
Advanced Computer Architecture Chapter 2.1

Advanced Computer Architecture

Chapter 4: Caches and Memory Systems
Part 3: Miss penalty reduction

November 2023

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th,

5th and 6th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Advanced Computer Architecture Chapter 2.2

There are three ways to improve AMAT:

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

We now look at each of these in turn…

Advanced Computer Architecture Chapter 2.3

Write policy:
Write-through vs write-back

Write-through: all writes update cache and underlying
memory/cache

Can always discard cached data - most up-to-date data is in memory

Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory

Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors – or just the next level of the cache)
always has latest data

Simpler management of cache

Write-back:

much lower bandwidth, since data often overwritten multiple times

Better tolerance to long-latency memory?

Advanced Computer Architecture Chapter 2.4

Write policy 2:
Write allocate vs non-allocate
(What happens on write-miss?)

Write allocate: allocate new cache line in cache

Usually means that you have to do a “read miss” to fill in
rest of the cache-line!

Alternative: per/word valid bits

Write non-allocate (or “write-around”):

Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

Which is right? It depends… maybe get programmer to
use a “non-temporal store” instruction

Advanced Computer Architecture Chapter 2.5

Reducing Miss Penalty:
Read Priority over Write on Miss

Consider write-through with write buffers

RAW conflicts with main memory reads on cache
misses

Could simply wait for write buffer to empty, before
allowing read

Risks serious increase in read miss penalty (old
MIPS 1000 by 50%)

Solution:

• Check write buffer contents before read;
if no conflicts, let the memory access
continue

If you use write-back, you also need a write
buffer buffer to hold displaced blocks

Read miss replacing dirty block

Normal: Write dirty block to memory, and then do the
read

Instead copy the dirty block to a write buffer, then do
the read, and then do the write

CPU stall less since restarts as soon as do read

CPU

in out

DRAM

(or lower mem)

write

buffer

Cache

Advanced Computer Architecture Chapter 2.6

Write buffer issues
Size: 2-8 entries are typically sufficient for caches

But an entry may store a whole cache line

Make sure the write buffer can handle the
typical store bursts…

Analyze your common programs, consider
bandwidth to lower level

Coalescing write buffers

Merge adjacent writes into single entry

Especially useful for write-through caches

Dependency checks

Comparators that check load address against
pending stores

If match there is a dependency so load must
stall

Optimization: load forwarding

If match and store has its data, forward data to
load…

Integrate with victim cache?

CPU

in out

DRAM

(or lower mem)

write

buffer

Cache

Advanced Computer Architecture Chapter 2.7

Reduce miss penalty:
early restart and critical word first

The processor can continue as soon as the requested word
arrives

Don’t wait for full block to be loaded before restarting CPU

Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block.

Generally useful only in large blocks,
(Access to contiguous sequential words is very common – perhaps a
simple scheme will work pretty well most of the time?)

Cache block

Requested word

Advanced Computer Architecture Chapter 2.8

Early restart and critical word first and sectored
cache lines

Some care is needed: what if processor issues another
load to another word in the cache line, before it arrives?

Cache block

Requested word

Cache block

0 0 1 0 Per-sector validity bit

Divide cache line into “sectors” – each with its own validity
bit (maybe “dirty” bits too)

We allocate in units of cache lines, but we deliver data in
units of sectors

We can fetch the sectors in any order, perhaps even
leaving them invalid until requested
Eg IBM Power9: 128B lines, 32B sectors (https://en.wikichip.org/wiki/ibm/microarchitectures/power9)

https://en.wikichip.org/wiki/ibm/microarchitectures/power9

Advanced Computer Architecture Chapter 2.9

Reduce miss penalty: non-blocking caches to
reduce stalls on misses

Non-blocking cache or lockup-free cache allows data cache to
continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution

requires multi-bank memories

“hit under miss” reduces the effective miss penalty by working
during miss instead of ignoring CPU requests

“hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses

Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses

Requires multiple memory banks (otherwise cannot support)

Eg IBM Power5 allows 8 outstanding cache line misses

Compare:

prefetching: overlap memory access with pre-miss instructions,

Non-blocking cache: overlap memory access with post-miss instructions

Eg for ARM-A15 see http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf (esp page 6-6)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf

Advanced Computer Architecture Chapter 2.10

What happens on a Cache miss?
For in-order pipeline, two options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall stall Ex Wr

Use Full/Empty bits in registers + MSHR queue

MSHR = “Miss Status/Handler Registers” (Kroft*)
Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

• Per cache-line: keep info about memory address.

• For each word: register (if any) that is waiting for result.

• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to “Empty”. Load
is “released” from pipeline.

