
1

Advanced Computer Architecture

Chapter 4: Caches and Memory Systems
Part 2: miss rate reduction using software

October 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th,

5th and 6th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

2

There are three ways to improve AMAT:

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

We now look at each of these in turn…

In hardware
In software

4

Reducing misses by software prefetching

Some processors have instructions to

trigger prefetching explicitly, in

software

Almost never worth using on

sophisticated processors with good

hardware prefetching

May be useful on simpler processors

Some care is needed to ensure

prefetch accesses don’t have

unwanted side effects

Eg memory-mapped i/o registers

(this is the function of the

R10KCBARRIER macro)

Prefetch instructions may target

addresses that would cause a page

fault or protection violation

Prefetches of addresses that

would result in a page fault or

exception are silently squashed

Example: MIPS “memcpy” library code – handwritten assembler –

unrolled 12 times, manually scheduled, with prefetching to

initiate loading the source and destination cache lines into cache

(heavy use of macros)

From https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

5

McFarling [1989]*

reduced instruction

cache misses by 75%

on 8KB direct mapped

cache, 4 byte blocks in

software

Instructions

By choosing instruction

memory layout based on

callgraph, branch structure

and profile data

Reorder procedures in

memory so as to reduce

conflict misses

(actually this really needs the

whole program – a link-time

optimisation)

* “Program optimization for instruction caches”, ASPLOS89, http://doi.acm.org/10.1145/70082.68200

Loop2Loop1 Loop3

Loop2Loop1 Loop3

Call graph

Packing code for each function into the I-cache

time

Reducing instruction-cache misses

Function E is placed to avoid conflicts with B and C,

but can be placed in addresses that conflict with A

7

Storage layout transformations
Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays

Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

Improve spatial locality

Iteration space transformations
Loop Interchange: change nesting of loops to access data in
order stored in memory

Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows (wait for
Chapter 4)

Can also improve temporal locality

8

Array Merging - example/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

 int val;

 int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key (example?)

Improve spatial locality (counter-example?)

• whether this is a good idea depends on access
pattern

(actually this is a transpose: 2*SIZE -> SIZE*2)

“Array of Structs” vs

“Struct of Arrays”

(AoS vs SoA)

9

Consider matrix-matrix multiply (tutorial ex)

MM1:

for (i=0;i<N;i++)

 for (j=0;j<N;j++)

 for (k=0;k<N;k++)

 C[i][j] += A[i][k] * B[k][j];

MM2:

for (i=0;i<N;i++)

 for (k=0;k<N;k++)

 for (j=0;j<N;j++)

 C[i][j] += A[i][k] * B[k][j];

Row-major storage layout (default for C):

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Row 0 Row 1 Row 2 Row 3 Row 4

Column-major storage layout (default for Fortran):

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Col 0 Col 1 Col 2 Col 3 Col 4

10

MM1: ijk

MM2: ikj

MM3: tiled

MM3: tiled
but with

different

storage

layout

256 bytes 512B 1024B 2048B 4096B 8192B

32 doubles 64 128 256 512 1024

Problem size: 192 doubles, 1536 bytes per row

11Permuting multidimensional arrays to improve spatial locality

Traverses B and C in row-major order

Which is great if the data is stored in row-major order

If data is actually in column-major order…

Matrix-matrix
multiply on
Pentium 4

“ikj” variant:

for i

 for k

 for j

 C[ij]+=A[ik]

 *B[kj]

1514

1110

1312

98

76

32

54

10

1511

1410

73

62

139

128

51

40

Row major

mapping to

linear address:

Column major:

12

Permuting multidimensional arrays to improve spatial locality

Blocked layout offers compromise between row-major and column-
major

Some care is needed in optimising address calculation to make this
work (Jeyan Thiyagalingam’s Imperial PhD thesis)

Using a blocked (“quadtree” or “Morton”)

layout gives a compromise between row-major

and column-major

1514

1312

1110

98

76

54

32

10

A variant of

Morton-order

layout is used

for texture

caching in

some GPUs

Morton-order mapping to

linear address

13

Loop Interchange: example

/* Before */

for (k = 0; k < 100; k = k+1)

 for (j = 0; j < 100; j = j+1)

 for (i = 0; i < 5000; i = i+1)

 x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

 for (i = 0; i < 5000; i = i+1)

 for (j = 0; j < 100; j = j+1)

 x[i][j] = 2 * x[i][j];

Sequential accesses: instead of striding
through memory every 100 words;
improved spatial locality

