
332
Advanced Computer Architecturedvanced omputer rch tecture

Chapter 1

Introduction and review of Introduction and review of
Pipelines, Performance, Caches, and Virtual

Memory

January 2009

y

Paul H J Kelly

These lecture notes are partly based on the course text These lecture notes are partly based on the course text,
Hennessy and Patterson’s Computer Architecture, a

quantitative approach (4th ed), and on the lecture slides of
David Patterson’s Berkeley course (CS252)

Advanced Computer Architecture Chapter 1. p1

Course materials online at
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture
.html

Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a
course based on a textbook like “Computer Organization and
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same
authors (see next slide)authors (see next slide)

You can take this course provided you’re prepared to catch
up if necessary

Read chapters 1 to 8 of “Computer Organization and Design” (COD) if
this material is new to you
If you have studied computer architecture before, make sure COD
Chapters 2, 6, 7 are familiar
See also “Appendix A Pipelining: Basic and Intermediate Concepts” of
course textbook

FAST review today of Pipelining, Performance, Caches, and

Advanced Computer Architecture Chapter 1. p2

y p g, , ,
Virtual Memory

This is a textbook-based course
Computer Architecture: A Quantitative
Approach (4th Edition)Approach (4 Edition)

John L. Hennessy, David A. Patterson

~580 pages. Morgan Kaufmann (2007); ISBN:
978-0-12-370490-0
with substantial additional material on CD
Price: £ 37.99 (Amazon.co.uk, Nov 2006
Publisher’s companion web site:

http://textbooks.elsevier.com/0123704901/

Textbook includes some vital introductory material as
appendices:

Appendix A: tutorial on pipelining (read it NOW)
Appendix C: tutorial on caching (read it NOW)Appendix C: tutorial on caching (read it NOW)

Further appendices (some in book, some in CD) cover
more advanced material (some very relevant to parts of
the course), eg

NetworksNetworks
Parallel applications
Implementing Coherence Protocols
Embedded systems

Advanced Computer Architecture Chapter 1. p3

VLIW
Computer arithmetic (esp floating point)
Historical perspectives

Who are these guys anyway and why
should I read their book?

RAID-I (1989)

John Hennessy:
Founder, MIPS
Computer Systems

RAID I (989)
consisted of a Sun
4/280 workstation
with 128 MB of
DRAM, four dual-
string SCSI President, Stanford

University
(previous president: Condoleezza Rice)

string SCSI
controllers, 28
5.25-inch SCSI
disks and
specialized disk

David Patterson
Leader, Berkeley RISC
project (led to Sun’s

p
striping software.

ed
u/

~p
a

.h
tm

l

j
SPARC)
RAID (redundant arrays
of inexpensive disks)
Professor, University of /w

ww
.c

s.
be

rk
el

ey
.e

A
rc

h/
pr

ot
ot

yp
es

2.

f , y f
California, Berkeley
Current president of the
ACM
Served on Information

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 micron
NMOS ith di f 77 2

ht
tp

:/
/

tt
rs

n/
A

Advanced Computer Architecture Chapter 1. p4

Served on Information
Technology Advisory
Committee to the US
President

NMOS, with a die area of 77 mm2, ran
at 1 MHz. This chip is probably the
first VLSI RISC.

Administration details

 Course web site:
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitectu
re.html

Course textbook: H&P 4th ed
Read Appendix A right away

Background for 2008 context…g
See Workshop on Trends in Computing Performance
http://www7.nationalacademies.org/CSTB/project_computing-
performance_workshop.html

Advanced Computer Architecture Chapter 1. p5

Course organisationLecturer:
Paul Kelly – Leader, Software Performance Optimisation research group

Tutorial helper:
A t L kh t td t l h PhD f C b id ti i ti Anton Lokhmotov – postdoctoral researcher: PhD from Cambridge on optimisation
and algorithms for SIMD. Industry experience with Broadcom (VLIW hardware),
Clearspeed (massively-multicore SIMD hardware), Codeplay (compilers for games),
ACE (compilers)

 h k 3 hours per week
Nominally two hours of lectures, one hour of classroom tutorials
We will use the time more flexibly

Assessment:
Exam

For CS M.Eng. Class, exam will take place in last week of term
For everyone else, exam will take place early in the summer term
Th l f h i h h hi k b The goal of the course is to teach you how to think about computer
architecture
The exam usually includes some architectural ideas not presented in the
lectures

