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Part 1: Branch Direction Prediction



Branch Prediction

1. Control hazards are a problem in any pipelined 
processor

2. Branches occur a lot (ca. one in five instructions?)
– Branches will arrive up to n times faster in an n-issue 

processor 

3. Amdahl’s Law:
– relative impact of the control stalls will be larger with 

the lower potential CPI in an n-issue processor 

4. Speculative dynamic instruction scheduling with 
register renaming enables us to speculate many
instructions
– Forwarding from one speculatively-executed 

instruction to the next

Branch prediction is really important….



Branch Prediction - alternatives

• We have seen how a dynamically-
scheduled processor can handle 
speculative execution past conditional 
branches, virtual calls, page faults etc

• But branch mis-predictions are expensive

• This naturally leads us to consider branch 
prediction schemes

• But first: there are alternatives…

– With enough threads per core…

– By extending the instruction set with predication

– By extending the instruction set with branch 
delays



With enough threads per core…

Thread0: beq…

Thread1: …

Thread2: …

Thread3: …

Thread0: next thread0 instruction
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• In this example we have four threads per core

• Four PCs

• Four sets of registers

• And plenty of time to determine branch outcome without 

prediction



• Avoid branch prediction by turning branches into conditionally 

executed instructions:

Predicated Execution (predic*a*ted…)

:

:

if (x == 10)

   c = c + 1;

:

:

:

     LDR r5, X

     p1 <- r5 eq 10

<p1> LDR  r1 <- C

<p1> ADD r1, r1, 1

<p1> STR  r1 -> C

     :

Some instruction sets allow predication of almost any instruction

• Load condition value into a predicate register

• Each instruction specifies which predicate register it depends on

• If predicate is false, no exception or effect occurs

• Compiler can schedule instructions from different conditional branches to 

fill stalls

(Some instruction sets offer only partial support, eg predicated moves/stores, eg 

Alpha, MIPS, PowerPC, SPARC) (we will revisit this with Itanium & in GPUs)

When is this better than a conditional branch instruction?



• Define branch to take place AFTER a following 

instruction

• After all we have already fetched the next instruction

• A delay of just one instruction allows proper decision 

and branch target address in 5 stage pipeline

– MIPS uses this; eg in

– “SW R3, X” instruction is executed regardless

– “SW R4, X” instruction is executed only if R1 is non-zero

LW R3, #100

  LW R4, #200

  BEQZ R1, L1

  SW R3, X

  SW R4, X

L1:

  LW R5,X

If (R1==0) 

   X=100

Else

   X=100

   X=200

R5 = X

If (R1==0) 

   X=100

Else

   X=200

R5 = X

Delayed Branch

Source code Assembly code What it does



Delayed Branch
• Where to get instructions to fill branch delay 

slot?
– Before branch instruction

– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

target

before
Blt R1,L1

fallthru

L1:
Compiler effectiveness for single branch delay slot:

Fills about 60% of branch delay slots

About 80% of instructions executed in branch delay slots useful 
in computation

About 50% (60% x 80%) of slots usefully filled

“Canceling” branches: increase utilization of delay slot

Branch delay slot instruction is executed but write-back is 
disabled if it is not supposed to be executed

Two variants: branch “likely taken”, branch “likely not-taken”

allows more slots to be filled

Delayed Branch downside: 

What if the pipeline is longer?

What if multiple instructions are issued per clock (superscalar)



Branch Prediction - context

• If we have a branch predictor….

– We want to fetch the correct (predicted) next 

instruction without any stalls

– We need the prediction before the preceding 

instruction has been decoded

– We need to predict conditional branches

• Direction prediction

– And indirect branches

• Target prediction



Branch Prediction Schemes

Takenness:

• 1-bit Branch-Prediction Buffer

• 2-bit Branch-Prediction Buffer

• Correlating Branch Prediction Buffer

• Tournament Branch Predictor

Target:

• Branch Target Buffer

• Return Address Predictors

Hennessy and Patterson 
6th ed p182-191

Hennessy and Patterson 
6th ed Appendix C p18-26



Simplest idea: branch history table (BHT)
• Lower bits of PC 

address index table of 1-

bit values

– Says whether or not 

branch taken last 

time

– No address check

index

Program counter

k low-order bits

0

1

2k

Taken/not

-taken



Simplest idea: branch history table (BHT)
• Lower bits of PC 

address index table of 1-

bit values

– Says whether or not 

branch taken last 

time

– No address check 

(saves HW, but may 

not be right branch)

