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These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (4-6 eds), and
on the lecture slides of David Patterson’s Berkeley course (CS252)



Branch Prediction - context

* If we have a branch predictor....

— We want to fetch the correct (predicted) next
instruction without any stalls

— We need the prediction before the preceding
instruction has been decoded

— We need to predict conditional branches
* Direction prediction

— And indirect branches
» Target prediction



Branch Target Buffer

 Need address at same time as prediction
« Especially for indirect branches and virtual method calls

« Note that we must check for branch match, since can’t use wrong branch
address
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ed p228-232
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Branch target prediction: BTBs

* re:"In order to predict a branch, we need to know that current instruction is
branch instruction”

e This doesn't have to be true!

. In parallel with every ifetch

Control Hazard on Branches Check whether the BTB

predicts that the
instruction we are fetching
will be a taken branch

10: beq r1,r?,3ﬁ

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

If we're not smart we risk a three-cycle stall




Branch target prediction: BTBs

re: "In order to predict a branch, we need to know that current instruction is

branch instruction"

This doesn't have to be true!

Control Hazard on Branches

10: beq r1,r?,36

. In parallel with every ifetch

Check whether the BTB
predicts that the
instruction we are fetching
will be a taken branch

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

If we're not smart we risk a three-cycle stall

When a taken branch is
committed, we update
the BTB with the branch's
target address (and with
the tag of the address of
the branch instruction).




Branch Target Buffer (BTB)

« Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage
« Updated only by taken branches (the direction-predictor determines whether BTB is used)
« If BTB hit and the instruction is a predicted-taken branch

— target from the BTB is used as fetch address in the next cycle
« If BTB miss or the instruction is a predicted-not-taken branch

— PC+N is used as the next fetch address in the next cycle

BTB
ICACHE BTB is
entry PC predicted
| | target ) .
indexed with
. . . low-order PC
* L . . address bits,
— tagged with
] 1 k high-order
PC bits
. | o
/—/H/_/H
E— hit? target

Credit: Onur Mutlu (Note: we could use an n-way set-associative design here)



Target prediction: recall the 5-stage MIPS pipeline

Instruction Instr. Decode Execute Memory EWrite
Fetch : Reg. Fetch i Addr.Calc ;: Access | Back

= INext

Next PC

Figure 3.22, page 163, CA:AQA 2/e

WB Data




Where does branch prediction happen?

Next PC
hit
Detect On misprediction, disable
{BTB &) mis- MEM and WB
prediction

* Branch target prediction happens
in IF stage

* Before we even know if the
instruction is a branch or jump

* Branch Target Buffer (BTB) is
indexed by current PC, yields next
PC

* We check in ID stage whether
BTB prediction was correct

* If not, we over-ride the PC for IF

* And squash the MEM and WB
stages




Combining BTB with direction prediction

Direction predictor

? S
Branch context? —— taken > , l
PC + inst size ——» Next Fetch
Address
hit? >
PC address bits Tag W target address

Cache of Target Addresses (BTB: Branch Target Buffer)

11

Credit: Onur Mutlu (What if branch is predicted-taken but BTB miss?)



Combining fast simple predictor with slower bigger predictor

>

taken?
Branch context? ?? ‘D—l

v

PC address bits Tag

If slower prediction differs, “re-steer”: squash
first prediction and fetch from improved
prediction

Bigger slower predictor

Direction predictor

PC + inst size —— Next Fetch
Address

hit?

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

A 4

13

A

(What if branch is predicted-taken but BTB miss?)



Where does branch prediction happen?

Next PC

Taken?