Coursework
You will be assigned a substantial, laboratory-based exercise
You will learn about performance tuning for computationally-intensive kernels
You will learn about using simulators, and experimentally evaluating
hypotheses to understand system performance
Y d t b i l t t l t t t t d d t h l

Advanced Computer Architecture Chapter 1. p6

You are encouraged to bring laptops to class to get started and get help
during tutorials

Please do not use computers for anything else during classes

Ch1
Review of pipelined, in-order
processor architecture and simple
cache structures

Ch5
Multithreading, hyperthreading, SMT
Static instruction scheduling

Ch2
Caches in more depth
Software techniques to improve
cache performance

Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for
speculation and register renaming

Ch6p
Virtual memory
Benchmarking
Fab

Ch3

Ch6
GPUs, GPGPU, and manycore

Ch7
Shared-memory multiprocessorsCh3

Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
S l i i

y p
Cache coherency
Large-scale cache-coherency; ccNUMA.
COMA

Speculative execution
Branch prediction
Limits to ILP

Ch4

Lab-based coursework exercise:
Simulation study
“challenge”

Compiler techniques – loop nest
transformations
Loop parallelisation, interchange,
tiling/blocking, skewing

challenge
Using performance analysis tools

Exam:
Partially based on recent processor

Advanced Computer Architecture Chapter 1. p7
Course overview (plan)

y p
architecture article, which we will study in
advance (see past papers)

A "Typical" RISC
32-bit fixed format instruction (3 formats, see next slide)
32 32-bit general-purpose registers

(R0 contains zero, double-precision/long operands occupy a pair)
Memory access only via load/store instructions

N i t ti b th d d ith tiNo instruction both accesses memory and does arithmetic
All arithmetic is done on registers

3-address, reg-reg arithmetic instruction
Subw r1 r2 r3 means r1 := r2-r3Subw r1,r2,r3 means r1 : r2 r3
registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store:
base + displacement

 dd d f d d ie register contents are added to constant from instruction word, and
used as address, eg “lw R2,100(r1)” means “r2 := Mem[100+r1]”
no indirection

Simple branch conditions
see: SPARC, MIPS, ARM, HP PA-Risc,

DEC Alpha, IBM PowerPC, p
Delayed branch

p , ,
CDC 6600, CDC 7600, Cray-1,
Cray-2, Cray-3

Not: Intel IA-32, IA-64 (?),
Motorola 68000,
DE PDP 11 B

Advanced Computer Architecture Chapter 1. p8

DEC VAX, PDP-11, IBM
360/370

Eg: VAX matchc, IA32 scas instructions!

Example: MIPS (Note register location)

31 26 01516202125

Register-Register
561011

31 26 01516202125

Op Rs1 Rs2 Rd Opx

Register-Immediate

Op
31 26 01516202125

Rs1 Rd immediate

Branch

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Jump / Call

Op
31 26 025

target

Jump / Call

Advanced Computer Architecture Chapter 1. p9

Q: What is the largest signed immediate operand for “subw r1,r2,X”?
Q: What range of addresses can a conditional branch jump to?

So where do I find a MIPS processor?
MIPS licensees shipped more than 350 million pp
units during fiscal year 2007
(http://www.mips.com/company/about-us/milestones/)

Digimax L85 digital camera

HP 4100 multifunction printer

http://www.zoran.com/COACH-9

Advanced Computer Architecture Chapter 1. p10

Linksys WRT54G Router (Linux-based)
Sony PS2 and PSP

A machine to execute these instructions
To execute this instruction set we need a machine that fetches
them and does what each instruction saysthem and does what each instruction says
A “universal” computing device – a simple digital circuit that, with
the right code, can compute anything
Something like:Something like:

Instr = Mem[PC]; PC+=4;

rs1 = Reg[Instr.rs1];
rs2 = Reg[Instr.rs2];
imm = SignExtend(Instr.imm);

Operand1 = if(Instr.op==BRANCH) then PC else rs1;
Operand2 = if(immediateOperand(Instr op)) then imm else rs2;Operand2 = if(immediateOperand(Instr.op)) then imm else rs2;
res = ALU(Instr.op, Operand1, Operand2);

switch(Instr.op) {
case BRANCH:

if (rs1==0) then PC=PC+imm; continue;
case STORE:

Mem[res] = rs1; continue;
case LOAD:

Advanced Computer Architecture Chapter 1. p11

lmd = Mem[res];
}
Reg[Instr.rd] = if (Instr.op==LOAD) then lmd else res;

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

M
U

XA
dde

Next SEQ PC

Next PC

L

A
L

M
em

Reg F

M
U

X M

4

er Zero?

