
8

Generalized Points-to Graphs: A Precise and Scalable
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Computing precise (fully flow- and context-sensitive) and exhaustive (as against demand-driven) points-

to information is known to be expensive. Top-down approaches require repeated analysis of a procedure

for separate contexts. Bottom-up approaches need to model unknown pointees accessed indirectly through

pointers that may be defined in the callers and hence do not scale while preserving precision. Therefore,

most approaches to precise points-to analysis begin with a scalable but imprecise method and then seek to

increase its precision. We take the opposite approach in that we begin with a precise method and increase its

scalability. In a nutshell, we create naive but possibly non-scalable procedure summaries and then use novel

optimizations to compact them while retaining their soundness and precision.

For this purpose, we propose a novel abstraction called the generalized points-to graph (GPG), which views

points-to relations as memory updates and generalizes them using the counts of indirection levels leaving

the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-

up procedure summaries in terms of memory updates and control flow between them. Their compactness

is ensured by strength reduction (which reduces the indirection levels), control flow minimization (which

removes control flow edges while preserving soundness and precision), and call inlining (which enhances the

opportunities of these optimizations).

The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing

precision. This is the reason GPGs are very small even for main procedures that contain the effect of the

entire program. This allows our implementation to scale to 158 kLoC for C programs.

At a more general level, GPGs provide a convenient abstraction to represent and transform memory in the

presence of pointers. Future investigations can try to combine it with other abstractions for static analyses

that can benefit from points-to information.
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1 INTRODUCTION

Points-to analysis discovers information about indirect accesses in a program. Its precision in-
fluences the precision and scalability of client program analyses significantly. Computationally
intensive analyses such as model checking are noted as being ineffective on programs containing
pointers, partly because of imprecision of points-to analysis [2].

1.1 The Context of This Work

We focus on exhaustive as against demand-driven [7, 13, 36, 37] points-to analysis. A demand-
driven points-to analysis computes points-to information that is relevant to a query raised by
a client analysis; for a different query, the points-to analysis needs to be repeated. An exhaustive
analysis, however, computes all points-to information that can be queried later by a client analysis;
multiple queries do not require points-to analysis to be repeated. For precision of points-to infor-
mation, we are interested in full flow- and context-sensitive points-to analysis. A flow-sensitive
analysis respects the control flow and computes separate dataflow information at each program
point. This matters because a pointer could have different pointees at different program points be-
cause of redefinitions. Hence, a flow-sensitive analysis provides more precise results than a flow-
insensitive analysis but can become inefficient at the interprocedural level. A context-sensitive
analysis distinguishes between different calling contexts of procedures and restricts the analysis
to interprocedurally valid control flow paths (i.e., control flow paths from program entry to pro-
gram exit in which every return from a procedure is matched with a call to the procedure such
that all call-return matchings are properly nested). A fully context-sensitive analysis does not lose
precision even in the presence of recursion. Both flow- and context-sensitivity enhance precision,
and we aim to achieve this without compromising efficiency.

A top-down approach to interprocedural context-sensitive analysis propagates information
from callers to callees [47] effectively traversing the call graph top-down. In the process, it an-
alyzes a procedure each time a new dataflow value reaches it from some call. Several popular
approaches fall in this category: the call-strings method [34], its value-based variants [20, 29],
and the tabulation-based functional method [30, 34]. By contrast, bottom-up approaches [5, 9,
12, 16, 26, 32, 39, 42–47] avoid analyzing a procedure multiple times by constructing its proce-

dure summary, which is used to incorporate the effect of calls to the procedure. Effectively, this
approach traverses the call graph bottom-up.1 A flow- and context-sensitive interprocedural anal-
ysis using procedure summaries is performed in two phases: the first phase constructs the pro-
cedure summaries, and the second phase uses them to represent the effect of the calls at the call
sites.

For points-to analysis, an additional dimension of context sensitivity arises because heap loca-
tions are typically abstracted using allocation sites—all locations allocated by the same statement
are treated alike. These allocation sites could be created context insensitively or could be cloned
based on the contexts. We summarize various methods of points-to analysis using the metric de-
scribed in Figure 20 and use it to position our work in Section 11.

1.2 Our Contributions

Most approaches to precise points-to analysis begin with a scalable but imprecise method and then
seek to increase its precision. We take the opposite approach in that we begin with a precise method
and increase its scalability. We create naive, possibly non-scalable, procedure summaries and then

1We use the terms top-down and bottom-up for traversals over a call graph; traversals over a control flow graph are termed

forward and backward. At the interprocedural level, a forward dataflow analysis (e.g., available expressions analysis) could

be top-down or bottom-up and thus can be a backward dataflow analysis (e.g., live variables analysis).
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use novel optimizations to compact them while retaining their soundness and precision. More
specifically, we advocate a new form of bottom-up procedure summaries, called the generalized

points-to graphs (GPGs) for flow- and context-sensitive points-to analysis. GPGs represent memory
transformers (summarizing the effect of a procedure) and contain generalized points-to updates

(GPUs) representing individual memory updates along with the control flow between them. GPGs
are compact—their compactness is achieved by a careful choice of a suitable representation and a
series of optimizations as described next:

(1) Our representation of memory updates—the GPU, denotedγ—leaves accesses of unknown
pointees implicit without losing precision.

(2) GPGs undergo aggressive optimizations that are applied repeatedly to improve the com-
pactness of GPGs incrementally. They are governed by the following possibilities of data
dependence of a GPU γ 2 on another GPU γ 1 (illustrated in Section 2.2).
• Case A: The dependence ofγ 2 onγ 1 can be determined. Then, there are two possibilities:

(i) GPU γ 2 follows γ 1 on some control flow path and has the following kind of depen-
dence on γ 1: (a) a read-after-write (RaW) dependence, (b) a write-after-read (WaR)
dependence, or (c) a write-after-write (WaW) dependence. A read-after-read (RaR)
dependence is irrelevant.

(ii) GPU γ 2 does not have a dependence on γ 1.
• Case B: More information is needed to determine whether or not γ 2 has a dependence

onγ 1. Then,γ 2 has a potential dependence onγ 1. We use source-language type informa-
tion ubiquitously to rule out potential dependence following C-style rules on indirect
accesses via type-casted pointers. This resolves some instances of case B into case A.ii.
These cases are exploited by three classes of optimizations as described next:

• Elimination of data dependence: These optimizations attempt to eliminate data depen-
dences between GPUs so that the control flow can be minimized. The strength reduc-

tion optimization exploits the RaW dependence (case A.i.a) of GPU γ 2 on GPU γ 1. It
simplifies GPU γ 2 by reducing the pointer indirection levels in it by using the pointer
information from γ 1 to eliminate the data dependence between them. The dead GPU

elimination optimization exploits the WaW dependence (case A.i.b) between GPU γ 1

and γ 2. If the locations written by γ 1 are rewritten by γ 2 along every path reaching the
end of the procedure, γ 1 does not have any effect on the callers. Deleting it eliminates
the WaW dependence between γ 1 and γ 2.

• Control flow minimization: These optimizations exploit the WaR dependence (case A.i.c)
and the absence of data dependence (case A.ii). They discard control flow selectively by
converting some sequentially ordered GPUs into parallel GPUs when there is WaR de-
pendence or no dependence between them—since all reads precede any write in parallel
assignments, they preserve WaR dependences inherently. When there are RaW or WaW
dependences between GPUs, we preserve control flow between them.

• Call inlining: This optimization handles case B by progressively providing more infor-
mation. It inlines the summaries of the callees of a procedure enhancing the opportuni-
ties of strength reduction and control flow optimization and enabling context-sensitive
analyses. Recursive calls are handled by refining the GPGs through a fixed-point com-
putation. Calls through function pointers are handled through delayed inlining.
Our measurements suggest that the real killer of scalability in program analysis is not
the amount of data but the amount of control flow that the data propagation may
be subjected to in search of precision. Our optimizations are effective because they
eliminate data dependence wherever possible and discard irrelevant control flow. This
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aids the scalability of points-to analysis without violating soundness or causing impre-
cision.

(3) Interleaving call inlining and strength reduction of GPGs facilitates a novel optimization
that computes flow- and context-sensitive points-to information in the first phase of a
bottom-up approach. This obviates the need for the usual second phase of a bottom-up
analysis.

These optimizations are based on the following novel operations and analyses:

• We define operations of GPU composition and GPU reduction to simplify a GPU using the
information from RaW dependences, thereby eliminating the dependences.

• We perform reaching GPUs analysis (to identify the GPUs reaching a given statement) and
coalescing analysis (to remove control flow edges while preserving soundness and preci-
sion).

At a practical level, our main contribution is a method of flow-sensitive, field-sensitive, and
context-sensitive exhaustive points-to analysis of C programs that scales to large real-life pro-
grams.

The core ideas of GPGs have been presented before [11]. This article provides a complete treat-
ment and enhances the core ideas significantly. We describe our formulations for a C-like language.

1.3 Organization of the Article

Section 2 describes the limitations of past approaches. Section 3 introduces the concept of GPUs
that form the basis of GPGs and provides an overview of GPG construction through a motivating
example. Section 4 describes the strength reduction optimization performed on GPGs. Section 5
explains dead GPU elimination. Section 6 describes control flow minimization optimizations per-
formed on GPGs. Section 7 explains the interprocedural use of GPGs by defining call inlining and
shows how recursion is handled. Section 8 shows how GPGs are used for performing points-to
analysis. Section 9 proves soundness and precision of our method by showing its equivalence with
a top-down flow- and context-sensitive classical points-to analysis. Section 10 presents empirical
evaluation on SPEC benchmarks, and Section 11 describes related work. Section 12 concludes the
article.

Some details (handling fields of structures and union, heap memory, function pointers, etc.)
are available in an appendix available electronically.2 We have included cross references to the
material in the appendix where relevant.

2 EXISTING APPROACHES AND THEIR LIMITATIONS

This section reviews some basic concepts and describes the challenges in constructing procedure
summaries for efficient points-to analysis. It concludes by describing the limitations of the past
approaches and outlining our key ideas. For further details of related work, see Section 11.

2.1 Basic Concepts

In this section, we describe the nature of memory, memory updates, and memory transformers.

2.1.1 Abstract and Concrete Memory. There are two views of memory and operations on it.
First, we have the concrete memory view corresponding to runtime operations where a memory
location representing a pointer always points to exactly one memory location or NULL (which
is a distinguished memory location). Unfortunately, this is, in general, statically uncomputable.

2https://github.com/PritamMG/GPG-based-Points-to-Analysis.
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Second, as is traditional in program analysis, we can consider an abstract view of memory where an
abstract location represents one or more concrete locations; this conflation and the uncertainty of
conditional branches means that abstract memory locations can point to multiple other locations—
as in the classical points-to graph. These views are not independent, and abstract operations must
overapproximate concrete operations to ensure soundness. Formally, let L and LP ⊆ L denote the
sets of locations3 and pointers, respectively. The concrete memory after a pointer assignment is a
function M : LP → L. The abstract memory after a pointer assignment is a relation M ⊆ LP × L. In
either case, we view M as a graph with L as the set of nodes. An edge x → y in M is a points-to

edge indicating that x ∈ LP contains the address of y ∈ L. The abstract memory associated with a
statement is an overapproximation of the concrete memory associated with every occurrence of
the statement in the same or different control flow paths. Unless noted explicitly, all subsequent
references to memory and its transformations refer to the abstract view.

2.1.2 Memory Transformer. A procedure summary for points-to analysis should represent
memory updates in terms of copying locations, loading from locations, or storing to locations.
We call it a memory transformer because it computes the memory after a call to a procedure based
on the memory before the call. Given a memory M and a memory transformer Δ, the updated
memory M ′ is computed by M ′ = Δ(M ) as illustrated in Example 2 (Section 2.3).

2.1.3 Strong and Weak Updates. In concrete memory, every assignment overwrites the contents
of the (single) memory location corresponding to the LHS of the assignment. However, in abstract
memory, we may be uncertain as to which of several locations a variable (say p) points to. Hence,
an indirect assignment such as ∗p = &x does not overwrite any of these locations but merely adds

x to their possible pointees. This is a weak update. Sometimes, however, there is only one possible
abstract location described by the LHS of an assignment, and in this case we may, in general,
replace the contents of this location. This is a strong update. There is just one subtlety that we
return to later: prior to the preceding assignment, we may only have one assignment to p (say
p = &a). If this latter assignment dominates the former, then a strong update is appropriate. But if
the latter assignment only appears on some control flow paths to the former, then we say that the
read of p in ∗p = &x is upwards exposed (i.e., live on entry to the current procedure) and therefore
may have additional pointees unknown to the current procedure. Thus, the criterion for a strong
update in an assignment is that its LHS references a single location and the location referenced
is not upwards exposed (for more details, see Section 4.4). A direct assignment to a variable (e.g.,
p = &x ) is special case of a strong update.

When a value is stored in a location, we say that the location is defined without specifying
whether the update is strong or weak and make the distinction only where required.

2.2 Challenges in Constructing Procedure Summaries for Points-to Analysis

In the absence of indirect assignments involving pointers, data dependence between memory up-
dates within a procedure can be inferred by using variable names without requiring any infor-
mation from the callers. In such a situation, procedure summaries for some analyses, including
various bit-vector dataflow analyses (e.g., live variables analysis), can be precisely represented by
constant gen and kill sets [1, 22] or graph paths discovered using reachability [30].

Procedure summaries for points-to analysis, however, cannot be represented in terms of con-
stant gen and kill sets because the association between pointer variables and their pointee locations
could change in the procedure and may depend on the aliases between pointer variables established
in the callers of the procedure. Often, and particularly for points-to analysis, we have a situation

3Here we talk about non-heap locations. Heap locations are handled as explained in the electronic appendix.
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where a procedure summary must either lose information or retain internal details that can only
be resolved when its caller is known.

01 int a, b, *x, **p;
02 int *Q()
03 { x = & a;
04 *p = & b;
05 return x;
06 }

Example 1. For many calls, procedureQ () on the right simply returns
&a, but until we are certain that ∗p does not alias with x , we cannot
perform this constant-propagation optimization; assignment 04 blocks

it. If it is known that ∗p and x always alias , then we can optimize Q to
return &b (WaW dependence of statement 04 on statement 03 and RaW
dependence of statement 05 on statement 04). If it is known that they never alias , we can optimize
this code to return &a (no dependence between statements 04 and 03 but RaW dependence of
statement 05 on statement 03). If nothing is known about the alias information, then we must
retain assignment 04 in the procedure summary for Q (potential dependence of statement 04 on
statement 03 and of statement 05 on statements 04 and 03). The key idea is that information from
the calling context(s) can determine whether a potentially blocking assignment really blocks an
optimization or not.

The preceding example illustrates the following challenges in constructing flow-sensitive mem-
ory transformers: (a) representing indirectly accessed unknown pointees, (b) identifying blocking
assignments and postponing some optimizations, and (c) recording control flow between memory
updates so that potential data dependence between them is neither violated nor overapproximated.

Thus, a flow-sensitive memory transformer for points-to analysis requires a compact represen-
tation for memory updates that captures the minimal control flow between them succinctly.

2.3 Limitations of Existing Procedure Summaries for Points-to Analysis

A common solution for modeling indirect accesses of unknown pointees in a memory transformer
is to use placeholders (also known as external variables [26, 39, 42] and extended parameters [43]).
They are pattern-matched against the input memory to compute the output memory. Here we
describe two broad approaches that use placeholders.

The first approach, which we call a multiple transfer functions (MTFs) approach, proposed a pre-
cise representation of a procedure summary for points-to analysis as a collection of (conditional)
partial transfer functions (PTFs) [5, 16, 43, 46]. Each PTF corresponds to a combination of aliases
that might occur in the callers of a procedure. Our work is inspired by the second approach, which
we call a single transfer function (STF) approach [4, 6, 23, 26, 27, 39, 42]. This approach does not
customize procedure summaries for combinations of aliases. However, the existing STF approach
fails to be precise. We illustrate this approach and its limitations to motivate our key ideas using
Figure 1. It shows a procedure and two memory transformers (Δ′ and Δ′′) for it and the associated
input and output memories. The effect of Δ′ is explained in Example 2 and that of Δ′′ in Example 3.

Example 2. Transformer Δ′ in Figure 1 is constructed by the STF approach. It is an abstract
points-to graph containing placeholders ϕi for modeling unknown pointees. For example, ϕ1

represents the pointees of y, and ϕ2 represents the pointees of pointees of y. Note that a memory
is a snapshot of points-to edges, whereas a memory transformer needs to distinguish the points-
to edges that are generated by it (shown by thick edges) from those that are carried forward from
the input memory (shown by thin edges).

The two accesses ofy in statements 1 and 3 may or may not refer to the same location because
of a possible side effect of the intervening assignment in statement 2. If x and y are aliased in
the input memory (e.g., in M2), statement 2 redefines the pointee of y and hence p and q will

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.
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Fig. 1. STF-style memory transformers and associated transformations. Unknown pointees are denoted by

placeholders ϕi . Thick edges in a memory transformer represent the points-to edges generated by it, whereas

other edges are carried forward from the input memory.

not be aliased in the output memory. However, Δ′ uses the same placeholder for all accesses of
a pointee. Further, Δ′ also suppresses strong updates because the control flow between memory
updates is not recorded. Hence, points-to edge s → c in M ′1 is not deleted. Similarly, points-to
edge r → a in M ′2 is not deleted, and q spuriously points to a. Additionally, p spuriously points-to
b. Hence, p and q appear to be aliased in the output memory M ′2.

The use of control flow ordering between the points-to edges that are generated by a memory
transformer can improve its precision as shown by the following example.

Example 3. In Figure 1, memory transformer Δ′′ differs from Δ′ in two ways. First, it uses a
separate placeholder for every access of a pointee to avoid an overapproximation of memory (e.g.,
placeholders ϕ1 and ϕ2 to represent ∗y in statement 1, and ϕ5 and ϕ6 to represent ∗y in statement
3). This, along with control flow, allows strong updates, thereby killing the points-to edge r → a

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.



8:8 P. M. Gharat et al.

Fig. 2. A motivating example. Procedures are represented by their control flow graphs.

and hence q does not point to a (as shown in M ′′2 ). Second, the points-to edges generated by the
memory transformer are ordered based on the control flow of a procedure, thereby adding some
form of flow sensitivity that Δ′ lacks. To see the role of control flow, observe that if the points-to
edge corresponding to statement 2 is considered first, then p and q will always be aliased because
the possible side effect of statement 2 will be ignored.

The output memoriesM ′′1 andM ′′2 computed usingΔ′′ are more precise than the corresponding
output memories M ′1 and M ′2 computed using Δ′.

Observe that although Δ′′ is more precise than Δ′, it uses a larger number of placeholders and
also requires control flow information. This affects the scalability of points-to analysis.

A fundamental problem with placeholders is that they use a low-level representation of memory
expressed in terms of classical points-to edges. Hence, a placeholder-based approach is forced to
explicate unknown pointees by naming them, resulting in either a large number of placeholders
(in the STF approach) or multiple PTFs (in the MTF approach). The need of control flow ordering
further increases the number of placeholders in the former approach.

2.4 Our Key Ideas

We propose a GPG as a representation for a memory transformer of a procedure; special cases of
GPGs also represent memory as a points-to relation. A GPG is characterized by the following key
ideas that overcome the two limitations described in Section 2.3:

• A GPG leaves the placeholders implicit by using the counts of indirection levels. Simple
arithmetic on the counts allows us to combine the effects of multiple memory updates.

• A GPG uses a flow relation to order memory updates. Interestingly, it can be compressed
dramatically without losing precision and can be optimized into a compact acyclic flow
relation in most cases, even if the procedure it represents has loops or recursive calls.

Section 3 illustrates them using a motivating example and gives a big-picture view.

3 THE GPGS AND AN OVERVIEW OF THEIR CONSTRUCTION

In this section, we define a GPG that serves as our memory transformer. It is a graph with general-

ized points-to blocks (GPBs) as nodes that contain GPUs. We provide an overview of our the ideas
and algorithms in a limited setting of our motivating example of Figure 2. Toward the end of this
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section, Figure 6 summarizes them as a collection of abstractions, operations, dataflow analyses,
and optimizations.

3.1 Defining a GPG

We model the effect of a pointer assignment on an abstract memory by defining the concept of
GPU in Definition 1, which gives the abstract semantics of a GPU. The concrete semantics of a

GPU x
i |j
−→

s
y can be viewed as the following C-style pointer assignment with i − 1 dereferences of

x (or i dereferences of &x ) and j dereferences of &y.

Definition 1. Generalized points-to update.

This conceptual understanding of a GPU is central to the development of this work. However,
most compiler intermediate languages are at a lower level of abstraction and instead represent
this GPU using (placeholder) temporaries lk (0 ≤ k < i ) and rk (0 ≤ k ≤ j ) as a sequence of C-style
assignments (illustrated in Figure 3):4

r0 = &y; r1 = ∗r0; . . . r j−1 = ∗r j−2; r j = ∗r j−1;

l0 = &x ; l1 = ∗l0; . . . li−1 = ∗li−2; (1)

∗ li−1 = r j ;

Statement labels, s , in GPUs are unique across procedures to distinguish between the statements
of different procedures after call inlining. They facilitate distinguishing between strong and weak
updates by identifying may-defined pointers (Section 3.1.1). Further, since GPUs are simplified in
the calling contexts, statement labels allow back-annotation of points-to information within the
procedure to which they belong. For simplicity, we omit the statement labels from GPUs when
they are not required.

A GPU γ : x
i |j
−→

s
y generalizes a points-to edge5 from x to y with the following properties:

• The direction indicates that the source x with indlev i identifies the locations being defined
and the target y with indlev j identifies the locations whose addresses are read. We often
refer to (x , i ) as the source of γ and (y, j ) as its target.

4Section 3.3.1 explains how this transformation is effectively reversed when transliterating intermediate code instructions

for the “Initial GPG.”
5Although a GPU is a generalization of a points-to edge, we reserve the term edge for a “flow edge” in a GPG.
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Fig. 3. GPUs and their memory graphs for basic pointer assignments in C (left) and for a general GPU (right).

Solid circles represent memory locations, some of which are unknown. A double circle indicates the location

whose address is being assigned, and a thick arrow shows the generated edge representing the effect of the

assignment. In abstract memory, the circles may represent multiple locations.

• The GPU γ abstracts away i − 1 + j placeholders.
• The GPU γ represents may information because different locations may be reached from x

and y along different control flow paths reaching statement s in the procedure.

We refer to a GPU with i = 1 and j = 0 as a classical points-to edge, as it encodes the same
information as edges in classical points-to graphs.

Example 4. The pointer assignment in statement 01 in Figure 2 is represented by a GPU r
1 |0
−→

01
a

where the indirection levels “1|0” appear above the arrow and the statement number “01” appears
below the arrow. The indirection level 1 in “1|0” indicates that r is defined by the assignment,
and the indirection level 0 in “1|0” indicates that the address of a is read. Similarly, statement 02

is represented by a GPU q
2 |0
−→

02
m. The indirection level 2 for q indicates that some pointee of q is

being defined, and the indirection level 0 indicates that the address ofm is read.

Figure 3 presents the GPUs for basic pointer assignments in C and for the general GPU x
i |j
−→

s
y.

(To deal with C structs and unions, GPUs are extended to encode lists of field names—for details
see Figure B.1 in Appendix B).

GPUs are useful rubrics of our abstractions because they can be composed to construct new
simplified GPUs (i.e., GPUs with smaller indirection levels) whenever possible, thereby converting
them progressively to classical points-to edges. The composition between GPUs eliminates RaW
dependence between them and thereby the need for control flow ordering between them.

