
October 2023

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and 

Patterson’s Computer Architecture, a quantitative approach (6th ed), and on 

the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 1.2

Pipelining: a quick review of introductory computer 

architecture

Objective: bring everyone up to speed, and also establish some key ideas 

that will come up later in the course in more complicated contexts

Course materials online on 
https://scientia.doc.ic.ac.uk/2324/modules/60001/materials and 
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/ 

https://scientia.doc.ic.ac.uk/2324/modules/60001/materials
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/


Pre-requisites
• This is a second-to-third-level computer architecture course

– We aim to get from what you’d learn in DoC’s first year up to 

understanding the design, and design alternatives, in current 

commercially-available processors

– It’s a stretch but my job is to help!

• You can take this course provided you’re prepared to catch 

up if necessary

– I will introduce all the key ideas, but if they are new to you, 

you will need to do some homework!

• We are keen to help you succeed – and I count on you to ask 

questions – both live and on EdStem

• This lecture introduces pipelining – we’re looking for the 

issues in simple designs that help us understand the more 

complicated designs that are coming up



Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Opcode specifies how 
other fields will be 
interpreted

5-bit register specifier at 
fixed field so access can 
start immediately 



Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Opcode specifies how 
other fields will be 
interpreted

5-bit register specifier at 
fixed field so access can 
start immediately 

ADD R8,R6,R4  // R8 ← R6+R4

LW R2, 100(R3) // R2 ← Memory[R3+100] 

SW R5, 100(R6) // Memory[R6+100] ← R5 

ADDI R4, R5, 50 // R4 ← R5+signExtend(50) 

;

BEQ R5, R7, 25 // if R5=R7 

  // then PC ← PC+4+25*4 

  // else PC ← PC+4

J 200000 // PC ← 200000*4



Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Opcode specifies how 
other fields will be 
interpreted

5-bit register specifier at 
fixed field so access can 
start immediately 

Q: How many 

registers can we 

address?

Q: What is the largest 

signed immediate 

operand for “ADD 

R1,R2,X”?

Q: What range of 

addresses can a 

conditional branch 

jump to?



A machine to execute these instructions
• To execute this instruction set we need a machine that fetches them and 

does what each instruction says

• A “universal” computing device – a simple digital circuit that, with the right 

code, can compute anything

• Something like:

Instr = Mem[PC]; PC+=4;

rs1 = Reg[Instr.rs1]; 

rs2 = Reg[Instr.rs2]; 

imm = SignExtend(Instr.imm); 

Operand1 = if(Instr.op==BRANCH) then PC else rs1;

Operand2 = if(immediateOperand(Instr.op)) then imm else rs2;

res = ALU(Instr.op, Operand1, Operand2);

switch(Instr.op) {

case BRANCH:

  if (rs1==0) then PC=PC+imm*4; continue;

case STORE:

  Mem[res] = rs1; continue;

case LOAD:

  lmd = Mem[res];

} 

Reg[Instr.rd] = if (Instr.op==LOAD) then lmd else res;  



5 Steps of MIPS Datapath
Memory

Access
Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

L

M

D

A
L

U

M
U

X

M
e
m

o
ry

R
e
g
 F

ile

M
U

X
M

U
X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

4

A
d

d
e
r

Zero?

Next SEQ PC

A
d
d
re

s
s

Next PC

WB Data

In
s
t

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e



5 Steps of MIPS Datapath
Memory

Access
Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

L

M

D

A
L

U

M
U

X

M
e
m

o
ry

R
e
g
 F

ile

M
U

X
M

U
X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

4

A
d

d
e
r

Zero?

Next SEQ PC

A
d
d
re

s
s

Next PC

WB Data

In
s
t

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e



Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

A
L

U

M
e
m

o
ry

R
e
g
 F

ile

M
U

X
M

U
X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

Zero?

IF
/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e

r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
a
ta

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

Figure 3.4, Page 134 , CA:AQA 2e

5-stage MIPS pipeline with pipeline buffers



Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

A
L

U

M
e
m

o
ry

R
e
g
 F

ile

M
U

X
M

U
X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

Zero?

IF
/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e

r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
a
ta

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

Figure 3.4, Page 134 , CA:AQA 2e

5-stage MIPS pipeline with pipeline buffers

D
e
c
o
d
e

Opcode

• Data stationary control

– Control signals are needed to configure the MUXes, ALU, read/write

– Carried with the corresponding instruction along the pipeline 



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

At each cycle we fetch a new instruction

And pass the preceding instruction to the next stage of the 
pipeline



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

At each cycle we fetch a new instruction

And pass the preceding instruction to the next stage of the 
pipeline



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

At each cycle we fetch a new instruction

And pass the preceding instruction to the next stage of the 
pipeline



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

At each cycle we fetch a new instruction

And pass the preceding instruction to the next stage of the 
pipeline



Time (clock cycles)

Figure 3.3, Page 133 , CA:AQA 2e

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 8 Cycle 9

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

At cycle 5 the pipeline is fully-occupied – all stages are busy
IF is fetching Instr 5

ID is decoding Instr 4

EX is executing Instr 3

MEM is handling Instr 2 if it is a load or store

WB is writing the register results from Instr 1 back



Pipelining:

facts of life
I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Pipelining doesn’t help latency of single instruction

it helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage

Potential speedup = Number pipe stages

Unbalanced lengths of pipe stages reduces speedup

Time to “fill” pipeline and time to “drain” it reduces speedup

Speedup comes from parallelism - for free – no new hardware

Many pipelines are more complex - Pentium 4 “Netburst” has 31 stages.