A
ddr

Inst

RS1

RS2

L
M
D

LUory

File

M
U

X

D
ata

M
em

ory

M
U

X

Si

ress

t

RD

Sign
Extend

WB Data

Imm

Advanced Computer Architecture Chapter 1. p12Figure 3.1, Page 130, CA:AQA 2e

Pipelining the MIPS datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

M
U

XA
dde

Next SEQ PC

Next PC

L

A
L

M
em

Reg F

M
U

X M

4

er Zero?

A
ddr

Inst

RS1

RS2

L
M
D

LUory

File

M
U

X

D
ata

M
em

ory

M
U

X

Si

ress

t

RD

Sign
Extend

WB Data

Imm

Advanced Computer Architecture Chapter 1. p13Figure 3.1, Page 130, CA:AQA 2e

We will see more complex pipeline structures later.
For example, the Pentium 4 “Netburst” architecture has 31 stages.

5-stage MIPS pipeline with pipeline buffers

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

Next PC

Zero?4

A
dder

Next SEQ PC Next SEQ PC
Next PC M

U
X

A
LU

M
em

or

Reg Fi

M
U

X
M D

M
e

IF/ID

ID
/EX

M
EM

/W

EX
/M

E
4

A
ddres

RS1

RS2
Ury le

M
U

X

D
ata

em
ory

M
U

X

Sign
Extend

D X W
B

EM

at
a

ss

Extend

RD RD RD W
B

DImm

Advanced Computer Architecture Chapter 1. p14

• Data stationary control
– local decode for each instruction phase / pipeline stage

Figure 3.4, Page 134 , CA:AQA 2e

Visualizing PipeliningTime (clock cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t

Reg A
LU DMemIfetch Reg

t
r.

O

Reg A
LU DMemIfetch Reg

r
d
e
r

Reg A
LU DMemIfetch Reg

U

f h Rr Reg A
L DMemIfetch Reg

Pipelining doesn’t help latency of single instruction
it helps throughput of entire workloadit helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
Unbalanced lengths of pipe stages reduces speedup

Advanced Computer Architecture Chapter 1. p15Figure 3.3, Page 133 , CA:AQA 2e

g f p p g p p
Time to “fill” pipeline and time to “drain” it reduces speedup
Speedup comes from parallelism

For free – no new hardware

It’s Not That Easy for Computers

Limits to pipelining: Hazards prevent
next instruction from executing during its
designated clock cycledesignated clock cycle

Structural hazards: HW cannot support this
combination of instructions
Data hazards: Instruction depends on result
of prior instruction still in the pipeline
C nt l h d : C d b d l b t n Control hazards: Caused by delay between
the fetching of instructions and decisions
about changes in control flow (branches and
j)jumps).

Advanced Computer Architecture Chapter 1. p16

One Memory Port/Structural Hazards
Time (clock cycles)

I Load Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

n
s
t
r

Instr 1 Reg A
LU DMemIfetch Reg

r.

O
r

Instr 2 Reg A
LU DMemIfetch Reg

Ur
d
e
r

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch RegInstr 4

Eg if there is only one memory for both instructions and data

Advanced Computer Architecture Chapter 1. p17Figure 3.6, Page 142 , CA:AQA 2e

Eg if there is only one memory for both instructions and data
Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor

One Memory Port/Structural Hazards
Time (clock cycles)

I Load Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

n
s
t Instr 1 Reg A

LU DMemIfetch Reg

r.

O
r

Instr 2 Reg A
LU DMemIfetch Reg

r
d
e
r

Stall

Instr 3 Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

r Instr 3 Reg A DMemIfetch g

Instr 3 cannot be loaded in cycle 4

Advanced Computer Architecture Chapter 1. p18Figure 3.7, Page 143 , CA:AQA 2e

Instr 3 cannot be loaded in cycle 4
ID stage has nothing to do in cycle 5
EX stage has nothing to do in cycle 6, etc. “Bubble” propagates

Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

I
n

add r1,r2,r3 Reg A
LU DMemIfetch Reg

IF ID/RF EX MEM WB

s
t
r.

sub r4,r1,r3 Reg A
LU DMemIfetch Reg

O
r
d

and r6,r1,r7 Reg A
LU DMemIfetch Reg

Ud
e
r

or r8,r1,r9

xor r10 r1 r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p19

xor r10,r1,r11 g A g

Figure 3.9, page 147 , CA:AQA 2e

Three Generic Data Hazards

Read After Write (RAW)a ft r Wr t (W)
InstrJ tries to read operand before InstrI writes it

I: add r1,r2,r3
J: sub r4,r1,r3

Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communicationcommunication.