A GPU can be seen as a primitive memory transformer that is used as a building block for the
GPG as a memory transformer for a procedure (Definition 2). The optimized GPG for a procedure
differs from its control flow graph (CFG) in the following way:

• The CFG could have procedure calls, but an optimized GPG does not. We observe that an
optimized GPG is acyclic in almost all cases, even if a procedure has loops or recursive calls.

• The GPBs that form the nodes in a GPG are analogous to the basic blocks of a CFG except
the basic blocks are sequences of statements but GPBs are (unordered) sets of GPUs.

3.1.1 Abstract Semantics of GPBs. Abstract semantics of GPBs is a generalization of the seman-
tics of pointer assignment in two ways. The first generalization is from a pointer assignment to a
GPU, and the second generalization is from a single statement to multiple statements.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.
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Definition 2. Generalized points-to blocks and generalized points-to graphs.

The semantics of a GPU (Definition 1) forms the basis of the semantics of a GPB. However, since
a GPB has no control flow ordering on its GPUs and may contain multiple (simplified forms of)
GPUs for a single source-language statement, or GPUs for multiple statements, we need to specify
the combined effect of these multiple GPUs . In particular, differing concrete runs may execute a
only a subset of the GPUs in some order. Let δ be a GPB and μ be its associated may-definition set,
and let S be the set of source-language labels s occurring as labels of GPUs in δ . Now write δ |s for

{x
i |j
−→

s
y ∈ δ }. The abstract execution of δ is characterized by the following two features:

(1) All GPUs in δ |s for every s ∈ S are executed as parallel assignments so that all reads pre-
cede all writes, noting that the writes take place in a non-deterministic order.

(2) Due to abstract execution, some writes may not cause the previous pointees to be over-
written. The updates performed by a GPU γ ∈ δ |s for some s ∈ S are weak whenever the
source of γ is a member of μ; otherwise, they are strong updates.

In the simplest case, when the GPUs in δ |s define multiple sources, all sources are in-
cluded in μ—since each concrete execution of statement s defines only one source, there is
a concrete run for every source that does not define the source. In other cases, the source
of a GPU γ ∈ δ |s may be included in μ if there is concrete run of δ that does not execute
statement s .

Example 5. Consider a GPB δ = {γ 1 :x
1 |0
−→

11
a,γ 2 :x

1 |0
−→

11
b,γ 3 :y

1 |0
−→

12
c,γ 4 :z

1 |0
−→

13
d,γ 5 :t

1 |0
−→

13
d, }

and its associated may-definition set μ = {(z, 1), (t , 1)} because γ 4 and γ 5 correspond to a sin-
gle statement (statement 13) but define multiple sources. Note that γ 1 and γ 2 also correspond to
a single statement (statement 11), but they define a single source (x , 1). Then, after executing δ
abstractly, we know that the points-to set of x is overwritten to become {a,b} (i.e., x definitely
points to one of a and b). Similarly, the points-to set of y is overwritten to become {c} because
γ 3 defines a single location c in statement 12. However, δ causes the points-to sets of z and t
to include {d } (without removing the existing pointees) because their sources are members of μ.
Thus, x and y are strongly updated (their previous pointees are removed), but z and t are weakly
updated (their previous pointees are augmented).

3.1.2 Data Dependence Between GPUs. We use the usual notion of data dependence based on
Bernstein’s conditions [3]: two statements have a data dependence between them if they access
the same memory location and at least one of them writes into the location [19, 28]. However, we
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restrict ourselves to locations that are pointers and use more intuitive names such as read-after-

write, write-after-write, and write-after-read for flow, output, and anti dependence, respectively.

Formally, suppose γ 1 : x
i |j
−→

s
y is followed by γ 2 : w

k |l
−→

t
z on some control flow path. Then, γ 2

has the following dependence on γ 1 in the following cases (note that i,k > 0 and j, l ≥ 0 in all
cases):

WaW: (w = x ∧ k = i )
WaR: (w = x ∧ k < i ) ∨ (w = y ∧ k ≤ j )
RaW: (w = x ∧ k > i ) ∨ (z = x ∧ l ≥ i ).

Note that putting i = j = k = l = 1 reduces to the classical definitions of these dependences.
We call these dependences definite dependences. They correspond to case A.i in Section 1.2. In

addition, ifγ 2 postdominatesγ 1 (i.e., followsγ 1 on every control flow path), we call the dependence
strict. As illustrated in Example 1, γ 1 and γ 2 can have a dependence even when they do not have
a common variable. Such a dependence is called a potential dependence (case B in Section 1.2).

Two GPUs on a control flow path cannot be placed within a single GPB if there is a definite or
potential RaW or WaW dependence between them. However, it is safe to include them in the case
of WaR dependence because of the “all reads precede all writes” semantics of GPBs.

01 y = x;
02 x = &a;

Example 6. Consider the code snippet on the right. There is a WaR data de-
pendence between statements 01 and 02. If the control flow were simply ignored,
the statements could be executed in the reverse order, causing y to erroneously point to a. We

construct a GPB {y
1 |1
−→

01
x ,x −→

02
1|0a } for the code snippet. Since all reads precede any write, the

execution of this GPB in the context of the memory represented by GPU x
1 |0
−→

12
b, computes the

points-to information {y → b,x → a} and excludes y → a thereby preserving the WaR depen-
dence.

3.1.3 Finiteness of the Sets of GPUs. For two variables x and y, the number of GPUs x
i |j
−→

s
y

depends on the number of possible indlevs “i |j” and the number of statements. Since the number
of statements and number of variables are finite, we need to examine the number of indlevs. For
pointers to scalars, the number of indlevs between any two variables is bounded because of type
restrictions. For pointers to structures, Appendix B replaces indlevs by indirection lists (indlists)
and shows how they are summarized ensuring the finiteness of the number of possible GPUs.

3.2 An Overview of GPG Operations

In this section, we intuitively describe GPU composition and GPU reduction.

3.2.1 GPU Composition. In a compiler, the sequence p = &a; ∗p = x is usually simplified to
p = &a;a = x to facilitate further optimizations. Similarly, the sequence p = &a;q = p is usually
simplified to p = &a;q = &a. GPU composition facilitates similar simplifications: Suppose a GPU
γ 1 precedes γ 2 on some control flow path. If γ 2 has a RaW dependence on γ 1, then γ 2 is a consumer

of the pointer information represented by the producer γ 1. In such a situation, a GPU composition
γ 3 = γ 2 ◦γ 1 computes a new GPU γ 3 such that the indlev of γ 3 (say i |j) does not exceed that of γ 2

(say i ′ |j ′) (i.e., i ≤ i ′ and j ≤ j ′). The two GPUs γ 2 and γ 3 are equivalent in the context of GPU γ 1,
and although we might prefer γ 3, we cannot delete γ 2 until we have considered all control flow
paths (see Section 3.2.2). GPU composition is a partial function—either succeeding with a simplified
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GPU or signaling failure. A comparison of indlevs allows us to determine whether a composition
is possible; if so, simple arithmetic on indlevs computes the indlev of the resulting GPU.

Example 7. For statement sequence p = &a; ∗p = x , the consumer GPU γ 2 :p
2 |1
−→

2
x (statement

2) is simplified to γ 3 :a
1 |1
−→

2
x by replacing the source p of γ 2 using the producer GPU γ 1 :p

1 |0
−→

1
a

(statement 1). GPU γ 3 can be further simplified to one or more points-to edges (i.e., GPUs with
indlev 1|0) when GPUs representing the pointees of x (the target of γ 3) become available.

The preceding example illustrates that multiple GPU compositions may be required to reduce
the indlev of a GPU to convert it to an equivalent GPU with indlev 1|0 (a classical points-to edge).

3.2.2 GPU Reduction. We generalize the operation of composition as follows. If, instead of a
single producer GPU as defined in Section 3.2.1, we have a setR of GPUs (representing generalized-
points-to knowledge from all control flow paths to node n and obtained from the reaching GPUs

analyses of Sections 4.5 and 4.6) and a single GPU γ ∈ δn corresponding to statement s , then GPU

reductionγ ◦R constructs a set of one or more GPUs, all of which correspond to statement s . Taking
the union of all such sets, as γ varies over δn , is considered as the information generated for node
n and is semantically equivalent to δ in the context of R and, as suggested earlier, may beneficially
replace δ .

GPU reduction γ ◦R eliminates the RaW data dependence of γ on the GPUs in R, wherever
possible, thereby eliminating the need for control flow between γ and the GPUs in R.

3.3 An Overview of GPG Construction

The GPG of procedure R (denotedΔR ) is constructed by traversing a spanning tree of the call graph
starting with its leaf nodes. It involves the following steps:

(1) creation of the initial GPG and inlining optimized GPGs of called procedures within ΔR ,
(2) strength reduction optimization to simplify the GPUs in ΔR by performing reaching GPUs

analyses and transforming GPBs using GPU reduction,
(3) dead GPU elimination to remove redundant GPUs in a GPG (their presence may hinder

control flow minimization because of WaW dependences), and
(4) control flow minimization to improve the compactness of ΔR .

We illustrate these steps intuitively using the motivating example in Figure 2.

3.3.1 Creating a GPG and Call Inlining. To construct a GPG from a CFG, we first map the CFG
naively into a GPG by the following transformations:

• Non-pointer assignments and condition tests are removed by treating the former as empty
statements and the latter as non-deterministic control flow.

• Each pointer assignment, labeled s , in the CFG is transliterated to a GPU x
i |j
−→

s
y, fol-

lowing Figure 3. If earlier compiler stages have broken compound C assignments such as
∗∗ p = ∗∗∗q; into a sequence of simpler SSA-form intermediate-language assignments using
temporaries as in Equation (1), then compound statements are reconstructed by following
def-use chains to eliminate such temporaries.

• A GPG node n is created for each such assignment with its GPB, δn , being the singleton set
containing this GPU and with its associated may-definition set, μn , being empty.
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Fig. 4. Constructing the GPG for procedure Q (see Figure 2). Strength reduction of GPB δ02 causes a weak

update by defining two sources (b, 1) and (q, 2). This is captured by the may-definition sets μ02 (after strength

reduction) and μ11 (after control flow minimization) being {(b, 1), (q, 2)}. Pictorially, we use rectangles rather

than circles to mark may-defined sources.

• The control flow between GPBs is induced from their order within a basic block in the CFG
and from the control flow edges of the CFG.

• The procedure calls are replaced by the optimized GPGs of the callees. Every time we inline
a GPG, we must take a fresh copy of its nodes, here achieved by simple renumbering. Note
that the statement labels s appearing within GPUs are not renumbered.

Example 8. The initial GPG for procedure Q of Figure 2 is given in Figure 4. Each assignment
is replaced by its corresponding GPU. The initial GPG for procedure R is shown in Figure 5 with
the call to procedure Q on line 09 replaced by its optimized GPG.

Examples 9 through 12 explain the analyses and optimizations over ΔQ and ΔR (GPGs for proce-
dures Q and R) at an intuitive level.

3.3.2 Strength Reduction Optimization. This step simplifies GPB δn for each node n by

• performing reaching GPUs analysis, which performs GPU reduction for eachγ ∈ δn to com-
pute a set of GPUs that are equivalent to δn , and

• replacing δn by the resulting GPUs and updating the associated μn as necessary.

Effectively, strength reduction simplifies each GPB as much as possible without needing the
knowledge of aliasing in the caller. In the process, data dependences are eliminated to the extent
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Fig. 5. Constructing the GPG for procedure R (see Figures 2 and 4). GPBs δ13 through δ14 in the GPG are

the (renumbered) GPBs representing the inlined optimized GPG of procedure Q .

possible, facilitating dead GPU elimination and control flow minimization. Note that strength re-
duction does not create new GPBs; it only creates new (equivalent) GPUs within the same GPB. The
statement labels in GPUs remain unchanged because the simplified GPUs of a statement continue
to represent the same statement.

To reduce the indlevs of the GPUs within a GPB, we need to know the GPUs reaching the GPB
along all control flow paths from the Start GPB of the procedure. We compute such GPUs through
a dataflow analysis in the spirit of the classical reaching definitions analysis except it computes
sets of GPUs. It identifies the simplified GPUs for a GPB in the context of the GPUs reaching the
GPB. By construction, all resulting GPUs are equivalent to the original GPUs of the GPB and have
indirection levels that do not exceed that of the original GPUs. This process requires a fixed-point
computation in the presence of loops. Since this step follows inlining of GPGs of callee procedures,
procedure calls have already been eliminated and the analysis is intraprocedural.6

The following two issues in reaching GPUs analysis are not illustrated in this section:

6In the presence of recursion and function pointers, the effect of calls gets progressively refined through repeated analyses

of a procedure and its callees, but the analysis still remains intraprocedural (see Section 7.2 and Appendix C).
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• In some cases, the reaching GPUs analysis needs to block certain GPUs from participating
in GPU reduction (as in Example 1 in Section 2.2). There is no such instance in our example.

• The start GPB of a GPG contains the GPUs representing the boundary definitions (Sec-
tion 4.4) representing the boundary conditions [1].

Example 9. We intuitively explain the reaching GPUs analysis for procedure Q over its initial

GPG (Figure 4). The final result is shown later in Figure 8. GPU r
1 |0
−→

01
a representing statement

01 reaches δ 02 in the first iteration. However, it does not simplify GPU q
2 |0
−→

02
m in δ 02. The GPUs

{r
1 |0
−→

01
a,q

2 |0
−→

02
m} reach the GPB δ 03. GPU q

1 |0
−→

03
b cannot be simplified any further. In the sec-

ond iteration, GPUs {r
1 |0
−→

01
a,q

2 |0
−→

02
m,q

1 |0
−→

03
b} reach δ 02 and δ 03. Composing q

2 |0
−→

02
m with q

1 |0
−→

03
b

results in b
1 |0
−→

02
m. In addition, the pointee information of q is available only along one path

(identified with the help of boundary definitions not shown here). Hence, the assignment causes

a weak update and GPU q
2 |0
−→

02
m is also retained. Thus, GPB δ 02 contains two GPUs, b

1 |0
−→

02
m and

q
2 |0
−→

02
m, after simplification, and sources (b, 1) and (q, 2) are both included in μ02. This process

continues until the least fixed point is reached. Strength reduction optimization based on these
results gives the GPG shown in the third column of Figure 4.

3.3.3 Dead GPU Elimination. The following example illustrates dead GPU elimination in our
motivating example. This optimization removes the WaW dependences where possible.

Example 10. In procedure Q of Figure 4, pointer q is defined in δ 03 but is redefined in δ 05 and

hence GPU q
1 |0
−→

03
b is eliminated. Therefore, GPB δ 03 becomes empty and is removed from ΔQ .

Since GPU q
2 |0
−→

02
m does not define q but its pointee, it is not killed by δ 05 and is not eliminated

from ΔQ .

For procedure R in Figure 5, GPU q
1 |0
−→

07
d in δ 07 is killed by GPU q

1 |0
−→

05
e in δ 14. Hence, GPU

q
1 |0
−→

07
d is eliminated from GPB δ 07. Similarly, GPU e

1 |1
−→

04
c in GPB δ 14 is removed because e is

redefined by GPU e
1 |0
−→

10
o in GPB δ 10 (after strength reduction in ΔR ). However, GPU d

1 |0
−→

08
n in

GPB δ 08 is not removed even though δ 13 contains a definition ofd expressed GPUd
1 |0
−→

02
m. This is

because δ 13 also contains GPU b
1 |0
−→

02
m, which defines b. Since statement 02 defines two sources,

both of them are may-defined in δ 13 (i.e., are included in μ13). Thus, the previous definition of d
cannot be killed—giving a weak update.

3.3.4 Control Flow Minimization. This step improves the compactness of a GPG by eliminating
empty GPBs from a GPG and then minimizing control flow by coalescing adjacent GPBs into a
single GPB wherever there is no RaW or WaW dependences between them.
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Example 11. After eliminating GPU q
1 |0
−→

07
d from the GPG of procedure R in Figure 5 (because

it is dead), GPB δ 07 becomes empty and is removed from the optimized GPG.

We eliminate control flow in the GPG by performing coalescing analysis (Section 6). It partitions
the nodes of a GPG (into parts) such that all GPBs in a part are coalesced (i.e., the GPB of the
coalesced node contains the union of the GPUs of all GPBs in the part) and control flow is retained
only across the new GPBs representing the parts. Given a GPB δn in a part, a control flow successor
δm can appear in the same part only if the control flow between them is redundant. This requires
that the GPUs in δm do not have RaW or WaW dependence on the other GPUs in the part.

A GPB obtained after coalescing may contain GPUs belonging to multiple statements, and not
all of them may be executed in a concrete run of the GPB. This requires determining the associ-
ated may-definition set for the coalesced node that identifies the sources that are may-defined to
maintain the abstract semantics of a GPB (Section 3.1.1).

Example 12. For procedureQ in Figure 4, the GPBs δ 1 and δ 2 can be coalesced: there is no data

dependence between their GPUs because GPU r
1 |0
−→

01
a in δ 1 defines r whose type is “int ∗∗,”

whereas the GPUs in δ 2 read the address of m, pointer b, and pointee of q. The type of latter
two is “int ∗.” Thus, a potential dependence between the GPUs in δ 1 and δ 2 is ruled out using

types. However, GPUs q
2 |0
−→

02
m in δ 2 and e

1 |2
−→

04
p in δ 4 have a potential RaW dependence (p and q

could be aliased in the caller) that is not ruled out by type information. Thus, we do not coalesce
GPBs δ 2 and δ 4. Since there is no RaW dependence between the GPUs in the GPBs δ 4 and δ 5,we
coalesce them (potential WaR dependence does not matter because all reads precede any write).

The GPB resulting from coalescing GPBs δ 1 and δ 2 is labeled δ 11. Similarly, δ 12 is the result of
coalescing GPBs δ 4 and δ 5. The loop formed by the back edge δ 2 → δ 1 in the GPG before coa-
lescing now becomes a self-loop over δ 11. Since, by definition, the GPUs in a GPB can never have
a dependence between each other, the self-loop δ 11 → δ 11 is redundant and is hence removed.

For procedureR in Figure 5, after performing dead GPU elimination, the remaining GPBs in the
GPG of procedure R are all coalesced into a single GPB δ 15 because there is no data dependence
between the GPUs of its GPBs.

As shown in Example 10, the GPUs b
1 |0
−→

02
m and q

2 |0
−→

02
m in procedure Q cause inclusion of the

sources (b, 1) and (q, 2) in μ02, leading further to their inclusion in μ11 for the coalesced GPB δ 11.
Similarly, for procedure R, (b, 1) is may-defined in GPB δ 15 but not (d, 1) because the latter is
defined along all paths through procedure R but not the former as shown Figure 5.

3.4 The Big Picture

Figure 6 provides the big picture of GPG construction by listing specific abstractions, operations,
dataflow analyses, and optimizations and shows dependences between them, along with the sec-
tion that define them. The optimizations use the results of dataflow analyses. The reaching GPUs
analysis uses the GPU operations that are defined in terms of key abstractions. The abstractions
of allocation sites, indirection lists (indlists), and k-limiting (required for extending the analysis to
structures, unions, and heap) are left to the appendix.
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Fig. 6. The big picture of GPG construction. The arrows show the dependence between specific instances of

optimizations, analyses, operations, and abstractions. The labels in parentheses refer to relevant sections.

4 STRENGTH REDUCTION OPTIMIZATION

This section begins with a motivation in Section 4.1. Section 4.2 defines GPU composition as a
family of partial operations. Section 4.3 defines GPU reduction. Sections 4.5 presents the reaching
GPUs analysis without blocking, and Section 4.6 extends it to include blocking.

4.1 Overview of Strength Reduction Optimization

Strength reduction optimization uses the knowledge of a producer GPU p, to simplify a consumer

GPU c (on a control flow path from p) through an operation called GPU composition denoted
c ◦p (Section 4.2). A consumer GPU may require multiple GPU compositions to reduce it to an
equivalent GPU with indlev 1|0 (a classical points-to edge). This is achieved by GPU reduction c ◦R
that involves a series of GPU compositions with appropriate producer GPUs in R to simplify the
consumer GPU c maximally. The setR of GPUs used for simplification provides a context for c and
represents generalized points-to knowledge from previous GPBs. It is obtained by performing a
dataflow analysis called the reaching GPUs analysis (Sections 4.5, and 4.6), which computes the sets
RGInn , RGOutn , RGGenn , and RGKilln for every GPB δn . These dataflow variables represent the
GPUs reaching the entry of GPB δn , its exit, the GPUs obtained through GPU reduction, and the
GPUs whose propagation is killed by δn , respectively. The set RGGenn is semantically equivalent
to δn in the context of RGInn and may beneficially replace δn .
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Definition 3. Composing a consumer GPU c with a producer GPU p to compute a new GPU r that is equiv-

alent to c in the context of p. Both SS and TS compositions exploit a RaW dependence of statement labeled

t on the statement labeled s because the pointer defined in p is used to simplify a pointer used in c .

In some cases, the location read by c could be different from the location defined by p due
to the presence of a GPU b (called a barrier) corresponding to an intervening assignment. This
could happen because of a potential dependence betweenp and b. (Section 2.2). In such a situation
(characterized formally in Section 4.6.1), replacing δn by RGGenn during strength reduction may
be unsound. Hence we postpone the composition c◦τp explicitly by eliminating those GPUs from
R that are blocked by a barrier. After inlining, the knowledge of the calling context may allow a
barrier GPU to be reduced so that it no longer blocks a postponed reduction.

4.2 GPU Composition

We first present the intuition behind GPU composition before defining it formally.

4.2.1 The Intuition Behind GPU Composition. The composition of a consumer GPU c and a
producer GPUp is possible when c has a RaW dependence onp through a common variable called
the pivot of composition. It is the source of p but may be the source or the target of c .

The type τ of composition r = c◦τp indicates the name of the composition, which is TS or SS,
where the first letter indicates the role of the pivot in c and second letter indicates its role in p.
For a TS composition, the pivot is the target of c (T for target) and the source of p (S for source),
whereas for SS composition, pivot is the source of both c and p. Note that TS and SS compositions
are mutually exclusive for a given pair of c and p because the same variable cannot occur both in
the RHS and LHS of an assignment in the case of pointers to scalars.7

7Since our language is modeled on C, GPUs for statements such as ∗x = x or x = ∗x are prohibited by typing rules; GPUs

for statements such as ∗x = ∗x are ignored as inconsequential. Further, we assume as allowed by C-standard undefined
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Fig. 7. GPU composition c◦τp.

Figure 7 illustrates these compositions. For TS composition, consider c :z
i |j
−→

t
x and p :x

k |l
−→

s
y

with pivot x , which is the target of c and the source of p. The goal of the composition is to join
the source z of c and the target y of p by using the pivot x as a bridge. This requires the indlevs
of x to be made the same in the two GPUs. For example, if j ≥ k (other cases are explained later
in the section), this can be achieved by adding j − k to the indlevs of the source and target of p to

view the base GPU p in its derived form as x
−→

j |(l + j − k ) y. This balances the indlevs of x in the

two GPUs, allowing us to create a simplified GPU r :z
−→

i |(l + j − k ) y.

4.2.2 Defining GPU Composition. Before we define the GPU composition formally, we need to
establish the properties of validity and desirability that allow us to characterize meaningful GPU
compositions. We say that a GPU composition is admissible if and only if it is valid and desirable:

(a) A composition r = c ◦τp is valid only if c has a RaW dependence on p through the pivot
of the composition.

(b) A composition r = c ◦τp is desirable only if the indlev of r does not exceed the indlev of c .

Validity requires the indlev of the pivot in c to be greater than the indlev of pivot in p. For the
generic indlevs used in Figure 7, this requirement translates to the following constraints:

j ≥ k (TS composition) (2)

i > k (SS composition) (3)

Observe that SS composition condition (3) prohibits equality because it involves the source
nodes of both the GPUs. When i = k , c has WaW dependence on p instead of RaW dependence
(Section 3.1.2) because c overwrites the location written by p.