• Aliasing: 

possible 

mispredictions if 

2 different branch 

instructions map 

to the same BHT 

entry

index

Program counter

k low-order bits

0

1

2k

Taken/not

-taken

Blt R2,L2

Blt R1,L1

L1:

L2:



Simplest idea: branch history table (BHT)
• Problem: in a loop, 1-bit 

BHT will cause 

2 mispredictions (avg is 

9 iterations before exit):

– End of loop case, 

when it exits instead 

of looping as before

– First time through 

loop on next time 

through code, when 

it predicts exit 

instead of looping

– Only 80% accuracy 

even if the loop’s 

branch is taken 90% 

of the time

index

Program counter

k low-order bits

0

1

2k

Taken/not

-taken

Blt R1,L1

L1:

L2:

Blt R2,L2



• Solution: 2-bit scheme where change prediction 
only if get misprediction twice: (Figure 3.7, p. 198)

• Red: stop, not taken

• Green: go, taken

• Adds hysteresis to decision making process

Dynamic Branch Prediction
(Jim Smith, 1981)

T

T

NT

Predict Taken

Predict Not 

Taken

Predict Taken

Predict Not 

TakenT

NT

T

NT

NT



The 2-bit branch history table (BHT)

index

2-bit local 

branch 

history

prediction
bit   n....1,0

Program counter

k low-order bits

0

1

2k

Predict

taken

Predict

not-taken

Predict

taken

Predict

not-taken

taken

not

taken

not takentaken

taken

taken

not taken

not taken

(Generalises to n-bit BHT: 
saturating counter)



n-bit 

BHT - 

how well 

does it 

work?

0 2 4 6 8 10 12 14 16 18

Frequency of misprediction

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

B
e
n

c
h

m
a
rk

 a
p

p
li

c
a
ti

o
n

Prediction accuracy of an 4096-entry two-bit prediction buffer versus an infinite buffer for the SPEC89 

benchmarks (H&P Fig 4.15) 

Unlimited entries

4096 entries

2-bit predictor often very good, sometimes awful

Little evidence that BHT capacity is an issue

1-bit is usually worse, 3-bit is not usefully better



N-bit BHT - why does it work so well?

• n-bit BHT predictor essentially based on a saturating 

counter: taken increments, not-taken decrements

• predict taken if most significant bit is set

Predict

taken

Predict

not-taken

Predict

taken

Predict

not-taken

taken

not

taken

not takentaken

taken

taken

not taken

not taken

11 10

01 00

Most branches are highly 
biased: either almost-
always taken, or almost-
always not-taken

Works badly for branches 
which aren’t

Often called the “bimodal” predictor



Bias
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Is local history all there is to it?

• The bimodal predictor uses the BHT to record 

“local history” - the prediction information used 

to predict a particular branch is determined only 

by its memory address

• Consider the following sequence:
if (C1)  then

 S1;

endif

if (C2) then

 S2;

endif

if (C3) then

 S3;

endif

o It is very likely that condition 
C2 is correlated with C1 - and 
that C3 is correlated with C1 
and C2

oHow can we use this 
observation?



Global history

• Definition: Global history. The taken - not-taken 
history for all previously-executed branches.

– Idea: use global history to improve branch 
prediction

• Compromise: use m most recently-executed 
branches

– Implementation: keep an m-bit Branch History 
Register (BHR) - a shift register recording taken - 
not-taken direction of the last m branches

• Question: How to combine local information with 
global information?



index

bit   n....1,0

Program counter

k low-order bits

0

1

2k

Branch history register

m bits

bit   n....1,0
0

1

2k

prediction

bit   n....1,0
0

1

2k

bit   n....1,0
0

1

2k

Select

n-bit local 

branch 

history

2m n-bit BHTs

Popular 

choice 

is m=2, 

n=2, so 

four 

tables 

each of 

2x2k 

bits

2 2 2 2

“Gselect”

• This is an 
(m,n) 
“gselect” 
correlating 
predictor: 
– m global 

bits record 
behaviour 
of last m 
branches

– These m 
bits are 
used to 
select 
which of 
the 2m n-bit 
BHTs to use 



How many bits of branch history should be used?

