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Chapter 4

Part 1: Branch Direction Prediction
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These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (4-6 eds), and
on the lecture slides of David Patterson’s Berkeley course (CS252)



Branch Prediction

1. Control hazards are a problem in any pipelined
processor
2. Branches occur a lot (ca. one in five instructions?)

— Branches will arrive up to n times faster in an n-issue
processor

3. Amdahl's Law:
— relative impact of the control stalls will be larger with
the lower potential CPIl in an n-issue processor
4. Speculative dynamic instruction scheduling with
register renaming enables us to speculate many
iInstructions

— Forwarding from one speculatively-executed
Instruction to the next

Branch prediction is really important....



Branch Prediction - alternatives

We have seen how a dynamically-
scheduled processor can handle
speculative execution past conditional
branches, virtual calls, page faults etc

But branch mis-predictions are expensive

This naturally leads us to consider branch
prediction schemes

But first: there are alternatives...
— With enough threads per core...
— By extending the instruction set with predication

— By extending the instruction set with branch
delays



With enough threads per core...

ThreadO: beq...I ﬁ| = |'E Fvier
Thread1: ... I reef | = Ilﬁ
Thread2: ... I =
Thread3: ...

!

Thread0: next threadO instruction

 In this example we have four threads per core
* Four PCs
* Four sets of registers

« And plenty of time to determine branch outcome without
prediction



Predicated Execution (predic*a*ted...)

« Avoid branch prediction by turning branches into conditionally
executed instructions:

—

Some instruction sets allow predication of almost any instruction
 Load condition value into a predicate register
« Each instruction specifies which predicate register it depends on
« If predicate is false, no exception or effect occurs
« Compiler can schedule instructions from different conditional branches to
fill stalls
(Some instruction sets offer only partial support, eg predicated moves/stores, eg
Alpha, MIPS, PowerPC, SPARC) (we will revisit this with Itanium & in GPUSs)

When is this better than a conditional branch instruction?



Delayed Branch

» Define branch to take place AFTER a following
iInstruction

« After all we have already fetched the next instruction

« Adelay of just one instruction allows proper decision
and branch target address in 5 stage pipeline
— MIPS uses this; eg in

LW R3, #100 L
If (R1==0) LW R4, #200 I §<R—11BE)O)
X=100 BEQZ R1, L1 £ -
Else SW R3, X ;‘i 100
X=200 SW R4, X B
: X=200
R5=X L1: RE = X
LW R5,X -
Source code Assembly code What it does

— “SW R3, X" instruction is executed regardless
— “SW R4, X" instruction is executed only if R1 is non-zero



Delayed Branch
. Whgre to get instructions to fill branch delay
slot”

— Before branch instruction
— From the target address: only valuable when branch taken

— From fall through: only valuable when branch not taken

# Compiler effectiveness for single branch delay slot: Py

E Fills about 60% of branch delay slots

E About 80% of instructions executed in branch delay slots useful
in computation

E About 50% (60% x 80%) of slots usefully filled

] target

+ “Canceling” branches: increase utilization of delay slot —
eiore

E Branch delay slot instruction is executed but write-back is BItR1L1
disabled if it is not supposed to be executed faIIthr’u

B Two variants: branch “likely taken”, branch “likely not-taken”
E allows more slots to be filled

E Delayed Branch downside:
B What if the pipeline is longer?
B What if multiple instructions are issued per clock (superscalar)



Branch Prediction - context

* If we have a branch predictor....

