocation site and undergo weak update. Thus, a statement

x = malloc(. . .) is represented by a GPU x
[∗] |[ ]
−−−−→

i
hi where hi is the heap location created at the
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allocation site i . The example below illustrates how this bounds an unbounded heap in a GPG. For
convenience, we identify GPUs using procedure names.

Example 37. For procedure f shown in Figure 19 we create heap objects h14 and h17 allocated

at line numbers 14 and 17. The GPU set RGIn20 in procedure f represents a linked list with x

as its head pointer (Figure 19(d)) and h14 as its �rst node. The remaining nodes in the list are
represented by the heap location h17 and are summarized by a self-loop over the node. This set

of GPUs is computed as follows: The GPU f1 :y
[∗] |[ ]
−−−−→

14
h14 is created for allocation-site 14. The

GPU x
[∗] |[∗]
−−−−−→

15
y composes with f1 (under TS composition) to create a new GPU f2 :x

[∗] |[ ]
−−−−→

15
h14.

When statement 17 is processed for the �rst time, GPU y
[∗,n] |[ ]
−−−−−−→

17
h17 composes with f1 (under

SS composition) to create a GPU f3 :h14
[n] |[ ]
−−−−−→

17
h17. When statement 18 is processed for the �rst

time, the GPUy
[∗] |[∗,n]
−−−−−−→

18
y composes with f1 (under TS composition) to create a GPU y

[∗] |[n]
−−−−−→

18
h14

which is further composed with f3 (under TS composition) to create a GPU f4 :y
[∗] |[ ]
−−−−→

18
h17. GPU

f4 kills GPU f1 because y is rede�ned by statement 18. This completes the �rst iteration of the

loop and the set of GPUs RGOut19 is { f2, f3, f4} representing the following information:

• f2 indicates that x points to the head of the linked list.
• f3 indicates that the �eld n of heap location h14 points to heap location h17.
• f4 indicates that y points to heap location h17.

In the second iteration of the reaching GPUs analysis over the loop, RGOut15 and RGOut19
are merged to compute RGIn16 as { f1, f2, f3, f4}. When statement 17 is processed for the second

time, the GPU y
[∗,n] |[ ]
−−−−−−→

17
h17 composes with

• f1 (under SS composition) to create f3, and with

• f4 (under SS composition) to create f5 :h17
[n] |[ ]
−−−−−→

17
h17.

When statement 18 is processed for the second time, f4 is recreated killing f1. This completes

the second iteration of the loop and the set of GPUs RGIn20 is { f1, f2, f3, f4, f5}. The new GPU
f5 implies that the �eld n of heap location h17 holds the address of heap location h17. The self

loop represents an unbounded list
(

h17
n
−→h17

n
−→h17

n
−→h17 . . .

)

under the allocation-site-based

abstraction. The third iteration of reaching GPUs analysis over the loop does not add any new
information and reaching GPUs analysis reaches a �xed point.

The following example discusses the absence of blocking in the procedures in Figure 19.

Example 38. The GPUs in RGIn14 reach statement 17 unblocked because there is no barrier.

Since the pointee of y is available, the set RGGen14 does not contain any indirect GPUs and
hence do not contribute to the blocking of any GPUs. If the allocation site at statement 14 was
not available, then the GPU for statement 17 would not have been reduced and hence the set

RGGen17 would contain an indirect GPUy
[∗,n] |[ ]
−−−−−−→

17
h17. This GPUwould block all GPUs in RGIn18

and in turn would be blocked by the GPUs in RGGen18 so that it cannot be used for reduction
of any successive GPUs.
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8.3 Summarization Using k-Limiting

This section shows why allocation-site-based abstraction is not su�cient for a bottom-up points-to
analysis although it serves the purpose well in a top-down analysis.

8.3.1 The Need for k-Limiting. In some cases, the allocation site may not be available during the
construction of the GPG of a procedure. For our example in Figure 19, when the GPG is constructed
for procedure д, we do not know the allocation site because the accesses to heap in procedure д
refer to the data-structure created in procedure f . Thus allocation-site-based abstraction is not
applicable for procedure д and the indirection lists grow without bound.
In a top-down analysis, k-limiting is not required because allocation sites are propagated from

callers to callees.

Example 39. When the GPG for procedure д in Figure 19 is constructed, we have a boundary

de�nition д1 :x
[∗] |[∗]
−−−−−→

00
x ′ at the start of the procedure. In the �rst iteration of the analysis over

the loop, the GPU x
[∗] |[∗,n]
−−−−−−→

09
x composes with д1 (under TS composition) creating a reduced GPU

д2 :x
[∗] |[∗,n]
−−−−−−→

09
x ′. The GPU д2 kills GPU д1 because x is rede�ned by statement at 09. However,

the merge at the top of the loop reintroduces it. In the second iteration, the GPU x
[∗] |[∗,n]
−−−−−−→

09
x

composes with д1 to recreate д2, and with д2 to create д3 :x
[∗] |[∗,n,n]
−−−−−−−−→

09
x ′. In the third iteration, we

get an additional GPUд4 :x
[∗] |[∗,n,n,n]
−−−−−−−−−→

09
x ′ apart fromд2 andд3. This continues and the indirection

lists of the GPUs between x and x ′ grow without bound leading to non-termination.

There are two ways of handling traversals of data structures created in some other procedure.

• As the above example illustrates, we perform compositions involving upwards exposed vari-
ables inspite of these compositions being valid but undesirable.
• Alternatively, we can postpone these compositions (as suggested before) until call inlining
enables their reduction.

We use the �rst approach and bound the length of indirection lists using k-limiting. This limits the
participation of the GPUs in the �xed-point computation for the procedures containing them. The
second approach requires the GPUs to participate in the �xed-point computations for the callers
as well. This could cause ine�ciency.
While the use of k-limiting in a bottom-up approach seems like an additional restriction, unless

the locations involved in a pointer chain are allocated bym > k distinct allocation sites, there is
no loss of precision compared to a top-down approach.

8.3.2 Incorporating k-Limiting. We limit the length of indlists to k such that the indlist is exact
up to k − 1 dereferences and approximate for k or more dereferences in terms of an unbounded
number of dereferences. Besides, the dereferences are �eld-insensitive beyond k . This summariza-
tion is implemented by rede�ning the list concatenation operator @ such that for il1@ il2, the
result is a k-limited pre�x of the concatenation of il1 and il2.

Example 40. The set of GPUs RGOut11 reaching the End of procedure д of Figure 19, for k = 3
is given in the Figure 19(b). A GPU between x and x ′ has an indlist [∗,n] of length 2 and all
indlists of length ≥ 3 are approximated by [∗,n,n].
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GPUд1 :x
[∗][∗]
−−−−→

00
x ′ in the GPG for procedureд represents the e�ect of while loop not executed

even once. GPU д2 :x
[∗] |[∗,n]
−−−−−−→

09
x ′ represents the e�ect of the �rst iteration of thewhile loop. The

GPUд3 :x
[∗] |[∗,n,n]
−−−−−−−−→

09
x ′ represents the combined e�ect of the second and all subsequent iterations

of the while loop. The GPG of procedure д (∆д) contains a single GPB which in turn contains a
set of GPUs {д2,д3}.

