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Chapter 4: Caches and Memory Systems
Part 1: miss rate reduction using hardware

(the first of five shorter lectures on caches, address
translation and the memory system)

October 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3, 4th.
5t and 6" eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course



Average memory access time: -

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT-:
1. Reduce the miss rate —y

. oftware

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

Over the next few lectures we look at each
of these Iin turn...



Reducing Misses
® Classifying Misses: 3 Cs

o Compulsory—The first access to a block is not in the cache, so the block

must be brought into the cache. Also called cold start misses or first
reference misses.
(Misses in even an Infinite Cache)

lCapacity—lf the cache cannot contain all the blocks needed during

execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

& Conflict—if block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory & capacity misses) will occur
because a block can be discarded and later retrieved if too many blocks map
to its set. Also called collision misses or interference misses.

(Misses in w-way Associative, Size X Cache)

® Maybe four: 4th “C”:

@ Coherence - Misses caused by cache coherence: data may have been
invalidated by another processor or I/O device



3Cs Absolute Miss Rate (SPEC92)
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Miss Rate per Type

3Cs Relative Miss Rate
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benchmark suites

SPEC's Benchmarks

Cloud

» SPEC Cloud laa$S 2018 . M h .I: th
[benchmark info] [published results] [order benchmark] u C O e

SPEC Cloud IaaS 2018 builds on the original 2016 release, updates metrics, and workloads and adds easier setup. The bI - h d
benchmark stresses the provisioning, compute, storage, and network resources of infrastructure-as-a-service (laaS) public and p u IS e
private cloud platforms with multiple multi-instance workloads. SPEC selected the social media NoSQL database transaction

and K-Means clustering using Cassandra and Hadoop as two significant and representative workload types within cloud resea rCh re I IeS

computing. For use by cloud providers, cloud consumers, hardware vendors, virtualization software vendors, application th S P E C
software vendors, and academic researchers. O n e

CPU benchmarks
[Retired]

CPU

« SPEC CPU 2017 . The SUIte haS
[benchmark info] [published results] [support] [order benchmark] bee n revi Sed

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different

computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, Seve ra I ti m eS
SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes

an optional metric for measuring energy consumption.

» SPEC CPU 2006

[Retired] ® Extended ]

+ SPEC CPU 2000

[Retired] refi n e d y
. spec cpuss broadened

[Retired]

« SPEC CPU 92
[Retired]
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Q13. What are the benchmarks?

www.spec.org

SPEC CPU 2017 has 43 benchmarks, organized into 4 suites:

SPECrate®2017 | SPECspeed®2017
Integer Integer

500.perlbench_r
502.gcc_T
505.mcf 1
520.omnetpp_r
523.xalancbmk_r
525.X204_1
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.XZ_T

SPECrate®2017 | SPECspeed®2017
Floating Point Floating Point

503.bwaves r
507.cactuBSSN_r
508.namd_r
510.parest_r
5l11.povray_r
519.lbm_r
5o1wrf r
526.blender_r

527.camd_r

538.imagick_r
544.nab_r
549.fotonikad r

554.roms_r

600.perlbench_s
602.gcc_s
6o5.mef s
620.omnetpp_s
623.xalancbmk_s
625.X204_5
631.deepsjeng_s
641.leela_s
648.exchange2_s

657.XZ_S

603.bwaves_s
607.cactuBSSN_s

619.lbm_s
621.wrf_s

627.cam4_s
628.pop2_s
638.imagick_s
044.nab_s
649.fotoniksd_s

654.roms_s

Language[1]

C

C++
C++
C
C++
C++
Fortran
C

Language[1]

Fortran
C++, C, Fortran
C++
C++
C++, C
C
Fortran, C
C++, C
Fortran, C
Fortran, C
C
C
Fortran

Fortran

KLOC [2]

362
1,304
3

134
520
%

10

21

1

33

KLOC[2]

1
257

427
17e

991
1,577
407
338
259
24

14
210

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)

General data compression

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics

Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines librarv and link options (details? )

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

SPEC CPU
concerns CPU-
intensive
applications
(no OS, no I/0)