The desirability of GPU composition characterizes progress in conversion of GPUs into classical
points-to edges by ensuring that the indlev of the new source and the new target in r does not
exceed the corresponding indlev in the consumer GPU c . This requires the indlev in the simplified
GPU r and the consumer GPU c to satisfy the following constraints. In each constraint, the first
term in the conjunct compares the indlevs of the sources of c and r , whereas the second term
compares those of the targets (see Figure 7):

(i ≤ i ) ∧ (l + j − k ≤ j ) or equivalently l ≤ k (TS composition), (4)

(l + i − k ≤ i ) ∧ (j ≤ j ) or equivalently l ≤ k (SS composition). (5)

behavior that the programmer has not abused type casting to simulate such prohibited statements. Appendix B considers

the richer situation with structs and unions where we can have an assignment x → n = x that might have both TS and SS

compositions with a GPU p that defines x .
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Example 13. Consider the statement sequence x = ∗y; z = x . A TS composition of the cor-

responding GPUs p : x
→

1|2 y and c : z
→

1|1 x is valid because j = k = 1, satisfying Constraint 2.

However, if we perform this composition, we get r : z
→

1|2 y. Intuitively, this GPU is not useful
for computing a points-to edge because the indlev of r is “1|2,” which is greater than the indlev of
c , which is “1|1.” Formally, this composition is flagged undesirable because l = 2,which is greater
than k = 1, violating Constraint 4.

We take a conjunction of the constraints of validity (2 and 3) and desirability (4 and 5) to char-
acterize admissible GPU compositions:

l ≤ k ≤ j (TScomposition), (6)

l ≤ k < i (SScomposition). (7)

Note that an undesirable GPU composition in a GPG is valid but inadmissible. It will eventually
become desirable after the producer GPU is simplified further through strength reduction opti-
mization after the GPG is inlined in a caller’s GPG.

Definition 3 defines GPU composition formally. It computes a simplified GPU r = c ◦τp by bal-
ancing the indlev of the pivot in both the GPUs provided the composition (TS or SS) is admissible.
Otherwise, it fails—being a partial operation.

4.3 GPU Reduction

GPU reduction Red = c ◦R uses the GPUs in R (a set of data-dependence-free GPUs) to compute
a set of GPUs whose indlevs do not exceed that of c . During reduction, the indlev of c is reduced
progressively using the GPUs from R through a sequence of admissible GPU compositions. A GPU
resulting from GPU reduction is called a simplified GPU.

Formally, Red is the fixed point of the equation Red = GPU_reduction(Red,R ) with the initial-
ization Red = {c}. Function GPU_reduction (Definition 4) simplifies the GPUs in Red by composing
them with those in R. The resulting GPUs are accumulated in Red′, which is initially ∅. If a GPU
γ 1 ∈ Red is simplified, its simplified GPU r is included in temp, which is then added to Red′. How-
ever, if γ 1 cannot compose with any GPU in R, then γ 1 is then added to Red′. The GPUs in Red′

are then simplified in the next iteration of the fixed-point computation. The fixed point is achieved
when no GPU in Red′ can be simplified any further.

Example 14. Consider c :x
1 |2
−→

23
y with R = {y

1 |0
−→

21
a,a

1 |0
−→

22
b}. The reduction c ◦R involves two

consecutive TS compositions. The first step with y
1 |0
−→

21
a as p computes Red′ = {x

1 |1
−→

23
a}. Then,

the reduced GPU x
1 |1
−→

23
a becomes the consumer GPU and is composed with a

1 |0
−→

22
b from R,

which results in Red′ = {x
1 |0
−→

23
b}. It cannot be reduced further, as it is already in the classical

points-to form and the computation has reached the fixed point.

GPU reduction requires the set R to satisfy following properties:

• Reduced form: GPUs in R must be in their reduced form. Consider the GPU x
i |j
−→y. Then,
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Definition 4. GPU reduction c ◦R.

• either i = 1 or x is live on entry (represented by a special variable x ′), and
• either j = 0 or y is live on entry (represented by a special variable y ′).
The special variables are explained in Section 4.4.

• Acyclicity: The graph induced by the GPUs in R should be acyclic. R cannot have a

subset like {x
1 |1
−→y,y

1 |1
−→x }. Taking the reduced form serves to replace this subset with

{x
1 |1
−→y ′,y

1 |1
−→x ′}, thereby ruling out the cycles.8

• Completeness: If R contains a GPU x
i |j
−→y, then the source (x , i ) must be defined along all

paths reaching the GPB that is undergoing reduction. If x is the pivot of composition with c
but (x , i ) is not defined along some path, it means that the simplification of c is not complete
and Red cannot replace c . This is ensured by the introduction of boundary definitions in
Section 4.4. Example 21 in Section 4.6 illustrates why completeness of R is required.

• Absence of data dependence: GPUs in R should not have a data dependence between them.
This is preserved by reaching GPUs analyses (Sections 4.5 and 4.6). If GPU γ 2 ∈ R had a
RaW dependence on GPUγ 1 ∈ R, thenγ 1 would have been simplified during reaching GPUs
analysis; if γ 2 had a WaW dependence on γ 1 along a control flow path, γ 2 would be killed
during reaching GPUs analysis along the path. Finally, if γ 2 had a potential dependence on
γ 1, γ 2 would have been blocked and not included in R.

These properties also hold for Red and are preserved by both variants of reaching GPUs analyses
(Sections 4.5 and 4.6) both before and after coalescing (Section 6).

The convergence of reduction c ◦R on a unique solution is guaranteed by the following:

• The indlevs in the GPUs in Red in step i + 1 are smaller than the indlevs in the GPUs in
step i and the number of GPUs is finite (Section 3.1.3). Since there are no cycles in R, once
a GPU γ is simplified, further simplifications cannot recreate γ again; hence, there is no

8In the presence of structures, cycles may occur via fields of structures; Appendix B.4 shows how they are handled.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.



Generalized Points-to Graphs: A Precise and Scalable Abstraction for Points-to Analysis 8:23

oscillation across the iterations of fixed-point computation, ensuring the termination of
GPU reduction.

• The order in which GPU γ 2 is selected from R for composition with γ 1 does not matter
because the GPUs in R do not have a data dependence between them.

4.4 Boundary Definitions

Recall that for an indirect assignment (∗p = &x say) as a consumer, GPU reduction typically re-
turns a set of GPUs that define multiple abstract locations, leading to a weak update. Sometimes,
however, we may discover that p has a single pointee within the procedure and the assignment
defines only one abstract location. In this case, we may, in general, perform a strong update. How-
ever, this condition, although necessary, is not sufficient for a strong update because the source
of p may not be defined along all paths—there may be a path along which the source of p is not
defined within the procedure (i.e., is live on entry to the procedure) and is defined in a caller. In
the presence of such a definition-free path in a procedure, even if we find a single pointee of p in
the procedure, we cannot guarantee that a single abstract location is being defined. This makes it
difficult to distinguish between strong and weak updates.

A control flow path n1,n2, . . .nk in Δ is a definition-free path for source (x , i ) if

• no node ni , 1 ≤ i ≤ k , kills (Definition 5) or blocks (Definition 7) GPUs with source (x , i ),
• node n1 is either Start or has a predecessor that kills or blocks (x , i ), and
• node nk is either End or has a successor that kills or blocks (x , i ).

We identify the definition-free paths by introducing boundary definitions (explained in the fol-
lowing)

• in RGIn of Start for global variables and formal parameters, and
• in RGOut of the nodes that block some GPUs for the sources of the blocked GPUs.

This ensures the property of completeness of reaching GPUs (Section 4.3) that guarantees that
some definition of every source (x , i ) reaches every node, thereby enabling strength reduction and
distinguishing between strong and weak updates.

The boundary definitions are of the form x
i |i
−→

0
x ′, where x ′ is a symbolic representation of

the initial value of x at the start of the procedure and i ranges from 1 to the maximum depth
of the indirection level that depends on the type of x (e.g., for type (int ∗∗), i ranges from 1 to
2). Variable x ′ is called the upwards-exposed [22] version of x . This is similar to Hoare-logic style
specifications in which postconditions use (immutable) auxiliary variables x ′ to denote the original
value of variable x (which may have since changed). Our upwards-exposed versions serve a similar
purpose; logically on entry to each procedure, the statement x = x ′ provides a definition of x . The
rationale behind the label 0 in the boundary definitions is explained after the following example.

Example 15. Consider a GPB δn = {p
2 |0
−→

s
a} for statement ∗p = &a. After the introduction of a

boundary definition p
1 |1
−→

0
p ′, if there is a definition-free path from Start to δn, then the boundary

definition will reach δn; otherwise, it will not. Then there are three cases to consider:

• GPUs p
1 |0
−→

t
q and p

1 |1
−→

0
p ′ reach δn.: Then, δn will be replaced by Red containing both

q
1 |0
−→

s
a and p ′

2 |0
−→

s
a. Thus, sources (q, 1) and (p ′, 2) are included in μn, causing a weak

update (because both of them are defined by the same source).
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Definition 5. Dataflow equations for reaching GPUs analysis without blocking.

• Only p
1 |0
−→

t
q reaches δn: Then, Red contains only q

1 |0
−→

s
a, causing a strong update because

statement s defines a singe source (q, 1).

• Only p
1 |1
−→

0
p ′ reaches δn: Then, Red contains only p ′

2 |0
−→

s
a. Since p ′ could have multiple

pointees in the callers, we perform a weak update.

The boundary definitions are symbolic in that they are never contained in any GPB but are only
contained in the set of producer GPUs that reach the GPBs. This allows us to use a synthetic label 0
in them because only the labels of consumer GPUs matter (because they identify a source-language
statement); the labels of producer GPUs are irrelevant because they only provide information that
is used for simplifying consumer GPUs labeled s into one or more GPUs all labeled s . The boundary
definitions participate in GPU reduction algorithm (without requiring any change in GPU compo-
sition) like any other producer GPU. After GPU reduction, upwards-exposed versions of variables
can appear in simplified GPUs.

4.5 Reaching GPUs Analysis Without Blocking

In this section, we define reaching GPUs analysis ignoring the effect of barriers.
The reaching GPUs analysis is an intraprocedural forward dataflow analysis in the spirit of the

classical reaching definitions analysis. Its dataflow equations are presented in Definition 5. They
compute set RGInn of GPUs reaching a given GPB δn by combining the GPUs in RGOutm of the
predecessor GPBs δm . RGInn is then used to reduce the GPUs in δn to compute RGGenn , which is
semantically equivalent to δn (except for the effect of blocking) but with the additional property
that the indlevs of GPUs in RGGenn do not exceed those of the corresponding GPUs in δn .

RGKill n contains the GPUs that are to be excluded from RGOutn because of a strong update. A
GPU inγ ′ from RGInn is included in RGKilln if its source (x , i ) matches the source of a reduced GPU
γ ∈ δ |s ⊆ RGGenn corresponding to some statement s (identified by Match(γ ,RGInn )) provided:
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(1) All GPUs in δ |s define the same source (x , i ). Condition |Def(X ,γ ) | = 1 for Kill(X ,R )
in Definition 5 ensures this where Def(X ,γ ) extracts the sources of GPUs of the same
statement.

(2) Variable x in (x , i ) is not an upwards-exposed version z ′ because then i > 1 and z ′ could
point to multiple pointees in the caller (note that an upwards-exposed version can appear
in the source of a reduced GPU only if the GPU represents an indirect assignment).

(3) Source (x , i ) is not in μn.

If any of these conditions is violated, then γ ′ is excluded from RGKilln , leading to weak up-
date. Note that the GPUs that are killed are determined by the GPUs in RGGenn and not those
in δn .

Example 16. Figure 8 gives the final result of reaching GPUs analysis for procedure Q of our

motivating example. We have shown the boundary GPU q
1 |1
−→

00
q′ for q. Other boundary GPUs are

not required for strong updates in this example and have been omitted. This result has been used
to construct GPG ΔQ shown in Figure 4. For procedure R, we do not show the complete result

of the analysis but make some observations. The GPU q
2 |0
−→

10
o is composed with the GPU q

1 |0
−→

05
e

to create a reduced GPU e
1 |0
−→

10
o. Since only a single pointer e is being defined by the assignment

and source (e, 1) is not may-defined (i.e. not in μ10), this is a strong update and hence kills e
1 |1
−→

04
c .

The GPU to be killed is identified by Match(e
1 |0
−→

10
o,RGIn10), which matches the source and the

indlev of the GPU to be killed to that of the reduced GPU. Thus, kill is determined by the reduced

GPU (in this case, e
1 |0
−→

10
o) and not the consumer GPU (in this case, q

2 |0
−→

10
o).

4.6 Reaching GPUs Analysis with Blocking

This section extends the reaching GPUs analysis to incorporate the effect of blocking by defining

a dataflow analysis that computes RGIn and RGOut for the purpose.

4.6.1 The Need of Blocking. Consider the possibility of the composition of a consumer GPU
c that appears to have a RaW dependence on a producer GPU p because they have a pivot but
there is a barrier GPU b (Sections 2.2 and 4.1) between the two such that b has a potential WaW
dependence on p. This possible if the indlev of the source of b or p is greater than 1. We call such
a GPU an indirect GPU. The execution of b may alter the apparent dependence between c and p,
and hence the composition of c with p may be unsound.

Since this potential dependence between p and b cannot be resolved without the alias informa-
tion in the calling context, we block such producer GPUs so that such GPU compositions leading
to potentially unsound strength reduction optimization are postponed. Wherever possible, we use
the type information to rule out some GPUs as barriers. After inlining the GPG in a caller, more
information may become available. Thus, it may resolve potential data dependence of a barrier
with a producer. Then, if a consumer still has a RaW dependence on a producer, the composition
that was earlier postponed may now safely be performed.
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Fig. 8. The dataflow information computed by reaching GPUs analysis for procedure Q of Figure 2.

Example 17. Consider the procedure in Figure 9(a). The composition of the GPUs for state-
ments 02 and 04 is admissible. However, statement 03 may cause a side effect by indirectly defin-
ing y (if x points to y in the calling context). Thus, q in statement 04 would point to b if x points

to y; otherwise, it would point to a. If we replace the GPU q
1 |1
−→

04
y by q

1 |0
−→

04
a (which is the result

of composing q
1 |1
−→

04
y with y

1 |0
−→

02
a), then we would miss the GPU q

1 |0
−→

04
y if x points to y in the

calling context—leading to unsoundness. Since the calling context is not available during
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Fig. 9. Risk of unsoundness in GPU reduction caused by a barrier GPU.

GPG construction and optimization, we postpone this composition to eliminate the possibility of

unsoundness. Reaching GPUs analysis with blocking blocks the GPUy
1 |0
−→

02
a by a barrier x

2 |0
−→

03
b.

This corresponds to the first case described earlier.
For the second case, consider statement 02 of the procedure in Figure 9(b), which may indi-

rectly define y (if x points to y). Statement 03 directly defines y. Thus, q in statement 04 would

point to b if x points to y; otherwise, it would point to a. We postpone the composition c :q
1 |2
−→

04
x

with p :x
2 |0
−→

02
a by blocking the GPU p (here, the GPU y

1 |0
−→

03
b acts as a barrier).

Consider a GPU p originally blocked by a barrier b. After inlining the GPG in its callers and
performing reductions in the calling contexts, the following situations could arise:

(1) The indlev of the source of the indirect GPU (p or b) is reduced to 1, thereby eliminating
the potential dependence. In this case, b ceases being a barrier and thus no longer blocks
p, leading to the following two situations:
(a) b has a WaW dependence onp and therefore redefines the pointer defined byp, killing

p, thereby obviating the composition c ◦τp.
(b) b does not have a dependence on p, thereby allowing the composition c ◦τp.

(2) The indlev of the source of the indirect GPU (p or b) remains greater than 1. In this case,
b continues to block p awaiting further inlining.

Example 18. The preceding Case 1(a) could arise if x points to p in the calling context of the

procedure in Figure 9(a). As a result, GPU y
1 |0
−→

02
a is killed by the barrier GPU y

1 |0
−→

03
b (which is

the simplified version of the barrier GPU x
2 |0
−→

03
b), and hence the composition is prohibited and

q points to b for statement 04. Case 1(b) could arise if x points to any location other than y in the

calling context. In this case, the composition between q
1 |1
−→

04
y and y

1 |0
−→

02
a is sound, and q points

to a for statement 04. Case 2 could arise if the pointee of x is not available even in the calling

context. In this case, the barrier GPU x
2 |0
−→

03
b continues to block y

1 |0
−→

02
a.

Our measurements (Section 10) show that situation 1(a) rarely arises in practice because
it amounts to defining the same pointer multiple times through different aliases in the same
context.
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Definition 6. Blocking.

Definition 7. Dataflow equations for reaching GPUs analysis with blocking.

Example 19. To see how reaching GPUs analysis with blocking helps, consider the example

in Figure 9(b). The set of GPUs reaching the statement 04 is RGIn04 = {x
2 |0
−→

02
a,y

1 |0
−→

03
b}. The

GPU x
2 |0
−→

02
a is blocked by the barrier GPU y

1 |0
−→

03
b, and hence RGIn04 = {y

1 |0
−→

03
b}. Thus, GPU

reduction for γ 1 :q
1 |2
−→

04
x (in the context of RGIn04) computes Red as {γ 1} because γ 1 cannot be

reduced further within the GPG of the procedure. However,γ 1 is still not a points-to edge and can
be simplified further after the GPG is inlined in its callers. Hence, we postpone the composition

of γ 1 with p :x
2 |0
−→

02
a until p has been simplified.

4.6.2 Dataflow Equations for Computing RGIn and RGOut. The following GPUs should be
blocked as barriers:

• If RGGenn contains a GPU b, then all GPUs reaching δn that share a data dependence with

b should be blocked regardless of the nature of other GPUs (if any) in RGGenn .
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• If RGGenn does not contain an indirect GPU and is not ∅, then all indirect GPUs reaching

δn that share a data dependence with a GPU in RGGenn should be blocked.

Additionally, we use the type information to minimize blocking. We define a predicate

DDep(B, I ) to check the presence of data dependence between the sets of GPUs B and I (Def-
inition 6). When the types of b ∈ B and p ∈ I match, we assume the possibility of data depen-
dence and hence b blocks p. TDef(B) is the set of types of locations being written by a barrier,
whereas (TDef(I ) ∪ TRef(I )) represents the set of types of locations defined or read by the GPUs
in I , thereby checking for a potential WaW and WaR dependence of the GPUs in B on those of I .

The dataflow equations in Definition 7 differ from those in Definition 5 as follows:

• RGKilln additionally includes blocked GPUs computed using function Blocked(I ,G ). The

latter examines the GPUs in RGGenn (argument “G” for generated) to identify the GPUs in

RGInn (argument “I” for incoming) that should be blocked using three cases that exhaust
all possibilities:

—Case 1 corresponds to not blocking any GPU because RGGenn is empty.

—Case 2 corresponds to blocking some GPUs because RGGenn contains an indirect GPU.

—Case 3 corresponds to blocking indirect GPUs because RGGenn does not contain an in-
direct GPU and is not ∅.

• RGOutn explicitly introduces boundary definitions for the GPUs that are blocked. This is
essential for ensuring the completeness of the set of reaching GPUs (Section 4.3) that is

necessary for replacing δn by RGGenn . This is possible because of the following property
of upwards-exposed versions: any read of x anywhere in the procedure can be replaced
by x ′ without affecting soundness or precision because there is no GPU with (x ′, i ) as its
source. Hence, a statement ∗x ′ = &a does not have a RaW dependence on any statement,
and the occurrences of x ′ cannot be simplified any further. After inlining in the caller, x ′ is
replaced by x and hence the statement reverts to its original form.

Example 20. For the procedure in Figure 9(b), RGIn02 = ∅ and RGGen02 is {x
2 |0
−→

02
a}. Although

RGGen02 contains an indirect GPU, since no GPUs reach 02 (because it is the first statement),

RGOut02 is {x
2 |0
−→

02
a}, indicating that no GPUs are blocked.

For statement 03, RGIn03 = {x
2 |0
−→

02
a} and RGGen03 = {y

1 |0
−→

03
b}. RGGen03 is non-empty and

does not contain an indirect GPU, and thus RGOut03 = {y
1 |0
−→

03
b} according to the third case in

the Blocked equation in Definition 7, indicating that the GPU x
2 |0
−→

02
a is blocked and should not be

used for composition by the later GPUs. The indirect GPU in RGIn03 is excluded from RGOut03.

Note that the indirect GPU x
2 |0
−→

02
a is blocked by the GPU y

1 |0
−→

03
b because typeof(x , 2) matches

with typeof(p, 1), indicating a possibility of WaW dependence.

For statement 04, RGIn04 = {y
1 |0
−→

03
b} and RGGen04 is {q

1 |2
−→

04
x }. For this statement, the compo-

sition (q
1 |2
−→

04
x ◦ tsx

2 |0
−→

02
a) is postponed because the GPU x

2 |0
−→

02
a is blocked. In this case, RGGen04

does not contain an indirect GPU and RGOut04 = {y
1 |0
−→

03
b,q

1 |2
−→

04
x }.
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In Figure 9(a), the GPU y
1 |0
−→

02
a is blocked by the barrier GPU x

2 |0
−→

03
b because typeof(y, 1)

matches with typeof(x , 2). Hence, the composition (q
1 |1
−→

04
y ◦ tsy

1 |0
−→

02
a) is postponed.

In the GPG of procedure Q (of our motivating example) shown in Figure 4, the GPUs r
1 |0
−→

01
a

and q
1 |0
−→

03
b are not blocked by the GPU q

2 |0
−→

02
m because they have different types. However, the

GPU e
1 |2
−→

04
p blocks the indirect GPU q

2 |0
−→

02
m because there is a possible WaW data dependence

(e and q could be aliased in the callers of Q).

Example 21 shows the role of boundary definitions in ensuring completeness of reaching GPUs.

Example 21. Let the GPUs of the statements 1, 2, and 3 on the right be denoted by γ 1, γ 2, and γ 3,
respectively. Then, γ 1 is blocked by γ 2 because of potential RaW dependence (if

p points-to x in the caller). Thus, RGIn3= {γ 1,γ 2}. Then, the RGGen3= {y
1 |0
−→

3
a}.

Replacing δ 3 by RGGen3 is unsound because if p points to x in the caller, then y

should also point to b. The problem arises because RGIn3 does not have the
source (x , 1) defined along the path 1-2-3 because of blocking in node 2. This

violates the completeness of RGIn3. Explicitly adding the boundary definition x
1 |1
−→

0
x ′ in 2 en-

sures that (x , 1) is defined along both the paths, leading to RGGen3 = {y
1 |0
−→

3
a,y

1 |1
−→

3
x ′}. When

the resulting GPG is inlined in the caller, x ′ is replaced by x and the original consumer GPU c
representing y = x is recovered. Thus, if p points to x , then after node 3, y points to both a and
b. However, if p does not point to x , then after node 3, y points to a as expected.

5 DEAD GPU ELIMINATION

For each node n, dead GPU elimination removes redundant GPUs—that is, those γ ∈ δn that are
killed along every control flow path from n to the End node of the procedure. However, two kinds
of GPUs should not be removed even if they do not reach the End node: GPUs that are blocked,
or GPUs that are producer GPUs for compositions that have been postponed (Section 4.2.2).

