Advanced Computer Architecture

Chapter 4: Caches and Memory Systems
Part 2: miss rate reduction using software

October 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3, 4th.
5t and 6" eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Average memory access time:

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT:

1. Reduce the miss rate, /

. In software

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn...

Reducing misses by software prefetching

. . R10KCBARRIER(O(ra))

] SPme processo_rs have _m_stru_ctlons to LOAD(t0, UNIT(0)(src), .LL exc\@)
trigger prefetching explicitly, in LOAD(t1, UNIT(1)(src), .L1_exc_copy\@)
software LOAD(t2, UNIT(2)(src), .L1 _exc_copy\@)

) LOAD(t3, UNIT(3)(src), .L1 exc_copy\@)
® Almost never worth using on SUB len, len, 8*NBYTES
sophisticated processors with good LOAD(t4, UNIT(4)(src), .L1 exc_copy\@)

LOAD(t7, UNIT(5)(src), .L1_exc_copy\@)

hardware prefetching STORE(t@, UNIT(©)(dst), .Ls_exc p8u\@)

® May be useful on simpler processors — STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@)
LOAD(t@, UNIT(6)(src), .L1_exc_copy\@)
® Some care is needed to ensure LOAD(t1, UNIT(7)(src), .L1_exc_copy\@)
prefetch accesses don’t have L SHE, ShE, 8*HONRES
] ADD dst, dst, S*NBYTES
unwanted side effects STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@)

STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@)

® Eg memory-mapped i/o registers STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@)

@ (this is the function of the STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@)
STORE(t@, UNIT(-2)(dst), .Ls_exc p2u\@)
R10KCBARRIER macro) STORE(t1l, UNIT(-1)(dst), .Ls_exc_plu\@)
® Prefetch instructions may target E:EE;E 2: ::g;gzrzg ;
, s
addresses that_wou!d cause a page bne len, rem, 1b
fault or protection violation nop
& Prefetches of addresses that ® Example: MIPS “memcpy” library code — handwritten assembler —
. unrolled 12 times, manually scheduled, with prefetching to
would result in a page fault or initiate loading the source and destination cache lines into cache
exception are silently squashed (heavy use of macros)

® From https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

Reducing instruction-cache misses

® McFarling [1989]*
reduced instruction
cache misses by 75%
on 8KB direct mapped
cache, 4 byte blocks in
software

@ Instructions

@ By choosing instruction
memory layout based on
callgraph, branch structure
and profile data

@ Reorder procedures in
memory so as to reduce
conflict misses

@ (actually this really needs the
whole program — a link-time
optimisation)

Call graph
L1 L2
Loop1 \

main

Loop2

L3
oop3

C

Packlng code for each functlon |nto the I-cache

D

B

Loop1

Loop2 Loop3

A

Cache
Size

Function E is placed to avoid conflicts with B and C,
but can be placed in addresses that conflict with A

® Storage layout transformations

@ Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays

& Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

& Improve spatial locality

@ Iteration space transformations

& Loop Interchange: change nesting of loops to access data in
order stored in memory

@ Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

@ Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows (wait for
Chapter 4)

@ Can also improve temporal locality

I* Before: 2 sequential arrays */ T -
bty Array Merging - example

int key[SIZE]; “Array of Structs” vs
[* After: 1 array of stuctures */ “Struct of Arrays”
struct merge {

ntval (A0S vs SoA)

int key;
E

struct merge merged_array[SIZE];

Reducing conflicts between val & key (example?)
Improve spatial locality (counter-example?)

 whether this is a good idea depends on access
pattern

(actually this is a transpose: 2*SIZE -> SIZE*2)

Consider matrix-matrix multiply (tutorial ex)

® MM1: ® MM2:
for (i=0;i<N;i++) for (i=0;i<N;i++)
for (j=0;j<N;j++) for (k=0;k<N;k++)
for (k=0;k<N;k++) for (j=0;j<N;j++)
C[i][] += Alil[k] * BIK]QI; C[il[j] += Ali]l[k] * BLK][1;

® Row-major storage layout (default for C):
011203 4l0l1]2[3[4]0lil2]304 0lil2]3]4 0lil2]3]4
Row O Row 1 Row 2 Row 3 Row 4
® Column-major storage layout (default for Fortran):

