
1

Advanced Computer Architecture
Imperial College London

Chapter 5 part 1:

Sidechannel vulnerabilities

November 2025

Paul H J Kelly

2

Overview
Side-channels

What can we infer about another thread by observing its
effect on the system state?

Through what channels?

How can we trigger exposure of private
data?

How can we block side-channels?

3

Exfiltration

Suppose we control thread A

Suppose thread B is
encrypting a message using a
secret key, executing code we
know but do not control

How can we program thread A
to learn something (perhaps
statistically) about B – perhaps
the message?

Core #1

L1D #1

Core #2

L1D #2

Shared L2

Thread A

(attacker)

Thread B

(“victim”)

4

Exfiltration

Suppose thread B’s encryption
algorithm is this simple:

For (i=0; i<N; ++i) {

 C[i] = code[P[i]];

}

How can we program thread A
to learn something (perhaps
statistically) about P ?

5

Prime and Probe

This technique detects the eviction of the attacker’s
working set by the victim:

The attacker first primes the cache by filling one
or more sets with its own lines

Once the victim has executed, the attacker
probes by timing accesses to its previously-
loaded lines, to see if any were evicted

If so, the victim must have touched an address
that maps to the same set

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware

Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

6

Evict and Time

This approach uses the targeted eviction of lines, together
with overall execution time measurement

The attacker first causes the victim to run,
preloading its working set, and establishing a
baseline execution time

The attacker then evicts a line of interest, and
runs the victim again

A variation in execution time indicates that the
line of interest was accessed

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware

Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

7

Flush
and

Reload

This is the inverse of prime and probe, and relies on the
existence of shared virtual memory (such as shared
libraries or page deduplication), and the ability to flush by
virtual address

On x86 the two steps of the attack can be combined by measuring timing variations of the clflush instruction

The advantage of FLUSH+RELOAD over PRIME+PROBE is that the attacker can target a specific line, rather than
just a cache set.

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

The attacker first flushes a
shared line of interest (by using
dedicated instructions or by
eviction through contention).

Once the victim has executed,
the attacker then reloads the
evicted line by touching it,
measuring the time taken

A fast reload indicates that the
victim touched this line
(reloading it), while a slow
reload indicates that it didn’t https://meltdownattack.com/meltdown.pdf

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

8

Side channels – shared state
For a side channel
to be exploited, we
need to identify
state that is
affected by
execution and
shared between
attacker and victim

If they share a
single core:

L1I, L1D, L2, TLB,
branch predictor,
prefetchers, physical
rename registers,
dispatch ports…

Separate cores may
share caches,
interconnect etc

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware

Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

10

How can we trigger co-located execution of
the victim?

System call

11

How can we trigger co-located execution of
the victim?

System call

Release a lock

SMT – threads co-scheduled on same core

Call it as a function

12

How can we trigger co-located execution of
the victim?

System call

Release a lock

SMT – threads co-scheduled on same core

Call it as a function

Why is calling a function interesting?

Language-based security

Victim may be an object with secret state and a public
access method

13

Language-based security:
Bounds checking

Consider a web
browser containing a
Javascript interpreter

Different web pages
require Javascript
execution for
rendering

Each web page’s
rendering is done by
the browser

But don’t worry, the
Javascript engine
prevents page A from
accessing page B’s
data

Eg by array bounds
checking:

r = A[i]

If (i>0 && i<A.length()) {
 p = &A+4*I;
 r = *p;
}

14

Side-channels in speculative execution

Suppose the bounds check “if” is
predicted satisfied

But i is out of bounds

So *p points to a victim web page’s
secret s (like the paypal password I
just entered)

So we can speculatively use s as
an index into an array that we do
have access to

And then using timing to determine
whether the cache line on which
B[s] falls has been allocated as a
side-effect of speculative execution

If (i>0 && i<A.length()) {
 p = &A+4*I;
 s = *p; // s is secret
}

r = A[i]

If (i>0 && i<A.length()) {
 p = &A+4*i;
 s = *p; // s is secret
 r = (B[16*(s & 1)]);
 // some cache line in B is
 // allocated into cache
}

r = B[A[i]]

Flush and reload B

15

Side-channels in speculative execution

Suppose the bounds check “if” is
predicted satisfied

But i is out of bounds

So *p points to a victim web page’s
secret s (like the paypal password I
just entered)

So we can speculatively use s as
an index into an array that we do
have access to

And then using timing to determine
whether the cache line on which
B[s] falls has been allocated as a
side-effect of speculative execution

If (i>0 && i<A.length()) {
 p = &A+4*I;
 s = *p; // s is secret
}

r = A[i]

If (i>0 && i<A.length()) {
 p = &A+4*i;
 s = *p; // s is secret
 r = (B[16*s]); // cacheline size <= 16

