
1

Advanced Computer Architecture
Imperial College London

Chapter 5 part 2:

Sidechannel vulnerabilities:
attacking other processes and the OS

November 2023

Paul H J Kelly

2

Declare valid array for victim
to access

Declare “canary” array whose
cached-ness we will probe

Secret message

access “canary” array using data
indexed out of bounds

So if x=secret-array1, array1[x]=‘T’
So we access element array2[‘T’*512]

Flush array2 from the cache

Train the branch predictor

Call the victim, trigger speculative
allocation

Probe cache and time
accesses

Do some statistics to
find outlier access
times

Print the
most likely
character
values
from the
secret
message

4

Other

functional

units

LOAD s = *p

LOAD s = *p

Addr = 16*s&1

Addr = 16*s&1

r = B[addr]

r = B[addr]

If p in bounds

If p in bounds

• Branch is at head of RUU

• But perhaps not ready

• While Commit waits for the outcome

of the conditional…

• The load unit fetches s

• The load unit fetches r

- Resulting in a cache line in B

being allocated

- When branch is committed,

misprediction occurs

- But the line we allocated remains

5

Most modern processors …

Most modern
processors are
vulnerable to
Spectre variant 1

Some processors
don’t have this
problem – but
many many do!

https://en.wikichip.org/wiki/cve/cve-2017-5753

https://en.wikichip.org/wiki/cve/cve-2017-5753

6

What does it mean?

“we now believe that speculative vulnerabilities on today's
hardware defeat all language-enforced confidentiality with
no known comprehensive software mitigations, as we
have discovered that untrusted code can construct a
universal read gadget to read all memory in the same
address space through side-channels. In the face of this
reality, we have shifted the security model of the Chrome
web browser and V8 to process isolation.”

Spectre is here to stay: An analysis of side-channels and speculative
execution, Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, Toon
Verwaest. https://arxiv.org/pdf/1902.05178.pdf

https://arxiv.org/pdf/1902.05178.pdf

7

How bad is this?

Different browser tabs should obviously not run in the
same address space!

Is that good enough?

Can I read the operating system’s memory?

Can I read other processes’ memory?

8

Mapping the kernel
into the virtual
address space

Process #1’s

virtual

address

space

Process #2’s

virtual

address

space

0

0

M-1

Page 0

Page 1

Page ..

Page ..

Page 0

Page 1

Page ..

Page ..

Page ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Performance
optimisation: map the
OS kernel into every
process’s virtual
address space

Tagged as supervisor-
mode access only

When interrupt or
system call occurs, no
change to address map
is needed – just flip
supervisor bit

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Process #1’s

mapping of

the OS

kernel

N

P-1

Page ..

Page ..

Page ..

Page ..

M-1

Process #2’s

mapping of

the OS

kernel

N

P-1

Page ..

Page ..

Page ..

Page ..

Frame ..

Page ..

User-mode mapping:

Page ..Supervisor-mode mapping:

9

Mapping the kernel
into the virtual
address space

Process #1’s

virtual

address

space

Process #2’s

virtual

address

space

0

0

M-1

Page 0

Page 1

Page ..

Page ..

Page 0

Page 1

Page ..

Page ..

Page ..

Consequence:

Speculative accesses
can be made to
addresses in the
kernel’s memory

So Spectre allows
access to the OS’s
secrets!

Process #1’s

mapping of

the OS

kernel

N

P-1

Page ..

Page ..

Page ..

Page ..

M-1

Process #2’s

mapping of

the OS

kernel

N

P-1

Page ..

Page ..

Page ..

Page ..

Page ..

User-mode mapping:

Page ..Supervisor-mode mapping:

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

10

Mapping the kernel
into the virtual
address space

Process #1’s

virtual

address

space

Process #2’s

virtual

address

space

0

0

M-1

Page 0

Page 1

Page ..

Page ..

Page 0

Page 1

Page ..

Page ..

Page ..

In fact it’s common for
the kernel’s virtual
address space to
include all of physical
memory

So we can capture
secrets from all the
other user processes
too!