(actually this is a transpose of the
iteration space)

14

Loop Fusion: example
/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After fusion */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 { a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs.
one miss per access; improve
spatial locality

/* After array contraction */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 { cv = c[i][j];

 a = 1/b[i][j] * cv;

 d[i][j] = a + cv;}

The real payoff comes if
fusion enables Array
Contraction: values
transferred in scalar
instead of via array

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1:

S2:

S1:

S2: S2:

S1:

15

Fusion is not always so simple

Dependences might not align nicely

Example: one-dimensional convolution filters

• “Stencil” loops are not directly fusable

for (i=1; i<N; i++)

 V[i] = (U[i-1] + U[i+1])/2

for (i=1; i<N; i++)

 W[i] = (V[i-1] + V[i+1])/2

16

We make them fusable by shifting:

V[1] = (U[0] + U[2])/2

for (i=2; i<N; i++) {

 V[i] = (U[i-1] + U[i+1])/2

 W[i-1] = (V[i-2] + V[i])/2

}

W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable

We get lots of little edge bits

Loop fusion – code expansion

17

We make them fusable by shifting:

V[1] = (U[0] + U[2])/2

for (i=2; i<N; i++) {

 V[i%4] = (U[i-1] + U[i+1])/2

 W[i-1] = (V[(i-2)%4] + V[i%4])/2

}

W[N-1] = (V[(N-2)%4] + V[N%4])/2

The middle loop is fusable

We get lots of little edge bits

Loop fusion – code expansion

Contraction is trickier

We need the last two Vs

We need 3 V locations

Quicker to round up to four

This transformation

is important in

image-processing

filters, finite

difference solvers,

and convolutional

neural networks

18

Summary
We can reduce the miss rate at the software level …..

By using prefetch instructions

If they work better than predictive prefetch hardware

By transforming storage layout

Might help with spatial locality

Might help with associativity conflicts

Can’t help with temporal locality

Storage layout optimisations are disruptive – they affect all the
code that might use that data

Loop interchange, fusion, tiling

Can get really messy to implement by hand

Can lead to a large space of possible schedules – it can be
hard to know what will work best

Loop fusion can be very powerful but often breaks
abstraction boundaries

19

Further reading
Algorithms and locality: cache-oblivious algorithms:

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

Compilers that optimise for locality:

Michael E. Wolf and Monica S. Lam. 1991. A data locality optimizing algorithm.
PLDI91.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data
locality with loop transformations. ACM Trans. Program. Lang. Syst. 18, 4 (July
1996)

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. PLDI08

Programming Abstractions for Data Locality

https://sites.google.com/a/lbl.gov/padal-workshop/

Optimisations for convolutional neural networks

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang.
Optimizing CNN model inference on CPUs. USENIX ATC’19.

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://sites.google.com/a/lbl.gov/padal-workshop/
https://sites.google.com/a/lbl.gov/padal-workshop/
https://sites.google.com/a/lbl.gov/padal-workshop/

21

Student question: permute data or loops?
For spatial locality, you want to match
the iteration schedule with the storage
layout. So you can achieve this either by
transposing the data to match the
schedule, or by modifying the schedule
to match the layout.

Changing the layout should be the easy
option - as it doesn't depend on any
dependences in the code. But it's
difficult because

(1) (optimality): the same data
might be accessed by different
loops with different schedules, and

(2) (correctness) in uncivilised
languages like C/C++ it's possible
that the program accesses data in
a way that is sensitive to storage
layout - for example by treating a
2d array as a 1d vector. And

(3) (correctness) with separate
compilation we need all the code
to agree on the layout.

Changing the schedule is harder - its
validity depends on the dependences in
the code. But when the compiler can
prove that the schedule transformation
is valid, you're fine - you avoid problems
(1), (2) and (3) above.

	Slide 1: Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 2: miss rate reduction using software
	Slide 2: There are three ways to improve AMAT:
	Slide 4: Reducing misses by software prefetching
	Slide 5: Reducing instruction-cache misses
	Slide 7
	Slide 8: Array Merging - example
	Slide 9: Consider matrix-matrix multiply (tutorial ex)
	Slide 10
	Slide 11: Permuting multidimensional arrays to improve spatial locality
	Slide 12: Permuting multidimensional arrays to improve spatial locality
	Slide 13: Loop Interchange: example
	Slide 14: Loop Fusion: example
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Summary
	Slide 19
	Slide 21: Student question: permute data or loops?

