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Pipelining: a quick review of introductory computer
architecture

Objective: bring everyone up to speed, and also establish some key ideas
that will come up later in the course in more complicated contexts
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Pre-requisites

« This is a second-to-third-level computer architecture course

— We aim to get from what you'd learn in DoC'’s first year up to
understanding the design, and design alternatives, in current
commercially-available processors

— It's a stretch but my job is to help!

* You can take this course provided you're prepared to catch
up if necessary

— | will introduce all the key ideas, but if they are new to you,
you will need to do some homework!

 We are keen to help you succeed — and | count on you to ask
guestions — both live and on EdStem

« This lecture introduces pipelining — we're looking for the
Issues in simple designs that help us understand the more
complicated designs that are coming up



Example: MIPS

Register-Regis

Opcode specifies how
other fields will be
interpreted

5-bit register specifier at
fixed field so access can
start immediately

31 26 25 2120 0
Op I Rs1 Opx
Register-immediate
31 26 25 2120 16 15 0
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 16 15 0
Op I Rs1 hSZ/OpXI immediate
Jump / Call
31 26 25 0

Op I target




Example: MIPS

Register-Regis

Opcode specifies how
other fields will be
interpreted

5-bit register specifier at
fixed field so access can
start immediately

31 26 25 2120 :
Op | Rs1 | Opx
Register-immediate ADD R8,R6,R4 // R8 « R6+R4
31 26 25 2120 16 15 0
Op I Rs1 I Rd I immediate

Branch
31 26 25 2120 16 15

LW R2, 100(R3) // R2 «— Memory[R3+100]
SW RS, 100(R6) // Memory[R6+100] — RS

ADDI R4, R5, 50 // R4 «— R5+signExtend(50)
: 0

Op I Rs1 I?sZ/OpxI

immediate

Jump / Call
31 26 25

BEQ R5, R7, 25 //if R5=R7
/l then PC «— PC+4+25*4
0// else PC «— PC+4

Op I target

J 200000 I PC «— 200000*4



Example: MIPS

Register-Regis

Opcode specifies how
other fields will be
interpreted

5-bit register specifier at
fixed field so access can

31 26 25 2120 0
Op I Rs1 I Opx
Register-immediate
31 26 25 2120 0
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 0
Op I Rs1 hSZ/OpXI immediate
Jump / Call
31 26 25 0
Op I

start immediately

Q: How many
registers can we
address?

Q: What is the largest
signed immediate
operand for “ADD
R1,R2,X"?

Q: What range of
addresses can a
conditional branch

jump to?




A machine to execute these instructions

 To execute this instruction set we need a machine that fetches them and
does what each instruction says

« A‘universal’ computing device — a simple digital circuit that, with the right
code, can compute anything

 Something like:

r’l Instr = Mem[PC]; PC+=4;

rs1 = Reg[Instr.rs1];
rs2 = Reg[Instr.rs2j;
imm = SignExtend(Instr.imm);

Operand1 = if(Instr.op==BRANCH) then PC else rs1;
Operand?2 = if(immediateOperand(Instr.op)) then imm else rs2;
res = ALU(Instr.op, Operand1, Operand2);

switch(Instr.op) {
case BRANCH:
if (rs1==0) then PC=PC+imm™*4; continue;
case STORE:
Mem[res] = rs1; continue;
case LOAD:
Imd = Mem[res];
}

K Reg[lInstr.rd] = if (Instr.op==LOAD) then Imd else res;




5 Steps of MIPS Datapath

Instruction _ Instr. Decode _ Execute ~ Memory  Write
Fetch : Reg. Fetch : Addr.Calc : Access :Back
Next PC : : : . :
> Next SEQ PC 2
Q ?: :
o
=
>
Q
Q
1
| @
»
7
Instr = Mem[PC]; PC+=4; i E
switch(Instr.op) {
rs1 = Req[lInstr.rs1]; case BRANCH:
rS2 — Reg[lnstr. rSZ]; C;‘S((res;;;(géhen PC=PC+imm*4; continue;
imm = SignExtend(Instr.imm); CaM;@ﬁ[roe:a; rs1; continue;

Imd = Mem|res];

— "

Operand1 = if(Instr.op==BRANCH) then Pb else rs1;

Operand?2 = if(immediateOperand(Instr.op)) then imm else rs2;

res = ALU(Instr.op, Operand1, Operand?2);
Figure 3.1, Page 130, CA:AQA 2e

LOAD) then Imd else res;

Instr.rd] = if (Instr.op

Re



5 Steps of MIPS Datapath

Instruction _ Instr. Decode _ Execute _ Memory  Write
Fetch i Reg.Fetch | Addr.Calc | Access iBack
Next PC ' : > :

: Next SEQ PC —

WB Data

Figure 3.1, Page 130, CA:AQA 2e



5-stage MIPS pipeline with pipeline buffers

Instruction Instr. Decode : Execute :  Memory EWrite
Fetch : Reg. Fetch i Addr.Calc ;: Access | Back

f

Next PC

Next SEQ PC Next SEQ PC.

