Advanced Computer Architecture
Chapter 8:

Vectors, vector instructions, vectorization and
SIMD

= 7ptbase 27pt base e Scalar 4 SVE128 v SVE256

+ SVE512 = SVE1024 + SVE2048
64 SVE256

i

!

| SVE128
32 |

|

i

(63 4
(m]

¢

v Scalar

B 7/ j November 2025

4 * Paul H J Kelly

GFlop/s

2

1
0.0625 0.1250 0.2500 0.5000 1.0000
Arithmetic Intensity (Flop/Byte)

This section has contributions from Fabio Luporini (PhD & postdoc at Imperial, now CTO of
DevitoCodes) and Luigi Nardi (ex Imperial and Stanford postdoc, now an academic at Lund
University and founder at https://www.dbtune.com/).

Armejach, A., Caminal, H., Cebrian, J.M. et al. Using Arm’s scalable vector extension on stencil codes. J
Supercomput 76, 2039-2062 (2020). https://doi.org/10.1007/s11227-019-02842-5

https://www.dbtune.com/

The plan2

wReducing Turing Tax
wIncreasing instruction-level parallelism

i»Roofline model: when does it matter?
i»Vector instruction sets

i Automatic vectorization (and what stops it from working)
»How to make vectorization happen

Lane-wise predication
w»How are vector instructions actually executed?

And then, in the next chapter: GPUs, and Single-
Instruction Multiple Threads (SIMT)

Arithmetic Intensity

Processor Type Peak GFLOP/s Peak GB/s Ops/Byte |Ops/Word
—|E5-2690 v3* SP |CPU 416 68 ~6 ~24
1= E5-2690v3 DP |CPU 208 68 ~3 ~24
<|K40** P GPU 4,290 288 ~15 ~60
g K40 DP GPU 1,430 288 ~5 ~40

If the hardware has high Ops/Word, some code is likely to be bound by operand delivery

(SP: single-precision, 4B/word; DP: double-precision, 8B/word)

Arithmetic intensity: Ops/Byte of DRAM traffic

Y O(log(N)) i
Yo TN A Cial PARSN
@ = ..
Arithmetic Intensity
® ® ® ®
Spectral
S
mF;?rriie methods Dense N-body
SpMV (FFTs) LG (Particle
(SpMV) (BLAS3) thod
Structured | Structured methods)
grids grids
(Stencils, (Lattice N is the problem size
PDEs) methods) O(N) = Big-0 notation

Hennessy and Patterson’s Computer Architecture (5th ed.)

* E5-2690 v3 aka Haswell (launched 2014) ** Kepler (2013)

Roofline Model: Visual Performance Model
 Bound and bottleneck analysis (like Amdahl’s law)

* Relates processor performance to off-chip memory
traffic (bandwidth often the bottleneck)

Sandy Bridge Sandy Bridge
Memory Bandwidth 17.5 GB/ec Memory Bandwidth 17.5 GB/ec

Peak FP 217.6 GFLOPs/sec
FP balar ~e

SIMD 10a.8 GFL OPs/sec

1011
1011

TLP only 13.6 GFL OPs/sec

101(]
101(1

Monacore 3.4 GFLOPs/sec

Performance [FLOPs/sec]
Performance [FLOPs/sec]

107
10°
(

108
108

107 10° 10! 102

107! 10° 10t 10%
Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]
4
Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures, Samuel Williams et al, CACM 2008

Roofline Model: Visual Performance Model

NVIDIA H100 roofline as shown in NVIDIA’s Nsight tool

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/

* The ridge point
offers insight into
the computer’s
overall performance
potential

* It tells you whether
your application
should be limited by
memory bandwidth,
or by arithmetic
capability

The “roofline” concept is often
used in performance
optimisation tools

To show how close you are to
the limit

And what you can do about it

Throughput [GFLOPS]

Classic Roofline
AMD EPYC 7742 64-Core Processor
sockets(2), cpus(256), base frequency(2250.00 MHz)

10000.00 .

1000.00

100.00 1

System Al (SP FP) : 22,50 FLOP/B
@ System Al (DP FP) : 11.25 FLOP/B

myapp Al : 1,11 FLOP/B Throughput: 37.90 GFLOPS Vlmmmwps

FLOPS

AMD Zen?2 roofline
as shown in AMD’s
uprof tool

0.100 1.000

Arithmetic Intensity [FLOP/Byte]

10.000 100.000

5
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocld=tGwsnZYhKNayV9CCIRa1l8Q

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q
https://docs.amd.com/r/en-US/57368-uProf-user-guide/Command-Line-Options?tocId=tGwsnZYhKNayV9CClRa18Q

Example from my research: Firedrake: single-node AVX512 performance i

Skylake cross-element vectorization

2000
== Theo peak
1000 1 ====|ntel LINPACK
500 -
' GFLOPs achieved
2 S00- for residual
g assembly for
T 100 - various element
°] types, with
>0 polynomial
degree ranging
207 from 1-6
10 ——

109 10! 102 103

Arithmetic intensity
Firedrake implements a domain-specific language for partial differential equations — different equations,
and different discretisations — have differeing arithmetic intensity:

® mass-tri B helmholtz - tri * laplacian - tri A elasticity - tri ¥ hyperelasticity - tri

