Advanced Computer Architecture

Department of Computing, Imperial College London

Chapter 4: Caches and Memory Systems

Part 4: hit time reduction — and address translation

November 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3, 4th.
5t and 6" eds), and on the lecture slides of David Patterson and John

Kubiatowicz’s Berkeley course

Average memory access time:

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT:

1. Reduce the miss rate,

—Reduce them denaity, C
3. Reduce the time to hit in the cache

We now look at each of these in turn...

Fast Hits by pipelining Cache
Case Study: MIPS R4000

® 8 Stage Pipeline:

@ IFfirst half of fetching of instruction; PC selection happens here as well
as initiation of instruction cache access.

& IS—second half of access to instruction cache.

@ RF-instruction decode and register fetch, hazard checking and also
instruction cache hit detection.

@& EX—-execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.

& DF—data fetch, first half of access to data cache.

@ DS-second half of access to data cache.

@ TC-tag check, determine whether the data cache access hit.
@& WB-write back for loads and register-register operations.

® What is impact on Load delay?

@ Need 2 instructions between a load and its use!

Case Study: MIPS R4000

TWO Cycle IF IS RF EX DF TC WB
Load-use Latency IF IS RF EX DF DS TC
between load IF IS RF EX DF DS
instruction and IF IS RF |[EX DF
arithmetic instruction IF IS RF EX
IF IS RF
IF IS
|F
THREE Cycle F IS RF [ExX] DF DS TC WwB
Branch Latency |F IS RF EX DF DS TC
(conditions evaluated IF IS \ RF EX DF DS
during EX phase) IF A\ IS RF EX DF

|F 1S RF EX
IF 1S RF

IF 1S

IF

« Cache is pipelined: 1 cache access per cycle, but
with a 2-cycle access latency
(Q: does this reduce AMAT?)

Delayed branch doesn’t help
much: delay slot plus two stalls

R4000 Performance

® Not ideal CPI of 1:

@® Load stalls (1 or 2 clock cycles) R4000 was an in-
® Branch stalls (2 cycles + unfilled slots) order processor —
e : RAW data hazard (latency) this shows the
z.I;P__structural stalls: Not enough FP hardware (parallelism) potential
4 1 [] importance of
3.5 1 dynamically-
37 scheduled “out-of-
2.5 1 ”
> | order
1.5 1 microarchitectures
1 4
0.5 1 MIPS next
O i

architecture was
the 0-0-0 R10000

ora

+
2
[e]
s}
C
o
()

espresso
doduc
nasa’7
spice2g6
su2cor
tomcatv

M Base B Load stalls M Branch stalls L] FP result stalls M FP structural
stalls

Cache bandwidth

® What if we want to support multiple parallel accesses to
H&P 6t ed

the cache?
& Divide the cache into several banks pages 99-

100
@ Map addresses to banks in some way (low-order
bits? Hash function?)

@ Other options are possible...
¢ Duplicate the cache!

® Multi-ported RAM: support two reads, to different
addresses, every cycle

« RAM array has two wordlines per row, and two
bitlines per column

* (See for example Single-Ended 8T SRAM cell with high SNM
and low power/energy consumption Mohagheghi et al (2023)
https://www.tandfonline.com/doi/full/10.1080/00207217.2022.21
18848#d1e440 Fig 4)

https://www.tandfonline.com/doi/full/10.1080/00207217.2022.2118848#d1e440
https://www.tandfonline.com/doi/full/10.1080/00207217.2022.2118848#d1e440

Virtual memory, and address translation

® Simple processors access memory directly s 6;‘ ed
page B-
@ Addresses generated by the processor are used KU

directly to access memory
® What if you want to

& Run some code in an isolated environment
@ So that if it fails it won’t crash the whole system
@ So that if it’s malicious it won’t have total access

& Run more than one application at a time
@ So they can’t interfere with each other
@ So they don’t need to know about each other