RS1

RS2

Imm

WB Data




5-stage MIPS pipeline with pipeline buffers

Instruction | Instr. Decode : Execute i Memory

Fetch

Reg.Fetch | Addr.Calc i Access

Next PC

Next SEQPC Next SEQ PC.

RS1

RS2

Imm

: Write
i Back

Opcode

apo2a(]

- Data stationary control
— Control signals are needed to configure the MUXes, ALU, read/write

— Carried with the corresponding instruction along the pipeline

WB Data



Time (clock cycles)

o
»

ECycIe 1 ECycIe 2 ECycIe 3 Cycle 4 Cycle 5 ECycIe 6 Cycle 7 ECycIe 8 ECycIe 9

Instr 1 : |ifetcn

Instr 2 t |ifeten

Instr 3 Ifetch

DMem

Instr 4

Instr 5 Ifetch




Time (clock cycles)

o
»

ECycIe 1 ECycIe 2 ECycIe 3 Cycle 4 Cycle 5 ECycIe 6 Cycle 7 ECycIe 8 ECycIe 9

& - - -
Instr 1 Ifetch Reg [ .[DMem — | Reg
1 1 1 :
Instr 2 ifetch | || | Reg [ DMem |- =1 Reg
Instr 3 ifetch | || | Reg [ .[DMem -4} Reg
Instr 4 tfetch | |l | Reg ] -[DMem —1 |4 Reg
msr5: b i i e LR

+ At each cycle we fetch a new instruction

4+ And pass the preceding instruction to the next stage of the
pipeline



Time (clock cycles)

o
»

ECycIe 1 ECycIe 2 ECycIe 3 Cycle 4 Cycle 5 ECycIe 6 Cycle 7 ECycIe 8 ECycIe 9

M (= -
Instr 1 : |iretch R -[DMem —41 Reg
= : : :
Instr 2 ; Ifetch | Reg [ DMem |—4 1= Reg
Instr 3 ifetch | || | Reg [ .[DMem -4} Reg
Instr 4 tfetch | |l | Reg ] -[DMem —1 |4 Reg
Instr 5 ifetch | 1§ | Reg [ DMem Reg

4 At each cycle we fetch a new instruction

4+ And pass the preceding instruction to the next stage of the
pipeline



Time (clock cycles)

o
»

ECycIe 1 ECycIe 2 ECycIe 3 Cycle 4 Cycle 5 ECycIe 6 Cycle 7 ECycIe 8 ECycIe 9

= o
Instr 1 Ifetch Reg ‘.2 DMem [—4 1 Reg
: : " - i -
Instr 2 : i |ifetch RI: -[DMem JH R |
Instr 3 lfetch | || | Reg [ .[DMem -4} Reg
Instr 4 tfetch | |l | Reg ] -[DMem —1 |4 Reg
Instr 5 2 |ifetch [ Bf | Reg [ DMem Reg
. . . . . =l = =

+ At each cycle we fetch a new instruction

4+ And pass the preceding instruction to the next stage of the
pipeline



o
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Time (clock cycles)

ECycIe 1 ECycIe 2 ECycIe 3 Cycle 4 Cycle 5 ECycIe 6 Cycle 7 ECycIe 8 ECycIe 9

Instr 1 Ifetch Reg [ 2 ‘ DMem ‘ Reg

Instr 2 tfetch | B | Reg Reg

Instr 3 Ifetch ‘l R¢ l .2 -[DMem —4 14 Reg

Instr 4 Ifetch Reg [ DMem |-} Reg
Instr 5 ifetch | 1§ | Reg [ DMem Reg

4 At each cycle we fetch a new instruction

4+ And pass the preceding instruction to the next stage of the
pipeline



Time (clock cycles)

o
»

Cycle 1: Cycle 2: Cycle 3 : Cycle 4 Cycle 5 Cycle 6: Cycle T: Cycle 8: Cycle 9

. H I-
. 1 2

. . = =
Instr 2 : 2 |ifetech | B | Reg [ 2 DMem Reg
s .