— We want to fetch the correct (predicted) next
instruction without any stalls

— We need the prediction before the preceding
instruction has been decoded

— We need to predict conditional branches
* Direction prediction

— And indirect branches
 Target prediction



Branch Prediction Schemes

Takenness:

* 1-bit Branch-Prediction Buffer

» 2-bit Branch-Prediction Buffer
« Correlating Branch Prediction Buffer
 Tournament Branch Predictor [ aisaSaisss
Target:

* Branch Target Buffer

 Return Address Predictors

6" ed p182-191




Simplest idea: branch history table (BHT)

Lower bits of PC
address index table of 1-

bit values .k low-order bits
— Says whether or not ) Y
branch taken last
time

Program counter

— No address check

Taken/not
-taken




Simplest idea: branch history table (BHT)

 Lower bits of PC
address index table of 1-

bit values w k low-order bits y
— Says whether or not Y

branch taken last
time

Program counter

A

L2

— No address check
(saves HW, but may
not be right branch)

Blt R2,L2

 Aliasing:
possible L1;
mispredictions if
2 different branch
instructions map
to the same BHT
entry

Blt R1,L1

Taken/not
-taken




Simplest idea: branch history table (BHT)

 Problem: in a loop, 1-bit

BHT will cause
2 mispredictions (avg is
9 iterations before exit):
— End of loop case,
when it exits instead
of looping as before

— First time through
loop on next time
through code, when
it predicts exit
instead of looping

— Only 80% accuracy
even if the loop’s

branch is taken 90%
of the time

L2

L1;

Program counter

k k low-order bits Y,
e

A

Blt R1,L1

Blt R2,L2

Taken/not
-taken




Dynamic Branch Prediction
(Jim Smith, 1981)

Solution: 2-bit scheme where change prediction
only if get misprediction twice: (Figure 3.7, p. 198)

T

Predict Taken Predict Taken

Predict Not
Taken

Predict Not
Taken

Red: stop, not taken
Green: go, taken
Adds hysteresis to decision making process



The 2-bit branch history table (BHT)

Program counter

N k low-order bits y

Y 2-bit local
branch
history

not taken

taken ( M
S

not taken
not
1 taken
0
bit

o (Generalises to n-bit BHT:
pI’CdlCthIl saturating counter)

v



Prediction accuracy of an 4096-entry two-bit prediction buffer versus an infinite buffer for the SPEC89
benchmarks (H&P Fig 4.15)

n-bit
eqntotltI BHT -
. how well

does it
work”?

doduc

B Unlimited entries

Benchmark application

tomcatv [

matrix300 [ 4096 entries

nasa’/ [

(I) é éll EIS é 1I0 1I2 1I4 1I6 1I8
Frequency of misprediction
i 2-bit predictor often very good, sometimes awful
i Little evidence that BHT capacity is an issue

w 1-bit is usually worse, 3-bit is not usefully better



N-bit BHT - why does it work so well?

* n-bit BHT predictor essentially based on a saturating

counter: taken increments, not-taken decrements

 predict taken if most significant bit is set

W Most branches are highly

biased: either almost-

always taken, or almost-

always not-taken

w Works badly for branches

which aren’t

11

01

not taken

(m

10

Often called the "bimodal” predictor
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http://www.cs.berkeley.edu/~zhendong/cs252/project.html

Is local history all there is to it?

* The bimodal predictor uses the BHT to record
“local history” - the prediction information used
to predict a particular branch is determined only
by its memory address

» Consider the following sequence:

o It is very likely that condition
C2 is correlated with C1 - and
that C3 is correlated with C1
and C2

o How can we use this
observation?




Global history

» Definition: Global history. The taken - not-taken
history for all previously-executed branches.
— ldea: use global history to improve branch
prediction
« Compromise: use m most recently-executed
branches

— Implementation: keep an m-bit Branch History
Register (BHR) - a shift register recording taken -
not-taken direction of the last m branches

* Question: How to combine local information with
global information?