@& Use more memory than DRAM

® An effective solution to this is to virtualise the
addressing of memory

® By adding address translation

Fast hits by removing address translation from critical path

CPU CPU CPU
l VA VA l VA VA 1 Y Translation
) PA
T lat
ranslation| TB Tags $ Tags $ B
PA VA l | Pa
_ —i 2%
$ Translation B = 1 -
l PA l PA MEM
(;\lfext level MEM MEM _ _ _
memory Virtually-indexed, physically-
hierarchy

tagged (VIPT)
Virtually-indexed, virtually tagged Overlap $ access with VA

Physically-indexed, (VIVT): Translate only on miss translation:
Physically-tagged (PIPT) Synonym/homonym problems requires $ index to remain
invariant

across translation

« CPU issues Virtual Addresses (VAs)
« TB translates Virtual Addresses to Physical Addresses (PAs)

Paging

Virtual address space is divided into pages of equal size.
Main Memory is divided into page frames the same size.

Virtual Real * Running or ready process
Memory Memory — some pages in main memory
* Waiting process
— all pages can be on disk

Active ..
e P t t to programmer
Pages aging Is transparent to prog
Paging Mechanism
Inactive
Pages (1) Address Mapping
(2) Page Transfer
Swapping

Disc

- Address Mapping

Processor Program Address

Main memory

RARS

[

Pointer to
current Page

Table

P= Page No.
W=Word No.
B= Page Frame Addr.

Process Page
Table

Page P

¢B+W

Example: Word addressed machine, W = 8 bits, page size = 4096

Amap(P,W) := PPT[P] * 4096 + W

Note: The Process Page Table (PPT) itself can be paged

- Address Mapping

Main memory

Processor
Program Address
Pl W
TLB — cache
of PPT
B
P= Page No. N
W=Word No. A

[

Pointer to
current Page

Table

B= Page Frame Addr.

/s

If page is absent in
TLB, look in PPT

PPT -
Process
Page Table

Page P

¢B+W

® TLB (Translation
Lookaside Buffer) is
small cache containing
recently-accessed page
table values

® Eg 64-entry fully-
associative

® Closely integrated with
L1 cache

What address translation is for

M-11 process #1’s Page .. ———)| Frame ..

U Page .. Frame ..
address

space Page 1 Frame ..

0 Page 0 > Frame ..

Frame ..

N1 process #2's | Page .. | Frame 4

virtual

address Iz:z: Q Frame 3

space Frame 2

Pagel — Frame 1

0 Page 0 — Frame 0

® Two different processes sharing the same physical memory
® Both processes have a virtual address starting at zero

What address translation is for

M-1
Process #1’s | Page .. ———’| Frame ..
virtual Page.. ——>
address Page .. Frame ..
space
Page .. > Frame ..
Page.. —
rage .. > Frame 4
Page.. ——
Page .. — Frame 2
Page1 — Frame 1
Page0 — Frame 0
0

@ Virtual address space may be larger than physical address space

® Some pages may be absent — OS (re-)allocates when fault occurs
® Virtual address space may be very large

What address translation is for

Process #1's | Page ..
virtual Page
address - Frame ..
space aodet Frame
Page 0 —
Frame ..
Process #1’s | Page 1 Frame
code =
Page 0 Frame ..
Process #2’s | Page .. Frame ..
virtual Page . Frame
address Page —
space ge .. Frame 4
Page 1 Frame 3
Feiel Frame 2
Process #1’s | Page 1 Frame 1
code Page 0 Frame 0

® Two different processes sharing the same code (read only)

What address translation is for

M-1

Process #1’s | Page .. Frame ..
virtual

address Page .. 7 Frame ..

space Page 1 / Frame ..

0 Page 0 > Frame ..

/ Frame ..