For the first requirement, we check that a GPU considered for dead GPU elimination does not
belong to RGOutEnd (the result of reaching GPUs analysis without blocking). However, this anal-
ysis also performs the compositions that should be blocked and hence may not contain the non-
reduced forms of some GPUs that then may be considered for dead GPU elimination. We exclude
such GPUs placing an additional condition that the GPUs considered for dead GPU elimination

should not belong to RGOutEnd (the result of reaching GPUs analysis with blocking, see Exam-
ple 23). For the second requirement, we check that the GPU is not a producer GPU for a postponed
composition. During the computation of RGOut, GPU reduction records such GPUs in the set
Queued (Appendix A augments the GPU reduction for this). Thus, dead GPU elimination removes

a GPU γ ∈ δn if γ � (RGOutEnd ∪ RGOutEnd ∪Queued).

Example 22. In procedure Q of Figure 4, pointer q is defined in statement 03 but is redefined

in statement 05, and hence the GPU q
1 |0
−→

03
b is killed and does not reach the End GPB. Since no
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composition with the GPU q
1 |0
−→

03
b is postponed, it does not belong to set Queued either. Hence,

the GPU q
1 |0
−→

03
b is eliminated from the GPB δ 03 as an instance of dead GPU elimination.

Similarly, the GPUs q
1 |0
−→

07
d (in δ 07) and e

1 |1
−→

04
c (in δ 14) in the GPG of procedure R (Figure 5)

are eliminated from their corresponding GPBs.

Example 23. For the procedure in Figure 9(a), the GPUy
1 |0
−→

02
a is blocked by the barrier x

2 |0
−→

03
b;

hence, it is present in RGOut05 but not in RGOut05 (05 is the End GPB). This GPU may be required

when the barrier x
2 |0
−→

03
b is reduced after call inlining (and ceases to block y

1 |0
−→

02
a). Thus, it is not

removed by dead GPU elimination.

To see the need of RGOutEnd , observe that q
1 |1
−→

04
y is reduced to q

1 |0
−→

04
a in RGOutEnd . Hence,

q
1 |1
−→

04
y is not contained in RGOutEnd . However, it cannot be removed as dead code. It is contained

in RGOutEnd , which should be additionally used for determining which GPUs are dead.

6 CONTROL FLOW MINIMIZATION

We minimize control flow by empty GPB elimination and coalescing of GPBs. They improve the
compactness of a GPG and reduce the repeated re-analysis of GPBs after inlining. Empty GPBs are
eliminated by connecting their predecessors to their successors.

Example 24. In the GPG of procedure Q of Figure 4, the GPB δ 03 becomes empty after dead
GPU elimination. Hence, δ 03 can be removed by connecting its predecessors to successors. This
transforms the back edge δ 03 → δ 01 to δ 02 → δ 01. Similarly, the GPB δ 07 is deleted from the GPG
of procedure R in Figure 5.

In the rest of this section, we explain coalescing of GPBs.

6.1 The Motivation Behind Coalescing

After strength reduction and dead GPU elimination, we coalesce multiple GPBs into a single GPB
whenever possible to reduce the size of GPGs (in terms of control flow information). It relies on
the elimination of data dependence by strength reduction and dead GPU elimination. This turns
out to be the core idea for making GPGs a scalable technique for points-to analysis.

Strength reduction exploits and removes all definite RaW dependences, whereas dead GPU elim-
ination removes all definite WaW dependences that are strict (Section 3.1.2). Only the potential de-
pendences, definite WaR dependences, and definite non-strict WaW dependences remain. Recall
that WaR dependences are preserved by GPBs; as we shall see in this section, definite non-strict
WaW dependences are also preserved by coalesced GPBs. This make much of the control flow
redundant.

For a control flow edge δn1 → δn2 , the decision to coalesce GPBs δn1 and δn2 is influenced not
only by the dependence between the GPUs of δn1 and δn2 but also by the dependence of the GPUs
of δn1 and δn2 with the GPUs in some other GPB as illustrated in the following example.
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Example 25. Let the GPUs of the statements 1, 2, and 3 on the right be denoted by γ 1, γ 2, and γ 3,
respectively. Then, γ 1 cannot be coalesced with γ 2 because of potential WaW
dependence (if p points-to x in the caller). Similarly, γ 2 cannot be coalesced
with γ 3 because of potential WaW dependence (if p points to y in the caller).
There is no data dependence between γ 1 and γ 3. However, they cannot be
coalesced together because doing so will create GPBs δ = {γ 1,γ 3} and δ ′ = {γ 2}
with control flow edges δ → δ ′ and δ ′ → δ , leading to spurious potential data
dependences.

The next example illustrate that a non-strict WaW dependence does not constrain coalescing.

Example 26. Let the GPUs of the statements 1, 2, and 3 on the right be denoted by γ 1, γ 2, and γ 3,
respectively. The WaW dependence between γ 1 and γ 2 is definite but not strict
and is not removed by dead GPU elimination because γ 1 is not killed along
the path 1,3. Thus, both γ 1 and γ 2 reach statement 3. Hence, although there
is a WaW dependence between γ 1 and γ 2, they can be coalesced because the
semantics of GPB allows both of them to the executed in parallel without any
data dependence between them. This enables both of them to reach statement 3.

There is no “best” coalescing operation: given three sequenced GPUs γ 1, γ 2 γ 3, then γ 1 may
coalesce withγ 2 and separatelyγ 2 may coalesce withγ 3, but the GPUsγ 1,γ 2,γ 3 do not all coalesce.

Example 27. Let the GPUs of the statements 1, 2, and 3 on the right be denoted by γ 1, γ 2, and γ 3,
respectively. Let the type of pointers x and z be “int ∗” and that of y be “float ∗.”
Then there is no data dependence between γ 1 and γ 2 because x and y are
guaranteed to point to different locations based on types. Similarly, there is no
data dependence between γ 2 and γ 3. However, there is a potential data
dependence between γ 1 and γ 3. Thus, γ 1 and γ 2 can be coalesced and so can γ 2

and γ 3; however, all three of them cannot be coalesced.

Therefore, we formulate the coalescing operation on a GPG as a partition Π on its nodes (Sec-
tion 6.2), set out the correctness conditions the partition must satisfy (Section 6.3), and describe
how we select one of the maximally coalescing partitions satisfying the conditions (Section 6.4).

6.2 Creating a Coalesced GPG from a Partition

Recall that a partition Π of a set S is a collection of the non-empty subsets of S such that every
element of S is a member of exactly one element of Π . We call the elements of Π parts and write
Π (x ) for the part containing x . A partition induces an equivalence relation on S ; thus, for example,
x ∈ Π (y) holds if and only if y ∈ Π (x ).

Following a practice common for CFGs, we have previously conflated the idea of a node n of
a GPG with that of its GPB δn which is a set of GPUs. It is helpful to keep these separated when
defining a partition, noting that, under coalescing, GPBs remain sets of GPUs while the definition
of a node is changed.

Given a GPG Δ and a partition Π on its nodes, we obtain a coalesced GPG, written Δ/Π , in the
following steps:
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Definition 8. Computing the may-definition sets for the nodes in Δ/Π during coalescing.

(1) The nodes of Δ/Π (written n̂) are sets of the nodes of Δ. More precisely, they are the
members of Π and represent its equivalence classes.

The entry and exit nodes of a part n̂ are defined as follows:

entry (n̂) =
{
n ∈ n̂ | ∃n′ ∈ pred (n),n′ � n̂

}
exit (n̂) =

{
n ∈ n̂ | ∃n′ ∈ succ(n),n′ � n̂

}
.

(2) Δ/Π has an edge n̂1 → n̂2 if n̂1 � n̂2 and ∃n1 ∈ n̂1,n2 ∈ n̂2 such that n1 → n2 is an edge in
Δ.

(3) The Start and End nodes of Δ/Π respectively are the parts containing the Start and End

nodes of Δ.
(4) The GPB δ n̂ of each node n̂ (which represents the part Π (n) for some n) is the union of

the GPBs corresponding to the nodes in n̂ (i.e., δ n̂ =
⋃

n∈n̂ δn).
(5) The may-definition set μn̂ of each node is computed using Definition 8 as follows:
• We identify the GPUs that are not modified in n̂ by finding out the GPUs that reach the

entry nodes of n̂ (represented by the set inGPUs(n̂)) and the exit nodes of n̂ (represented
by the set outGPUs(n̂)) but are not generated within n̂ (set δ n̂ ).

• Set μn̂ contains the sources of the preceding GPUs (represented by the set
preservedSources(n̂)) that are also defined within the GPB n̂ (represented by the set
definedSources(n̂)).
In essence, we compute μn̂ in terms of μn (n ∈ n̂).

This is the natural definition of quotient of a labeled graph, save that self-edges are removed as they
serve no purpose. Due to strength reduction, a self-loop cannot represent a control flow edge with
an unresolved data dependence between the GPUs across it. There are two possibilities for a self-
loop: it exists in the original program or could result from empty GPB elimination and coalescing.
In the former case, strength reduction, based on the fixed point of reaching GPUs analysis, ensures
that the data dependence along the self-loop is eliminated (there is no blocking as the GPUs reached
along the self-loop belong to an immediate successor). In the latter case, the reduction of a loop to
a self-loop indicates that there are no indirect GPUs in the loop and hence no blocking. Thus, the
data dependences in the loop are eliminated through strength reduction.

Observe that for every path in Δ, there is a corresponding path in Δ/Π . In the degenerate case,
this path could well be a single node n̂ if all nodes along a path are coalesced into the same part.
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After finding a suitable partition, we revert to our previous abuse of notation and once again
conflated nodes with their GPBs representing the sets of GPUs.

6.3 What Is a Valid Coalescing Partition?

A partition Π is valid for coalescing to construct Δ/Π if it preserves the semantic understandings
of Δ. Validity is characterized by a set of conditions that ensures the following:

• Soundness: Every GPU that reaches the End GPB of Δ also reaches the End GPB of Δ/Π .
This must hold for both variants of reaching GPUs analysis (Sections 4.5 and 4.6) and also
for the GPUs representing the boundary definitions (Section 4.4).

• Precision: No GPU that does not reach the End GPB of Δ should reach the End GPB of
Δ/Π . This must hold for both variants of reaching GPUs analysis and also for the GPUs
representing boundary definitions.

Assuming that dead GPU elimination and empty GPB elimination have been performed before
coalescing, the validity of a coalescing partition is formalized as the following sufficient conditions:

• Soundness:
(S1) If there is a control flow path fromn1 ton2 (n2 ∈ succ+ (n1)) andn1 andn2 are coalesced

(n2 ∈ Π (n1)), then we require, for all GPUs γ 1 ∈ δn1 and γ 2 ∈ δn2 , that γ 1 and γ 2 have
no potential RaW dependence between them.

(S2) Consider a definition-free path ρ : n1,n2, . . .nk for source (x , i ) in Δ. Then, Δ/Π must
have a corresponding definition-free path ρ̂ : n̂1, n̂2, . . . n̂l such that

— If n1 is Start, then n̂1 = Π (n1); otherwise, n̂1 = Π (nj+1) such that first j nodes in ρ
belong to Π (n0) where n0 ∈ pred (n1) and (x , i ) � μn0 ) .

— If nk is End, then n̂l = Π (nk ); otherwise, n̂l = Π (nl−1) such that last l nodes in ρ
belong to Π (nk+1) where nk+1 ∈ succ(nk ) and (x , i ) � μnk+1

.

• Precision:
(P1) If there is a control flow path fromn1 ton2 (n2 ∈ succ+ (n1)) andn1 andn2 are coalesced

(n2 ∈ Π (n1)), then we require, for all GPUs γ 1 ∈ δn1 and γ 2 ∈ δn2 , that γ 1 and γ 2 have
no potential strict WaW dependence between them. Observe that definite strict WaW
dependences have already been eliminated by dead GPU elimination.

(P2) For every n̂ in Δ/Π that may-defines source (x , i ), there must be a control flow
path n1,n2, . . . ,nk−1,nk in Δ such that

— n1 belongs to a predecessor of n̂, nk belongs to a successor of n̂, and
— all nodes from n2 to nk−1 belong to n̂ and may-defines source (x , i ).

(P3) For every control flow edge n̂1 → n̂2 in Δ/Π , Δ must have a control flow path from
every n1 ∈ n̂1 to every n2 ∈ n̂2.

Condition (S1) ensures that no RaW dependence is missed in Δ/Π ; condition (S2) ensures that
no strict WaW dependence is spuriously included in Δ/Π . Together, they ensure that every GPU
reaching the End node in Δ also reaches the End node of Δ/Π .

Conditions (P1) and (P2) ensure that killing is not underapproximated in Δ/Π by converting a
strict WaW dependence into a non-strict dependence. Although definite strict WaW dependences
with GPUs have been removed, we could still have a potential strict WaW dependence between
GPUs or a definite strict WaW dependence with a boundary definition. Condition (P3) ensures that
no spurious RaW dependence is included in Δ/Π . Together, they ensure that no GPU that does not
reach the End node in Δ reaches the End node of Δ/Π .
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Fig. 10. Illustrating soundness and precision of coalescing (Start and End nodes are not shown).

Note that coalescing only forbids nodes that have a potential RaW or WaW dependence from
being coalesced if there is a control flow path between them; coalescing in the absence of data
dependence (or in the presence of definite non-strict WaW dependence) is generally allowed.

Example 28. Consider the GPG in Figure 10 for coalescing and proposed partitions assuming
that the may-definition sets are ∅. GPU γ 2 has a potential RaW dependence on γ 1. Option A
violates both soundness and precision, whereas options B and D violate soundness, and only
option C satisfies all conditions:

• Option A violates condition (S1) by coalescing nodes 1 and 2—if q points to x in the caller,
the RaW dependence of γ 2 on γ 1 is missed. It also violates condition (P3) by creating edge
2→ 3, which creates a RaW dependence of γ 3 on γ 2 after inlining in the caller (because
z ′ will be replaced by z). All other conditions are satisfied.

• Options B and D satisfy all conditions except (S2) because the definition-free paths for
(w, 1) and (z, 1) are missed.

Two important characteristics of these conditions are the following:

• They are sufficiency conditions in that they are stronger than actual requirements—it is
possible to create examples of Δ and Π such that Δ/Π do not satisfy these requirements
and yet no data dependence is violated nor is a new data dependence created.

• They characterize the soundness and precision of coalescing but not its efficiency. Consider
a trivial partitioning such that Π (n) = {n} (i.e., every node is placed in a separate part). This
partitioning is sound and precise but not efficient. However, there may be no potential data
dependence between any of the GPUs of Δ; then, all nodes may be placed in a single part.
Our empirical results show that a large number of GPGs nearly fall in this category, giving
us the scalability.

Example 29. Consider the statement sequence x = &a; if (c ) ∗y = &b; in which there is a po-
tential RaW dependence between the two pointers assignments (because x could point to y in a
caller). This violates condition (S1), and yet coalescing these statements does not violate sound-
ness or precision because no pointer-pointee association is missed, nor is a spurious association
created by coalescing.

6.4 Honoring the Validity Conditions

This section describes how we ensure that the conditions of validity of partitioning are satisfied.
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Fig. 11. Illustrating data dependence check and coherence in coalescing.

6.4.1 Ensuring Soundness. We honor the conditions for soundness in the following manner:

(1) Given a part Π (n), a node n1 � Π (n) is considered for inclusion in Π (n) only if some
predecessor or some successor of n1 is in Π (n). This ensures that every part Π (n) is a
connected subgraph.9

(2) Node n1 is included in Π (n) only if there is no potential RaW or WaW dependences10

between the GPUs n1 and those of any node n2 ∈ Π (n) ∩ pred+ (n1).
(3) Definition-free paths are preserved by maintaining may-definition sets, with μn̂ contain-

ing the sources that are may-defined in n̂.

Example 30. This example illustrates why the preceding step (2) only considers the depen-
dence between n1 and n2 ∈ (Π (n) ∩ pred+ (n1)) rather than between n1 and n2 ∈ Π (n). In Fig-
ure 11(a), nodes n1, n2, and n4 can be included in the same part. Consider node n3 for inclusion
in this part: the GPU in n3 appears to have RaW dependence with the GPU in node n4 because
variable z ′ will be replaced by z after inlining z ′. However, there is no control flow from n4 to
n3. Hence, the data dependence of the GPU in n3 need only be checked with those in n1 and n2

and not with those in n4. Thus, n3 can also be included in the same part. Similarly, although it
appears that there is a WaW dependence between n2 and n5, the latter can also be included in
the same part.

6.4.2 Ensuring Precision. Define the external predecessors and successors of entry and exit nodes
of a part n̂ as follows:

xpred (n) = pred (n) − Π (n)

xsucc(n) = succ(n) − Π (n).

We now wish to demand that whenever n1 and n2 are entries of n̂, they have the same set of
external predecessors, and similarly for their exits and their external successors. Thus, we define

9Note that a part could be singleton too.
10We use a tighter condition and prohibit all potential WaW dependences and not just strict potential WaW dependences

to avoid computing postdominance information after inlining calls within a procedure.
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a partition Π to be coherent if for all nodes n̂ ∈ Δ/Π , we have

n1,n2 ∈ entry (n̂) ⇒ xpred (n1) = xpred (n2) ∧
n1,n2 ∈ exit (n̂) ⇒ xsucc(n1) = xsucc(n2).

The identity partition, consisting entirely of single-entry and single-exit parts, is trivially coherent.
Coherence guarantees that no “cross connection” results by merging all entries together (or by
merging all exits together) in each node in Δ/Π . In other words, no spurious control flow is added,
thereby ensuring precision. In addition, it allows combining GPUs reaching the entries and the
GPUs reaching the exits of a part to compute the may-defined sources (Section 6.2).

Example 31. To see the role of coherence in precision, consider the GPG in Figure 11(b). Nodes
n1, n2, and n4 can be considered for inclusion in the same part. Nodes n3 and n5 have potential
dependences with any other GPU. Assuming that the types rule out the possibility of potential
dependences, the part {n1,n2,n4} violates coherence because it has two exits (n2 and n4) that
have different external successors. If we form Δ/Π , we will have control flow from the GPU
of n4 to the GPU of n3, creating a spurious RaW dependence between them because of vari-
able z (the upwards-exposed version z ′ will be replaced by z after inlining). Some examples
of coherent partitions are Π 1 = {{n1}, {n2,n3}, {n4,n5}, {n6}}, Π 2 = {{n1,n2,n3}, {n4,n5,n6}}, and
Π 3 = {{n1}, {n2,n3,n4,n5}, {n6}}.

6.4.3 A Greedy Algorithm for Coalescing. Instead of exploring all possible partitions, we use
the following greedy algorithm that implements the preceding heuristics in three steps:

(1) First, a dataflow analysis (described in Section 6.4.4) identifies whether a node can be
merged into a partition containing its predecessors and its successors. It honors the con-
straints described in Sections 6.4.1 and 6.4.2, except the constraint for coherence, which is
checked after the analysis (see the following step (2)).

As a heuristic, the dataflow analysis identifies partitions by accumulating nodes in a
part in the “forward” direction. Consider a sequence of nodes n1,n2,n3 such that we
have control flow edges n1 → n2 and n2 → n3 such that there are two valid partitions:
{{n1,n2} , {n3}} and {{n1} , {n2,n3}}. Our algorithm constructs the first partition.

(2) The results of dataflow analysis are refined to ensure coherence of the partition obtained
after dataflow analysis. If a part violates coherence, its entry and/or exit nodes are excluded
from the part and the condition is applied recursively to the remaining part. The excluded
nodes form independent parts.

(3) Actual partitions are created.

6.4.4 Dataflow Analysis for Coalescing. We define two interdependent dataflow analyses that

• construct part Π (n) using data flow variables ColInn/ColOutn and
• compute the GPUs reaching node n (from within the nodes in Π (n)) in dataflow variables

GpuInn/GpuOutn . This information is used to identify the potential RaW or WaW data
dependence between the GPUs in part Π (n).

Unlike the usual dataflow variables that typically compute a set of facts, ColInn/ColOutn are
predicates. Consider a control flow edge δn → δm in the GPG. Then, m and n belong to the same
part if ColOutn and ColInm are true. Thus, our analysis does not enumerate the parts as sets
of GPBs explicitly; instead, parts are computed implicitly by setting predicates ColIn/ColOut of
adjacent GPBs.
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Definition 9. Dataflow equations for coalescing analysis.

The dataflow equations to compute ColInn/ColOutn are given in Definition 9. The initialization
is false for all GPBs. Predicate coalesce(P ,n) uses gpuFlow(P ,n) to check if GPUs reaching P from
within Π (P ) are allowed to flow from P to n—if yes, then P and n belong to the same part. If
GpuOutP is ∅, they belong to the same part regardless of gpuFlow(P ,n). The presence of ColOutP

in the equation of coalesce (Definition 9) ensures that GPB δP is considered for coalescing with δn

only if δP has not been found to be an exit node of a part.
Unlike the usual dataflow equations, the dataflow variables ColInn and ColOutn for GPB n are

independent of each other—ColInn depends only on the ColOut of its predecessors, and ColOutn

depends only on the ColIn of its successors. Intuitively, this form of dataflow equations attempts
to melt the boundaries of GPB n to explore fusing it with its successors and predecessors.

The incremental expansion of a part in a forward direction influences the flow of GPUs accu-
mulated in a part leading to a forward dataflow analysis for computing the GPUs reaching node n
in Π (n) using dataflow variables GpuInn/GpuOutn . The dataflow equations to compute them are
given in Definition 9. Function gpuFlow(p,n) in the equation for GpuIn computes the set of GPUs
reaching p in Π (p) that flow from p to n (provided n can be included in Π (p)). It facilitates step (2)
in Section 6.4.1. If no data dependence exists (i.e., predicate DDep is false), the GPUs accumulated
in GpuOutp are propagated ton. The presence of¬ColInp in the equation for gpuFlow ensures that
GPUs in GpuOutp are propagated to δn only if δn has not been found to be an entry node of Π (n).

Example 32. Figure 13 gives the dataflow information for the example of Figure 12. GPBs
δ 1 and δ 2 can be coalesced because ColOut1 is true and GpuOut1 is ∅. Thus, DDep(δ 1,δ 2) re-
turns false, indicating that types do not match, and hence there is no possibility of a data de-
pendence between the GPUs of δ 1 and δ 2. Similarly, GPBs δ 1 and δ 3 can be coalesced. Thus,
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Fig. 12. An example demonstrating the effect of coalescing. The loop formed by the back edge δ5 → δ1

reduces to a self-loop over GPB δ8 after coalescing, which is redundant (Section 6.2) and is removed.

Fig. 13. The dataflow information computed by coalescing analysis for the example in Figure 12. The ColIn

and ColOut values indicate that GPBs δ1, δ2, δ3, δ4, δ5 can be coalesced. Similarly, GPBs δ6 and δ7 can be

coalesced. GPBs δ5 and δ6 must remain in different parts.
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ColOut1, ColIn2, and ColIn3 are true. We check the data dependence between the GPUs of GPBs
δ 2 and δ 4 using the type information. However, DDep(δ 2,δ 4) returns false because the term
(GpuOut2 − δ 4) is ∅. Thus, GPBs δ 2 and δ 4 belong to the same part and can be coalesced. For
GPBs δ 3 and δ 4, the possibility of data dependence is resolved based on the type information.

The term (GpuOut3 − δ 4) returns z
2 |0
−→

32
o whose typeof(z, 1) does not match that of the point-

ers being read in the GPUs in δ 4. Thus, GPBs δ 3 and δ 4 can be coalesced. GPBs δ 4 and δ 5 both
contain a GPU with a dereference; however, DDep(δ 4,δ 5) returns false, indicating that there is
no type matching, and hence no possibility of data dependence, thereby allowing the coalescing

of the two GPBs. The DDep(δ 5,δ 6) returns true (type of source of the GPU x
2 |0
−→

12
m ∈ GpuOut5

matches the source of the GPU p
1 |0
−→

36
s ∈ δ 6), indicating a possibility of data dependence in the

caller through aliasing, and hence the two GPBs cannot be coalesced. Thus, the first part is
δ 8 = {δ 1,δ 2,δ 3,δ 4,δ 5}. The loop δ 5 → δ 1 before coalescing now reduces to the self-loop over
GPB δ 8 after coalescing and is eliminated. GPB δ 6 becomes the entry of the new part. GPBs
δ 6 and δ 7 can be coalesced as there is no data dependence between their GPUs. Note that the
resulting partition is trivially coherent because each part is a single-entry and single-exit node.