Process #1’s

mapping of

the OS

kernel

N

P-1

M-1

Process #2’s

mapping of

the OS

kernel

N

P-1
Pages ..

Page ..

User-mode mapping:

Page ..Supervisor-mode mapping:

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..Pages ..

11

Why is the invalidity of
the access to the secret
data only detected at
commit time?

12

Why is the invalidity of
the access to the secret
data only detected at
commit time?

13

Why is the invalidity of
the access to the secret
data only detected at
commit time?

I think the reason is that
designers assumed that
the microarchitectural
state is not observable

“All that matters is the
instruction set manual”

So “checking at commit
is safe”

14

Further reading
Meltdown: Reading Kernel Memory from User Space
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg. 27th USENIX Security Symposium, Baltimore,
MD, USA, August 15-17, 2018

https://meltdownattack.com/ - Linux, Windows, Android, Exynos M1,
docker…

How to have a Meltdown, Daniel Gruss
https://gruss.cc/files/cryptacus_training_2018.pdf

https://github.com/IAIK/cache_template_attacks

https://github.com/IAIK/meltdown

https://meltdownattack.com/
https://gruss.cc/files/cryptacus_training_2018.pdf
https://github.com/IAIK/cache_template_attacks

15

Complication – address-space
randomisation

Modern operating systems randomise the
address mapping

Fresh on every boot

User-mode address-space layout
randomisation (ASLR) has been common
since 2005, to mitigate other attacks

All modern OSs now (eg since 2017) also
implement Kernel address-space layout
randomisation (KASLR)

This makes exploiting meltdown a little
more difficult

But only a little….
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-
reloaded-breaking-windows-kaslr/

And others

https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/

16

Kernel Address Space
Isolation (KPTI)

Process #1’s

virtual

address

space

Process #2’s

virtual

address

space

0

0

M-1

Page 0

Page 1

Page ..

Page ..

Page 0

Page 1

Page ..

Page ..

Mitigation:

Change the virtual
address mapping
every time kernel is
entered

i.e. reload the TLB

Slightly improved
using address-space
identifiers

Substantial
performance penalty
for some applications

“2%-30% slowdown”

Process #1’s

mapping of

the OS

kernel

N

P-1

Page ..

Page ..

Page ..

Page ..

M-1

N
Page ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

Frame ..

This mitigation really works

And is widely deployed

17

Further reading

Kernel Isolation: From an Academic Idea to an Efficient
Patch for Every Computer
Daniel Gruss, Dave Hansen, Brendan Gregg.
USENIX ;login, issue: Winter 2018, Vol. 43, No. 4

https://www.usenix.org/system/files/login/articles/login_winter18_03_gruss.pdf

But………..

https://www.usenix.org/system/files/login/articles/login_winter18_03_gruss.pdf

18

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we
want

Suppose the OS kernel includes a convenient snippet of
code

Eg:

label:

 s = *p; // s is secret

 r = (B[(s & 1) * 16];

Suppose we’re lucky: p points to our secret and we
know B’s address

Sometimes called a gadget

19

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we
want

Suppose the OS kernel includes a convenient snippet of
code

Eg:

label:

 s = *p; // s is secret

 r = (B[(s & 1) * 16];

Suppose we’re lucky: p points to our secret and we
know B’s address

How can we persuade the
kernel to jump to label?

20

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we
want

Suppose the OS kernel includes a convenient snippet of
code

Eg:

label:

 s = *p; // s is secret

 r = (B[(s & 1) * 16];

Suppose we’re lucky: p points to our secret and we
know B’s address

Suppose we train the
branch predictor?

21

So how can we read kernel memory now?

How can we access data that really is in a different
address space?

We need to trick the victim into accessing the data we
want

Suppose the OS kernel includes a convenient snippet of
code

Eg:

label:

 s = *p; // s is secret

 r = (B[(s & 1) * 16];

Suppose we’re lucky: p points to our secret and we
know B’s address

Suppose we train the
branch predictor?