Instr 3 ifetch | || | Reg .2 DMem |-} Reg

Instr 4 : i |ifetch

-[DMem - |- Reg

Instr 5 : | ifetch Reg | | DMem Reg

= =
. .

i At cycle 5 the plpellne is fuIIy-occupled all stages are busy
4 [IF is fetching Instr 5

ID is decoding Instr 4

EX is executing Instr 3

MEM is handling Instr 2 if it is a load or store

WB is writing the register results from Instr 1 back

* 0
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Time (clock cycles) ‘ Plpel | N | ng .

Cycle1 Cycle 2: Cycle 3 Cycle 4 Cycle 5 Cycle 6: Cycle 7 faCtS Of I|fe

Plpellnlng doesn’t help Iatency of smgle mstructlon
4 it helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage

Potential speedup = Number pipe stages

Unbalanced lengths of pipe stages reduces speedup

Time to “fill” pipeline and time to “drain” it reduces speedup

Speedup comes from parallelism - for free — no new hardware

Many pipelines are more complex - Pentium 4 “Netburst” has 31 stages.




It's Not That Easy

* Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

— Structural hazards: the hardware cannot support
this combination of instructions

— Data hazards: Instruction depends on result of a
prior instruction still in the pipeline

— Control hazards: Caused by delay between the
fetching of instructions and decisions about
changes in control flow (branches and jumps).




Structural Hazard: example — one RAM port

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3E Cycle 4E Cycle 5 : Cycle 6 Cycle 7

' |Load [ 1z
n .
S
¢ Instr 1 tetch :I: | .2 DMem
Instr 2 Ifetch DMem
r | Ifetch DMem
g |Instr3

. Eg if there is onIy one memory for both mstructlons and data
« Two different stages may need access at same time
« Example: IBM/Sony/Toshiba Cell processor’s “SPE” cores

— The microarchitecture of the synergistic processor for a cell processor (IEEE J. Solid-State Circuits (V41(1) , Jan 2006)



Structural Hazard: example — one RAM port

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

I Load Ifetch :I: R I .2 DMem g
n .
s
Instr 2 : tetch R l.ﬁ DMem
wees - EEENERE

* Instr 3 cannot be loaded in cycle 4
» ID stage has nothing to do in cycle 5
« EX stage has nothing to do in cycle 6, etc. “Bubble” propagates



Structural Hazard: example — one RAM port

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3E Cycle 4E Cycle 5 : Cycle 6 Cycle 7

/ Load |« :I: E
n .
s
¢ |Instr1 'fetchZIZ I.ﬁ DMem
Instr 2 P |toten ] .2 DMem
o b
A TR R

* Instr 3 cannot be loaded in cycle 4
» ID stage has nothing to do in cycle 5
« EX stage has nothing to do in cycle 6, etc. “Bubble” propagates



X "0 3 =

SN0 Q~Q

Data Hazard on R1

Time (clock cycles)

IF IDIRF EX MEM WB

ALU

DMem

add r1,r2,r3 etch] I | R

ALU

sub r4,r1,r3 et S

and r6,r1,r7 e

Ifetch

or r8,r1,r9

- xor r10,r1,r11

Men g

R DMen

ALU

etch] | .B I .E

DMen
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Forwarding to Avoid Data Hazard

Figure 3.10, Page 149 , CA:AQA 2e

Time (clock cycles)

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11




HW Change for Forwarding

Figure 3.20, Page 161, CA:AQA 2e

E Add forwarding (“bypass”) paths

E Add multiplexors to select where ALU operand should come from
E Determine mux control in ID stage

B If source register is the target of an instrn that will not WB in time

NextPC \—
o E
q)) »| X
(@] >
&
> ()
n
1 3 Data
| C
] % Memory|
=

Immediate

Xnw




Forwarding builds the data flow graph

SoQ~NQ NN~O0n3 -

Time (clock cycles)

add r1, r0, 100

sub r4,r1,r6

and r6,r4,r7

or r8,r6,r9

A 4

Values are passed directly from the output of the ALU to the input

Via forwarding wires

That are dynamically configured by the instruction decoder/control
(This gets much more exciting when we have multiple ALUs and multiple-issue)

Ifetch

Ifetch

Ifetch

DMem




Imagine a
machine with

more ALUs

/ add r1, r0, 100
n

S

t | subr4,r,r6

r.

? and r6,rd,r7

d

e

;| or r8,r6,r9

Ifetch

Ifetch

E We would need a rather complicated

forwarding network

E It's a bit more complicated if three different

instructions are issued each cycle

Ifetch

IDMem




Data Hazard Even with Forwarding

Figure 3.12, Page 153 , CA:AQA 2e
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Time (clock cycles)

Iw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Ifetch

Ifetch

Ifetch

DMem




Data Hazard Even with Forwarding

Figure 3.12, Page 153 , CA:AQA 2e

Time (clock cycles)

/
T lwr, 0(r2) [
t
r.

sub r4,r1,r6
o
.
d
e | and r6,r1,r7
.

or r8,r1,r9

 EX stage waits in cycle 4 for operand

Following instruction (“and”) waits in ID stage
Missed instruction issue opportunity...