N1 process #2's | Page .. | Frame 4

virtual Page .. —— 1 Frame 3
address Page .. ——

space Frame 2

Page 1 —— ./ Frame 1

0 Page 0 ™ Frame 0

® When virtual pages are initially allocated, they all share the
same physical page, initialised to zero

® When a write occurs, a page fault results in a fresh writable
page being allocated (“Copy-on-Write™)

Process #1’s | Page
virtual [poes What address translation is for
address =S
space Page 1 Frame ..
Page 0 Frame ..
Process #1’s | page 22 Frame ..
view of Frame ..
Page 21
memory- Frame ..
mapped file | Page 20 -
rame ..
Process #2’s | Page .. Frame ..
virtual Page .. Frame
address P -
space age .. Frame 4
Page 1 Frame 3
Page 0 Frame 2
Process #1’s | page 12 Frame 1
view of Frame 0
memory- Page 11
mapped file | Page 10

® Two different processes sharing the same memory-mapped
file (with both having read and write access permissions)

Synonyms and homonyms in address translation

. . M-1lprocess #1's Page .. Frame ..
® Homonyms (same sound different meaning) virtual ["page . Fremen
address
@ same virtual address points to two different space | Page1 HOTCE
. . . 0 Page 0 Frame ..
physical addresses in different processes —
. . . N-1 ;
@ If you have a virtually-indexed cache, flush it Process #2's | Page . Frame 4
. . virtual Page.. — | F 3
between context switches - or include a process address [| Frame
identifier (PID) in the cache tag SPAC® I Paget | i::::i
. . Page 0
@® Synonyms (different sound same meaning) T Frameo
@ different virtual addresses (from the same or Process #1's | Page .
different processes) point to the same physical vitual - ["page .
add ress space Page 1 Frame..
. . . P 0
@ in a virtually-indexed cache == rame -
] i Process #1's [page 22 S o
® a physical address could be cached twice under | viewof g 5, Frame ..
different virtual addresses mapped file | Page 20 Frame ..
Frame
® updates to one cached copy would not be Process #2's | Page .. Frame .
reflected in the other cached copy addrens :3: : Frame ..
.) .y - F 4
#® solution: make sure synonyms can’t co-exist in P [Page e
the cache, e.g., OS can force synonyms to have Bl Frame 2
the same index bits in a direct mapped cache Process #1's | page 12 Frame 1
(sometimes called page colouring) emory. | Page 11 Frame 0
mapped file | Page 10

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/eced447/handouts/L22.pdf)
Maybe also see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/BEIBFJEA.html

http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/BEIBFJEA.html

Fast cache hits by avoiding translation:

Index with physical (untranslated) portion of address

® If the cache index consists only of

physical (untranslated) bits of the
address,

& We can start tag access in
parallel with translation

& so we can compare to physical
tag

CPU

Virtual address[Page number‘|rPage offset |

TLB

Physical
tags

data

L1 cache

if ity

Compare Tag with franslated page number

if miss
L2% indexed
with physical
(translated)
address

w_l L2 $Hr

33

MEM

24

Fast cache hits by avoiding translation:
Index with physical (untranslated) portion of address

® If the cache index consists only of
physical (untranslated) bits of the
address,

& We can start tag access in
parallel with translation

& so we can compare to physical

CPU

Virtual address[Page number‘|rPage offset |

tag
® Limits cache to page size: what if TLB Phtggal data
we want bigger caches and still {1 cache
use same trick? if hit4 | |
Compare Tag with franslated page number
if miss
L2$ indexed ——— -
with physical ———L2$+
(translated) 1
address

MEM

25

Fast cache hits by avoiding translation:
Index with physical (untranslated) portion of address

® If the cache index consists only of
physical (untranslated) bits of the
address,

@& We can start tag access in parallel
Same

i nslation y
Wlth tra S at ° . VA |__Page number | Page offset | untranslated
& so we can compare to physical tag Nex bits

CPU

® Limits cache to page size: what if want PA
bigger caches and still use same trick? Tags TLB Way Way
PA l cache
& Option 1: Higher associativity —i 12§
e This is an attractive and common - 1
choice
® Consequence: L1 caches are often MEM

highly associative

26

Fast cache hits by avoiding translation:
Index with physical (untranslated) portion of address

® If the cache index consists only of
physical (untranslated) bits of the
address,

@& We can start tag access in parallel
Same

with translation y
. VA Page number | Page offset | untranslated
@ so we can compare to physical tag Nex bits

CPU

® Limits cache to page size: what if want PA
bigger caches and still use same trick? Tags TLB Way Way
PA l cache
@ Option 1: Higher associativity —i 12§
e This is an attractive and common B 1
choice
® Consequence: L1 caches are often MEM

highly associative

Example: Apple M1 has a 128KB L1 data cache
The page size is 16KB

It is 8-way set associative
128/8=16 so only the untranslated address bits are used to index the cache

Fast cache hits by avoiding translation:

Index with physical (untranslated) portion of address

® If the cache index consists only of
physical (untranslated) bits of the
address,

@& We can start tag access in parallel
with translation

& so we can compare to physical tag

® Limits cache to page size: what if want
bigger caches and still use same trick?