A 4

Detect
mis-
prediction

BTB

On misprediction, disable
MEM and WB

* |If the next branch is
predicted taken

* And BTB has predicted
target

e Fetch from BTB predicted

address

* Then check whether

prediction was correct in
ID stage




Updating the branch prediction

BTB and
* | Branch
prediction nPC to Icache direction
*  FA-mux , prediction
Pred. target f | nPC(seq.) = PC+4 are updated
Branch PC Fetch when the
. . ..— Predictor branch
Predicted direction (using a BTB) Decode Buffer outcome i
4
BTB committed
update r earlier?
(target addr. Dispatch Buffer (or earlier?)
and history)

Reservation

e §§§§§ _| Stations

{ Completion Buffer

Credit: Onur Mutlu



Return addresses

Jsr F
Next instruction

F:
Body of function F

INdE
Next instruction

« A function might be called from different places
» |n each case it must return to the right place

 Address of next instruction must be saved and
restored

Hennessy and Patterson 6t

ed p232-233



Return addresses

Jsr F
Next instruction

F:
Body of function F

INdE
Next instruction

* jsr must save return address somewhere
* On x86 jsr pushes return address onto stack
* ret jumps to the address on the top of the stack

* On MIPS, fjal F” (jump-and-link) jumps to F, and stashes the
current PC in a special register $ra.

« Function returns with an indirect jump “jr $ra”

« |f the function body has other calls, compiler must push $ra to
the stack



Return addresses

INg3
Next instructior

F:
' Body of function F

INgE
JsrF
Next instruction

« Return addresses form a stack (even if they are
stored in registers)

* They should be easy to predict!

 We need to add another branch target predictor
« That maintains a hardware stack of return addresses
 Presumably a small stack



Confirmed JSR h P

Confirmed RET so pop RAS stack Retu rn Ad d reSS P red ICtOF

RAP

Top of stack =

predicted RET? é\: -
] V}

1 Taken?

Is decoded
Instruction
A JSR?

Is decoded
Detect Instruction

mis- I ARET?
prediction :

o
»

Next|PC

On misprediction, disable
MEM and WB

BTB

. Keep a small hardware stack in
the branch predictor

. Which attempts to mirror the
program’s call-return stack

. Updated when call and return
instructions are executed

Value at top of stack is used as
predicted next PC when the
BTB predicts that the current
instruction is a RET




Return Address Predictor - mispredictions

INg3
Next instructior

F:
Body of function F

INgE
INdE
Next instruction

« What happens if the call stack is deeper

RAP than the RAP’s stack?
Top ot stack || ke — On return, the RAP’s stack will be empty!
_small * Why might the prediction from the RAP
number be wrong?
< of

— Maybe the return address was overwritten
— Maybe the stack pointer was changed

— Maybe because we switched to another
thread

entries



Return addresses

INg3
Next instructior

F:
' Body of function F

INgE
JsrF
Next instruction

Q: when should the RAS be updated?

The BTB is updated when a branch is committed

But if we wait for commit to update the RAS, we might not
have a prediction for the return from H

Or: if we mispredict that the conditional “IF(C)” is true

— We might have the wrong RAS prediction for the return
from G



Branch prediction and multi-issue

* |In a processor that fetches, issues and dispatches
multiple instructions per cycle.....

 What if we encounter two (or more) branches in one
Issue “packet”?



Branch prediction and multi-issue

In a processor that fetches, issues and dispatches
multiple instructions per cycle.....

What if we encounter two (or more) branches in one
Issue “packet”?

But all the BTB needs is to predict the next
instruction to fetch - it doesn’t matter which
branch is responsible

Commonly, a bigger slower branch predictor may
later re-steer the processor if it has a better
prediction that should over-ride the BTB



Dynamic Branch Prediction Summary

* Prediction seems essential (?)

« Two questions: branch takenness, branch target
Takenness:

« Branch History Table: 2 bits for loop accuracy

— Saturating counter (bimodal) scheme handles highly-biased branches well
— Some applications have highly dynamic branches

« Correlation: Recently executed branches correlated with next branch.
— Either different branches
— Or different executions of same branches

« Tournament Predictor: try two or more competitive solutions and pick
between them

 Predicated Execution can reduce number of branches, number of
mispredicted branches

Target: This
 Branch Target Buffer: include branch address & prediction
- BTB update lecture
 Return address stack for prediction of indirect jump
Beyond:
* Prediction mechanisms have many applications beyond branch

prediction:

— Way prediction, prefetching, store-to-load forwarding, value prediction, etc
Sebastian Kim & Alberto Ros, Effective Context-Sensitive Memory Dependence Prediction (HPCA24)

