
1

October 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and

Patterson’s Computer Architecture, a quantitative approach (4-6th ed), and

on the lecture slides of David Patterson’s Berkeley course (CS252)

COMP60001/COMP70086

Advanced Computer Architecture

Chapter 2: part 1

Dynamic scheduling, out-of-order execution, register

renaming

(and, in part 2, speculative execution)

Hennessy and Patterson 6th ed Section
3.4 & 3.5, pp191-208

3

HW Schemes: Instruction Parallelism

• Key idea: Allow instructions behind stall to
proceed
 DIVD F0,F2,F4
 ADDD F10,F0,F8
 SUBD F12,F8,F14

• Enables out-of-order execution
and allows out-of-order completion

• We will distinguish when an instruction is
issued, begins execution and when it
completes execution; between these two
times, the instruction is in execution

• In a dynamically scheduled pipeline, all
instructions pass through issue stage in
order (in-order issue)

IF ID EX EX EX EX EX EX EX EX EX EX WB
EX M WB

IF ID EX M WB
IF ID

4

• InstrJ is data dependent on InstrI

InstrJ tries to read operand before InstrI writes it

• or InstrJ is data dependent on InstrK which is

dependent on InstrI

• Caused by a “True Dependence” (compiler term)

• If true dependence caused a hazard in the pipeline,

called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

What constrains execution order?

#1:

5

• Name dependence: when two instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated with
that name

• There are two kinds:

• Name dependence #1: anti-dependence/WAR

InstrJ writes operand before InstrI reads it:

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Name Dependence: Anti-dependence

#2:

6

Another name Dependence: Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

#3:

7

RO

Dynamic Scheduling Step 1

• Simple pipeline had one stage to check both structural and

data hazards: Instruction Decode (ID), also called Instruction

Issue

• Split the ID pipe stage of simple 5-stage pipeline into 2

stages:

• Issue: Decode instructions, check for structural hazards

• Read operands: Wait until no data hazards, then read

operands

Instructions are issued in-order
But may stall at the Read Operands stage while others execute

DIVD F0,F2,F4

 ADDD F10,F0,F8

 SUBD F12,F8,F14

IF IS EX EX EX EX EX EX EX EX EX EX WB
EX M WB

IF IS EX M WB
IF IS

8

Tomasulo’s Algorithm
• For IBM 360/91 (before caches!)

• Goal: High Performance without special compilers

• Small number of floating point registers in the
instruction set (4 in IBM 360)

– prevented static compiler scheduling of operations

– This led Tomasulo to try to figure out how to increase the
effective number of registers — renaming in hardware!

• Why study a 1966 Computer?

• The descendents of this have flourished!

– Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium
II/III/4, Core, Core2, Nehalem, Sandy Bridge, Ivy Bridge,
Haswell, AMD K5,K6,Athlon, Opteron, Phenom, PowerPC
603/604/G3/G4/G5, Power 3,4,5,6, ARM A15, …

9IBM360/91

NASA's Space Flight Center in Greenbelt, Md, January 1968

NASA Center for Computational Sciences

Source: http://www.columbia.edu/acis/history/36091.html

▪ Solid Logic Technology

(SLT), an IBM invention

which encapsulated 5-6

transistors into a small

module--a transition

technology between

discrete transistors and the

IC

▪ About 12 were made

▪ CPU cycle time: 60 nanoseconds

▪ memory cycle time (to fetch and store

eight bytes in parallel): 780ns

▪ Standard memory capacity: 2,097,152B

interleaved 16 ways (magnetic cores)

▪ Up to 6,291,496 bytes of main storage

▪ Up to 16.6-million additions/second

▪ Ca.120K gates, ECL

See:
Some Reflections on Computer Engineering: 30

Years after the IBM System 360 Model 91
Michael J. Flynn
ftp://arith.stanford.edu/tr/micro30.ps.Z

10

h
tt

p
:/

/w
w

w
.c

o
lu

m
b

ia
.e

d
u

/c
u

/c
o

m
p

u
ti

n
gh

is
to

ry
/3

6
0

9
1

.h
tm

l

13

Tomasulo – closer look at instruction processing

Opcode Operand1 Operand2

Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Issue: •Each instruction is issued in order

•Issue unit collects operands from the two instruction’s source registers

•Result may be a value, or, if value will be computed by an uncompleted

instruction, the tag of the RS to which it was issued.

•When instruction 1 is issued, F0 is updated to get result from MUL1

•When instruction 3 is issued, F0 is updated to get result from MUL2

Instruction

fetch

queue

Registers

Containing

either values

or tags
Multiple non-pipelined

functional units

14

Tomasulo – closer look at instruction processing

Opcode Operand1 Operand2

Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Issue: •Each instruction is issued in order

•Issue unit collects operands from the two instruction’s source registers

•Result may be a value, or, if value will be computed by an uncompleted

instruction, the tag of the RS to which it was issued.