GPU z
2 |0
−→

32
o has a definition-free path in δ 8 because boundary definition z

2 |2
−→

0
z reaches the

exit of part δ 8 along the path δ 1 → δ 2 → δ 4 → δ 5. No other GPU has a definition-free path.

Observe that some GPUs appear in multiple GPBs of a GPG (before coalescing). This is because
we could have multiple calls to the same procedure. Thus, even though the GPBs are renumbered,
the statement labels in the GPUs remain unchanged resulting in repetitive occurrence of a GPU.
This is a design choice because it helps us accumulate the points-to information of a particular
statement in all contexts.

Example 33. In Figure 4, GPBs δ 01 and δ 02 can be coalesced because DDep(δ 01,δ 02) returns
false, indicating that there is no type matching and hence no possible data dependence between
their GPUs. Thus, ColOut01 and ColIn02 are set to true. The loop formed by the back edge δ 03 →
δ 01 reduces to a self-loop over GPB δ 11 after coalescing. The self-loop is redundant, and hence it
is eliminated. For GPBs δ 02 and δ 04, DDep(δ 02,δ 04) returns true because typeof(q, 2) (for the GPU

q
2 |0
−→

02
m in δ 02) matches typeof(p, 2) (for the GPU e

1 |2
−→

04
p in δ 04), which is int ∗. This indicates

the possibility of a data dependence between the GPUs of GPBs δ 02 and δ 04 (q and p could be
aliased in the caller), and hence these GPBs cannot be coalesced. Thus, ColOut02 and ColIn04 are
set to false. For GPBs δ 04 and δ 5, DDep(δ 04,δ 05) returns false because there is no possible data
dependence. Hence, ColOut04 and ColIn05 are set to true, and the two GPBs can be coalesced.

Example 34. In Figure 4, μi = ∅ for all nodes i in the initial GPG. Strength reduction re-
duces the GPUs in δ 02 and correspondingly updates μ02 to {(b, 1), (q, 2)}. After coalescing, the
may-definition sets are computed to obtain μ11 = {(b, 1), (q, 2)} (because these sources have a
definition-free path from the entry of δ 01 ∈ entry (δ 11) to exit of δ 02 ∈ exit (δ 11)) and μ12 = ∅.
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Definition 10. Computing GPGs for recursive procedures by successive refinement.

For procedure R (Figure 5), the boundary definition b
1 |1
−→

00
b ′ reaches the exit of ΔR , indicating

that b is may-defined. Hence, μ15 = {(b, 1)}. The GPU q
2 |0
−→

02
m reduces to d

1 |0
−→

02
m in δ 13 in ΔR .

Note that d is defined in δ 08 also, and hence neither (q, 2) nor (d, 1) is contained in μ15.

7 CALL INLINING

We explain call inlining by classifying calls into three categories: (a) callee is known and the call
is non-recursive, (b) callee is known and the call is recursive, and (c) callee is not known.

7.1 Callee Is Known and the Call Is Non-Recursive

In this case, the GPG of the callee can be constructed completely before the GPG of its callers if
we traverse the call graph bottom up.

We inline the optimized GPGs of the callees at the call sites in the caller procedures by renum-
bering the GPB nodes and each inlining of a callee gives fresh numbering to the nodes. This process
does not change the statement labels within the GPUs. In addition, the upwards-exposed variable
x ′ occurring in a callee’s GPU inlined in the caller is substituted by the original variable x .

When inlining a callee’s (optimized) GPG, we add two new GPBs, a predecessor to its Start GPB
and a successor to its End GPB. These new GPBs respectively contain the following:

• GPUs that correspond to the actual-to-formal-parameter mapping.
• A GPU that maps the return variable of the callee to the receiver variable of the call in the

caller (or zero GPUs for a void function).
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Fig. 14. Constructing GPGs for recursive procedures by successive refinements.

7.2 Callee Is Known and the Call Is Recursive

Consider Figure 14, in which procedure P calls procedureQ andQ calls P . The GPG ofQ depends on
that of P and vice versa, leading to incomplete GPGs: the GPGs of the callees of some calls either
have not been constructed or are incomplete. We handle this mutual dependency by successive
refinement of incomplete GPGs of P andQ,which involves inlining GPGs of the callee procedures,
followed by GPG optimizations, repeatedly until a fixed point is reached. The rest of the section
explains how refinement is performed and how a fixed point is defined and detected.

A set of recursive procedures is represented by a strongly connected component in a call graph.
We construct GPGs for a set of recursive procedures by visiting the procedures in a post order
obtained through a topological sort of the call graph. Because of recursion, the GPGs of some
callees of the leaf are not available in the beginning. We handle such situations by using a special
GPGΔ� that represents the effect of a call when the callee’s GPG is not available. The GPGΔ� is the
� element of the lattice of all possible procedure summaries. It kills all GPUs and generates none
(thereby, when applied, it computes the � value—∅—of the lattice for may-points-to analysis) [22].
This is consistent with using � value as the initialization for computing the maximum fixed-point
solution in iterative dataflow analysis. Semantically, Δ� corresponds to the call to a procedure
that never returns (e.g., loops forever). It consists of a special GPB called the call GPB whose flow
functions are constant functions computing the empty set of GPUs for both variants of reaching
GPUs analysis.

We perform the reaching GPUs analyses over incomplete GPGs containing recursive calls by
repeated inlining of callees starting with Δ� as their initial GPGs, until no further inlining is re-
quired. Let Δ1

P denote the GPG of procedure P in which all of the calls to the procedures that are
not part of the strongly connected component are inlined by their respective optimized GPGs.
Note that the GPGs of these procedures have already been constructed because of the bottom-up
traversal over the call graph. The calls to procedures that are part of the strongly connected com-
ponent are retained in Δ1

P . In each step of refinement, the recursive calls in Δ1
P are inlined either

by

• Δ� when no GPG of the callee has been constructed or
• an incomplete GPG of a callee in which some calls are underapproximated using Δ�.

Thus, we compute a series of GPGsΔi
P

, i > 1 for every procedure P in a strongly connected com-

ponent in the call graph until the termination of fixed-point computation. Once Δi
P

is constructed,

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.



Generalized Points-to Graphs: A Precise and Scalable Abstraction for Points-to Analysis 8:43

we decide to construct Δj
Q

for a caller Q of P if the dataflow values of the End GPB of Δi
P

differ

from those of the End GPB of Δi−1
P

. This is because the overall effect of a procedure on its callers
is reflected by the values reaching its End GPB (because of forward flow of information in points-
to analysis). If the data values of the End GPBs of Δi−1

P
and Δi

P
are same, then they would have

identical effect on their callers. Thus, the GPGs are semantically identical as procedure summaries
even if they differ structurally. Thus, the convergence of this fixed-point computation differs sub-
tly from the usual fixed-point computation in that it does not depend on matching the values at
corresponding nodes (or the structure of the GPGs) across successive iterations. Instead, it depends
on matching the dataflow values of the End GPB. This process is described in Definition 10.

Example 35. In the example of Figure 14, the sole strongly connected component contains
procedures P and Q . The GPG of procedure Q is constructed first and Δ1

Q contains a single call

to procedure P whose GPG is not constructed yet, and hence the construction of Δ2
Q requires

inlining of Δ�. Since Δ� represents a procedure call that never returns, the GPB EndQ becomes
unreachable from the rest of the GPBs in Δ2

Q . The optimized Δ2
Q is Δ� because all GPBs that

no longer appear on a control flow path from the Start GPB to the End GPB are removed from
the GPG, thereby garbage collecting unreachable GPBs. Δ1

P contains a single call to procedure

Q whose incomplete GPG Δ2
Q , which is Δ�, is inlined during construction of Δ2

P . The optimized

version of Δ2
P is shown in Figure 15. Then, Δ2

P is used to construct Δ3
Q

. Reaching GPUs analyses

with and without blocking are performed on Δ2
Q and Δ3

Q
. The dataflow values for Δ2

Q are Rprev =

Rprev = ∅, whereas the dataflow values for Δ3
Q

are Rcurr = Rcurr = {y
1 |0
−→

01
a}. Since the dataflow

values have changed, the caller of Q (i.e., P ) is pushed on the worklist and Δ3
P

is constructed by

inlining Δ3
Q

. The dataflow values computed for Δ2
P and Δ3

P
are identical Rprev = Rprev = Rcurr =

Rcurr = {y
1 |0
−→

01
a}, and hence the caller of P (i.e., procedure Q ) is not added to the worklist. The

worklist becomes empty, and hence the process terminates. Note that the dataflow values of
Δ2

Q and Δ3
Q

differ, and yet we do not construct the GPG Δ4
Q . This is because Δ4

Q constructed by

inlining Δ3
P

will have the same effect as that of Δ3
Q

constructed by inlining Δ2
P since the impact

of Δ2
P and Δ3

P
is identical.

We give an informal argument for termination of GPG construction in the presence of recursion.
A formal and complete proof can be found in Gharat [10]. We first describe a property that holds
for intraprocedural dataflow analysis over CFGs and then extend it to GPGs.

Consider a CFG CQ representing procedure Q such that the flow functions associated with the
nodes inCQ are monotonic and compute values in a finite lattice L. Let the dataflow value associ-
ated with the entry of StartQ and exit of EndQ be denoted by In and Out, respectively. We denote
their relationship by writing Out = CQ (In). Consider an arbitrary node n in CQ whose flow func-
tion is fn . Let n be replaced by n′ with flow function f ′n such that f ′n � fn (i.e., ∀x ∈ L, f ′n (x ) �
fn (x )), giving us the CFGC ′Q . Let Out′ = C ′Q (In). We claim that Out′ � Out. This follows from the

fact that the control flow inCQ andC ′Q is the same, all flow functions are same except fn has been

replaced by f ′n � fn , and the same In value is supplied to both CQ and C ′Q .

The preceding situation models call inlining in GPGs. From Section 3.1.3, the set of GPUs is finite,
and from Gharat [10], they form a lattice with ⊆ as the partial order. The flow function for a call
GPB is initially assumed to be f�, and then the GPB is replaced by the GPG of the callee. The control
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Fig. 15. Series of GPGs of procedures P and Q of Figure 14. They are computed in the order shown in Fig-

ure 14(b). See Example 35 for an explanation.

flow surrounding this call remains same. Let the effect of the callee GPG be described by a flow
function f . Clearly, f � f� because f� computes� value. The process of successive refinements for
handling recursion replaces call GPBs by the GPGs of the callees repeatedly. Consider a sequence
of refinement, Δ1

Q ,Δ
2
Q , . . .Δ

i
Q

. It can be proved by induction on the length of the sequence that

the GPUs reaching the End GPB of the successive GPBs follow a descending chain because the
boundary definitions at the Start GPB of every Δi

Q
are identical. Since the set of all possible GPUs

is finite, this descending chain must contain two successive elements that are identical. Thus, there
must exist Δk

Q
and Δk+1

Q
such that the GPUs reaching their End GPB are identical.

7.3 Handling Calls Through Function Pointers

We model a call through function pointer (say fp) at call site s as a use statement with a GPU

u
1 |1
−→

s
fp (Section 8). Interleaving of strength reduction and call inlining reduces the GPU u

1 |1
−→

s
fp

and provides the pointees of fp. This is identical to computing points-to information (Section 8).

Until the pointees become available, the GPU u
1 |1
−→

s
fp acts as a barrier. Once the pointees become

available, the indirect call converts to a set of direct calls (see Appendix C for an illustrative exam-
ple). A naive approach to function pointer resolution would inline an indirect callee first into its
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immediate callers. This may require as many rounds of GPG construction as the maximum number
of indirect calls in any call chain. Instead, we allow inlining directly in a transitive callee when
a pointee of the function pointer of an indirect call becomes available. Hence, we can resolve all
indirect calls in a call chain in a single round beginning with the indirect call closest to main. This
is explained in Appendix C.

8 COMPUTING POINTS-TO INFORMATION USING GPGS

The second phase of a bottom-up approach, which uses procedure summaries created in the first
phase, is redundant in our method. This is because our first phase computes the points-to infor-
mation as a side effect of the construction of GPGs. Since statement labels in GPUs are unique
across all procedures and are not renamed on inlining, the points-to edges computed across differ-
ent contexts for a given statement can be back-annotated to the statements giving the flow- and
context-sensitive points-to information for the statement.

Since we also need points-to information for statements that read pointers but do not define
them, we model them as use statements. Consider a use of a pointer variable in a non-pointer
assignment or an expression. We represent such a use with a GPU whose source is a fictitious
node u with indlev 1, and the target is the pointee that is being read. Thus, a condition “if (x ==

∗y),” where both x and y are pointers, is modeled as a GPB {u
1 |1
−→

s
x ,u

1 |2
−→

s
y}, whereas an integer

assignment “∗x = 5;” is modeled as a GPB {u
1 |2
−→

s
x }.

Example 36. Consider the assignment sequence 01 : x = &a; 02 : ∗x = 5;. A client analysis
would like to know the pointees of x for statement 02. We model this use of pointee of x as

a GPUu
1 |2
−→

02
x . This GPU can be composed with x

1 |0
−→

01
a to get a reduced GPUu

1 |1
−→

02
a, indicating

that pointee of x in statement 2 is a.

When a use involves multiple pointers such as “if (x == ∗y),” the corresponding GPB contains
multiple GPUs. If the exact pointer-pointee relationship is required, rather than just the reduced
form of the use (devoid of pointers), we need additional minor bookkeeping to record GPUs and
the corresponding pointers that have been replaced by their pointees in the simplified GPUs.

With the provision of a GPU for a use statement, the process of computing points-to information
can be seen simply as a process of simplifying consumer GPUs (including those with a use node

u. The interleaving of strength reduction and call inlining gradually converts a GPU x
i |j
−→

s
y to

a set of points-to edges {a
1 |0
−→

s
b | a is ith pointee of x , b is jth pointee of y}. This is achieved by

propagating the use of a pointer (in a pointer assignment or a use statement) and its definitions to
a common context. This may require propagating

(a) a consumer GPU c (i.e., a use of a pointer variable) to a caller,
(b) a producer GPU p (i.e., a definition of a pointer variable) to a caller,
(c) both consumer c and producer p to a common (transitive) caller, and
(d) neither (if they are same in the procedure).

Example 37. eg.phase1.pta The four variants of hoisting p and c to a common procedure in
the first phase of a bottom-up method are illustrated in the following with the help of Figure 16;
effectively, they make the second phase redundant:
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Fig. 16. Computing points-to information using GPGs. The first column gives the call graph, whereas the

other columns give GPGs before call inlining. The GPG of procedure main has been omitted.

(a) When ΔQ is inlined in P , c : y
1 |1
−→

4
x from procedure Q is hoisted to procedure P that

contains GPU p : x
1 |0
−→

1
a, thereby propagating the use of pointer x in procedure Q to

caller P . Strength reduction reduces c to y
1 |0
−→

4
a.

(b) When ΔR is inlined in S , p : x
1 |0
−→

5
b from procedure R is hoisted to procedure S that

contains c : p
1 |1
−→

6
x , thereby propagating the definition of x in procedure R to the caller

S . Strength reduction reduces c to p
1 |0
−→

6
b.

(c) When ΔQ and ΔR are inlined in S , c : y
1 |1
−→

4
x in procedureQ and p : x

1 |0
−→

5
b in procedure

R are both hoisted to procedure S, thereby propagating both the use and definition of x

in procedure S . Strength reduction reduces c to y
1 |0
−→

4
b.

(d) Both the definition and use of pointer z are available in procedure P with c :w
1 |1
−→

3
z and

p : z
1 |0
−→

2
c . Strength reduction reduces c to w

1 |0
−→

3
c .

Thus, y points-to a along the call from procedure P , and it points-to b along the call from pro-

cedure S . Thus, the points-to information {y
→

1|0 a,y
→

1|0 b} represents flow- and context-sensitive
information for statement 4.

9 SOUNDNESS AND PRECISION

In this section, we prove the soundness and precision of GPG-based points-to analysis by compar-
ing it with a classical top-down flow- and context-sensitive points-to analysis. We first describe our
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Definition 11. Classical top-down interprocedural flow- and context-sensitive points-to analysis. Points-to

sets are subsets of LP × (L ∪ {NULL}) whose elements (x ,y) are written x → y as is conventional.

assumptions, review the classical points-to analysis, and then provide the main proof obligation.
This is followed by a series of lemmas proving the soundness of our analyses and operations.

9.1 Assumptions

We do a whole-program analysis and assume that the entire source is available for analysis. Prac-
tically, there are very few library functions that influence the points-to relations of pointers to
scalars in a C program. Library functions manipulating pointers into the heap can be manually
represented by a GPB representing a sound overapproximation of their summaries.

For simplicity of reasoning, our proof does not talk about heap pointers. Our analysis computes
a sound overapproximation of classical points-to analysis for heap pointers because (a) we use
a simple allocation-site-based abstractions in which heap locations are not cloned context sensi-
tively, and (b) we use k-limiting for heap pointers that are live on entry.

In the proof, we often talk about reaching GPUs analysis without making a distinction between
reaching GPUs analysis with and without blocking. Blocking is discussed only in the proof of
Lemma 9.11 because it is required to ensure soundness of GPU reduction.

Finally, our proofs use a simplistic model of programs where all variables are global and there is
no parameter or return value mapping when making a call or when returning from a call. Including
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local variables, function parameters, and these mapping functions in the reasoning is a matter of
detail and is not required for the spirit of the arguments made in the proof.

9.2 Classical Top-Down Flow- and Context-Sensitive Points-to Analysis

This section describes the top-down interprocedural flow- and context-sensitive points-to anal-
ysis. In keeping with the requirements of our proof of soundness (assumptions in Section 9.1),
our formulation is restricted to global (non-structure) variables and direct procedure calls. Our
formulation can be easily extended to support local variables, parameter mappings, return-value
mappings, and structures; calls through function pointers can be handled using a standard ap-
proach of augmenting the call graph on the fly.

Our formulation is based on the classical Sharir-Pnueli tabulation method [34]. This method
maintains pairs (X ,Y ) of input-output dataflow values (hence the name tabulation method) for
every procedure Q where X reaches StartQ and Y is the corresponding value reaching EndQ . The
input value X forms a context for context-sensitive analysis of Q . Every time a call to Q is seen
with the dataflow value X reaching the call, the dataflow value Y is used as the effect of the call.
In other words, procedure Q is reanalyzed only when a dataflow X ′ � X reaches a call to Q ; the
corresponding value Y ′ reaching EndQ is then memoized as the pair (X ′,Y ′).11 However, since the
tabulation method is algorithmic, we use the ideas from value-contexts-based method [29] for a
declarative description using dataflow equations.

The value-contexts-based method is subtly different the tabulation method in the following way.
For each procedure Q, this method creates a mapping represented as a set of pairs (X ,Y ), with X
being a possible points-to graph reaching StartQ and and Y being its associated points-to graph
reaching EndQ . During intraprocedural analysis, X is held constant and represents the calling
context, and Y , at each program point n within Q , represents the points-to graph reaching n. This
association of dataflow values at a program point with its context enables a declarative description
of the method. Definition 11 provides the dataflow equations for may-points-to analysis using
dataflow variables PTinn/PToutn for noden. The following two situations in the dataflow equations
require special handling for maintaining context sensitivity:

• Context X is generated at StartQ in the second case of the equation for PTinn . Thus, the
data flow value at StartQ is a set of pairs (Y ,Y ).

• The context-sensitive data value after a call to some procedure Q is computed by the first
case in the equation for PToutn . This is achieved by extracting the dataflow value (from
PToutEndQ

) that corresponds to the context in which the call to Q was made.

For other statements, the generated points-to information is the cross product of the pointers
being defined by the statement (Updated_Ptrsn ) and the locations whose addresses are read by the
pointers on the RHS (RHS_Pointeesn ). The points-to information is killed by a statement when a
strong update is possible (Section 2.1.3), which is the case for every direct assignment because
the pointer in the LHS is overwritten (Overwritten_Ptrsn ). For an indirect assignment, when the
pointer appearing on the LHS has exactly one pointee and the pointer is not live on entry to main,
the pointer is overwritten and the earlier pointees are removed. This is possible only when there is
no definition-free path for the pointer from Startmain to statement n. We eliminate such definition-
free paths by making every pointer point to NULL at the Startmain for its outermost call (the first
case in PTinn equation); this is consistent with C semantics for global variables. This initialization
may be adapted suitably to handle other static initializations in the program.

11Since all input-output values are memoized, the method requires the lattice of dataflow values to be finite. In our case,

X and Y are points-to graphs involving global variables and their lattice is finite.
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Fig. 17. Different representations of the GPG of procedure P .

9.3 Notations Used in the Proof

We need to name different versions of a GPG as it undergoes optimizations, analyses on these
different versions, and GPBs of a callee inlined in a caller’s GPG.

9.3.1 Naming the GPG Versions and Analyses. Recall that GPG construction creates a series of
GPGs by progressively transforming them. For the purpose of proof, it is convenient to use notation
that distinguishes between them. We use the notation in Figure 17 for different versions of a GPG.
These different versions can have different possibilities of analyses that we show are equivalent
using the following notation:

• TPT. Top-down flow- and context-sensitive classical points-to analysis (Section 9.2).
• TRG. Top-down flow- and context-sensitive reaching GPUs analysis.
• IRG. Intraprocedural reaching GPUs analysis.

Note that our implementation does not perform TPT or TRG.

9.3.2 Naming the GPBs After Call Inlining. Let procedure P call procedureQ . Then, as illustrated

in Figure 18,ΔCall
P

contains theΔ
Opt

Q
as a subgraph that is obtained by expanding GPB δm containing

the call to Q , by connecting the predecessors of δm to the Start GPB of Δ
Opt

Q
and the End GPB of

Δ
Opt

Q
, and to the successors of δm .

Consider node n in procedure Q . After Q is inlined in its caller, say P , the label of the inlined
instance of the node is a sequence m · n, where m is the label of the node in P that contains the
call to Q . When P is inlined in a caller R, the label of the further inlined instance of the node
becomes l ·m · n, where node l in R calls P . Thus, the nodes labels are sequences of the labels
of the call nodes with the last element in the sequence identifying the actual node in the inlined
callers. Letters S and E are used for distinguishing the inlined Start and End nodes.

We handle recursion by repeated inlining of recursive procedures. This process constructs for
series of GPGs Δi

P
, i > 1 for every procedure P in a cycle of recursion. GPG Δi+1

P
is constructed

by inlining GPGs Δ1
Q in Δi

P
, for all callees Q of P . As explained in Section 7.2, this sequence is

bounded by some k when Δk
P

is equivalent to Δk+1
P

in terms of the GPUs reaching the End nodes
are identical. This converts a recursive GPG into a non-recursive one.

For the purpose of reasoning in the proofs, we assume without any loss of generality that indirect
recursion has been converted into self-recursion [18]. The resulting inlining has been illustrated
in Figure 18. Note that the successors and predecessors of the call node after k + 1 inlinings are
disconnected (e.g., there is no control flow from δmk+1 ·l to δmk+1 ·n in Figure 18). For self-recursive
procedures, we use the notation δmk ·n to denote the sequence m ·m . . .m · S of k occurrences of
m followed by n, where n could be letter S or E apart from the usual node labels.

