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These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th, 

5th and 6th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course
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There are three ways to improve AMAT:

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

We now look at each of these in turn…
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Fast Hits by pipelining Cache
Case Study: MIPS R4000 

8 Stage Pipeline:
IF–first half of fetching of instruction; PC selection happens here as well 
as initiation of instruction cache access.

IS–second half of access to instruction cache. 

RF–instruction decode and register fetch, hazard checking and also 
instruction cache hit detection.

EX–execution, which includes effective address calculation, ALU 
operation, and branch target computation and condition evaluation.

DF–data fetch, first half of access to data cache.

DS–second half of access to data cache.

TC–tag check, determine whether the data cache access hit.

WB–write back for loads and register-register operations.

What is impact on Load delay? 
Need 2 instructions between a load and its use!
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Case Study: MIPS R4000
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• Cache is pipelined: 1 cache access per cycle, but 

with a 2-cycle access latency
(Q: does this reduce AMAT?)



R4000 Performance
Not ideal CPI of 1:

Load stalls (1 or 2 clock cycles)

Branch stalls (2 cycles + unfilled slots)

FP result stalls: RAW data hazard (latency)

FP structural stalls: Not enough FP hardware (parallelism)

R4000 was an in-
order processor – 
this shows the 
potential 
importance of 
dynamically-
scheduled “out-of-
order” 
microarchitectures

MIPS next 
architecture was 
the o-o-o R10000
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Cache bandwidth
What if we want to support multiple parallel accesses to 
the cache?

Divide the cache into several banks

Map addresses to banks in some way (low-order 
bits?  Hash function?)

Other options are possible…

Duplicate the cache!

Multi-ported RAM: support two reads, to different 
addresses, every cycle

• RAM array has two wordlines per row, and two 
bitlines per column

• (See for example Single-Ended 8T SRAM cell with high SNM 
and low power/energy consumption Mohagheghi et al (2023)
https://www.tandfonline.com/doi/full/10.1080/00207217.2022.21
18848#d1e440 Fig 4) 

H&P 6th ed 

pages 99-

100
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Virtual memory, and address translation

Simple processors access memory directly

Addresses generated by the processor are used 
directly to access memory

What if you want to 

Run some code in an isolated environment

So that if it fails it won’t crash the whole system

So that if it’s malicious it won’t have total access

Run more than one application at a time

So they can’t interfere with each other

So they don’t need to know about each other

Use more memory than DRAM

An effective solution to this is to virtualise the 
addressing of memory

By adding address translation

H&P 6th ed 

page B-

36ff
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Virtually-indexed, physically-

tagged (VIPT)

Overlap $ access with VA 

translation:

requires $ index to remain 

invariant

across translation

Fast hits by removing address translation from critical path
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Paging
Virtual address space is divided into pages of equal size.

Main Memory is divided into page frames the same size.

Swapping 

Disc 

Virtual 

Memory 

Active 

Pages

• Running or ready  process

– some pages in main memory

• Waiting process

– all pages can be on disk

• Paging is transparent to programmer

Paging Mechanism

(1) Address Mapping

(2) Page Transfer

Real 

Memory 

Inactive 

Pages

(Review introductory operating systems material 

for students lacking CS background)
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P W

Process Page 

Table 

Program Address
Main memory

Page P

B

B+W

P= Page No.

W=Word No.

B= Page  Frame Addr.

Paging - Address Mapping 

Pointer to 

current Page 

Table 

Example:  Word addressed machine, W = 8 bits, page size = 4096

  Amap(P,W) := PPT[P] * 4096 +  W

Note:  The Process Page Table (PPT) itself can be paged

(Review introductory operating systems material 

for students lacking CS background)

Processor
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P= Page No.

W=Word No.

B= Page  Frame Addr.

P W

PPT - 

Process 

Page Table 

Program Address

Page P

B

B+W

Paging - Address Mapping 

Pointer to 

current Page 

Table 

B

TLB – cache 

of PPT 

If page is absent in 

TLB, look in PPT 

Main memoryProcessor

TLB (Translation 
Lookaside Buffer) is 
small cache containing 
recently-accessed page 
table values

Eg 64-entry fully-
associative

Closely integrated with 
L1 cache
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What address translation is for

Two different processes sharing the same physical memory

Both processes have a virtual address starting at zero
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What address translation is for

Virtual address space may be larger than physical address space

Some pages may be absent – OS (re-)allocates when fault occurs

Virtual address space may be very large
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What address translation is for

Two different processes sharing the same code (read only)
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What address translation is for

When virtual pages are initially allocated, they all share the 
same physical page, initialised to zero

When a write occurs, a page fault results in a fresh writable 
page being allocated (“Copy-on-Write”)
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What address translation is for

Two different processes sharing the same memory-mapped 
file (with both having read and write access permissions)
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Synonyms and homonyms in address translation

Homonyms (same sound different meaning)
same virtual address points to two different 
physical addresses in different processes

If you have a virtually-indexed cache, flush it 
between context switches - or include a process 
identifier (PID) in the cache tag