 Thisisan
(m,n)
“gselect”
correlating
predictor:

— m global
bits record
behaviour
of last m
branches

— Thesem
bits are
used to
select
which of
the 2™ n-bit
BHTs to use

Select

“Gselect”

w k low-order bit9

n-bit local

branch
history

(" Popular)
choice

1S m=2,
n=2, so
four
tables
each of
\2x2E
bits

> prediction

—_—

2m n-bit BHTs



How many bits of branch history should be used?
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* (2,2)is good, (4,2) is better, (10,2) is worse S

(http://www.cs.berkelev.edu/~zhendonq/03252/proiect.html)



http://www.cs.berkeley.edu/~zhendong/cs252/project.html

Variations

* There are many variations on the idea:

— gselect: many combinations of n and m

— global: use only the global history to index the BHT -
ignore the PC of the branch being predicted (an extreme
(n,m) gselect scheme)

— gshare: arrange bimodal predictors in single BHT, but
construct its index by XORing low-order PC address bits
with global branch history shift register - claimed to
reduce conflicts

— Per-address Two-level Adaptive using Per-address
pattern history (PAp): for each branch, keep a k-bit shift
register recording its history, and use this to index a BHT
for this branch (see Yeh and Patt, 1992)

« Each suits some programs well but not all
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http://www.cs.berkeley.edu/~zhendong/cs252/project.html

Extreme example - “go”

35 I I I

I ° “gO” iS a

0 20 40 &0 &0 100
untakeness of static conditional branches

* The bias of “go”s branches is more-or-less evenly spread
between 0% taken and 100% taken
 All known predictors do badly

? “goo" -+
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Some dynamic applications have highly-correlated branches
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Re-evaluating Correlation

 Several of the SPEC benchmarks have
less than a dozen branches
responsible for 90% of taken branches:

program branch % static #=90%
compress 14% 236 13
eqntott 25% 494 S
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

« Real programs + OS more like gcc

« Small benefits beyond benchmarks for
correlation? problems with branch
aliases?



Tournament Predictors

» Motivation for correlating branch
predictors is that the 2-bit predictor failed
on important branches; by adding global
information, performance improved

* Tournament predictors: use 2 predictors,
— one based on global information
— the other based on local information
— and combine with a selector
— The selector is driven by a predictor....

* Hopes to select the right predictor for the
right branch



Tournament Predictor in Alpha 21264

« 4K 2-bit counters to choose from among a global
predictor and a local predictor

* Global predictor also has 4K entries and is indexed by
the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

— 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

» Local predictor consists of a 2-level predictor:

— Top level a local history table consisting of 1024 10-bit entries;
each 10-bit entry corresponds to the most recent 10 branch
outcomes for the entry. 10-bit history allows patterns 10
branches to be discovered and predicted.

— Next level Selected entry from the local history table is used to
index a table of 1K entries consisting a 3-bit saturating counters,
which provide the local prediction

« Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)



Accuracy of Branch Prediction
tomcatv —88%

95%
doduc _m\l
97%

86%
foppp 82— 4g0, |01 Profile-based

= B 2-bit counter

| — 77 | |8 Toumament

198%
86%
espresso 82% |
96%
88%
gcc /0%
| 94%

0% 20% 40% 60% 80% 100%

Branch prediction accuracy

Profile: branch profile from last execution
(static in that the prediction is in encoded in the instruction, but derived from the real
execution profile)

A good dynamic predictor can outperform profile-driven static prediction by a large margin




Accuracy v. Size (SPEC89)

10%
o 9%
o
S 8%
B o | Local
3 7 T —
S
O .
S 49 _ Correlating i
O
T 3%
s
5 2%
S
O 1%
O% ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

0 8 16 24 32 40 48 56 64 72 80 8 96 104 112 120 128

Total predictor size (Kbits)

Tournament is not just a better predictor; it delivers a better prediction with fewer transistors
It’s another example of combining two different optimisations, each good for different situations



Summary

* Prediction seems essential (?)

— Fine-Grained Multi-Threaded (FGMT) processors can avoid control hazards

— Predicated Execution can reduce number of branches, number of mispredicted
branches

— Delayed branches and cancelling branches can help, at least in simple pipelines
« Two questions: branch takenness, branch target

Takenness:

« Branch History Table: 2 bits for loop accuracy
— Saturating counter (bimodal) scheme handles highly-biased branches well
— Some applications have highly dynamic branches
« Correlation: Recently executed branches correlated with next
branch.
— Either different branches
— Or different executions of same branches

* Tournament Predictor: try two or more competitive solutions and
pick between them

Target.
* Next time!