Attempt to use register before result returns causes instruction to block in
decode stage.

Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality built in…
(load queues, etc). Cf also Power6 “load lookahead mode”

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81 http://portal.acm.org/citation.cfm?id=801868

Advanced Computer Architecture Chapter 2.11

Value of Hit Under
Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit-under-miss implies loads may be serviced out-of-order...

Need a memory “fence” or “barrier”(http://www.linuxjournal.com/article/8212)

PowerPC eieio (Enforce In-order Execution of Input/Output) Instruction

Hit Under i Misses

A
v

g
. M

em
. A

c
ce

ss
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

e
ss

o

xl
is

p

co
m

pr
es

s

m
d

ljs
p2 ea

r

fp
p

pp

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
a

ve
5

m
d

ljd
p

2

hy
dr

o
2d

al
vi

n
n

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1

1->2

2->64

Base

AMAT (in cycles)

Advanced Computer Architecture Chapter 2.12

Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +

Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number of memory
accesses to this cache (Miss rateL2)

Global miss rate—misses in this cache divided by the total number of memory
accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

Global Miss Rate is what matters

Advanced Computer Architecture Chapter 2.13

Multiple levels of cache - example

L1D: 32KB

L2: 256KB

L3: 45MB (2.5MB per core)

Example: Intel Haswell e5 2600 v3

18 cores, 145W TDP, 5.56B transistors

http://www.realworldtech.com/haswell-cpu/5/

L1: 32KB, 8-way associative I and D

L1D: writeback, two 256-bit loads and a 256-bit store

every cycle

L2: 256KB, 8-way writeback with ECC. Can provide a

full 64B line to the data or instruction cache every

cycle, 11 cycle minimum latency and 16 outstanding

misses.

L1I: 32KB

64B/cycle32B/cycle

32B/cycle

L3: Size varies from device to device. Shared by all

cores on chip. Connected by ring interconnect

(actually two connected rings)

DRAM

http://www.realworldtech.com/haswell-cpu/5/

Advanced Computer Architecture Chapter 2.14

Example: Intel Haswell e5 2600 v3

Q: do all LLC hits have same latency?

Q: do all LLC misses have same latency?

http://www.realworldtech.com/haswell-cpu/5/

Intel®Xeon® Processor E5-2600 v3 Product Family Die Configuration

Haswell builds upon Sandy Bridge’s scalable interconnect and shared cache

12

14-18 Core (HCC)

12

http://www.realworldtech.com/haswell-cpu/5/

Advanced Computer Architecture Chapter 2.15

Multilevel inclusion
Multi-level inclusion

L2 cache contains everything in L1

Ln+1 cache contains everything in Ln

We might allocate into L1 but not into L2

We might allocate into L2 but not into L1

We might allocate into L1 and L2 but not LLC

L3 (Last-level cache) is sometimes managed as a victim
cache – data is allocated into LLC when displaced from
L2 (eg AMD Barcelona, Apple A9)

Example: Intel’s Crystalwell processor has a 128MB
DRAM L4 cache on a separate chip in the same package
as the CPU, managed as a victim cache

Issues:

replacement of dirty lines?

Cache coherency - invalidation

With MLI, if line is not in L2, we don’t need to invalidate it in L1

Advanced Computer Architecture Chapter 2.16

Summary
We can reduce the miss penalty…..

By choosing write back instead of write-through

(because reducing traffic to the next level of the memory
system may mean you don’t stall later)

Using a write buffer

On a load, check in the write buffer in parallel with cache
access

By choosing between write-allocate and write-no-allocate wisely

Early restart and critical-word first

Avoid stalling on misses: non-blocking cache, hit-under-miss

Add a second cache

Add a third, fourth cache

Multi-level inclusion? Why does it matter?

Look in your neighbour’s cache

	Slide 1: Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 3: Miss penalty reduction
	Slide 2: There are three ways to improve AMAT:
	Slide 3: Write policy: Write-through vs write-back
	Slide 4: Write policy 2: Write allocate vs non-allocate (What happens on write-miss?)
	Slide 5: Reducing Miss Penalty: Read Priority over Write on Miss
	Slide 6: Write buffer issues
	Slide 7: Reduce miss penalty: early restart and critical word first
	Slide 8: Early restart and critical word first and sectored cache lines
	Slide 9: Reduce miss penalty: non-blocking caches to reduce stalls on misses
	Slide 10: What happens on a Cache miss?
	Slide 11: Value of Hit Under Miss for SPEC
	Slide 12: Add a second-level cache
	Slide 13: Multiple levels of cache - example
	Slide 14
	Slide 15: Multilevel inclusion
	Slide 16: Summary