• (2,2) is good, (4,2) is better, (10,2) is worse Z
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• There are many variations on the idea:
– gselect: many combinations of n and m

– global: use only the global history to index the BHT - 
ignore the PC of the branch being predicted (an extreme 
(n,m) gselect scheme)

– gshare: arrange bimodal predictors in single BHT, but 
construct its index by XORing low-order PC address bits 
with global branch history shift register - claimed to 
reduce conflicts

– Per-address Two-level Adaptive using Per-address 
pattern history (PAp): for each branch, keep a k-bit shift 
register recording its history, and use this to index a BHT 
for this branch (see Yeh and Patt, 1992)

• Each suits some programs well but not all

Variations



Horses for courses
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• “go” is a 

SPEC95 

benchmark 

code with 

highly-

dynamic, 

highly-

correlated 

branch 

behaviour

• The bias of “go”s branches is more-or-less evenly spread 

between 0% taken and 100% taken

• All known predictors do badly
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Some dynamic applications have highly-correlated branches 

• For “go”, optimum BHR size (m) is much larger
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Re-evaluating Correlation

• Several of the SPEC benchmarks have 

less than a dozen branches 

responsible for 90% of taken branches:

program branch %   static # = 90% 
compress 14%  236 13
eqntott 25%  494 5
gcc 15%  9531 2020
mpeg 10%  5598 532
real gcc 13%  17361 3214

• Real programs + OS more like gcc

• Small benefits beyond benchmarks for 

correlation? problems with branch 

aliases?



Tournament Predictors

• Motivation for correlating branch 
predictors is that the 2-bit predictor failed 
on important branches; by adding global 
information, performance improved

• Tournament predictors: use 2 predictors, 
– one based on global information

– the other based on local information

– and combine with a selector

– The selector is driven by a predictor….

• Hopes to select the right predictor for the 
right branch



Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global 

predictor and a local predictor

• Global predictor also has 4K entries and is indexed by 

the history of the last 12 branches; each entry in the 

global predictor is a standard 2-bit predictor
– 12-bit pattern: ith bit 0 => ith prior branch not taken; 

   ith bit 1 => ith prior branch taken; 

• Local predictor consists of a 2-level predictor: 

– Top level a local history table consisting of 1024 10-bit entries; 

each 10-bit entry corresponds to the most recent 10 branch 

outcomes for the entry. 10-bit history allows patterns 10 

branches to be discovered and predicted. 

– Next level Selected entry from the local history table is used to 

index a table of 1K entries consisting a 3-bit saturating counters, 

which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!

 (~180,000 transistors)
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Branch prediction accuracy

Profile-based

2-bit counter

Tournament

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that the prediction is in encoded in the instruction, but derived from the real 
execution profile)

• A good dynamic predictor can outperform profile-driven static prediction by a large margin



Accuracy v. Size (SPEC89)
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Tournament is not just a better predictor; it delivers a better prediction with fewer transistors
It’s another example of combining two different optimisations, each good for different situations



Summary
• Prediction seems essential (?)

– Fine-Grained Multi-Threaded (FGMT) processors can avoid control hazards

– Predicated Execution can reduce number of branches, number of mispredicted 
branches

– Delayed branches and cancelling branches can help, at least in simple pipelines

• Two questions: branch takenness, branch target

Takenness:

• Branch History Table: 2 bits for loop accuracy
– Saturating counter (bimodal) scheme handles highly-biased branches well

– Some applications have highly dynamic branches

• Correlation: Recently executed branches correlated with next 
branch.
– Either different branches

– Or different executions of same branches

• Tournament Predictor: try two or more competitive solutions and 
pick between them

Target:

• Next time!



Appendix: slides not covered in video



Warm-up effects and context-switching

• In real life, applications are interrupted and some 
other program runs for a while (if only the OS)

• This means the branch prediction is regularly 
trashed

• Simple predictors re-learn fast

– in 2-bit bimodal predictor, all executions of given 
branch update the same 2 bits

• Sophisticated predictors re-learn more slowly

– for example, in (2,2) gselect predictor, prediction 
updates are spread across 4 BHTs

• Selective predictor may choose fast learner 
predictor until better predictor warms up



Warm-up...