@ Option 1: Higher associativity
@ Option 2: Page coloring

® Get the operating system to help -
see next slide

@ A cache conflict occurs if two
cache blocks that have the same
tag (physical address) are mapped
to two different virtual addresses

® Make sure OS never creates a page
table mapping with this property

CPU

VA [Page number | Page offset_]

PA
Tags

v

1

TLB

Cache

PAl

- :$

12
1

|

MEM

27

What if you insist on using some translated bits °

as index bits?

Page colouring for synonym
consistency:

“A cache synonym conflict occurs if two
cache blocks that have the same tag
(physical address) are mapped to two
different virtual addresses”

So if the OS needs to create two virtual
memory regions, A and B within the
same process, mapping the same
physical address region

® So A[0] and B[0] have different
VAs

® But after translation refer to the
same location

® We need to ensure that the
virtual addresses that we assign
to A[0] and B[0] match in bits
12&13

® So the map to the same location
in the cache

® So they have only one value!

CPU

32-bit VA | 20-bit Page number | 12-bit Page offset

J Nbit cache index

PA TLB Cacﬁa\ 16KB

Tags \
PA tag lda\
18-bit tag comparison

Bits 12
and 13 are
used as
index,
despite

Not recommended... being
translated

The Linux mmap system call for creating a memory region
shared between two processes chooses the address of the
region in order to allow the OS to do this if necessary

9

What if you insist on using some translated bits

as index bits?

® Page colouring for synonym

CPU

\ 4

consistency: 32-bit VA

20-bit Page number | 12-bit Page offset

@ “A cache synonym conflict occurs if two
cache blocks that have the same tag
(physical address) are mapped to two
different virtual addresses”

® So if the OS needs to create two virtual PA
memory regions, A and B within the Tags
same process, mapping the same
physical address region

TLB CaC}s\ 16KB

PA tag ldat

A 4 \ 4

® So A[0] and B[0] have different

18-bit tag comparison

VAs Bits 12
® But after translation refer to the andd13 are
same location iunsdeexas
® \We need to ensure that the 3 .
. : espite
virtual addresses that we assign bei
to A[0] and B[0] match in bits Not recommended... eing
translated

12&13

0

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7

® So the map to the same Tocation

in the cache The Linux mmap system call for creating a memory region
| shared between two processes chooses the address of the
® So they have only one value! region in order to allow the OS to do this if necessary

Associativity conflicts depend on address

translation

® The L2 cache is indexed
with translated address

® So the L2 associativity
conflicts depend on the
virtual-to-physical mapping

® It would be helpful if the OS
could choose non-
conflicting pages for
frequently-accessed datal
(page colouring for
conflict avoidance)

@® Or at least, make sure
adjacent pages don’'t map
to the same L2 index

31

CPU
VA Page number‘|rPage offset |
TLB Cache
PA l
| Tag check . | data
b L2 Cache

PA used to

index direct- l

mapped L2 data

Running the same program again on the same data
may result in different associativity conflicts
Because you may get a different virtual-to-physical

mapping

TLBs in Haswell

L11 TLB L11: 32KB

L1DTLB L1D: 32KB
64x4KB,
32x2MB,
4x1GB 64B/cycle 32B/cycle
|ﬂ|)_2 TLB L2: 256KB
24 entries 8-way

328/c}cle

L3: 45MB (2.5MB per core)

L1: 32KB, 8-way associative | and D
L1D: writeback, two 256-bit loads and a 256-bit

store every cycle

So each L1 way is 32/8=4KB
Virtually indexed, Physically Tagged (VIPT)

L2 and L3 are physically indexed

TLBs support three different page sizes — 4KB,
2MB, 1GB

L1 ITLB:128 mappings for 4KB pages — 4-way set associative
and 8 2MB-page mappings
L1 DTLB: 64 mappings for 4KB pages — 4-way set associative
(fixed partition between two threads)
and 8 2MB-page mapping
and 4 mappings for 1GB pages

® Example: Intel Haswell €5 2600 v3

32

Summary
We can reduce the hit time.....

