COMP60001/COMP70086
Advanced Computer Architecture
Chapter 2: part 1

Dynamic scheduling, out-of-order execution, register
renaming
(and, in part 2, speculative execution)

October 2025
3.4 & 3.5, pp191-208 Paul H J Kelly

Hennessy and Patterson 6% ed Section

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (4-6" ed), and
on the lecture slides of David Patterson’s Berkeley course (CS252)

HW Schemes: Instruction Parallelism

« Key idea: Allow instructions behind stall to

proceed
DIVD FO,F2,F4 IF ID EXEXEXEXEXEXEXEXEXEXWB

ADDD F10,FO,F8 IF ID EX M WB
SUBD F12,F8,F14

« Enables out-of-order execution
and allows out-of-order completion

* We will distinguish when an instruction is
Issued, begins execution and when it
completes execution; between these two
times, the instruction is in execution

* In a dynamically scheduled pipeline, all
instructions pass through issue stage Iin
order (in-order issue)

3

Data Dependence and Hazards

What constrains execution order?

mlnstrJ is data dependent on Instr,

Instr, tries to read operand before Instr, writes it

|: add r1,r2,r3
J:subrd,r1,r3

 orInstr, is data dependent on Instry which is
dependent on Instr,

« Caused by a “True Dependence” (compiler term)

* |f true dependence caused a hazard in the pipeline,
called a Read After Write (RAW) hazard

Name Dependence: Anti-dependence

Name dependence: when two instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated with
that name

* There are two kinds:
« Name dependence #1: anti-dependence/WAR
Instr, writes operand before Instr, reads it:

|: sub r4,r1,r3
J:add r1,r2,r3
K: mul r6,r1,r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

« If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

Another name Dependence: Output dependence

m Instr, writes operand before Instr, writes it.

|: sub r1,r4,r3
J:add r1,r2,r3
K: mul r6,r1,r7

« Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

 |f anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

6

Dynamic Scheduling Step 1

DIVD ~ FO,F2,F4
ADDD F10,FO,F8 IF IS RO EX M WB

SUBD F12,F8,F14

Simple pipeline had one stage to check both structural and
data hazards: Instruction Decode (ID), also called Instruction
Issue

Split the ID pipe stage of simple 5-stage pipeline into 2
stages:

Issue: Decode instructions, check for structural hazards

Read operands: Wait until no data hazards, then read
operands

Instructions are issued in-order

But may stall at the Read Operands stage while others execute

Tomasulo’s Algorithm

For IBM 360/91 (before caches!)
Goal: High Performance without special compilers
Small number of floating point registers in the

instruction set (4 in IBM 360)

— prevented static compiler scheduling of operations

— This led Tomasulo to try to figure out how to increase the
effective number of registers — renaming in hardware!

Why study a 1966 Computer?

The descendents of this have flourished!

— Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium
[I/111/4, Core, Core2, Nehalem, Sandy Bridge, Ivy Bridge,
Haswell, AMD K5,K6,Athlon, Opteron, Phenom, PowerPC
603/604/G3/G4/G5, Power 3,4,5,6, ARM A15, ...

CPU cycle time: 60 nanoseconds
memory cycle time (to fetch and store
eight bytes in parallel): 780ns

Standard memory capacity: 2,097,152B
interleaved 16 ways (magnetic cores)
Up to 6,291,496 bytes of main storage
Up to 16.6-million additions/second
Ca.120K gates, ECL

b o == ¢ : : : Solid Logic Technology

ot o e I (SLT), an IBM invention

O R s pe ' . which encapsulated 5-6
transistors into a small
module--a transition
technology between
discrete transistors and the
IC
About 12 were made

NASA Center for Computational Sciences

See:
Some Reflections on Computer Engineering: 30 “
Years after the IBM System 360 Model 91 |\
Michael J. Flynn
ftp://arith.stanford.edu/tr/micro30.ps.Z

Source: http://www.columbia.edu/acis/history/36091.html l‘

_“l/ ;.. B \

NASA's Space Flisht Center in Greenbelt, Md, January 1968 »

)

00000 0000000000000000 0000000 0000000
00000 0000000000000000 0000000 eeedebO0
00000 000000000000 0000 0000000 coeooo00
00000 000000000000000000000000 06000600006
00000 COO0COO00000000000000000 00000000
00000 000000000000000000060000 ©oe00000

0008000000000000000000 0000000 00000000
0000000000000000000000 0000000 00000000
000000000.0.0.00000000 0000000 00000000
e00000000 000000000 0000000 tooo00000
00000000 00000000

