
1

October 2023

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and 

Patterson’s Computer Architecture, a quantitative approach (4-6th ed), and 

on the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 2: part 2

Dynamic scheduling, out-of-order execution, register 

renaming with speculative execution

Hennessy and Patterson 6th ed Section 
3.6 pp208-217 and pp234-238

Course materials online on 
https://scientia.doc.ic.ac.uk/2324/modules/60001/materials and 
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/ 

https://scientia.doc.ic.ac.uk/2223/modules/60001/materials
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/


2

What about Precise Interrupts?

• Tomasulo had:

In-order issue, out-of-order execution, and out-of-order 
completion

• Need to “fix” the out-of-order completion aspect so that we 
can find precise breakpoint in instruction stream
– Suppose we have a page fault or a divide-by-zero exception?

• Actually we have the same issue with branch speculation…

• The answer: add a stage that “commits” the state 

• In issue order



4

Four Steps of the Speculative Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & send 
operands & reorder buffer no. for destination (this stage sometimes called 
“dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB for 
result; when both in reservation station, execute; checks RAW 
(sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs 
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When an instruction is at the head of reorder buffer, and its result 
is present: 

update the (commit-side) register with the result (or store to 
memory), and remove the instruction from the reorder buffer. 

Mispredicted branch flushes reorder buffer



7

Tomasulo without Re-order Buffer

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1

Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

(from previous 
lecture)



8

Tomasulo with Re-order Buffer

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value

value

value

valueF3

F2

F1

F0



9

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value

value

value

valueF3

F2

F1

F0

Tomasulo with Re-order Buffer
Commit stage
And commit-side registers



10

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value

value

value

valueF3

F2

F1

F0

Issue: • As before, but ROB entry is also allocated

• One ROB entry for each instruction

• Holds destination register + and either its 

result value, or the tag for where it will come 

from



11

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value

value

value

valueF3

F2

F1

F0

Write Back:

• As before, but ROB entry with matching tag is 

also updated

• ROB entry for instruction 1 holds value for F0

• ROB entry for instruction 3 holds another value 

for F0



12

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value

value

value

valueF3

F2

F1

F0

Commit:

• Commit unit processes ROB entries in issue order

• Each instruction waits in turn and commits when its 

operands are completed

• Committed registers updated with values from ROB

• Commit-side F0 is updated first with result from 

MUL1 then result from MUL2



13

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

Tomasulo with Re-order Buffer

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

Operand values/tags

Issue-side registers

(updated speculatively)

Commit-side registers

(updated when speculation resolved)

value

value

value

valueF3

F2

F1

F0



14

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

4

5

Commit

value

value

value

valueF3

F2

F1

F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• Now extend example with conditional branch

• Assume predicted Not Taken

• When BEQ reaches head of commit queue, all 

instructions which have been issued but have not yet 

committed are erroneous



15

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1

value

value

valueF3

F2

F1

F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• Misprediction: all ROB entries are trashed

• Issue-side registers are reset from the commit-side 

registers

• Correct branch target instruction fetched and issued



16

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1

value

value

valueF3

F2

F1

F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• Committed F0 holds value from first MUL

• RS of uncompleted speculatively-executed instruction 

cannot be re-used until its FU (eg MUL2) completes



18

Some subtleties to think about…

• It’s vital to reduce the branch misprediction 
penalty.  Does the Tomasulo+ROB scheme 
described here roll-back as soon as the branch 
is found to be mispredicted?

• This discussion has assumed a single-issue 
machine.  How can these ideas be extended to 
allow multiple instructions to be issued per 
cycle?

– Issue

– Monitoring CDBs for completion

– Handling multiple commits per cycle 



19

Some subtleties to think about…

• What if a second conditional branch is 

encountered, before the outcome of the first is 

resolved?



20

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Commit

value
value
value
valueF3

F2
F1
F0

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

4

5

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• Two conditional branches

• We speculate on both branches

SD F0, Y

MUL F0, F3, F47

8

BEQ R11, Lab6

Dst null, Src STORE2

Dst F0, Src MUL27

8

BEQ R11, Lab (predNT)6

Speculating across more than one 
branch



21

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Commit

value
value
value
valueF3

F2
F1
F0

Dst null, Src STORE2

Dst F0, Src MUL24

5

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• Two conditional branches

• When we come to commit the first branch we 

discover it was mispredicted

SD F0, Y

MUL F0, F3, F47

8

BEQ R11, Lab6

Dst null, Src STORE2

Dst F0, Src MUL27

8

BEQ R11, Lab (predNT)6

Speculating across more than one 
branch



22

Opcode  Operand1 Operand2

Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

4

5

Issue

Opcode
Operand values/tags

Commit

value
value
value
valueF3

F2
F1
F0

Dst null, Src STORE2

Dst F0, Src MUL24

5

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

• When we come to commit the first branch we 

discover it was mispredicted

• We squash all the issued instructions including the 

second branch

SD F0, Y

MUL F0, F3, F47

8

BEQ R11, Lab6

Dst null, Src STORE2

Dst F0, Src MUL27

8

BEQ R11, Lab (predNT)6

Speculating across more than one 
branch



23

Some subtleties to think about…

• Stores are buffered in the ROB, and committed only when 

the instruction is committed.  