Appendix: slides not covered in video



Warm-up effects and context-switching

 |n real life, applications are interrupted and some
other program runs for a while (if only the OS)

* This means the branch prediction is regularly
trashed
« Simple predictors re-learn fast

— In 2-bit bimodal predictor, all executions of given
branch update the same 2 bits

« Sophisticated predictors re-learn more slowly

— for example, in (2,2) gselect predictor, prediction
updates are spread across 4 BHTs

« Selective predictor may choose fast learner
predictor until better predictor warms up



branch prediction accucracy percentage

94

92

20

Fig=

i

bimod al —=—
carrelation -+--
gselect -8--

10000

100000
instruction number between context switches

1e+06

Best predictor takes 20,000 instructions to overtake bimodal

Zhendong Su and Min Zhou, A comparative analysis of branch prediction schemes

(http://www.cs.berkelev.edu/~zhendonq/03252/proiect.html)
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Pitfall: Sometimes bigger and dumber is better

« 21264 uses tournament predictor (29 Kbits)

« Earlier 21164 uses a simple 2-bit predictor with 2K
entries (or a total of 4 Kbits)

« SPEC95 benchmarks, 21264 outperforms

— 21264 avg. 11.5 mispredictions per 1000 instructions
— 21164 avg. 16.5 mispredictions per 1000 instructions

* Reversed for a large commercial transaction
processing (TP) workload!
— 21264 avg. 17 mispredictions per 1000 instructions
— 21164 avg. 15 mispredictions per 1000 instructions

 Why?
— TP code is much larger than the benchmarks

— the 21164 holds twice as many branch predictions based on
local behavior (2K vs. the 21264’s 1K local predictor)



Branch direction prediction: topics not covered

* Yeh and Patt’s “Two-Level Adaptive Branch
Predictor” (and Yeh/Patt classification
GAg,GAp,Pap)

— Tse-Yu Yeh, Yale N. Patt: Alternative Implementations
of Two-Level Adaptive Branch Prediction. ISCA 1992:
124-134

* Seznec and Michaud’s TAGE predictor

— André Seznec. 2011. A new case for the TAGE branch
predictor. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on

Microarchitecture (MICRO-44)
ed p188

* Neural branch predictors eg

— Daniel A. Jiménez and Calvin Lin. 2002. Neural
methods for dynamic branch prediction. ACM Trans.
Comput. Syst. 20, 4 (November 2002), 369-397.




Student question: tournaments

In lecture 3.1, at the end we look at tournament predictors to choose which
branch prediction method to use. How do we know that the predictor used for
the tournament predictor is best?

« | assume the overhead is too much but disregarding that, can't the same
reasoning for using a tournament predictor be applied to the tournament
predictor itself? Hence, is there any data for using a tournament predictor to
choose between which tournament predictor to use?

. | think the logic of using a local predictor as the tournament "selector" is that for each branch, we predict whether
it's best to use local history or global history.

. But you might say "it depends" - the answer to this question might depend on the context in which this branch is
executed.

. A good example of "context" is the function's caller.

. Consider this example:
void f(int i) {
if (i &1) S1 else S1;}
void g() {
x =rand();

f(x);}
void h() {
x = rand();
if (x&1)
f(x) else
53}
. In this example, the condition in f is highly correlated with the outcome of the condition in g (ie it's the same).
. So when fis called from g the global history is helpful, while when it's called from h the global history is useless.

. However in this example, the condition is hard to predict anyway - so you might as well use history always. Your
scheme would only help us if the local prediction were actually useful.

. So | think this example shows that an advantage is possible but depends on some pretty complicated
circumstances - so its advantage would be rather thin?