Advanced Computer Architecture Chapter 1. p20

Three Generic Data Hazards

Write After Read (WAR)
InstrJ writes operand before InstrI reads it

I: sub r4,r1,r3
J: add r1,r2,r3, ,
K: mul r6,r1,r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

C ’ h i MIPS 5 i li bCan’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and

Advanced Computer Architecture Chapter 1. p21

Writes are always in stage 5

Three Generic Data Hazards

Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

I: sub r1,r4,r3
J: add r1,r2,r3
K l 6 1 7

Called an “output dependence” by compiler writers

K: mul r6,r1,r7

Called an output dependence by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because: pp g p p
All instructions take 5 stages, and
Writes are always in stage 5

Advanced Computer Architecture Chapter 1. p22

Will see WAR and WAW in later more complicated pipes

Forwarding to Avoid Data Hazard
Figure 3 10 Page 149 CA:AQA 2e

Time (clock cycles)

Figure 3.10, Page 149 , CA:AQA 2e

II
n
s
t

add r1,r2,r3 Reg A
LU DMemIfetch Reg

r.

O
r

sub r4,r1,r3

6 1 Reg LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

r
d
e
r

and r6,r1,r7

or r8 r1 r9

Reg A
L DMemIfetch Reg

Reg A
LU DMemIfetch Regor r8,r1,r9

xor r10,r1,r11 Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p23

HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e

Add forwarding (“bypass”) paths
 l l l l Add multiplexors to select where ALU operand should come from

Determine mux control in ID stage
If source register is the target of an instrn that will not WB in time

m

NextPC

M
EM

/

ID
/

EX
/M

A
LU

m
uxRegiste /W

R

/EX

M
EM

Data
Memory

m
ux

ers

Immediate

m
uxx

Advanced Computer Architecture Chapter 1. p24

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Time (clock cycles)

I lw r1 0(r2) R LU DMIf t h RI
n
s
t

lw r1, 0(r2)

sub r4 r1 r6

Reg A
L DMemIfetch Reg

Reg LU DMemIfetch Regt
r.

O

sub r4,r1,r6

and r6 r1 r7

Reg A
L DMemIfetch Reg

Reg A
LU DMemIfetch RegO

r
d
e

and r6,r1,r7

or r8 r1 r9

A

Reg A
LU DMemIfetch Reg

r or r8,r1,r9 A

Advanced Computer Architecture Chapter 1. p25

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

I
n lw r1 0(r2) Reg LU DMemIfetch Regs
t
r.

lw r1, 0(r2)

sub r4 r1 r6

Reg A
L DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

O
r
d

sub r4,r1,r6

and r6 r1 r7

RegIfetch A DMem gBubble

Ifetch A
LU DMem RegBubble Reg

or r8,r1,r9

e
r

and r6,r1,r7

Ifetch A
LU DMemBubble Reg

or r8,r1,r9

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage

Advanced Computer Architecture Chapter 1. p26

Following instruction (and) waits in ID stage
Missed instruction issue opportunity…

Try producing fast code for
Software Scheduling to Avoid Load Hazards

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:

LW Rb b LW Rb bLW Rb,b LW Rb,b
LW Rc,c LW Rc,c
STALL LW Re,e
ADD Ra Rb Rc ADD Ra Rb Rb

Show the stalls
explicitlyADD Ra,Rb,Rc ADD Ra,Rb,Rb

SW a,Ra
LW Re,e
LW Rf f LW Rf f

explicitly

LW Rf,f LW Rf,f
STALL SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf

Advanced Computer Architecture Chapter 1. p27

SW d,Rd SW d,Rd
10 cycles (2 stalls) 8 cycles (0 stalls)

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36 Reg A
LU DMemIfetch Reg

14: and r2,r3,r5 Reg A
LU DMemIfetch Reg

18: or r6,r1,r7 Reg A
LU DMemIfetch Reg

U22: add r8,r1,r9

36: xor r10 r1 r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p28

36: xor r10,r1,r11 g A g

Pipelined MIPS Datapath with early branch
determination
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

Next Next PC

A
dder Zero?