• Best predictor takes 20,000 instructions to overtake bimodal
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Pitfall: Sometimes bigger and dumber is better

• 21264 uses tournament predictor (29 Kbits)

• Earlier 21164 uses a simple 2-bit predictor with 2K 
entries (or a total of 4 Kbits)

• SPEC95 benchmarks, 21264 outperforms 
– 21264 avg. 11.5 mispredictions per 1000 instructions

– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for a large commercial transaction 
processing (TP) workload!
– 21264 avg. 17 mispredictions per 1000 instructions

– 21164 avg. 15 mispredictions per 1000 instructions

• Why?
– TP code is much larger than the benchmarks

– the 21164 holds twice as many branch predictions based on 
local behavior (2K vs. the 21264’s 1K local predictor) 



Branch direction prediction: topics not covered

• Yeh and Patt’s “Two-Level Adaptive Branch 
Predictor” (and Yeh/Patt classification 
GAg,GAp,Pap)
– Tse-Yu Yeh, Yale N. Patt: Alternative Implementations 

of Two-Level Adaptive Branch Prediction. ISCA 1992: 
124-134

• Seznec and Michaud’s TAGE predictor
– André Seznec. 2011. A new case for the TAGE branch 

predictor. In Proceedings of the 44th Annual 
IEEE/ACM International Symposium on 
Microarchitecture (MICRO-44)

• Neural branch predictors eg
– Daniel A. Jiménez and Calvin Lin. 2002. Neural 

methods for dynamic branch prediction. ACM Trans. 
Comput. Syst. 20, 4 (November 2002), 369–397.

Hennessy and Patterson 6th 
ed p188



Student question: tournaments

• I think the logic of using a local predictor as the tournament "selector" is that for each branch, we predict whether 
it's best to use local history or global history.

• But you might say "it depends" - the answer to this question might depend on the context in which this branch is 
executed.  

• A good example of "context" is the function's caller.  
• Consider this example:

void f(int i) {
  if (i &1) S1 else S1;}
void g() {
  x = rand();  
  f(x);}
void h() {
  x = rand();  
  if (x&1)
      f(x)  else
    S3}

• In this example, the condition in f is highly correlated with the outcome of the condition in g (ie it's the same).  
• So when f is called from g the global history is helpful, while when it's called from h the global history is useless.   
• However in this example, the condition is hard to predict anyway - so you might as well use history always.  Your 

scheme would only help us if the local prediction were actually useful.
• So I think this example shows that an advantage is possible but depends on some pretty complicated 

circumstances - so its advantage would be rather thin?
• Another thing I think this example reinforces is that using global history is particularly good for repeated or 

redundant tests - where it doesn't help avoiding the misprediction - it avoids mispredicting again.  
• You might also wonder whether the taken/not-taken history of recent branches is the most useful way to 

distinguish the relevant contexts?

• In lecture 3.1, at the end we look at tournament predictors to choose which 
branch prediction method to use. How do we know that the predictor used for 
the tournament predictor is best? 

• I assume the overhead is too much but disregarding that, can't the same 
reasoning for using a tournament predictor be applied to the tournament 
predictor itself? Hence, is there any data for using a tournament predictor to 
choose between which tournament predictor to use?



Student question: when does correlation win?

I think they offer a variety of compromises between 

(1) covering as many different branches in the program as possible

(2) exploiting "global" context (ie providing different predictions for the same branch in 
different contexts)

(3) learning quickly

(4) handling periodic branches with a useful range of different periods (the simplest periodic 
branch is a while-loop exit branch - perhaps the loop is usually executed N times.  Can the 
predictor provide a perfect prediction?  For N=2, N=3?

There are also some subtleties I think with branch predictor aliasing: suppose two different 
frequently-executed branches happen to have the same low-order address bits, so they map to 
the same BHT entry in the local half of a tournament predictor.  It might be clever to arrange 
the tournament predictor so that they are not aliased in the "global" half.

What types of programmes are the different variations of global history tables suited for?

Out of the 4 variations (gselect, global, gshare, pAp), would you mind describing a feature of 
a body of code which would make it most suited for each of these variations?

After having a read of this article (https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-
TN-36.pdf ) which was very useful btw, I recommend you check it out, I see that each is a 
continuation of the idea that global information really doesn't contain a lot of valuable 
information, so I suppose a followup to this is why even bother using global information?

https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf


Student question: predicated instructions in an o-o-o processor

Great question!  This is quite subtle, and involves just how the o-o-o register renaming 
mechanism works.

Consider their example:

• The instruction "p.mv x1 x2" conditionally updates x1 (the running maximum) with x2, the array value just 
read.

• Register x1 is stored in a physical register (say P_m), allocated during register renaming earlier in the 
computation (initially, when the "max" is initialised to zero).

• Register x2 is allocated to a physical register (say P_q) at the load instruction.

• During register renaming (ie during issue) a new physical register (say P_n) is allocated for the result of this 
instruction, and the issue-side register alias table is set to point to this P_n register.  