• A load can be issued while several stores (perhaps to the 

same address) are uncommitted.  We need to make sure 

the load gets the right data.  See:
 Shen and Lipasti “Modern Processor Design” pg 271, or 

  http://home.eng.iastate.edu/~zzhang/courses/cpre585_f03/slides/lecture11.pdf

• This lies beyond the depth we have time to cover properly in 

this course, but let’s look at some of the issues

http://home.eng.iastate.edu/~zzhang/courses/cpre585_f03/slides/lecture11.pdf


24Stores and loads with speculation

• We need to make sure stores are not sent to memory 
until the store instruction is committed

• We need to stall loads until all preceding stores have 
committed

– ?

– Or: until all possibly-aliasing stores have committed?

– Or: until the addresses of all preceding uncommitted 
stores have been determined

• If/when the addresses of a load and all preceding 
uncommitted stores are known…

– And if none of the store addresses match the load

– Then the load can proceed

– If the address of the load matches the address of an 
uncommitted store, we can forward the store’s data to 
the load



25

RS MUL

Mul unit 

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

value

value

value

valueF3

F2

F1

F0
Store unit

Commit

• We need to make sure 

stores are not sent to 

memory until the store 

instruction is committed

• We need to stall loads 

until all possibly-

aliasing store addresses 

are known

Store

Buffer
Collect 

uncom

mitted 

stores

addr dataLoad unit

• Wait til preceding 

stores addresses 

are known

• Forward if matches L
o
a
d
 c

h
e
c
k



26Store-to-load forwarding
• The Tomasulo scheme works on registers – it derives 

dependences between register-register instructions

• The registers being used are always known at issue time

• Loads and stores use computed addresses, which may or 

may not be known at issue time – consider:

i1 SD F0 0(R3) // store F0 at address R3

i2 LD R2 0(R1) // load an address from memory

i3 SD F1 0(R2) // store F1 to that address

i4 LD F2 0(R3) // load F1 from address R3

• Can we (should we?) forward F0 from i1 to i4?

• What if R1=R3?

• We could wait (as shown in previous slide)

• We could speculate!  And then check for the 

misprediction

• We could add a forwarding predictor, to improve the 

speculation



27Store-to-load forwarding
• Memory dependence *speculation* is the idea that we might 

allow a load to proceed* before we know for sure which, if 
any, prior uncommitted store instruction writes to its 
address**.

• (* proceed either by forwarding a value from some store 
whose *value* is known, or proceed by going to memory)

• (** we may know the load's address but not (all) the 
addresses of the older stores.  We might not know the load's 
address)

• Memory dependence speculation is when we use a predictor 
to decide when to do this.

• See Memory dependence prediction - Wikipedia

• I think this article (start at page 8) is particularly clear:

• https://www.jilp.org/vol2/v2paper13.pdf

https://en.wikipedia.org/wiki/Memory_dependence_prediction
https://www.jilp.org/vol2/v2paper13.pdf


29

Design alternatives for o-o-o processor 
architectures

• See:
– The Microarchitecture of the Pentium 4 Processor (Hinton et al, 

Intel Tech Jnl Q1 2001)

– The SimpleScalar Tool Set, Version 2.0 (Burger and Austin, 
http://www.simplescalar.com/docs/users_guide_v2.pdf)

– Wattch: a framework for architectural-level power analysis and 
optimizations (Brooks et al, ISCA 2000) 
www.tortolaproject.com/papers/brooks00wattch.pdf

• Specifically:
– Register Update Unit (RUU, as in Simplescalar) versus 

Re-Order Buffer 

– Realisation in Pentium III and Pentium 4 (“Netburst”)
• Frontend and Retirement Register Alias Tables (RATs)

http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.tortolaproject.com/papers/brooks00wattch.pdf


30



31



32

RUU vs ROB

• In the Tomasulo+ROB design shown in these slides, 
registers and ROB entries have a tag

– Every register, ROB entry and reservation station 
needs a comparator to monitor the CDB

• With the RUU, the tags are the ROB entry numbers

– The ROB entry serves as a renamed register for its 
instruction’s result

– When an instruction completes, we still need to 
check whether any ROB operands match



33

• A Register Alias Table keeps track of 
latest alias for logical registers

• Once retired, data is copied from the 
ROB to the RRF

• 128 Register File (RF) is separated 
from the ROB - which now only 
consists of status fields

• A unique, in-order sequence number 
is allocated for each uop that points 
to the corresponding ROB entryQ: How are registers allocated and freed?