Software Scheduling to Avoid Load Hazards
Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW  Rbb
LW Rc,c LW Rc,c
STALL LW Re,e Show the stalls
ADD Ra,Rb,Rc ADD Ra,Rb,Rc explicitly
SwW a,Ra
LW Re,e
LW Rf.f LW  Rff
STALL SW a,Ra
SUB  Rd,Re,Rf SUB Rd,Re,Rf
SwW d,Rd SW d,Rd

10 cycles (2 stalls) 8 cycles (0 stalls)



Control Hazard on Branches

10: beq r1,r:|’>,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

|
36: xor r10,r1,r11

DMen

ﬁllﬂl'ﬁ‘
Mllﬂll%
I=

If we're not smart we risk a three-cycle stall

DMen




Pipelined MIPS Datapath with early branch determmatlon

Instruction Instr. Decode Execute Memory : i Write
Fetch : Reg. Fetch i Addr.Calc ;: Access | Back
Next PC i . :

= INext
—SEQ >

« Add extra hardware to the decode stage, to determine branch direction and target earlier
* We still have a one-cycle delay — we just have to fetch and start executing the next instruction
*|f the branch is actually taken, block the MEM and WB stages and fetch the right instruction

WB Data

Figure 3.22, page 163, CA:AQA 2/e



Eliminating hazards with multi-threading
* |f we had no stalls we could finish one instruction
every cycle

 |f we had no hazards we could do without
forwarding — and decode/control would be simpler

too
» PCO
]blmmh
PC1
Broadband
Engine (Sony

+ IF maintains two Program Counters PlayStation 3)
+ Even cycle - fetch from PC0

4+ Odd cycle — fetch from PC1

¢ Thread 0 reads and writes thread-0 registers

+ No register-to-register hazards between adjacent
pipeline stages (cf “C-Slowing”......

Example:
PowerPC
processing
element (PPE)
in the Cell

ALU

DMem




So — how fast can this design go?
# A simple 5-stage pipeline can run at 5-9GHz

4+ Limited by critical path through slowest pipeline stage
logic
# Tradeoff: do more per cycle? Or increase clock rate?
B Or do more per cycle, in parallel...
# At 3GHz, clock period is 330 picoseconds.
B The time light takes to go about four inches

B About 10 gate delays

i for example, the Cell BE is designed for 11 FO4 (“fan-out=4")
gates per cycle:
www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

i+ Pipeline latches etc account for 3-5 FO4 delays leaving only
5-8 for actual work

+ How can we build a RAM that can implement our MEM stage in 5-
8 FO4 delays?


http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

Summary
# This course is about fetch-execute
machines!

¢ The fetch-decode-execute sequence is
naturally pipelinable

4+ Pipelining would be wonderful... but:

¢ Control hazards "] We will see how all of these can be
# Data hazards — tackled with dynamically-scheduled
¢ Structural hazards | ~out-of-order” microarchitectures

¢ Hazards can sometimes be handled by
forwarding

# Hazards sometimes cause stalls

¢ Control hazards are just trouble! But there
are things we can do!

4+ Pipeline design affects the maximum
clock rate



Next: tutorial exercise 1 on the
connhection between the instruction
set and the pipeline architecture

And then we’ll look at caches and the
memory system



For next week

Watch ChO1-part3 on caches
. Make sure you understand it -
. come with questions

Have a think about the Turing Tax
discussion exercise — watch the video!
* Come prepared to talk about it!

Watch Ch02-partl on dynamic instruction
scheduling
. Come with questions!



Feeding curiosity
4+ Do you really need pipeline latches?

4+ Perhaps we could compute with just the wavefront of the
signal as it propagates through the combinational logic?

4+ But what if the wires are not precisely matched in length?

+ See Wave-Pipelining: A Tutorial and Research Survey, Burleson

et al 1998
https://lieeexplore.ieee.orqg/abstract/document/711317

4+ Do we really need a global clock?
4+ Look up asynchronous circuit design
4+ What'’s the optimal number of pipeline stages?

+ Eg see Optimizing Pipelines for Power and Performance,

Srinivasan et al MICRO 2002
https://visiarch.eecs.harvard.edu/sites/hwpi.harvard.edu/files/

visiarch/files/micro2002-optpipeline.pdf?m=1651843040



https://ieeexplore.ieee.org/abstract/document/711317
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