Advanced Computer Architecture

Discussion topic: fundamental limits



Feynmann: plenty of room at the bottom

..... Miniaturizing the computer

I don’t know how to do this on a small scale in a prac-
tical way, but I do know that computing machines are
very large; they fill rooms. Why can’t we make them very
small, make them of little wires, little elements—and by
little, I mean little. For instance, the wires should be
10 or 100 atoms in diameter, and the circuits should be
a few thousand angstroms across. T T

But I would like to discuss, just for amusement, that
there are other possibilities. Why can’t we manufacture
these small computers somewhat like we manufacture the
big ones?” Why can’t we drill holes, cut things, solder
things, stamp things out, mold different shapes all at
an infinitesimal level? What are the limitations as to
how small a thing has to be before you can no longer

mold it? December 1959
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“With unit cost
falling as the
number of
components per
circuit rises, by
1975 economics
may dictate
sgueezing as
many as 65,000
components on
a single silicon
chip” Gordon
Moore, 1965

Cramming more components onto integrated circuits, Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.



Moore’s Law: The number of transistors on microchips doubles every two years [oNaWGyE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world'’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.
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Zooming into the multicore era

2023 chips:
25B: Apple M3
67B: Apple M2 Max
80B: Nvidia GH100 Hopper GPU

146B: AMD Instinct MI300X but 9 chiplets
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See also https://handwiki.org/wiki/Engineering:Transistor count



https://handwiki.org/wiki/Engineering:Transistor_count

50 Years of Microprocessor Trend Data
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New plot and data collected for 2010-2021 by K. Rupp

Transistor count continues to grow, but clock frequency increases stopped ca.2005
Single-core performance grows very slowly, but cores/chip has been increasing rapidly since 2005
Power per chip hit >100W around 2005 and has increased only slightly since then

GitHub - karlrupp/microprocessor-trend-data: Data repository for my blog series on microprocessor trend data.

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten


https://github.com/karlrupp/microprocessor-trend-data

Cerebras CS2

https://www.bbc.co.uk/news/techn

ology-49395577

*2.6 trillion transistors

*46,225 mm? of silicon

*850,000 Al programmable cores

*40 GB of on-die memory (SRAM)

20 Petabytes/s memory bandwidth
«220 Petabits/s fabric bandwidth
*1.2Tb/s I/O via 12 100Gb ethernet links


https://www.bbc.co.uk/news/technology-49395577
https://www.bbc.co.uk/news/technology-49395577

Limits

Historically, computer architecture has been limited severely by what we could

build

We have been on a technology “escalator” driven by increasing VLSI

fabrication capability

All exponential growth processes come to end

At the limit of Moore’s Law, computer architecture will be limited by the

fundamental physics of computation

Current high-end fabs operate at 3nm (ca.200M transistors/mmA"2
1nm is “in development”
Key idea is to build in 3D — FinFET, GAA, VTFET

Wire length, signal propagation delays
Wiring density

Power dissipation

* What will change for computer architects as we are more and more limited by
fundamental physics?



Faith no Moore
Selected predictions for the end of Moore’s law
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