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Advanced Computer Architecture Chapter 5.2

The plan
Reducing Turing Tax

Increasing instruction-level parallelism

Roofline model: when does it matter?

Vector instruction sets

Automatic vectorization (and what stops it from working)

How to make vectorization happen

Lane-wise predication

How are vector instructions actually executed?

And then, in the next chapter: GPUs, and Single-
Instruction Multiple Threads (SIMT)
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Arithmetic Intensity
Processor Type Peak  GFLOP/s Peak GB/s Ops/Byte Ops/Word

E5-2690 v3* SP CPU 416 68 ~6 ~24

E5-2690 v3 DP CPU 208 68 ~3 ~24

K40** SP GPU 4,290 288 ~15 ~60

K40 DP GPU 1,430 288 ~5 ~40

If the hardware has high Ops/Word, some code is likely to be bound by operand delivery
(SP: single-precision, 4B/word; DP: double-precision, 8B/word)

Arithmetic intensity: Ops/Byte of DRAM traffic

Hennessy and Patterson’s Computer Architecture (5th ed.)

N is the problem size
O(N) = Big-O notation
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* E5-2690 v3 aka Haswell (launched 2014)  ** Kepler (2013)
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Roofline Model: Visual Performance Model

4

• Bound and bottleneck analysis (like Amdahl’s law)

• Relates processor performance to off-chip memory 
traffic (bandwidth often the bottleneck)

Memory bound -
poor data locality

CPU freq. bound

Valid 
region

Ridge 
point 

Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures, Samuel Williams et al, CACM 2008
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https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/ 

• The ridge point 
offers insight into 
the computer’s 
overall performance 
potential

• It tells you whether 
your application 
should be limited by 
memory bandwidth, 
or by arithmetic 
capability

Roofline Model: Visual Performance Model
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https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q 

• The “roofline” concept is often 
used in performance 
optimisation tools

• To show how close you are to 
the limit 

• And what you can do about it

NVIDIA H100 roofline as shown in NVIDIA’s Nsight tool

AMD Zen2 roofline 
as shown in AMD’s 

uprof tool

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
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Example from my research: Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs achieved 
for residual 
assembly for 
various element 
types, with 
polynomial 
degree ranging 
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al 
https://arxiv.org/abs/1903.08243

Firedrake implements a domain-specific language for partial differential equations – different equations, 
and different discretisations – have differeing arithmetic intensity:
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Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts, 64 
bytes

– So instructions are executed in parallel in 64,32,16 or 8 
“lanes”

• Predicate registers k0-k7 (k0 is always true)

– Each register holds a predicate per operand (per “lane”)

– So each k register holds (up to) 64 bits*

• Rich set of instructions operate on 512-bit operands

* k registers are 64 bits in the AVX512BW extension; the default is 16 
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AVX512: vector addition
– Assembler:

• VADDPS zmm1 {k1}{z}, zmm2, zmm3

– In C the compiler provides “vector intrinsics” that 
enable you to emit specific vector instructions, eg:

• res = _mm512_maskz_add_ps(k, a, b);

– Only lanes with their corresponding bit set in 
predicate register k1 (k above) are activated

– Two predication modes: masking and zero-masking

• With “zero masking” (shown above), inactive lanes produce 
zero

• With “masking” (omit “z” or “{z}”), inactive lanes do not 
overwrite their prior register contents
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More formally…

FOR j←0 TO KL-1

    i←j * 32

    IF k1[j] OR *no writemask*

        THEN DEST[i+31:i]←SRC1[i+31:i] + SRC2[i+31:i]

        ELSE

            IF *merging-masking* ; merging-masking

                THEN *DEST[i+31:i] remains unchanged*

                ELSE ; zeroing-masking

                    DEST[i+31:i] ← 0

            FI

    FI;

ENDFOR;

http://www.felixcloutier.com/x86/ADDPS.html
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Can we get the compiler to vectorise?
• sasas

In sufficiently simple 
cases, no problem:
Gcc reports:
test.c:6:3: note: loop vectorized
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Can we get the compiler to vectorise?