. Another thing | think this example reinforces is that using global history is particularly good for repeated or
redundant tests - where it doesn't help avoiding the misprediction - it avoids mispredicting again.

. You might also wonder whether the taken/not-taken history of recent branches is the most useful way to
distinguish the relevant contexts?




Student question: when does correlation win?

What types of programmes are the different variations of global history tables suited for?

Out of the 4 variations (gselect, global, gshare, pAp), would you mind describing a feature of
a body of code which would make it most suited for each of these variations?

After having a read of this article (https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-
TN-36.pdf ) which was very useful btw, | recommend you check it out, | see that each is a
continuation of the idea that global information really doesn't contain a lot of valuable
information, so | suppose a followup to this is why even bother using global information?

| think they offer a variety of compromises between
(1) covering as many different branches in the program as possible

(2) exploiting "global" context (ie providing different predictions for the same branch in
different contexts)

(3) learning quickly
(4) handling periodic branches with a useful range of different periods (the simplest periodic

branch is a while-loop exit branch - perhaps the loop is usually executed N times. Can the
predictor provide a perfect prediction? For N=2, N=37?

There are also some subtleties | think with branch predictor aliasing: suppose two different
frequently-executed branches happen to have the same low-order address bits, so they map to
the same BHT entry in the local half of a tournament predictor. It might be clever to arrange
the tournament predictor so that they are not aliased in the "global" half.



https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
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Student question: predicated instructions in an 0-0-0 processor

In section 4.2 [of the SonicBOOM article], it talks about the micro-ops that have been created to
implement predication. It says it uses a predicate register to determine "whether to execute the original
op, or to perform a copy operation from the stale register to the destination register".

| do not understand why it would perform that copy. Surely if the predicate is false, it should simply do
nothing in the instruction?

Great question! This is quite subtle, and involves just how the 0-0-0 register renaming
mechanism works.

Executed MicroOps

Consider their example: “1o0p

Iw x2, 0(a0)

set.ge x1, x2

p.mv x1, x2

p.mv al, to

addi a0, a0, 4

addi to, t0, Ox1

j loop:

*  Theinstruction "p.mv x1 x2" conditionally updates x1 (the running maximum) with x2, the array value just
read.

*  Register x1 is stored in a physical register (say P_m), allocated during register renaming earlier in the
computation (initially, when the "max" is initialised to zero).

*  Register x2 is allocated to a physical register (say P_q) at the load instruction.

*  During register renaming (ie during issue) a new physical register (say P_n) is allocated for the result of this
instruction, and the issue-side register alias table is set to point to this P_n register.

* Soifthe instruction is not active (predicate p is false), we still need to copy x1 from P_m to P_n.
* Iftheinstruction *is* active, we copy P_q to P_n instead.
*  Afterwards, the issue-side register alias table maps logical register x1 to P_n.

*  On later iterations of the loop this all happens again, but when the loop exits, the register alias table tells us
which physical register the final value of x1 is actually in.




Student question: predicated instructions in an 0-0-o0 processor V2

Hello | was wondering if - in the 0-0-0 pipeline with an RUU - the way predication works is that we have the instructions that
are predicated on a particular predicate register (i.e. those that will execute only if their predicate condition is true) depend on
the predicate register in the RUU in the same way that an instruction depends on its operands.

Once the required predicate register value becomes available (either from the register file or an FU), the instruction is either
trashed from the RUU or made eligible for dispatch (assuming its other dependencies are resolved).

One advantage is that we do not use the FU's needlessly as we would with a branch misprediction. Also, unlike on a branch
misprediction, only a few entries in the RUU are flushed (those whose predicate condition is false) as opposed to the whole
RUU. To guarantee that only a few entries are flushed, we must only use predication for a small number of instructions.

Is all the above correct? Many thanks!

This all makes complete sense.

Of course you might try to execute predicated instructions speculatively - you could start them off, and then decide whether
to commit the result at commit time when the condition is known.