It’s Not That Easy 

• Limits to pipelining: Hazards prevent next 

instruction from executing during its 

designated clock cycle

– Structural hazards: the hardware cannot support 

this combination of instructions 

– Data hazards: Instruction depends on result of a 

prior instruction still in the pipeline 

– Control hazards: Caused by delay between the 

fetching of instructions and decisions about 

changes in control flow (branches and jumps).



Structural Hazard: example – one RAM port

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Figure 3.6, Page 142 , CA:AQA 2e

• Eg if there is only one memory for both instructions and data

• Two different stages may need access at same time

• Example: IBM/Sony/Toshiba Cell processor’s “SPE” cores
– The microarchitecture of the synergistic processor for a cell processor (IEEE J. Solid-State Circuits (V41(1) , Jan 2006)



I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Figure 3.7, Page 143 , CA:AQA 2e

• Instr 3 cannot be loaded in cycle 4

• ID stage has nothing to do in cycle 5

• EX stage has nothing to do in cycle 6, etc.  “Bubble” propagates

Structural Hazard: example – one RAM port

Reg

A
L

U

DMemIfetch Reg



I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L

U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7, Page 143 , CA:AQA 2e

• Instr 3 cannot be loaded in cycle 4

• ID stage has nothing to do in cycle 5

• EX stage has nothing to do in cycle 6, etc.  “Bubble” propagates

Structural Hazard: example – one RAM port



I

n

s

t

r.

O

r

d

e

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9, page 147 , CA:AQA 2e



Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149 , CA:AQA 2e

I

n

s

t

r.

O

r

d

e

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg



HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e

M
E

M
/W

B

ID
/E

X

E
X

/M
E

M
 

Data

Memory

A
L
U

m
u
x

m
u
x

R
e
g
is

te
rs

NextPC

Immediate

m
u
x

Add forwarding (“bypass”) paths

Add multiplexors to select where ALU operand should come from

Determine mux control in ID stage

If source register is the target of an instrn that will not WB in time



Time (clock cycles)

I

n

s

t

r.

O

r

d

e

r

add r1, r0, 100

sub r4,r1,r6

and r6,r4,r7

or   r8,r6,r9

Forwarding builds the data flow graph

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Values are passed directly from the output of the ALU to the input

Via forwarding wires

That are dynamically configured by the instruction decoder/control

(This gets much more exciting when we have multiple ALUs and multiple-issue)



I

n

s

t

r.

O

r

d

e

r

add r1, r0, 100

sub r4,r1,r6

and r6,r4,r7

or   r8,r6,r9

Imagine a 

machine with 

more ALUs
Reg

A
L

U

DMemIfetch Reg

We would need a rather complicated 

forwarding network

It’s a bit more complicated if three different 

instructions are issued each cycle 

A
L

U
A

L
U

Reg

A
L

U

DMemIfetch Reg

A
L

U
A

L
U

Reg

A
L

U

DMemIfetch Reg

A
L

U
A

L
U

Reg

A
L

U

DMemIfetch Reg

A
L

U
A

L
U



Time (clock cycles)

I

n

s

t

r.

O

r

d

e

r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg



Time (clock cycles)

or   r8,r1,r9

I

n

s

t

r.

O

r

d

e

r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L

U

DMemIfetch Reg

RegIfetch

A
L

U

DMem RegBubble

Ifetch

A
L

U

DMem RegBubble Reg

Ifetch

A
L

U

DMemBubble Reg

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage 
Missed instruction issue opportunity…

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e



Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

Software Scheduling to Avoid Load Hazards

Fast code:

LW Rb,b LW Rb,b

LW Rc,c LW Rc,c

STALL LW Re,e

ADD Ra,Rb,Rc ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f LW Rf,f

STALL SW a,Ra

SUB Rd,Re,Rf SUB Rd,Re,Rf

SW d,Rd SW d,Rd

10 cycles (2 stalls) 8 cycles (0 stalls)

Show the stalls 

explicitly



Control Hazard on Branches

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

If we’re not smart we risk a three-cycle stall



A
d

d
e
r

IF
/ID

Pipelined MIPS Datapath with early branch determination

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

A
L

U

M
e
m

o
ry

R
e
g
 F

ile M
U

X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e

r

Next 

SEQ 

PC

RD RD RD

W
B

 D
a
ta

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

F
ig

u
re

 3
.2

2
, 

p
a

g
e
 1

6
3
, 

C
A

:A
Q

A
 2

/e

•Add extra hardware to the decode stage, to determine branch direction and target earlier
•We still have a one-cycle delay – we just have to fetch and start executing the next instruction
• If the branch is actually taken, block the MEM and WB stages and fetch the right instruction