4

A
dder

Next
SEQ PC

Next PC M
U

X

IF/

A
LU

M
em

or

Reg F M D
M

e

M
EM

/W

EX
/M

E

4

A
ddres

RS1

RS2 ID
/EID

Ury ile

M
U

X

D
ata

em
ory

M
U

X

Sign
Extend

W
B

EM

at
a

ss X

Extend

RD RD RD W
B

DImm

Advanced Computer Architecture Chapter 1. p29Figure 3.22, page 163, CA:AQA 2/e

Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

(wasteful – the next instruction is being fetched during ID)

#2: Predict Branch Not Taken
Execute successor instructions in sequenceExecute successor instructions in sequence
“Squash” instructions in pipeline if branch actually taken

With MIPS we have advantage of late pipeline state update

47% MIPS branches are not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
53% MIPS branches are taken on average

B t i MIPS i t ti t h ’t l l t d b h t t dd But in MIPS instruction set we haven’t calculated branch target address
yet (because branches are relative to the PC)

MIPS still incurs 1 cycle branch penalty
With some other machines, branch target is known before branch
condition

Advanced Computer Architecture Chapter 1. p30

Four Branch Hazard Alternatives
#4: Delayed Branchy

Define branch to take place AFTER a following instruction

branch instruction
ti lsequential successor1sequential successor2........

sequential successorn
Branch delay of length n

branch target if taken

1 slot delay allows proper decision and branch target
address in 5 stage pipelineaddress in 5 stage pipeline
MIPS uses this; eg in LW R3, #100

LW R4, #200
BEQZ R1 L1

If (R1==0)
X=100BEQZ R1, L1

SW R3, X
SW R4, X

L1:
LW R5 X

Else
X=100
X=200

R5 = X

Advanced Computer Architecture Chapter 1. p31

“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

LW R5,X R5 = X

Delayed Branch
Where to get instructions to fill branch delay slot?

B f b h i t tiBefore branch instruction
From the target address: only valuable when branch taken
From fall through: only valuable when branch not taken

targetL1:Compiler effectiveness for single branch delay slot:
Fills about 60% of branch delay slots
About 80% of instructions executed in branch delay slots
useful in computation
About 50% (60% x 80%) of slots usefully filled

before
Blt R1 L1

About 50% (60% x 80%) of slots usefully filled
Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

Blt R1,L1
fallthruCanceling branches

Branch delay slot instruction is executed but write-back is
disabled if it is not supposed to be executed

Advanced Computer Architecture Chapter 1. p32

Two variants: branch “likely taken”, branch “likely not-taken”
allows more slots to be filled

Eliminating hazards with simultaneous multi-threading
If we had no stalls we could finish one instruction
every cycleevery cycle
If we had no hazards we could do without
forwarding – and decode/control would be simpler
tootoo

PC0

Next
PC Example:

PowerPC
Reg A

LU DMemIfetch Reg

PC0

PC1

Thread 0
regs

Thread 1
regs

PowerPC
processing
element (PPE)
in the Cell g

IF maintains two Program Counters
E l f t h f PC0

Broadband
Engine (Sony
PlayStation 3)

Even cycle – fetch from PC0
Odd cycle – fetch from PC1
Thread 0 reads and writes thread 0 registers

Advanced Computer Architecture Chapter 1. p33

Thread 0 reads and writes thread-0 registers
No register-to-register hazards between adjacent
pipeline stages

So – how fast can this design go?
A i l 5 t i li t 3GHA simple 5-stage pipeline can run at >3GHz
Limited by critical path through slowest pipeline stage
logicg
Tradeoff: do more per cycle? Or increase clock rate?

Or do more per cycle, in parallel…
At 3GHz, clock period is 330 picoseconds.

The time light takes to go about four inches
Ab 10 d lAbout 10 gate delays

for example, the Cell BE is designed for 11 FO4 (“fan-
out=4”) gates per cycle:

f i f it/ b ll tti/ ti l /ISSCC2005 ll dfwww.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
Pipeline latches etc account for 3-5 FO4 delays leaving
only 5-8 for actual work

Advanced Computer Architecture Chapter 1. p34

How can we build a RAM that can implement our MEM stage in
5-8 FO4 delays?

Life used to be so easy
Processor-DRAM Memory Gap (latency)

µProc
60%/yr1000 CPU

y p (y)

60%/yr.
(2X/1.5yr)

100 Processor-Memoryan
ce

“Moore’s Law”

DRAM
10

100 Processor Memory
Performance Gap:
(grows 50% / year)

rf
or

m
a

DRAM
9%/yr.
(2X/10 yrs)1

DRAMPe
r

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Time

Advanced Computer Architecture Chapter 1. p35

Time
In 1980 a large RAM’s access time was close to the CPU cycle time. 1980s
machines had little or no need for cache. Life is no longer quite so simple.

Memory Hierarchy: Terminology
Hit: data appears in some block X in the upper levelHit: data appears in some block X in the upper level

Hit Rate: the fraction of memory accesses found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/missRAM access time + Time to determine hit/miss
Miss: data needs to be retrieved from a block Y in
the lower level

Miss Rate = 1 (Hit Rate)Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
Hit Time << Miss PenaltyHit Time << Miss Penalty

Typically hundreds of missed instruction issue opportunities

Lower Level
MemoryUpper Level

Memory
To Processor

Blk X

Advanced Computer Architecture Chapter 1. p36

From Processor
Blk X

Blk Y

Levels of the Memory Hierarchy
Capacity

Upper Level

CPU Registers
100s Bytes

apac ty
Access Time
Cost

Registers

Staging
Xfer Unit

Management:
programmer/compiler

Transfer unit:

faster

y
<1ns

Cache (perhaps multilevel)
10s-1000s K Bytes
1-10 ns

Cache

Instructions and Operands
Transfer unit:

1-16 bytes

cache controller
8-128 bytes0 ns

$10/ MByte

Main Memory
G Bytes
100ns- 300ns Memory

Blocks

Operating System
4K-8K bytes100ns 300ns

$1/ MByte

Disk
100s G Bytes, Disk

Pages

4K 8K bytes

user/operator
Mbytesy ,

10 ms
(10,000,000 ns)

$0.0031/ MByte

Tape T

Files

Mbytes

L L l
Larger

Advanced Computer Architecture Chapter 1. p37

Tape
infinite
sec-min
$0.0014/ MByte

Tape Lower Level

The Principle of Locality
The Principle of Locality:

P l ti l ll ti f th dd Programs access a relatively small portion of the address
space at any instant of time.

Two Different Types of Locality:Two Different Types of Locality:

Temporal Locality (Locality in Time): If an item is
referenced it will tend to be referenced again soon referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

Spatial Locality (Locality in Space): If an item is
referenced items whose addresses are close by tend to referenced, items whose addresses are close by tend to
be referenced soon
(e.g., straightline code, array access)

 h h In recent years, architectures have become
increasingly reliant (totally reliant?) on
locality for speed

Advanced Computer Architecture Chapter 1. p38

Cache MeasuresCache Measures
Hit rate: fraction found in that level

So high that usually talk about Miss rate
Miss rate fallacy: as MIPS to CPU performance Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory

Average memory-access time Average memory access time
= Hit time + Miss rate x Miss penalty

(ns or clocks)

Miss penalty: time to replace a block from
lower level, including time to replace in CPU

access time: time to lower level access time: time to lower level
= f(latency to lower level)
transfer time: time to transfer block
=f(BW between upper & lower levels)

Advanced Computer Architecture Chapter 1. p39

=f(BW between upper & lower levels)

1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:y

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

0431 9
Cache IndexCache Tag Example: 0x50

Ex: 0x01
Stored as part
of the cache “state”

Byte Select
Ex: 0x00

0
Cache Data

Byte 0

of the cache state

Valid Bit
Byte 1Byte 31 :

Cache Tag

1
2
3

0x50 Byte 32Byte 33Byte 63 :

:::
31Byte 992Byte 1023 :

Advanced Computer Architecture Chapter 1. p40
Direct-mapped cache - storage

1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:y

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

0431 9
Cache IndexCache Tag Example: 0x50

Ex: 0x01
Stored as part
of the cache “state”

Byte Select
Ex: 0x00

0
Cache Data

Byte 0

of the cache state

Valid Bit
Byte 1Byte 31 :

Cache Tag

1
2
3

0x50 Byte 32Byte 33Byte 63 :

:::
31Byte 992Byte 1023 :

Advanced Computer Architecture Chapter 1. p41

Compare

HitDirect-mapped cache – read access
Data

1 KB Direct Mapped Cache, 32B blocks
0

1 Cache location 0 can be occupied
b d f i

(0)
2

3

4

5

6

7

by data from main memory
location 0, 32, 64, … etc.
Cache location 1 can be occupied
by data from main memory
l ti 1 33 65 t8

9

10

11

12

13

location 1, 33, 65, … etc.
In general, all locations with same
Address<9:4> bits map to the same
location in the cache Which one should
we place in the cache?

