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These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th, 

5th and 6th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course
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There are three ways to improve AMAT:

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

We now look at each of these in turn…
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Write policy:
Write-through vs write-back

Write-through: all writes update cache and underlying 
memory/cache

Can always discard cached data - most up-to-date data is in memory

Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory

Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors – or just the next level of the cache) 
always has latest data

Simpler management of cache

Write-back:

much lower bandwidth, since data often overwritten multiple times

Better tolerance to long-latency memory?
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Write policy 2:
Write allocate vs non-allocate
(What happens on write-miss?)

Write allocate: allocate new cache line in cache

Usually means that you have to do a “read miss” to fill in 
rest of the cache-line!

Alternative: per/word valid bits

Write non-allocate (or “write-around”):

Simply send write data through to underlying 
memory/cache - don’t allocate new cache line!

Which is right?  It depends… maybe get programmer to 
use a “non-temporal store” instruction
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Reducing Miss Penalty: 
Read Priority over Write on Miss

Consider write-through with write buffers 

RAW conflicts with main memory reads on cache 
misses

Could simply wait for write buffer to empty, before 
allowing read

Risks serious increase in read miss penalty (old 
MIPS 1000 by 50% )

Solution:

• Check write buffer contents before read; 
if no conflicts, let the memory access 
continue

If you use write-back, you also need a write 
buffer buffer to hold displaced blocks

Read miss replacing dirty block

Normal: Write dirty block to memory, and then do the 
read

Instead copy the dirty block to a write buffer, then do 
the read, and then do the write

CPU stall less since restarts as soon as do read
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Write buffer issues
Size: 2-8 entries are typically sufficient for caches

But an entry may store a whole cache line

Make sure the write buffer can handle the 
typical store bursts…

Analyze your common programs, consider 
bandwidth to lower level

Coalescing write buffers

Merge adjacent writes into single entry

Especially useful for write-through caches

Dependency checks

Comparators that check load address against 
pending stores

If match there is a dependency so load must 
stall

Optimization: load forwarding

If match and store has its data, forward data to 
load…

Integrate with victim cache?
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Reduce miss penalty: 
early restart and critical word first

The processor can continue as soon as the requested word 
arrives

Don’t wait for full block to be loaded before restarting CPU

Early restart—As soon as the requested word of the block arrives, 
send it to the CPU and let the CPU continue execution

Critical Word First—Request the missed word first from memory 
and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. 

Generally useful only in large blocks, 
(Access to contiguous sequential words is very common – perhaps a 
simple scheme will work pretty well most of the time?)

Cache block

Requested word
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Early restart and critical word first and sectored 
cache lines

Some care is needed: what if processor issues another 
load to another word in the cache line, before it arrives?

Cache block

Requested word

Cache block

0 0 1 0 Per-sector validity bit

Divide cache line into “sectors” – each with its own validity 
bit (maybe “dirty” bits too)

We allocate in units of cache lines, but we deliver data in 
units of sectors

We can fetch the sectors in any order, perhaps even 
leaving them invalid until requested
Eg IBM Power9: 128B lines, 32B sectors (https://en.wikichip.org/wiki/ibm/microarchitectures/power9) 

https://en.wikichip.org/wiki/ibm/microarchitectures/power9
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Reduce miss penalty: non-blocking caches to 
reduce stalls on misses

Non-blocking cache or lockup-free cache allows data cache to 
continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution

requires multi-bank memories

“hit under miss” reduces the effective miss penalty by working 
during miss instead of ignoring CPU requests

“hit under multiple miss” or “miss under miss” may further lower 
the effective miss penalty by overlapping multiple misses

Significantly increases the complexity of the cache controller as there can be 
multiple outstanding memory accesses

Requires multiple memory banks (otherwise cannot support)

Eg IBM Power5 allows 8 outstanding cache line misses

Compare:

prefetching: overlap memory access with pre-miss instructions, 

Non-blocking cache: overlap memory access with post-miss instructions

Eg for ARM-A15 see http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf (esp page 6-6)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
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What happens on a Cache miss?
For in-order pipeline, two options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF  ID  EX  Mem stall stall stall … stall Mem   Wr
IF  ID    EX    stall stall stall … stall stall    Ex Wr

Use Full/Empty bits in registers + MSHR queue

MSHR = “Miss Status/Handler Registers” (Kroft*)
Each entry in this queue keeps track of status of outstanding memory 
requests to one complete memory line.