® Using a really small cache (and a larger next-level cache)
® With a pipelined cache (really only improves bandwidth)
® With a multi-bank cache (only increases bandwidth)

® By using a direct-mapped cache

® By passing data forward while checking tags in parallel
® Using way prediction (not covered in slides)

® By taking address translation off the critical path
@Access the TLB in parallel with the L1 cache

® Do not use translated bits as index bits if you can help it!

@#The TLB is a cache of the address translation
® Consider a two (multi?)-level TLB
Pay attention to TLB miss penalty (beyond this lecture)

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size

Higher Associativity

Victim Caches
Pseudo-Associative Caches

HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses

miss rate
+ +++ + + +

Priority to Read Misses

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

NOWON=2OCWMNDNN-O

miss penalty
+ + + +

Edstem questions

35

What if you insist on using some translated bits
as index bits?
CPU
® Page colouring for synonym |
consistency: 32-bit VA| 20-bit Page number | 12-bit Page offset
® “A cache synonym conflict occurs if two \m cache index
cache blocks that have the same tag T
(physical address) are mapped to two N 14-bit virtual index
different virtual addresses”
® So if the OS needs to create two virtual PA TLB Cac}b\ 16KB
memory regions, A and B within the Tags
same process, mapping the same PA tag ldat
physical address region
® So A[0] and B[0] have different 1008 tag compasiecn ;
VAs Bits 12
® But after translation refer to the s d13 i
same location SR
index,
® We need to ensure that the despite
virtual addresses that we assign bei P
to A[0] and B[0] match in bits Not recommended... .
12813 translated
® So the map to the same location
in the cache The Linux mmap system call for creating a memory region
shared between two processes chooses the address of the
® So they have only one value! region in order to allow the OS to do this if necessary

® Q: “Hi, I don't understand why page colouring only requires bits 12 and 13 of A[0] and B[0] being
the same? Isn't A[0] and B[0] mapping to the same physical address still having different virtual
addresses? l.e. there is still a synonym conflict?”

® A:The objective is to ensure that when A[0] is allocated into the cache, and then later B[0] is loaded,
the two words map to the same cache line in the cache. If they didn't (which would happen if bits
12 and 13 were different) then we would have a consistency problem. A store to A[0] would update
one cached copy of the line, but a load from B[0] would load the original, unchanged data.

36

37

12 13

VA|00010010001101000101|011001111000I

' — The Solution: Page Colouring Restrictions
\ I\ \g \
1 \ Byte Index
IMMU Translation | Cache Line Index (VIPT) Page colouring assigns a colour to each memory page. Colours can be assigned to both virtual and

Cache Tag (VIPT) physical addresses, but it's virtual addresses that are the problem here. ("Colour" in this sense is used as
r N ~ an explanatory tool.) Each page in virtual memory is assigned a colour in sequence, as follows:
[too11010101211001101f0110011] i} Page Base Colour (bits [13:12])
- J

g 0xfedcc0s0 o0

& Oxfedcb0an ~—— OxfedcbB78

Oxfedca0en 1 |

Does the tag

match? 0x12346000 10
0x12345000 a1 - (x12345678
0x12344000
0x00007000
0x08006080 10
0x08005000 a1
0x08004080
0x08003000
0x08002080 10
0x08001080 a1
0x08089080

Page colours, showing how colours map onto bits 12 and 13 of the address. The two example virtual
addresses are also shown to illustrate that they have different colours.