Synonyms (different sound same meaning)
different virtual addresses (from the same or 
different processes) point to the same physical 
address

in a virtually-indexed cache

a physical address could be cached twice under 
different virtual addresses

updates to one cached copy would not be 
reflected in the other cached copy

solution: make sure synonyms can’t co-exist in 
the cache, e.g., OS can force synonyms to have 
the same index bits in a direct mapped cache 
(sometimes called page colouring)

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)

Maybe also see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/BEIBFJEA.html 

http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/BEIBFJEA.html


If the cache index consists only of 
physical (untranslated) bits of the 
address, 

We can start tag access in 
parallel with translation 

so we can compare to physical 
tag

CPU

TLB

MEM

Virtual address

L2 $

Page number | Page offset

23

Fast cache hits by avoiding translation: 

Index with physical (untranslated) portion of address

Physical 

tags
data

L1 cache

Compare Tag with translated page number

if hit

if miss

L2$ indexed 

with physical 

(translated) 

address



If the cache index consists only of 
physical (untranslated) bits of the 
address, 

We can start tag access in 
parallel with translation 

so we can compare to physical 
tag

Limits cache to page size: what if 
we want bigger caches and still 
use same trick?

CPU

TLB

MEM

Virtual address

L2 $

Page number | Page offset
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Fast cache hits by avoiding translation: 

Index with physical (untranslated) portion of address
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If the cache index consists only of 
physical (untranslated) bits of the 
address, 

We can start tag access in parallel 
with translation 

so we can compare to physical tag

Limits cache to page size: what if want 
bigger caches and still use same trick?

Option 1: Higher associativity 

This is an attractive and common 
choice

Consequence: L1 caches are often 
highly associative

CPU

TLB Way

MEM

VA

PA

Tags

PA

L2 $

Page number | Page offset

Way
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Fast cache hits by avoiding translation: 

Index with physical (untranslated) portion of address

cache

Same 

untranslated 

index bits



If the cache index consists only of 
physical (untranslated) bits of the 
address, 

We can start tag access in parallel 
with translation 

so we can compare to physical tag

Limits cache to page size: what if want 
bigger caches and still use same trick?

Option 1: Higher associativity 

This is an attractive and common 
choice

Consequence: L1 caches are often 
highly associative
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MEM
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Tags

PA

L2 $

Page number | Page offset

Way
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Fast cache hits by avoiding translation: 

Index with physical (untranslated) portion of address

cache

Same 

untranslated 

index bits

Example: Apple M1 has a 128KB L1 data cache
The page size is 16KB
It is 8-way set associative
128/8=16 so only the untranslated address bits are used to index the cache



If the cache index consists only of 
physical (untranslated) bits of the 
address, 

We can start tag access in parallel 
with translation 

so we can compare to physical tag

Limits cache to page size: what if want 
bigger caches and still use same trick?

Option 1: Higher associativity 

Option 2: Page coloring

Get the operating system to help – 
see next slide

A cache conflict occurs if two 
cache blocks that have the same 
tag (physical address) are mapped 
to two different virtual addresses 

Make sure OS never creates a page 
table mapping with this property

CPU

TLB Cache

MEM

VA

PA

Tags

PA

L2 $

Page number | Page offset
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Fast cache hits by avoiding translation: 

Index with physical (untranslated) portion of address



What if you insist on using some translated bits 
as index bits?

Page colouring for synonym 
consistency:

“A cache synonym conflict occurs if two 
cache blocks that have the same tag 
(physical address) are mapped to two 
different virtual addresses”

So if the OS needs to create two virtual 
memory regions, A and B within the 
same process, mapping the same 
physical address region

So A[0] and B[0] have different 
VAs

But after translation refer to the 
same location

We need to ensure that the 
virtual addresses that we assign 
to A[0] and B[0] match in bits 
12&13

So the map to the same location 
in the cache

So they have only one value!

CPU

TLB Cache

32-bit VA

PA

Tags

PA

20-bit Page number | 12-bit Page offset

16KB

14-bit virtual index

14-bit cache index

18-bit tag comparison

datatag

Bits 12 

and 13 are 

used as 

index, 

despite 

being 

translated
Not recommended…

Corrected slide
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The Linux mmap system call for creating a memory region 

shared between two processes chooses the address of the 

region in order to allow the OS to do this if necessary



What if you insist on using some translated bits 
as index bits?

Page colouring for synonym 
consistency:

“A cache synonym conflict occurs if two 
cache blocks that have the same tag 
(physical address) are mapped to two 
different virtual addresses”

So if the OS needs to create two virtual 
memory regions, A and B within the 
same process, mapping the same 
physical address region

So A[0] and B[0] have different 
VAs

But after translation refer to the 
same location

We need to ensure that the 
virtual addresses that we assign 
to A[0] and B[0] match in bits 
12&13

So the map to the same location 
in the cache

So they have only one value!

