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Chapter 1

Introduction and review of Introduction and review of 
Pipelines, Performance, Caches, and Virtual 

Memory

January 2009

y

Paul H J Kelly

These lecture notes are partly based on the course text  These lecture notes are partly based on the course text, 
Hennessy and Patterson’s Computer Architecture, a 

quantitative approach (4th ed), and on the lecture slides of 
David Patterson’s Berkeley course (CS252)
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Course materials online at 
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture
.html

Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a 
course based on a textbook like “Computer Organization and 
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same 
authors (see next slide)authors (see next slide)

You can take this course provided you’re prepared to catch 
up if necessary

Read chapters 1 to 8 of “Computer Organization and Design” (COD) if 
this material is new to you
If you have studied computer architecture before, make sure COD 
Chapters 2, 6, 7 are familiar
See also “Appendix A Pipelining: Basic and Intermediate Concepts” of 
course textbook

FAST review today of Pipelining, Performance, Caches, and 
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y p g, , ,
Virtual Memory

This is a textbook-based course
Computer Architecture: A Quantitative 
Approach (4th Edition)Approach (4 Edition)

John L. Hennessy, David A. Patterson

~580 pages.  Morgan Kaufmann (2007); ISBN: 
978-0-12-370490-0
with substantial additional material on CD
Price: £ 37.99 (Amazon.co.uk, Nov 2006
Publisher’s companion web site:

http://textbooks.elsevier.com/0123704901/

Textbook includes some vital introductory material as 
appendices:

Appendix A: tutorial on pipelining (read it NOW)
Appendix C: tutorial on caching (read it NOW)Appendix C: tutorial on caching (read it NOW)

Further appendices (some in book, some in CD) cover 
more advanced material (some very relevant to parts of 
the course), eg

NetworksNetworks
Parallel applications
Implementing Coherence Protocols
Embedded systems
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VLIW
Computer arithmetic (esp floating point)
Historical perspectives

Who are these guys anyway and why 
should I read their book?

RAID-I (1989) 

John Hennessy:
Founder, MIPS 
Computer Systems

RAID I ( 989) 
consisted of a Sun 
4/280 workstation 
with 128 MB of 
DRAM, four dual-
string SCSI President, Stanford 

University 
(previous president: Condoleezza Rice)

string SCSI 
controllers, 28 
5.25-inch SCSI 
disks and 
specialized disk 

David Patterson
Leader, Berkeley RISC 
project (led to Sun’s 

p
striping software.
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California, Berkeley
Current president of the 
ACM
Served on Information 

RISC-I (1982) Contains 44,420 
transistors, fabbed in 5 micron 
NMOS  ith  di   f 77 2   
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Served on Information 
Technology Advisory 
Committee to the US 
President

NMOS, with a die area of 77 mm2, ran 
at 1 MHz. This chip is probably the 
first VLSI RISC.



Administration details

  Course web site:
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitectu
re.html

Course textbook: H&P 4th ed
Read Appendix A right away

Background for 2008 context…g
See Workshop on Trends in Computing Performance
http://www7.nationalacademies.org/CSTB/project_computing-
performance_workshop.html
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Course organisationLecturer: 
Paul Kelly – Leader, Software Performance Optimisation research group

Tutorial helper:
A t  L kh t  td t l h  PhD f  C b id   ti i ti  Anton Lokhmotov – postdoctoral researcher: PhD from Cambridge on optimisation 
and algorithms for SIMD.  Industry experience with Broadcom (VLIW hardware), 
Clearspeed (massively-multicore SIMD hardware), Codeplay (compilers for games), 
ACE (compilers)

 h   k 3 hours per week 
Nominally two hours of lectures, one hour of classroom tutorials
We will use the time more flexibly

Assessment:
Exam

For CS M.Eng. Class, exam will take place in last week of term
For everyone else, exam will take place early in the summer term
Th  l f h   i   h  h   hi k b   The goal of the course is to teach you how to think about computer 
architecture
The exam usually includes some architectural ideas not presented in the 
lectures