* Predictors can increase performance, but make it harder to optimize programs



Branch prediction resources

Design tradeoffs for the Alpha EV8 Conditional Branch
Predictor (André Seznec, Stephen Felix, Venkata Krishnan,
Yiannakis Sazeides)

— SMT: 4 threads, wide-issue superscalar processor, 8-way issue, 512 registers (cancelled June
2001 when Alpha dropped)

— Paper: http://citeseer.ist.psu.edu/seznec02design.html
— Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

Branch prediction in the Pentium family (Agner Fog)

— Reverse engineering Pentium branch predictors using direct access to BTB
— http://www.x86.org/articles/branch/branchprediction.htm

Championship Branch Prediction Competition (CBP),
organised by the Journal of Instruction-level Parallelism

—  http://www.jilp.org/cbp/

The CBP-1 winning entry: TAgged GEometric history length
predictor (TAGE): for each branch, maintain a predictor for what

history length (from a geometric progression) works best.
— http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf



http://citeseer.ist.psu.edu/seznec02design.html
http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt
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http://www.jilp.org/cbp/
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

Example: Branch prediction in Intel Atom, Silvermont and Knights Landing

* two-level adaptive predictor with a global history table,
* Branch history register has 12 bits
* The pattern history table on the Atom has 4096 entries and is shared between threads
* The branch target buffer has 128 entries, organized as 4 ways by 32 sets
— (size on Silvermont unknown, but probably bigger, and not shared between threads)

* Unconditional jumps make no entry in the global history table, but always-taken and nevertaken
branches do

* Silvermont has branch prediction both at the fetch stage and at the later decode stage in the
pipeline, where the latter can correct errors in the former

* No special predictor for loops (as there is for some other Intel CPUs)
— Loops are predicted in the same way as other branches
*  Penalty for mispredicting a branch is 11-13 clock cycles.

* It often occurs that a branch has a correct entry in the pattern history table, but no entry in the
branch target buffer, which is much smaller:

— Ifa branch is correctly predicted as taken, but no target can be predicted because of a missing
BTB entry, then the penalty will be approximately 7 clock cycles.

* Pattern prediction evident for indirect branches on Knights Landing but not on Silvermont.
— Indirect branches are predicted to go to the same target as last time on Silvermont
* Return stack buffer with 8 entries on the Atom and 16 entries on Silvermont and Knights Landing

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf



Example: Branch prediction in AMD Jaguar

* See https://www.realworldtech.com/jaguar/2/

* Particularly interesting for coverage of branch prediction for a processor that fetches and executes
multiple instructions per cycle

. “When a branch is detected, the IP address of the fetch window indexes into the Branch Target Buffer (BTB), which is coupled to the L1Il. The
BTB is a two level structure; the L1 is optimized for sparse branches and the L2 handles dense branches. The L1 BTB is conceptually part of
the instruction cache; it tracks two branches for every 64B line (1024 entries total) and can simultaneously predict both branches with only a
single cycle penalty for taken branches. The L2 BTB is allocated dynamically and tracks an extra 2 branches per 8B region and also contains
1024 entries. The L2 BTB is slower and makes a single prediction per cycle, with a two cycle penalty for the first dense branch prediction and
only a single cycle for any subsequent prediction. The BTB design saves power by only engaging the L2 when code actually has 3 or more
branches per cache line, exploiting branch density to reduce power.

. Conditional near branches are implicitly predicted as not-taken, which saves space in the BTB. Once such a branch is taken, it is set to
always taken in the BTB. Should the always taken branch subsequently fall through, it switches to a dynamic neural network predictor using
26-bits of global history.

. Another BTB optimization is that the L1 and L2 BTBs only predict target addresses for direct branches that are in the same 4KB page as the
IP of the fetch window. A 32-entry out-of-page target array handles branch targets with up to 256MB of displacement for the L1 BTB. Sparse
branch targets with >256MB of displacement, and dense branches with out-of-page targets are resolved by the branch target address
calculator with a four cycle penalty.