•When instruction 1 is issued, F0 is updated to get result from MUL1

•When instruction 3 is issued, F0 is updated to get result from MUL2

15

Opcode Operand1 Operand2

Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Write-back: Common data bus•Instructions may complete out of order

•Result is broadcast on CDB

•Carrying tag of RS to which instruction was originally issued

•All RSs and registers monitor CDB and collect value if tag matches

•Any RS which has both operands and whose FU is free fires.

•When MUL1 completes result goes to store unit but not F0

Tomasulo – closer look at instruction processing

16

What trickery is this?

17

Opcode Value F1 Value F2

Reservation station MUL1 RS MUL2 RS Store1

Multiply unit 1 Mul unit 2 Store unit 1

RS Store2

Store unit 2

MUL1 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus• Instruction 1 is Issued:

• reservation station MUL1 is selected since it’s free

• tag of F1 is null so its value is routed to MUL1’s operand 1

• tag of F2 is null so its value is routed to MUL1’s operand 2

• tag of F0 is updated with id of MUL1, indicating that its value

 will come from MUL1

Tomasulo – Walkthrough

18

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

MUL1 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Walk through: Common data bus• Instruction 2 is Issued:

• reservation station Store 1 is selected since it’s free

• tag of F0 is MUL1 so its tag is routed to Store 1’s operand

• address X is routed to Store 1

Tomasulo – Walkthrough

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

19

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

MUL2 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Walk through: Common data bus• Instruction 3 is Issued:

• reservation station MUL2 is selected since it’s free

• tag of F2 is null so its value is routed to MUL2’s operand 1

• tag of F3 is null so its value is routed to MUL2’s operand 2

• tag of F0 is overwritten with id of MUL2, indicating that its

 value will come from MUL2

Tomasulo – Walkthrough

F2 F3

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

20

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

MUL2 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Walk through: Common data bus• Instruction 4 is Issued:

• reservation station Store 2 is selected since it’s free

• tag of F0 is MUL2 so its tag is routed to Store 2’s operand

• address Y is routed to Store 2

Tomasulo – Walkthrough

F2 F3

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

Y MUL2

RS Store2

Store unit 2

21

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

MUL2 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Walk through: Common data bus• Multiply unit 1 finishes:

• It broadcasts its result on the Common Data Bus (CDB)

• carrying the tag “MUL1”

• Store 1 monitors the CDB, is waiting for a value with tag “MUL1”

• Store 1 picks up the value and stores it to memory

• (Register F0 ignores this because it is waiting for a different tag)

Tomasulo – Walkthrough

F2 F3

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

Y MUL2

RS Store2

Store unit 2

22

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

MUL2 Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus• Multiply unit 2 finishes:

• It broadcasts its result on the Common Data Bus (CDB)

• carrying the tag “MUL2”

• Store 2 monitors the CDB, is waiting for a value with tag “MUL2”

• Store 2 picks up the value and stores it to memory

• Register F0 monitors CDB, sees “MUL2”, updates its value, sets F0’s tag to “null”

Tomasulo – Walkthrough

F2 F3

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

Y MUL2

RS Store2

Store unit 2

23

Opcode Value F1 Value F2

Reservation station MUL1

Multiply unit 1

null Value F0

null Value F1

null Value F2

Tag Value F3

SD F0, Y

MUL F0, F2, F3

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus• Multiply unit 2 finishes:

• It broadcasts its result on the Common Data Bus (CDB)

• carrying the tag “MUL2”

• Store 2 monitors the CDB, is waiting for a value with tag “MUL2”

• Store 2 picks up the value and stores it to memory

• Register F0 monitors CDB, sees “MUL2”, updates its value, sets F0’s tag to “null”

Tomasulo – Walkthrough

F2 F3

RS MUL2

X MUL1

RS Store1

Mul unit 2 Store unit 1

Y MUL2

RS Store2

Store unit 2

24Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station free (no structural hazard),

control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
 When both operands ready then execute;

 if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting units;

mark reservation station available

Two buses:

• Normal data bus: data+destination (“go to” bus)
– Used at Issue

• Common data bus: data+source (“come from” bus)
– Used at WB
– 64 bits of data + 4 bits of Functional Unit source address

– Write if matches expected Functional Unit (produces result)

– Does the broadcast

• Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

25

360/91 pipeline

See: The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling,by D. W. Anderson,

F. J. Sparacio, R. M. Tomasulo. IBM J. R&D (1967), http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

11-12 circuit levels per pipeline stage, of 5-6ns each

CPU consists of three physical frames, each having
dimensions 66" L X 15" D X 78" H

http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

26

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620

– Many associative stores (CDB) at high speed

• Performance limited by Common Data
Bus
– Each CDB must go to multiple functional units
high capacitance, high wiring density

– Number of functional units that can complete per
cycle limited to one!

