
October 2023

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and

Patterson’s Computer Architecture, a quantitative approach (4-6th eds), and

on the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 4

Part 2: Branch Target Prediction

Branch Prediction - context

• If we have a branch predictor….

– We want to fetch the correct (predicted) next

instruction without any stalls

– We need the prediction before the preceding

instruction has been decoded

– We need to predict conditional branches

• Direction prediction

– And indirect branches

• Target prediction

Branch Target Buffer
• Need address at same time as prediction

• Especially for indirect branches and virtual method calls

• Note that we must check for branch match, since can’t use wrong branch
address

Branch PC Predicted PC

=?

P
C

 o
f in

s
tru

c
tio

n

F
E

T
C

H

Extra

prediction state

bits

Yes: instruction is

branch and use

predicted PC as

next PC

No: branch not

predicted, proceed normally

(Next PC = PC+4)

BTB is

indexed with
low-order PC
address bits,

tagged with
high-order
bits

Hennessy and Patterson 6th
ed p228-232

Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB
predicts that the
instruction we are fetching
will be a taken branch

Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB
predicts that the
instruction we are fetching
will be a taken branch

When a taken branch is
committed, we update
the BTB with the branch's
target address (and with
the tag of the address of
the branch instruction).

Branch Target Buffer (BTB)
• Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage

• Updated only by taken branches (the direction-predictor determines whether BTB is used)

• If BTB hit and the instruction is a predicted-taken branch

– target from the BTB is used as fetch address in the next cycle

• If BTB miss or the instruction is a predicted-not-taken branch

– PC+N is used as the next fetch address in the next cycle

ICACHE

PC

k

entry PC predicted
target

=

hit? target

BTB

Credit: Onur Mutlu (Note: we could use an n-way set-associative design here)

BTB is

indexed with
low-order PC
address bits,

tagged with
high-order
bits

Target prediction: recall the 5-stage MIPS pipeline

A
d

d
e
r

IF
/ID

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

A
L

U

M
e
m

o
ry

R
e
g
 F

ile M
U

X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e

r

Next

SEQ

PC

RD RD RD

W
B

 D
a
ta

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

F
ig

u
re

 3
.2

2
,

p
a

g
e
 1

6
3
,

C
A

:A
Q

A
 2

/e

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

Where does branch prediction happen?

BTB

hit

• Branch target prediction happens
in IF stage

• Before we even know if the
instruction is a branch or jump

• Branch Target Buffer (BTB) is
indexed by current PC, yields next
PC

• We check in ID stage whether
BTB prediction was correct

• If not, we over-ride the PC for IF
• And squash the MEM and WB

stages
M

U
X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

11

target address

Combining BTB with direction Prediction

Direction predictor

Cache of Target Addresses (BTB: Branch Target Buffer)

PC + inst size

taken?

Next Fetch

Address

hit?

Credit: Onur Mutlu

PC address bits

Branch context? ??

Tag

(What if branch is predicted-taken but BTB miss?)

13

Combining fast simple predictor with slower bigger predictor

(What if branch is predicted-taken but BTB miss?)

IF
/ID

ID
/E

X

Instruction
fetch

Bigger slower predictor

If slower prediction differs, “re-steer”: squash
first prediction and fetch from improved
prediction

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

Where does branch prediction happen?

BTB

hit

• If the next branch is
predicted taken

• And BTB has predicted
target

• Fetch from BTB predicted
address

• Then check whether
prediction was correct in
ID stage

M
U

X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

Taken?

Updating the branch prediction

Credit: Onur Mutlu

BTB and
Branch
direction
prediction
are updated
when the
branch
outcome is
committed
(or earlier?)

Return addresses

• A function might be called from different places

• In each case it must return to the right place

• Address of next instruction must be saved and
restored

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Hennessy and Patterson 6th
ed p232-233

Return addresses

• jsr must save return address somewhere

• On x86 jsr pushes return address onto stack

• ret jumps to the address on the top of the stack

• On MIPS, “jal F” (jump-and-link) jumps to F, and stashes the
current PC in a special register $ra.

• Function returns with an indirect jump “jr $ra”

• If the function body has other calls, compiler must push $ra to
the stack

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Return addresses

• Return addresses form a stack (even if they are
stored in registers)

• They should be easy to predict!

• We need to add another branch target predictor

• That maintains a hardware stack of return addresses

• Presumably a small stack

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
Jsr H
…

ret

H:
Body of H
...
…
…

ret

• Keep a small hardware stack in
the branch predictor

• Which attempts to mirror the
program’s call-return stack

• Updated when call and return
instructions are executed

• Value at top of stack is used as
predicted next PC when the
BTB predicts that the current
instruction is a RET

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

hit

M
U

X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

RAP
Top of stack

BTB

Taken?

predicted RET?

Is decoded

Instruction

A JSR?

Is decoded

Instruction

A RET?

Confirmed RET so pop RAS stack

Confirmed JSR so push PC to RAS stack
Return Address Predictor

Return Address Predictor - mispredictions

• What happens if the call stack is deeper
than the RAP’s stack?
– On return, the RAP’s stack will be empty!