9.3.3 Naming the Dataflow Variables in Different Contexts of a Recursive Procedure. The top-
down context-sensitive reaching GPUs analysis over ΔInit

P
computes the values of dataflow vari-

ables RGInn/RGOutn for different contexts reaching node n for different recursion depth. We dis-
tinguish between these different values of the same dataflow variable by writing RGIni

n/RGOuti
n ,

where i denotes the depth of the recursive call. Note that there is some k for which RGInk
n =
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Fig. 18. Constructing a GPG by call inlining.

RGInk+1
n and RGOutk

n = RGOutk+1
n . It follows from the fact that the flow functions are monotonic

and the lattice of GPUs is finite because of only a finite number of combinations of indlevs are
possible due to the type restrictions in C (as explained in footnote 7). A formal proof of the con-
vergence of GPG construction for recursive calls can be found in Gharat [10].

9.4 The Overall Proof

We use the classical points-to analysis defined in Section 9.2 as the gold standard and show that the
GPG-based points-to analysis computes identical information (except when k-limiting is used for
bounding indlists for live-on-entry pointers to heap). Thus, our analysis is both sound and precise
(for k-limited heap pointers, the precision can be controlled by choosing a suitable value of k).

Theorem 9.1. Given the complete source of a C program, the GPG-based points-to analysis of the

program computes the same points-to information that would be computed by a top-down fully flow-

and context-sensitive classical points-to analysis of the program.
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Fig. 19. The overall organization of the soundness proof listing the lemmas that show equivalence of different

analyses over different representations.

Proof. Figure 19 illustrates the proof outline listing the lemmas that prove some key results.
Since ΔInit

P
is constructed by simple transliteration (Section 3.3.1), we assume that it is a sound

representation of the CFG of procedure P with respect to classical flow- and context-sensitive
points-to analysis. Then, using the points-to relations created by static initializations as memory
M (or set of GPUs) for boundary information for main,

TPT(ΔInit
main,main) ⇔ TRG(ΔInit

main,main) (from Lemma 9.2)

⇔ IRG(ΔCall
main,main) (from Lemma 9.5)

⇔ IRG(ΔSRed
main,main) (from Lemma 9.8)

⇔ IRG(Δ
Opt
main,main) (from Lemma 9.9).

For all transitive callees Q of main,

TPT(ΔInit
main,Q ) ⇔ TRG(ΔInit

main,Q ) (from Lemma 9.3)

⇔ IRG(ΔCall
main,Q ) (from Lemma 9.7)

⇔ IRG(ΔSRed
main,Q ) (from Lemma 9.8)

⇔ IRG(Δ
Opt
main,Q ) (from Lemma 9.9).

Hence the theorem. �

9.5 Equivalence of Analyses over Different Representations of a GPG

Recall that a top-down analysis uses the dataflow information reaching the call sites to compute
the context-sensitive dataflow information within the callees. Thus, the information reaching the
call sites is boundary information for an analysis of the callee procedures.
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Lemma 9.2 (Claim A for Procedure P). Consider points-to information represented by memory

M that defines all pointers that are live on entry in procedure P . Then, with M as boundary informa-

tion, TPT(ΔInit
P
, P ) ⇔ TRG(ΔInit

P
, P ).

Proof. Since all pointers are defined before their use, GPU reduction computes GPUs of the

form x
1 |0
−→

s
y. Thus, there are no potential dependences and hence no blocking. In such a situation,

the dataflow equations in Definition 5 reduce to those of the classical flow-sensitive points-to
analysis. Assuming that the two analyses maintain context sensitivity using the same mechanism,
they would compute the same points-to information at the corresponding program points. �

Lemma 9.3 (Claim A for Callees of Procedure P). Let procedureQ be a transitive callee of pro-

cedure P . Consider points-to information represented by memory M that defines all pointers that are

live on entry in procedure P . Then, with M as boundary information, TPT(ΔInit
P
,Q ) ⇔ TRG(ΔInit

P
,Q ).

Proof. Similar to that of Lemma 9.2. �

Lemma 9.4 argues about the GPUs that reach the GPBs for the statements in P (and not the
statements of the inlined callees), whereas Lemma 9.6 argues about the GPUs that reach the GPBs
for the statements belonging to the (transitive) callees inlined in ΔCall

P .

Lemma 9.4 (Claim B for Procedure P in Non-Recursive Case). Consider a non-recursive pro-

cedure P such that all of its transitive callees are also non-recursive. For a given boundary information

(possibly containing points-to information and boundary definitions), TRG(ΔInit
P
, P ) ⇔ IRG(ΔCall

P
, P ).

Proof. We prove the lemma by inducting on two levels. At the outer level, we use structural
induction on the call structure rooted at P . To prove the inductive step of the outer induction,
we use an inner induction on the iteration number in the Gauss-Seidel method of fixed-point
computation (the dataflow values in iteration i + 1 are computed only from those computed in
iteration i):

• Basis of structural induction: The base case is when P does not contain any call. Since ΔInit
P

and ΔCall
P

are identical in the absence of a call within P , the lemma trivially holds.
• Inductive step of structural induction: The inductive step requires us to prove that the lemma

holds for P when it contains calls. For inductive hypothesis, we assume that the lemma
holds for the callees in P . For every GPB δm , we need to prove the following equivalences:

The IN equivalence: If δm contains a call, then RGInm in ΔInit
P

is identical in RGInm ·S in

ΔCall
P ; otherwise, RGInm in ΔInit

P is identical in RGInm in ΔCall
P .

The OUT equivalence: If δm contains a call, then RGOutm in ΔInit
P

is identical in

RGOutm ·E in ΔCall
P

; otherwise, RGOutm in ΔInit
P

is identical in RGOutm in ΔCall
P

.
We prove these equivalences on the number of iteration i:
—Basis of induction on the number of iterations: The basis is the first iterations (i.e., i = 1). By

initialization, RGIn is ∅ for each node in both ΔInit
P and ΔCall

P (except for StartP for which
it contains boundary definitions). Thus, IN equivalence holds for eachm belonging to P .
For the OUT equivalence, there are two cases:

(a) δm does not contain a call: These GPBs are identical in ΔInit
P

and ΔCall
P

. For each such
GPB δm , RGOutm trivially contains all GPUs in δm because RGInm is ∅ and there
is no GPU reduction. Thus, the OUT equivalence also holds for such GPBs.

(b) δm contains a call: By the hypothesis of structural induction, the lemma holds for
the callees. Since TRG(ΔInit

Q
,Q ) ⇔ IRG(ΔCall

Q
,Q ), for every value of boundary

information, it also holds for ∅ as boundary information. Hence, it holds for the End
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GPB of Q . In ΔInit
P , it becomes the value RGOutm , whereas in ΔCall

P , it becomes the
value RGOutm ·E . Hence, the OUT equivalence also holds for such GPBs.

• Inductive step for number of iterations: For the hypothesis for the inner induction on the
number of iterations, assume that the lemma holds for iteration i . Since RGInm for each
m in iteration i + 1 is computed from RGOut of the predecessors nodes and these values
have been computed in an iteration i ′ ≤ i , the IN equivalence holds for iteration i + 1.
Since the RGInm values are same for each δm in both ΔInit

P
and ΔCall

P
, the RGOutm must

also be same proving the OUT equivalence and the inductive step.

This completes the proof of the lemma. �

Lemma 9.5 (Claim B for Procedure P in Recursive Case). The claim of Lemma 9.4 also holds

for recursive procedures.

Proof. We prove the lemma by showing that for all 0 < i ≤ k :

The IN equivalence: RGIni
m computed for the GPB δm in ΔInit

P is identical to RGInmi ·S for the

GPB δmi ·S in ΔCall
P , and

The OUT equivalence: RGOuti
m computed for the GPB δm in ΔInit

P is identical to RGOutmi ·E
for the GPB δmi ·E in ΔCall

P .

If the IN equivalence holds, then the OUT equivalence holds because by Lemma 9.9, the inlined

version Δ
Opt

P
is same as ΔSRed

P
, which is same as ΔCall

P
by Lemma 9.8. Thus, our proof obligation

reduces to showing the IN equivalence, which is easy to argue using induction on recursion depth
i . The base case i = 1 represents the first (i.e., “outermost”) recursive call. Since no recursive call
has been encountered so far, it is easy to see that RGIn1

m = RGIn1·S . Assuming that it holds for
recursion depth i , it also holds for recursion depth i + 1 because as explained earlier, the effect of

Δ
Opt

P
is same as ΔCall

P
by Lemmas 9.9 and 9.8. For i = k , since a fixed point has been reached in both

ΔInit
P

and ΔCall
P

, the absence of recursive call k + 1 in ΔCall
P

does not matter. �

In the following lemma, we need to consider the contexts of the calls within procedure P . For
our reasoning, the way a context is defined does not matter, and we generically denote a context
as σ . We assume that σ denotes the full context without any approximation.

Lemma 9.6 (Claim B for Callees of Procedure P in Non-Recursive Case). Consider a non-

recursive procedure P such that all of its transitive callees are also non-recursive. Assume that P
calls procedure Q possibly transitively. For any boundary information (possibly containing points-

to information and boundary definitions) for P , TRG(ΔInit
P
,Q ) ⇔ IRG(ΔCall

P
,Q ).

Proof. There could be multiple paths in the call graph from P to Q . We assume without any
loss of generality that these calls of Q have different contexts and boundary information reaching
them. Assume that there are i calls to Q with contexts σi , i > 0. Let the corresponding boundary
information (the sets of GPUs reaching the calls) be Ri , i > 0. Then, TRG(ΔInit

P
,Q ) analysis would

analyze Q separately for these contexts with the corresponding boundary information. Observe
that ΔCall

P
contains i separate instances of ΔCall

Q
, which are analyzed independently by IRG over

ΔCall
P

. The dataflow information for the statements of Q is a union of the dataflow information
reaching these statements in different contexts. Thus, it is sufficient to argue about a particular
call to Q from within P independently of other calls from within P .

Consider a particular to call to Q with context σ . We prove the lemma on the length j of the
call chain from P to Q for this context. The base case is j = 1, representing the situation when
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Q is a direct callee of P . Let this call be in the GPB δm . Then, from Lemma 9.4, RGInm is same
as RGInm ·S . TRG analysis of ΔInit

P will visit ΔInit
Q for the context σ with the boundary information

RGInm . However, IRG analysis of ΔCall
P will analyze the GPG subgraph between δm ·S to δm ·E with

the dataflow reaching RGInm ·S . Since the information reaching the Start GPB of Q is same in
both the cases, the dataflow values for statements in Q for analysis within this context would be
identical in both of the analyses proving the base case.

For the inductive step, we assume that the lemma holds for length j of the call chain. To prove
the inductive step for length j + 1, let the procedure that calls Q be Q ′. Then, the length of the call
chain from P toQ ism and the lemma holds forQ ′ by the inductive hypothesis. We can argue about
the call to Q from within Q ′ in a manner similar to the base case described earlier. This proves the
inductive step. �

Lemma 9.7 (Claim B for Callees of Procedure P in Recursive Case). The claim of Lemma 9.6

also holds for recursive procedures.

Proof. The proof is essentially along the lines of Lemma 9.5 because all we need to argue is that
RGIni

m computed for the GPB δm in ΔInit
P is identical to RGInmi ·S for the GPB δmi ·S in ΔCall

P . �

Lemma 9.8 (Claim C). LetQ denote procedure P or its transitive callees. Then, for a given boundary

information (possibly containing points-to information and boundary definitions) for procedure P ,

IRG(ΔCall
P
,Q ) ⇔ IRG(ΔSRed

P
,Q ).

Proof. It is easy to show that the intraprocedural reaching GPUs analysis over ΔCall
P

and ΔSRed
P

compute the same set of GPUs reaching the corresponding GPBs because the changes made by
strength reduction are local in nature—there is no change in the control flow, only the GPUs in
GPBs are replaced by equivalent GPUs. Thus, it is sufficient to argue that the effect of the GPUs
in a GPB is preserved by strength reduction.

Although the GPBs are not renumbered by strength reduction, it is useful to distinguish between
the GPBs before and after strength reduction for reasoning: let the GPB obtained after strength

reduction of δm be denoted by δ ′m . Then, δ ′m =
⋃

γ ∈δ m

γ ◦RGInm . Since reaching GPUs analysis is

sound (Lemmas 9.12 and 9.13), all relevant producer GPUs reach each δm . Hence, from Lemma 9.11,
γ is equivalent to γ ◦RGInm . Thus, it follows that δ ′m is equivalent to δm , proving the lemma. �

Lemma 9.9 (Claim D). LetQ denote procedure P or its transitive callees. Then, for a given boundary

information (possibly containing points-to information and boundary definitions) for procedure P ,

∀Q, IRG(ΔSRed
P ,Q ) ⇔ IRG(Δ

Opt

P
,Q ).

Proof. GPGs ΔSRed
P and Δ

Opt

P
do not contain any call, and hence the following reasoning holds

for all corresponding statements between them regardless of whether they belong to P or a transi-

tive callee of P . We prove the equivalenceΔSRed
P

andΔ
Opt

P
in three steps for the three optimizations:

(1) Dead GPU elimination: A GPU whose source is redefined along every path is a dead GPU.
Since both the variants of reaching GPUs analysis are sound (Lemmas 9.12 and 9.13), it fol-

lows that if γ � (RGOutEnd ∪ RGOutEnd ∪Queued) (Section 5), it really has no use within

ΔSRed
P or in the GPGs of the callers of P . Hence, removing γ does not change anything in

ΔSRed
P .

(2) Empty GPB elimination: Since empty GPBs do not influence the reaching GPUs analysis
in any way, removing them by connecting their predecessors to their successors does
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not change anything (because this transformation preserves the paths through the empty
GPBs).

(3) Coalescing: This transformation does not add, remove, or simplify any GPU. It only rear-
ranges the GPUs by merging GPBs wherever possible without creating new dependences
and without missing any existing dependences. To prove that the GPGs before and after
coalescing are identical in terms of their effect on the callers and in terms of the points-to
information computed within them, we need to show that the two soundness conditions
and the three precision conditions of Section 6.3 are ensured by coalescing:
• Ensuring soundness: As described in Section 6.4.1, soundness condition (S1) is ensured

by considering only adjacent nodes whose GPUs do not have any dependence between
them (steps 1 and 2 in Section 6.4.1), whereas condition (S2) is ensured by computing
may-definition sets associated with coalesced GPBs to maintain definition-free paths
(step 3 in Section 6.4.1).

• Ensuring precision: Precision condition (P1) is ensured by considering only those nodes
whose GPUs do not have any dependence between them (step 2 in Section 6.4.1),
whereas conditions (P2) and (P3) are satisfied by ensuring that no spurious control flow
paths are created: only adjacent nodes (step 1 in Section 6.4.1) for coalescing and coher-
ence ensure that there are no “cross connections” between exits and entries of adjacent
parts with multiple entries or exits (Section 6.4.2).

This proves the lemma. �

9.6 Soundness and Precision of Analyses and Operations

Recall that the abstract memory computed by a points-to analysis is a relationM ⊆ LP × L,where L

denotes the set of locations and LP ⊆ L denotes the set of pointers. GivenM , the direct pointees of a
set of pointersX ⊆ LP are computed by the relation application M X = {y | (x ,y) ∈ M,x ∈ X }. Let
M i denote a composition of degree i . Then, M i {x } discovers the ith pointees of x ,which involves i
transitive reads from x : first i − 1 addresses are read followed by the content of the last address. By

construction, M0{x } = {x }. Abstract execution of GPU x
→
i |j y in memory M imposes the constraint

M i {x } ⊇ M j {y} on M with weak updates; with strong updates, the constraint is stronger: M i {x } =
M j {y}. Observe thatM i {x } ⊇ M j {y} ⇒ M i+k {x } ⊇ M j+k {y}, k ≥ 0; this also holds for equality (i.e.,
“=” instead of “⊇”).

Lemma 9.10 (Soundness and Precision of GPU Composition). Consider GPU composition r =
c ◦τp. Let the source ofp be (x ,k ). Then, if no other GPU with the source (x ,k ′), k ′ ≤ k , reaches c , then

the abstract executions ofr andc are identical in the memory obtained after the abstract execution ofp.

Proof. Consider the picture on the right. The memory before the execution of p is M
with no constraint, whereas the memory obtained after
the execution of p is M with the constraint Cp . The mem-
ory obtained after the execution of c and r is M with
the constraints Cc ∧Cp and Cr ∧Cp , respectively. Then,
the lemma can be proved by showing that Cc ∧Cp

and Cr ∧Cp are identical. We first consider TS

composition.

Initially, assume that c causes a weak update; this assumption can be relaxed later. Let p and c
be the GPUs illustrated in the first column of Figure 7. Since no other GPU with the source (x ,k ′),
k ′ ≤ k , reaches c , the constraint Cp is Mk {x } = M l {y}. The constraints Cc is M i {z} ⊇ M j {x } and

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.



8:56 P. M. Gharat et al.

Cr is M i {z} ⊇ M (l+j−k ) {y}.
Cc ∧Cp = M i {z} ⊇ M j {x } ∧Mk {x } = M l {y}

⇒ M i {z} ⊇ M j {x } ∧Mk+(j−k ) {x } = M l+(j−k ) {y} ∧Mk {x } = M l {y} (adding j − k to Cp )

⇒ M i {z} ⊇ M j {x } ∧M j {x } = M l+(j−k ) {y}︸����������������������������������������������︷︷����������������������������������������������︸∧M
k {x } = M l {y}

⇒ M i {z} ⊇ M l+j−k {y} ∧Mk {x } ⊇ M l {y} (combining the first two terms)

⇒ Cr ∧Cp

We also need to prove the implication in the reverse direction to show the equivalence.

Cr ∧Cp = M i {z} ⊇ M l+j−k {y} ∧Mk {x } = M l {y}
= M i {z} ⊇ M l+j−k {y} ∧M l {y} = Mk {x }
⇒ M i {z} ⊇ M l+j−k {y} ∧M l+(j−k ) {y} = Mk+(j−k ) {x } ∧Mk {x } = M l {y} (adding j − k to Cp )

⇒ M i {z} ⊇ M l+j−k {y} ∧M l+j−k {y} = M j {x }︸��������������������������������������������������︷︷��������������������������������������������������︸∧M
k {x } = M l {y}

⇒ M i {z} ⊇ M j {x } ∧Mk {x } = M l {y} (combining the first two terms)

⇒ Cc ∧Cp

This proves the lemma for TS composition when c perform a weak update. When c performs a
strong update, the superset relation “⊇” is replaced by equality relation “=,” and it is easy to see
that the two-way implication still holds. Similar arguments can be made for SS composition. �

Lemma 9.11 (Soundness and Precision of GPU Reduction). Consider the set Red = c ◦R. Let

M be the memory obtained after executing the GPUs in R. Then, the execution of the GPUs in Red in

M is identical to the execution of the GPU c in M .

Proof. Recall that Red is the fixed point of function GPU_reduction(Red,R ) (Definition 4) with
the initial value Red = {c}. As explained in Section 4.3, this computation is monotonic and is guar-
anteed to converge. Hence, this lemma can be proved by induction on step i in the fixed-point
iteration that computes Redi . The base case is i = 0, which follows trivially because Red0 = {c}.

For the inductive hypothesis, assume that the lemma holds for Redi . For the inductive step, we
observe that Redi+1 is computed by reducing the GPUs in Redi by composing them with those in
R. Consider the composition of a GPU γ 1 ∈ Redi with a GPU p ∈ R such that γ 2 = γ 1 ◦p; then,
γ 2 ∈ Redi+1. Let the source of γ 1 be (x , i ). Then, from Lemma 9.10, γ 2 can replace γ 1 if R does not
contain any GPU γ ′1 with a source (x , i ′), where i ′ ≤ i . Thus, there are two cases to consider:

• There is no GPU γ ′1 in R with a source (x , i ′), i ′ ≤ i . Then, Redi+1 =
(
Redi − {γ 1}

)
∪ {γ 2}.

Since the execution of the GPUs in Redi is identical to that of c by the inductive hypothesis,
the execution of the GPUs in Redi+1 is identical to that of c .

• There is a GPU γ ′1 in R with a source (x , i ′), i ′ ≤ i . Then, γ 1 will be composed with γ ′1 also

giving some simplified GPU γ ′2. Assume that γ ′1 is the only such GPU in R, then Redi+1 is

computed as Redi+1 =
(
Redi − {γ 1}

)
∪ {γ 2,γ

′
2}. Since the execution of the GPUs in Redi is

identical to that of c by the inductive hypothesis, the execution of the GPUs in Redi+1 is
identical to that of c .
Replacement of γ 1 by the simplified GPUs is sound only when it is composed with all pos-
sible GPUs with which it has a RaW dependence. This requires us to argue the following:
—The source (x , i ′) used for reducing γ 1 for computing γ 2 is defined along every path

reaching the node. This follows from the property of completeness of R (Section 4.3),
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which is trivially ensured by (a) reaching GPUs analysis without blocking (Section 4.5)
because of the presence of boundary definitions at the Start, and by (b) reaching GPUs
analysis with blocking (Section 4.6) because of the presence of boundary definitions at
the Start, and their reintroduction when some GPUs are blocked.

—Reaching GPUs analyses are sound and precise—that is, no GPU on which γ 1 may have
a RaW dependence is missed from R, nor does R contain a spurious GPU. This follows
from Lemmas 9.12 and 9.14.

Thus, the execution of the GPUs in Redi+1 is identical to that of c , thereby proving the
inductive step.

Hence the lemma. �

Lemma 9.12 shows the soundness of reaching GPUs analysis without blocking. The soundness
of reaching GPUs analysis with blocking is shown in Lemma 9.13. Lemma 9.14 shows the precision
of reaching GPUs analyses by arguing that every GPU that reaches a GPB is either generated by a
GPB or is a boundary definition.

Lemma 9.12 (Soundness of Reaching GPUs Analysis Without Blocking). Consider a GPU

γ : x
i |j
−→

s
y obtained after the strength reduction of the GPUs in δ l using the simplified GPUs reaching

δ l. Assume that there is a control flow path from δ l to δm along which the source (x , i ) is not strongly

updated. Then, γ reaches δm .

Proof. We prove the lemma by induction on the number of nodes k between δ l and δm . The
basis is k = 0 when δm is a successor of δ l. Since γ has been obtained after strength reduction, of
the GPUs in δ l, γ ∈ RGOutl . Since RGInm is a union of RGOut of all predecessors (Definition 5),
it follows that γ ∈ RGInm .

For the inductive hypothesis, assume that the lemma holds when there are k nodes between
δ l and δm . To prove that it holds for k + 1 nodes between them, let the kth node be δn . Then,
γ ∈ RGInn by the inductive hypothesis. Sinceδn does not strongly update the source (x , i ), it means
that γ � RGKilln and thus γ ∈ RGOutn . Since δm is a successor of δn , it follows that γ ∈ RGInm ,
proving the inductive step, and hence the lemma. �

Lemma 9.13 (Soundness of Reaching GPUs Analysis with Blocking). Let GPU γ : x
i |j
−→

s
y be

obtained after the strength reduction of the GPUs in δ l using the simplified GPUs reaching δ l. Assume

that there is a control flow path from δ l to δm along which the source (x , i ) is neither strongly updated

nor blocked. Then, γ reaches δm .

Proof. The proof is similar to that of Lemma 9.12, but now we additionally reason about
Blocked (I ,G ) (Definition 7). �

Lemma 9.14 (Precision of Reaching GPUs Analysis). If a GPU γ reaches a GPB δ l, then there

must be a GPB δm such that there is a control flow path from δm to δ l that does not kill or block γ
and either δm is Start and γ is a boundary definition, or γ is generated in δm due to GPU reduction.