• Multiple CDBs  more FU logic for parallel
assoc stores

• Non-precise interrupts!
– We will address this later

27

Why can Tomasulo overlap iterations of loops?

• Register renaming

– Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

• Reservation stations

– Permit instruction issue to advance past integer control flow

operations

– Also buffer old values of registers - totally avoiding the WAR stall

(in contrast with a “scoreboard” design that doesn’t do register

renaming).

• Other perspective:

– The CDB is doing forwarding, bypassing the registers

– Builds the data flow dependency graph on the fly

29

Tomasulo Loop Example

Loop:

 LD F0 0(R1)

 MULTD F4 F0 F2

 SD F4 0(R1)

 SUBI R1 R1 #8

 BNEZ R1 Loop

• Assume floating-point multiply takes 4 clocks

• Suppose loads take 8 clocks (L1 cache miss)
((Actually each L1 cache miss would load a cache line of several
words, and prefetching might reduce latency of next fetch))

((example counts R1 down to 0 in order to simplify the loop for
the sake of the example))

• Assume that integer instructions don’t use the CDB

• Assume SD doesn’t use the CDB

31

Tomasulo Loop Example
LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

I
t
e
r

1

I
t
e
r

2

I
t
e
r

3

I
t
e
r

4

I
t
e
r

5

At this point four
iterations of the
loop are in-flight
in parallel

Eight cycle load latency
Wait for load

Wait for multiply
(four cycle multiply)

32

Tomasulo Loop Example
LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS EX MM WB

IF IS RO EX EX EX EX WB

IF IS RO MM WB

IF IS EX MM WB

IF IS EX MM WB

I
t
e
r

1

I
t
e
r

2

I
t
e
r

3

I
t
e
r

4

I
t
e
r

5

Eight cycle load latency
Wait for load

Wait for multiply
(four cycle multiply)

(L1 cache hit)

(L1 cache hit)

(L1 hit)

Suppose
second load
is an L1
cache hit

33

Summary: Tomasulo

• RAW, WAR and WAW hazards

• Tomasulo overcomes WAR and WAW hazards by dynamically

allocating operands to reservation stations at issue time

– Register renaming, seen more explicitly in later designs

• Tomasulo’s CDB is a kind of “forwarding” path – that routes

operands from completing FUs to where they are needed

– In multi-issue processors this gets a lot more complicated!

• Tomasulo’s scheme relies on associative tag matching

– Later designs assign physical registers explicitly to avoid this

• Tomasulo’s scheme enables multiple FUs to operate in

parallel

– Even across loop iterations

34

Student questions:
Consider this example:
1- MUL F0, F1, F2
2- MUL F0, F0, F3
3- SD F0, X
Let iX denote instruction X (example: i1 denotes the first instruction)
If I understood correctly:
• a- i1 will check that dependencies F1 and F2 are free, reserves a MUL1 station, and tags F0 with

MUL1
• b- i2 finds out F0 is awaiting result. It reserves a MUL2 station with operands MUL1 (tag of F0) and

F3, then tags F0 with MUL2, and awaits a MUL1 tag check from CDB
• c- i3 reserves a Store1 station, with operands MUL2 and X, and awaits CDB MUL2 tag
• d- MUL1 station finishes executing i1. MUL1 tag propagates through CDB and triggers station MUL2
• e- MUL2 station can now execute and finishes executing i2. MUL2 tag propagates through CDB and

triggers station Store1. It also writes over F0 value (and sets its tag to NULL?)
• f- Store1 executes and finishes

Another example:
1- MUL F0, F1, F2
2- MUL F0, F0, F3
3- ADD F3, F1, F2
4- SD F0, X
“If F3 was just wired to i2 MUL2 station, then ADD would have changed the value and that's a WAR
hazard”?
• F3 is read for i2 at i2's *issue* time. Whatever is there (value or tag) is *copied* to the ADD

reservation station.
• So when i3 overwrites F3, it's fine because the MUL2 RS is already holding the right thing for its F3

operand.

35

Student questions:
Yes basically the natural way to extend Tomasulo to support >1 instruction per cycle is
to build multiple CDBs.
Which means that every unit that monitors the CDB now has to monitor (and do a tag
comparison on every CDB transaction) on all the CDBs.
We don't have time to dive into how to do better than this but it's possible. A starting
point for understanding how is
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf .

If you really want to dive deep, here's a link into the documentation for BOOM, an
open-source multi-issue out-of-order processor design: https://docs.boom-
core.org/en/latest/sections/reorder-buffer.html#the-commit-stage .
From there you can find the code that does it. See: https://github.com/riscv-
boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala eg from line 401.