 // some cache line in B is
 // allocated into cache
}

r = B[A[i]]

Flush and reload B
Perhaps this version is clearer…

16

Side-channels in speculative execution

Suppose the bounds check “if” is
predicted satisfied

But i is out of bounds

So *p points to a victim web page’s
secret s (like the paypal password I
just entered)

So we can speculatively use s as
an index into an array that we do
have access to

And then using timing to determine
whether the cache line on which
B[s] falls has been allocated as a
side-effect of speculative execution

If (i>0 && i<A.length()) {
 p = &A+4*I;
 s = *p; // s is secret
}

r = A[i]

If (i>0 && i<A.length()) {
 p = &A+4*i;
 s = *p; // s is secret
 r = (B[16*(s & 1)]);
 // some cache line in B is
 // allocated into cache
}

r = B[A[i]]

Flush and reload B
This is Spectre Variant #1

17

Declare valid array1 for victim
to access

Declare “canary” array2 whose
cached-ness we will probe

In two pages of code:
https://gist.github.com/ErikAugust/
724d4a969fb2c6ae1bbd7b2a9e3d4b
b6

18

Declare valid array for victim to
access

Declare “canary” array whose
cached-ness we will probe

Secret message, out of bounds of victim

access “canary” array using data
indexed out of bounds

19

Declare valid array for victim to
access

Declare “canary” array whose
cached-ness we will probe

Secret message, out of bounds of victim

access “canary” array using data
indexed out of bounds

So if x=4, array1[x]=5
So we access element array2[5*512]

20

Declare valid array for victim to
access

Declare “canary” array whose
cached-ness we will probe

Secret message, out of bounds of victim

access “canary” array using data
indexed out of bounds

So if x=secret-array1, array1[x]=‘T’
So we access element array2[‘T’*512]

21

Flush array2
from the
cache

Train the
branch
predictor

22

Flush array2
from the
cache

Train the
branch
predictor

Call the
victim

Probe cache
and time
accesses

Do some statistics to
find outlier access
times

Print the most likely
character values from
the secret message

23

Windows Subsystem for Linux, Windows 10 (1809), gcc 7.3, Intel i7-7500U

h
tt

p
s:

//
w

w
w

.n
ew

sc
ie

n
ti

st
.c

o
m

/a
rt

ic
le

/m
g1

4
2

1
92

4
0

-4
00

-s
q

u
ea

m
is

h
-o

ss
if

ra
ge

-d
en

ts
-e

le
ct

ro
n

ic
-a

rm
o

u
r/

24

Windows Subsystem for Linux, Windows 10 (1809), gcc 7.3, Intel i7-7500U

h
tt

p
s:

//
w

w
w

.n
ew

sc
ie

n
ti

st
.c

o
m

/a
rt

ic
le

/m
g1

4
2

1
92

4
0

-4
00

-s
q

u
ea

m
is

h
-o

ss
if

ra
ge

-d
en

ts
-e

le
ct

ro
n

ic
-a

rm
o

u
r/

25

How bad is this?

Different browser tabs should obviously not run in the
same address space!

Is that good enough?

Can I read the operating system’s memory?

Can I read other processes’ memory?

26“I just wanted to check if my understanding
was correct on how we access the data in the
secret address

We assign an out of bound index that
takes *p (and therefore s) to the secret
place

Execution happens because of
speculation "branch taken" and therefore
within the commit queues we have the
message in S now but we can't read it
because there was no commit

To "read it", we do that bit by bit, through
accessing some cache data. We know
both rows X and X+1 are not in the cache,
and try to call one of them through
indexing in array B by using a bit of S

Even though we are in speculative
execution still, out-of-order will issue the
memory call to the cache and queue it in
the LSQ without being written to R.

But we don't care, because that cache
now will have either retrieved X or X+1
line. We determine that by classic probing
/ timing analysis for valid cache access
later in the code and depending on the
line that was already cached by the
speculative execution of r = (B[16*(s&1)]);
we conclude if that bit of interest in the
secret message was 1 or 0

If the above is correct, we are therefore
assuming that branch correction for the
speculation will NOT occur before the
cache request through r = (B[16*(s&1)]);”Student question

27

RS MUL

Mul unit

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

value

value

value

valueF3

F2

F1

F0
Store unit

Commit

• We need to make sure

stores are not sent to

memory until the store

instruction is committed

• We need to stall loads

until all possibly-

aliasing store addresses

are known

Store

Buffer
Collect

uncom

mitted

stores

addr dataLoad unit

• Wait til preceding

stores’ addresses

are known

• Forward if match is

found

L
o

a
d

 c
h

e
c
k

Ch02-part2

slide 25:

28

RS MUL

Mul unit

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y

MUL F0, F3, F4

SD F0, X

MUL F0, F1, F21

2

3

4

Issue

Opcode
Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

value

value

value

valueF3

F2

F1

F0
Store unit

Commit

• We need to make sure

stores are not sent to

memory until the store

instruction is committed

• We need to stall loads

until all possibly-

aliasing store addresses

are known

Store

Buffer
Collect

uncom

mitted

stores

addr dataLoad unit
• Initiate load from

cache
• (but check whether

younger buffered

store address

matches)

L
o

a
d

 c
h

e
c
k

Ch02-part2

slide 25:

29

Other

functional

units

31

Other

functional

units

LOAD S = *p

LOAD S = *p

Addr = 16*s&1

Addr = 16*s&1

r = B[addr]

r = B[addr]

If p in bounds

If p in bounds

32

Other

functional

units

LOAD s = *p

LOAD s = *p

Addr = 16*s&1

Addr = 16*s&1

r = B[addr]

r = B[addr]

If p in bounds

If p in bounds

• Branch is at head of ROB

• But perhaps not ready

• While Commit waits for the outcome

of the conditional…

• The load unit fetches s

• The load unit fetches r

- Resulting in a cache line in B

being allocated

- When branch is committed,

misprediction occurs

- But the line we allocated remains

33

34

35

Student question
Q: could you explain what the operations on the s variable do when using it as an index
(r=B[16*(s&1)])?

re: "r=B[16*(s&1)])“

s&1 does a Boolean "and" with the bits of a, and the single one-bit "1".

So we get either a zero (if s was even) or one (if s was odd).

I multiplied by 16 to hit a different cache line (supposing that the cache line
size is 16).

I chose this one-bit idea so we could talk about just two cache lines (on
reflection, maybe it didn't simplify things!).

What happens in the spectre.c code is

s = array1[x]

r = array2[s * 512]

where array1 is a char array so array1[x] is an 8-bit value. Thus we ensure
that whatever the value of array1[x], the access to array2 hits a distinct
cache line.

36

Student question
Q: “If so I don't understand why you use this value for an index to another array? Surely you already have the data you need and
don't need to probe the cache?”

The interesting case starts with this:

1: if (p is in bounds)

2: s = *p

3: else

4: throw bounds error exception

5: print s

If p is indeed in bounds, we get to print s - but sadly s isn't a secret, since p was in-bounds.

If p is not in-bounds, we (might) speculatively execute the load instruction to fetch *p, but we discover the
branch misprediction and roll back - so we can't print s.

So here's the trick: we do something with s, while we are still on the speculative path, that betrays the secret.

Like using the value of s to allocate a cache line. This is what the code on the slide does:

1: if (p is in bounds)

2: s = *p

3: r=B[16*(s&1)]

4: else

5: throw bounds error exception

6: print s, r

Now, when we speculatively execute line 2, in the out-of-bounds case, s is a secret.

 And line 3 results in a load instruction to one of two addresses: B[0] or B[16].

The misprediction is detected as before, at some later point (eg line 6). We roll back, so we can't print s or r.

But the cache allocation due to line 3 is still there.

So now we can do a timing analysis to (probably) discover whether B[0] or B[16] was allocated.

37

WSL2 on Windows11 21h2 22000.1098 on i7-7567U

38

Student question: evict&time vs flush&reload

Hello, I dont really understand the difference between
evict and time and flush and reload.

They are indeed similar. The difference lies in what is being
timed.

With Flush and Reload, the attacker times their own code, a
loop that accesses the array whose elements might have
been allocated.

With Evict and Time, the attacker times the victim's code: it
runs the victim code first to establish a baseline time
(perhaps multiple times). It then evicts a cache line that the
victim might use - and times the victim code again.

The idea is that if the victim actually accesses the evicted
line, the time should be slower this time.

	Slide 1: Advanced Computer Architecture Imperial College London Chapter 5 part 1: Sidechannel vulnerabilities
	Slide 2: Overview
	Slide 3: Exfiltration
	Slide 4: Exfiltration
	Slide 5: Prime and Probe
	Slide 6: Evict and Time
	Slide 7: Flush and Reload
	Slide 8: Side channels – shared state
	Slide 10: How can we trigger co-located execution of the victim?
	Slide 11: How can we trigger co-located execution of the victim?
	Slide 12: How can we trigger co-located execution of the victim?
	Slide 13: Language-based security: Bounds checking
	Slide 14: Side-channels in speculative execution
	Slide 15: Side-channels in speculative execution
	Slide 16: Side-channels in speculative execution
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: How bad is this?
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Student question
	Slide 36: Student question
	Slide 37: WSL2 on Windows11 21h2 22000.1098 on i7-7567U
	Slide 38: Student question: evict&time vs flush&reload