CPU
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32-bit VA
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Tags

PA

20-bit Page number | 12-bit Page offset

16KB

14-bit virtual index

14-bit cache index

18-bit tag comparison

datatag

Bits 12 

and 13 are 

used as 

index, 

despite 

being 

translated
Not recommended…

Corrected slide
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The Linux mmap system call for creating a memory region 

shared between two processes chooses the address of the 

region in order to allow the OS to do this if necessary

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7



Associativity conflicts depend on address 
translation

The L2 cache is indexed 
with translated address

So the L2 associativity 
conflicts depend on the 
virtual-to-physical mapping

It would be helpful if the OS 
could choose non-
conflicting pages for 
frequently-accessed data! 
(page colouring for 
conflict avoidance)

Or at least, make sure 
adjacent pages don’t map 
to the same L2 index

CPU

TLB Cache

VA Page number | Page offset

Tag check

L2 Cache

PA

PA used to 

index direct-

mapped L2 tag data

data
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• Running the same program again on the same data 

may result in different associativity conflicts

• Because you may get a different virtual-to-physical 

mapping



TLBs in Haswell

L1D: 32KB

L2: 256KB

L3: 45MB (2.5MB per core)

Example: Intel Haswell e5 2600 v3

L1: 32KB, 8-way associative I and D

L1D: writeback, two 256-bit loads and a 256-bit 

store every cycle

So each L1 way is 32/8=4KB 

Virtually indexed, Physically Tagged (VIPT)

L2 and L3 are physically indexed

TLBs support three different page sizes – 4KB, 

2MB, 1GB

L1I: 32KB

64B/cycle32B/cycle

L1DTLB

L1I TLB

L2 TLB
1024 entries 8-way 

64x4KB, 

32x2MB, 

4x1GB

32B/cycle
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L1 ITLB:128 mappings for 4KB pages – 4-way set associative

  and 8 2MB-page mappings

L1 DTLB: 64 mappings for 4KB pages – 4-way set associative 

 (fixed partition between two threads)

  and 8 2MB-page mapping

  and 4 mappings for 1GB pages



Summary
We can reduce the hit time…..

Using a really small cache (and a larger next-level cache)

With a pipelined cache (really only improves bandwidth)

With a multi-bank cache (only increases bandwidth)

By using a direct-mapped cache

By passing data forward while checking tags in parallel

Using way prediction (not covered in slides)

By taking address translation off the critical path

Access the TLB in parallel with the L1 cache

Do not use translated bits as index bits if you can help it!

The TLB is a cache of the address translation

Consider a two (multi?)-level TLB

Pay attention to TLB miss penalty (beyond this lecture)
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Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + –  0
Higher Associativity +  – 1
Victim Caches +   2
Pseudo-Associative Caches +   2
HW Prefetching of Instr/Data +   2
Compiler Controlled Prefetching +   3
Compiler Reduce Misses +   0

Priority to Read Misses  +  1
Early Restart & Critical Word 1st  +  2
Non-Blocking Caches  +  3
Second Level  Caches  +  2
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Edstem questions
35



Q: “Hi, I don't understand why page colouring only requires bits 12 and 13 of A[0] and B[0] being 
the same? Isn't A[0] and B[0] mapping to the same physical address still having different virtual 
addresses? I.e. there is still a synonym conflict?”

A: The objective is to ensure that when A[0] is allocated into the cache, and then later B[0] is loaded, 
the two words map to the same cache line in the cache.  If they didn't (which would happen if bits 
12 and 13 were different) then we would have a consistency problem.  A store to A[0] would update 
one cached copy of the line, but a load from B[0] would load the original, unchanged data.
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Page Colouring on ARMv6 (and a bit on ARMv7) - Architectures and Processors 

blog - Arm Community blogs - Arm Community  https://community.arm.com/arm-

community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-

armv6-and-a-bit-on-armv7

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7


Student question: way prediction
38

Yes this is exactly right:

•VIPT makes you really really want high 
associativity in the L1 data cache (actually 
also the instruction cache)

•The tag check is likely done a cycle after 
the cache provides the data (because only 
then do we have the tag, and also only 
then do we have the translated (physical) 
address against which to compare the 
tag.

•With a direct-mapped cache we could 
still forward the data, before the tag 
check is done, and squash if the tag check 
fails (in which case we have a cache miss).

•With an associative cache, you don't 
know which way's data to forward 

So a popular solution to this is way 
prediction: we have a small fast predictor 
that guesses which is going to be the right 
way, so we can forward it right away.

See Hennessy and Patterson 6th edition 
section 2.2 pp81.
Sarangi's book provides a bit more detail, 
see section 7.4.4 pp307 
(https://www.cse.iitd.ac.in/~srsarangi/adv
book/chapters/caches.pdf )

https://www.cse.iitd.ac.in/~srsarangi/advbook/chapters/caches.pdf
https://www.cse.iitd.ac.in/~srsarangi/advbook/chapters/caches.pdf


Student question: page-
table walk

39

This question is about the Qualcomm Snapdragon X Elite 

(Oryon) architecture which was the subject of the 2024 

exam.



Student question: multiple page sizes

40
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