Page Colouring on ARMv6 (and a bit on ARMv7) - Architectures and Processors
blog - Arm Community blogs - Arm Community https://community.arm.com/arm-
community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-
armv6-and-a-bit-on-armv7

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7

Student question: way prediction

In the lecture about hit time reduction, we discussed that we can pipeline a cache so that we can seperate

out the tag check into it's own stage:

Fast Hits by pipelining Cache

Case StUdy: M IPS R4000 @ If the cache index consists only of
R . physical (untranslated) bits of the
® 8 Stage Pipeline: address,
& IFfirst half of fetching of instruction; PC sel ppens here as well @ We can start tag access in parallel
as initiation of instruction cache access. with translation
@ |S—second half of access to instruction cache. @ so we can compare to physical tag

@ RF-instruction decode and register fetch, hazard checking and also
instruction cache hit detection.

@ EX—execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.

@ DF-data fetch, first half of access to data cache. 255]

® This is an attractive and common
@ DS—second half of access to data cache. choice
@ TC-tag check, determine whether the data cache access hit. ® Consequence: L1 caches are often
® WB-write back for loads and register-register operations. highly associative

@ Limits cache to page size: what if want
bigger caches and still use same trick?

@ Option 1: Higher associativity

A
Tags

Fast cache hits by avoiding translation:
Index with physical (untranslated) portion of address

CPU

- - Same
VA [Pagerumber [Pageofsel 1 yniransiated

[ndexbis

|TLB| |Way ” Wayl

PA

cache

—ii28>

=1

This would allow us to forward the data from the D5 /|5 stage before we check the tag in the TC/ RF

stages for this processor.

However, we also discuss using VIPT scheme so that the L1 cache is indexed by the page offset. This
would limit the size of the L1 cache to the size of the page (since we can only index by the offset bits), to

get around this, we make the cache highly associative:

My understanding from watching the lectures was that both of these options are popuiar choices in
modern processors. But | don't understand how it's possible to have both - wouldn't you be unable to
forward the data in an associative cache since you don't know which set the data is going to come from?

Or does this rely on things like way prediction to work?

Yes this is exactly right:

*VIPT makes you really really want high
associativity in the L1 data cache (actually
also the instruction cache)

*The tag check is likely done a cycle after
the cache provides the data (because only
then do we have the tag, and also only
then do we have the translated (physical)
address against which to compare the
tag.

*With a direct-mapped cache we could
still forward the data, before the tag
check is done, and squash if the tag check
fails (in which case we have a cache miss).

*With an associative cache, you don't
know which way's data to forward

So a popular solution to this is way
prediction: we have a small fast predictor
that guesses which is going to be the right
way, so we can forward it right away.

See Hennessy and Patterson 6th edition
section 2.2 pp81.

Sarangi's book provides a bit more detail,
see section 7.4.4 pp307
(https://www.cse.iitd.ac.in/~srsarangi/adv
book/chapters/caches.pdf)

38

https://www.cse.iitd.ac.in/~srsarangi/advbook/chapters/caches.pdf
https://www.cse.iitd.ac.in/~srsarangi/advbook/chapters/caches.pdf

We have not covered page-table walking in the course. Or more precisely, | over-simplified!

\/ When you have a TLB miss, you need to look up the virtual-to-physical mapping - you need to find the

St u d e nt q u est i o n : pa g e - page-table entry ("PTE") that should be allocated into the TLB.

In the slides, | suggested that you do this with a big array indexed by the virtual page number. However

on a 64-bit processor, virtual addresses are very big (at least 48 bits) - so the page table would need
a e Wa 2736 entries (36=48-12). This is a big number. But it would only be very sparsely occupied.

< 45 So instead we use a sparse data structure - the page table is represented using a radix tree. The term
.—} * © "page table walk" describes what you have to do on a TLB miss - you step through this radix tree one
3 hours ago in Exams PIN STAR WATCH VIEWS node at a time.

The idea of the table-walk cache is to cache some or all of the nodes of the tree
Table-Walk Caches

There is a good presentation of table-walk cache design alternatives in this article:

Translation Caching: Skip, Don’t Walk (the Page Table). Barr, Cox, Rixner ISCA10 isca029-barr.dvi

Hardware Table Walker

Itillustrates the page table idea with these figures:

63:48 47:39 38:30 29:21 20:12 11:0
The article talks briefly about table-walk caches. What are these? Are they a synonym for something else se L4idx | L3idx | L2idx | Llidx | page offset

in the course or have | missed this completely.