• Per cache-line: keep info about memory address.

• For each word: register (if any) that is waiting for result.

• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to “Empty”.  Load 
is “released” from pipeline.

Attempt to use register before result returns causes instruction to block in 
decode stage.

Limited “out-of-order” execution with respect to loads. 
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality built in… 
(load queues, etc).  Cf also Power6 “load lookahead mode”

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81 http://portal.acm.org/citation.cfm?id=801868
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Value of Hit Under 
Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit-under-miss implies loads may be serviced out-of-order...

Need a memory “fence” or “barrier”(http://www.linuxjournal.com/article/8212)

PowerPC eieio (Enforce In-order Execution of Input/Output) Instruction
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Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +

Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number of memory 
accesses to this cache (Miss rateL2)

Global miss rate—misses in this cache divided by the total number of memory 
accesses generated by the CPU
(Miss RateL1 x Miss RateL2) 

Global Miss Rate is what matters
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Multiple levels of cache - example

L1D: 32KB

L2: 256KB

L3: 45MB (2.5MB per core)

Example: Intel Haswell e5 2600 v3

18 cores, 145W TDP, 5.56B transistors

http://www.realworldtech.com/haswell-cpu/5/

L1: 32KB, 8-way associative I and D

L1D: writeback, two 256-bit loads and a 256-bit store 

every cycle

L2: 256KB, 8-way writeback with ECC.  Can provide a 

full 64B line to the data or instruction cache every 

cycle, 11 cycle minimum latency and 16 outstanding 

misses.

L1I: 32KB

64B/cycle32B/cycle

32B/cycle

L3: Size varies from device to device.  Shared by all 

cores on chip.  Connected by ring interconnect 

(actually two connected rings)

DRAM

http://www.realworldtech.com/haswell-cpu/5/
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Example: Intel Haswell e5 2600 v3

Q: do all LLC hits have same latency?

Q: do all LLC misses have same latency?

http://www.realworldtech.com/haswell-cpu/5/

Intel®Xeon® Processor E5-2600 v3 Product Family Die Configuration

Haswell builds upon Sandy Bridge’s scalable interconnect and shared cache

12

14-18 Core (HCC)

12

http://www.realworldtech.com/haswell-cpu/5/
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Multilevel inclusion
Multi-level inclusion

L2 cache contains everything in L1

Ln+1 cache contains everything in Ln

We might allocate into L1 but not into L2

We might allocate into L2 but not into L1

We might allocate into L1 and L2 but not LLC

L3 (Last-level cache) is sometimes managed as a victim 
cache – data is allocated into LLC when displaced from 
L2 (eg AMD Barcelona, Apple A9)

Example: Intel’s Crystalwell processor has a 128MB 
DRAM L4 cache on a separate chip in the same package 
as the CPU, managed as a victim cache

Issues: 

replacement of dirty lines?

Cache coherency - invalidation

With MLI, if line is not in L2, we don’t need to invalidate it in L1
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Summary
We can reduce the miss penalty…..

By choosing write back instead of write-through

(because reducing traffic to the next level of the memory 
system may mean you don’t stall later)

Using a write buffer

On a load, check in the write buffer in parallel with cache 
access

By choosing between write-allocate and write-no-allocate wisely

Early restart and critical-word first

Avoid stalling on misses: non-blocking cache, hit-under-miss

Add a second cache

Add a third, fourth cache

Multi-level inclusion?  Why does it matter?

Look in your neighbour’s cache
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