H ll hi h i i

Main
M

C

13

14

15

16

17

18

How can we tell which one is in
the cache?Memory

0
1
2

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

19

20

21

22

23

24 2
3

:

24

25

26

27

28

29

Advanced Computer Architecture Chapter 1. p42

31Byte 992Byte 1023 :30

31

32

33

34

35

(32)

Direct-mapped Cache - structure
Capacity: C bytes (eg 1KB)Capacity: C bytes (eg 1KB)
Blocksize: B bytes (eg 32)
Byte select bits: 0..log(B)-1 (eg 0..4)
Number of blocks: C/B (eg 32)Number of blocks: C/B (eg 32)
Address size: A (eg 32 bits)
Cache index size: I=log(C/B) (eg log(32)=5)
Tag size: A-I-log(B) (eg 32-5-5=22)Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Data
Cache Block 0

Cache TagValid
Cache Index

Cache Block 0

:: :

Compare
Adr Tag

Advanced Computer Architecture Chapter 1. p43

Cache Block
Hit

Two-way Set Associative Cache
N-way set associative: N entries for each Cache N-way set associative: N entries for each Cache
Index

N direct mapped caches operated in parallel (N typically 2 to 4)

E l T t i ti hExample: Two-way set associative cache
Cache Index selects a “set” from the cache
The two tags in the set are compared in parallel
Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid Cache Data
Cache Block 0

Cache Tag Valid
Cache Index

Cache Block 0

:: :
Cache Block 0

: ::

Mux 01Sel1 Sel0Compare
Adr Tag

Compare

Advanced Computer Architecture Chapter 1. p44

Cache Block
OR

Hit

Disadvantage of Set Associative Cache
N S A i i C h Di M d C hN-way Set Associative Cache v. Direct Mapped Cache:

N comparators vs. 1
Extra MUX delay for the data
Data comes AFTER Hit/MissData comes AFTER Hit/Miss

In a direct mapped cache, Cache Block is available BEFORE
Hit/Miss:

Possible to assume a hit and continue Recover later if missPossible to assume a hit and continue. Recover later if miss.

Cache Data Cache Tag ValidCache DataCache TagValid
Cache Index

Cache Block 0

: ::
Cache Block 0

:: :

Mux 01Sel1 Sel0Compare
Adr Tag

Compare

Advanced Computer Architecture Chapter 1. p45
Cache Block

OR

Hit

Basic cache terminology
Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

Capacity: 8K bytes (total amount of data cache can store)
Block: 64 bytes (so there are 8K/64=128 blocks in the cache)
Ways: 4 (addresses with same index bits can be placed in one of 4 ways)
Sets: 32 (=128/4, that is each RAM array holds 32 blocks)Sets: 32 (128/4, that is each RAM array holds 32 blocks)
Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)
Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles (6ns at 3GHz; pipelined dual ported [load+store])

Cache Data Cache Tag ValidCache DataCache TagValid
Cache Index

Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Cache Block 0
g

: ::
Cache Block 0

g

:: :

Mux 01Sel1 Sel0Compare
Adr Tag

Compare

Advanced Computer Architecture Chapter 1. p46

MuxSel1 Sel0

Cache Block
OR

Hit

4 Questions for Memory Hierarchy

1 Wh bl k b l d h l l? Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?Q2 How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)(Block replacement)

Q4: What happens on a write?
(Write strategy)

Advanced Computer Architecture Chapter 1. p47

Q1: Where can a block be placed in
the upper level? the upper level?

0 1 2 3 4 5 6
0
1
2In a fully-associative cache block

In a direct-mapped
cache, block 12 can only

2
3
4
5
6
7

In a fully-associative cache, block
12 can be placed in any location in
the cache

y
be placed in one cache
location, determined by
its low-order address
bits –

S t 0
0 1

bits –
(12 mod 8) = 4

In a two way setSet 0
2
4
6

In a two-way set-
associative cache, the
set is determined by its
low-order address bits –

(12 mod 4) = 0
Block 12 can be placed in
either of the two cache
locations in set 0

Advanced Computer Architecture Chapter 1. p48

locations in set 0

Q2: How is a block found if it is in the upper
level?