If the trip count is not 
known to be divisible by 4:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled

Basically the same 
vectorised code as 
before

Three copies of the 
non-vectorised loop 
body to mop up the 
additional iterations 
in case N is not 
divisible by 4
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If the alignment of the 
operand pointers is not 
known:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 4 iterations completely unrolled

Basically the same 
vectorised code as before

Three copies of the non-
vectorised loop body to 
mop up the additional 
iterations in case N is not 
divisible by 4

Three copies of the non-
vectorised loop body to 
align the start address of 
the vectorised code on a 
32-byte boundary
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I asked chatgpt to turn this back into C code:
#include <immintrin.h> // For SSE/AVX instructions

void process_arrays(float *dst, const float *src1, const float *src2, int n) {
    if (n <= 0) {
        return; // No work to do for non-positive sizes
    }

    int aligned_start = ((uintptr_t)src1 & 15) >> 2; // Align offset calculation
    aligned_start = (-aligned_start) & 3; // Calculate start for alignment
    if (aligned_start > n) {
        aligned_start = n; // Prevent overflow
    }

    int remainder = n > 4 ? aligned_start : n;

    // Process initial unaligned elements
    for (int i = 0; i < remainder; ++i) {
        dst[i] = src1[i] + src2[i];
    }

    int processed = remainder;

    // Vectorized processing
    if (n > 4) {
        int chunks = (n - remainder) / 4;
        for (int i = 0; i < chunks; ++i) {
            __m128 vec1 = _mm_loadu_ps(src1 + processed); // Load 4 floats from src1
            __m128 vec2 = _mm_loadu_ps(src2 + processed); // Load 4 floats from src2
            __m128 result = _mm_add_ps(vec1, vec2);       // Add the vectors
            _mm_storeu_ps(dst + processed, result);      // Store result in dst
            processed += 4;
        }
    }

    // Process remaining elements
    while (processed < n) {
        dst[processed] = src1[processed] + src2[processed];
        ++processed;
    }
}
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If the pointers might be 
aliases:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop versioned for vectorization because of 
possible aliasing
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 3 iterations completely unrolled

Basically the same vectorised 
code as before

Three copies of the non-
vectorised loop body to mop 
up the additional iterations in 
case N is not divisible by 4

Check whether the memory 
regions pointed to by c, b and 
a might overlap

Three copies of the non-
vectorised loop body to align 
the start address of the 
vectorised code on a 32-byte 
boundary

Non-vector version of the loop 
for the case when c might 
overlap with a or b
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What to do if the compiler just won’t vectorise 

your loop?  Option #1: ivdep pragma
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void add (float *c, float *a, float *b) 

{

#pragma ivdep

for (int i=0; i <= N; i++)

c[i]=a[i]+b[i];

} 

IVDEP (Ignore Vector DEPendencies) compiler hint.
Tells compiler “Assume there are no loop-carried dependencies”

This tells the compiler vectorisation is safe: it might still not vectorise
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void add (float *c, float *a, float *b) 

{

#pragma omp simd

for (int i=0; i <= N; i++)

c[i]=a[i]+b[i];

} 

#pragma omp declare simd

void add (float *c, float *a, float *b) 

{

*c=*a+*b;

} 

loopwise: 

functionwise: 

Indicates that the loop can be transformed into a SIMD loop 
(i.e. the loop can be executed concurrently using SIMD instructions)

Source: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

"declare simd" can be applied to a function to enable 
SIMD instructions at the function level from a SIMD loop

What to do if the compiler just won’t vectorise 
your loop?  Option #2: OpenMP 4.0 pragmas

Tells compiler “vectorise this code”.  It might still not do it…

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
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void add (float *c, float *a, float *b) 

{

__m128* pSrc1 = (__m128*) a; 

__m128* pSrc2 = (__m128*) b; 

__m128* pDest = (__m128*) c;

for (int i=0; i <= N/4; i++)

*pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);

} 

Vector instruction lengths are hardcoded in the data types and
intrinsics

This tells the compiler which specific vector instructions to 
generate.  This time it really will vectorise!