Coursework
You will be assigned a substantial, laboratory-based exercise
You will learn about performance tuning for computationally-intensive kernels
You will learn about using simulators, and experimentally evaluating 
hypotheses to understand system performance
Y   d t  b i  l t  t  l  t  t t t d d t h l  
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You are encouraged to bring laptops to class to get started and get help 
during tutorials

Please do not use computers for anything else during classes

Ch1
Review of pipelined, in-order 
processor architecture and simple 
cache structures

Ch5
Multithreading, hyperthreading, SMT
Static instruction scheduling

Ch2
Caches in more depth
Software techniques to improve 
cache performance

Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for 
speculation and register renaming

Ch6p
Virtual memory
Benchmarking
Fab

Ch3

Ch6
GPUs, GPGPU, and manycore

Ch7
Shared-memory multiprocessorsCh3

Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
S l i  i

y p
Cache coherency
Large-scale cache-coherency; ccNUMA. 
COMA

Speculative execution
Branch prediction
Limits to ILP

Ch4

Lab-based coursework exercise: 
Simulation study
“challenge” 

Compiler techniques – loop nest 
transformations
Loop parallelisation, interchange, 
tiling/blocking, skewing

challenge  
Using performance analysis tools

Exam:
Partially based on recent processor 
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Course overview (plan)

y p
architecture article, which we will study in 
advance (see past papers)

A "Typical" RISC
32-bit fixed format instruction (3 formats, see next slide)
32 32-bit general-purpose registers 

(R0 contains zero, double-precision/long operands occupy a pair)
Memory access only via load/store instructions

N  i t ti  b th   d d  ith tiNo instruction both accesses memory and does arithmetic
All arithmetic is done on registers

3-address, reg-reg arithmetic instruction
Subw r1 r2 r3 means r1 := r2-r3Subw r1,r2,r3 means r1 :  r2 r3
registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store: 
base + displacement 

    dd d   f   d  d ie register contents are added to constant from instruction word, and 
used as address, eg “lw R2,100(r1)” means “r2 := Mem[100+r1]”
no indirection

Simple branch conditions
see: SPARC, MIPS, ARM, HP PA-Risc,

DEC Alpha, IBM PowerPC, p
Delayed branch

p , ,
CDC 6600, CDC 7600, Cray-1, 
Cray-2, Cray-3

Not: Intel IA-32, IA-64 (?),
Motorola 68000, 
DE   PDP 11  B  
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DEC VAX, PDP-11, IBM 
360/370

Eg: VAX matchc, IA32 scas instructions!



Example: MIPS (Note register location)

31 26 01516202125

Register-Register
561011

31 26 01516202125

Op Rs1 Rs2 Rd Opx

Register-Immediate

Op
31 26 01516202125

Rs1 Rd immediate

Branch

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Jump / Call

Op
31 26 025

target

Jump / Call
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Q: What is the largest signed immediate operand for “subw r1,r2,X”?
Q: What range of addresses can a conditional branch jump to?

So where do I find a MIPS processor?
MIPS licensees shipped more than 350 million pp
units during fiscal year 2007
(http://www.mips.com/company/about-us/milestones/)

Digimax L85 digital camera 

HP 4100 multifunction printer

http://www.zoran.com/COACH-9

Advanced Computer Architecture Chapter 1. p10

Linksys WRT54G Router (Linux-based)
Sony PS2 and PSP

A machine to execute these instructions
To execute this instruction set we need a machine that fetches 
them and does what each instruction saysthem and does what each instruction says
A “universal” computing device – a simple digital circuit that, with 
the right code, can compute anything
Something like:Something like:

Instr = Mem[PC]; PC+=4;

rs1 = Reg[Instr.rs1]; 
rs2 = Reg[Instr.rs2]; 
imm = SignExtend(Instr.imm); 

