COMP60001/COMP70086
Advanced Computer Architecture
Chapter 1.4

Caches: a quick review of introductory memory system
architecture

Objective: bring everyone up to speed, and also establish some key ideas
that will come up later in the course in more complicated contexts

October 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (6 ed), and on
the lecture slides of David Patterson’s Berkeley course (CS252)

Course materials online on
https://scientia.doc.ic.ac.uk/2526/modules/60001/materials and
https://www.doc.ic.ac.uk/~phijk/AdvancedCompArchitecture/aca20/
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Intel Skylake quad-core die photo

- — I

€1

e
I

il
A

i

g2igass
E:RER

-.‘ 'é

https://en.wikichip.org/wiki/File:skylake (quad-core) (annotated).png


https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png
https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png
https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

We finished the last lecture by asking how fast
a pipelined processor can go?

+ A simple 5-stage pipeline can run at 5-9GHz

+ Limited by critical path through slowest pipeline stage
logic

+ Tradeoff: do more per cycle? Or increase clock rate?
B Or do more per cycle, in parallel...

# At 3GHz, clock period is 330 picoseconds.
B The time light takes to go about four inches

B About 10 gate delays

i for example, the Cell BE is designed for 11 FO4 (*fan-out=4")
gates per cycle:

www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

i+ Pipeline latches etc account for 3-5 FO4 delays leaving only
5-8 for actual work

¢ How can we build a RAM that can implement
our MEM stage in 5-8 FO4 delays?


http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf
http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

Life used to be so easy
Processor-DRAM Memory Gap (latency)

Q000 | »— MWProc

" B0%lyr.
“Moore’s Law’, (2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

~—— DRAM
DRAM 9%/yr.
(2X/10 yrs)
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Performance

1980
1981

Time
In 1980 a large RAM’s access time was close to the CPU cycle time. 1980s machines
had little or no need for cache. Life is no longer quite so simple.



Levels of the Memory Hierarchy ... e

Capacity
Access Time
Cost faster

Management: A
by programmer/compiler

_ * Transfer unit:
Instructions gnd Operands 1-16 bytes

\4

CPU Registers Registers
100s Bytes

<1ns

4

Cache (perhaps multilevel) b n roll
10s-1000s K Bytes Cache 83'1 ggcb e controlle
1-10 ns (L1-L3) - ytes
~$1 /| MByte -
4 Blocks

Main Memory

?0'3"‘93200 “Main” memory
ns-200ns

$1/ GByte by Operating System

SSD Pages 4K-8K bytes

Terabytes, . .
10_506’:,5 SSD: Solid-State non-volatile
(10,000-500,000 ns)
$50-70 / TB) ' Pages

A

r

Disk :
Terabytes, Disk
10 ms
(10,000,000 ns) r by user/operator M
$10-20 / TB) Files Mbytes
v Larger

Tape
infinite
Seconds-minutes
$5-10/TB

Tape Lower Level

~ Exponential increase in access latency, block size, capacity



* The Principle of Locality:

— Programs access a relatively small portion of the
address space at any instant of time.

» Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon
(e.g., Ioops reuse)

— Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by
tend to be referenced soon
(e.g., straightline code, array access)

* Most modern architectures are heavily
reliant (totally reliant?) on locality for
speed



1 KB “Direct Mapped” Cache, 32B blocks

« For a 2N byte cache:

— The uppermost (32 - N) bits are always the Cache Tag

— The lowest M bits are the Byte Select (Block Size = 2M)

hit

31 9 4 0
Cache Tag Example: 0x5Q Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Tags: metadata to enable us
to check whether we have a
Valid Bit Cache Tag Cache Data
Byte 31 """ |Byte 1| Byt¢ 0] 0
0x50 Byte 6 Byte 33 Byté 32 1+—
2
3
Byte 1023 Byte 992 31

Direct-mapped cache - storage

Data: the cached data itself,
arranged in cache lines/blocks



1 KB “Direct Mapped” Cache, 32B blocks

« For a 2N byte cache:

— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size = 2M)

31 9 4 0
Cache Tag Example: 0x50 Cache Index Byte Select
. Ex: 0x01 Ex: 0x00
Load address issued by processor | L
Valid Bit Cache Tag Cache Data
Byte 31| ** [Byte 1 [Byte 0 [0
0x50 Byte63 " * [Byte;33[Byte 32| 1+—
2
3
Byt¢ 1023 Byte|992 31
v JV v \ 4
- Coméaré) \ /

Direct-mapped cache — read access QHit

lData



Block
number

(0)

© O N o u A~ W N = o

N NN N N N N N =2 =S A a2 a2 oA A oA -
N o g A W N =2 O © 0o N o a »~ W N = oo

nN
©

Block *
30
number,,

(32) 32

Block#32= 34

address 1024

1 KB Direct Mapped Cache, 32B blocks

32-byte blocks of data in memory

35 1

# Cache location 0 can be occupied
by data from main memory
location 0, 32, 64, ... etc.

4 Cache location 1 can be occupied
by data from main memory
location 1, 33, 65, ... etc.

E In general, all locations with same
Address<9:4> bits map to the same
location in the cache Which one
should we place in the cache?