Note that an explicit summarization is required only for heap locations and address-escaped
stack locations in recursive procedures because the indlists can grow without bound only in these
cases (see Footnote 16).
The GPU composition de�ned in Section 8.1 (De�nition 9) is extended to handle k-limited

indlists in the following manner: The removal of a pre�x from a k-limited indlist in the Remainder
operation is over-approximated by su�xing special �eld-insensitive dereferences denoted by “†”
where † represents any �eld. For an operation Remainder(il1,il2), il1 must be a pre�x of il2 as
explained in Section 8.1. Let il2 = il1@ il3 for Remainder(il1,il2). We de�ne a summarized list-
remainder operation sRemainder : indlist × indlist→ 2indlist which takes two indlists as its argu-
ments and computes a set of indlists as shown below:

sRemainder(il1,il2) =

{il3 | il2 = il1@ il3} |il2 | < k

{il3@σ | il2 = il1@ il3,σ is a sequence of †,0 ≤ |σ | ≤ |il1 |} otherwise

Observe that sRemainder is a generalization of Remainder de�ned in Section 8.1 because it
computes a set of indlists when its second argument is a k-limited indlist ; for non k-limited indlist,
sRemainder returns a singleton set. The longest indlist in the set computed by sRemainder repre-
sents a summary whereas the other indlists are exact in length but approximate in terms of �elds
because of �eld insensitivity introduced by †.18 This is illustrated in the example below.

Example 41. For k = 3, some examples of the sets of indlists computed by the sRemainder
operation are shown below:

sRemainder([∗], [∗,n,n]) = {[n,n], [n,n,†]}

sRemainder([∗,n], [∗,n,n]) = {[n], [n,†], [n,†,†]}

sRemainder([∗,n,n], [∗,n,n]) = {[ ], [†], [†,†], [†,†,†]}

For the last case, the sRemainder operation can be viewed as an operation that creates an inter-
mediate set S = {[∗,n,n], [∗,n,n,†], [∗,n,n,†,†], [∗,n,n,†,†,†]} obtained by adding upto 3 occur-
rences of † (because k = 3). The sRemainder operation can then be viewed as a collection of
Remainder([∗,n,n],σ ) for each σ in this set:

sRemainder([∗,n,n], [∗,n,n]) = {Remainder([∗,n,n],σ ) | σ ∈ S }

The �rst two cases in this example can also be explained in a similar manner.

GPU composition using indlevs (Section 4.2.2) or using indlists (Section 8.1) is a partial operation
de�ned to compute a single GPU as its result when it succeeds. Since we do not have a representa-
tion for an “invalid” GPU, we model failure by de�ning GPU composition as a partial function for
GPUs containing indlevs or non-k-limited indlists. However, when indlists are summarized using
k-limiting, sRemainder naturally computes a set of indlists (unlike Remainder which computes a

18This is somewhat similar to materialization [23] which extracts copies out of summary representation of an object to

create some exact objects.
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Input: c // The consumer GPU to be simpli�ed

R // The context (set of GPUs) in which c is to be simpli�ed

Used // The set of GPUs used for GPU reduction for a GPU

Output: Red // The set of simpli�ed GPUs equivalent to c

01 GPU_reduction (c , R, Used)

02 { Red = ∅

03 composed = false

04 for each γ ∈ (R − Used)

05 { for each r ∈ (c ◦ tsγ )

06 { Red = Red ∪ GPU_reduction (r ,R,Used ∪ {γ })

07 composed = true

08 }

09 for each r ∈ (c ◦ ssγ )

10 { Red = Red ∪ GPU_reduction (r ,R,Used ∪ {γ })

11 composed = true

12 }

13 }

14 if (¬ composed )

15 Red = Red ∪ {c }

16 return Red

17 }

Definition 10. GPU Reduction c ◦R for Handling Heap

. . .
c p1 p2 p3 pn−1

r 1
r 2

rn−1

pnrn

• The shaded part shows the GPUs in RGIn.
• Let r 0 = c . Then r i = r i−1◦

τ pi , i > 0.

• For simplicity, the directions chosen in the

GPUs illustrate only TS compositions.

Fig. 20. Series of compositions and its consequence when the graph induced by the GPUs in RGIn (shown
by the shaded part) has a cycle. The compositions may happen more than the required number of times,

resulting in a points-to edge.

single indlist). This allows us to de�ne GPU composition as a total function, since we can express
the previous partiality simply by returning an empty set.

8.4 Extending GPU Reduction to Handle Cycles in GPUs

In the presence of a heap, the graph induced by the set of GPUs reaching a GPB can contain cycles
of the following two kinds:

• Cycles arising out of creation of a recursive data structure in a procedure under allocation-
site-based abstraction. This manifests itself in the form of a cycle involving heap nodes hi
as illustrated in Example 37 in Section 8.2. These cycles are closed form representations of
acyclic unbounded paths in the memory.
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x h14 h17
[∗]|[ ]

15 f2

[n]|[ ]

17f3

[n]|[ ]

17
f5

[∗]|[ ]

11f6

[∗]|[†]

11
f7

[∗]|[†,†]

11f8

[∗]|[†,†,†]

11f9

Fig. 21. The set of GPUs RGOut20 a�er the call to procedure д in procedure f of Figure 19. Local variable y
has been eliminated.

• Cycles arising out of cyclic data structures. These cycles represent cycles in the memory.

Both these cases of cycles are handled by GPU composition using sRemainder operation over
indirection lists. De�nition 10 extends the algorithm for GPU reduction to use the new de�nition
of GPU composition which computes a set of GPUs instead of a single GPU.

For GPU reduction c ◦R, an admissible composition r 1 = c ◦
τ p1 (where p1 ∈ RGIn) may lead

to another composition r 2 = r 1 ◦
τ p2 (where p2 ∈ RGIn). This in turn may lead to another compo-

sition thereby creating a chain of compositions. If the graph induced by the reaching GPUs (i.e.

GPUs in RGIn) has a cycle (as illustrated in Example 37 in Section 8.2), some pm must be adjacent
to p1 with the length of the cycle beingm+1 as illustrated in Figure 20. The lengths of indlists in r i
would be smaller than (or equal to) those in r i−1 because of admissibility. If the length of an indlist

in c exceedsm, the series of compositions would resume with p1 after the composition with pm .
In other words, after computing rm−1 using the composition rm−2 ◦pm , the next GPU rm would
be computed using the composition rm−1 ◦p1 and the process will continue until some r j , j ≥ m

is a points-to edge.19 Thus, we will have more compositions than required and the result of GPU
reduction may not represent the updates of locations that are updated by the original GPU c . In
order to prohibit this, we allow a GPU p to be used only once in a chain of compositions.
Hence, the new de�nition of GPU reduction (De�nition 10) uses an additional argument, Used,

which maintains a set of GPUs that have been used in a chain of GPU compositions. For the top
level non-recursive call to GPU_reduction, Used = ∅. In the case of pointers to scalars, a graph
induced by a set of GPUs cannot have a cycle, hence a GPU p cannot be used multiple times in
a series of GPU compositions. Therefore, we did not need set Used for de�ning GPU reduction in
the case of pointers to scalars (De�nition 4).