Integer
benchmarks
tend to make
more intensive
use of pointers
and hard-to-
predict
branches

@ Hard to
parallelise

Floating point
benchmarks
may benefit
more from
automatic
parallelisation

Speed:
execution time
for one run of
the program
(possibly using
multiple cores)

Rate:
maximum
throughput of
completed
jobs/second



CPU2017 integer speeds (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

Processor Results Energy

Base

Test Sponsor System Name Parallel Threads Egabled Enabled Threads/\p. | poal Base Peak
ores | Chips Core
= 5 : — - - 5
ASUSTeK Computer Inc. ASUS RS500A-E10(KRPA-U16) Server System 2.25 GHz, AMD EPYC 7742 Ves 64 64 1 ol g8l 927

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.40 GHz, Intel Xeon Platinum
ASUSTeK Computer Inc. 8260M) Yes 48 48 2 11108 11.0|-- |-

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.60 GHz, Intel Xeon Gold 6240M)

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.10 GHz, Intel Xeon Gold 6252)

ASUSTeK Computer Inc. Yes 36 36 2 1/10.6 | 10.8 |- |-

ASUSTeK Computer Inc. HTML | CSV | Text | PDE | PS | Config Yes 48 48 2 /103 | 105 - |-
ASUS ESC8000 G4(Z11PG-D24) Server System (3.80 GHz, Intel Xeon Platinum
ASUSTeK Computer Inc. 8256) Yes 16 8 2 2(10.1 10.3 |- --
HTML | CSV | Text | PDF | PS | Config
. PRIMERGY TX1320 M4, Intel Xeon E-2288G, 3.70 GHz Not Not
Fujitsu HTML | CSV | Text| PDE | PS | Config Yes 16 8 1 2|12.1 Run 219 Run
) . Sun Fire V490 Not
Oracle Corporation HTML | CSV | Text| PDE | PS | Config Yes 1 8 4 1/ 1.00 Run 1.00 |--

CPU2017 floating point rates (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

ASUS RS700-E9(Z11PP-D24) Server System (2.70 GHz, Intel Xeon Gold
ASUSTeK Computer Inc. 6150) 36 21 199 | 201 |- -
HTML | CSV | Text | PDF | PS | Config

ASUS RS700-E9(Z11PP-D24) Server System (2.10 GHz, Intel Xeon Platinum ‘

Processor Resll]ts Energy
Test Sponsor System Name C Enabled|Enabled | Threads!/|
01’“?s ase Base
Cores | Chips Core

ASUSTeK Computer Inc. 8176) 112 56 2 2| 233 | 237 |-- --
HTML | CSV | Text | PDF | PS | Config

[PowerEdge R7425 (AMD EPY€ 7601, 2.20 GHz)

Dell Tnc. SITML | CSV | Text | PDF | 25 | Coutie 128‘ 64‘ 2‘ 2‘ 257 ‘ 259 ‘ ‘ ‘
B LT 1 M LA srL | Cov | Text 9DE s coi| 768 96 8| s[ee3 | 796 |- |-
Fujitsu Fujitsu SPARC M12-25 HTML | CSV | Text | PDF | PS | Config 1536/ 192 16 81250 [1520 |-- |--
IBM Corporation IBM Power S924 (3.4 - 3.9 GHz, 24 core, SLES) HINL S Tt BDE 85 | Conti 144 24 5 gl 213 277 | |-
IBM Corporation IBM Power E950 (3.4 - 3.8 GHz, 40 core, SLES)HTML T —— 320 40 4 gl 390 | 475 | |

Arbitrarily selected - see https://www.spec.org/cpu2017/results/cpu2017.html for full results, including integer
rates and floating-point speeds, and manyv more details.



https://www.spec.org/cpu2017/results/cpu2017.html

spec’

SPEC CPU®2017 Integer Speed Result

Copyright 2017-2019 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.

ASUS ESC8000 G4(Z11PG-D24) Server System
(2.40 GHz, Intel Xeon Platinum 8260M)

SPECspeed®2017 int base = 10.8
SPECspeed®2017 int peak =11.0

CPU2017 License: 9016

Test Date: Aug-2019

Test Sponsor: ASUSTeK Computer Inc. Hardware Availability: Apr-2019
Tested by: ASUSTeK Computer Inc. Software Availability: May-2019
Threads [0 200 400 600 800 100 120 140 160 180 200 220 240 260
7.04
600.perlbench s 48 [ ...
8.19
10.6
602.gecs 48 . oo 1
:10.9
: 13.4
605Smefs 48 o !
13.5
9.43
620.omnetpp_s 48 [ - ]
9.67
12.7
623.xalancbmk s 48 ([ I )
12.7
14.7
625x264s 48 _ .. . . e
47
5.69
631.deepsjeng s 48 [ . )
5.68
4.88
641.eela_s 48 [ )
ks
17.1
648.exchange2 s 48 [ . ... oo T
7.1
25.1
657xzs 48 . ... a1 m m m m m m m m .
252
—— SPECspeed®2017_int_base (10.8) --—---- SPECspeed®2017_int_peak (11.0)
Hardware Software
CPU Name: Intel Xeon Platinum 8260M OS: SUSE Linux Enterprise Server 15
Max MHz: 3900 Kernel 4.12.14-23-default
Nominal: 2400 Compiler: C/C++: Version 19.0.4.227 of Intel C/C++
Enabled: 48 cores, 2 chips Compiler Build 20190416 for Linux;
Orderable: 1,2 chips Fortran: Version 19.0.4.227 of Intel Fortran
Cache L1: 32 KB I+ 32KB D on chip per core Compiler Build 20190416 for Linux
L2: 1 MB I+D on chip per core Parallel: Yes
L3: 35.75 MB I+D on chip per chip Firmware: Version 5102 released Feb-2019
Other: None File System: xfs
Memory 768 GB (24 x 32 GB 2Rx4 PC4-2933Y-R) System State: Run level 3 (multi-user)
Storage 1 x 1 TB SATA SSD Base Pointers: 64-bit
Other None Peak Pointers: 64-bit
Other: jemalloc: jemalloc memory allocator library
V5.0.1
Power Management: --

® Each reported
benchmark result
Includes elaborate
details of hardware
and software
configuration

® Including details of
compiler optimisation
flags

® For base, same
compiler flags for all
benchmark programs

® For peak, per-
benchmark tuning of
compiler flags

@All compiler flags
are recorded Iin the
benchmark report



spec

SPEC CPU®2017 Integer Speed Result

Copyright 2017-2019 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.

ASUS RS500A-E10(KRPA-U16) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017 int _base = 8.98
SPECspeed®2017 int peak =9.27

CPU2017 License: 9016

Test Date: Aug-2019

Test Sponsor: ASUSTeK Computer Inc. Hardware Availability: Aug-2019
Tested by: ASUSTeK Computer Inc. Software Availability: Aug-2019
Threads [0 .00 200 3.00 400 500 600 7.00 800 9.00 100 110 120 130 140 150 160 170 180 190 200 220
64 4.78 '
600.perlbench_s [ i
532 5
602.gcc_s 64 : 9':95
15.5
605.mcef s e R E————————————
1 6.5
620.omnetpp_s 64 5':16
64 19.35
623.xalancbmk_s U U SR
1 03
64 : 12.8
625x264s [T —_—" )
1 ; 132
64 5.00 :
631.deepsjeng s [ L
1 5.06
641.1eela_s 64 4'?4
648.exchange2 s 64 16:'5
209
6s7xzs o4 ____ ... . - —"iiiiiiiiiicerniirvrnoo i 1 )
21.0
—— SPECspeed®2017_int_base (898 - SPECspeed®2017_int_peak (9.27)
Hardware Software
CPU Name: AMD EPYC 7742 OS: SUSE Linux Enterprise Server 15 SP1 (x86_64)
Max MHz: 3400 Kernel 4.12.14-195-default
Nominal: 2250 Compiler: C/C++/Fortran: Version 2.0.0 of AOCC
Enabled: 64 cores, 1 chip, 2 threads/core Parallel: Yes
Orderable: 1 chip Firmware: Version 0302 released Aug-2019
Cache L1: 32 KB I+ 32 KB D on chip per core File System: xfs _
L2: 512 KB I+D on chip per core System State: Run level 3 (multi-user)
L3: 256 MB I+D on chip per chip, Base Pointers: 64-bit
16 MB shared / 4 cores Peak Pointers: 32/64-bit
Other: None Other: jemalloc: jemalloc memory allocator library v5.1.0
Memory: 256 GB (8 x 32 GB 2Rx4 PC4-3200AA-R) Power Management: --
Storage: 1 x1TBSATA SSD
Other: None

® Different systems
achieve different
relative performance
on different programs
In the benchmark
suite

® Performance is
averaged across the
suite to produce the
overall speed result

® The geometric mean
IS used (not the
arithmetic mean)

& See
https://en.wikipedia.org/wiki/
Geometric mean

® Devising appropriate
summary statistics is
a subtle problem

® What are the criteria
for good benchmark
suite design?



https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Geometric_mean

How We Can Reduce Misses?

® 3 Cs: Compulsory, Capacity, Conflict
@ In all cases, assume total cache size not changed:
® What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

We will look at each of these in turn...



Valid Cache Tag Cache Data Cache Index ]
Cache Block C ® Recall: direct-mapped

cache

Adr Tag< v >
Compar

Hit Cache Block

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block ( Cache Block 0

Adr Ta Cor;;par 1 (‘)' orr‘lrpar R E—
>_&3el1 Mux Selg/_(

—\OR

] { Cache Block
Hit

® Recall: 2-way set-associative cache




Valid  Cache Tag Cache Data Cache Index @ Cache anatomy:
Cache Block ( ® cache block/cache line: unit of
allocation
. L] @ Tag: memory address of cached
— block
4 ) /

Adr Ta v

Compar

Hit Cache Block
Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block ( Cache Block 0

Adr Ta v 4 4 v

Compar > \set?  Mux O Selg/_( omparg+——

—\OR

] { Cache Block
Hit

® Recall: 2-way set-associative cache




Valid  Cache Tag Cache Data Cache Index @ Cache anatomy:
Cache Block ( ® cache block/cache line: unit of
allocation
. L] /l Tag: memory address of cached
block
< — - &

Set: set of cache blocks indexed
by a given cache index

Way: set of alternative locations

Adr Ta Compar, for a stored block in a given set

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block ( Cache Block 0
<+ < >
Adr Ta v Y Y v
Compar > \set?  Mux O Selg/_( omparg+——
—\OR

] { Cache Block
Hit

® Recall: 2-way set-associative cache




Valid Cache Tag

Cache Data

Cache Block (

Cache Index ® Cache anatomy:

cache block/cache line: unit of
allocation

Tag: memory address of cached
block

<

Adr Ta ‘
Compar

Valid Cache Tag

Cache Data

Cache Block (

Set: set of cache blocks indexed
by a given cache index

Way: set of alternative locations
for a stored block in a given set

Comparator. check tag matches
address

Selector: picks the data from the
way with the matching tag (if any)

Cache Tag Valid

Adr Ta v
Compar

>,&3e|11 Mux OSelg/_C_ omparg-

—\OR

Hitl

A

. Cache Block

® Recall: 2-way set-associative cache




Reduce misses via larger block size

25% e
20% 1K
Miss 15% *
Rate 16K
10%
— " 64K
% [ 16KB | ——
e
0% - : = 2 E.
(o] N <
- o™

Block Size (bytes)

Bigger blocks allow us to exploit more spatial locality — but...

Fixed total cache capacity



Reduce misses via larger block size

Initially miss rate is improved due to spatial locality

— 16K

— - 64K

— - 256K

Fixed total cache capacity

With very large lines,
when the cache is small,
miss rate deteriorates
Block Size (bytes) because space is wasted
on speculatively-loaded
data

Note that we are looking only at miss rate — large blocks will

take longer to load (ie a higher miss penalty)
Later we will see

- Better ways to exploit spatial locality, such as prefetching
« Ways to reduce the miss penalty, eg critical word first and sectoring



Associativity: Average Memory Access Time vs. miss rate

®Beware: Execution time is
all that really matters
@ Will Clock Cycle time increase?

@ For example because the
cache’s selector logic is deeper

® Example: suppose clock cycle

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way‘

time (CCT) = 1 | 233 215 207 2.01
@ 1.10 for 2-way, 2 1.98 1.86 1.76 1.68
:Hi :°r g""’ay’ 4 | 172 167 161 1.53

.14 for 8-way
@vs. CCT =1.0 for direct 8 1.46 1.48 1.47 1.43
mapped 16 1.29 1.32 1.32 1.32
® Although miss rate is improved 32 1.20 1.24 1 25 197
by increasing associativity, the
cache hit time is increased 64 1.14 1.20 1.21 1.23
slightly 126 | 1.10 117  1.18 1.20

Average memory access time (cycles)

(Red means A.M.A.T. not improved by more

® lllustrative benchmark study. Real associativity)

clock cycle cost likely smaller



Associativity: Average Memory Access Time vs. miss rate

®Beware: Execution time is
all that really matters
@ Will Clock Cycle time increase?
@ For example because the

® Solution?

& Way prediction
@ See H&P6ed p98

N | | g Cache Size Associativity
cache’s selector logic is deeper
® Example: suppose clock cycle (KB) 1way 2-way 4-way 38-way >
time (CCT) = 1 2.33 2.15 2.07 2.01
#1.10 for 2-way, 2 | 1.98 186  1.76 1.68
:Hi :°r g""’ay’ 4 | 172 167 161 153
.14 for 8-way
®vs. CCT =1.0 for direct 8 1.46 1.48 1.47 1.43
mapped 16 1.29 1.32 1.32 1.32
® Although miss rate is improved 32 1.20 1.24 1 25 1 27
by increasing associativity, the
cache hit time is increased 64 1.14 1.20 1.21 1.23
slightly 128 | 110 117 118  1.20

@ lllustrative benchmark study. Real
clock cycle cost likely smaller

Average memory access time (cycles)
(Red means A.M.A.T. not improved by more

associativity)



Another way to reduce associativity conflict
misses: “Victim Cache”

® How to combine fast hit time of
direct mapped
yet still avoid conflict misses? TAGS DATA

® Add buffer to place data discarded
from cache

® On miss, allocate into direct-mapped ﬂ
cache

® On replacement, allocate into victim
cache

® On access, check both Tag and Comparator |  One Cache line of Data U

® On victim cache, re-allocate into Tag and Comparator |  One Cache line of Data
direct-mapped cache

Tag and Comparator |  One Cache line of Data

Tag and Comparator |  One Cache line of Data

To Next Lower Level In
Hierarchy

Rarely used for L1 but commonly used for
last-level caches

HP-Fellow

Pale-Alte
Distinguished Hardware Engineer
at Google

Jouppi, N. P. 1998. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch buffers. In 25 Years of the
international Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain, June 27 - July 02, 1998). G. S. Sohi, Ed. ISCA '98. ACM, New
York, NY, 388-397. DOI= http://doi.acm.org/10.1145/285930.285998



( A digression: competitive algorithms
@ Given two strategies

@Each strategy is good for some cases but disastrous for
others (eg direct mapped vs fully-associative)

@Can we combine the two to create a good composite

strategy?
#What price do we have to pay? :"of:;eoilso the
® Example: ski rental problem randomisation

(https://en.wikipedia.org/wiki/Ski_rental _problem)
@ Example: spinlocks vs context-switching
®Example: paging (should | stay or should | go)

®Related: the Secretary problem (actually best understood as
dating)

®l1 hope you will demand a course in competitive algorithms and
apply them to diverse computer systems problems

®See http://www14.in.tum.de/personen/albers/papers/brics.pdf )



https://en.wikipedia.org/wiki/Ski_rental_problem
http://www14.in.tum.de/personen/albers/papers/brics.pdf

® How to timetable all of DoC and
EEE’s 3'9-year, 4th-year and MSc
courses

® With limited number of rooms and
times in the week

® There must be some clashes

® Suppose you want to take two
courses, “ACA” and “DNNs”

® If you’re lucky they are scheduled
on different slots

® If not, they clash every week!

Week 1

Week 2

Week 3

Week 4

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

ACA

ACA

ACA

ACA

DNNs

DNNs

DNNs

DNNs



® How to timetable all of DoC and
EEE’s 3'9-year, 4th-year and MSc
courses

® With limited number of rooms and
times in the week

® There must be some clashes

® Suppose you want to take two
courses, “ACA” and “DNNs”

® If you’re lucky they are scheduled
on different slots

® If not, they clash every week!

® Let’s rehash every week....

Week 1

Week 2

Week 3

Week 4

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

Mon@2

Tue@?2

Wed@2

Thu@2

ACA

ACA
ACA

ACA

DNNs

DNNs

DNNs

DNNs



Skewed-associative caches

Cache Index + some tag bits

Valid Cache Tag Cache Data
Cache Block 0

Cache Data Cache Tag Valid
Cache Block 0

] { Cache Block
Hit

® In a conventional w-way set-associative cache, we get conflicts when n+1
blocks have the same address index bits

® Idea: reduce conflict misses by using different indices in each cache way
#® We introduce simple hash function,
® Eg XOR some index bits with tag bits and reorder index bits



data

tag

data

tag

data

tag

AN

AN

.

fo(a)=£0(B

=£0(C)

f(A) = f(B) = (C)
|

f

[A)

ABC

Conventional
two-way set-
associative

® Suppose addresses A, B and C map to the
same set

data

tag

——_—\t

s

e—f1 ()

7

S

ABC

£1(

~

Skewed
two-way set-
associative

® A, B and C might conflict in the left way
® But the right way has a different mapping



Skewed-
associative
caches:
loops and
arrays

Ali], BIil, C[i]
® Suppose we are traversing three arrays A, B and C:

@ Suppose we are unlucky:

fo(All)=fo(BlI)=£o(Cli]) and fi(All])=f(B[i])=£1(C[I])
we get a conflict — only two of the three values can be in the
cache at the same time

@ But since f, and f; are pseudo-random, it’s unlikely that
fo(Ali+ 1=, (Bli+1D)=1(,(C[i+11) and fi(Ali+11)=f (Bli+11)=f; (C[i+11)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages
Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.



In contrast 2-
way set-
associative
cache

f:lower k bits

Ali], BIil, C[i]
® Suppose we are traversing three arrays A, B and C:

@ We can easily be unlucky, eg due to power-of-2 alignment:

f(AL)=£(Bli])=f(CIi])
So we get an associativity conflict — only two of the three values
can be in the cache at the same time

@ And if that happens, we definitely get a conflict on next iteration:
f(Ali+11)=F (Bli+11)=f (C[i+11)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages
Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.



Ali], B[i], C[i]
® We may be able to reduce associativity
® We have more predictable average performance
® It's hard to write a program that is free of associativity conflicts

® Costs?

& One address decoder per way
@ Latency of hash function (?)
@ difficulty of implementing LRU

@ index hash uses translated bits [see later].

P. Michaud. 2003. A statistical model of skewed-associativity. In Proceedings of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS '03).



Reducing Misses by Hardware Prefetching of

® Extra block placed Instructions & Data
in “stream buffer” ~ From processor To processor

dh

® After a cache miss,
stream buffer
initiates fetch for tags data Direct-mapped
next block - cache

® But it is not
allocated into cache | ,l\

- to av?id S
“pollution” tag and

® On access, check

one cache line of data Head entry

) one cache line of data Stream buffer
stream buffer in I one cache iine of daia (FIFO Queus)

parallel with cache oe cache e of data | Tall entry

| tsg
tag
tag
® relies on having \.Il: | I \L /|\

extra memory To next lower cache  From next lower cache

bandwidth

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998




Multi-way stream-buffer

From processor To processar
_ dh
® We can extend this
idea to track multiple
lags datm i
access streams — " mapped cachs
simultaneously: |
@ One stream is good for -
instruction-cache misses L L L
& Multiple streams often
important for data g ') % [ [ -94:
® Eg traversing multiple =7 [a] dda =0 8] dala dlll h’g a a
al “dadla | ({Tag (& gata Tag & daa |
arrays a| data fag |a] dala dala Gg |a] daia |
al dala fag {a a dala | ({@g |8l
) N 7
®//Q: would it be o1 o
better to prefetch
n+k instead of n+1?]] ) ?
Many (many) modern CPUs have hardware . .
prefetChing \T/ From noxilm.r ceche
« Often more elaborate/sophisticated To next lower cache

* Initiated at L1, or perhaps initiated on L2 misses?



Beyond prefetch: decoupled access-execute

® Idea: separate the Memory
instructions that e : .
generate addresses wl r E-instructions
from the instructions il & J,
that use memory i! dﬁ{ § A-instructions
results N, | data AE

® Let the address- ‘--"""""'—’I |

generation side of the A e Execute
machine run ahead wag ! ------- ﬂ—{[[E— Processor

Access Q

Processor AEBQ
From James E. Smith. 1982. Decoupled access/execute computer T am— —ﬂ
architectures. In Proceedings of the 9th annual symposium on A x
Computer Architecture (ISCA '82). IEEE Computer Society Press, Lo . - A
Alamitos, CA, USA, 112-119 register fe—— register
See also ACRI supercomputer project, f1 ., e EA BQ f-] ] e
http://www.paralogos.com/DeadSuper/ACRI/

And Scout threads in Sun’s Rock:
https://ieeexplore.ieee.org/document/4523067



http://www.paralogos.com/DeadSuper/ACRI/
https://ieeexplore.ieee.org/document/4523067

Summary

We can reduce the miss rate through hardware.....
® With a bigger cache (Capacity)
#But a bigger cache will be slower, or will have to be pipelined
® With larger blocks (aka cachelines)
@#But if that increases the miss penalty, you lose
® With higher associativity (Conflicts)
@#But direct-mapped caches are (a bit) faster

® We can reduce the miss rate due to associativity conflicts by
adding a victim cache

® We can reduce the miss rate due to associativity conflicts using
a skewed-associative cache (reduce... on average?)

® We can reduce miss delays by prefetching using a prefetch
predictor and a stream buffer

® We can reduce miss delays by issuing loads early enough, for
example in a decoupled architecture



Further reading
We have not discussed replacement policy

® Some theory eg
& Pierre Michaud. Some mathematical facts about optimal cache replacement. ACM
Transactions on Architecture and Code Optimization, Association for Computing
Machinery, 2016, 13 (4), ff10.1145/3017992ff. ffhal-01411156v2f

® Fast cheap hardware for approximating LRU:
& Pseudo-LRU https://en.wikipedia.org/wiki/Pseudo-LRU

® Better than LRU:

@ High Performance Cache Replacement Using Re-Reference Interval Prediction (RRIP), Jaleel
et al ISCA 2010

& What does the pessimal replacement policy look like?
& See https://link.springer.com/chapter/10.1007/978-3-540-72914-3 13

& From the wonderful Fun with Algorithms conference series

® https://sites.google.com/view/fun2020/home
® And entirely unrelated: http://www.toroidalsnark.net/mathknit.html
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Further reading

Prefetching is a major sport....

For data:
® The 3rd Data Prefetching Championship (at ISCA’19)

@ https://dpc3.compas.cs.stonybrook.edu/?final_programs
® ML-Based Data Prefetching Competition (at ISCA’21)

@ https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-
competition

For instructions:
® The First Instruction Prefetching Championship (at ISCA 2020)

@ https://www.sigarch.org/call-contributions/the-first-instruction-
prefetching-championship-with-isca-2020/

®See also Sarangi Chapter 7
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Student question: stride and depth in prefetching

"Stride" is the size of the pointer increment on each access, eg in

double A[], B[]; // 8-byte per word
for (int i=0; i<N; ++i)
BI[i] = A[3"i];

the load has stride 24bytes, while the store has stride 8bytes.
"Depth"” concerns how many iterations ahead we prefetch. Eg
for (int i=0; i<N; ++i)

prefetch(&A[i+D];

B[i] = A[i]+s;
D is the prefetch depth. It's often a good idea for D to be bigger

than one, in order to get multiple accesses in flight and to cover
the memory access latency.
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