See also Hsien Hsin Lee, GATech, https://slideplayer.com/slide/3388048/.  Credit also to Krishna Palem 

https://slideplayer.com/slide/3388048/


34Pentium 4 (“Netburst”) microarchitecture



35



36

October 23

Out-of-order processing – Four instructions per cycle

Example:

void f() {

 int i, a;

 for (i=1; 

i<=1000000000; 

   i++)

  a = a+i;

}

Naive implementation (roughly from cc -S):

movl $1,-4(%ebp)

 jmp .L4

.L5

 movl -4(%ebp),%eax

 addl %eax,-8(%ebp)

 incl -4(%ebp)

.L4:

 cmpl $1000000000,-4(%ebp)

 jle .L5

X86 code (slightly 

tidied but without 

register allocation)

Real 
example



37

October 23

  movl $1,%edx

.L6:

     addl %edx,%eax

     incl %edx

     cmpl $1000000000,%edx

     jle .L6

Unoptimised:
movl $1,-4(%ebp)

 jmp .L4

.L5

 movl -4(%ebp),%eax

 addl %eax,-8(%ebp)

 incl -4(%ebp)

.L4:

 cmpl $1000000000,-4(%ebp)

 jle .L5

Optimised:

4 instructions in the loop, no 

references to main memory

Execution time on 2.13GHz 

Intel Core2Duo: 0.48 seconds 

(0.48 nanoseconds/iteration, 

1.02 cycles)

Time per instruction fell: 0.77 nanoseconds to 0.12

Optimised code runs at four instructions per cycle

5 instructions in the loop

Execution time on 2.13GHz Intel 

Core2Duo: 3.87 seconds (3.87 

nanoseconds/iteration, 8.24 cycles)



39

Resources
• Wikipedia (!):

– http://en.wikipedia.org/wiki/Register_renaming

• Paper: 

– The Mips R10000 superscalar microprocessor.  Kenneth C. Yeager 

(IEEE Micro April 1996) 
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf 

• Code:

– https://boom-core.org/ 

– https://docs.boom-core.org/en/latest/sections/reorder-buffer.html 

– https://docs.boom-core.org/en/latest/sections/reg-file-bypass-network.html 

• Simulators:
– Simplescalar: www.simplescalar.com/

– Gem5: http://www.gem5.org

– Liberty: http://liberty.cs.princeton.edu/

– SimFlex: http://parsa.epfl.ch/simflex/

– SIMICS: http://www.windriver.com/products/simics/

http://en.wikipedia.org/wiki/Register_renaming
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp16/cse502/res/R10k.pdf
https://boom-core.org/
https://docs.boom-core.org/en/latest/sections/reorder-buffer.html
https://docs.boom-core.org/en/latest/sections/reg-file-bypass-network.html
http://www.simplescalar.com/
http://www.gem5.org/
http://liberty.cs.princeton.edu/
http://parsa.epfl.ch/simflex/
http://www.windriver.com/products/simics/


40

Dynamic scheduling - summary

• Dynamic instruction scheduling is attractive:
– Reduced dependence on compile-time instruction 

scheduling (and compiler knowledge of hardware)
– Handles dynamic stalls due to cache misses
– Register renaming frees architecture from constraints of 

the instruction set

• Comes with costs
– Increases pipeline depth, and misprediction latency
– Increased power consumption and area (but not by all that 

much if you are careful and clever)
– Increased complexity and risk of design error
– Hard to predict performance, hard to optimise code



41Student questions
How are interrupts the same as branches? 

• An interrupt is basically a function call to an interrupt handler.It originates from some external 
device - perhaps a keypress or the arrival of a network packet.

• So my suggestion is that we implement it by inserting the interrupt call into the instruction stream, 
as if it were actually in the program.  

• So the processor can execute the interrupt handler in much the same way that it would execute any 
function call.  

• So the interrupt is introduced at issue time, in the same way that we would handle an 
unconditional jsr (jump subroutine, or bl on ARM).

what does this have to do with context switches?