• Why might the prediction from the RAP
be wrong?
– Maybe the return address was overwritten

– Maybe the stack pointer was changed

– Maybe because we switched to another
thread

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)
 Jsr H
…

ret

H:
Body of H
...
…
…

ret

Fixed
small
number
of
entries

Return addresses

• Q: when should the RAS be updated?

• The BTB is updated when a branch is committed

• But if we wait for commit to update the RAS, we might not
have a prediction for the return from H

• Or: if we mispredict that the conditional “IF(C)” is true

– We might have the wrong RAS prediction for the return
from G

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)
 Jsr H
…

ret

H:
Body of H
...
…
…

ret

Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one

issue “packet”?

Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one

issue “packet”?

• But all the BTB needs is to predict the next

instruction to fetch – it doesn’t matter which

branch is responsible

• Commonly, a bigger slower branch predictor may

later re-steer the processor if it has a better

prediction that should over-ride the BTB

Dynamic Branch Prediction Summary
• Prediction seems essential (?)

• Two questions: branch takenness, branch target

Takenness:

• Branch History Table: 2 bits for loop accuracy
– Saturating counter (bimodal) scheme handles highly-biased branches well

– Some applications have highly dynamic branches

• Correlation: Recently executed branches correlated with next branch.
– Either different branches

– Or different executions of same branches

• Tournament Predictor: try two or more competitive solutions and pick
between them

• Predicated Execution can reduce number of branches, number of
mispredicted branches

Target:

• Branch Target Buffer: include branch address & prediction

• BTB update

• Return address stack for prediction of indirect jump

Beyond:

• Prediction mechanisms have many applications beyond branch
prediction:

– Way prediction, prefetching, store-to-load forwarding, value prediction, etc
• George Z. Chrysos and Joel S. Emer. 1998. Memory dependence prediction using store sets. ISCA98

– Predictors can increase performance, but make it harder to optimize programs

This
lecture

Branch prediction resources

• Design tradeoffs for the Alpha EV8 Conditional Branch
Predictor (André Seznec, Stephen Felix, Venkata Krishnan,
Yiannakis Sazeides)

– SMT: 4 threads, wide-issue superscalar processor, 8-way issue, 512 registers (cancelled June
2001 when Alpha dropped)

– Paper: http://citeseer.ist.psu.edu/seznec02design.html

– Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

• Branch prediction in the Pentium family (Agner Fog)
– Reverse engineering Pentium branch predictors using direct access to BTB

– http://www.x86.org/articles/branch/branchprediction.htm

• Championship Branch Prediction Competition (CBP),
organised by the Journal of Instruction-level Parallelism

– http://www.jilp.org/cbp/

• The CBP-1 winning entry: TAgged GEometric history length
predictor (TAGE): for each branch, maintain a predictor for what
history length (from a geometric progression) works best.

– http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

http://citeseer.ist.psu.edu/seznec02design.html
http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt
http://www.x86.org/articles/branch/branchprediction.htm
http://www.jilp.org/cbp/
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

Example: Branch prediction in Intel Atom, Silvermont and Knights Landing

• two-level adaptive predictor with a global history table,

• Branch history register has 12 bits

• The pattern history table on the Atom has 4096 entries and is shared between threads

• The branch target buffer has 128 entries, organized as 4 ways by 32 sets

– (size on Silvermont unknown, but probably bigger, and not shared between threads)

• Unconditional jumps make no entry in the global history table, but always-taken and nevertaken
branches do

• Silvermont has branch prediction both at the fetch stage and at the later decode stage in the
pipeline, where the latter can correct errors in the former

• No special predictor for loops (as there is for some other Intel CPUs)

– Loops are predicted in the same way as other branches

• Penalty for mispredicting a branch is 11-13 clock cycles.

• It often occurs that a branch has a correct entry in the pattern history table, but no entry in the
branch target buffer, which is much smaller:

– If a branch is correctly predicted as taken, but no target can be predicted because of a missing
BTB entry, then the penalty will be approximately 7 clock cycles.

• Pattern prediction evident for indirect branches on Knights Landing but not on Silvermont.

– Indirect branches are predicted to go to the same target as last time on Silvermont

• Return stack buffer with 8 entries on the Atom and 16 entries on Silvermont and Knights Landing

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf

Student question: better predictions for

indirect branches

• As you say, a BTB should give you a prediction for an indirect branch.
• However it might not be a very good one - the killer app is polymorphic

calls in object-oriented languages (virtual calls where the target object has
a different type on different invocations).

• For that we need to add global history to the branch target prediction. We
did not cover this in the lectures.

• This paper evaluates three alternative schemes:
• Dharmawan, Tubagus & Jeyachandra, E & Rahmadhani, Andri. (2016).

Techniques to Improve Indirect Branch Prediction.
10.13140/RG.2.2.24350.02884.