4+ How can we tell which one is in
the cache?

32-byte cache lines

Byte 31 | .. |Byte1 || Byte 0
Byte 63 - | Byte 33 Byte 32
Byte 1023 Byte 992

W N = O

31

15



Associativity conflicts in a direct-mapped cache

+ Consider a loop that repeatedly reads
part of two different arrays:

int A[256];

int B[256];

intr=0;

for (int i=0; i<10; ++i) {
for (int j=0; j<64; ++j) {

r+=A[j] + BLI;

}

}

For the accesses to A and B to be
mostly cache hits, we need a cache
big enough to hold 2x64 ints, ie
512B

Repeatedly
re-reads 64
values from

both A and B

Consider the 1KB direct-mapped
cache on the previous slide - what
might go wrong?

A

A+0

A+32

A+32%*2

A+32*3

B+0

B+32

B+32*2

B+32*3

A

A

64x4=256Bytes

ie 8 32B cache
lines

64x4=256Bytes

ie 8 32B cache
lines

18



Associativity conflicts in a direct-mapped cache

+ Consider a loop that repeatedly reads
part of two different arrays:

int A[256];
int B[256];
intr=0;
for (int i=0; i<10; ++i) { R—
for (int j=0; j<64; ++j) { TR
r += A[j] + BIjl; values from

both A and B

}
}

For the accesses to A and B to be
mostly cache hits, we need a cache
big enough to hold 2x64 ints, ie
512B

Consider the 1KB direct-mapped
cache on the previous slide - what
might go wrong?

A+32

A+32%2

A+32*3

B+0

B+32

B+32*2

B+32*3

Array B is
located
exactly 1024
bytes after

array A

19



Direct-mapped Cache - structure

« Capacity: C bytes (eg 1KB)

« Blocksize: B bytes (eg 32)

« Byte select bits: 0..log(B)-1 (eg 0..4)

« Number of blocks: C/B (eg 32)

« Address size: A (eg 32 bits)

« Cache index size: I=log(C/B) (eg log(32)=5)
« Tag size: A-lI-log(B) (eg 32-5-5=22)

Cache Index
Valid Cache Tag Cache Data

Cache Block (

l Cache Block



Two-way Set Associative Cache

* N-way set associative: N entries for each Cache Index
— N direct mapped caches operated in parallel (N typically 2 to 4)

 Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— The two tags in the set are compared in parallel
— Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block ( Cache Block 0

1 Cache Block



Disadvantage of Set Associative Cache

* N-way Set Associative Cache v. Direct Mapped Cache:
— N comparators vs. 1
— Extra MUX delay for the data
— Data comes AFTER Hit/Miss

* |n a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:
— Possible to assume a hit and continue. Recover later if miss.

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block ( Cache Block 0

I Cache Block



Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

¢ Capacity: 8K bytes (total amount of data cache can store)

¢+ Block: 64 bytes (so there are 8K/64=128 blocks in the cache)

¢ Ways: 4 (addresses with same index bits can be placed in one of 4 ways)
# Sets: 32 (=128/4, that is each RAM array holds 32 blocks)

¢ Index: 5 bits (since 2°=32 and we need index to select one of the 32 ways)
¢ Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
¢ Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block ( Cache Block 0

I Cache Block



4 Questions for Memory Hierarchy

* Q1: Where can a block be placed in the upper
level?

— Block placement

« Q2: How is a block found if it is in the upper
level?

— Block identification
* Q3: Which block should be replaced on a miss?
— Block replacement

* Q4: What happens on a write?
— Write strategy



Q1: Where can a block be placed in the upper level?

In a direct-mapped cache, block 12 can only be placed in one cache
location, determined by its low-order address bits —
—1 (12 mod 8) =4

~NOoOORWN-O

Set o ﬂi In a two-way set-associative cache, the set is determined by its low-
2 order address bits —
3 (12 mod 4) =

Block 12 can be placed in either of the two cache locations in set 0

[ o — — ——— —

In a fully-associative cache, block 12 can be placed in any location in the cache

# More associativity:
¢ More comparators — larger, more energy
# Better hit rate (diminishing returns)
+ Reduced storage layout sensitivity — more predictable



Q2: How is a block found if it is in the upper level?