• So if the instruction is not active (predicate p is false), we still  need to copy x1 from P_m to P_n.

• If the instruction *is* active, we copy P_q to P_n instead.

• Afterwards, the issue-side register alias table maps logical register x1 to P_n.

• On later iterations of the loop this all happens again, but when the loop exits, the register alias table tells us 
which physical register the final value of x1 is actually in.

In section 4.2 [of the SonicBOOM article], it talks about the micro-ops that have been created to 
implement predication. It says it uses a predicate register to determine "whether to execute the original 
op, or to perform a copy operation from the stale register to the destination register".
I do not understand why it would perform that copy. Surely if the predicate is false, it should simply do 
nothing in the instruction?



Student question: predicated instructions in an o-o-o processor V2

• This all makes complete sense.

• Of course you might try to execute predicated instructions speculatively - you could start them off, and then decide whether 
to commit the result at commit time when the condition is known.

• The trouble with that is that if you guessed wrong, you will have to flush as it's possible the register result of the predicated 
instruction might have been forwarded to another instruction, erroneously.

• There is a menu of techniques that might fix this.  For example, see

• Predicate Prediction for Efficient Out-of-order Execution paper.dvi (psu.edu)

• There is a subtlety (explained in the paper above) [and I think it applies to the scheme you propose] that predicated register 
writes create ambiguity in dependence:

• 1:     r1 <- a

• 2:     r2 <- b

• 3:  (p1) r2 <- r1

• 4:     r4 <- r2

• Should instruction 4 be dispatched when instruction 2 writes-back, or should it wait for instruction 3?  But we removed 
instruction 3 from the RUU!

• (one might comment that conditional branches create ambiguity in dependence.... it's almost as if we are translating 
predication into control dependence on the fly).

• Paul

• Hello I was wondering if - in the o-o-o pipeline with an RUU - the way predication works is that we have the instructions that 

are predicated on a particular predicate register (i.e. those that will execute only if their predicate condition is true) depend on 

the predicate register in the RUU in the same way that an instruction depends on its operands.

• Once the required predicate register value becomes available (either from the register file or an FU), the instruction is either 

trashed from the RUU or made eligible for dispatch (assuming its other dependencies are resolved).

• One advantage is that we do not use the FU's needlessly as we would with a branch misprediction. Also, unlike on a branch 

misprediction, only a few entries in the RUU are flushed (those whose predicate condition is false) as opposed to the whole 

RUU. To guarantee that only a few entries are flushed, we must only use predication for a small number of instructions.

• Is all the above correct? Many thanks!

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.9096&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.9096&rep=rep1&type=pdf


Student question: gselect • The slide you show illustrates a gselect (m,n) 
predictor. It shows a specific instance: gselect(2,2), 
whose size is 2^k rows. The textbook reference is 
page 163.

• So m is the number of bits from the branch 
history register that are used. In this case m=2 so 
we have 2^2=4. So we have 4 BHTs.

• Parameter n is is the number of bits per BHT entry 
- the size of the sticky up-down counter that we 
hold at each BHT entry. In the slide I assume that 
n=2 so each prediction entry has four states.

• So the total memory cost of the predictor is 2^k * 
2^m * n bits.

• So, coming back to your question: if we make m 
big enough, we don't need to use any of the PC 
address bits (so k=0). The diagram in the slide 
would get stretched wide, with 2^m BHTs each of 
size 1. That is the "global" predictor.

• re: "is the pink box local history and the yellow 
box global history?"

• Kinda.... you might say that pink is the dimension 
that gets bigger if you increase the focus on local 
predictions. Yellow is the dimension that gets 
bigger if you increase m.

• (there are some sources that interpret the m and 
n parameters differently - it's the principle that 
counts)

• ((you can think of the diagram above in a 
"simplified" way: suppose we have one big BHT, 
but we index it with an address that is formed by 
concatenating the m BHR bits with the k PC 
address bits. Whether you think that's simpler is 
up to you! But thinking this way leads you to the 
"gshare" predictor, where you use XOR instead of 
concatenation.))



Student question: resteers • You do not know that the bigger predictor's prediction is better. 
You can only guess that it might be better.

• So the idea being proposed here is that you initially use the small 
one-cycle predictor to choose what to do. One cycle later you get 
the prediction from the bigger predictor. If its prediction matches 
the prediction you chose, you're fine. If it doesn't match, you 
probably made the wrong choice. You squash the wrongly-fetched 
instruction and fetch from the new path as predicted by the bigger 
predictor.