Operand1 = if(Instr.op==BRANCH) then PC else rs1;
Operand2 = if(immediateOperand(Instr op)) then imm else rs2;Operand2 = if(immediateOperand(Instr.op)) then imm else rs2;
res = ALU(Instr.op, Operand1, Operand2);

switch(Instr.op) {
case BRANCH:

if (rs1==0) then PC=PC+imm; continue;
case STORE:

Mem[res] = rs1; continue;
case LOAD:
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lmd = Mem[res];
} 
Reg[Instr.rd] = if (Instr.op==LOAD) then lmd else res;  

5 Steps of MIPS Datapath
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Pipelining the MIPS datapath
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We will see more complex pipeline structures later.
For example, the Pentium 4 “Netburst” architecture has 31 stages.

5-stage MIPS pipeline with pipeline buffers
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• Data stationary control
– local decode for each instruction phase / pipeline stage

Figure 3.4, Page 134 , CA:AQA 2e

Visualizing PipeliningTime (clock cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t

Reg A
LU DMemIfetch Reg

t
r.

O

Reg A
LU DMemIfetch Reg

r
d
e
r

Reg A
LU DMemIfetch Reg

U

f h Rr Reg A
L DMemIfetch Reg

Pipelining doesn’t help latency of single instruction
it helps throughput of entire workloadit helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
Unbalanced lengths of pipe stages reduces speedup
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g f p p g p p
Time to “fill” pipeline and time to “drain” it reduces speedup
Speedup comes from parallelism

For free – no new hardware

It’s Not That Easy for Computers

Limits to pipelining: Hazards prevent 
next instruction from executing during its 
designated clock cycledesignated clock cycle

Structural hazards: HW cannot support this 
combination of instructions 
Data hazards: Instruction depends on result 
of prior instruction still in the pipeline 
C nt l h d : C d b  d l  b t n Control hazards: Caused by delay between 
the fetching of instructions and decisions 
about changes in control flow (branches and 
j )jumps).
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One Memory Port/Structural Hazards
Time (clock cycles)

I Load Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

n
s
t
r

Instr 1 Reg A
LU DMemIfetch Reg

r.

O
r

Instr 2 Reg A
LU DMemIfetch Reg

Ur
d
e
r

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch RegInstr 4

Eg if there is only one memory for both instructions and data
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Eg if there is only one memory for both instructions and data
Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor

One Memory Port/Structural Hazards
Time (clock cycles)

I Load Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

n
s
t Instr 1 Reg A

LU DMemIfetch Reg

r.

O
r

Instr 2 Reg A
LU DMemIfetch Reg

r
d
e
r

Stall

Instr 3 Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

r Instr 3 Reg A DMemIfetch g

Instr 3 cannot be loaded in cycle 4
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Instr 3 cannot be loaded in cycle 4
ID stage has nothing to do in cycle 5
EX stage has nothing to do in cycle 6, etc.  “Bubble” propagates

Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

I
n

add r1,r2,r3 Reg A
LU DMemIfetch Reg

IF ID/RF EX MEM WB

s
t
r.

sub r4,r1,r3 Reg A
LU DMemIfetch Reg

O
r
d

and r6,r1,r7 Reg A
LU DMemIfetch Reg

Ud
e
r

or   r8,r1,r9

xor r10 r1 r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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xor r10,r1,r11 g A g

Figure 3.9, page 147 , CA:AQA 2e

Three Generic Data Hazards

Read After Write (RAW)a  ft r Wr t  ( W)
InstrJ tries to read operand before InstrI writes it

I: add r1,r2,r3
J: sub r4,r1,r3

Caused by a “Dependence” (in compiler nomenclature). 
This hazard results from an actual need for 
communicationcommunication.
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Three Generic Data Hazards

Write After Read (WAR)
InstrJ writes operand before InstrI reads it

I: sub r4,r1,r3 
J: add r1,r2,r3, ,
K: mul r6,r1,r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