We can’t read B, but we
can access data that
conflicts with B in the
cache

22

A system call is invoked with a “sysenter” instruction

A register is set to hold the id of the particular system
call we want to call:

https://www.win.tue.nl/~aeb/linux/lk/lk-4.html

Sysentry:

 syscallid = %eax

 handler = handlers[syscallid];

 *handler();

 sysexit

The kernel is entered at a standard entry address

It looks up the system call handler in a table:

i.e. an indirect function call

Which is predicted by the BTB

23

A system call is invoked with a “sysenter” instruction

A register is set to hold the id of the particular system
call we want to call:

https://www.win.tue.nl/~aeb/linux/lk/lk-4.html

Sysentry:

 syscallid = %eax

 handler = handlers[syscallid];

 handler();

 sysexit

The kernel is entered at a standard entry address

It looks up the system call handler in a table:

i.e. an indirect function call

Which is predicted by the BTB

Maybe we can prime the
BTB to jump to our gadget!

24

Spectre
variant 2

Find a gadget in your victim’s code space

Train your branch predictor so that it will cause a
speculative branch to the gadget when the system call is
executed

Observe a microarchitectural or cache side channel from
the speculatively-executed gadget

Steal your secret

Eg see the example here: https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

25

Mitigating Spectre v2

Block microarchitecture and cache side-
channels

Not so easy…

Mess with the cache probing,
eg by adding noise to timers

Prevent the attacker from poisoning the branch
predictor

Eg add an instruction to block use of branch prediction

Find all the places where you should use it

Pay the performance price

Block branch predictor contention
maintain separate predictions for each thread in each protection
domain

26

Mitigating Spectre: retpolines

Use what
you know
about
branch
prediction

Return
address
stack
predicts
return
instructions
…

https://hothardware.com/news/windows-10-update-adds-retpoline-support

https://hothardware.com/news/windows-10-update-adds-retpoline-support

27

Mitigating Spectre: retpolines

A retpoline is a code sequence that implements
an indirect branch using a return instruction

And fixes the Return Address Stack to ensure a
benign prediction target:

https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-
variant-2-with-Retpoline-on-Windows/ba-p/295618

Hopefully more efficient than blocking branch
prediction everywhere

https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618

28

Is this a big deal?

Many many CPUs
vulnerable, including
Intel, ARM, AMD, IBM

Some progress has been
made on mitigation

At considerable cost in
performance, especially for
context-switch-intensive
workloads

Triggered a storm of
further side-channel
vulnerability disclosures

Massive refocus in
computer architecture
design and verification

29

Is this a real problem?

Spectre and Meltdown were made public in early January
2018

By the end of January, antivirus company AV-TEST had
found 139 malware samples in the wild, attempting to
exploit the vulnerabilities

h
tt

p
s

:/
/t

w
it

te
r.

c
o

m
/a

v
te

s
to

rg
/s

ta
tu

s
/9

5
9
0
1
5

8
9
2
9
9

7
8
6
1
3

7
6

30

Is it new?
Side-channel attacks have
considerable history

At least to 1995
(https://en.wikipedia.org/wiki/Meltdo
wn_(security_vulnerability))

Defeating language-based
security within a single
address space changed the
landscape

Ross Mcilroy et al, Spectre is here
to stay: An analysis of side-
channels and speculative
execution.
https://arxiv.org/abs/1902.05178

Actually demonstrating read
access to all physical memory
was a quantum leap in side-
channel exploitation

https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://arxiv.org/abs/1902.05178

31

Is there more?

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel

Gruss. 2019. A systematic evaluation of transient execution attacks and defenses. https://arxiv.org/pdf/1811.05441.pdf

https://arxiv.org/pdf/1811.05441.pdf

32

Timeline, notification pathways, players, lessons
Jan 2018 formal public announcement

June 2017: Google team notified processor vendors

Agreeing to increase their usual 90-day exposure window

Dec 2017 University of Graz team notifies vendors
independently, having discovered vulnerabilities
independently

Key government cybersecurity organisations appear to have
learned about it very late (eg CERT in Jan 2018)

Mysterious patches and upgrade announcements released in
Nov-Dec 2017 by Microsoft, Amazon

Dec 18th 2017 open-source Linux patches to kernel entry
(sysenter) code, and to support kernel page table isolation
(KPTI, “KAISER”) (https://lwn.net/Articles/741878/)