• You might still be wrong!

• Whatever you do, you will eventually discover the actual branch 
direction - possibly much later. At that point you might have to 
initiate a rollback due to a misprediction. Either way, you then 
update both predictors with the branch outcome.

• The following will make more sense after the lecture on branch 
target prediction:

• A natural case where a resteer makes sense is where the first 
predictor is a Branch Target Buffer (BTB) - which predicts the next 
instruction fetch address even before the current instruction is 
decoded. 

• Another natural opportunity for a resteer is where you discover 
during instruction decode that the instruction is an unconditional 
jump (or call). Or a return instruction, whose prediction should 
come from the Return Address Stack (RAS) predictor.

• The reality in commercial processors is much more complicated.

• This Intel patent gives some idea of the thinking: 
US20010047467A1 - Method and apparatus for branch prediction 
using first and second level branch prediction tables - Google 
Patents (https://patents.google.com/patent/US20010047467A1/en)

• I found this article interesting - going some way beyond what we 
cover in the lectures: elastic_instruction_fetching_hpca19.pdf 
(aperais.fr) (http://aperais.fr/papers/elastic_instruction_fetching_hpca19.pdf) 

• To dig further, you might enjoy this article by Matt Godbolt, where 
he designs experiments to try to figure out the branch prediction 
structure (including resteers) in some Intel products: Static branch 
prediction on newer Intel processors — Matt Godbolt’s blog 
(xania.org) . Actually Matt's explanation might be a pretty good 
place to start. (https://xania.org/201602/bpu-part-one) 

• ((Matt Godbolt is responsible for the amazing Compiler Explorer 
tool, which we will see more of later: Compiler Explorer 
(godbolt.org) https://godbolt.org/ ))

https://patents.google.com/patent/US20010047467A1/en
https://patents.google.com/patent/US20010047467A1/en
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Student question: predication
Q: how does predication actually work?

A1: in-order

• Predication in OoO cores can get a bit messy, so let's focus on a simpler in-order core.

– The idea is pretty simple: we fetch and decode the instructions, and we fetch the registers that it needs, including 
the predicate register.  If the predicate register contains a zero, we squash the instruction - so it doesn't access 
memory and it doesn't write-back to the register file.

– We might have a data hazard on the predicate register - it might be that the condition is evaluated in the 
preceding instruction - in which case we will need to set up forwarding ("blue wires") or even a stall.

– So this optimises the case where we would otherwise have a hard-to-predict conditional branch over just one or 
two instructions.  [you might wonder just what the threshold is - which depends on the miss rate and the 
misprediction penalty].

– Predication also looks very attractive in a CPU that tries to issue two (or more) instructions per cycle.  

A2: OoO

• I think in the lecture I said some confusing things about some of the difficulties you encounter in implementing 
predicated instructions in an OoO core.

• Consider:

LD R3, R5(300)    // load a value form memory that we will use in comparison

LD R1, R2(100)    // load R1 from memory

CMPLT P1, R3, R4  // set P1 true if R3<R4

P1: MOV #0 R1     // set R1 to zero iff P1 is true

SD R1, R5(200)    // Store R1 to memory

• Line 3 conditionally overwrites R1.  At line 5, the value we are supposed to store to memory is either the value from line 
2 or line 3.The problem for an OoO CPU is that line 1 might suffer a cache miss, so the value of P1 cannot be 
determined at instruction issue time.  Line 4 will sit in the ROB/RUU/Reservation Station until P1 is computed.

• So when we issue line 5, we want to assign a tag for the value of R1 that should be stored.  We want the tag to identify 
where the value of R1 will come from.  But it might come from either line 2 or line 4!

• So in an OoO core, line 4 actually needs to be implemented as something like "IF P1 THEN R1=0 ELSE R1=R1".  Then line 
5 depends only on line 4.



Provocative question

Your answer goes here….

Suppose we can observe the power consumption of a processor while it is decoding a message using a 
secret key.  Perhaps we can trigger the device to repeat the operation many times.
Suppose the code for the decryption algorithm contains conditional branches, that depend on the key.
Can we deduce anything about the secret key?  Should we worry?  Can we prevent it?



Textbook references

An introduction to branch direction prediction appears starting from page C-
18 of the textbook (Hennessy and Patterson, 6th edition).  

More advanced ideas are presented in section 3.3 (pp182).

Branch Target Buffers are covered from page 228.  

See also p249 for how branch prediction fits into the ARM Cortex-A53.
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