The trouble with that is that if you guessed wrong, you will have to flush as it's possible the register result of the predicated
instruction might have been forwarded to another instruction, erroneously.

There is a menu of techniques that might fix this. For example, see
Predicate Prediction for Efficient Out-of-order Execution paper.dvi (psu.edu)

There is a subtlety (explained in the paper above) [and | think it applies to the scheme you propose] that predicated register
writes create ambiguity in dependence:

1: rl<-a
2: r2<-b
3: (p1)r2<-r1
4: r4 <-r2

Should instruction 4 be dispatched when instruction 2 writes-back, or should it wait for instruction 3? But we removed
instruction 3 from the RUU!

(one might comment that conditional branches create ambiguity in dependence.... it's almost as if we are translating
predication into control dependence on the fly).

Paul



https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.9096&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.9096&rep=rep1&type=pdf

Student question: gselect
[Brnch oy regiver |

9 m bits )
Y

N k low-order bity

n-bit local
branch
history

2k 2k 2k 2k

fPopular\
choice

1S m=2,
n=2, so
four
tables
each of
\2x2"
bits
prediction

Is the pink box local history and the yellow box global history? (see picture above)

If yes, is that why n = x and m = 0 means we are only using global history? (see picture below)

ignore the PC of the branch being predicted (an extreme
(n,m) gselect scheme)

The slide you show illustrates a gselect (m,n)
predictor. It shows a specific instance: gselect(2,2),
whose size is 2k rows. The textbook reference is
page 163.

So m is the number of bits from the branch
history register that are used. In this case m=2 so
we have 2/2=4. So we have 4 BHTs.

Parameter n is is the number of bits per BHT entry
- the size of the sticky up-down counter that we
hold at each BHT entry. In the slide | assume that
n=2 so each prediction entry has four states.

So the total memory cost of the predictor is 22k *
2A\m * n bits.

So, coming back to your question: if we make m
big enough, we don't need to use any of the PC
address bits (so k=0). The diagram in the slide
would get stretched wide, with 22m BHTs each of
size 1. That is the "global" predictor.

re: "is the pink box local history and the yellow
box global history?"

Kinda.... you might say that pink is the dimension
that gets bigger if you increase the focus on local
predictions. Yellow is the dimension that gets
bigger if you increase m.

(there are some sources that interpret the m and
n parameters differently - it's the principle that
counts)

((you can think of the diagram above in a
"simplified" way: suppose we have one big BHT,
but we index it with an address that is formed by
concatenating the m BHR bits with the k PC
address bits. Whether you think that's simpler is
up to you! But thinking this way leads you to the
"gshare" predictor, where you use XOR instead of
concatenation.))




Student question: resteers

Combining fast simple predictor with slower K&
bigger predictor

“re-steer”: squash first prediction and fetch
L3

from improved prediction

4

Bigger slower predictor
'y

| Direction predictor

Branch context?

PC+instsize—— | Next FetchMINSUAIadlo])

Address

hit?

PC address bits { Tag

. target address

Cache of Target Addresses (BTB: Branch Target Buffer)

12
(What if branch is predicted-taken but BTB miss?)

In the lecture, it was mentioned that if the bigger slower predictor produces a better prediction. How do
we ascertain if the prediction is better or not at this point since the conditional branch result has not been
completed yet?

You do not know that the bigger predictor's prediction is better.
You can only guess that it might be better.

So the idea being proposed here is that you initially use the small
one-cycle predictor to choose what to do. One cycle later you get
the prediction from the bigger predictor. If its prediction matches
the prediction you chose, you're fine. If it doesn't match, you
probably made the wrong choice. You squash the wrongly-fetched
instruction and fetch from the new path as predicted by the bigger
predictor.

You might still be wrong!

Whatever you do, you will eventually discover the actual branch
direction - possibly much later. At that point you might have to
initiate a rollback due to a misprediction. Either way, you then
update both predictors with the branch outcome.