. Near calls and the associated returns are predicted by a 16 entry Return Address Stack (RAS). The RAS can recover from most forms of
misspeculation without corrupting the predictions. For cases that cannot be recovered, the RAS is invalidated to avoid mispredictions.
. Indirect branches with multiple targets are predicted using the IP address and 26-bits of global history to index into the 512-entry indirect

branch target array. There is an extra 3 cycle penalty for any indirect branch predictions, but indirect branches with a single target and
256MB or less displacement are tracked through the lower latency out-of-target array.

. If a cache line is only being used for instructions, then the branch information in the L1 BTB is compressed and stored in the ECC bits of the
L2 cache when the line is evicted and can be reloaded. The information is lost if the cache line is hit by a store, or is evicted to main memory.
L1l misses trigger a 64B fetch request to the L2, and also prefetch one or two additional cache lines.

. Once the fetch address has been determined, the 32B of instructions from the L1l are sent to the Instruction Byte Buffer (IBB), which acts as
a decoupling queue between the fetch and decoding stages. The IBB entries are 16B each, so a fetch will typically fill two at a time, and
Jaguar has 16 entries, versus 12 for Bobcat. A small loop buffer tracks four recent 32B fetches and can bypass the instruction cache lookup
mechanism to save power.”

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf


https://www.realworldtech.com/jaguar/2/

Student question: better predictions for
indirect branches

As you say, a BTB should give you a prediction for an indirect branch.

However it might not be a very good one - the killer app is polymorphic
calls in object-oriented languages (virtual calls where the target object has
a different type on different invocations).

For that we need to add global history to the branch target prediction. We
did not cover this in the lectures.

This paper evaluates three alternative schemes:

Dharmawan, Tubagus & Jeyachandra, E & Rahmadhani, Andri. (2016).
Technigues to Improve Indirect Branch Prediction.
10.13140/RG.2.2.24350.02884.

The state of the art is perhaps represented by this article in the same
ISCA2020 "Industry" track:

The IBM z15 High Freqguency Mainframe Branch Predictor (computer.org)
(section VI], pg 35-6). Basically they use the branch history to index a
special BTB (actually they expand the branch history concept to include a
couple of bits of the PC address of each taken branch in the history).



https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf
https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf

Student question: return address

predictor stack consistency

How could the return address predictor be wrong?

“Hi, | don't quite understand the difference between the
RAP stack and the main memory stack in the following R
example.

When the main memory stack is overwritten by A[3] = G, is +

the RAP stack overwritten as well? If not, then the RAP

prediction will be correct right?”

* How could this happen? Why?
« What should we do about it? |

The RAP stack is a small hardware unit which tries to mirror what the
return address stack should look like in memory.

However there are various reasons why it might not actually reflect the
real stack.

We discussed for example:
— F might change the SP register

— F might overwrite the return address, for example through a buffer overrun as shown
in the slide above.

— We might have an inconsistent RAP due to the misprediction of some other branch - as
we discussed at length in the class. This could happen if the RAP is updated
speculatively - while the real stack is updated only when memory writes are committed
(eg the memory write resulting from a jsr).



Followup on class discussion: buffer overrun vulnerabilities

. In yesterday's class we touched upon buffer over-run vulnerabilities.
. As | mentioned, this is a big deal and it's the root cause for many many cyberattacks.
. As was discussed in the class, there are some mitigations. One that we talked about was the use of a "canary" word, adjacent to each return address

on the stack. This idea (and the general problem) is introduced in this nice paper:

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full papers/cowan/cowan.pdf

. There are more sophisticated techniques, for example Shadow Stacks:

Stack Shield: https://www.angelfire.com/sk/stackshield/info.html

. More secure mechanisms are the focus for a lot of current research and development; see Control-flow integrity - Wikipedia .

. Arguably the heart of the problem is the design of the C programming language, which lacks bounds checking on the use of arrays and pointers - this
is what let's a buffer overrun happen in the first place. Indeed C allows a pointer to get separated from the array into which it is supposed to point -
making checking hard.

. I actually published a bounds checking scheme back in 1997. To get an idea of how big the field has become, check out the citations to our paper:

https://scholar.google.com/citations?view op=view citation&hl=en&user=4YyGhBUAAAAJ&citation for view=4YyGhBUAAAAJ:u-x608ySG0sC

. The latest hot topic in this space is "capabilities":

CHERI: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

. Buffer overruns should be old news. Sadly not. Check out this article:

The Battle for the World’s Most Powerful Cyberweapon - The New York Times:
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html

. This entertaining article describes how the attack actually worked:

Analyzing Pegasus Spyware’s Zero-Click iPhone Exploit ForcedEntry:
https://www.trendmicro.com/en _us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html

. And yes, at its heart, it’s a buffer overrun.
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Student question:

"What is branch folding?”

See ARM1136JF-S and ARM1136J-S Technical Reference Manual r1p3

How can we avoid even having to execute branches at all?

I'm not sure how ARM do it but here's how | think about it;

 ldea: instead of just the branch target address, stash the
branch target instruction in the BTB

 Skip IF stage for next instruction
« Effective CPI for branch is zero

« Could stash target instruction for both taken and not-taken
cases to reduce misprediction delay


https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.

Student question: Branch History in multithreaded cores

Q: Let's sagl our CPU uses gselect(m, n) and so has a Branch History Register and Branch HistowTables. But we want to
use thread interleaving in the pipeline to reduce stalls (Instruction order of: T1, T2, T1, T2, ...). Will the BHT still work or
are there modifications that need to be made in hardware to support this?

If the PC for T1 and the PC for T2 both index into the BHR and BHTs then | can see a lot of overwriting happening leading
to many mispredictions.

(Question is based on content in Ch03 Part 1 Branch Direction Prediction.)

A: In a multi-threaded CPU core (using either fine-grained multithreading (FGMT) or simultaneous multithreading (SMT)) we need
to be careful about what resources are separate, and what resources are shared.

The Branch History Register stores the sequence of taken/no-taken branch outcomes from recent branches. The BHR is used for
branch ?rediction because this is sometimes predictive - a previous branch's direction is correlated with a later branch's direction.
This is clearly a property that only holds within a single thread.

So we definitely need a separate BHR for each thread.

The branch history tables could still contain predictions from two different threads. [similarly, the L1 data and instruction caches
contain cached data from both threads].

This means that one thread could overwrite branch prediction information "belonging" to the other thread. Actually this could
even help - if the two threads are part of the same application, they might constructively learn from each other's branch
outcomes. But it might just hurt.

So what we do see is that there is crosstalk: the behaviour of one thread might affect the behaviour of another thread.
In fact one thread might infer something about what the other thread is doing.

As we will see in a week or two, this creates a potential security Elroblem. Although we will dive into this kind of thing later, you
might like to have a look at this, for example: Taming STIBP [LWN.net] (https://lwn.net/Articles/773118/).

If you're truly determined to dive deeper still, k//lou might enjoy seeing that the topic is causing continuing pain, with this bug report
from 11 Oct 2023: Linux Patched For A New AMD Zen 4 CPU Bug - Erratum #1485 - Phoronix
(https://www.phoronix.com/forums/forum/hardware/processors-memory/1414611-linux-patched-for-a-new-amd-zen-4-cpu-bug-
erratum-1485)
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Student question: BTB and dlrectlon prediction

Branch target prediction: BTBs

* re: "Inorder to predict a branch, we need to know that current instruction is
branch instruction"

* This doesn't have to be true!

In parallel with every ifetch

Control Hazard on Branches Chack whether the BT8

predicts that the
instruction we are fetching
will be a taken branch

10: beq r‘l.r?.ss

14; and r2,r3,15

18: or r6,r1,r7

22: add r8,r1,r9

|
36: xor r10,r1,r11

If we're not smart we risk a three-cycle stall

I'm just going back through lectures to summarise and noticed this - doesnt the direction predictor do
this, and BTB is only for when we have a predicted taken branch?

You're right - the direction predictor should also be
used.

The tricky thing is that you want the prediction
before you even know whether the instruction even
is a branch or jump.

Note that the instruction might be a conditional
branch; it might also be a jump, indirect jump, call,
virtual call, or return. It might also not be a control-
flow instruction at all.

So

— you index the BTB, you get a predicted next
instruction; you also get a tag - you check the
tag to see if it matches this particular
instruction.

— If you do get a BTB tag hit, you know it's a
control-flow instruction.

— In parallel with the BTB access, you index the
direction predictor; if the direction predictor
says the branch is predicted taken, you use the
BTB's prediction for the branch target - if it
says not-taken, you use PC+1 regardless.

— If the direction predictor has no prediction for
this PC address, you use the BTB prediction,
because the instruction is an unconditional
jump/call.

This is complicated by the fact that the BTB is
indexed by the PC address only, but the direction
predictor is probably indexed by a combination of
PC address and branch history. And the direction
predictor might not have tags (to save space, to
allow a larger number of predictions within the same
transistor/energy budget).

So | was simplifying!



Student question: delayed commit & return address prediction

| am unsure about how the RAP should be updated.
The slides mention that updating the RAP at commit
time could mean we may not produce a return
address prediction in time, and if we update the RAP
before commit, we would have a similar issue as
updating the BTB before commit.

. In what cases would the RAP not be able to produce
a prediction in time if we update it at commit?

Updating the branch prediction

BTB and
} e Branch
prediction __ A nPC to Icache direction
-inux . prediction
Pred. target f nPC(seq.) = PC+4 are updated
Branch pC when the
. . . Predictor
Predicted direction branch
si BTB i Decode Buffer .
(using 2 ) J B B R R outcome is
BTB committed
update s
(target addr. T TICIT] Dispatch Bufter (O €artier?)
and history)
Dispatch
] l J I Reservation

!
4--- TR EEE BT EEAE P stati
lssuek i‘lll [ |[|'1 ]| |‘!|E|'|| ations
| | i ]

Bl ]

Execute

.- -|-Foish ____ L L PP Pl ] 1] Completion Buffer
A |

Crodit:- Onir MM+l

Consider a timeline like this - where we have some
code in a function F that calls a function G, which
does some stuff then returns to F:

F1
call G
Gl

G2

ret

F2

So we need the RAP to predict where the "ret" will
go.

If we don't update the RAP until commit, we would
need the "call" to be committed before the branch
prediction for the "ret" is made.

If the call is not yet committed at the point where we
do the return, we will use the wrong (earlier) entry
from the top of the RAP's stack.

So what people actually do is to have a copy of the
RAP for the speculated path (you could think of this
as register renaming, applied to the RAP's state). So
now we can update the RAP at issue time. But if we
discover a misprediction, we revert the RAP to the
state it had at the point of the mispredicted branch.



Student question #2 on delayed commit & return address

prediction

Return Address Predicisr

Top of stack LAl S0 pop 8!

predicted RET?

p
Next|PC {Taken

On misprediction, disable
MEM and WB

BTB

. Keep a small hardware stack in
the branch predictor

. Which attempts to mirror the
program's call-return stack

. Updated when call and return
instructions are executed

+  Value at top of stack is used as
predicted next PC when the
BTB predicts that the current
instruction is a RET

In the lectures it was mentioned that RAP can only be updated once we know that branch
misprediction has not occurred, which confuses me.

From what | understand, when a RET instruction is in the decode stage, the "detect mis-
prediction" block checks whether the instruction fetched after the RET is a misprediction.

In which case, why would the difference in instruction being executed after the RET, change
our decision to "pop" a return address from the stack?

The issue is not whether the return instruction is a misprediction (although it might be).

The issue is that we might execute a call, or a ret, conditionally - that is, there is some other conditional
branch that determines whether the call/ret is executed.

Consider for example:

1 F: BEQ R1, L
CALL G
L: RET

(for many instructions)
RET “
In this example, the function F conditionally calls a function G then returns. Suppose the BEQ is

mispredicted as not-taken. So we speculatively jump to G (and push the address after that call to G, ie
instruction 3, onto the RAP.

After a while we discover the misprediction (perhaps before line 7). So we rollback to line 1, and
correctly branch to line 3, where we encounter the RET. At this point, we pick up the address at the top
of the RAP - which is the wrong return address (it's the one that was pushed when we speculatively
executed line 2).

So now we regret speculatively updating the RAP.
Of course if our branch prediction had been correct, we would be happy to have updated the RAP.
So, ideally, what we want is to clone the RAP each time we encounter a speculated conditional branch.

My explanation above is intended to make sense with a more complicated pipeline than the one in the
slide that you quote - in a very simple pipeline, some streamlining should be possible.

| think that in the pipeline on the slide, we should be OK unless a CALL jumps to a RET instruction, as
there is a cycle latency to update the RAP.



Student question: how do we know when to query the
return-address predictor?

Q |, the Return Address Predictor (RAP) diagram, which hardware block actually determines that the current
instruction is a RET ? Is it the BTB, the RAP itself, or some earlier decode logic?

A: The relevant slide is, | think, this one:
You could fetch and decode

RAP i Return Address Predictor . .
Topofstack [ CoMMERET 30 pop FAS stack the RET, discover that it's a
‘ RET, and query the RAP.

|s decoded
Instruction
A JSR?

Is deceded
Instruction
ARET?

predicted RET?

| Taken?

But that would deliver the

On misprediction, disable next address too Iate'
MEM and WB

Next|PC

Detect
mis-
prediction

BTB

Recall that the job of the BTB
is to tell us whether the next
instruction is a branch/jump,
and if so, what it's predicted

target is.

g]eegasrrr:all hcsll_rc:ware stack in SO we extend the BTB tO te” us

e prancn predictor
Which attempts o mior the §  ifthe next instruction is a RET.
Inbtiactons are execnd 2 Ifitis predicted to be a RET,
predicied rext PG when e we query the RAP.
BTB predicts that the current
instruction is a RET

. You might also enjoy https://docs.kernel.org/admin-guide/hw-vuln/srso.html

(after we have covered speculation side channel vulnerabilities)
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Student question: How could the return-address
predictor be wrong?

Q: Also, why is the RAP considered a predictor? From the slides it looks like a small hardware stack mirroring
the call stack, not something that “guesses” like a direction predictor

We push the return address onto the RAP when we encounter a CALL

We pop it from the RAP when we encounter a RET

But wait — isn’t that what the CALL and RET instructions *do*?

No: the ISA specifies that the CALL instruction saves the return address on the stack actually stack, in the RAM*

But the RAP is an internal hardware structure that “mirrors” the real stack that is in RAM.

So most of the time they hold the same data

But sometimes they don't.

Examples:

* Afunction overwrites its return address on the stack using a store instruction. So when we return, the RAP
predicts that we should return to the caller, but the real stack says otherwise

* You might change the stack pointer completely, for example because we are switching to another thread.

* The RAP has limited capacity — so we might encounter a RET but find that the RAP’s stack is empty. The return
address is safely on the real stack.

* See the discussion of retpolines in Ch5




Beyond the lectures

® An interesting step beyond the ideas presented in the lecture is to
incorporate branch prediction into instruction prefetching.

& The search term is "branch predictor directed prefetch".
& For example this is used in ARM's Neoverse N1:

https://ieeexplore.ieee.org/document/8986666 (page 3)
& For an example of academic work in this space, see

https://lieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9408197
“Re-establishing Fetch-Directed Instruction Prefetching: An
Industry Perspective”, Yasuo Ishii et al.

@ see also this IBM patent:

https://patents.google.com/patent/US6560693B1/en US6560693B1
- Branch history guided instruction/data prefetching

® You might wonder whether branch predictors are already as good as can
be. See

@ C. Lin and S. J. Tarsa, "Branch Prediction Is Not A Solved Problem:
Measurements, Opportunities, and Future Directions," in 2019 |IEEE
International Symposium on Workload Characterization (IISWC), Orlando,
FL, USA, 2019, pp. 228-238, doi: 10.1109/1ISWC47752.2019.9042108.
https://arxiv.org/abs/1906.08170
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