Some observers start to wonder why this is being rushed
out when it slows programs down

Dec 26th 2017: AMD engineer explains why the patch isn’t
needed on AMD CPUs – by explaining what the patch is
really for (https://lkml.org/lkml/2017/12/27/2)

Jan 2nd 2018: The Register breaks the news

Jan 3rd 2018: Google brings forward embargo date (from 9
Jan) and makes details public
(https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html)

https://lwn.net/Articles/741878/
https://lkml.org/lkml/2017/12/27/2
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

33

Further reading
Spectre Attacks: Exploiting Speculative Execution, Paul
Kocher et al, IEEE S&P 2018

https://spectreattack.com/spectre.pdf

How the Spectre and Meltdown Hacks Really Worked,
Nael Abu-Ghazaleh, Dmitry Ponomarev and Dmitry
Evtyushkin. IEEE Spectrum Feb 2019

https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-
meltdown-hacks-really-worked

Retpoline: a software construct for preventing branch-
target-injection, Paul Turner, Senior Staff Engineer,
Technical Infrastructure, Google

https://support.google.com/faqs/answer/7625886

Spectre and Meltdown triggered discovery of many
further vulnerabilities, eg:

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. 2018. Foreshadow: extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In Proceedings of the 27th
USENIX Conference on Security Symposium (SEC'18). USENIX Association,
Berkeley, CA, USA, 991-1008. https://foreshadowattack.eu/

https://spectreattack.com/spectre.pdf
https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked
https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked
https://support.google.com/faqs/answer/7625886
https://foreshadowattack.eu/

34

Student question: spectrev2 vs meltdown

Is Meltdown and Spectre Variant 2 the same?

There is indeed considerable scope for confusion. I offer an answer in terms of
what we covered in the lectures. There is in reality a substantial design space for
speculation sidechannel attacks that defies easy classification. But here's the
classification based on what I presented:

Spectrev1 defeats bounds checking within a single process's virtual address
space. It uses branch takenness misprediction to expose a sidechannel due
to speculative instruction execution. There is no good mitigation.

Meltdown extends this to access any data currently in the process's virtual
address space, even if marked as supervisor-only. It exploits a common
defect in processor design, where the check for sufficient privilege is
performed only at commit-time. It worked because operating systems would
try to avoid having to change the page table when handling a system call or
interrupt. Removing this optimisation avoids the problem.

Spectrev2 uses jump target prediction to choose which code is executed in
the address space of another process. By choosing (or more likely by finding
a way to insert) suitable code, a speculative-execution sidechannel can be
exploited, so the attacker can read the operating system's data. This can be
mitigated by preventing the attacker from being able to influence the victim's
branch target prediction. This is what retpoline's do.

	Slide 1: Advanced Computer Architecture Imperial College London Chapter 5 part 2: Sidechannel vulnerabilities: attacking other processes and the OS
	Slide 2
	Slide 4
	Slide 5: Most modern processors …
	Slide 6: What does it mean?
	Slide 7: How bad is this?
	Slide 8: Mapping the kernel into the virtual address space
	Slide 9: Mapping the kernel into the virtual address space
	Slide 10: Mapping the kernel into the virtual address space
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Further reading
	Slide 15: Complication – address-space randomisation
	Slide 16: Kernel Address Space Isolation (KPTI)
	Slide 17: Further reading
	Slide 18: So how can we read kernel memory now?
	Slide 19: So how can we read kernel memory now?
	Slide 20: So how can we read kernel memory now?
	Slide 21: So how can we read kernel memory now?
	Slide 22
	Slide 23
	Slide 24: Spectre variant 2
	Slide 25: Mitigating Spectre v2
	Slide 26: Mitigating Spectre: retpolines
	Slide 27: Mitigating Spectre: retpolines
	Slide 28: Is this a big deal?
	Slide 29: Is this a real problem?
	Slide 30: Is it new?
	Slide 31: Is there more?
	Slide 32: Timeline, notification pathways, players, lessons
	Slide 33: Further reading
	Slide 34: Student question: spectrev2 vs meltdown