Incidentally we discussed what happens when multiple instructions complete at the
same time - we get contention for the CDB(s). We might wonder what the best policy
for selecting which one should go first is. This paper tries to provide an answer for
what the optimal thing to do is: Lin-and-Tian.pdf (washington.edu)
By the way:
Bio: https://en.wikipedia.org/wiki/Robert_Tomasulo
Paper: R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic
Units," in IBM Journal of Research and Development, vol. 11, no. 1, pp. 25-33, Jan.
1967, doi: 10.1147/rd.111.0025.
https://www.cs.virginia.edu/~evans/greatworks/tomasulo.pdf
Talk: http://leccap.engin.umich.edu/leccap/player/r/pvSbKs

https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://en.wikipedia.org/wiki/Robert_Tomasulo
https://www.cs.virginia.edu/~evans/greatworks/tomasulo.pdf
http://leccap.engin.umich.edu/leccap/player/r/pvSbKs

36

Student question – pathway to real stuff:
Q:

• What would I need beyond this course to go about designing hardware? I've seen some work by professors to
do with FPGA, but its not super clear to me what that takes.

• Say you had some algorithm that felt could be implemented with a digital circuit, what would you do?

We have other students in the class with excellent experience, both at university and in industry, to address your question.

• The ACA course is primarily about designing processors - for which you would probably use a Register Transfer Level (RTL, Register-
transfer level - Wikipedia) programming model. Popular languages for this include Verilog, VHDL and Chisel (a DSL embedded in Scala).
Basically you write code that describes the wiring of a digital circuit. You can then run it on your PC in simulation (see Verilator for
example), or compile to an FPGA configuration, or (via a more involved route) to a VLSI layout.

• What architects actually do is use a hierarchy of models - for example using gem5 to simulate the microarchitecture at the block-
diagram level (this is basically the level at which this course operates). You might then have a "cycle accurate" model, for example built
using SystemC (though not everyone does this). Then you would elaborate this into an RTL design - where you have to describe a digital
circuit that actually does the work that needs to be done in each clock cycle.

• RTLs like Verilog have further subtleties - you can write "behavioural" Verilog, that works in simulation, but to generate actual hardware
you need to write in "synthesisable" Verilog.

• Particular companies typically have a rich ecosystem of modelling and verification tools, and there is also a large ecosystem of
verification and testing tools.

• This all sounds a bit abstract. You can go and read the source code (in Chisel) for a non-trivial CPU architecture here: GitHub - riscv-
boom/riscv-boom: SonicBOOM: The Berkeley Out-of-Order Machine (https://github.com/riscv-boom/riscv-boom) ; see the
documentation here https://boom-core.org/ (you can also find source code for much simpler CPU designs elsewhere of course).

• So for example this week's lecture on Tomasulo's algorithm introduces out-of-order architecture. Check it out for real here:
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html . Go read the code for the ROB here: https://github.com/riscv-
boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala (the ROB is actually not covered until the next lecture, on speculative
execution).

BUT: you also ask about accelerator architecture - ie a digital circuit to compute some specific thing, in contrast to a general-purpose CPU.

• For this there are tools like look more like software - High-Level Synthesis (HLS) (https://en.wikipedia.org/wiki/High-level_synthesis).
Although there have been many high-level synthesis tools, these days people usually mean you start from C code and add directives to
specify how the C code should be mapped into hardware. There are of course also high-level tools that start from a more domain-
specific representation, such as a deep neural network.

https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://boom-core.org/
https://boom-core.org/
https://boom-core.org/
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis

	Slide 1: COMP60001/COMP70086 Advanced Computer Architecture Chapter 2: part 1 Dynamic scheduling, out-of-order execution, register renaming (and, in part 2, speculative execution)
	Slide 3: HW Schemes: Instruction Parallelism
	Slide 4: Data Dependence and Hazards
	Slide 5: Name Dependence: Anti-dependence
	Slide 6: Another name Dependence: Output dependence
	Slide 7: Dynamic Scheduling Step 1
	Slide 8: Tomasulo’s Algorithm
	Slide 9: IBM360/91
	Slide 10
	Slide 13: Tomasulo – closer look at instruction processing
	Slide 14: Tomasulo – closer look at instruction processing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Three Stages of Tomasulo Algorithm
	Slide 25: 360/91 pipeline
	Slide 26: Tomasulo Drawbacks
	Slide 27: Why can Tomasulo overlap iterations of loops?
	Slide 29: Tomasulo Loop Example
	Slide 31: Tomasulo Loop Example
	Slide 32: Tomasulo Loop Example
	Slide 33: Summary: Tomasulo
	Slide 34: Student questions:
	Slide 35: Student questions:
	Slide 36: Student question – pathway to real stuff:

