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Part 2: Branch Target Prediction



Branch Prediction - context

• If we have a branch predictor….

– We want to fetch the correct (predicted) next 

instruction without any stalls

– We need the prediction before the preceding 

instruction has been decoded

– We need to predict conditional branches

• Direction prediction

– And indirect branches

• Target prediction



Branch Target Buffer
• Need address at same time as prediction

• Especially for indirect branches and virtual method calls

• Note that we must check for branch match, since can’t use wrong branch 
address
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Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is 

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB 
predicts that the 
instruction we are fetching 
will be a taken branch



Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is 

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB 
predicts that the 
instruction we are fetching 
will be a taken branch

When a taken branch is 
committed, we update 
the BTB with the branch's 
target address (and with 
the tag of the address of 
the branch instruction).



Branch Target Buffer (BTB)
• Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage

• Updated only by taken branches (the direction-predictor determines whether BTB is used)

• If BTB hit and the instruction is a predicted-taken branch

– target from the BTB is used as fetch address in the next cycle

• If BTB miss or the instruction is a predicted-not-taken branch

– PC+N is used as the next fetch address in the next cycle
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Target prediction: recall the 5-stage MIPS pipeline
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Where does branch prediction happen?

BTB

hit

• Branch target prediction happens 
in IF stage

• Before we even know if the 
instruction is a branch or jump

• Branch Target Buffer (BTB) is 
indexed by current PC, yields next 
PC

• We check in ID stage whether 
BTB prediction was correct

• If not, we over-ride the PC for IF
• And squash the MEM and WB 
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target address

Combining BTB with direction prediction

Direction predictor

Cache of Target Addresses (BTB: Branch Target Buffer)

PC + inst size

taken?

Next Fetch

Address

hit?

Credit: Onur Mutlu

PC address bits

Branch context? ??

Tag

(What if branch is predicted-taken but BTB miss?)
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Combining fast simple predictor with slower bigger predictor 

(What if branch is predicted-taken but BTB miss?)

IF
/ID

ID
/E

X

Instruction 
fetch

Bigger slower predictor

If slower prediction differs, “re-steer”: squash 
first prediction and fetch from improved 
prediction
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address
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Updating the branch prediction

Credit: Onur Mutlu

BTB and 
Branch 
direction 
prediction 
are updated 
when the 
branch 
outcome is 
committed 
(or earlier?)



Return addresses

• A function might be called from different places

• In each case it must return to the right place

• Address of next instruction must be saved and 
restored

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Hennessy and Patterson 6th 
ed p232-233



Return addresses

• jsr must save return address somewhere

• On x86 jsr pushes return address onto stack

• ret jumps to the address on the top of the stack

• On MIPS, “jal F” (jump-and-link) jumps to F, and stashes the 
current PC in a special register $ra.

• Function returns with an indirect jump “jr $ra”

• If the function body has other calls, compiler must push $ra to 
the stack

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction



Return addresses

• Return addresses form a stack (even if they are 
stored in registers)

• They should be easy to predict!

• We need to add another branch target predictor

• That maintains a hardware stack of return addresses

• Presumably a small stack 

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
Jsr H
…

ret

H:
Body of H
...
…
…

ret



• Keep a small hardware stack in 
the branch predictor

• Which attempts to mirror the 
program’s call-return stack

• Updated when call and return 
instructions are executed

• Value at top of stack is used as 
predicted next PC when the 
BTB predicts that the current 
instruction is a RET
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Return Address Predictor - mispredictions

• What happens if the call stack is deeper 
than the RAP’s stack?
– On return, the RAP’s stack will be empty!

• Why might the prediction from the RAP 
be wrong?
– Maybe the return address was overwritten

– Maybe the stack pointer was changed

– Maybe because we switched to another 
thread

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)
  Jsr H
…

ret

H:
Body of H
...
…
…

ret

Fixed 
small 
number 
of 
entries



Return addresses

• Q: when should the RAS be updated?

• The BTB is updated when a branch is committed

• But if we wait for commit to update the RAS, we might not 
have a prediction for the return from H

• Or: if we mispredict that the conditional “IF(C)” is true

– We might have the wrong RAS prediction for the return 
from G

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)
  Jsr H
…

ret

H:
Body of H
...
…
…

ret



Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches 

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one 

issue “packet”?



Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches 

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one 

issue “packet”?

• But all the BTB needs is to predict the next  

instruction to fetch – it doesn’t matter which 

branch is responsible

• Commonly, a bigger slower branch predictor may 

later re-steer the processor if it has a better 

prediction that should over-ride the BTB



Dynamic Branch Prediction Summary
• Prediction seems essential (?)

• Two questions: branch takenness, branch target

Takenness:

• Branch History Table: 2 bits for loop accuracy
– Saturating counter (bimodal) scheme handles highly-biased branches well

– Some applications have highly dynamic branches

• Correlation: Recently executed branches correlated with next branch.
– Either different branches

– Or different executions of same branches

• Tournament Predictor: try two or more competitive solutions and pick 
between them

• Predicated Execution can reduce number of branches, number of 
mispredicted branches

Target:

• Branch Target Buffer: include branch address & prediction

• BTB update

• Return address stack for prediction of indirect jump

Beyond:

• Prediction mechanisms have many applications beyond branch 
prediction:

– Way prediction, prefetching, store-to-load forwarding, value prediction, etc
• Sebastian Kim & Alberto Ros, Effective Context-Sensitive Memory Dependence Prediction (HPCA24)

• Predictors can increase performance, but make it harder to optimize programs

This 
lecture



Branch prediction resources

• Design tradeoffs for the Alpha EV8 Conditional Branch 
Predictor (André Seznec, Stephen Felix, Venkata Krishnan, 
Yiannakis Sazeides)

– SMT:  4 threads, wide-issue superscalar processor, 8-way issue, 512 registers (cancelled June 
2001 when Alpha dropped)

– Paper: http://citeseer.ist.psu.edu/seznec02design.html

– Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

• Branch prediction in the Pentium family (Agner Fog)
– Reverse engineering Pentium branch predictors using direct access to BTB

– http://www.x86.org/articles/branch/branchprediction.htm

• Championship Branch Prediction Competition (CBP), 
organised by the Journal of Instruction-level Parallelism

– http://www.jilp.org/cbp/

• The CBP-1 winning entry: TAgged GEometric history length 
predictor (TAGE): for each branch, maintain a predictor for what 
history length (from a geometric progression) works best.

– http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

http://citeseer.ist.psu.edu/seznec02design.html
http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt
http://www.x86.org/articles/branch/branchprediction.htm
http://www.x86.org/articles/branch/branchprediction.htm
http://www.jilp.org/cbp/
http://www.jilp.org/cbp/
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf


Example:  Branch prediction in Intel Atom, Silvermont and Knights Landing 

• two-level adaptive predictor with a global history table,

• Branch history register has 12 bits

• The pattern history table on the Atom has 4096 entries and is shared between threads

• The branch target buffer has 128 entries, organized as 4 ways by 32 sets

– (size on Silvermont unknown, but probably bigger, and not shared between threads)

• Unconditional jumps make no entry in the global history table, but always-taken and nevertaken 
branches do

• Silvermont has branch prediction both at the fetch stage and at the later decode stage in the 
pipeline, where the latter can correct errors in the former

• No special predictor for loops (as there is for some other Intel CPUs)

– Loops are predicted in the same way as other branches

• Penalty for mispredicting a branch is 11-13 clock cycles. 

• It often occurs that a branch has a correct entry in the pattern history table, but no entry in the 
branch target buffer, which is much smaller:

– If a branch is correctly predicted as taken, but no target can be predicted because of a missing 
BTB entry, then the penalty will be approximately 7 clock cycles. 

• Pattern prediction evident for indirect branches on Knights Landing but not on Silvermont.

– Indirect branches are predicted to go to the same target as last time on Silvermont

• Return stack buffer with 8 entries on the Atom and 16 entries on Silvermont and Knights Landing

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and 
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf



Example:  Branch prediction in AMD Jaguar

• See https://www.realworldtech.com/jaguar/2/ 

• Particularly interesting for coverage of branch prediction for a processor that fetches and executes 
multiple instructions per cycle

• “When a branch is detected, the IP address of the fetch window indexes into the Branch Target Buffer (BTB), which is coupled to the L1I. The 

BTB is a two level structure; the L1 is optimized for sparse branches and the L2 handles dense branches. The L1 BTB is conceptually part of 

the instruction cache; it tracks two branches for every 64B line (1024 entries total) and can simultaneously predict both branches with only a 

single cycle penalty for taken branches. The L2 BTB is allocated dynamically and tracks an extra 2 branches per 8B region and also contains 

1024 entries. The L2 BTB is slower and makes a single prediction per cycle, with a two cycle penalty for the first dense branch prediction and 

only a single cycle for any subsequent prediction. The BTB design saves power by only engaging the L2 when code actually has 3 or more 

branches per cache line, exploiting branch density to reduce power.

• Conditional near branches are implicitly predicted as not-taken, which saves space in the BTB. Once such a branch is taken, it is set to 

always taken in the BTB. Should the always taken branch subsequently fall through, it switches to a dynamic neural network predictor using 

26-bits of global history.

• Another BTB optimization is that the L1 and L2 BTBs only predict target addresses for direct branches that are in the same 4KB page as the 

IP of the fetch window. A 32-entry out-of-page target array handles branch targets with up to 256MB of displacement for the L1 BTB. Sparse 

branch targets with >256MB of displacement, and dense branches with out-of-page targets are resolved by the branch target address 

calculator with a four cycle penalty.

• Near calls and the associated returns are predicted by a 16 entry Return Address Stack (RAS). The RAS can recover from most forms of 

misspeculation without corrupting the predictions. For cases that cannot be recovered, the RAS is invalidated to avoid mispredictions.

• Indirect branches with multiple targets are predicted using the IP address and 26-bits of global history to index into the 512-entry indirect 

branch target array. There is an extra 3 cycle penalty for any indirect branch predictions, but indirect branches with a single target and 

256MB or less displacement are tracked through the lower latency out-of-target array.

• If a cache line is only being used for instructions, then the branch information in the L1 BTB is compressed and stored in the ECC bits of the 

L2 cache when the line is evicted and can be reloaded. The information is lost if the cache line is hit by a store, or is evicted to main memory. 

L1I misses trigger a 64B fetch request to the L2, and also prefetch one or two additional cache lines.

• Once the fetch address has been determined, the 32B of instructions from the L1I are sent to the Instruction Byte Buffer (IBB), which acts as 

a decoupling queue between the fetch and decoding stages. The IBB entries are 16B each, so a fetch will typically fill two at a time, and 

Jaguar has 16 entries, versus 12 for Bobcat. A small loop buffer tracks four recent 32B fetches and can bypass the instruction cache lookup 

mechanism to save power.”

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and 
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf

https://www.realworldtech.com/jaguar/2/


Student question: better predictions for 

indirect branches

• As you say, a BTB should give you a prediction for an indirect branch.
• However it might not be a very good one - the killer app is polymorphic 

calls in object-oriented languages (virtual calls where the target object has 
a different type on different invocations).

• For that we need to add global history to the branch target prediction.  We 
did not cover this in the lectures.

• This paper evaluates three alternative schemes:
• Dharmawan, Tubagus & Jeyachandra, E & Rahmadhani, Andri. (2016). 

Techniques to Improve Indirect Branch Prediction. 
10.13140/RG.2.2.24350.02884.

• The state of the art is perhaps represented by this article in the same 
ISCA2020 "Industry" track:

• The IBM z15 High Frequency Mainframe Branch Predictor (computer.org) 
(section VI], pg 35-6).  Basically they use the branch history to index a 
special BTB (actually they expand the branch history concept to include a 
couple of bits of the PC address of each taken branch in the history).

https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf
https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf


Student question: return address 

predictor stack consistency
• “Hi, I don't quite understand the difference between the 

RAP stack and the main memory stack in the following 
example.

• When the main memory stack is overwritten by A[3] = G, is 
the RAP stack overwritten as well? If not, then the RAP 
prediction will be correct right?”

• The RAP stack is a small hardware unit which tries to mirror what the 
return address stack should look like in memory.  

• However there are various reasons why it might not actually reflect the 
real stack.

• We discussed for example: 
– F might change the SP register

– F might overwrite the return address, for example through a buffer overrun as shown 
in the slide above.

– We might have an inconsistent RAP due to the misprediction of some other branch - as 
we discussed at length in the class.  This could happen if the RAP is updated 
speculatively - while the real stack is updated only when memory writes are committed 
(eg the memory write resulting from a jsr).



Followup on class discussion: buffer overrun vulnerabilities
• In yesterday's class we touched upon buffer over-run vulnerabilities.

• As I mentioned, this is a big deal and it's the root cause for many many cyberattacks.

• As was discussed in the class, there are some mitigations.  One that we talked about was the use of a "canary" word, adjacent to each return address 
on the stack.  This idea (and the general problem) is introduced in this nice paper:

  StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks

  https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf 

• There are more sophisticated techniques, for example Shadow Stacks:

  Stack Shield: https://www.angelfire.com/sk/stackshield/info.html 

• More secure mechanisms are the focus for a lot of current research and development; see Control-flow integrity - Wikipedia .

• Arguably the heart of the problem is the design of the C programming language, which lacks bounds checking on the use of arrays and pointers - this 
is what let's a buffer overrun happen in the first place.  Indeed C allows a pointer to get separated from the array into which it is supposed to point - 
making checking hard.  

• I actually published a bounds checking scheme back in 1997.  To get an idea of how big the field has become, check out the citations to our paper:

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC 

• The latest hot topic in this space is "capabilities":

  CHERI: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/ 

• Buffer overruns should be old news.  Sadly not.  Check out this article:

  The Battle for the World’s Most Powerful Cyberweapon - The New York Times:

https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html 

• This entertaining article describes how the attack actually worked:

  Analyzing Pegasus Spyware’s Zero-Click iPhone Exploit ForcedEntry:

https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html 

• And yes, at its heart, it’s a buffer overrun.

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://www.angelfire.com/sk/stackshield/info.html
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4YyGhBUAAAAJ&citation_for_view=4YyGhBUAAAAJ:u-x6o8ySG0sC
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html
https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html
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Student question:

"What is branch folding?“

See ARM1136JF-S and ARM1136J-S Technical Reference Manual r1p3 

How can we avoid even having to execute branches at all?

I'm not sure how ARM do it but here's how I think about it:
• Idea: instead of just the branch target address, stash the 

branch target instruction in the BTB
• Skip IF stage for next instruction
• Effective CPI for branch is zero
• Could stash target instruction for both taken and not-taken 

cases to reduce misprediction delay

https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
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https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.
https://developer.arm.com/documentation/ddi0211/i/ch05s02s04#:~:text=Branch%20folding%20is%20a%20technique,for%20branches%20significantly%20below%201.


Student question: Branch History in multithreaded cores

Q: Let's say our CPU uses gselect(m, n) and so has a Branch History Register and Branch History Tables. But we want to 
use thread interleaving in the pipeline to reduce stalls (Instruction order of: T1, T2, T1, T2, ...). Will the BHT still work or 
are there modifications that need to be made in hardware to support this?

If the PC for T1 and the PC for T2 both index into the BHR and BHTs then I can see a lot of overwriting happening leading 
to many mispredictions.

(Question is based on content in Ch03 Part 1 Branch Direction Prediction.)

A: In a multi-threaded CPU core (using either fine-grained multithreading (FGMT) or simultaneous multithreading (SMT)) we need 
to be careful about what resources are separate, and what resources are shared.  

The Branch History Register stores the sequence of taken/no-taken branch outcomes from recent branches.  The BHR is used for 
branch prediction because this is sometimes predictive - a previous branch's direction is correlated with a later branch's direction.  
This is clearly a property that only holds within a single thread.

So we definitely need a separate BHR for each thread.

The branch history tables could still contain predictions from two different threads.  [similarly, the L1 data and instruction caches 
contain cached data from both threads].

This means that one thread could overwrite branch prediction information "belonging" to the other thread.  Actually this could 
even help - if the two threads are part of the same application, they might constructively learn from each other's branch 
outcomes.  But it might just hurt.

So what we do see is that there is crosstalk: the behaviour of one thread might affect the behaviour of another thread.  

In fact one thread might infer something about what the other thread is doing.

As we will see in a week or two, this creates a potential security problem.  Although we will dive into this kind of thing later, you 
might like to have a look at this, for example: Taming STIBP [LWN.net] (https://lwn.net/Articles/773118/ ).

If you're truly determined to dive deeper still, you might enjoy seeing that the topic is causing continuing pain, with this bug report 
from 11 Oct 2023: Linux Patched For A New AMD Zen 4 CPU Bug - Erratum #1485 – Phoronix 
(https://www.phoronix.com/forums/forum/hardware/processors-memory/1414611-linux-patched-for-a-new-amd-zen-4-cpu-bug-
erratum-1485 )

https://lwn.net/Articles/773118/
https://www.phoronix.com/forums/forum/hardware/processors-memory/1414611-linux-patched-for-a-new-amd-zen-4-cpu-bug-erratum-1485
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Student question: BTB and direction prediction
• You're right - the direction predictor should also be 

used.

• The tricky thing is that you want the prediction 
before you even know whether the instruction even 
is a branch or jump. 

• Note that the instruction might be a conditional 
branch; it might also be a jump, indirect jump, call, 
virtual call, or return. It might also not be a control-
flow instruction at all.

• So 

– you index the BTB, you get a predicted next 
instruction; you also get a tag - you check the 
tag to see if it matches this particular 
instruction. 

– If you do get a BTB tag hit, you know it's a 
control-flow instruction. 

– In parallel with the BTB access, you index the 
direction predictor; if the direction predictor 
says the branch is predicted taken, you use the 
BTB's prediction for the branch target - if it 
says not-taken, you use PC+1 regardless. 

– If the direction predictor has no prediction for 
this PC address, you use the BTB prediction, 
because the instruction is an unconditional 
jump/call.

• This is complicated by the fact that the BTB is 
indexed by the PC address only, but the direction 
predictor is probably indexed by a combination of 
PC address and branch history. And the direction 
predictor might not have tags (to save space, to 
allow a larger number of predictions within the same 
transistor/energy budget).

• So I was simplifying!



Student question: delayed commit & return address prediction
• Consider a timeline like this - where we have some 

code in a function F that calls a function G, which 
does some stuff then returns to F:

• So we need the RAP to predict where the "ret" will 
go.  

• If we don’t update the RAP until commit, we would 
need the "call" to be committed before the branch 
prediction for the "ret" is made. 

• If the call is not yet committed at the point where we 
do the return, we will use the wrong (earlier) entry 
from the top of the RAP's stack.

• So what people actually do is to have a copy of the 
RAP for the speculated path (you could think of this 
as register renaming, applied to the RAP's state).  So 
now we can update the RAP at issue time.  But if we 
discover a misprediction, we revert the RAP to the 
state it had at the point of the mispredicted branch.

• I am unsure about how the RAP should be updated. 
The slides mention that updating the RAP at commit 
time could mean we may not produce a return 
address prediction in time, and if we update the RAP 
before commit, we would have a similar issue as 
updating the BTB before commit.

• In what cases would the RAP not be able to produce 
a prediction in time if we update it at commit? 



Student question #2 on  delayed commit & return address 

prediction



Student question: how do we know when to query the 
return-address predictor?
Q:

A:
You could fetch and decode 
the RET, discover that it's a 
RET, and query the RAP.

But that would deliver the 
next address too late.

Recall that the job of the BTB 
is to tell us whether the next 
instruction is a branch/jump, 
and if so, what it's predicted 
target is. 

So we extend the BTB to tell us 
if the next instruction is a RET. 
If it is predicted to be a RET, 
we query the RAP.

• You might also enjoy https://docs.kernel.org/admin-guide/hw-vuln/srso.html 
(after we have covered speculation side channel vulnerabilities) 

https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html


Student question: How could the return-address 
predictor be wrong?
Q:

A:
We push the return address onto the RAP when we encounter a CALL

We pop it from the RAP when we encounter a RET

But wait – isn’t that what the CALL and RET instructions *do*? 

No: the ISA specifies that the CALL instruction saves the return address on the stack actually stack, in the RAM*

But the RAP is an internal hardware structure that “mirrors” the real stack that is in RAM.

So most of the time they hold the same data

But sometimes they don’t.

Examples:
• A function overwrites its return address on the stack using a store instruction.  So when we return, the RAP 

predicts that we should return to the caller, but the real stack says otherwise
• You might change the stack pointer completely, for example because we are switching to another thread.
• The RAP has limited capacity – so we might encounter a RET but find that the RAP’s stack is empty.  The return 

address is safely on the real stack.

• See the discussion of retpolines in Ch5



Beyond the lectures
An interesting step beyond the ideas presented in the lecture is to 
incorporate branch prediction into instruction prefetching.  

The search term is "branch predictor directed prefetch".  

For example this is used in ARM's Neoverse N1: 

 https://ieeexplore.ieee.org/document/8986666   (page 3)

For an example of academic work in this space, see 

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9408197 
“Re-establishing Fetch-Directed Instruction Prefetching: An 
Industry Perspective”, Yasuo Ishii et al.

see also this IBM patent:

https://patents.google.com/patent/US6560693B1/en US6560693B1 
- Branch history guided instruction/data prefetching

You might wonder whether branch predictors are already as good as can 
be.  See 

C. Lin and S. J. Tarsa, "Branch Prediction Is Not A Solved Problem: 
Measurements, Opportunities, and Future Directions," in 2019 IEEE 
International Symposium on Workload Characterization (IISWC), Orlando, 
FL, USA, 2019, pp. 228-238, doi: 10.1109/IISWC47752.2019.9042108. 
https://arxiv.org/abs/1906.08170

https://ieeexplore.ieee.org/document/8986666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9408197
https://patents.google.com/patent/US6560693B1/en
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