What to do if the compiler just won’t vectorise 
your loop?  Option #3: SIMD intrinsics:
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More later – when we look at GPUs

What to do if the compiler just won’t 
vectorise your loop?  Option #4: SIMTBasically… think of each 

lane as a thread

Or: vectorise an outer 
loop:

#pragma omp simd

for (int i=0; i<N; ++i) {

  if(){…} else {…}

  for (int j=….) {…}

  while(…) {…}

  f(…)

}

In the body of the 
vectorised loop, each lane 
executes a different 
iteration of the loop – 
whatever the loop body 
code does

Use predication to handle:
• nested if-then-else
• While loops
• For loops
• Function calls
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Example 2

double A[N], B[N], C[N], D[N]

for i = 0 to N, i++

C[i] = A[2*i] + B[D[i]] 

loop: VLOAD av, A[i], stride=2

VGATHER bv, B, D[i:v]

VADD cv, bv, av

VSTORE C[i:v], cv

incr: INCR i

IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version
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Indirection: b[ind[]]
We have a register containing a vector of pointers
We need a “gather” instruction:
• A vector load
• That loads from a different address in each lane
(how can this be implemented efficiently??)
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Conditional: a[i]!=0.0
We have a register containing a vector of Boolean 
predicates
We use a predicated vector instruction
Lanes with inactive predicates are idle



Vector execution alternatives
44

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Implementation may execute n-wide vector operation with an n-wide ALU 
– or maybe in smaller, m-wide blocks

vector pipelining:

Consider a simple static pipeline

Vector instructions are executed serially, element-by-element, 
using a pipelined FU – or in n-wide chunks if your FU is n-wide

We have several pipelined Fus

“vector chaining” – each word is forwarded to the next instruction 
as soon as it is available

FUs form a long pipelined chain

uop decomposition: 

Consider a dynamically-scheduled o-o-o machine

Each n-wide vector instruction is split into m-wide uops at decode 
time

The dynamic scheduling execution engine schedules their 
execution, possibly across multiple FUs

They are committed together

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf


Vector pipelining – “chaining”
Vector 

Memory Pipeline

Vector 

Multiply Pipeline

Vector 

Adder  Pipeline

• Vector FUs are 8-wide - each 32-wide vector instruction is executed in 4 blocks

• Forwarding is implemented block-by-block

• So memory, mul, add and store are chained together into one continuously-

active pipeline

Scalar
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Uop decomposition - example

AMD Jaguar

• Low-power 2-issue dynamically-
scheduled processor core

• Supports AVX-256 ISA

• Has two 128-bit vector ALUs

• 256-bit AVX instructions are split 
into two 128-bit uops, which are 
scheduled independently

• Until retirement

• A “zero-bit” in the rename table 
marks a register which is known to 
be zero

• So no physical register is 
allocated and no redundant 
computation is done

Figure from http://www.realworldtech.com/jaguar/4/ which includes more detail
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SIMD Architectures: discussion
47

• Reduced Turing Tax: more work, fewer instructions
• Relies on compiler or programmer

• Simple loops are fine, but many issues can make it hard
• “lane-by-lane” predication allows conditionals to be vectorised, but 

branch divergence may lead to poor utilisation
• Indirections can be vectorised on some machines (vgather, vscatter) 

but remain hard to implement efficiently unless accesses happen to 
fall on a small number of distinct cache lines

• Vector ISA allows broad spectrum of microarchitectural 
implementation choices

• Intel’s vector ISA has grown enormous as vector length has been 
successively increased

• ARM’s “scalable vector extension” (SVE) is an ISA design that hides 
the vector length (by using a special loop branch)



Topics we have not had time to cover
ARM’s SVE, RISCV vector extensions:

a vector ISA that achieves binary compatibility across machines 
with different vector width and uop decomposition 

Matrix registers and matrix instructions

Eg Nvidia’s “tensor cores”

Exotic vector instructions
Collision detect (how to vectorise, for example, histogramming)

Permutations

Complex arithmetic

Pipelined vector architectures:

The classical vector supercomputer

Whole-function vectorisation, ISPC, SIMT
Vectorising nested conditionals

Vectorising non-innermost loops

Vectorising loops containing while loops

SIMT and the relationship/similarities with GPUs
Coming!
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Vectors, units, lanes
another attempt to clear up confusion

• Let's consider Intel's AVX512 instruction set and its implementation on Skylake processors (all this applies 
to other ISAs more or less).

• AV512 has 32 vector registers, each 512 bits long (called "zmm0"-"zmm31").  Each register can hold a 
vector - eg a vector of 16 32-bit floats (or 8 64-bit doubles).  A vector add instruction does element-wise 
vector addition on two vector registers, yielding a third 512-bit result.  A vector FMA (“fused multiply-
add”) does r[0:15]+=a[0:15]*b[0:15] in one instruction.

• Some Skylake products have just one arithmetic unit for executing such instructions, but some fancy ones 
have two AVX512 vector execution units.  The Skylake microarchitecture can issue up to about 4 
instructions per cycle, so two out of every four instructions needs to be a vector FMA if you want to get 
maximum performance on such a machine.

• The word "lane" is used when you want to think about a sequence of vector instructions, but you want to 
focus on just one element at a time - a vertical slice through the instruction sequence.

• The word "lane" refers to the same idea as what is sometimes called "single-instruction, multiple thread" 
(SIMT).  This is how GPUs are programmed - its the idea behind CUDA and OpenCL.  Imagine a loop 
consisting of scalar (ie non-vector) instructions.  That's the SIMT "view" of your code - you see what is 
happening "lanewise".  Now expand every instruction in the loop into a vector instruction - so the loop 
does what it does on a vector of 16 lanes of data.  This is the "SIMT->SIMD translation".

• SIMT to SIMD translation gets tricky if the loop body contains an if-then.  For this, AVX512 uses the idea of 
"predication".  For this purpose it has one-bit-per-lane predicate registers k0-k7.  These registers can be 
used to control which lanes of a vector instruction are active and which lanes do nothing.
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Summary Vectorisation Solutions
51

1. Indirectly through high-level libraries/code generators

2. Auto-vectorisation (eg use “-O3 –mavx2 –fopt-info” and hope it 
vectorises):

• code complexity, sequential languages and practices get in the 
way

• Give your compiler hints and hope it vectorises:

• C99 "restrict" (implied in FORTRAN since 1956) 

• #pragma ivdep

3. Code explicitly:

• In assembly language 

• SIMD instruction intrinsics

• OpenMP 4.0 #pragma omp simd

• Kernel functions: 

OpenMP 4.0: #pragma omp declare simd

OpenCL or CUDA: more later 



• Fun question if you like this sort of thing….

– What is “vzeroupper” for?
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More things in case you’re interested…
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Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
2. Gather a vector A[ind[i:i+16]
3. Subtract the D[i] values:
4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]
5. Gather the LHS[0:16] = C[ind[i:i+16]]
6. Add (+=): LHS[0:16] += RHS[0:16]
7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+
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Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
2. Gather a vector A[ind[i:i+16]
3. Subtract the D[i] values:
4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]
5. Gather the LHS[0:16] = C[ind[i:i+16]]
6. Add (+=): LHS[0:16] += RHS[0:16]
7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+

DDDDA  A       A

RHS

LHS

ind

ind

LHS

ind

i  i  i  i

i  i  i  i

-

+

C  C       C

C  C       C

What would happen if there were duplicate indices in 
ind?



56

Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
2. Gather a vector A[ind[i:i+16]
3. Subtract the D[i] values:
4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]
5. Gather the LHS[0:16] = C[ind[i:i+16]]
6. Add (+=): LHS[0:16] += RHS[0:16]
7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+

DDDDA  A       A

RHS

LHS

ind

ind

LHS

ind

i  i  i  i

i  i  i  i

-

+

C  C       C

C  C       C

What would happen if there were duplicate indices in 
ind?

It’s not parallel!  We have to sum two (or more) 
different values into the same C element



Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
2. Gather a vector A[ind[i:i+16]
3. Subtract the D[i] values:
4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]
5. Gather the LHS[0:16] = C[ind[i:i+16]]
6. Add (+=): LHS[0:16] += RHS[0:16]
7. Scatter: C[ind[i:i+16]] = LHS[0:16]

vpconflictq 
instruction checks 
for duplicate values 
in ind[i:i+16]

If found, we branch 
to a loop over each 
distinct value

Roughly…

N
o

t 
e

x
a

m
in

a
b
le

This is addressed by AVX512 
“conflict detect” instructions 
which enable us to catch 
duplicates and serialise where 
needed 

Add RHS into LHS

RHS

Count conflicts

Add 
conflicting 
lanes’ values 
sequentially Unrolled copy

Scatter back

If no conflicts the
skip to fast case

Add RHS into LHS

Start next iteration



Health warning

• Automatic discovery of parallelism has a bad reputation

– Deservedly!  It looks great on simple examples

– But real code has complexity that means it often just doesn’t 
happen

• But in some application domains it can really work

• And some programming languages make it easier, maybe!

– Functional languages lack anti- and output-dependences (but 
tend to add higher-order functions and lazy evaluation)

– Some languages control pointer ownership and aliasing

– Some programming models discourage explicit loops and 
explicit elementwise subscripting
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Feeding curiosity: solving the dependence equation

from z3 import *

N=100

i1 = Int("i1")

i2 = Int("i2")

# consider a loop like this:

#  for i = 1 to N

#   a[phi1(i)] = a[phi2(i)] + b[i]

# So the dependence equation is

#   exists i1, i2: 1<i<n s.t. phi1(i1) == phi2(i2)

def DependenceTest(bounds, dependence_equation):    

    s = Solver()    

    s.add( bounds, dependence_equation )    

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model()

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])
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print("for i = 1 to N")

print("  a[i] = a[i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2-1 )

Example 1:

for i = 1 to N

  a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Just add the constraints and call the solver

(not examinable)



Feeding curiosity: algorithms for parallelising 

compilers - solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])
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print("for i = 1 to N")

print("  a[i] = a[i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2-1 )

Example 1:

for i = 1 to N

  a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Loop-carried true dependence found, for example 
when:

i1 = 1

i2 = 2

No loop-carried anti-dependence is present

Extend to distinguish loop-carried true and anti-dependencies



Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])
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print("for i = 1 to N")

print("  a[i] = a[i] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2 )

Example 2:

for i = 1 to N

  a[i] = a[i] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 1 (RHS)

No loop-carried true dependence is present

No loop-carried anti-dependence is present

In this case the dependence is present but not loop-carried



Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])
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print("for i = 1 to N")

print("  a[2*i] = a[2*i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                2*i1 == 2*i2-1 )

Example 3:

for i = 1 to N

a[2*i] = a[2*i-1] + b[2*i]

No dependence is present



Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])
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print("for i = 1 to N")

print("  a[3*i] = a[5*i-10] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                3*i1 == 5*i2-20 )

Example 4:

for i = 1 to N

  a[3*i] = a[5*1-20] + b[i]

Dependence is found, for example when:

i1 = 5 (LHS)

i2 = 7 (RHS)

Loop-carried true dependence found, for example 
when:

i1 = 5

i2 = 7

Loop-carried anti-dependence found, for example 
when:

i1 = 15

i2 = 13

In this case we have both true and anti-dependences: weird!



S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised
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+

+

+

+

+

+
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A[3]
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A[7]

A[8]



S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised
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+

+

+

+

+

+

+

0B[1]

B[2]

B[3]

B[4]

B[5]

B[6]
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A[1]

A[2]
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A[4]

A[5]

A[6]

A[7]

A[8]

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

But parallel is possible:



Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

Each step is a 

vector-parallel 

operation

Of decreasing 

size

We have log(N) 

steps



S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

We can see that the last element is computed with a reduction tree 

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised



S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

All the elements are computed by reduction trees of depth log(N) – for example element 7

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised



Feeding curiosityS1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2B: 1

2 2 2 2 21 +
2 3 4 4 4 4 4B: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8B: 1

>>2:

“Parallel scan” or “parallel prefix sum”

This is the 

“naïve” parallel 

scan

It does more 

work than the 

sequential scan – 

but it does use 

parallelism

There are “work-

efficient” parallel 

scans

Eg see Mark 

Harris, GPU 

Gems Ch39 
https://developer.nvidia.com/gp

ugems/gpugems3/part-vi-gpu-

computing/chapter-39-parallel-

prefix-sum-scan-cuda
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