C ’  h  i  MIPS 5  i li  bCan’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and 
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Writes are always in stage 5

Three Generic Data Hazards

Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

I: sub r1,r4,r3 
J: add r1,r2,r3
K l 6 1 7

Called an “output dependence” by compiler writers

K: mul r6,r1,r7

Called an output dependence  by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because: pp g p p
All instructions take 5 stages, and 
Writes are always in stage 5
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Will see WAR and WAW in later more complicated pipes

Forwarding to Avoid Data Hazard
Figure 3 10  Page 149  CA:AQA 2e

Time (clock cycles)

Figure 3.10, Page 149 , CA:AQA 2e

II
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t

add r1,r2,r3 Reg A
LU DMemIfetch Reg

r.

O
r

sub r4,r1,r3

6 1 Reg LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

r
d
e
r

and r6,r1,r7

or r8 r1 r9

Reg A
L DMemIfetch Reg

Reg A
LU DMemIfetch Regor   r8,r1,r9

xor r10,r1,r11 Reg A
LU DMemIfetch Reg
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HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e

Add forwarding (“bypass”) paths
 l l   l     l   Add multiplexors to select where ALU operand should come from

Determine mux control in ID stage
If source register is the target of an instrn that will not WB in time

m
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Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Time (clock cycles)
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and r6 r1 r7

Reg A
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Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

I
n lw r1 0(r2) Reg LU DMemIfetch Regs
t
r.

lw r1, 0(r2)

sub r4 r1 r6

Reg A
L DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

O
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d

sub r4,r1,r6

and r6 r1 r7

RegIfetch A DMem gBubble

Ifetch A
LU DMem RegBubble Reg

or r8,r1,r9

e
r

and r6,r1,r7

Ifetch A
LU DMemBubble Reg

or   r8,r1,r9

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage 
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Following instruction ( and ) waits in ID stage 
Missed instruction issue opportunity…

Try producing fast code for
Software Scheduling to Avoid Load Hazards

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code: Fast code:

LW Rb b LW Rb bLW Rb,b LW Rb,b
LW Rc,c LW Rc,c
STALL LW Re,e
ADD Ra Rb Rc ADD Ra Rb Rb

Show the stalls 
explicitlyADD Ra,Rb,Rc ADD Ra,Rb,Rb

SW a,Ra
LW Re,e
LW Rf f LW Rf f

explicitly

LW Rf,f LW Rf,f
STALL SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
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SW d,Rd SW d,Rd
10 cycles (2 stalls) 8 cycles (0 stalls)

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36 Reg A
LU DMemIfetch Reg

14: and r2,r3,r5 Reg A
LU DMemIfetch Reg

18: or  r6,r1,r7 Reg A
LU DMemIfetch Reg

U22: add r8,r1,r9

36: xor r10 r1 r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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36: xor r10,r1,r11 g A g



Pipelined MIPS Datapath with early branch 
determination
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Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

(wasteful – the next instruction is being fetched during ID)

#2: Predict Branch Not Taken
Execute successor instructions in sequenceExecute successor instructions in sequence
“Squash” instructions in pipeline if branch actually taken

With MIPS we have advantage of late pipeline state update

47% MIPS branches are not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
53% MIPS branches are taken on average

B t i  MIPS i t ti  t  h ’t l l t d b h t t dd  But in MIPS instruction set we haven’t calculated branch target address 
yet (because branches are relative to the PC)

MIPS still incurs 1 cycle branch penalty
With some other machines, branch target is known before branch 
condition
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Four Branch Hazard Alternatives
#4: Delayed Branchy

Define branch to take place AFTER a following instruction

branch instruction
ti lsequential successor1sequential successor2........

sequential successorn
Branch delay of length n

branch target if taken

1 slot delay allows proper decision and branch target 
address in 5 stage pipelineaddress in 5 stage pipeline
MIPS uses this; eg in LW R3, #100

LW R4, #200
BEQZ R1  L1

If (R1==0) 
X=100BEQZ R1, L1

SW R3, X
SW R4, X

L1:
LW R5 X

Else
X=100
X=200

R5 = X
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“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

LW R5,X R5 = X

Delayed Branch
Where to get instructions to fill branch delay slot?