Eliminating hazards with multi-threading
• If we had no stalls we could finish one instruction 

every cycle

• If we had no hazards we could do without 
forwarding – and decode/control would be simpler 
too

Reg A
L

U

DMemIfetch Reg

PC0

PC1

Next

PC

Thread 0

regs

Thread 1

regs

IF maintains two Program Counters

Even cycle – fetch from PC0

Odd cycle – fetch from PC1

Thread 0 reads and writes thread-0 registers

No register-to-register hazards between adjacent 
pipeline stages

Example: 

PowerPC 

processing 

element (PPE) 

in the Cell 

Broadband 

Engine (Sony 

PlayStation 3)

(cf “C-Slowing”......)



So – how fast can this design go?

A simple 5-stage pipeline can run at 5-9GHz

Limited by critical path through slowest pipeline stage 
logic

Tradeoff: do more per cycle?  Or increase clock rate?

Or do more per cycle, in parallel…

At 3GHz, clock period is 330 picoseconds.

The time light takes to go about four inches

About 10 gate delays

for example, the Cell BE is designed for 11 FO4 (“fan-out=4”) 
gates per cycle:
www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

Pipeline latches etc account for 3-5 FO4 delays leaving only 
5-8 for actual work

How can we build a RAM that can implement our MEM stage in 5-
8 FO4 delays?

http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf


Summary

This course is about fetch-execute 
machines!

The fetch-decode-execute sequence is 
naturally pipelinable

Pipelining would be wonderful… but:

Control hazards

Data hazards

Structural hazards

Hazards can sometimes be handled by 
forwarding

Hazards sometimes cause stalls

Control hazards are just trouble! But there 
are things we can do!

Pipeline design affects the maximum 
clock rate 

We will see how all of these can be 
tackled with dynamically-scheduled 
“out-of-order” microarchitectures



Next: tutorial exercise 1 on the 
connection between the instruction 
set and the pipeline architecture

And then we’ll look at caches and the 
memory system



For next week

Watch Ch01-part3 on caches
•  Make sure you understand it - 
•  come with questions

Have a think about the Turing Tax 
discussion exercise – watch the video!
•    Come prepared to talk about it!

Watch Ch02-part1 on dynamic instruction 
scheduling 
•  Come with questions!



Feeding curiosity
Do you really need pipeline latches?

Perhaps we could compute with just the wavefront of the 
signal as it propagates through the combinational logic?

But what if the wires are not precisely matched in length?

See Wave-Pipelining: A Tutorial and Research Survey, Burleson 
et al 1998
https://ieeexplore.ieee.org/abstract/document/711317

Do we really need a global clock?

Look up asynchronous circuit design

What’s the optimal number of pipeline stages?

Eg see Optimizing Pipelines for Power and Performance, 
Srinivasan et al MICRO 2002 
https://vlsiarch.eecs.harvard.edu/sites/hwpi.harvard.edu/files/
vlsiarch/files/micro2002-optpipeline.pdf?m=1651843040

https://ieeexplore.ieee.org/abstract/document/711317

	Slide 1: 332 Advanced Computer Architecture Chapter 1.2   Pipelining: a quick review of introductory computer architecture  Objective: bring everyone up to speed, and also establish some key ideas that will come up later in the course in more complicated 
	Slide 2: Pre-requisites
	Slide 3: Example: MIPS
	Slide 4: Example: MIPS
	Slide 5: Example: MIPS
	Slide 6: A machine to execute these instructions
	Slide 7: 5 Steps of MIPS Datapath 
	Slide 8: 5 Steps of MIPS Datapath 
	Slide 9: 5-stage MIPS pipeline with pipeline buffers 
	Slide 10: 5-stage MIPS pipeline with pipeline buffers 
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Pipelining: facts of life 
	Slide 18: It’s Not That Easy 
	Slide 19: Structural Hazard: example – one RAM port 
	Slide 20
	Slide 21
	Slide 22: Data Hazard on R1 
	Slide 26: Forwarding to Avoid Data Hazard Figure 3.10, Page 149 , CA:AQA 2e
	Slide 27: HW Change for Forwarding Figure 3.20, Page 161, CA:AQA 2e
	Slide 28: Forwarding builds the data flow graph 
	Slide 29: Imagine a machine with more ALUs
	Slide 30: Data Hazard Even with Forwarding Figure 3.12, Page 153 , CA:AQA 2e
	Slide 31: Data Hazard Even with Forwarding Figure 3.12, Page 153 , CA:AQA 2e
	Slide 32: Software Scheduling to Avoid Load Hazards
	Slide 33: Control Hazard on Branches
	Slide 34: Pipelined MIPS Datapath with early branch determination 
	Slide 38: Eliminating hazards with multi-threading
	Slide 39
	Slide 40
	Slide 41: Next: tutorial exercise 1 on the connection between the instruction set and the pipeline architecture  And then we’ll look at caches and the memory system
	Slide 42: For next week
	Slide 43