000000000 000000000

000000004 000000000

YLLEIYY SIIENONY 1y1dvess

000000000000060060000
00000000000060606060000
0000000000000060000
00000000000006060000
000080000060006000000
0000000000000000000
00000000000006000000
0000000000000000000
00000000000600006000
0000000000000000000
0000000000000000000
0000000000000000000
0000000000000000000
0000000000000000000

&
)
<
—
(@)
o
(o]
Q
>
(@]
)
2]
<
lo]0]
[
]
>
o
&
(@]
S~
o
S~
>
©
v
.0
o]
&
=
(@]
O
=
=
2
S~

http

Tomasulo — closer look at instruction processing

Opcode

4 — [Tagi NElEeRs Fo
2 [Tag | [Value | F1
1 [Tag | [Value | F2
[Tag | [Value | F3

a

A

A

Issue:

\4

\

\
y

Operand valug‘s_/tags

*Each instruction is issued in orde
Issue unit collects operands from the two instruction’s source registers

*Result may be a value, or, if value will be computed by an uncompleted
instruction, the tag of the RS to which it was issued.

*When instruction 1 is issued, FO is updated to get result from MUL1
*When instruction 3 is issued, FO is updated to get result from MUL2

13

Tomasulo — closer look at instruction processing

4 —— |G WEGEE Fo

[Tag | [Value | F1
[Tag | [Value | F2
[Tag | [Value | F3

a

3
2
1

Issue:

Operand values/tags

*Each instruction is issued in order

Issue unit collects operands from the two instruction’s source registers
*Result may be a value, or, if value will be computed by an uncompleted
instruction, the tag of the RS to which it was issued.

*When instruction 1 is issued, FO is updated to get result from MUL1
*When instruction 3 is issued, FO is updated to get result from MUL2

14

Tomasulo — closer look at instruction processinng
[(Tag] [Value | FO
Tag | (Value] F1
I NEE
O NEIE 3

Operand values/t;gs

A

>
Write-back: -Instructions may complete out of order Common data bus
*Result is broadcast on CDB
*Carrying tag of RS to which instruction was originally issued
*All RSs and registers monitor CDB and collect value if tag matches
*Any RS which has both operands and whose FU is free fires.
*When MUL1 completes result goes to store unit but not FO

What trickery is this? \

Tomasulo — Walkthroughﬂ
(MULT] [Valze] Fo
(a1 [Vaioe] F1
fmal] [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
Common data bus

* Instruction 1 is Issued:
* reservation station MUL1 is selected since it’s free
» tag of F1 is null so its value is routed to MUL1’s operand 1
» tag of F2 is null so its value is routed to MUL1’s operand 2
» tag of FO is updated with id of MUL1, indicating that its value
will come from MUL1

Tomasulo — Walkthroughlg
(MULT] [Valze] Fo
(a1 [Value] F1
‘nal | [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
Walk through: . instruction 2 is Issued: Common data bus

e reservation station Store 1 is selected since it's free
 tag of FO is MUL1 so its tag is routed to Store 1’s operand
e address X is routed to Store 1

Tomasulo — Walkthroughlg
MUz] [Valie] Fo
(a1 [Value] F1
‘nal | [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
Walk through: . instruction 3 is Issued: Common data bus

* reservation station MUL2 is selected since it’s free

» tag of F2 is null so its value is routed to MUL2’s operand 1

» tag of F3 is null so its value is routed to MUL2's operand 2

» tag of FO is overwritten with id of MULZ2, indicating that its
value will come from MUL?2

Tomasulo — Walkthroughzo
[MULZ | [Value | FoO
(a1 [Value] F1
‘nal | [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
Walk through: . instruction 4 is Issued: Common data bus

e reservation station Store 2 is selected since it's free
» tag of FO is MUL2 so its fag is routed to Store 2’s operand
» address Y is routed to Store 2

Tomasulo — Walkthroughn
[MULZ | [Value | FoO
(a1 [Value] F1
‘nal | [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
Walk through: . muttipiy unit 1 finishes: Common data bus

* It broadcasts its result on the Common Data Bus (CDB)

« carrying the tag “MUL1”

» Store 1 monitors the CDB, is waiting for a value with tag “MUL1”
» Store 1 picks up the value and stores it to memory

* (Reqister FO ignores this because it is waiting for a different taq)

Tomasulo — Walkthroughzz

— " WEE Fo
" O a1
[null | [Value | F2
Tag] [Value | F3

- Operand values/taj\gs

A

A

A

>
Common data bus

* Multiply unit 2 finishes:
* It broadcasts its result on the Common Data Bus (CDB)
e carrying the tag “MULZ2”
« Store 2 monitors the CDB, is waiting for a value with tag “MULZ2"
» Store 2 picks up the value and stores it to memory
* Register FO monitors CDB, sees “MULZ2”, updates its value, sets FO’s tag to “null”