Valid Cache Tag Cache Data

Cache Block (

Cache Index
Cache Data

Cache Tag Valid

Cache Block 0

Mux © Selg/_C_

Hitl

« Tag on each block

I Cache Block

— No need to check index or block offset

Block Address

Tag

Index

Block
Offset

—

—

 Increasing associativity shrinks index, expands tag



Q3: Which block should be replaced on a miss?

* With Direct Mapped there is no choice

« With Set Associative or Fully Associative we want to
choose

— |deal: least-soon re-used

— LRU (Least Recently Used) is a popular approximation
— Random is remarkably good in large caches

Assoc: 2-way 4-way 8-way
Size LRU Ran [LRU Ran |LRU Ran
16 KB | 5.2% 35.7%|4.7% 5.3% [(44% 5.0%
64 KB | 1.9% 20%|1.5% 1.7% [14% 1.5%
256 KB [1.15% 1.17% |1.13% 1.13%|1.12% 1.12%

Benchmark studies show that LRU beats random only with small caches

LRU can be pathologically bad....... there are better strategies



Q4: What happens on a write?

o Write through—The information is written to
both the block in the cache and to the block
In the lower-level memory

» Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.

— is block clean or dirty?

* Pros and Cons of each?
— WT: read misses cannot result in writes

— WB: absorbs repeated writes to same
location

 WT always combined with write buffers so
that we don’t wait for lower level memory



Caches are a big topic

e Cache coherency

— If your data can be in more than one cache, how do you
keep the copies consistent?

e Victim caches

— Stash recently-evicted blocks in a small fully-associative
cache (a “competitive strategy”)

* Prefetching

— Use a predictor to guess which block to fetch next —
before the processor requests it

e And much much more........



What's at the bottom of the memory hierarchy?
StorageTek STK 9310 (“Powderhorn™) =

2,000, 3,000, 4,000, 5,000, or 6,000
cartridge slots per library storage module
(LSM)

Up to 24 LSMs per library (144,000
cartridges)

120 TB (1 LSM) to 28,800 TB capacity (24
LSM)

Each cartridge holds 300GB, readable up to
40 MB/sec

Up to 28.8 petabytes

Ave 4s to load tape

2017 product: Oracle SL8500

Up to 1.2 Exabyte per unit

Combine up to 32 units into single
robot tape drive system
http://www.oracle.com/us/products/ser
vers-storage/storage/tape-
storage/034341.pdf

= | -

inside-suns-multi-storey-colorado-data-centre-135385/pagel



b J bt

RNRR A S A R RN

/ 1111y
_‘_.Ll_.L&L.LLLLLLL ,,,,,,,,,,,,,,, o

(LAAbSA RS

AL ,._&-&M;J_-k-'_';'kl'b,bkb\- LL

IBM System Storage Tape Library ts3500 ts4500 TS peerTrI— S i
~"‘nuu/.u_ Y Lt @ gy ?.x
gm“.““ ' ' ) ‘ ‘L ; \ \\

Ll | Lo Ll % N
Qu“‘““!- ALl : LLLLt LLLLLLLL ‘ Lﬁ 3
30-50TB/cartridge "““‘L e !‘ ‘ . }

~400MB/s throughput per drive
Up to 128 drives/library

Up to 17,550 cartridges/library
Up to 877.5 exabytes/library

StorageTek Powderhorn before disassembly, CERN 2007

Datasheet: https: .ibm. documents/us-en/10¢31775c¢6d400a0
http://www.flickriver.com/photos/naezmi/2074280052/#large


https://www.youtube.com/watch?v=CVN93H6EuAU&list=PLp5rLKqrfZu_EvvnFM1HDptl_n0k5Th_q
https://www.ibm.com/downloads/documents/us-en/10c31775c6d400a0
https://www.ibm.com/downloads/documents/us-en/10c31775c6d400a0
https://www.ibm.com/downloads/documents/us-en/10c31775c6d400a0
http://www.flickriver.com/photos/naezmi/2074280052/#large

Can we live without cache?

« Interesting exception: Cray/Tera MTA, first
delivered June 1999:

— www.cray.com/products/systems/mta/

| « Each CPU switches every cycle between
128 threads

« Each thread can have up to 8 outstanding
memory accesses

3D toroidal mesh interconnect

« Memory accesses hashed to spread load
across banks

« MTA-1 fabricated using Gallium Arsenide,
not silicon

« “nearly un-manufacturable” (wikipedia)

* Third-generation Cray XMT:
— http://www.cray.com/Products/XMT.aspx

— YarcData's uRiKA
(http://www.yarcdata.com/products.html)



http://www.cray.com/products/systems/mta/
http://www.cray.com/products/systems/mta/
http://www.cray.com/Products/XMT.aspx
http://www.cray.com/Products/XMT.aspx
http://www.yarcdata.com/products.html