0/112(3/4/0/1/2/314/0[1/2[3/4/0[1/2[3/4/0[1/2]34

Col O Col 1 Col 2 Col 3 Col 4

0.35
d EII ".;uelarycachesize_mMII_ESE_EIGE.dat“Iusing 4 —+—
™, ".Jvarycachesize MM2 256 8192.dat" using 4
0.3 |- H "varycachesize MM3 256 8192.dat" using 4 —— -
‘“xx " Jvarycachesize MM4 256 8192.dat" using4 —e=—
0.25 | AN -
0.2 HEE*-H_ —
015 MM1:ijk | _
0.1 L MM3: tiled |
B ~—a_but with
different ——
0.05 MM2: ikj storage -
. layout
MM3: tiled ,
0 | | T ¥ — — %
256 bytes 512B 1024B 2048B 4096B 8192B
32 doubles 64 128 256 512 1024

Problem size: 192 doubles,

1536 bytes per row

Performance in MFLOP/s

Permuting multidimensional arrays to improve spatial locality
MMikj on P4: Performance in MFLOP/s

1000
900
800
700
600
500
400
300
200
100

0

R(lnw-lvlajlor Default Aliclgjnmenlt (a)

Row major
mapping to

linear address: 4

Column major: 1

N~ o o b

11

200 400 600 800

1000

1200 1400
Square Root of Datasize

® Traverses B and C in row-major order
® Which is great if the data is stored in row-major order

® If data is actually in column-major order...

® Matrix-matrix
multiply on
Pentium 4

“ikj” variant:
for i
for k
forj
Clij]+=A[ik]
*Blkijl

1600 1800 2000

Performance in MFLOP/s

Permuting multidimensional arrays to improve spatial locality
MMikj on P4: Performance in MFLOP/s

. A variant of
7 7 Row-Major Default Alignment (a
(

Morton-order
- layout is used

900 o, Column-Major Default Alignment (b)

!

t
| Z-Morton Page-Aligned Unrolled (c

)

)—
d) —— -
e)

for texture

800 - \Padded-SaP-Z-Morton Page-Aligned Unrolled (cachina in
§t0p—at—Page—Z—Morton Page-Aligned Unrolled (g
700 + | . some GPUs
600 - Using a blocked (“quadtree” or “Morton”) | |
”\\ layout gives a compromise between row-major
500 and column-major |
400 YT . el v
300 -
| e 38 12 13
200 \%%:
0L] | e | Morton-order mapping to

200 400 600 800 1000 1200 1400 1600 1800 2000 linear address

Square Root of Datasize _
® Blocked layout offers compromise between row-major and column-
major

® Some care is needed in optimising address calculation to make this
work (Jeyan Thiyagalingam’s Imperial PhD thesis)

Loop Interchange: example

[* Before */
for (k =0; k <100; k = k+1)

x[i10] = 2 * x[i]10]1;
[* After */
for (k=0; k <100; k = k+1)
for (i=0;i<5000;i=i+1)
for (=0;j<100; j=j+1)
x[il0] = 2 * x[il0]1;

Sequential accesses: instead of striding
through memory every 100 words;
improved spatial locality

Loop Fusion: example

/* Before */
for (i = 0; i < N; i = i+l)

for (j = 0; J < N; jJ = j+1)

S1: alilljl = 1/b[il[j] * cl[il[il;
for (1 = 0; 1 < N; i = i+l)

for (j = 0; J < N; jJ = j+1)

S$2: d[i][3j] = alilljl + clill3l>;

/* After fusion */
for (1 = 0; 1i < N; 1 = i+l)
for (J = 0; J < N; j = j+1)
{S1: alil[j] = 1/b[il[j] * c[ill[j];
S2: d[i]l[j] = a[il[]j] + c[i]l[3]1’}

2 misses per access toa & c vs.
one miss per access; improve
spatial locality

£0)6/0/00)c

/* After array contraction */

-for (1 = 0; 1 < N; i=i+1)

for (J =0; jJ < N; j = j+1)
{ cv = c[i][]];
S1:a = 1/b[i][j] * cv;
S2:d[i][]j] = a + cv;}

The real payoff comes if
fusion enables Array
Contraction: values
transferred in scalar
instead of via array

Fusion is not always so simple

E Dependences might not align nicely
B Example: one-dimensional convolution filters

><><><><><><><

<><><>

for (1=1; 1<N; 1++)
V[i] = (U[i-1] + U[1+1])/2

for (i=1; i<N; i++)
WIi] = (V[i-1] + V[i+1])/2

“Stencil” loops are not directly fusable

Loop fusion — code expansion

E WWe make them fusable by shifting:

SRR R RRRT

X
é\

S8EEELEY

\
<&

V(1] = (U[0] + U[2])/2

for (1=2; 1<N; 1++) {
V[i] = (U[i-1] + U[1+1])/2
WI[i-1] = (V[i-2] + VJi])/2

}
WIN-1] = (V[N-2] + V[N])/2

B The middle loop is fusable
E We get lots of little edge bits

Loop fusion — code expansion

This transformation
is important in
image-processing

filters, finite
difference solvers,

E \We make them fusable by shifting: BElCEEITELE

A

B The middle loop is fusable
E We get lots of little edge bits

i

S

LR R RRT
¥

8B

\
<&

neural networks

V[1] = (U[0] + U[2])/2
for (1=2; 1<N; 1++) {
V[i%4] = (U[i-1] + U[1+1])/2
WIi-1] = (V[(i-2)%4] + V[i%4])/2
]
WIN-1] = (V[(N-2)%4] + V[N%4])/2
B Contraction is trickier
E We need the last two Vs
E We need 3 V locations
B Quicker to round up to four

Summary

We can reduce the miss rate at the software level
® By using prefetch instructions

@If they work better than predictive prefetch hardware
® By transforming storage layout

®#Might help with spatial locality

#Might help with associativity conflicts

@#Can’t help with temporal locality

® Storage layout optimisations are disruptive — they affect all the
code that might use that data

® Loop interchange, fusion, tiling
#Can get really messy to implement by hand

#Can lead to a large space of possible schedules — it can be
hard to know what will work best

@®Loop fusion can be very powerful but often breaks
abstraction boundaries

Further reading
Algorithms and locality: cache-oblivious algorithms:

® https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

Compilers that optimise for locality:

@® Michael E. Wolf and Monica S. Lam. 1991. A data locality optimizing algorithm.
PLDIO1.

® Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data
locality with loop transformations. ACM Trans. Program. Lang. Syst. 18, 4 (July
1996)

® Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. PLDIO8

Programming Abstractions for Data Locality
® https://sites.google.com/a/lbl.gov/padal-workshop/

Optimisations for convolutional neural networks

® Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang.
Optimizing CNN model inference on CPUs. USENIX ATC'19.

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://sites.google.com/a/lbl.gov/padal-workshop/
https://sites.google.com/a/lbl.gov/padal-workshop/
https://sites.google.com/a/lbl.gov/padal-workshop/

Student question: permute data or loops?

Hey! | was revising cache miss-rate reduction in software - what is the difference between the two marked
® For spatial locality, you want to match

sections below? Don't they essentially boil down to the same thing?

® Storage layout transformations

® Merging Arrays: improve spatial locality by sin
und eleme

® Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

® Improve spatial locality

®lteration space transformations

® Loop Interchange: changg nesting of loops to access data in
order stored in memory

® Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

@ Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows (wait for
Chapter 4)

the iteration schedule with the storage
layout. So you can achieve this either by
transposing the data to match the
schedule, or by modifying the schedule
to match the layout.

Changing the layout should be the easy
option - as it doesn't depend on any
dependences in the code. But it's
difficult because

® (1) (optimality): the same data
might be accessed by different
loops with different schedules, and

@ (2) (correctness) in uncivilised
languages like C/C++ it's possible
that the program accesses data in
a way that is sensitive to storage
layout - for example by treating a
2d array as a 1d vector. And

® (3) (correctness) with separate
compilation we need all the code
to agree on the layout.

Changing the schedule is harder - its
validity depends on the dependences in
the code. But when the compiler can
prove that the schedule transformation
is valid, you're fine - you avoid problems
(1), (2) and (3) above.

	Slide 1: Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 2: miss rate reduction using software
	Slide 2: There are three ways to improve AMAT:
	Slide 4: Reducing misses by software prefetching
	Slide 5: Reducing instruction-cache misses
	Slide 7
	Slide 8: Array Merging - example
	Slide 9: Consider matrix-matrix multiply (tutorial ex)
	Slide 10
	Slide 11: Permuting multidimensional arrays to improve spatial locality
	Slide 12: Permuting multidimensional arrays to improve spatial locality
	Slide 13: Loop Interchange: example
	Slide 14: Loop Fusion: example
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Summary
	Slide 19
	Slide 21: Student question: permute data or loops?