Tomasulo — WaIkthroughB
(ull—] [Value] Fo
(a1 [Value] F1
‘nal | [Value] F2
O NEIE 3

Operand values/taj\gs

A

>
« Multiply unit 2 finishes: Common data bus

* It broadcasts its result on the Common Data Bus (CDB)

* carrying the tag “MULZ2”

» Store 2 monitors the CDB, is waiting for a value with tag “MUL2"

» Store 2 picks up the value and stores it to memory

* Register FO monitors CDB, sees “MULZ2”, updates its value, sets FO’s tag to “null”

24

Three Stages of Tomasulo Algorithm

1.lssue—qget instruction from FP Op Queue

If reservation station free (no structural hazard), _
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)

When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units;
mark reservation station available

Two buses:

 Normal data bus: data+destination (“go to” bus)
— Used at Issue

 Common data bus: data+source (“come from” bus)
— Used at WB

— 64 bits of data + 4 bits of Functional Unit source address
— Write if matches expected Functional Unit (produces result)

— Does the broadcast

360/91 pipeline
et ||

GENERATE
- OPERAND iy -—-
MOVE ADDRESS
GENERATE INST CPERAD
ol INSTRUCTION Yo | obecope | L STORAGE | OPERAND INSTRUCTION
- ACCESS INST, - =7~ ——~— OPERAND 0
ADDRESS DECODE EXECUTION
EGOD EXECUTION RETURN | EXECUTION
TRANSMIT MOVE INST.| "Necape |ARITHMETIC HARDWARE
o INST. TO | FLOATING 0 ! UNIT
FLOATING | DECODE | EXECUTION |, BSUE TO | walT FoR -
EXECUTION HARDWARE [ATITIMETIC! OPERAND
MAIN STORAGE MAIN STORAGE CONTROL UNIT FLOATING
CONTROL UNIT INSTRUCTION UNIT N AND STORAGE FUNCTIONS POINT
SF‘U?JTCC%'?SSSE FUNCTION FLOATING POINT INSTRUCTION EXECUTION
UNIT FUNCTIONS FUNCTION
INSTRUCTION
UNIT
FUNCTION

Figure 3 CPU “assembly-line stations required to accommodate a typical floating-point storage-to-register instruction.

w 11-12 circuit levels per pipeline stage, of 5-6ns each

w CPU consists of three physical frames, each having
dimensions 66" L X 15" D X 78" H

See: The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling,by D. W. Anderson,
F. J. Sparacio, R. M. Tomasulo. IBM J. R&D (1967), http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

Tomasulo Drawbacks

« Complexity

— delays of 360/91, MIPS 10000, Alpha 21264,
IBM PPC 620

— Many associative stores (CDB) at high speed

* Performance limited by Common Data
Bus

— Each CDB must go to multiple functional units
—high capacitance, high wiring density

— Number of functional units that can complete per
cycle limited to one!

* Multiple CDBs = more FU logic for parallel
assoc stores

* Non-precise interrupts!
— We will address this later

26

27

Why can Tomasulo overlap iterations of loops?

» Register renaming
— Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

* Reservation stations
— Permit instruction issue to advance past integer control flow

operations
— Also buffer old values of registers - totally avoiding the WAR stall
(in contrast with a “scoreboard” design that doesn’t do register

renaming).

« Other perspective:
— The CDB is doing forwarding, bypassing the registers

— Builds the data flow dependency graph on the fly

Tomasulo Loop Example

Loop:

« Assume floating-point multiply takes 4 clocks

« Suppose loads take 8 clocks (L1 cache miss)

((Actually each L1 cache miss would load a cache line of several
words, and prefetching might reduce latency of next fetch))

((example counts R1 down to O in order to simplify the loop for

MULTD

SUBI
BNEZ R1

FO O(R1)
F4 FO F2
F4 O(R1)

R1 R1 #8
Loop

the sake of the example))

« Assume that integer instructions don’t use the CDB

« Assume SD doesn’t use the CDB

29

Tomasulo Loop Example

R1
F4
F4
R1
R1
R1
F4
F4
R1
R1
R1
F4
F4
R1
R1
R1
F4
F4
R1
R1
R1
F4
F4
R1
R1

FOF2
0OR1

R1 #8
Loop

FO F2
0 R1
R1 #8
Loop

FO F2
0 R1
R1 #8
Loop

FO F2
0 R1
R1 #8
Loop

FO F2
0 R1
R1 #8
Loop

IF IS EX

WB
RO EX EX

IF IS EX MM WB
IF IS EX MM WB

IF IS EX MM

IF IS EX MM WB
IF IS EX MM WB

IF IS EX MM
IF IS

31

e al-i (four cycle multiply)