The following will make more sense after the lecture on branch
target prediction:

A natural case where a resteer makes sense is where the first
predictor is a Branch Target Buffer (BTB) - which predicts the next
instruction fetch address even before the current instruction is
decoded.

Another natural opportunity for a resteer is where you discover
during instruction decode that the instruction is an unconditional
jump (or call). Or a return instruction, whose prediction should
come from the Return Address Stack (RAS) predictor.

The reality in commercial processors is much more complicated.

This Intel patent gives some idea of the thinking:
US20010047467A1 - Method and apparatus for branch prediction
using first and second level branch prediction tables - Google
Patents (https://patents.google.com/patent/US20010047467A1/en)

| found this article interesting - going some way beyond what we
cover in the lectures: elastic_instruction_fetching_hpca19.pdf
(aperais.fr) (http://aperais.fr/papers/elastic_instruction_fetching hpca19.pdf)

To dig further, you might enjoy this article by Matt Godbolt, where
he designs experiments to try to figure out the branch prediction
structure (including resteers) in some Intel products: Static branch
prediction on newer Intel processors — Matt Godbolt's blog
(xania.org) . Actually Matt's explanation might be a pretty good
place to start. (https://xania.org/201602/bpu-part-one)

((Matt Godbolt is responsible for the amazing Compiler Explorer
tool, which we will see more of later: Compiler Explorer
(godbolt.org) https://godbolt.org/ ))
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Student question: predication

Q: how does predication actually work?

A1: in-order
. Predication in 000 cores can get a bit messy, so let's focus on a simpler in-order core.

— Theidea is pretty simple: we fetch and decode the instructions, and we fetch the registers that it needs, including
the predicate register. If the predicate register contains a zero, we squash the instruction - so it doesn't access
memory and it doesn't write-back to the register file.

— We might have a data hazard on the predicate register - it might be that the condition is evaluated in the
preceding instruction - in which case we will need to set up forwarding ("blue wires") or even a stall.

— So this optimises the case where we would otherwise have a hard-to-predict conditional branch over just one or
two instructions. [you might wonder just what the threshold is - which depends on the miss rate and the
misprediction penalty].

— Predication also looks very attractive in a CPU that tries to issue two (or more) instructions per cycle.

A2: 000

. | think in the lecture | said some confusing things about some of the difficulties you encounter in implementing
predicated instructions in an OoO core.

. Consider:

LD R3, R5(300) // load a value form memory that we will use in comparison
LD R1, R2(100) // load Rl from memory

CMPLT P1, R3, R4 // set Pl true if R3<R4

P1l: MOV #0 R1 // set Rl to zero iff Pl is true

SD R1, R5(200) // Store Rl to memory

. Line 3 conditionally overwrites R1. At line 5, the value we are supposed to store to memory is either the value from line
2 or line 3.The problem for an OoO CPU is that line 1 might suffer a cache miss, so the value of P1 cannot be
determined at instruction issue time. Line 4 will sit in the ROB/RUU/Reservation Station until P1 is computed.

«  Sowhen we issue line 5, we want to assign a tag for the value of R1 that should be stored. We want the tag to identify
where the value of R1 will come from. But it might come from either line 2 or line 4!

*« Soinan 000 core, line 4 actually needs to be implemented as something like "IF P1 THEN R1=0 ELSE R1=R1". Then line
5 depends only on line 4.




Provocative question

Suppose we can observe the power consumption of a processor while it is decoding a message using a
secret key. Perhaps we can trigger the device to repeat the operation many times.

Suppose the code for the decryption algorithm contains conditional branches, that depend on the key.
Can we deduce anything about the secret key? Should we worry? Can we prevent it?

Your answer goes here....




Textbook references

® An introduction to branch direction prediction appears starting from page C-
18 of the textbook (Hennessy and Patterson, 6th edition).

® More advanced ideas are presented in section 3.3 (pp182).
® Branch Target Buffers are covered from page 228.

® See also p249 for how branch prediction fits into the ARM Cortex-A53.
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