Proof. Without any loss of generality, we generically use RGIn/RGOut to represent both vari-
ants of reaching GPUs analysis. We prove the lemma by induction on the number of iterations
in the Gauss-Seidel method of fixed-point computation (the dataflow values in iteration i + 1 are
computed only from those computed in iteration i). The basis is i = 1 when RGIn is ∅ by initial-
ization for each node (except for Start, for which it contains the boundary definitions). Hence, the
lemma holds vacuously.
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For the inductive hypothesis, assume that the lemma holds for iteration i . Consider a GPU γ
in RGInl in iteration (i + 1). Then, γ must be in RGOutm for some predecessor δm of δ l in some
iteration i ′ < i . If it is generated by GPU reduction, then the lemma is proved. If not, then it must
be the case that it reached RGInm in iteration i ′ < i and was neither killed nor blocked in δm . By
the inductive hypothesis, it is either a boundary definition reaching from Start or there exists some
GPB δn that generated it after the reduction. Hence, it follows in iteration i + 1 that γ is either a
boundary definition reaching from Start or there exists some GPB δn that generated it after the
reduction. This proves the lemma. �

10 EMPIRICAL EVALUATION

The main motivation of our implementation was to evaluate the effectiveness of our optimizations
in handling the following challenge for practical programs:

A procedure summary for flow- and context-sensitive points-to analysis needs to
model the accesses of pointees defined in the callers and needs to maintain control
flow. Thus, the size of a summary can potentially be large. Further, the transitive
inlining of the summaries of the callee procedures can increase the size of a sum-
mary exponentially, thereby hampering the scalability of analysis.

Section 10.1 describes our implementation, Section 10.2 describes our measurements that in-
clude comparisons with client analyses, and Section 10.3 analyzes our observations and describes
the lessons learned.

10.1 Implementation and Experiments

We implemented GPG-based points-to analysis in GCC 4.7.2 using the LTO framework and have
carried out measurements on SPEC CPU2006 benchmarks on a machine with 16 GB of RAM with
eight 64-bit Intel i7-7700 CPUs running at 4.20 GHz. The implementation can be downloaded from
https://github.com/PritamMG/GPG-based-Points-to-Analysis.

10.1.1 Modeling Language Features. Our method eliminates all non-address-taken local vari-
ables12 using def-use chains explicated by the SSA-form; this generalizes the technique in Sec-
tion 3.3.1 that removes compiler-added temporaries. If a GPU defining a global variable or a pa-
rameter reads a non-address-taken local variable, we identify the corresponding producer GPUs
by traversing the def-use chains transitively. This eliminates the need for filtering out the local
variables from the GPGs for inlining them in the callers. As a consequence, a GPG of a procedure
consists only of GPUs that involve global variables,13 parameters of the procedure, and the return
variable that is visible in the scope of its callers. All address-taken local variables in a procedure
are treated as global variables because they can escape the scope of the procedure. However, these
variables are not strongly updated because they could represent multiple locations.

We approximate heap memory using context-insensitive allocation-site-based abstraction and
by maintaining k-limited indirection lists of field dereferences for k = 3 (see Appendix B) for heap
locations that are live on entry to a procedure. An array is treated index insensitively. Since there
is no kill owing to weak update, arrays are maintained flow insensitively by our analysis.

For pointer arithmetic involving a pointer to an array, we approximate the pointer being de-
fined to point to every element of the array. For pointer arithmetic involving other pointers, we
approximate the pointer being defined to point to every possible location.

12An address-taken variable is a global or stack-allocated variable to which the C address-of operator, “&,” is applied.
13From now on, we also regard heap-summary nodes and address-taken local variables as “variables.”
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10.1.2 Variants of Points-to Analysis Implemented. For comparing the precision of our analysis,
we implemented the following variants. For convenience, we implemented them using GPUs and
not by using special data structures for efficient flow-insensitive analysis:

• Flow- and context-insensitive (FICI) points-to analysis: For each benchmark program, we col-
lected all GPUs across all procedures in a common store and performed all possible reduc-
tions between the GPUs in the store. The resulting GPUs were classical points-to edges
representing the flow- and context-insensitive points-to information.

• Flow-insensitive and context-sensitive (FICS) points-to analysis: For each procedure of a
benchmark program, all GPUs within the procedure were collected in a store for the proce-
dure and all possible reductions were performed. The resulting store was used as a summary
in the callers of the procedure giving context sensitivity. In the process, the GPUs are re-
duced to classical points-to edges using the information from the calling context. This rep-
resents the flow-insensitive and context-sensitive points-to information for the procedure.

The third variant—that is, flow-sensitive and context-insensitive (FSCI) points-to analysis—can
be modeled by constructing a supergraph by joining the CFGs of all procedures such that calls and
returns are replaced by gotos. This amounts to a top-down approach (or a bottom-up approach
with a single summary for the entire program instead of separate summaries for each procedure).
For practical programs, this initial GPG is too large for our analysis to scale. Our analysis achieves
scalability by keeping the GPGs as small as possible at each stage. Therefore, we did not imple-
ment this variant of points-to analysis. Note that the FICI variant is also not a bottom-up approach,
because a separate summary is not constructed for every procedure. However, it was easy to im-
plement because of a single store.

10.1.3 Client Analyses Implemented. We implemented mod-ref analysis and call-graph con-
struction to measure the effectiveness of our points-to analysis. The mod-ref analysis computes
interprocedural reference and modification side effects for each variable caused by a procedure on
the callers of the procedure. Call graph represents caller-callee relationships between the proce-
dures in a program. Standard compilers like GCC and LLVM construct call graphs for only direct
calls and do not resolve the calls through function pointers. We constructed the call graph that in-
cludes the effect of indirect calls using the points-to information computed for function pointers.

10.1.4 Comparison with Other Points-to Analysis. We also computed corresponding data for
client analyses using static value flow analysis (SVF) [41].14 SVF is used for comparison because
its implementation is readily available. SVF is a static analysis framework implemented in LLVM
that allows value-flow construction and context-insensitive pointer analysis to be performed in
an iterative manner (sparse analysis performed in stages, from cheap overapproximate analysis
to precise expensive analysis). It uses the points-to information from Andersen’s analysis and
constructs an interprocedural memory SSA (Static Single Assignment) form where def-use chains
of both top-level (i.e., non-address-taken) and address-taken variables are included. The scalability
and precision of the analysis is controlled by designing memory SSA that allows users to partition
memory into a set of regions.

10.2 Measurements

This section describes the evaluations made on SPEC CPU 2006 benchmarks. The characteristics
of benchmark programs in terms of number of procedures, number of pointer assignments, and
the number of call sites is given in Table 1.

14Downloaded commit 03c6eb0 of SVF for LLVM 9.0 from https://github.com/SVF-tools/SVF on October 23, 2019.
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Table 1. Benchmark Characteristics Relevant to Our Analysis

Program kLoC
No. of Statements
Involving Pointers

No. of
Call Sites

No. of
Procedures

Proc. Count for Different
Buckets of No. of Calls

2–5 6–10 11–20 21+

A B C D E

lbm 0.9 370 30 19 5 0 0 0

mcf 1.6 480 29 23 11 0 0 0

libquantum 2.6 340 277 80 24 11 4 3

bzip2 5.7 1,650 288 89 35 7 2 1

milc 9.5 2,540 782 190 60 15 9 1

sjeng 10.5 700 726 133 46 20 5 6

hmmer 20.6 6,790 1,328 275 93 33 22 11

h264ref 36.1 17,770 2,393 566 171 60 22 16

gobmk 158.0 212,830 9,379 2,699 317 110 99 134

Column E omits procedures with a single call.

(We measured the data for the following two categories of evaluations:

• Comparing the precision of GPG-based FSCS points-to analysis and SVF-based points-to
analysis (Section 10.2.1):
—effect on mod-ref analysis and call graph construction, and
—number of points-to pairs per procedure.

• Measuring the effectiveness of GPG-based FSCS points-to analysis (Section 10.2.2):
—effectiveness of control flow optimizations,
—quality of procedure summaries in terms of reusability, compactness (both absolute and

relative), and
—precision gain over FICS and FICI points-to analyses (in terms of number of points-to

pairs per procedure). For our FSCS analysis, we compute this number by adding all points-
to pairs computed as described in Section 8 across all procedures in a benchmark and then
divide it by the number of procedures.

10.2.1 Comparison of GPG-Based and SVF Analyses. We compared the data for mod-ref analysis
and call graph for GPG-based points-to analysis with that of SVF. However, the comparison is not
straightforward, because the two implementations use two differently engineered intermediate
representations of programs. The underlying compiler frameworks (GCC and LLVM) use different
strategies for function inlining and function cloning (for creating specialized versions of the same
functions), leading to a different number of procedures in the call graph for the same benchmark
program. Although we suppressed the two optimizations in GCC with the appropriate flags, GCC
continues to perform function inlining and cloning at a smaller scale, indicating that we do not
have a direct control over the IR. We therefore make the comparison only on the common part of
the benchmark programs:

• Call graph construction: Table 2 provides the call graph nodes (number of functions in a pro-
gram) and the call graph edges (representing the caller-callee relationships between func-
tions). The table also provides the number of monomorphic calls (single callee at a call site)
and polymorphic calls (multiple callees at a call site) for indirect calls. An approach A1 is
said to be more precise than approach A2 if the number of call graph edges computed by A1

is smaller than that computed by A2 (given that the number of nodes in the call graph are
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Table 2. Call Graph Statistics for the Common Part of the Program as Discovered by GCC

(for GPG-Based Analysis) and LLVM (for SVF-Based Analysis)

Program
No. of Call Graph

Nodes
No. of Call Graph

Edges
No. of Monomorphic

Calls
No. of Polymorphic

Calls

GPG SVF GPG SVF GPG SVF GPG SVF

lbm 19 19 20 20 0 0 0 0

mcf 23 23 26 26 0 0 0 0

libquantum 80 80 156 156 0 0 0 0

bzip2 88 88 140 144 22 20 3 5

milc 174 174 434 434 0 0 0 0

sjeng 121 121 367 367 0 0 1 1

hmmer 263 263 709 723 7 0 2 9

h264ref 560 560 1,231 1,521 9 1 343 351

gobmk 2,679 2,679 8,889 8,889 0 0 44 44

Table 3. Mod/Ref Statistics

Program No. of Calls with Mod No. of Calls with Ref No. of Mods Across All
Calls

No. of Refs Across All
Calls

GPG SVF RR GPG SVF RR GPG SVF RR GPG SVF RR

lbm 2 6 0.33 7 7 1.00 3 6 0.50 12 16 0.75

mcf 8 16 0.50 13 21 0.62 9 58 0.16 21 108 0.19

libquantum 13 60 0.22 22 64 0.34 14 208 0.07 41 224 0.18

bzip2 16 30 0.53 61 181 0.34 30 150 0.20 36 128 0.28

milc 31 63 0.49 18 94 0.19 36 228 0.16 30 650 0.05

sjeng 32 42 0.76 39 70 0.56 93 291 0.32 128 455 0.28

hmmer 32 152 0.21 126 207 0.61 173 896 0.19 1091 1384 0.79

h264ref 183 204 0.90 178 402 0.44 2607 2722 0.96 4232 7342 0.58

gobmk 105 622 0.17 261 681 0.38 10194 13426 0.76 5225 27842 0.19

Geometric mean 0.39 0.41 0.27 0.27

RR denotes the reduction ratio of GPG-based analysis over SVF-based analysis computed by dividing the counts for the

GPG-based method by the counts for the SVF-based method. A value smaller than 1.00 indicates that GPG-based analysis

is more precise than SVF-based analysis, and the smaller the value, the higher the precision.

same). In addition, A1 is more precise than A2 if it discovers more monomorphic calls than
A2.

Table 2 shows that lbm, mcf, libquantum, and milc have no function pointers (indicated
by zero counts for polymorphic and monomorphic calls for function pointers). Since we
compared only common parts in the IRs of both GCC and LLVM, these benchmarks have
identical call graphs. In addition, there is no difference in the precision of call graphs for
sjeng (one polymorphic indirect call) and gobmk (44 polymorphic indirect calls). However,
the data shows that our approach finds a larger number of monomorphic calls in hmmer
and h264ref than the SVF method. This reduces the number of edges in the call graph.

• Mod-ref analysis: Table 3 provides the number of calls to procedures in which a pointer
variable was either modified or referenced. It also gives the number of pointer variables
(globals, parameters, and heap locations) that are modified and referenced across all calls.
An approach A1 is said to be more precise than approach say A2, if the numbers computed

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 8. Publication date: May 2020.



8:62 P. M. Gharat et al.

Table 4. Final Points-to Information: Average Points-to Pairs per Procedure

Program No. of Proc. No. of Stmts. FSCS FICI FICS SVF

lbm 19 367 0.05 3.26 2.11 0.21
mcf 23 484 0.63 8.13 7.39 0.92
libquantum 80 396 0.12 3.99 2.42 0.28
bzip2 89 1,645 0.18 4.72 2.94 2.44
milc 190 2,467 0.29 3.43 2.87 1.05
sjeng 133 684 0.42 1.12 1.9 0.39
hmmer 275 6,717 0.07 5.10 1.52 3.44
h264ref 566 17,253 0.49 5.02 3.08 0.41
gobmk 2,699 10,557 0.24 2.95 1.39 7.58

Geometric mean 0.21 3.74 2.51 0.94

FSCS, FICI, FICS, and SVF analysis.

in this table byA1 are smaller than the numbers computed byA2. Table 3 shows that our ap-
proach is more precise than the SVF method across all benchmarks. The geometric mean of
the reduction ratio of GPG over SVF in the number of calls is 0.39 with a geometric standard
deviation of 1.81. The same numbers for ref are 0.41 and 1.60, respectively. The geometric
mean of the reduction ratio of the number of mods across all calls is 0.27 with a geometric
standard deviation of 2.34. The same numbers for ref are 0.27 and 2.43, respectively.

• Average points-to information: A smaller value of average points-to pairs per procedure in-
dicates higher precision. Table 4 shows that in general, the average points-to pairs per pro-
cedure for GPG-based points-to analysis is substantially smaller than that of SVF. More
specifically, the geometric mean of average points-to pairs per procedure in GPG-based
FSCS points-to analysis is 0.21 with a geometric standard deviation of 2.40. The number of
average points-to pairs is larger for mcf, sjeng, and h264ref because they contain a large
number of heap pointers and we used simple context-insensitive allocation-site-based heap
abstraction. For SVF-based points-to analysis, the geometric mean of average points-to pairs
per procedure is much larger at 0.94 with a still larger geometric standard deviation of 3.43.
This is expected because SVF is context insensitive. However, the numbers are smaller for
SVF for sjeng and h264ref benchmarks perhaps because they have a better handling of heap.
For FICS, average points-to information is much larger with a geometric mean of 2.51. As
expected, it is maximum for FICI with a geometric mean of 3.74.

10.2.2 Data for Points-to Analysis Using GPGs. We describe our observations about the sizes of
GPGs, GPG optimizations, and performance of the analysis. Data related to the time measurements
are presented in Section 10.2.3. Section 10.3 discusses these observations by analyzing them. Our
observations include the following:

• Effectiveness of control flow minimization: The effectiveness of control flow minimization
optimizations is presented in Table 5. The data is represented in terms of percentage of
dead GPUs, percentage of empty GPBs, percentage of GPBs reduced because of coalescing,
and percentage of back edges removed because of coalescing.

We compute the percentage of dead GPUs as follows. Let x and y denote the number
of GPUs before and after dead GPU elimination, respectively. Then, the number of dead
GPUs is d = x − y and percentage of dead GPUs is computed as u = (d/x ) × 100 (rounded
to the nearest integer). We then create five buckets that associate the number of procedures
having percentage of dead GPUs within a given range. Similarly, we create buckets for
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the percentage of empty GPBs, percentage of GPBs reduced because of coalescing, and
percentage of back edges removed because of coalescing as shown in Table 5. We observe
the following:
(a) The percentage of dead GPUs is very small, and the dead GPU elimination optimization

is the least effective of all optimizations. For most procedures, less than 20% of the
GPUs are eliminated as dead. The geometric mean of the percentage of procedures
for this bucket is 97.01% with a geometric standard deviation of 1.04 across different
benchmarks. The absolute numbers for this optimizations are very small because the
number of candidate procedures for this optimization is small—as shown in Table 6, a
large number of GPGs have zero GPUs and a small number GPGs are Δ� because they
are disconnected in that the corresponding CFGs have an exit node with no successors.

(b) The transformations performed by call inlining, strength reduction, and dead GPU elim-
ination create empty GPBs which are removed by empty GPB elimination. For most
procedures, 0% to 5% or close to 50% of GPBs are empty. More specifically, the geo-
metric mean of the percentage of procedures for empty GPB elimination in the bucket
of 41% to 60% is 65.7% with a geometric standard deviation of 1.30. For the 0% to 20%
bucket, the same numbers are 25.09 and 1.86, respectively.

(c) Coalescing was most effective for recursive procedures whose GPGs are constructed by
repeated inlinings of recursive calls. Once these GPGs were optimized, the GPGs of the
caller procedures did not have much scope for coalescing. In other words, coalescing
did not cause uniform reduction across all GPGs but helped in the most critical GPGs.
Hence, we observe a reduction of 20% to 50% of GPBs for some but not the majority
of procedures. More specifically, the geometric mean of the percentage of procedures
that undergo a reduction of less than 20% is 91.6% with a geometric standard deviation
of 1.09. Although this number may look small, it should be noted that without coalesc-
ing, the GPGs became too large and our implementation failed to scale. In other words,
the transitive effect of coalescing is significant and is presented in the discussion on
relative sizes of GPGs before and after optimizations for measuring the quality of pro-
cedure summaries. In any case, coalescing eliminated almost all back edges as shown
in the table. This is significant because most of the inlined GPGs are acyclic, and hence
analyzing the GPGs of the callers does not require additional iterations in a fixed-point
computation.

• Quality of procedure summaries: This data is presented in Tables 1, 5, and 6. We use the
following quality metrics on procedure summaries:
(a) Reusability: The number of calls to a procedure is a measure for the reusability of its

summary. The construction of a procedure summary is meaningful only if it is used
multiple times. From column E in Table 1, it is clear that most procedures are called
from many call sites. We counted only the procedures that were called multiple times,
ignoring the procedures that have only one call.

(b) Compactness of a procedure summary: For scalability of a bottom-up approach, a proce-
dure summary should be as compact as possible. In the worst case, a procedure sum-
mary may be same as the procedure. In such a case, the application of a procedure
summary at the call sites in its callers is meaningless because it is as good as visiting
the procedure multiple times, which is similar to a top-down approach.

Tables 7 and 6 show that the procedure summaries are indeed small in terms of the
number of GPBs and GPUs. GPGs for a large number of procedures have zero GPUs
because they do not manipulate global pointers (and thereby represent the identity flow
function). More specifically, the geometric mean of the percentage of procedures with
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Table 7. Measurement of the Quality of Procedure Summaries

Program
Procedure Count for Different Buckets

of No. of GPBs Procedure Count for Different Buckets of No. of GPUs

0 1–3 4–10
11–
25

26–
35 36+ 0 1–3 4–6 7–10 11–30 31–50 51–70 71+

lbm 0 18 1 0 0 0 15 4 0 0 0 0 0 0

mcf 0 22 1 0 0 0 12 6 2 2 0 0 0 1

libquantum 0 80 0 0 0 0 70 8 2 0 0 0 0 0

bzip2 8 79 2 0 0 0 70 11 5 3 0 0 0 0

milc 3 186 1 0 0 0 175 7 6 2 0 0 0 0

sjeng 2 130 1 0 0 0 99 26 3 3 2 0 0 0

hmmer 5 253 13 3 1 0 237 29 4 5 0 0 0 0

h264ref 3 544 15 4 0 0 435 81 20 8 17 3 1 1

gobmk 2 2,514 150 9 0 24 2,146 75 16 361 63 37 1 0

Geo. Mean 95.06% 77.63% 18.08%

The geometric mean of percentages of procedures with 1 to 3 GPBs is 95.06%, whereas that of procedures with 0 GPUs

and 1 to 10 GPUs is 77.63% and 18.08%, respectively. Some procedures have zero GPBs because they have an exit node

with no successors.

zero GPUs across all benchmarks is 77.63% with a geometric standard deviation of 1.18.
The geometric mean of the percentages of procedures with 1 to 10 GPUs is 18.08% with
a geometric standard deviation of 1.61. Further, the majority of GPGs have 1 to 3 GPBs;
the geometric mean of the percentages of such procedures is 95.06%.

Note that this is an absolute size of GPGs. Since the relative sizes were measured
on several parameters, the associated observations are presented separately in the
following.

• Relative size of GPGs with respect to the size of corresponding procedures: For an exhaustive
study, we compare three representations of a procedure with each other: (1) the CFG of
a procedure (with a cumulative effect of call inlining), (2) the initial GPG obtained after
call inlining, and (3) the final optimized GPG. Since GPGs have callee GPGs inlined within
them, for a fair comparison, the CFG size must be counted by accumulating the sizes of
the CFGs of the callee procedures. This is easy for non-recursive procedures. For recursive
procedures, we accumulate the size of a CFG as many times as the number of inlinings of
the corresponding GPG (Section 7.2). The number of statements in a CFG is measured only
in terms of the pointer assignments.

The data is represented in terms of ratiou = (x/y) × 100 (rounded to the nearest integer),
where x and y represent the following:
(a) x is the number of GPBs/GPUs/control flow edges in a GPG obtained after call inlining,

and y is the number of basic blocks/pointer statements/control flow edges in the CFG
after call inlining.

(b) x is the number of GPBs/GPUs/control flow edges in a GPG after all optimizations, and
y is the number of basic blocks/pointer statements/control flow edges in the CFG.

(c) x is the number of GPBs/GPUs/control flow edges in a GPG after all optimizations, and
y is the number of GPBs/GPUs/control flow edges in a GPG obtained after call inlining.

We then create five buckets that associate the number of procedures having the computed
ratio within a given range. This data is presented in Table 8 (in terms of GPBs and basic
blocks), Table 9 (in terms of GPUs and pointer assignments), and Table 10 (in terms of
control flow edges) and is described next:
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Table 8. Relative Size of GPGs with Respect to Corresponding Procedures

in Terms of GPBs and Basic Blocks

A: Procedure count for different buckets of ratio of GPBs/BBs in CFG and GPG after inlining

B: Procedure count for different buckets of ratio of GPBs/BBs in CFG and optimized GPG

C: Procedure count for different buckets of ratio of GPBs in GPG before and after optimizations

Program A B C

0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+

lbm 9 3 3 1 3 11 5 3 0 0 2 1 15 0 1

mcf 14 5 2 1 1 22 1 0 0 0 3 5 14 1 0

libquantum 42 14 12 1 11 56 13 11 0 0 26 17 36 0 1

bzip2 53 16 10 4 6 71 12 6 0 0 13 4 70 1 1

milc 115 20 14 7 34 134 22 34 0 0 10 6 169 1 4

sjeng 87 17 7 3 19 105 9 19 0 0 19 13 99 1 1

hmmer 205 34 18 1 17 239 19 16 0 1 62 32 164 8 9

h264ref 401 71 49 10 35 476 51 38 1 0 46 79 412 17 12

gobmk 2,336 275 24 6 58 2,610 29 56 1 3 210 163 2,038 235 53

Geo. mean 63.3% 79.13% 69.31%

The geometric mean has been shown for the percentages of procedures in buckets with the largest numbers.