• A context switch occurs when a thread gets an interrupt, and in the interrupt handler (ie in the OS 
kernel) the thread needs to block, for example because it needs to wait for an event (perhaps the 
arrival of a network packet).  

• In this case the OS will try to find another thread to run in its place, so that the core is utilised.  
There might not be any other thread ready-to-run but often there is. 

• So the handler will need to store all the logical registers of the old thread A to memory, 
and load the registers of some saved thread B's state. 

• The handler can then return - this time returning into thread B. 

• Some time later thread B might block in the same way, and we might re-instate thread 
A. 

• All this register saving and restoring is done in ordinary machine code, operating on 
logical registers. The out-of-order execution mechanism should just do its thing and 
commit these instructions in the usual way.



42Student question: store-to-load forwarding
The store mask records which stores a load might depend upon (line 878). I do not understand how one of the stores in 
the store mask can't have a valid address? Can you give me an example to understand that. 

This question concerns BOOMv1, the subject of the exam in 2019-20.  The relevant section of the BOOM documentation is:

This is about store-to-load forwarding.  Recall that the LSU holds uncommitted stores and loads.  If we have a load whose address does not match any 
store in the LSU, we must get its data from memory.  If there is a store whose address matches, we must instead forward the data from the store to 
load - but we have to be sure we're forwarding from the right store, ie the youngest store whose address matches.

So what the documentation says is that when a load is decoded, we record which uncommited stores it might depend on - ie all the uncommitted older 
ones.  The subtlety is that the addresses of the stores, and the load, might not yet be known - if they are not yet known then their "valid" bit is not set.

So you cannot safely forward from a store to a load until (1) the store's address is valid, (2) the store's data is available, (3) the load's address is valid, 
and (4) the addresses of all the stores that the load depends on, that are older than the matching store, are valid and don't match.

So you might wait til they are valid.

Or you might speculate before being sure!

Example:

R1 <- e1

R2 <- e2

R3 <- e3

ST  (R1) X

...

ST (R2) Y

...

LD R4 (R3)

In this example, we should forward X to R4 iff e1==e3 and e2!=e3.  But e1, e2, e3 might take a while to evaluated and be evaluated in an inconvenient 
order.



43Student question: context switches

The intuition behind the answer given here is that what matters is the committed state of the 
machine.  The context switch code path is "just code" so the o-o-o engine should just execute it, 
and commit instructions as it goes.  

See for example this context switch code from Linux: 
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L237 

However the larger context involved in doing a context switch probably also involves the use of 
locks (eg on the data structures that determine which process to switch to).  See: 
https://elixir.bootlin.com/linux/v2.6.36/source/kernel/sched.c#L2834 

Here we see, for example, the use of a "barrier()" - which, at least on some processors, might 
cause the ROB to be flushed (or something more subtle - like that all uncommitted memory 
accesses would have to be committed before continuing).  Exactly what needs to be done 
depends on the memory consistency model supported by the processor.

This does indeed get quite complicated - if you're curious, see 
https://www.kernel.org/doc/Documentation/memory-barriers.txt  (coauthor Will Deacon is a DoC 
graduate).

For the question above, the following feedback was given:

Why is it not necessary to flush the ROB on a context switch?

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L237
https://elixir.bootlin.com/linux/v2.6.36/source/kernel/sched.c#L2834
https://www.kernel.org/doc/Documentation/memory-barriers.txt

	Slide 1: 332 Advanced Computer Architecture Chapter 2: part 2  Dynamic scheduling, out-of-order execution, register renaming with speculative execution
	Slide 2: What about Precise Interrupts?
	Slide 4: Four Steps of the Speculative Tomasulo Algorithm
	Slide 7: Tomasulo without Re-order Buffer
	Slide 8: Tomasulo with Re-order Buffer
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Tomasulo with Re-order Buffer
	Slide 14
	Slide 15
	Slide 16
	Slide 18: Some subtleties to think about…
	Slide 19: Some subtleties to think about…
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Some subtleties to think about…
	Slide 24: Stores and loads with speculation
	Slide 25
	Slide 26: Store-to-load forwarding
	Slide 27: Store-to-load forwarding
	Slide 29: Design alternatives for o-o-o processor architectures
	Slide 30
	Slide 31
	Slide 32: RUU vs ROB
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Out-of-order processing – Four instructions per cycle
	Slide 37: Unoptimised:
	Slide 39: Resources
	Slide 40: Dynamic scheduling - summary
	Slide 41: Student questions
	Slide 42: Student question: store-to-load forwarding
	Slide 43: Student question: context switches