B f  b h i t tiBefore branch instruction
From the target address: only valuable when branch taken
From fall through: only valuable when branch not taken

targetL1:Compiler effectiveness for single branch delay slot:
Fills about 60% of branch delay slots
About 80% of instructions executed in branch delay slots 
useful in computation
About 50% (60% x 80%) of slots usefully filled

before
Blt R1 L1

About 50% (60% x 80%) of slots usefully filled
Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)

Blt R1,L1
fallthruCanceling branches

Branch delay slot instruction is executed but write-back is 
disabled if it is not supposed to be executed
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Two variants: branch “likely taken”, branch “likely not-taken”
allows more slots to be filled



Eliminating hazards with simultaneous multi-threading
If we had no stalls we could finish one instruction 
every cycleevery cycle
If we had no hazards we could do without 
forwarding – and decode/control would be simpler 
tootoo

PC0

Next
PC Example: 

PowerPC 
Reg A

LU DMemIfetch Reg

PC0

PC1

Thread 0
regs

Thread 1
regs

PowerPC 
processing 
element (PPE) 
in the Cell g

IF maintains two Program Counters
E  l  f t h f  PC0

Broadband 
Engine (Sony 
PlayStation 3)

Even cycle – fetch from PC0
Odd cycle – fetch from PC1
Thread 0 reads and writes thread 0 registers
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Thread 0 reads and writes thread-0 registers
No register-to-register hazards between adjacent 
pipeline stages

So – how fast can this design go?
A i l  5 t  i li    t 3GHA simple 5-stage pipeline can run at >3GHz
Limited by critical path through slowest pipeline stage 
logicg
Tradeoff: do more per cycle?  Or increase clock rate?

Or do more per cycle, in parallel…
At 3GHz, clock period is 330 picoseconds.

The time light takes to go about four inches
Ab  10  d lAbout 10 gate delays

for example, the Cell BE is designed for 11 FO4 (“fan-
out=4”) gates per cycle:

f i f it/ b ll tti/ ti l /ISSCC2005 ll dfwww.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
Pipeline latches etc account for 3-5 FO4 delays leaving 
only 5-8 for actual work
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How can we build a RAM that can implement our MEM stage in 
5-8 FO4 delays?

Life used to be so easy
Processor-DRAM Memory Gap (latency)
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Time
In 1980 a large RAM’s access time was close to the CPU cycle time.  1980s 
machines had little or no need for cache.  Life is no longer quite so simple.

Memory Hierarchy: Terminology
Hit: data appears in some block X in the upper levelHit: data appears in some block X in the upper level

Hit Rate: the fraction of memory accesses found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/missRAM access time + Time to determine hit/miss
Miss: data needs to be retrieved from a block Y in 
the lower level

Miss Rate  = 1 (Hit Rate)Miss Rate  = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor
Hit Time << Miss PenaltyHit Time << Miss Penalty

Typically hundreds of missed instruction issue opportunities

Lower Level
MemoryUpper Level

Memory
To Processor

Blk X
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From Processor
Blk X

Blk Y



Levels of the Memory Hierarchy
Capacity

Upper Level

CPU Registers
100s Bytes

apac ty
Access Time
Cost

Registers

Staging
Xfer Unit

Management:
programmer/compiler

Transfer unit:

faster

y
<1ns

Cache (perhaps multilevel)
10s-1000s K Bytes
1-10 ns

Cache

Instructions and Operands
Transfer unit:

1-16 bytes

cache controller
8-128 bytes0 ns

$10/ MByte

Main Memory
G Bytes
100ns- 300ns Memory

Blocks

Operating System
4K-8K bytes100ns 300ns

$1/ MByte

Disk
100s G Bytes, Disk

Pages

4K 8K bytes

user/operator
Mbytesy ,

10 ms 
(10,000,000 ns)

$0.0031/ MByte

Tape T

Files

Mbytes

L  L l
Larger
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Tape
infinite
sec-min
$0.0014/ MByte

Tape Lower Level

The Principle of Locality
The Principle of Locality:

P    l ti l  ll ti  f th  dd  Programs access a relatively small portion of the address 
space at any instant of time.

Two Different Types of Locality:Two Different Types of Locality:

Temporal Locality (Locality in Time): If an item is 
referenced  it will tend to be referenced again soon referenced, it will tend to be referenced again soon 
(e.g., loops, reuse)

Spatial Locality (Locality in Space): If an item is 
referenced  items whose addresses are close by tend to referenced, items whose addresses are close by tend to 
be referenced soon 
(e.g., straightline code, array access)

   h  h   In recent years, architectures have become 
increasingly reliant (totally reliant?) on 
locality for speed
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Cache MeasuresCache Measures
Hit rate: fraction found in that level

So high that usually talk about Miss rate
Miss rate fallacy: as MIPS to CPU performance  Miss rate fallacy: as MIPS to CPU performance, 
miss rate to average memory access time in memory 

Average memory-access time Average memory access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)

Miss penalty: time to replace a block from 
lower level, including time to replace in CPU

access time: time to lower level access time: time to lower level 
= f(latency to lower level)
transfer time: time to transfer block 
=f(BW between upper & lower levels)
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=f(BW between upper & lower levels)

1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:y

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

0431 9
Cache IndexCache Tag Example: 0x50

Ex: 0x01
Stored as part
of the cache “state”

Byte Select
Ex: 0x00

0
Cache Data

Byte 0

of the cache state

Valid Bit
Byte 1Byte 31 :

Cache Tag

1
2
3

0x50 Byte 32Byte 33Byte 63 :

:::
31Byte 992Byte 1023 :
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Direct-mapped cache - storage



1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:y

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

0431 9
Cache IndexCache Tag Example: 0x50

Ex: 0x01
Stored as part
of the cache “state”

Byte Select
Ex: 0x00

0
Cache Data

Byte 0

of the cache state

Valid Bit
Byte 1Byte 31 :

Cache Tag

1
2
3

0x50 Byte 32Byte 33Byte 63 :

:::
31Byte 992Byte 1023 :
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Compare

HitDirect-mapped cache – read access
Data

1 KB Direct Mapped Cache, 32B blocks
0

1 Cache location 0 can be occupied 
b  d  f  i   

(0)
2

3

4

5

6

7

by data from main memory 
location 0, 32, 64, … etc.
Cache location 1 can be occupied 
by data from main memory 
l ti  1  33  65   t8

9

10

11

12

13

location 1, 33, 65, … etc.
In general, all locations with same 
Address<9:4> bits map to the same 
location in the cache Which one should 
we place in the cache?

H    ll hi h  i  i  

Main
M

C

13

14

15

16

17

18

How can we tell which one is in 
the cache?Memory

0
1
2

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

19

20

21

22

23

24 2
3

:

24

25

26

27

28

29
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31Byte 992Byte 1023 :30

31

32

33

34

35

(32)

Direct-mapped Cache - structure
Capacity: C bytes (eg 1KB)Capacity: C bytes (eg 1KB)
Blocksize: B bytes (eg 32)
Byte select bits: 0..log(B)-1 (eg 0..4)
Number of blocks: C/B (eg 32)Number of blocks: C/B (eg 32)
Address size: A (eg 32 bits)
Cache index size: I=log(C/B) (eg log(32)=5)
Tag size: A-I-log(B) (eg 32-5-5=22)Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Data
Cache Block 0