RO MM WB

RO EX EX EX EX WB
RO MM WB

WB
RO EX EX E

IF IS EX MM WB

At this point four
iterations of the

loop are in-flight
in parallel

IF IS EX MM WB
IF IS EX MM

ITEQRIS

IF IS EX MM WB

IF IS EX MM WB
IF IS EX MM

IF IS

32

Tomasulo Loop Example

R1 IF IS EX MM WB
F4 FOF2 Seh e e 2 e el (four cycle multiply)

F4 OR1 RO MM WB

R1 R1#8 IF IS EX MM WB

R1 Loop IF IS EX MM Suppose
R1 R @I (L1 cache hit)

second load

F4 FO F2 RO EX EX EX EX WB
F4 0R1 IS RO MM WB iIs an L1
R1 R1#8 IF IS EX MM WB

R1 Loop IF IS EX MM WB cache hit
R1 g s @iz (L1 cache hit)

F4 FOF2 IF IS RO EX EX EX EX WB

F4 OR1 RO MM WB

R1 R1#8 IF IS EX MM WB

R1 Loop IF IS EX MM WB

R1 1r 15 Bx MM wB [(IMsl]9)

F4 FOF2 IF IS RO EX EX EX EX WB
F4 OR1

R1 R1#8 IF IS EX MM WB

R1 Loop IF IS EX MM WB
R1 IF IS EX MM W
F4 FOF2 IF IS RO E
F4 OR1

R1 R1#8

R1 Loop

33

Summary: Tomasulo

« RAW, WAR and WAW hazards

« Tomasulo overcomes WAR and WAW hazards by dynamically
allocating operands to reservation stations at issue time

— Register renaming, seen more explicitly in later designs

 Tomasulo’s CDB is a kind of “forwarding” path — that routes
operands from completing FUs to where they are needed

— In multi-issue processors this gets a lot more complicated!

« Tomasulo’s scheme relies on associative tag matching

— Later designs assign physical registers explicitly to avoid this

« Tomasulo’s scheme enables multiple FUs to operate in
parallel

— Even across loop iterations

Student questions:

Consider this example:

1- MUL FO, F1, F2

2- MUL FO, FO, F3

3-SD FO, X

Let iX denote instruction X (example: i1 denotes the first instruction)
If I understood correctly:

a- i1 will check that dependencies F1 and F2 are free, reserves a MUL1 station, and tags FO with
MUL1

b-i2 finds out FO is awaiting result. It reserves a MUL2 station with operands MUL1 (tag of FO) and
F3, then tags FO with MUL2, and awaits a MUL1 tag check from CDB

c- i3 reserves a Storel station, with operands MUL2 and X, and awaits CDB MUL?2 tag
d- MUL1 station finishes executing il. MUL1 tag propagates through CDB and triggers station MUL2

e- MUL2 station can now execute and finishes executing i2. MUL2 tag propagates through CDB and
triggers station Storel. It also writes over FO value (and sets its tag to NULL?)

f- Storel executes and finishes

Another example:
1- MUL FO, F1, F2
2- MUL FO, FO, F3
3- ADD F3, F1, F2
4- SD FO, X

“If F3 was just wired to i2 MUL2 station, then ADD would have changed the value and that's a WAR
hazard”?

F3 is read fori2 ati2's *issue™ time. Whatever is there (value or tag) is *copied™ to the ADD
reservation station.

So when i3 overwrites F3, it's fine because the MUL2 RS is already holding the right thing for its F3
operand.

Student questions:

Yes basically the natural way to extend Tomasulo to support >1 instruction per cycle is
to build multiple CDBs.

Which means that every unit that monitors the CDB now has to monitor (and do a tag
comparison on every CDB transaction) on all the CDBs.

We don't have time to dive into how to do better than this but it's possible. A starting
point for understanding how is

https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf .

If you really want to dive deep, here's a link into the documentation for BOOM, an
open-source multi-issue out-of-order processor design: https://docs.boom-
core.org/en/latest/sections/reorder-buffer.html#the-commit-stage .

From there you can find the code that does it. See: https://github.com/riscv-
boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala eg from line 401.