Example 42. This example illustrates GPU reduction with 3-limited indlists using GPU д3
of ∆д shown in Figure 19(b). At the call site 20 in procedure f of Figure 19(a), the upwards-
exposed variable x ′ in ∆д is substituted by x in ∆f (see Section 6). All GPU compositions for

this examples are TS compositions. The GPUs in RGIn20 (Figure 19(d)) are used for composition.

The set RGOut20 is same as RGOut21 shown in Figure 21 except that RGOut20 also contains the
GPUs involving y which is a local variable of f and is not in the scope of the caller procedures.

19Note that this happens for reducing a single GPU c in the context of RGIn and does not require a cycle in the GPG.
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The GPU composition д2 ◦ f2 for f2 :x
[∗] |[ ]
−−−−→

15
h14 and д2 :x

[∗] |[∗,n]
−−−−−−→

11
x (with x substituting for x ′)

creates a reduced GPU x
[∗] |[n]
−−−−−→

11
h14 which is further composed with f3 :h14

[n] |[ ]
−−−−−→

17
h17 to create a

reduced GPU f6 :x
[∗] |[ ]
−−−−→

11
h17 (Figure 21).

Now GPU д3 must be composedwith f2, f3 and f5. The composition д3 ◦ f2 for д3 :x
[∗] |[∗,n,n]
−−−−−−−−→

11
x

creates two GPUs x
[∗] |[n,n]
−−−−−−→

11
h14 and x

[∗] |[n,n,†]
−−−−−−−−→

11
h14. The newly created GPU x

[∗] |[n,n]
−−−−−−→

11
h14 is fur-

ther composed with f3 to create GPU x
[∗] |[n]
−−−−−→

11
h17 which is further composed with f5 to recreate

GPU f6 :x
[∗] |[ ]
−−−−→

11
h17. The GPU composition between the other newly created GPU x

[∗] |[n,n,†]
−−−−−−−−→

11
h14

and f3 creates GPUs x
[∗] |[n,†]
−−−−−−→

11
h17 and x

[∗] |[n,†,†]
−−−−−−−−→

11
h17. The GPU x

[∗] |[n,†]
−−−−−−→

11
h17 further composes

with f5 creating a GPU f7 :x
[∗] |[†]
−−−−−→

11
h17 while the composition between GPUs x

[∗] |[n,†,†]
−−−−−−−−→h17 and

f5 creates two reduced GPUs f8 :x
[∗] |[†,†]
−−−−−−→

11
h17 and f9 :x

[∗] |[†,†,†]
−−−−−−−→

11
h17.

Note that GPU f5 is used only once in a series of compositions (Example 43 explains this).

The �nal reduced GPUs f6, f7, f8, and, f9 are members of the set RGOut21 containing the
GPUs reaching the End of procedure f (as shown in Figure 21). These reduced GPUs represent
the following information:

• f6 implies that x now points-to heap location h17.
• f7 imply that x points-to heap locations that are one dereference away from h17.
• f8 imply that x points-to heap locations that are two dereferences away from h17.
• f9 imply that x points-to heap locations that are beyond two dereferences from h17.

Thus, x points to every node in the linked list.

Example 43. To see why GPU reduction in De�nition 10 excludes a GPU used for composition
once, observe that GPUs f7, f8 and f9 can be further composed with GPU f5. The composition
of f7 with f5 creates GPU f6. Similarly, repetitive compositions of f8 with f5 also creates GPU f6.
This indicates that x points to only h17 and misses out the fact that x points to every location in
the linked list which is represented by h17 and is represented by GPUs f7, f8 and f9.

A cycle in a graph induced by a set of GPUs could also occur because of a cyclic data structure.

Example 44. Let an assignment y → n = x be inserted in procedure f after line 19 in Figure 19.
This creates a circular linked list instead of a simple linked list. This will cause inclusion of the

GPU h17
[n] |[ ]
−−−−−→h14 in Figure 19(d), thereby creating a cycle between the nodes h14 and h17.

9 HANDLING CALLS THROUGH FUNCTION POINTERS

Recall that in the case of recursion, we may have incomplete GPGs because the GPGs of the callees
are incomplete. Similarly, in the presence of a call through a function pointer, we have incomplete
GPGs for a di�erent reason—the callee procedure of such a call is not known. We model a call

through function pointer (say fp) at call site s as a use statement with a GPU u
1 |1
−−→s fp (Section 7).

Our goal is to convert a call through a function pointer into a direct call for every pointee of

the function pointer. Interleaving of strength reduction and call inlining reduces the GPU u
1 |1
−−→s fp
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Startf

fp = p;01

x = &a;02

g(fp);03

fp = q;04

z = &b;05

g(fp);06

Endf

Startд

fp();07

Endд

Startp

y = x;08

Endp

Startq

y = z;09

Endq

Fig. 22. An example demonstrating the handling of function pointers.

and provides the pointees of fp. This is identical to computing points-to information (Section 7).

Until the pointees become available, the GPU u
1 |1
−−→s fp acts as a barrier. Once the pointees become

available, the indirect call converts to a set of direct calls and are handled as explained in Section 6.

Example 45. Figure 22 provides an example of procedures containing calls through function
pointers. Figure 23 provides the GPGs of the procedures before and after resolving all calls
through function pointers. Procedure д has an indirect call through function pointer fp in state-

ment 07 and is modelled by a GPB containing a single GPU u
1 |1
−−→
07

fp where u models a use

(Section 7). This GPG is inlined in procedure f in statement 03 as δ 10 and in statement 06 as δ 11.

Since we have fp
1 |1
−−→
01

p ∈ RGIn10, the GPU in δ 10 reduces to u
1 |1
−−→
07

p indicating that the callee

of this indirect call is p. Similarly, the callee for the indirect call in δ 11 is q. Hence we inline
∆p in δ 10 which then becomes δ 12. Similarly, ∆q is inlined in δ 11 which then becomes δ 13. This
information is re�ected in д by recording p and q as the pointees of fp in statement 07. The
indirect call in д is converted to two direct calls leading to the inlining of ∆p and ∆q in ∆д .
In δ 03 in procedure f , only procedurep is called because fp points top in statement 03 whereas

in δ 06, only q is called because fp points to q in statement 06. However, in procedure д, either p
is called in the context of call at 03 (represented by the GPB δ 15 in the �nal GPG) or q is called
in the context of call at 06 (represented by the GPB δ 16 in the �nal GPG).

10 EMPIRICAL EVALUATION

Themain motivation of our implementation was to evaluate the e�ectiveness of our optimizations
in handling the following challenge for practical programs:
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∆f

After After After After

Call Inlining Strength Reduction Inlining Indirect Calls Strength Reduction

fp p1 |1

01
δ01

x a
1 |0

02
δ02

u fp
1 |1

07
δ10

∆д

fp q1 |1

04
δ04

z b
1 |0

05
δ05

u fp
1 |1

07
δ11

∆д

fp p1 |1

01
δ01

x a
1 |0

02
δ02
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Fig. 23. Handling function pointers for the example in Figure 22. First, the direct calls are inlined leading
to the discovery of pointees of the function pointer fp causing further inlining and strength reduction. See

Example 45 for explanation.

Aprocedure summary for �ow- and context-sensitive points-to analysis needs tomodel
the accesses of pointees de�ned in the callers and needs to maintain control �ow be-
tween memory updates when the data dependence between them is not known. Thus,
the size of a summary can be potentially large. This e�ect is exacerbated by the tran-
sitive inlining of the summaries of the callee procedures which can increase the size
of a summary exponentially thereby hampering the scalability of analysis.
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Program kLoC
# of

pointer
stmts

# of
call
sites

# of
procs.

Proc. count for
di�erent buckets of

# of calls

# of procs. requiring di�erent
no. of PTFs based on the
no. of aliasing patterns

2-5 5-10 10-20 20+ 2-5 6-10 11-15 15+ 2-5 15+

A B C D E F G

lbm 0.9 370 30 19 5 0 0 0 8 0 0 0 13 0

mcf 1.6 480 29 23 11 0 0 0 0 0 0 0 4 0

libquantum 2.6 340 277 80 24 11 4 3 7 3 1 0 14 4

bzip2 5.7 1650 288 89 35 7 2 1 22 0 0 0 28 2

milc 9.5 2540 782 190 60 15 9 1 37 8 0 1 35 25

sjeng 10.5 700 726 133 46 20 5 6 14 3 1 3 10 14

hmmer 20.6 6790 1328 275 93 33 22 11 62 5 3 4 88 32

h264ref 36.1 17770 2393 566 171 60 22 16 85 17 5 3 102 46

gobmk 158.0 212830 9379 2699 317 110 99 134 206 30 9 10 210 121

Table 1. Benchmark characteristics relevant to our analysis.

Section 10.1 describes our implementation, Section 10.2 describes the metrics that we have used
for ourmeasurements, Section 10.3 describes our empirical observations, and Section 10.4 analyzes
our observations and describes the lessons learnt.

10.1 Implementation and Experiments

We have implemented GPG-based points-to analysis in GCC 4.7.2 using the LTO framework and
have carried out measurements on SPEC CPU2006 benchmarks on a machine with 16 GB RAM
with eight 64-bit Intel i7-4770 CPUs running at 3.40GHz.

Our method eliminates non-address-taken local variables using the def-use chains explicated
by the SSA-form. Although we construct GPUs involving such variables, they are used for com-
puting the points-to information within the procedure and do not appear in the GPG of the proce-
dure. If a GPU de�ning a global variable or a parameter reads a non-address-taken local variable,
we identify the corresponding producer GPUs by traversing the def-use chains transitively. This
eliminates the need for �ltering out the local variables from the GPGs for inlining them in the
callers. As a consequence, a GPG of a procedure consists of GPUs that involve global variables20,
parameters of the procedure, and the return variable which is visible in the scope of its callers.
Since non-address-taken local variables have SSA versions, storing the GPUs that de�ne them
�ow-insensitively results in no loss of precision.
All address-taken local variables in a procedure are treated as global variables because they can

escape the scope of the procedure. However, these variables are not strongly updated because they
could represent multiple locations.
We approximate the heap memory by maintaining k-limited indirection lists of �eld derefer-

ences for k = 3 (see Section 8). An array is treated as a single variable in the following sense:
accessing a particular element is seen as accessing every possible element and updates are treated
as weak updates. This applies to both when arrays of pointers are manipulated, as well as when
arrays are accessed through pointers. Since there is no kill owing to weak update, arrays are main-
tained �ow-insensitively by our analysis.

20 From now on we regard static, heap-summary nodes, and address-taken local variables as ‘global variables’.
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Fig. 24. E�ectiveness of redundancy elimination optimizations. Benchmarks libquantum, milc, sjeng, and
hmmer have all procedures whose all back edges are eliminated because of coalescing shown by the same

point (100, 100) in the fourth plot. Hence they are not visible separately.

For pointer arithmetic involving a pointer to an array, we approximate the pointer being de�ned
to point to every element of the array. For pointer arithmetic involving other pointers, we approx-
imate the pointer being de�ned to point to every possible location. Our current implementation
handles only locally de�ned function pointers (Section 9) but can be easily extended to handle
function pointers de�ned in the calling contexts too.
We have also implemented �ow-insensitive points-to analysis by collecting the GPUs in a GPG

store which di�ers from a GPB in that GPUs within a store can compose with each other whereas
those in GPB cannot. This allowed us to implement the following variants:

• Flow- and context-insensitive (FICI) points-to analysis. For each benchmark program, we
collected all GPUs across all procedures in a common store and performed all possible reduc-
tions. The resulting GPUs were classical points-to edges representing the �ow- and context-
insensitive points-to information.
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Fig. 25. Goodness measure of procedure summaries. A break in X-axis shown by two parallel lines is a dis-
continuity necessitated by wide variation in the number of GPUs and GPBs across benchmarks.

• Flow-insensitive and context-sensitive (FICS) points-to analysis. For each procedure of a
benchmark program, all GPUs within the procedure were collected in a store for the proce-
dure and all possible reductions were performed. The resulting store was used as a summary
in the callers of the procedure giving context-sensitivity. In the process the GPUs are reduced
to classical points-to edges using the information from the calling context. This represents
the �ow-insensitive and context-sensitive points-to information for the procedure.

The third variant i.e., �ow-sensitive and context-insensitive (FSCI) points-to analysis can be
modelled by constructing a supergraph by joining the control �ow graphs of all procedures such
that calls and returns are replaced by gotos. This amounts to a top-down approach (or a bottom-
up approach with a single summary for the entire program instead of separate summaries for
each procedure). For practical programs, this initial GPG is too large for our analysis to scale. Our
analysis achieves scalability by keeping the GPGs as small as possible at each stage. Therefore, we
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did not implement this variant of points-to analysis. Note that the FICI variant is also not a bottom-
up approach because a separate summary is not constructed for every procedure. However, it was
easy to implement because of a single store.

10.2 Measurements

We have measured the following for each benchmark program. The number of procedures varies
signi�cantly across the benchmark programs. Besides, the number of GPUs and GPBs varies across
GPGs. Hence we have plotted such data in terms of percentages.21

1) Characteristics of benchmark programs (Table 1).
2) E�ectiveness of redundancy elimination optimizations (Figure 24):

a) The number of dead GPUs for each procedure.
b) The number of empty GPBs for each procedure created by strength reduction, call inlining

and dead GPU elimination.
c) A reduction in the number of GPBs due to coalescing.
d) A reduction in the number of back edges due to coalescing.

3) The goodness metric of the optimized procedure summaries (Figure 25):
a) Number of GPBs in the optimized GPGs.
b) Number of GPUs in the optimized GPGs.
c) Number of GPUs that are dependent on locally de�ned pointers alone.

4) The number of GPBs in a GPG (Figure 26):
a) After call inlining, relative to the number of basic blocks in the CFG.
b) After all optimizations, relative to the number of basic blocks in the CFG.
c) After all optimizations, relative to the number of GPBs after call inlining.

5) The number of GPUs in a GPG (Figure 27):
a) After call inlining, relative to the number of pointer assignments in the CFG.
b) After all optimizations, relative to the number of pointer assignments in the CFG.
c) After all optimizations, relative to the number of GPUs in the GPG after call inlining.

6) The number of control �ow edges in a GPG (Figure 28):
a) After call inlining, relative to the number of edges in the CFG.
b) After all optimizations, relative to the number of edges in the CFG.
c) After all optimizations, relative to the number of edges in the GPG after call inlining.

7) Miscellaneous data about GPGs (Table 2).
8) Time measurements (Figure 29):

a) FSCS (with andwithout blocking), FICI, and FICS variants of points-to analyses (second plot).
b) Time for di�erent optimizations without blocking (third plot).
c) Time for di�erent optimizations with blocking (fourth plot).

9) Average points-to pairs per procedure in FSCS, FICI, and FICS variants of points-to analyses.
This data is plotted in the �rst plot of Figure 29.

10.3 Observations

We describe our observations about the sizes of GPGs, GPG optimizations, and performance of
the analysis. Observations related to the time measurements are presented in the end. Section 10.4
discusses these observations by analyzing them.

10.3.1 E�ectiveness of Redundancy Elimination Optimizations. We observe that:

21The actual procedure counts are available at https://www.cse.iitb.ac.in/ uday/soft-copies/gpg-pta-paper-appendix.pdf.
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Fig. 26. Size of GPGs relative to the size of corresponding procedures in terms of GPBs and basic blocks.

(a) The percentage of dead GPUs is very small and the dead GPU elimination optimization is the
least e�ective of all the optimizations. Also, this optimization requires very little time compared
to other optimizations (see Figure 29). Hence, disabling the optimization will neither improve
the e�ciency or scalability of the analysis nor will it a�ect the compactness of the GPGs.

(b) The transformations performed by call inlining, strength reduction, and dead GPU elimination
create empty GPBs which are removed by empty GPB elimination. For most procedures, 0%-5%
or close to 50% of GPBs are empty.

(c) The last optimization among the redundancy elimination optimizations, coalesces the adjacent
GPBs that do not require control �ow between them. In our experience, many benchmarks
had some very large GPGs in the presence of recursion. GPGs for recursive procedures are
constructed by repeated inlinings of recursive calls. Coalescing was most e�ective for such
procedures. Once these GPGs were optimized, the GPGs of the caller procedures did not have
much scope for coalescing. In other words, coalescing did not cause uniform reduction across
all GPGs but helped in the most critical GPGs. Hence we observe a reduction of 20% to 50% of
GPBs for some but not majority of procedures.
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Fig. 27. Size of GPGs relative to the size of procedures in terms of GPUs and pointer assignments.

Even if coalescing did not reduce the number of GPBs uniformly, it eliminated almost all back
edges as shown in fourth plot in Figure 24. This is signi�cant because most of the inlined GPGs
are acyclic and hence analyzing the GPGs of the callers does not require additional iterations
in a �xed-point computation.

10.3.2 Goodness of Procedure Summaries. This data is presented in Tables 1, 2, and Figure 25.
We use the following goodness metrics on procedure summaries:

(a) Reusability. The number of calls to a procedure is a measure for the reusability of its summary.
The construction of a procedure summary is meaningful only if it is use multiple times. From
column E in Table 1, it is clear that most procedures are called from many call sites. This
indicates a high reusability of procedure summaries.

(b) Compactness of a procedure summary. For scalability of a bottom-up approach, a procedure
summary should be as compact as possible. Figure 25 and Table 2 show that the procedure
summaries are indeed small in terms of number of GPBs and GPUs. GPGs for a large number of
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Fig. 28. Size of GPGs relative to the size of corresponding procedures in terms of control flow edges.

procedures have 0 GPUs because they do notmanipulate global pointers (and thereby represent
the identity �ow function). Further, the majority of GPGs have 1 to 3 GPBs.
Note that this is an absolute size of GPGs. Observations about the relative size of GPGs with
respect to their CFGs are presented in Section 10.3.3 below.

(c) Percentage of context-independent information. A procedure summary is very useful if it con-
tains high percentage of context-independent information. We observe that the number of pro-
cedures with a high amount of context-independent information is larger in the larger bench-
marks. Thus, a bottom-up approach is particularly useful for large programs.

10.3.3 Relative Size of GPGs with respect to the Size of Corresponding Procedures. For an ex-
haustive study, we compare three representations of a procedure with each other: (I) the CFG of a
procedure, (II) the initial GPG obtained after call inlining, and (III) the �nal optimized GPG. Since
GPGs have callee GPGs inlined within them, for a fair comparison, the CFG size must be counted
by accumulating the sizes of the CFGs of the callee procedures. This is easy for non-recursive pro-
cedures. For recursive procedures, we accumulate the size of a CFG as many times as the number
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Program

# of Proc.

which

have

0 GPUs

# of Proc.

which

have

∆⊤ as

GPG

# of Proc.

in which

back edges

are present

in a CFG

# of Proc.

in which

back edges

are present

in a GPG

Exported

De�nitions

Imported

Uses

# Queued

GPUs

# Soundness

Alerts

lbm 15 0 10 0 1.68 16.63 0 0

mcf 12 0 20 1 12.30 29.26 117 0

libquantum 38 0 36 0 1.54 1.89 0 0

bzip2 78 8 43 1 1.21 17.37 0 0

milc 184 3 94 0 0.70 6.14 0 0

sjeng 101 2 65 0 0.81 1.77 0 0

hmmer 242 5 153 0 2.26 13.02 19 0

h264ref 434 3 308 5 1.60 26.75 13 0

gobmk 1436 2 464 8 0.39 1.36 6 0

Table 2. Miscellaneous data about the GPGs.

of inlinings of the corresponding GPG (Section 6.2). Further, the number of statements in a CFG
is measured only in terms of the pointer assignments.

(a) The �rst plot in these �gures gives the size of the initial GPG (i.e. II) relative to that of the
corresponding CFG (i.e. I). It is easy to that the reduction is immense: a large number of initial
GPGs are in the range 0%-20% of the corresponding CFGs.

(b) The second plot in these �gures gives the size of the optimized GPG (i.e. III) relative to that of
the corresponding CFG (i.e. I). The number of procedures in the range of 0%-20% is larger here
than in the �rst plot indicating more reduction because of optimizations.

(c) The third plot in these �gures gives the size of the optimized GPG (i.e. III) relative to that of the
initial GPG (i.e. I). Here the distribution of procedures is di�erent for GPBs, GPUs, and control
�ow edges. In the case of GPBs, the reduction factor is 50%. For GPUs, the reduction varies
widely. The largest reduction is found for control �ow: a large number of procedures fall in
the range 0%-20%. The number of procedures in this range is larger than in the case of GPBs
or GPUs indicating that the control �ow is optimized the most.

(d) As a special case of control �ow reduction, we have measured the e�ect of our optimizations
on back edges. This is because the presence of back edges increases the number of iterations
required for �xed-point computation in an analysis. If a procedure summary needs to encode
control �ow, it is desirable to eliminate back edges to the extent possible. The data in Table 2
shows that most of the GPGs are acyclic in spite of the fact that the number of procedures with
back edges in CFG is large.

10.3.4 Final Points-to Information. We compared the amount of points-to information com-
puted by our approach with �ow- and context-insensitive (FICI) and �ow-insensitive and context-
sensitive (FICS) methods (�rst plot of Figure 29 and Table 3). For this purpose, we computed num-
ber of points-to pairs per procedure in all the three approaches by dividing the total number of
unique points-to pairs across all procedures by the total number of procedures. Predictably, this
number is smallest for our analysis (FSCS) and largest for FICI method.

10.3.5 Time measurements. We have measured the overall time as well as the time taken by
each of the optimizations (Figure 29). We have also measured the time taken by the FICI and FICS
variants of points-to analysis. Our observations are:
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Fig. 29. Final points-to information measurements (first plot) and time measurements (the remaining three
plots). FSCS (flow- and context-sensitive), FICI (flow- and context-insensitive), FICS (flow-insensitive and

context-sensitive), WOB (our analysis without blocking), WB (our analysis with blocking), SR (strength re-
duction optimization), DG (dead GPU elimination), EG (empty GPB elimination), CO (coalescing). The time
taken by dead GPU elimination, empty GPB elimination, and coalescing is negligible for small benchmarks

and hence the corresponding bars are not visible.

(a) Our analysis takes less than 8 minutes on gobmk.445 which is a large benchmark with 158
kLoC. Our current implementation does not scale beyond that.

(b) Strength reduction is the most expensive optimization followed by coalescing which is the
most expensive among the redundancy elimination optimizations.

(c) We introduced reaching GPUs analysis with blocking to ensure soundness of strength reduc-
tion so that a barrier GPU does not cause a side-e�ect invalidating strength reduction. However,
our intuition was that very few of us write programs where a pointer is manipulated in such a
manner. Hencewe identi�ed possible soundness alerts. The soundness alerts arise when a GPU
whose composition was postponed, is updated by a GPU within the same GPG after inlining
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Program # of Proc. # of Stmts.

FSCS FICI FICS

FS FI FS+FI
Avg

(per stmt)
Avg

(per proc)
Avg

(per proc)
Avg

(per proc)
Avg

(per proc)

lbm 19 367 1.99 0.79 0.63 19.26 17.11

mcf 23 484 4.12 9.30 2.30 82.13 77.39

libquantum 80 342 0.58 0.57 0.95 3.46 2.01

bzip2 89 1645 2.18 0.65 0.48 14.72 12.96

milc 196 2504 1.18 3.10 0.09 13.21 8.71

sjeng 133 684 1.44 1.83 0.32 10.04 8.17

hmmer 275 6719 1.28 1.14 0.44 25.12 19.01

h264ref 566 17253 2.35 12.02 0.82 35.04 30.75

gobmk 2699 10557 0.74 6.36 0.08 2.95 1.59

Table 3. Final points-to information. FSCS (flow- and context-sensitive), FICI (flow- and context-insensitive),
FICS (flow-insensitive and context-sensitive).

in a caller GPG. This is identi�ed by checking if a GPU in the set�eued of a GPG is killed by
the GPU of the same GPG when it is inlined in a caller.
We also measured the number of GPUs that were queued (i.e. not used as producer GPUs).
Our measurements show that the number of GPUs in the �eued set is relatively small (see
Table 2). We did not �nd a single instance of a soundness alert that was valid; we did �nd a
very small number of false positives that were manually examined and rejected.

(d) FICI variant is consistently faster than the FICS variant, and faster than FSCS in most programs.
Further, FSCS is faster than FICS in most cases.

10.4 Discussion: Lessons From Our Empirical Measurements

Our experiments and empirical data leads us to some important learnings as described below:

(1) The real killer of scalability in program analysis is not the amount of data but the amount
of control �ow that it may be subjected to in search of precision.

(2) For scalability, the bottom-up summaries must be kept as small as possible at each stage.
(3) Some amount of top-down �ow is very useful for achieving scalability.
(4) Type-based non-aliasing aids scalability signi�cantly.
(5) The indirect e�ects for which we devised blocking to postpone GPU compositions are ex-

tremely rare in practical programs. We did not �nd a single instance in our benchmarks.
(6) Not all information is �ow-sensitive.

We learnt these lessons the hard way in the situations described in the rest of this section.

10.4.1 Handling Recursion. In our �rst attempt of handling recursion, we converted indirect
recursion to self recursion, and repeatedly inlined the recursive calls to optimize them. This failed
because in some cases, the size of GPG after inlining calls became too big and our analyses and
optimizations did not scale. Hence, instead of �rst creating a naively large GPG and then optimiz-
ing it to bring down the size, we decided to keep the GPGs small at every stage by successive
re�nements of mutually recursive GPGs starting from ∆⊤.

10.4.2 Handling Large Size of Context-Dependent Information. Some GPGs had a large amount
of context-dependent information (i.e. GPUs with upwards-exposed versions of variables) and the
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GPGs could not be optimized much. This caused the size of the caller GPGs to grow signi�cantly,
threatening the scalability of our analysis. Hence we devised a heuristic threshold beyond which
the procedure summary will be inlined as a symbolic ∆⊤ GPG with an additional feature that it
carries with it in a single GPB, all context-dependent GPUs (i.e., the GPUs that have upwards-
exposed versions of variables after optimizations). This keeps the size of the caller GPG small and
at the same time, allows reduction of the context-dependent GPUs. Once all GPUs are reduced to
classical points-to edge, we e�ectively get the procedure summary of the original callee procedure
for that call chain. Since the reduction of context-dependent GPUs is di�erent for di�erent calling
contexts, the process needs to be repeated for each call chain. This is similar to the top-down
approach where we analyze a procedure multiple times.
Note that, in our implementation, we discovered very few cases (and only in large benchmarks)

where the threshold actually exceeded.22 The number of call chains that required multiple traver-
sals are in single digits and they are not very long. The important point to note is that we got the
desired scalability only when we introduced this small twist.

10.4.3 Handling Function Pointers. Function pointers used in a procedure but de�ned in its
callers is another case where we had to inline unoptimized GPGs in the callers because the GPGs
of the procedure’s callees were not known and hence their �ow function was ∆⊤. This hampered
scalability. Since our primary goal was to evaluate the e�ectiveness of our optimizations, our cur-
rent implementation handles only locally de�ned function pointers (Section 9) Our implementa-
tion can be easily extended to handle function pointers de�ned in the calling contexts. We can
handle such function pointers by using a symbolic ∆⊤ GPG and introducing a small touch of top-
down analysis as was done above when handling a large number of context-dependent GPUs. We
leave this as future work.

10.4.4 Handling Arrays and SSA Form. Pointers to arrays were weakly updated, hence we re-
alized early on that maintaining this information �ow sensitively prohibited scalability. This was
particularly true for large arrays with static initializations. Similarly, GPUs involving SSA ver-
sions of variables were not required to be maintained �ow sensitively. This allowed us to reduce
the propagation of data across control �ow without any loss in precision.