Summary:

¢ Without caches we are in trouble | e will look at various

: techniques to exploit
¢ DRAM access times are - 9 P

commonly >100 cycles memory par::xllellsm to
overcome this —

especially in GPUs

—

¢ Without locality caches won’t help
# Spatial vs temporal locality

¢ Direct-mapped h We will see similar structures,
# Set-associative — and issues, in branch
¢ Associativity conflicts B predictors, prefetching etc

# Policy questions: _

_ We will see similar choices in
¢ Write-through —  cache coherency protocols
+ Write-back for multicore

¢ Many more — see next chapter!



Next:
Discussion exercise — the “Turing Tax”
Then dynamic scheduling

Then a deeper dive into caches and the
memory hierarchy



In response to a student question:

* There is a tag for each 32-byte cache block (and in the 1KB cache, there
would, as you say, be 32 blocks, since 1024=32x32).

* Two adjacent cache blocks could (normally will) hold 32-byte blocks from
different parts of the memory.

* In a fully-associative cache we would have a tag and a tag comparator for
every 32-byte block.

* Inadirect-mapped cache, we have a tag for every block, but only one tag
comparator.

* Thisis cheaper, faster and lower-power. But in order to make it work, we
use some of the low-order address bits to index the cache - to select just
one cache block. If its tag matches, we have a hit. If not, we
don't. Similarly, when data is allocated into the cache. the same index bits
are used to select the cache block that will be used (perhaps displacing
whatever was there before).

* This means that different addresses that happen to have the same index
bits map to the same cache block. So only one of them can be in the cache
at the same time.



Running long simulations... (helpful student’s edstem post)

Hello! Here is a quick list of tips I've picked up when running remote workloads on
the lab machines.

*| presume you are familiar with SSH-ing into the machines, normally | SSH with 2
hops (you should not run any apps on the shell servers, as far as | know they are
meant only for accessing the DoC network): my laptop -> shell[1-5].doc.ic.ac.uk ->
[your chosen lab machine]. Also, | have found that at rare times the shell servers can
be slow. Either try another one or use the Imperial VPN and skip the first hop. Here is
a list of lab machines for your convenience: link.

*Now, to find an empty lab machine, try to run htop.

*Here is some sample output, you can see in the first image an empty machine (low
ram/CPU usage) and after that a busy one. To quit just press q.

164

0.190.29
5 days, 15:47:43

135
5.07 4.06
11 days, 19:48:20



https://www.imperial.ac.uk/computing/people/csg/facilities/lab/workstations/

Running long simulations... (helpful student’s edstem post)

» To make your session persistent you can use GNU Screen.

* Just type screen in your terminal and it should open up a
new bash session.

* You can do your work there, and when you are ready to
leave just type CTRL-A-D to minimise the session - it should
now persist even if you log out!

* To list your sessions, type screen -1s.

« When you are ready to reconnect, just SSH into the same
machine and run screen -r (potentially pass the name of the
session as well if you have multiple). Don't forget to close
your sessions when you are done (a simple exit will do).

Finally, a caveat: checkpoint your work - if your machine gets
reset for whatever reason you will loose your sessions.



Feeding curiosity

 Does LRU have pathological worst-case behaviour? How much worse might
it be than an optimal replacement policy?
— See: Some Mathematical Facts About Optimal Cache Replacement, Pierre Michaud,
ACM TACO 2016 https://dl.acm.org/doi/pdf/10.1145/3017992

e What could be better than LRU?

— See: High performance cache replacement using re-reference interval prediction
(RRIP), Aamer Jaleel et al, ISCA’10
https://dl.acm.org/doi/abs/10.1145/1815961.1815971

 Can we reason about the efficiency of programs in a way that takes into
account how well they will use the memory hierarchy — can we reason
about the asymptotic complexity of programs as the distance to memory
grows?

— See: The Uniform Memory Hierarchy Model of Computation, Alpern et al,
Algorithmica 1994 https://link.springer.com/content/pdf/10.1007/BF01185206.pdf

 As memory gets bigger, latency gets worse. But we could pipeline it?
Under what circumstances does an algorithm’s time complexity depend on
memory latency?

— See: On approximating the ideal random access machine by physical machines,
Bilardi et al JACM 2009 https://dl.acm.orq/doi/10.1145/1552285.1552288



https://dl.acm.org/doi/pdf/10.1145/3017992
https://dl.acm.org/doi/abs/10.1145/1815961.1815971
https://link.springer.com/content/pdf/10.1007/BF01185206.pdf
https://dl.acm.org/doi/10.1145/1552285.1552288
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