Cache TagValid
Cache Index

Cache Block 0

:: :

Compare
Adr Tag
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Cache Block
Hit

Two-way Set Associative Cache
N-way set associative: N entries for each Cache N-way set associative: N entries for each Cache 
Index

N direct mapped caches operated in parallel (N typically 2 to 4)

E l  T  t i ti  hExample: Two-way set associative cache
Cache Index selects a “set” from the cache
The two tags in the set are compared in parallel
Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid Cache Data
Cache Block 0

Cache Tag Valid
Cache Index

Cache Block 0

:: :
Cache Block 0

: ::

Mux 01Sel1 Sel0Compare
Adr Tag

Compare
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Cache Block
OR

Hit



Disadvantage of Set Associative Cache
N  S  A i i  C h   Di  M d C hN-way Set Associative Cache v. Direct Mapped Cache:

N comparators vs. 1
Extra MUX delay for the data
Data comes AFTER Hit/MissData comes AFTER Hit/Miss

In a direct mapped cache, Cache Block is available BEFORE 
Hit/Miss:

Possible to assume a hit and continue   Recover later if missPossible to assume a hit and continue.  Recover later if miss.

Cache Data Cache Tag ValidCache DataCache TagValid
Cache Index

Cache Block 0

: ::
Cache Block 0

:: :

Mux 01Sel1 Sel0Compare
Adr Tag

Compare
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Cache Block

OR

Hit

Basic cache terminology
Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

Capacity: 8K bytes (total amount of data cache can store)
Block: 64 bytes (so there are 8K/64=128 blocks in the cache)
Ways: 4 (addresses with same index bits can be placed in one of 4 ways)
Sets: 32 (=128/4, that is each RAM array holds 32 blocks)Sets: 32 ( 128/4, that is each RAM array holds 32 blocks)
Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)
Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles ( 6ns at 3GHz; pipelined dual ported [load+store])

Cache Data Cache Tag ValidCache DataCache TagValid
Cache Index

Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Cache Block 0
g

: ::
Cache Block 0

g

:: :

Mux 01Sel1 Sel0Compare
Adr Tag

Compare
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MuxSel1 Sel0

Cache Block
OR

Hit

4 Questions for Memory Hierarchy

1  Wh    bl k b  l d  h   l l? Q1: Where can a block be placed in the upper level? 
(Block placement)

Q2: How is a block found if it is in the upper level?Q2  How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss? 
(Block replacement)(Block replacement)

Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in 
the upper level? the upper level? 

0 1 2 3 4 5 6
0
1
2In a fully-associative cache  block 

In a direct-mapped 
cache, block 12 can only 

2
3
4
5
6
7

In a fully-associative cache, block 
12 can be placed in any location in 
the cache

y
be placed in one cache 
location, determined by 
its low-order address 
bits –

S t 0
0 1

bits –
(12 mod 8) = 4

In a two way setSet 0
2
4
6

In a two-way set-
associative cache, the 
set is determined by its 
low-order address bits –

(12 mod 4) = 0
Block 12 can be placed in 
either of the two cache 
locations in set 0
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locations in set 0



Q2: How is a block found if it is in the upper 
level?

Cache Index
Cache Data

Cache Block 0
Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

C
Adr Tag

CMux 01Sel1 Sel0

Cache Block

Compare
g

Compare

OR

Hi

Tag on each block
No need to check index or block offset

Hit

No need to check index or block offset

Block
Offset

Block Address

IndexTag
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Increasing associativity shrinks index, expands tag

IndexTag

Q3: Which block should be replaced on a 
miss?miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

Random
LRU (Least Recently Used)LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way
Size LRU Ran LRU Ran LRU RanSize LRU     Ran    LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Benchmark studies show that LRU beats random only with small caches
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y

Q4: What happens on a write?
Write through—The information is written 
to both the block in the cache and to the to both the block in the cache and to the 
block in the lower-level memory

Write back—The information is written only 
to the block in the cache. The modified 
cache block is written to main memory only cache block is written to main memory only 
when it is replaced.

is block clean or dirty?