Cache Index
Cache Data

Cache Block 0
Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

C
Adr Tag

CMux 01Sel1 Sel0

Cache Block

Compare
g

Compare

OR

Hi

Tag on each block
No need to check index or block offset

Hit

No need to check index or block offset

Block
Offset

Block Address

IndexTag

Advanced Computer Architecture Chapter 1. p49

Increasing associativity shrinks index, expands tag

IndexTag

Q3: Which block should be replaced on a
miss?miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

Random
LRU (Least Recently Used)LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU RanSize LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Benchmark studies show that LRU beats random only with small caches

Advanced Computer Architecture Chapter 1. p50

y

Q4: What happens on a write?
Write through—The information is written
to both the block in the cache and to the to both the block in the cache and to the
block in the lower-level memory

Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only cache block is written to main memory only
when it is replaced.

is block clean or dirty?

Pros and Cons of each?
WT: read misses cannot result in writes

 d lWB: no repeated writes to same location

WT always combined with write buffers so

Advanced Computer Architecture Chapter 1. p51

y
that don’t wait for lower level memory

Write Buffer for Write Through

Processor
Cache

DRAM

A Write Buffer is needed between the Cache and
M

Write Buffer

Memory
Processor: writes data into the cache and the write buffer
Memory controller: write contents of the buffer to memory

W i b ff i j FIFOWrite buffer is just a FIFO:
Typical number of entries: 4
Works fine if: Store frequency (w.r.t. time) << 1 / DRAM
write cyclewrite cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time) -> 1 / DRAM write cycle
Write buffer saturation

Advanced Computer Architecture Chapter 1. p52

Write buffer saturation

A Modern Memory Hierarchy
B t ki d t f th i i l f l litBy taking advantage of the principle of locality:

Present the user with as much memory as is available in the
cheapest technology.
Provide access at the speed offered by the fastest technologyProvide access at the speed offered by the fastest technology.

Processor

Control
Secondary

Processor

Tertiary
Storage

Datapath

Storage
(Disk)R

egiste

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hi
C

ache

Storage
(Disk/Tape)

ers (SRAM)ipe

1s 10,000,000sSpeed (ns): 10s 100s 10,000,000,000s

Advanced Computer Architecture Chapter 1. p53

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

10,000,000,000s
(10s sec)

Ts

Large-scale storageStorageTek STK 9310
(“Powderhorn”)

2,000, 3,000, 4,000,
5 000 or 6 000 5,000, or 6,000
cartridge slots per
library storage module
(LSM)
Up to 24 LSMs per Up to 24 LSMs per
library (144,000
cartridges)
120 TB (1 LSM) to
28 800 TB capacity (24 28,800 TB capacity (24
LSM)
Each cartridge holds
300GB, readable up to
40 MB/sec

Up to 28.8 petabytes
Ave 4s to load tapeAve 4s to load tape

Advanced Computer Architecture Chapter 1. p54

http://www.b2net.co.uk/storagetek/storagetek_powderhorn_9310_tape_library.htm
http://en.wikipedia.org/wiki/Tape_library
http://www.ibm.qassociates.co.uk/storage-tape-enterprise-tape-drive-J1A-specifications.htm

Can we live without cache?
Interesting exception: Cray/Tera MTA, nterest ng except on ray/ era M ,
first delivered June 1999:

www.cray.com/products/systems/mta/

Each CPU switches every cycle between Each CPU switches every cycle between
128 threads

Each thread can have up to 8
t t di outstanding memory accesses

3D toroidal mesh interconnect

Memory accessed hashed to spread load
across banks

MTA-1 fabricated using Gallium
Arsenide, not silicon
“nearly un-manufacturable” (wikipedia)

Advanced Computer Architecture Chapter 1. p55

Third-generation Cray XMT:
http://www.cray.com/Products/XMT.aspx

http://www.karo.com

Ch1
Review of pipelined, in-order
processor architecture and simple
cache structures

Ch5
Multithreading, hyperthreading, SMT
Static instruction scheduling

Ch2
Caches in more depth
Software techniques to improve
cache performance

Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for
speculation and register renaming

Ch6p
Virtual memory
Benchmarking
Fab

Ch3

Ch6
GPUs, GPGPU, and manycore

Ch7
Shared-memory multiprocessorsCh3

Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
S l i i

y p
Cache coherency
Large-scale cache-coherency; ccNUMA.
COMA

Speculative execution
Branch prediction
Limits to ILP

Ch4

Lab-based coursework exercise:
Simulation study
“challenge”

Compiler techniques – loop nest
transformations
Loop parallelisation, interchange,
tiling/blocking, skewing

challenge
Using performance analysis tools

Exam:
Partially based on recent processor

Advanced Computer Architecture Chapter 1. p56
Where we are going…

y p
architecture article, which we will study in
advance (see past papers)