10.4.5 Making Coalescing More E�ective. Unlike dead GPU elimination, coalescing proved to
be a very signi�cant optimization for boosting the scalability of the analysis. The points-to analy-
sis failed to scale in the absence of this optimization. However, this optimization was e�ective (i.e.
coalesced many GPBs) only when we brought in the concept of types. In cases where the data de-
pendence between the GPUs was unknown because of the dependency on the context information,
we used type-based non-aliasing to enable coalescing.

10.4.6 Estimating the Number of Context-Dependent Summaries. Constructing context-dependent
procedure summaries (i.e. partial transfer functions) using the aliases or points-to information
from calling contexts obviates the need of control �ow. Since control �ow is the real bottleneck
as per our �ndings, we computed the number of aliases after computing the �nal points-to in-
formation to estimate the number of context-dependent summaries that may be required for real
program. This number (column F in Table 1) is large suggesting that it is undesirable to construct
multiple PTFs for a procedure using the aliases from the calling contexts.

22We used a threshold of 80% context-dependent GPUs in a GPG containing more than 10 GPUs. Thus, 8 context-dependent

GPUs from a total of 11 GPUs was below our threshold as was 9 context-dependent GPUs from a total of 9 GPUs.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: January 2018.



Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers :69

Approximations of
data dependenceData handling

Control flow

Higher order features Data
abstractions

Specialized
data structures

Relevant points-to
information

Order of computing
points-to information

Language features
Analysis features primarily

influencing precision
Analysis features primarily

influencing e�iciency/scalability

Feature Examples

L
an

g
u
ag
e

Data handling
Addressof (&) operator, type casts, unions, dynamic memory

allocation, pointer arithmetic, container objects

Control �ow Function pointers, receiver objects of calls, virtual calls, concurrency

Higher order features Re�ection, eval in Javascript

A
n
al
y
si
s

Approximations of
data dependence

Path-sensitivity, �ow-sensitivity, context-sensitivity, SSA form

Data abstractions
Field-sensitivity, object-sensitivity, allocation-site-based or
type-based abstraction of heap, heap cloning, summarized access
paths, summarization of aggregates

Relevant points-to
information

All pointers (exhaustive analysis), relevant pointers in incremental,
demand-driven, staged, level-by-level, or liveness-based analyses

Order of computing
points-to information

Governed by relevance of pointers, or by algorithmic features
(e.g. top-down, bottom-up, parallel, or randomized algorithms)

Specialized data
structures

BDDs, bloom �lters, disjoint sets (for union-�nd), points-to graphs
with placeholders, GPGs

Fig. 30. Language and analysis features a�ecting the precision, e�iciency, and scalability of points-to anal-
yses. An arrow from feature A to feature B indicates that feature A influences feature B. The features influ-

encing precision, influence e�iciency and scalability indirectly.

11 RELATED WORK: THE BIG PICTURE

Many investigations reported in the literature have described the popular points-to analysis meth-
ods and have presented a comparative study of the methods with respect to scalability and preci-
sion [9, 10, 12, 16, 26, 29]. Instead of discussing these methods, we devise a metric of features that
in�uence the precision and e�ciency/scalability of points-to analysis. This metric can be used for
identifying important characteristic of any points-to analysis at an abstract level.
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11.1 Factors Influencing the Precision, E�iciency, and Scalability of Points-to Analysis

Figure 30 presents our metric. At the top level, we have language features and analysis features.
The analysis features have been divided further based on whether their primary in�uence is on the
precision or e�ciency/scalability of points-to analysis. The categorization of language features is
obvious. Here we describe our categorization of analysis features.

11.1.1 Features Influencing Precision. Two important sources of imprecision in an analysis are
approximation of data dependence and abstraction of data.

• Approximations of data dependence. The approaches that compromise on control �ow by
using �ow-insensitivity or context-insensitivity over-approximate the control �ow: �ow-
insensitivity e�ectively creates a complete graphout of a control �ow graphwhereas context-
insensitivity treats call and returns as simple goto statements as far as the control transfer
between procedures is concerned.
Observe that control �ow in imperative languages is a proxy for implicit data dependence.
As a consequence, an over-approximation of control �ow amounts to over-approximation of
data dependence. In other words, control �ow over-approximation may introduce spurious
data dependences between pointer assignments that may have not existed if the analysis
respected the control �ow. This causes imprecision.
Note that SSA form also discards control �ow but it avoids over-approximation in data de-
pendences by creating use-def chains in the form of SSA edges.
• Data abstractions. An abstract location usually represents a set of concrete locations. An
over-approximation of this set of locations leads to spurious data dependences causing im-
precision in points-to analysis.

11.1.2 Features Influencing E�iciency and Scalability. Di�erentmethods use di�erent techniques
to achieve scalability. We characterize them based on the following three criteria:

• Relevant points-to information. Many methods choose to compute a speci�c kind of points-
to information which is then used to compute further points-to information. For example,
staged points-to analyses begin with conservative points-to information which is then made
more precise. Similarly, some methods begin by computing points-to information for top-
level pointers whose indirections are then eliminated. This uncovers a di�erent set of point-
ers as top-level pointers whose points-to information is then computed.
• Order of computing points-to information. Most methods order computations based on rele-
vant points-to information which may also be de�ned in terms of a chosen order of traversal
over the call graph (eg. top-down or bottom-up).
• Specialized data structures. Amethod may use specialized data structures for encoding infor-
mation e�ciently (e.g. BDDs or GPUs and GPGs) or may use them for modelling relevant
points-to information (e.g. use of placeholders to model accesses of unknown pointees in a
bottom-up method).

11.1.3 Interaction between the Features. In this section we explain the interaction between the
features indicated by the arrows in Figure 30.

• Data abstraction in�uences approximations of data dependence. An abstract location may be
over-approximated to represent a larger set of concrete locations in many situations such
as in �eld-insensitivity, type-based abstraction, allocation site-based abstraction. This over-
approximation creates spurious data dependence between the concrete locations represented
by the abstract location.
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• Approximation of data dependence in�uences the choice of e�cient data structures. Some �ow-
insensitive methods use disjoint sets for e�cient union-�nd algorithms. Several methods
use BDDs for scaling context-sensitive analyses.
• Relevant points-to information a�ects the choice of data structures. Points-to information is
stored in the form of graphs, points-to pairs, or BDDs for top-down approaches. For bottom-
up approaches, points-to information is computed using procedure summaries that use place-
holders or GPUs.
• Relevant points-to information and order of computing in�uence each other mutually. In level-
by-level analysis [35], points-to information is computed one level at a time. The relevant
information to be computed at a given level requires points-to information computed by the
higher levels. Thus, in this case the relevance of points-to information in�uences the order of
computation. In LFCPA [14] only the live pointers are relevant. Thus, points-to information
is computed only when the liveness of pointers is generated. Thus, the generation of liveness
information in�uences the relevant points-to information to be computed.

11.1.4 Our Work in the Context of Big Picture of Points-to Analysis. GPG-based points-to analy-
sis preserves data dependence by being �ow- and context-sensitive. It is path-insensitive and uses
SSA form for top-level local variables. Unlike the approaches that over-approximate control �ow
indiscriminately, we discard control �ow as much as possible but only when there is a guarantee
that it does not over-approximate data dependence.
Our analysis is �eld-sensitive. It over-approximates arrays by treating all its elements alike.