Figure 1: Decomposition of the x86-64 virtual address.

This question is about the Qualcomm Snapdragon X Elite

(Oryon) architecture which was the subject of the 2024
ntries stored by MMU cache
exam.
L2
CR3 ii I /
Registeri i .. o?d pp”_ 378
(PPn:613: b8 pon: 136 | L3 ‘g:e‘ Pp: 508 I~
i onolppmoaz |~ +| - | /OU| PerNUL b =
Oba ppn:NUL | 00B ppn:NUL |/l o : -
L 00c| ppn: 125 [0c1| ppn: 484 oat
f— ala
00 _ppn:3at_|>_ 02| ppn: 123 o C
g L2 0c3| ppn: 978
Obd| ppn’:’aUO - » large
Obe[ppn: NUL Data Page:
Obf| ppn: 211 L1
- oct| ppn: 406
0c2| ppn: 327 H
0c3 _Data :
ppn: e63 bPage

Figure 2: An example page walk for virtual address (Ob9,
00c, Oae, 0Oc2, 016). Each page table entry stores the
physical page number for either the next lower level page ta-
ble page (for L4, L3, and L2) or the data page (for L1). Only
12 bits of the 40-bit physical page number are shown in these
figures for simplicity.

The dotted lines in the figure show the use of the table-walk cache (here it is called the MMU cache).

Student question: multiple page sizes

1 In the lecture, the Intel Haswell e5 was used as an example to demonstrate the complexity of multi-level
memory hierarchies. It was shown that mappings are kept in the TLB for pages with different sizes.
Similarly, we see this different page sizes supported in the Snapdragon X. | was wondering how this can
be implemented (is the number of translated bits for the different page sizes different? and how would
this be known when performing address translation?)

Yes the number of translated bits is different.

v As for implementation, this is indeed a tricky problem.
A simple starting point is to have two TLBs, indexed in parallel, one for 4K pages, one for superpages.
Things get murkier when you add an L2TLB.

For example one approach used in some Intel CPUs (Hennessy and Patterson 6th edition pg1138) is for
the L1TLB to hold a bunch (eg 64) of 4K pages, plus a very small number of 2MB or 4MB pages.
However the L2TLB only holds 4K pages.

Another example (from Sarangi pg757 section D.13) is AMD's Zen2 which supports 1GB pages by
"smashing" then into 2MB pages when they are allocated into the TLB.

For a deeper dive into this, see A Survey of Techniques for Architecting TLBs
by Sparsh Mittal (ACM Computing Surveys 2016) 80948226.pdf .

40

	Slide 1: Advanced Computer Architecture Department of Computing, Imperial College London Chapter 4: Caches and Memory Systems Part 4: hit time reduction – and address translation
	Slide 2: There are three ways to improve AMAT:
	Slide 3: Fast Hits by pipelining Cache Case Study: MIPS R4000
	Slide 4: Case Study: MIPS R4000
	Slide 5: R4000 Performance
	Slide 6: Cache bandwidth
	Slide 7: Virtual memory, and address translation
	Slide 8: Fast hits by removing address translation from critical path
	Slide 9
	Slide 10
	Slide 11
	Slide 13: What address translation is for
	Slide 14: What address translation is for
	Slide 15: What address translation is for
	Slide 16: What address translation is for
	Slide 17: What address translation is for
	Slide 18: Synonyms and homonyms in address translation
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29: What if you insist on using some translated bits as index bits?
	Slide 30: What if you insist on using some translated bits as index bits?
	Slide 31: Associativity conflicts depend on address translation
	Slide 32: TLBs in Haswell
	Slide 33: Summary
	Slide 34: Cache Optimization Summary
	Slide 35: Edstem questions
	Slide 36
	Slide 37
	Slide 38: Student question: way prediction
	Slide 39: Student question: page-table walk
	Slide 40: Student question: multiple page sizes