• The state of the art is perhaps represented by this article in the same
ISCA2020 "Industry" track:

• The IBM z15 High Frequency Mainframe Branch Predictor (computer.org)
(section VI], pg 35-6). Basically they use the branch history to index a
special BTB (actually they expand the branch history concept to include a
couple of bits of the PC address of each taken branch in the history).

https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf

Student question: return address

predictor stack consistency
• “Hi, I don't quite understand the difference between the

RAP stack and the main memory stack in the following
example.

• When the main memory stack is overwritten by A[3] = G, is
the RAP stack overwritten as well? If not, then the RAP
prediction will be correct right?”

• The RAP stack is a small hardware unit which tries to mirror what the
return address stack should look like in memory.

• However there are various reasons why it might not actually reflect the
real stack.

• We discussed for example:
– F might change the SP register

– F might overwrite the return address, for example through a buffer overrun as shown
in the slide above.

– We might have an inconsistent RAP due to the misprediction of some other branch - as
we discussed at length in the class. This could happen if the RAP is updated
speculatively - while the real stack is updated only when memory writes are committed
(eg the memory write resulting from a jsr).

Followup on class discussion: buffer overrun vulnerabilities
• In yesterday's class we touched upon buffer over-run vulnerabilities.

• As I mentioned, this is a big deal and it's the root cause for many many cyberattacks.

• As was discussed in the class, there are some mitigations. One that we talked about was the use of a "canary" word, adjacent to each return address
on the stack. This idea (and the general problem) is introduced in this nice paper:

 StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks

 https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

• There are more sophisticated techniques, for example Shadow Stacks:

 Stack Shield: https://www.angelfire.com/sk/stackshield/info.html

• More secure mechanisms are the focus for a lot of current research and development; see Control-flow integrity - Wikipedia .

• Arguably the heart of the problem is the design of the C programming language, which lacks bounds checking on the use of arrays and pointers - this
is what let's a buffer overrun happen in the first place. Indeed C allows a pointer to get separated from the array into which it is supposed to point -
making checking hard.

• I actually published a bounds checking scheme back in 1997. To get an idea of how big the field has become, check out the citations to our paper:

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC

• The latest hot topic in this space is "capabilities":

 CHERI: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

• Buffer overruns should be old news. Sadly not. Check out this article:

 The Battle for the World’s Most Powerful Cyberweapon - The New York Times:

https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html

• This entertaining article describes how the attack actually worked:

 Analyzing Pegasus Spyware’s Zero-Click iPhone Exploit ForcedEntry:

https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html

• And yes, at its heart, it’s a buffer overrun.

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://www.angelfire.com/sk/stackshield/info.html
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html

Student question:

"What is branch folding?“

See ARM1136JF-S and ARM1136J-S Technical Reference Manual r1p3

How can we avoid even having to execute branches at all?

I'm not sure ARM do it but here's how I think about it:
• Idea: instead of just the branch target address, stash the

branch target instruction in the BTB
• Skip IF stage for next instruction
• Effective CPI for branch is zero
• Could stash target instruction for both taken and not-taken

cases to reduce misprediction delay

https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.

Beyond the lectures
An interesting step beyond the ideas presented in the lecture is to
incorporate branch prediction into instruction prefetching.

The search term is "branch predictor directed prefetch".

For example this is used in ARM's Neoverse N1:

 https://ieeexplore.ieee.org/document/8986666 (page 3)

For an example of academic work in this space, see

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9408197 “Re-
establishing Fetch-Directed Instruction Prefetching: An Industry
Perspective”, Yasuo Ishii et al.

see also this IBM patent:

https://patents.google.com/patent/US6560693B1/en US6560693B1 -
Branch history guided instruction/data prefetching

https://ieeexplore.ieee.org/document/8986666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9408197
https://patents.google.com/patent/US6560693B1/en

	Slide 1: 332 Advanced Computer Architecture Chapter 4 Part 2: Branch Target Prediction
	Slide 2: Branch Prediction - context
	Slide 3: Branch Target Buffer
	Slide 4: Branch target prediction: BTBs
	Slide 6: Branch target prediction: BTBs
	Slide 7: Branch Target Buffer (BTB)
	Slide 8: Target prediction: recall the 5-stage MIPS pipeline
	Slide 9: Where does branch prediction happen?
	Slide 11: Combining BTB with direction Prediction
	Slide 13: Combining fast simple predictor with slower bigger predictor
	Slide 14: Where does branch prediction happen?
	Slide 15: Updating the branch prediction
	Slide 16: Return addresses
	Slide 17: Return addresses
	Slide 18: Return addresses
	Slide 19: Return Address Predictor
	Slide 20: Return Address Predictor - mispredictions
	Slide 21: Return addresses
	Slide 22: Branch prediction and multi-issue
	Slide 23: Branch prediction and multi-issue
	Slide 24: Dynamic Branch Prediction Summary
	Slide 25: Branch prediction resources
	Slide 26: Example: Branch prediction in Intel Atom, Silvermont and Knights Landing
	Slide 27: Student question: better predictions for indirect branches
	Slide 28: Student question: return address predictor stack consistency
	Slide 29: Followup on class discussion: buffer overrun vulnerabilities
	Slide 30: Student question:
	Slide 31