We use allocation-site-based abstraction for representing heap locations and use k-limiting for
summarizing the unbounded accesses of heap where allocation sites are not known.
Like every bottom-up approach, points-to information is computed when all the information is

available in the context. Our analysis computes points-to information for all pointers.

11.2 Approaches of Constructing Procedure Summaries

We restrict our description of related work to bottom-up approaches. We begin with the two broad
categories of approaches introduced in Section 2.3.

11.2.1 MTFApproach. In this approach [11, 32, 35, 36], control �ow is not required to be recorded
between memory updates. This is because the data dependency between memory updates (even
the ones which access unknown pointers) is known by using either the alias information or the
points-to information from the calling context. These approaches construct symbolic procedure
summaries. This involves computing preconditions and corresponding postconditions (in terms
of aliases or points-to information). A calling context is matched against a precondition and the
corresponding postcondition gives the result.
Level-by-level analysis [35] constructs a procedure summary with multiple interprocedural con-

ditions. It matches the calling context with these conditions and chooses the appropriate summary
for the given context. Thismethod partitions the pointer variables in a program into di�erent levels
based on the Steensgaard’s points-to graph for the program. It constructs a procedure summary
for each level (starting with the highest level) and uses the points-to information from the pre-
vious level. This method constructs interprocedural def-use chains by using extended SSA form.
When used in conjunction with conditions based on points-to information from calling contexts,
the chains become context sensitive.
The scalability of these approaches depends on the number of aliases/points-to pairs in the

calling contexts, which could be large. Thus, this approach may not be useful for constructing
summaries for library functions which have to be analyzed without the bene�t of di�erent calling
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contexts. Saturn [7] creates sound summaries but they may not be precise across applications
because of their dependence on context information.
Relevant context inference [3] constructs a procedure summary by inferring the relevant poten-

tial aliasing between unknown pointees that are accessed in the procedure. Although, it does not
use the information from the context, it has multiple versions of the summary depending on the
alias and the type context. This analysis could be ine�cient if the inferred possibilities of aliases
and types do not actually occur in the program. It also over-approximates the alias and the type
context as an optimization thereby being only partially context-sensitive.

11.2.2 STF Approach. This approach does not make any assumptions about the calling con-
texts [17, 18, 24, 30, 31] but constructs large procedure summaries causing ine�ciency in �xed-
point computation at the intraprocedural level. It introduces separate placeholders for every dis-
tinct access of a pointee (Section 2.3). Also, the data dependence is not known in the case of indirect
accesses of unknown pointees and hence control �ow is required for constructing the summary for
a �ow-sensitive points-to analysis. However, these methods do not record control �ow between
memory updates in the summaries so constructed. Thus, in order to ensure soundness, the pro-
cedure summaries do not assume any ordering between the memory updates and are e�ectively
applied �ow-insensitively even though they are constructed �ow-sensitively. This introduces im-
precision by prohibiting killing of points-to information. However, it may not have much adverse
impact on programs written in Java because all local variables in Java have SSA versions, thanks
to the absence of indirect assignments to variables (there is no addressof operator). Besides, there
are few static variables in Java programs and absence of kill for them may not matter much; the
points-to relations of heap locations are not killed in any case.
Note that the MTF approach is precise even though no control �ow in the procedure summaries

is recorded because the information from calling context obviates the need for control �ow.

11.2.3 The Hybrid Approach. Hybrid approaches use customized summaries and combine the
top-down and bottom-up analyses to construct summaries [36]. This choice is controlled by the
number of times a procedure is called. If this number exceeds a �xed threshold, a summary is con-
structed using the information of the calling contexts that have been recorded for that procedure.
A new calling context may lead to generating a new precondition and hence a new summary. If
the threshold is set to zero, then a summary is constructed for every procedure and hence we have
a pure bottom-up approach. If the threshold is set to a very large number, then we have a pure
top-down approach and no procedure summary is constructed.
Additionally, we can set a threshold on the size of procedure summary or the percentage of

context-dependent information in the summary or a combination of these choices. In our imple-
mentation, we have used the percentage of context-dependent information as a threshold—when
a procedure has a signi�cant amount of context-dependent information, it is better to introduce a
small touch of top-down analysis (Section 10.4.2). If this threshold is set to 0%, ourmethod becomes
purely bottom-up approach; if it is set to 100%, our method becomes a top-down approach.

12 CONCLUSIONS AND FUTUREWORK

Constructing compact procedure summaries for �ow- and context-sensitive points-to analysis
seems hard because it

(a) needs to model the accesses of pointees de�ned in callers without examining their code,
(b) needs to preserve data dependence between memory updates, and
(c) needs to incorporate the e�ect of the summaries of the callee procedures transitively.
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The �rst issue has been handled by modelling accesses of unknown pointees using placeholders.
However, it may require a large number of placeholders. The second issue has been handled by
constructing multiple versions of a procedure summary for di�erent aliases in the calling contexts.
The third issue can only be handled by inlining the summaries of the callees. However, it can
increase the size of a summary exponentially thereby hampering the scalability of analysis.
We have handled the �rst issue by proposing the concept of generalized points-to updates

(GPUs) which track indirection levels. Simple arithmetic on indirection levels allows composition
of GPUs to create new GPUs with smaller indirection levels; this reduces them progressively to
classical points-to edges.
In order to handle the second issue, we maintain control �ow within a GPG and perform opti-

mizations of strength reduction and redundancy elimination. Together, these optimizations reduce
the indirection levels of GPUs, eliminate data dependences between GPUs, and minimize control
�ow signi�cantly. These optimizations also mitigate the impact of the third issue.
In order to achieve the above, we have devised novel data �ow analyses such as reaching GPUs

analysis (with and without blocking) and coalescing analysis which is a bidirectional analysis.
Interleaved call inlining and strength reduction of GPGs facilitated a novel optimization that com-
putes �ow- and context-sensitive points-to information in the �rst phase of a bottom-up approach.
This obviates the need for the second phase.

Our measurements on SPEC benchmarks show that GPGs are small enough to scale fully �ow-
and context-sensitive exhaustive points-to analysis to C programs as large as 158 kLoC. Two
important takeaways from our empirical evaluation are:

(a) Flow- and context-sensitive points-to information is small and sparse.
(b) The real killer of scalability in program analysis is not the amount of data but the amount of

control �ow that it may be subjected to in search of precision. Our analysis scales because it
minimizes the control �ow signi�cantly.

Our empirical measurements show that most of the GPGs are acyclic even if they represent proce-
dures that have loops or are recursive.
As a possible direction of future work, it would be useful to explore the possibility of scaling the

implementation to larger programs; we suspect that this would be centered around examining the
control �ow in the GPGs and optimizing it still further. Besides, it would be interesting to explore
the possibility of restricting GPG construction to live pointer variables [14] for scalability. It would
also be useful to extend the scope of the implementation to C++ and Java programs.
The concept of GPG provides a useful abstraction of memory and memory transformers involv-

ing pointers by directly modelling load, store, and copy of memory addresses. Any client program
analysis that uses these operations may be able to use GPGs by combining themwith the original
abstractions of the analysis. This direction can also be explored in future.
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