Pros and Cons of each?
WT: read misses cannot result in writes

  d    lWB: no repeated writes to same location

WT always combined with write buffers so 
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y
that don’t wait for lower level memory

Write Buffer for Write Through

Processor
Cache

DRAM

A Write Buffer is needed between the Cache and 
M

Write Buffer

Memory
Processor: writes data into the cache and the write buffer
Memory controller: write contents of the buffer to memory

W i  b ff  i  j   FIFOWrite buffer is just a FIFO:
Typical number of entries: 4
Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM 
write cyclewrite cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time)   ->  1 / DRAM write cycle
Write buffer saturation
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Write buffer saturation



A Modern Memory Hierarchy
B  t ki  d t  f th  i i l  f l litBy taking advantage of the principle of locality:

Present the user with as much memory as is available in the 
cheapest technology.
Provide access at the speed offered by the fastest technologyProvide access at the speed offered by the fastest technology.

Processor

Control
Secondary

Processor

Tertiary
Storage

Datapath

Storage
(Disk)R

egiste

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hi
C

ache

Storage
(Disk/Tape)

ers (SRAM)ipe

1s 10,000,000sSpeed (ns): 10s 100s 10,000,000,000s
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1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

10,000,000,000s  
(10s sec)

Ts

Large-scale storageStorageTek STK 9310 
(“Powderhorn”)

2,000, 3,000, 4,000, 
5 000  or 6 000 5,000, or 6,000 
cartridge slots per 
library storage module 
(LSM)
Up to 24 LSMs per Up to 24 LSMs per 
library (144,000 
cartridges)
120 TB (1 LSM) to 
28 800 TB capacity (24 28,800 TB capacity (24 
LSM)
Each cartridge holds 
300GB, readable up to 
40 MB/sec 

Up to 28.8 petabytes
Ave 4s to load tapeAve 4s to load tape
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http://www.b2net.co.uk/storagetek/storagetek_powderhorn_9310_tape_library.htm
http://en.wikipedia.org/wiki/Tape_library
http://www.ibm.qassociates.co.uk/storage-tape-enterprise-tape-drive-J1A-specifications.htm

Can we live without cache?
Interesting exception: Cray/Tera MTA, nterest ng except on  ray/ era M , 
first delivered June 1999:

www.cray.com/products/systems/mta/

Each CPU switches every cycle between Each CPU switches every cycle between 
128 threads

Each thread can have up to 8 
t t di   outstanding memory accesses

3D toroidal mesh interconnect

Memory accessed hashed to spread load 
across banks

MTA-1 fabricated using Gallium 
Arsenide, not silicon
“nearly un-manufacturable” (wikipedia)
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Third-generation Cray XMT:
http://www.cray.com/Products/XMT.aspx

http://www.karo.com

Ch1
Review of pipelined, in-order 
processor architecture and simple 
cache structures

Ch5
Multithreading, hyperthreading, SMT
Static instruction scheduling

Ch2
Caches in more depth
Software techniques to improve 
cache performance

Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for 
speculation and register renaming

Ch6p
Virtual memory
Benchmarking
Fab

Ch3

Ch6
GPUs, GPGPU, and manycore

Ch7
Shared-memory multiprocessorsCh3

Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
S l i  i

y p
Cache coherency
Large-scale cache-coherency; ccNUMA. 
COMA

Speculative execution
Branch prediction
Limits to ILP

Ch4

Lab-based coursework exercise: 
Simulation study
“challenge” 

Compiler techniques – loop nest 
transformations
Loop parallelisation, interchange, 
tiling/blocking, skewing

challenge  
Using performance analysis tools

Exam:
Partially based on recent processor 
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Where we are going…

y p
architecture article, which we will study in 
advance (see past papers)