Incidentally we discussed what happens when multiple instructions complete at the
same time - we get contention for the CDB(s). We might wonder what the best policy
for selecting which one should go first is. This paper tries to provide an answer for
what the optimal thing to do is: Lin-and-Tian.pdf (washington.edu)

By the way:

Bio: https://en.wikipedia.org/wiki/Robert Tomasulo

Paper: R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic
Units," in IBM Journal of Research and Development, vol. 11, no. 1, pp. 25-33, Jan.
1967, doi: 10.1147/rd.111.0025.
https://www.cs.virginia.edu/~evans/greatworks/tomasulo.pdf

Talk: http://leccap.engin.umich.edu/leccap/player/r/pvSbKs

35

https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html#the-commit-stage
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/exu/rob.scala
https://en.wikipedia.org/wiki/Robert_Tomasulo
https://www.cs.virginia.edu/~evans/greatworks/tomasulo.pdf
http://leccap.engin.umich.edu/leccap/player/r/pvSbKs

36

Student question — pathway to real stuff:

Q:
. What would | need beyond this course to go about designing hardware? I've seen some work by professors to
do with FPGA, but its not super clear to me what that takes.

. Say you had some algorithm that felt could be implemented with a digital circuit, what would you do?

We have other students in the class with excellent experience, both at university and in industry, to address your question.

. The ACA course is primarily about designing processors - for which you would probably use a Register Transfer Level (RTL, Register-
transfer level - Wikipedia) programming model. Popular languages for this include Verilog, VHDL and Chisel (a DSL embedded in Scala).
Basically you write code that describes the wiring of a digital circuit. You can then run it on your PC in simulation (see Verilator for
example), or compile to an FPGA configuration, or (via a more involved route) to a VLSI layout.

. What architects actually do is use a hierarchy of models - for example using gem5 to simulate the microarchitecture at the block-
diagram level (this is basically the level at which this course operates). You might then have a "cycle accurate" model, for example built
using SystemC (though not everyone does this). Then you would elaborate this into an RTL design - where you have to describe a digital
circuit that actually does the work that needs to be done in each clock cycle.

. RTLs like Verilog have further subtleties - you can write "behavioural" Verilog, that works in simulation, but to generate actual hardware
you need to write in "synthesisable" Verilog.

. Particular companies typically have a rich ecosystem of modelling and verification tools, and there is also a large ecosystem of
verification and testing tools.

. This all sounds a bit abstract. You can go and read the source code (in Chisel) for a non-trivial CPU architecture here: GitHub - riscv-
boom/riscv-boom: SonicBOOM: The Berkeley Out-of-Order Machine (https://github.com/riscv-boom/riscv-boom) ; see the
documentation here https://boom-core.org/ (you can also find source code for much simpler CPU designs elsewhere of course).

. So for example this week's lecture on Tomasulo's algorithm introduces out-of-order architecture. Check it out for real here:
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html. Go read the code for the ROB here: https://github.com/riscv-
boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala (the ROB is actually not covered until the next lecture, on speculative
execution).

BUT: you also ask about accelerator architecture - ie a digital circuit to compute some specific thing, in contrast to a general-purpose CPU.

. For this there are tools like look more like software - High-Level Synthesis (HLS) (https://en.wikipedia.org/wiki/High-level synthesis).
Although there have been many high-level synthesis tools, these days people usually mean you start from C code and add directives to
specify how the C code should be mapped into hardware. There are of course also high-level tools that start from a more domain-
specific representation, such as a deep neural network.

https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://boom-core.org/
https://boom-core.org/
https://boom-core.org/
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://github.com/riscv-boom/riscv-boom/blob/master/src/main/scala/v4/exu/rob.scala
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis

	Slide 1: COMP60001/COMP70086 Advanced Computer Architecture Chapter 2: part 1 Dynamic scheduling, out-of-order execution, register renaming (and, in part 2, speculative execution)
	Slide 3: HW Schemes: Instruction Parallelism
	Slide 4: Data Dependence and Hazards
	Slide 5: Name Dependence: Anti-dependence
	Slide 6: Another name Dependence: Output dependence
	Slide 7: Dynamic Scheduling Step 1
	Slide 8: Tomasulo’s Algorithm
	Slide 9: IBM360/91
	Slide 10
	Slide 13: Tomasulo – closer look at instruction processing
	Slide 14: Tomasulo – closer look at instruction processing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Three Stages of Tomasulo Algorithm
	Slide 25: 360/91 pipeline
	Slide 26: Tomasulo Drawbacks
	Slide 27: Why can Tomasulo overlap iterations of loops?
	Slide 29: Tomasulo Loop Example
	Slide 31: Tomasulo Loop Example
	Slide 32: Tomasulo Loop Example
	Slide 33: Summary: Tomasulo
	Slide 34: Student questions:
	Slide 35: Student questions:
	Slide 36: Student question – pathway to real stuff:

