
Advanced Computer Architecture Chapter 2.1

COMP60001/COMP70086
Advanced Computer Architecture

Chapter 4: Caches and Memory Systems
Part 1: miss rate reduction using hardware

(the first of five shorter lectures on caches, address
translation and the memory system)

October 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th,

5th and 6th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Advanced Computer Architecture Chapter 2.2

There are three ways to improve AMAT:

1. Reduce the miss rate

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

Over the next few lectures we look at each
of these in turn…

In hardware
In software

Hennessy and

Patterson 6th ed

Appendix B.3 pB22

Advanced Computer Architecture Chapter 2.3

Reducing Misses
Classifying Misses: 3 Cs

Compulsory—The first access to a block is not in the cache, so the block

must be brought into the cache. Also called cold start misses or first

reference misses.

(Misses in even an Infinite Cache)

Capacity—If the cache cannot contain all the blocks needed during

execution of a program, capacity misses will occur due to blocks being

discarded and later retrieved.

(Misses in Fully Associative Size X Cache)

Conflict—If block-placement strategy is set associative or direct mapped,

conflict misses (in addition to compulsory & capacity misses) will occur

because a block can be discarded and later retrieved if too many blocks map

to its set. Also called collision misses or interference misses.

(Misses in w-way Associative, Size X Cache)

Maybe four: 4th “C”:

Coherence - Misses caused by cache coherence: data may have been

invalidated by another processor or I/O device

Advanced Computer Architecture Chapter 2.4

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

T
y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory misses are

often vanishingly

Few (unless??)

- misses in fully-associative cache

- misses in infinite cache

Miss rate

Advanced Computer Architecture Chapter 2.6

3Cs Relative Miss Rate

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Same data, shown as
proportion of total

Advanced Computer Architecture Chapter 2.7

We will make
heavy use of
simulation
studies based on
benchmark suites

Much of the
published
research relies
on the SPEC
CPU benchmarks

The suite has
been revised
several times

Extended,
refined,
broadened

Advanced Computer Architecture Chapter 2.8

SPEC CPU
concerns CPU-
intensive
applications
(no OS, no I/O)

Integer
benchmarks
tend to make
more intensive
use of pointers
and hard-to-
predict
branches

Hard to
parallelise

Floating point
benchmarks
may benefit
more from
automatic
parallelisation

Speed:
execution time
for one run of
the program
(possibly using
multiple cores)

Rate:
maximum
throughput of
completed
jobs/second

Advanced Computer Architecture Chapter 2.9

CPU2017 integer speeds (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

CPU2017 floating point rates (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

Arbitrarily selected - see https://www.spec.org/cpu2017/results/cpu2017.html for full results, including integer

rates and floating-point speeds, and many more details.

https://www.spec.org/cpu2017/results/cpu2017.html

Advanced Computer Architecture Chapter 2.10

Each reported
benchmark result
includes elaborate
details of hardware
and software
configuration

Including details of
compiler optimisation
flags

For base, same
compiler flags for all
benchmark programs

For peak, per-
benchmark tuning of
compiler flags

All compiler flags
are recorded in the
benchmark report

Advanced Computer Architecture Chapter 2.11

Different systems
achieve different
relative performance
on different programs
in the benchmark
suite

Performance is
averaged across the
suite to produce the
overall speed result

The geometric mean
is used (not the
arithmetic mean)

See
https://en.wikipedia.org/wiki/
Geometric_mean

Devising appropriate
summary statistics is
a subtle problem

What are the criteria
for good benchmark
suite design?

https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Geometric_mean

Advanced Computer Architecture Chapter 2.12

How We Can Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict

In all cases, assume total cache size not changed:

What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

We will look at each of these in turn…

Advanced Computer Architecture Chapter 2.13Recall: 2-way set-associative cache

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Recall: direct-mapped
cache

Advanced Computer Architecture Chapter 2.14Recall: 2-way set-associative cache

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Cache anatomy:

cache block/cache line: unit of
allocation

Tag: memory address of cached
block

Advanced Computer Architecture Chapter 2.15Recall: 2-way set-associative cache

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Cache anatomy:

cache block/cache line: unit of
allocation

Tag: memory address of cached
block

Set: set of cache blocks indexed
by a given cache index

Way: set of alternative locations
for a stored block in a given set

Advanced Computer Architecture Chapter 2.16Recall: 2-way set-associative cache

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Cache anatomy:

cache block/cache line: unit of
allocation

Tag: memory address of cached
block

Set: set of cache blocks indexed
by a given cache index

Way: set of alternative locations
for a stored block in a given set

Comparator: check tag matches
address

Selector: picks the data from the
way with the matching tag (if any)

Advanced Computer Architecture Chapter 2.17

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Reduce misses via larger block size

Bigger blocks allow us to exploit more spatial locality – but...

F
ix

e
d

 t
o

ta
l

c
a
c
h

e
 c

a
p

a
c
it

y

1KB

4KB

16KB

Advanced Computer Architecture Chapter 2.18

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Note that we are looking only at miss rate – large blocks will

take longer to load (ie a higher miss penalty)

F
ix

e
d

 t
o

ta
l
c
a
c
h

e
 c

a
p

a
c
it

y

Initially miss rate is improved due to spatial locality

With very large lines,

when the cache is small,

miss rate deteriorates

because space is wasted

on speculatively-loaded

data

1KB

4KB

16KB

Later we will see

• Better ways to exploit spatial locality, such as prefetching

• Ways to reduce the miss penalty, eg critical word first and sectoring

Reduce misses via larger block size

Advanced Computer Architecture Chapter 2.19

Associativity: Average Memory Access Time vs. miss rate

Beware: Execution time is

all that really matters

Will Clock Cycle time increase?

For example because the

cache’s selector logic is deeper

Example: suppose clock cycle
time (CCT) =

1.10 for 2-way,

1.12 for 4-way,

1.14 for 8-way

vs. CCT = 1.0 for direct
mapped

Although miss rate is improved
by increasing associativity, the
cache hit time is increased
slightly

(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01

2 1.98 1.86 1.76 1.68

4 1.72 1.67 1.61 1.53

8 1.46 1.48 1.47 1.43

16 1.29 1.32 1.32 1.32

32 1.20 1.24 1.25 1.27

64 1.14 1.20 1.21 1.23

128 1.10 1.17 1.18 1.20

Cache Size Associativity

Illustrative benchmark study. Real

clock cycle cost likely smaller

Average memory access time (cycles)
(Red means A.M.A.T. not improved by more

associativity)

Advanced Computer Architecture Chapter 2.20

Associativity: Average Memory Access Time vs. miss rate

Beware: Execution time is

all that really matters

Will Clock Cycle time increase?

For example because the

cache’s selector logic is deeper

Example: suppose clock cycle
time (CCT) =

1.10 for 2-way,

1.12 for 4-way,

1.14 for 8-way

vs. CCT = 1.0 for direct
mapped

Although miss rate is improved
by increasing associativity, the
cache hit time is increased
slightly

(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01

2 1.98 1.86 1.76 1.68

4 1.72 1.67 1.61 1.53

8 1.46 1.48 1.47 1.43

16 1.29 1.32 1.32 1.32

32 1.20 1.24 1.25 1.27

64 1.14 1.20 1.21 1.23

128 1.10 1.17 1.18 1.20

Cache Size Associativity

Illustrative benchmark study. Real

clock cycle cost likely smaller

Average memory access time (cycles)
(Red means A.M.A.T. not improved by more

associativity)

Solution?

Way prediction

See H&P6ed p98

Advanced Computer Architecture Chapter 2.22

Another way to reduce associativity conflict
misses: “Victim Cache”

How to combine fast hit time of
direct mapped
yet still avoid conflict misses?

Add buffer to place data discarded
from cache

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Jouppi, N. P. 1998. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch buffers. In 25 Years of the

international Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain, June 27 - July 02, 1998). G. S. Sohi, Ed. ISCA '98. ACM, New

York, NY, 388-397. DOI= http://doi.acm.org/10.1145/285930.285998

HP Fellow

Director, Exascale Computing Lab

Palo Alto

Distinguished Hardware Engineer

at Google

On miss, allocate into direct-mapped
cache

On replacement, allocate into victim
cache

On access, check both

On victim cache, re-allocate into
direct-mapped cache

Rarely used for L1 but commonly used for

last-level caches

Advanced Computer Architecture Chapter 2.23

(A digression: competitive algorithms
Given two strategies

Each strategy is good for some cases but disastrous for
others (eg direct mapped vs fully-associative)

Can we combine the two to create a good composite
strategy?

What price do we have to pay?

Example: ski rental problem
(https://en.wikipedia.org/wiki/Ski_rental_problem)

Example: spinlocks vs context-switching

Example: paging (should I stay or should I go)

Related: the Secretary problem (actually best understood as
dating)

I hope you will demand a course in competitive algorithms and
apply them to diverse computer systems problems

See http://www14.in.tum.de/personen/albers/papers/brics.pdf)

Note also the

role of

randomisation

https://en.wikipedia.org/wiki/Ski_rental_problem
http://www14.in.tum.de/personen/albers/papers/brics.pdf

Advanced Computer Architecture Chapter 2.25

How to timetable all of DoC and
EEE’s 3rd-year, 4th-year and MSc
courses

With limited number of rooms and
times in the week

There must be some clashes

Suppose you want to take two
courses, “ACA” and “DNNs”

If you’re lucky they are scheduled
on different slots

If not, they clash every week!

Week 1

Week 3

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@2

Wed@2

Thu@2

Week 2

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@2

Wed@2

Thu@2

Week 4

ACA DNNs

ACA DNNs

ACA DNNs

ACA DNNs

Advanced Computer Architecture Chapter 2.26

How to timetable all of DoC and
EEE’s 3rd-year, 4th-year and MSc
courses

With limited number of rooms and
times in the week

There must be some clashes

Suppose you want to take two
courses, “ACA” and “DNNs”

If you’re lucky they are scheduled
on different slots

If not, they clash every week!

Let’s rehash every week….

Week 1

Week 3

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@2

Wed@2

Thu@2

Week 2

Mon@2

Tue@2

Wed@2

Thu@2

Mon@2

Tue@2

Wed@2

Thu@2

Week 4

ACA DNNs

ACA

DNNs

ACA

DNNs

ACA DNNs

Advanced Computer Architecture Chapter 2.27

Skewed-associative caches

In a conventional w-way set-associative cache, we get conflicts when n+1
blocks have the same address index bits

Idea: reduce conflict misses by using different indices in each cache way

We introduce simple hash function,

Eg XOR some index bits with tag bits and reorder index bits

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index + some tag bits

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

h1 h2

Adr Tag

Advanced Computer Architecture Chapter 2.28

Conventional

two-way set-

associative

Skewed

two-way set-

associative

Suppose addresses A, B and C map to the
same set

A, B and C might conflict in the left way

But the right way has a different mapping

Advanced Computer Architecture Chapter 2.30

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages

Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.

A[i], B[i], C[i]

Skewed-

associative

caches:

loops and

arrays

Advanced Computer Architecture Chapter 2.31

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages

Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.

A[i], B[i], C[i]

In contrast 2-

way set-

associative

cache

Advanced Computer Architecture Chapter 2.32

We may be able to reduce associativity

We have more predictable average performance

It’s hard to write a program that is free of associativity conflicts

Costs?

One address decoder per way

Latency of hash function (?)

difficulty of implementing LRU

index hash uses translated bits [see later].

P. Michaud. 2003. A statistical model of skewed-associativity. In Proceedings of the 2003 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS '03).

A[i], B[i], C[i]

Advanced Computer Architecture Chapter 2.33

Reducing Misses by Hardware Prefetching of
Instructions & Data Extra block placed

in “stream buffer”

After a cache miss,
stream buffer
initiates fetch for
next block

But it is not
allocated into cache
– to avoid
“pollution”

On access, check
stream buffer in
parallel with cache

relies on having
extra memory
bandwidth
From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

Advanced Computer Architecture Chapter 2.34

Multi-way stream-buffer

We can extend this
idea to track multiple
access streams
simultaneously:

One stream is good for
instruction-cache misses

Multiple streams often
important for data

Eg traversing multiple
arrays

[[Q: would it be
better to prefetch
n+k instead of n+1?]]

Many (many) modern CPUs have hardware

prefetching

• Often more elaborate/sophisticated

• Initiated at L1, or perhaps initiated on L2 misses?

Advanced Computer Architecture Chapter 2.35

Beyond prefetch: decoupled access-execute

Idea: separate the
instructions that
generate addresses
from the instructions
that use memory
results

Let the address-
generation side of the
machine run ahead

From James E. Smith. 1982. Decoupled access/execute computer

architectures. In Proceedings of the 9th annual symposium on

Computer Architecture (ISCA '82). IEEE Computer Society Press, Los

Alamitos, CA, USA, 112-119

See also ACRI supercomputer project,

http://www.paralogos.com/DeadSuper/ACRI/

And Scout threads in Sun’s Rock:

https://ieeexplore.ieee.org/document/4523067

http://www.paralogos.com/DeadSuper/ACRI/
https://ieeexplore.ieee.org/document/4523067

Advanced Computer Architecture Chapter 2.36

Summary
We can reduce the miss rate through hardware…..

With a bigger cache (Capacity)

But a bigger cache will be slower, or will have to be pipelined

With larger blocks (aka cachelines)

But if that increases the miss penalty, you lose

With higher associativity (Conflicts)

But direct-mapped caches are (a bit) faster

We can reduce the miss rate due to associativity conflicts by
adding a victim cache

We can reduce the miss rate due to associativity conflicts using
a skewed-associative cache (reduce… on average?)

We can reduce miss delays by prefetching using a prefetch
predictor and a stream buffer

We can reduce miss delays by issuing loads early enough, for
example in a decoupled architecture

Advanced Computer Architecture Chapter 2.37

Further reading
We have not discussed replacement policy

Some theory eg
Pierre Michaud. Some mathematical facts about optimal cache replacement. ACM
Transactions on Architecture and Code Optimization, Association for Computing
Machinery, 2016, 13 (4), ff10.1145/3017992ff. ffhal-01411156v2f

Fast cheap hardware for approximating LRU:
Pseudo-LRU https://en.wikipedia.org/wiki/Pseudo-LRU

Better than LRU:
High Performance Cache Replacement Using Re-Reference Interval Prediction (RRIP), Jaleel
et al ISCA 2010

What does the pessimal replacement policy look like?

See https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13

From the wonderful Fun with Algorithms conference series
https://sites.google.com/view/fun2020/home

And entirely unrelated: http://www.toroidalsnark.net/mathknit.html

https://en.wikipedia.org/wiki/Pseudo-LRU
https://en.wikipedia.org/wiki/Pseudo-LRU
https://en.wikipedia.org/wiki/Pseudo-LRU
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://sites.google.com/view/fun2020/home
http://www.toroidalsnark.net/mathknit.html

Advanced Computer Architecture Chapter 2.38

Further reading
Prefetching is a major sport….

For data:

The 3rd Data Prefetching Championship (at ISCA’19)

https://dpc3.compas.cs.stonybrook.edu/?final_programs

ML-Based Data Prefetching Competition (at ISCA’21)

https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-
competition

For instructions:

The First Instruction Prefetching Championship (at ISCA 2020)

https://www.sigarch.org/call-contributions/the-first-instruction-
prefetching-championship-with-isca-2020/

See also Sarangi Chapter 7

https://dpc3.compas.cs.stonybrook.edu/?final_programs
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/
https://www.sigarch.org/call-contributions/the-first-instruction-prefetching-championship-with-isca-2020/

Advanced Computer Architecture Chapter 2.39

"Stride" is the size of the pointer increment on each access, eg in

double A[], B[]; // 8-byte per word

for (int i=0; i<N; ++i)

 B[i] = A[3*i];

the load has stride 24bytes, while the store has stride 8bytes.

"Depth" concerns how many iterations ahead we prefetch. Eg

for (int i=0; i<N; ++i)

 prefetch(&A[i+D];

 B[i] = A[i]+s;

D is the prefetch depth. It's often a good idea for D to be bigger

than one, in order to get multiple accesses in flight and to cover

the memory access latency.

Student question: stride and depth in prefetching

	Slide 1: COMP60001/COMP70086 Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 1: miss rate reduction using hardware (the first of five shorter lectures on caches, address translation and the memory system)
	Slide 2: There are three ways to improve AMAT:
	Slide 3: Reducing Misses
	Slide 4: 3Cs Absolute Miss Rate (SPEC92)
	Slide 6: 3Cs Relative Miss Rate
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: How We Can Reduce Misses?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Reduce misses via larger block size
	Slide 18: Reduce misses via larger block size
	Slide 19: Associativity: Average Memory Access Time vs. miss rate
	Slide 20: Associativity: Average Memory Access Time vs. miss rate
	Slide 22: Another way to reduce associativity conflict misses: “Victim Cache”
	Slide 23: (A digression: competitive algorithms
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Reducing Misses by Hardware Prefetching of Instructions & Data
	Slide 34: Multi-way stream-buffer
	Slide 35: Beyond prefetch: decoupled access-execute
	Slide 36: Summary
	Slide 37
	Slide 38
	Slide 39