Table 9. Relative Size of GPGs with Respect to Corresponding Procedures in

Terms of GPUs and Pointer Assignments

A: Procedure count for different buckets of ratio of GPUs/stmts in a CFG and GPG after inlining

B: Procedure count for different buckets of ratio of GPUs/stmts in a CFG and an optimized GPG

C: Procedure count for different buckets of ratio of GPBs in a GPG before and after optimizations

Program A B C

0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+

lbm 16 3 0 0 0 19 0 0 0 0 18 0 0 1 0

mcf 21 0 0 1 1 23 0 0 0 0 17 0 3 0 3

libquantum 75 4 0 0 1 80 0 0 0 0 47 1 1 0 31

bzip2 89 0 0 0 0 89 0 0 0 0 85 0 0 0 4

milc 189 1 0 0 0 190 0 0 0 0 185 0 0 0 5

sjeng 131 0 2 0 0 133 0 0 0 0 105 0 1 2 25

hmmer 273 0 1 0 1 275 0 0 0 0 266 6 1 0 2

h264ref 540 12 10 1 3 563 2 1 0 0 505 3 1 1 56

gobmk 2,688 4 2 0 5 2,697 1 1 0 0 2,189 0 4 7 499

Geo. mean 95.59% 99.93% 84.14%

The geometric mean has been shown for the percentages of procedures in buckets with the largest numbers.

(a) Column A gives the size of the initial GPG (i.e., II) relative to that of the corresponding
CFG (i.e., I). It is easy to see that the reduction is immense: a large number of initial GPGs
are in the range of 0% to 20% of the corresponding CFGs. The geometric mean of the
percentage of procedures in this bucket for relative size in terms of GPUs and pointer
assignments across all benchmarks is 95.59% with a geometric standard deviation of
1.09 (Table 9). The same number for relative size in terms of GPBs and basic blocks is
63.3% with a geometric standard deviation of 1.2 (Table 8), and those for relative size
in terms of control flow edges is 86.13% with a geometric standard deviation of 1.12
(Table 10).
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Table 10. Relative Size of GPGs with Respect to Corresponding Procedures in

Terms of Control Flow Edges

A: Procedure count for different buckets of ratio of control flow edges in a CFG and GPG after inlining

B: Procedure count for different buckets of ratio of control flow edges in a CFG and an optimized GPG

C: Procedure count for different buckets of ratio of GPBs in a GPG before and after optimizations

Program A B C

0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+ 0–20 21–40 41–60 61–80 81+

lbm 13 4 2 0 0 19 0 0 0 0 18 0 0 0 1

mcf 21 1 1 0 0 23 0 0 0 0 16 4 2 1 0

libquantum 61 8 2 0 9 80 0 0 0 0 78 1 0 0 1

bzip2 72 9 2 2 4 89 0 0 0 0 79 7 1 1 1

milc 180 3 5 0 2 189 0 1 0 0 182 1 3 0 4

sjeng 124 5 1 0 3 133 0 0 0 0 130 2 0 0 1

hmmer 246 24 3 0 2 274 1 0 0 0 252 8 1 5 9

h264ref 509 26 13 1 17 562 0 2 1 1 516 15 14 11 10

gobmk 2,572 72 31 1 23 2,693 1 2 1 2 2,336 43 92 162 66

Geo. mean 86.13% 99.8% 89.97%

The geometric mean has been shown for the percentages of procedures in buckets with the largest numbers.

(b) Column B gives the size of the optimized GPG (i.e., III) relative to that of the corre-
sponding CFG (i.e., I). The number of procedures in the range of 0% to 20% is larger
in this column than in column A, indicating more reduction because of optimizations.
The geometric mean of the percentage of procedures in this bucket for relative size in
terms of GPUs and pointer assignments across all benchmarks is a whopping 99.93%
with a geometric standard deviation of 1.0 (Table 9). The same number for relative size
in terms of GPBs and basic blocks is 79.13% with a geometric standard deviation of 1.18
(Table 9), and those for relative size in terms of control flow edges is a whopping 99.8%
with a geometric standard deviation of 1.0 (Table 10). We believe that this is the key to
the scalability gain of GPG-based points-to analysis over top-down context-sensitive
points-to analysis.

(c) Column C gives the size of the optimized GPG (i.e. III) relative to that of the initial GPG
(i.e. I). Here the distribution of procedures is different for GPBs, GPUs, and control
flow edges. In the case of GPBs, the reduction factor is 50%. For GPUs, the reduction
varies widely. The maximum reduction is found for control flow—a large number of
procedures fall in the range 0%-20% and the number is larger than in this range for GPBs
or GPUs indicating that the control flow is optimized the most. The geometric mean of
percentage of procedures in this bucket for relative size in terms of GPUs and pointer
assignments across all benchmarks is 84.14% with a geometric standard deviation of
1.18 (Table 9). The same number for relative size in terms of GPBs and basic blocks is
69.31% with a geometric standard deviation of 1.23 (Table 8), and those for relative size
in terms of control flow edges is 89.97% with a geometric standard deviation of 1.11
(Table 10).

We also measured the effect of control flow minimization on the number of back edges
that get removed because fixed-point computation requires a larger number of iterations
in the presence of back edges. The data in Table 6 shows that most of the GPGs are acyclic
despite the fact that the number of procedures with back edges in the CFG is large.
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Table 11. Time Measurements

Program Time (in Seconds)
FSCS (with Blocking) SVF

lbm 0.070 0.01
mcf 8.690 0.062
libquantum 1.514 0.031
bzip2 1.066 0.534
milc 1.133 0.236
sjeng 3.702 0.131
hmmer 4.961 2.032
h264ref 73.779 1.852
gobmk 938.949 17.959

• Precision gain of GPG-based FSCS over FICS, and FICI points-to analyses:
We compared the points-to information computed by our approach with FICI and FICS

methods. For this purpose, we computed number of points-to pairs per procedure in all three
approaches by dividing the total number of unique points-to pairs across all procedures
by the total number of procedures. Predictably, this number is smallest for our analysis
(FSCS) and largest for the FICI method. The summary statistics for this were presented in
Section 10.2.1.

10.2.3 Time Measurements. We measured the overall time (Table 11). We also measured the
time taken by the SVF points-to analysis. We observe that our analysis takes less than 16 minutes
on gobmk.445, which is a large benchmark with 158 kLoC. Our current implementation does not
scale beyond that. SVF is faster than all variants of points-to analysis that we implemented. This
is expected because SVF is context insensitive.

10.3 Discussion: Lessons from Our Empirical Measurements

Our experiments and empirical data leads us to some important learnings as described next:

(1) The real killer of scalability in program analysis is not the amount of data but the amount
of control flow that it may be subjected to in search of precision.

(2) For scalability, the bottom-up summaries must be kept as small as possible at each stage.
(3) Some amount of top-down flow is very useful for achieving scalability.
(4) Type-based non-aliasing aids scalability significantly.
(5) The indirect effects for which we devised blocking to postpone GPU compositions are

extremely rare in practical programs. We did not find a single instance in our benchmarks.
(6) Not all information is flow sensitive.

We learned these lessons the hard way in the situations described in the rest of this section.

10.3.1 Handling a Large Size of Context-Dependent Information. Some GPGs had a large amount
of context-dependent information (i.e., GPUs with upwards-exposed versions of variables), and the
GPGs could not be optimized much. This caused the size of the caller GPGs to grow significantly,
threatening the scalability of our analysis. Hence, we devised a heuristic threshold t representing
the number of GPUs containing upwards-exposed versions of variables. This threshold is used as
follows. Let a GPG contain x GPUs containing upwards-exposed versions:
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• If x < t for a GPG, then the GPG is inlined in its callers.
• if x ≥ t for a GPG, then the GPG is not inlined in its callers. Instead, its calls are repre-

sented symbolically with the GPUs containing upwards-exposed versions. As the analysis
proceeds, these GPUs are reduced, decreasing the count of x after which the GPG is inlined.

This keeps the size of the caller GPG small and simultaneously allows reduction of the context-
dependent GPUs in the calling context. Once all GPUs are reduced to classical points-to edge, we
effectively get the procedure summary of the original callee procedure for that call chain. Since the
reduction of context-dependent GPUs is different for different calling contexts, the process needs
to be repeated for each call chain. This is similar to the top-down approach where we analyze a
procedure multiple times. We used a threshold of 80% context-dependent GPUs in a GPG contain-
ing more than 10 GPUs. Thus, 8 context-dependent GPUs from a total of 11 GPUs was below our
threshold, as was 9 context-dependent GPUs from a total of 9 GPUs.

Note that in our implementation, we discovered very few cases (and only in large benchmarks)
where the threshold actually exceeded. The number of call chains that required multiple traversals
are in single digits, and they are not very long. The important point to note is that we got the
desired scalability only when we introduced this small twist of using symbolic GPG.

10.3.2 Handling Arrays and SSA Form. Pointers to arrays were weakly updated, and hence we
realized early on that maintaining this information flow sensitively prohibited scalability. This was
particularly true for large arrays with static initializations. Similarly, GPUs involving SSA versions
of variables were not required to be maintained flow sensitively. This allowed us to reduce the
propagation of data across control flow without any loss in precision.

10.3.3 Making Coalescing More Effective. Unlike dead GPU elimination, coalescing proved to
be a very significant optimization for boosting the scalability of the analysis. The points-to analy-
sis failed to scale in the absence of this optimization. However, this optimization was effective (i.e.,
coalesced many GPBs) only when we brought in the concept of types. In cases where the data de-
pendence between the GPUs was unknown because of the dependency on the context information,
we used type-based non-aliasing to enable coalescing.

11 RELATED WORK: THE BIG PICTURE

Many investigations reported in the literature have described the popular points-to analysis meth-
ods and have presented a comparative study of the methods with respect to scalability and preci-
sion [14, 15, 17, 24, 35, 38]. Instead of discussing these methods, we devise a metric of features that
influence the precision and efficiency/scalability of points-to analysis. This metric can be used for
identifying important characteristic of any points-to analysis at an abstract level.

11.1 Factors Influencing the Precision, Efficiency, and Scalability of Points-to Analysis

Figure 20 presents our metric. At the top level, we have language features and analysis features.
The analysis features have been divided further based on whether their primary influence is on the
precision or efficiency/scalability of points-to analysis. The categorization of language features is
obvious. Here we describe our categorization of analysis features.

11.1.1 Features Influencing Precision. Two important sources of imprecision in an analysis are
approximation of data dependence and abstraction of data.

• Approximations of data dependence: The approaches that compromise on control flow by
using flow insensitivity or context insensitivity overapproximate the control flow: flow
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Fig. 20. Language and analysis features affecting the precision, efficiency, and scalability of points-to anal-

yses. An arrow from feature A to feature B indicates that feature A influences feature B. The features influ-

encing precision, influence efficiency, and scalability indirectly.

insensitivity admits arbitrary orderings of statements, whereas context insensitivity treats
call and returns as simple goto statements admitting interprocedurally invalid paths.
Observe that honoring control flow in imperative languages preserves data dependence, and
its overapproximation causes overapproximation of data dependence. This may introduce
spurious data dependences, causing imprecision.
Note that SSA form also discards control flow, but it avoids overapproximation in data de-
pendences by creating use-def chains between renamed variables.
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• Data abstractions: An abstract location usually represents a set of concrete locations. An
overapproximation of this set of locations leads to spurious data dependences, causing im-
precision in points-to analysis.

11.1.2 Features Influencing Efficiency and Scalability. Different methods use different tech-
niques to achieve scalability. We characterize them based on the following three criteria:

• Relevant points-to information. Many methods choose to compute a specific kind of points-to
information that is then used to compute further points-to information. For example, staged
points-to analyses begin with conservative points-to information that is then made more
precise. Similarly, some methods begin by computing points-to information for top-level
(i.e., non-address-taken) pointers whose indirections are then eliminated. This uncovers a
different set of pointers as top-level pointers whose points-to information is then computed.

• Order of computing points-to information: Most methods order computations based on rele-
vant points-to information that may also be defined in terms of a chosen order of traversal
over the call graph (e.g., top-down or bottom-up).

• Specialized data structures: A method may use specialized data structures for encoding in-
formation efficiently (e.g., BDDs or GPUs and GPGs) or may use them for modeling relevant
points-to information (e.g., use of placeholders to model accesses of unknown pointees in
a bottom-up method).

11.1.3 Interaction Between the Features. In this section, we explain the interaction between the
features indicated by the arrows in Figure 20:

• Data abstraction influences approximations of data dependence: An abstract location may
be over-approximated to represent a larger set of concrete locations in many situations,
such as in field insensitivity, type-based abstraction, and allocation-site-based abstraction.
This overapproximation creates spurious data dependence between the concrete locations
represented by the abstract location.

• Approximation of data dependence influences the choice of efficient data structures: Some flow-
insensitive methods use disjoint sets for efficient union-find algorithms. Several methods
use BDDs for scaling context-sensitive analyses.

• Relevant points-to information affects the choice of data structures: Points-to information
is stored in the form of graphs, points-to pairs, or BDDs for top-down approaches. For
bottom-up approaches, points-to information is computed using procedure summaries that
use placeholders or GPUs.

• Relevant points-to information and order of computing influence each other mutually: In level-
by-level analysis [46], points-to information is computed one level at a time. The relevant
information to be computed at a given level requires points-to information computed by the
higher levels. Thus, in this case, the relevance of points-to information influences the order
of computation. In LFCPA [21], only the live pointers are relevant. Thus, points-to informa-
tion is computed only when the liveness of pointers is generated. The order of computing
liveness influences the relevant points-to information to be computed.

11.1.4 Our Work in the Context of the Big Picture of Points-to Analysis. GPG-based points-to
analysis preserves data dependence by being flow- and context sensitive. It is path insensitive and
uses SSA form for non-address-taken local variables. Unlike the approaches that overapproximate
control flow indiscriminately, we discard control flow as much as possible, but only when there is
a guarantee that it does not overapproximate data dependence.
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Our analysis is field sensitive. It overapproximates arrays by treating all of its elements alike. We
use context-insensitive allocation-site-based abstraction for representing heap locations and use
k-limiting for summarizing the unbounded accesses of heap where allocation sites are not known.

Like every bottom-up approach, points-to information is computed when all of the information
is available in the context. Our analysis computes points-to information for all pointers.

11.2 Approaches of Constructing Procedure Summaries

There is a large body of work on flow-insensitive or context-insensitive points-to (or alias) anal-
ysis. In addition, the literature is abound with investigations exploring analysis of Java programs.
Finally, a large number of investigations focus on demand-driven methods. We restrict ourselves
to exhaustive flow- and context-sensitive points-to analysis of primarily C programs and mention
Java-related works that are directly related to our ideas.

Most of the top-down approaches to flow- and context-sensitive pointer analysis of C programs
have not scaled [8, 21, 31] with the largest program successfully analyzed by them consisting
of 35 kLoC [21]. It is no surprise, then, that the literature of flow- and context-sensitive points-to
analyses is dominated by bottom-up approaches. Our work also belongs to this category, and hence
we focus on them in this section by classifying them into the MTF or STF approach (Section 2.3).

11.2.1 MTF Approach for Bottom-Up Summaries. In this approach [16, 43, 46, 47], control flow
is not required to be recorded between memory updates. This is because the data dependency be-
tween memory updates (even the ones that access unknown pointers) is known by using either
the alias information or the points-to information from the calling context. These approaches con-
struct symbolic procedure summaries. This involves computing preconditions and corresponding
postconditions (in terms of aliases or points-to information). A calling context is matched against
a precondition, and the corresponding postcondition gives the result.

Two approaches that stand out among these from the viewpoint of scalability are bootstrap-
ping [16] and level-by-level analysis [46]. The bootstrapping approach partitions the pointers using
flow-insensitive analyses such that each subset is an equivalence class with respect to alias infor-
mation and then analyses are performed in a cascaded fashion in a series A0,A1, . . . ,Ak , where
analysis Ai uses the points-to information computed by the analysis Ai−1. In addition, analysis
of different equivalence classes at any level can be performed in parallel. This process involves
constructing MTF procedure summaries using a top-down traversal of call graph to compute alias
information using FSCI analysis. This may cause some imprecision in the computed summaries.
However, it is not clear if the precision loss is significant, as there are no formal guarantees of
precision, nor does the work provide empirical evaluation of precision—the focus being solely on
scalability. The analysis is reported to scale to 128 kLoC.

Level-by-level analysis [46] constructs a procedure summary with multiple interprocedural con-
ditions. It matches the calling context with these conditions and chooses the appropriate summary
for the given context. This method partitions the pointer variables in a program into different lev-
els based on the Steensgaard’s points-to graph for the program. It constructs a procedure summary
for each level (starting with the highest level) and uses the points-to information from the previ-
ous level. This method constructs interprocedural def-use chains by using an extended SSA form.
When used in conjunction with conditions based on points-to information from calling contexts,
the chains become context sensitive. This method is claimed to scale to 238 kLoC; however, similar
to the bootstrapping method, there are no formal guarantees or empirical evaluation of precision.15

15In addition, this method has been followed by the SVF method that is flow sensitive but context insensitive [41], which

has further been followed by a flow- and context-sensitive method that is demand driven [40].
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Since these approaches depend on the number of aliases/points-to pairs in the calling contexts,
the procedure summaries are not context independent. Thus, this approach may not be useful
for constructing summaries for library functions that have to be analyzed without the benefit of
different calling contexts. Saturn [12] creates sound summaries, but they may not be precise across
applications because of their dependence on context information.

Relevant context inference [5] constructs a procedure summary by inferring the relevant poten-
tial aliasing between unknown pointees that are accessed in the procedure. Although it does not
use the information from the context, it has multiple versions of the summary depending on the
alias and the type context. This analysis could be inefficient if the inferred possibilities of aliases
and types do not actually occur in the program. It also overapproximates the alias and the type
context as an optimization, thereby being only partially context sensitive.

11.2.2 STF Approach for Bottom-Up Summaries. This approach does not make any assumptions
about the calling contexts [4, 6, 23, 25–27, 33, 39, 42, 48] and uses multiple placeholders for dis-
tinct accesses of the pointees of the same pointer (Section 2.3). This tends to increase the size of
the resulting procedure summaries. This problem is mitigated by choosing carefully where the
placeholders are required [39, 42], by employing optimizations that merge placeholders [26], by
maintaining restricted control flow [4], by overapproximating the control flow through flow in-
sensitivity [23], or a combination of them [27]. In some cases, the overapproximation is only in
the application of procedure summaries even though they are constructed flow sensitively [27].
Many of these approaches scale to millions of lines of code.

Although the attempts to minimize the placeholders prohibits killing of points-to information
of pointer variables in C/C++ programs, it does not have much adverse impact on Java programs.
This is because all local variables in Java have SSA versions, thanks to the absence of indirect
assignments to variables (there is no addressof operator). In addition, there are few static variables
in Java programs, and absence of kill for them may not matter much.

Lattner et al. [23] proposed a heap-cloning-based context-sensitive points-to analysis. For
achieving a scalable implementation, several algorithmic and engineering design choices were
made in this approach. Some of these choices are a flow-insensitive and unification-based analy-
sis, and sacrificing context sensitivity across recursive procedures.

Cheng and Hwu [6] proposed a modular interprocedural pointer analysis based on access paths
for C programs. They illustrate that access paths can reduce the overhead of representing context-
sensitive transfer functions. The abstraction of access paths is similar to the indirection lists (in-

dlists) used by our approach. The approach uses allocation-site-based abstraction and cycles in the
access paths to bound the length of access paths. This approach is flow insensitive and hence does
not maintain any control flow between these access paths.

Access fetch graphs [4] is another representation for procedure summaries for points-to anal-
ysis. This approach presents two versions of a summary: a flow-insensitive version and a flow-
aware version that is a flow-insensitive version augmented by encoding control flow using a total
order. The latter is sound and more precise than the flow-insensitive version but less precise than
a flow-sensitive version.

Note that the MTF approach is precise even though no control flow in the procedure summaries
is recorded because the information from calling context obviates the need for control flow.

11.2.3 The Hybrid Approach. Hybrid approaches use customized summaries and combine the
top-down and bottom-up analyses to construct summaries [47]. This choice is controlled by the
number of times a procedure is called. If this number exceeds a fixed threshold, a summary is con-
structed using the information of the calling contexts that have been recorded for that procedure.
A new calling context may lead to generating a new precondition and hence a new summary. If
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the threshold is set to zero, then a summary is constructed for every procedure and hence we have
a pure bottom-up approach. If the threshold is set to a very large number, then we have a pure
top-down approach and no procedure summary is constructed.

Additionally, we can set a threshold on the size of procedure summary or the percentage of
context-dependent information in the summary or a combination of these choices. In our imple-
mentation, we used the percentage of context-dependent information as a threshold—when a pro-
cedure has a significant amount of context-dependent information, it is better to introduce a small
touch of top-down analysis (Section 10.3.1). If this threshold is set to 0%, our method becomes a
purely bottom-up approach; if it is set to 100%, our method becomes a top-down approach.

12 CONCLUSION AND FUTURE WORK

Constructing compact procedure summaries for flow- and context-sensitive points-to analysis
seems hard because it

(a) needs to model the accesses of pointees defined in callers without examining their code,
(b) needs to preserve data dependence between memory updates, and
(c) needs to incorporate the effect of the summaries of the callee procedures transitively.

These issues have been handled in the past as follows. The first issue has been handled by model-
ing accesses of unknown pointees using placeholders. However, it may require a large number of
placeholders. The second issue has been handled by constructing multiple versions of a procedure
summary for different aliases in the calling contexts. The third issue can only be handled by in-
lining the summaries of the callees. However, it can increase the size of a summary exponentially,
thereby hampering the scalability of analysis.

We handled the first issue by proposing the concept of GPUs that track indirection levels. Simple
arithmetic on indirection levels allows composition of GPUs to create new GPUs with smaller
indirection levels; this reduces them progressively to classical points-to edges.

To handle the second issue, we maintain control flow within a GPG and perform optimizations
of strength reduction and control flow minimization. Together, these optimizations reduce the
indirection levels of GPUs, eliminate data dependences between GPUs, and significantly reduce
control flow. These optimizations also mitigate the impact of the third issue.

We achieved the preceding by devising novel dataflow analyses such as two variants of reaching
GPUs analysis and coalescing analysis. Interleaved call inlining and strength reduction of GPGs
facilitated a novel optimization that computes flow- and context-sensitive points-to information
in the first phase of a bottom-up approach. This obviates the need for the usual second phase.

Our measurements on SPEC benchmarks show that GPGs are small enough to scale fully flow-
and context-sensitive exhaustive points-to analysis to C programs as large as 158 kLoC. Our work
differs from most other investigations exploring scalable exhaustive flow- and context-sensitive
points-to analysis of C in the following ways:

• To achieve scalability and precision simultaneously, most approaches start with a scalable
method and try to increase its precision. Our work starts with a precise method and opti-
mizes it for scalability without compromising soundness or precision.

• This reversal of priorities in our approach has a significant benefit that it facilitates formal
guarantees of soundness and precision. In addition, we have provided extensive empiri-
cal evidence of scalability and precision; most other scalable methods focus primarily on
scalability and do not provide formal guarantees or empirical evidence of precision.

Two important takeaways from our empirical evaluation are the following:
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(a) Flow- and context-sensitive points-to information is small and sparse.
(b) The real killer of scalability in program analysis is not the amount of data but the amount

of control flow that it may be subjected to in search of precision. Our analysis scales
because it minimizes the control flow significantly.

Our empirical measurements show that most of the GPGs are acyclic even if they represent
procedures that have loops or are recursive.

As a possible direction of future work, it would be useful to explore the possibility of scaling
the implementation to larger programs; we suspect that this would be centered around examining
the control flow in the GPGs and optimizing it still further. In addition, it would be interesting to
explore the possibility of restricting GPG construction to live pointer variables [21] for scalability.
It would also be useful to extend the scope of the implementation to C++ and Java programs.

The concept of GPG provides a useful abstraction of memory and memory transformers involv-
ing pointers by directly modeling load, store, and copy of memory addresses. Any client program
analysis that uses these operations may be able to use GPGs by combining them with the origi-
nal abstractions of the analysis. In particular, we expect to integrate this method into an in-house
bounded model checking infrastructure being developed at IIT Bombay.

APPENDIX

The appendix is available at https://github.com/PritamMG/GPG-based-Points-to-Analysis.
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