® mass-quad B helmholtz - quad * laplacian - quad A elasticity - quad ¥ hyperelasticity - quad
mass - tet helmholtz - tet laplacian - tet elasticity - tet hyperelasticity - tet

® mass-hex B helmholtz - hex * laplacian - hex A elasticity - hex V¥ hyperelasticity - hex

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 —march=native)]

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al
https://arxiv.org/abs/1903.08243

https://arxiv.org/abs/1903.08243

Vector instruction set extensions
 Example: Intel’'s AVX512
* Extended registers ZMMO0-ZMM31, 512 bits wide

— Can be used to store 8 doubles, 16 floats, 32 shorts, 64
bytes

— So instructions are executed in parallel in 64,32,16 or 8
“lanes”

* Predicate registers kO-k7 (kO is always true)
— Each register holds a predicate per operand (per “lane”)

— So each k register holds (up to) 64 bits*

* Rich set of instructions operate on 512-bit operands

AV X512: vector addition

— Assembler:
 VADDPS zmm1 {k1Hz}, zmm?2, zmm3

— In C the compiler provides “vector intrinsics” that
enable you to emit specific vector instructions, eg:

e res=_mm512 _maskz_add ps(k, a, b);

— Only lanes with their corresponding bit set in
predicate register k1 (k above) are activated

— Two predication modes: masking and zero-masking

* With “zero masking” (shown above), inactive lanes produce
Zero

o_7”

* With “masking” (omit “z” or “{z}”), inactive lanes do not
overwrite their prior register contents

AVX512: vector addition
— Assembler:

* VADDPS zmm1 {k1Kz}, zmm2, zmm3

— In Cthe compiler provides “vector intrinsics” that
enable you to emit specific vector instructions, eg:

* res =_mm512_maskz_add_ps(k, a, b);

— Only lanes with their corresponding bit in k1 are
activated

— Two predication modes: masking and zero-masking

* With “zero masking” (shown above), inactive lanes produce
zero

* With “masking” (omit “z" or “{z}"), inactive lanes do not
overwrite their prior register contents

More formally...

FOR j<0 TO KL-1
i<j* 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]¢-SRC1[i+31:i] + SRC2[i+31:i]
ELSE
IF *merging-masking™ ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] < 0
FI
FI;
ENDFOR;

10

Can we aet the compiler to vectorise?

C' | @ Secure | https://godbolt.org % ¢ w [

Compiler Explorer

C++ source #1 X O x86-64 gcc 5.4 (Editor #1, Compiler #1) C++ X O
Av H Save/Load + Add new...» C++ - x86-64 gcc 54 v 03 -prt-inD
L float c[1024]; Av 11010 | /' \s+ Intel Demangle
2 float a[1e24];
3 float b[1024]; W Libraries = < Add new...»
4 void add () 1 Z3addv: .
> { 2 xorl %eax, %eax
6 for (int i=e; i < 1024; i++) i 2 Lo
7 c[i]=a[i]+b[i]; 4 movaps a(%rax), %xmme
8 } 5 addq $16, %rax
6 addps b-16(%rax), %xmme
ff- . I . I 7 movaps Z%xmm@, c-16(%rax)
In SU ICIent y Slmp e 8 cmpq $4096, %rax
= jne .L2
cases, no problem: 10 rep ret
11 b
Gce reports: 12 .Zero 4096
test.c:6:3: note: loop vectorized 13 a
14 .Zero 4096
15 ¢
16 .Zero 4096

A output (0/11) | g++ (GCC-Explorer-Build) 5.4.0 - cached (4432 &

&« C' | @ Secure | https:;//godbolt.org

Compiler Explorer

x86-64 gcc 5.4 (Editor #1, Compiler #1) C++ X =

C++source #1 X O X

A~ 4 Add new...»

float «c[1024];
float a[l1l024];
float b[1024];
void add (int N)

M save/Load C++ v

A-

for (int i=0; i < N; i++)
c[i]=a[i]+b[i];

00O NN O U1 B W N

18
{ 13 .L5:
5

If the trip count is not

known to be divisible by 4:

gcc reports:

test.c:6:3: note: loop vectorized 21
test.c:6:3: note: loop turned into non-loop; it never loops. “ |
test.c:6:3: note: loop with 3 iterations completely unrolled s |

x86-64 gcc 5.4

11010

1 _Z3addi:

testl
jle
leal
leal
shrl
addl
cmpl
leal
joe
xorl

movsly %edx, ¥rdx

A Output (0/3)

11

w W

0

ot -03 -fopt-info

== Add new...v

B OFE NS J \s+ Intel Demangle W Libraries

%edi, ¥edl

L1

-4(%rdi), %edx
-1(%rdi), %ecx
$2, ¥edx

$1, %edx

$2, Xecx

Basically the same
vectorised code as

before

Three copies of the
non-vectorised loop

body to mop up the
additional iterations
B in case N is not
SN Jivisible by 4

%ommB, cf,%rdx,4)
1(%rax), Xedx
¥edx, ¥edi

L1

$2, %eax
a(,%rdx,4), Fxmmd
%eax, ¥edi
b{,%rdx,4), %xmmd

Q

g++ (GCC-Explorer-Build) 5.4.0 - 377ms (57608)

Compiler Explorer

1 void add(float *__restrict__ c, e IR e | e | e o
2 float * restrict a, »

3 float * restrict b, I

4 int N)

5 {

6 | for (int 1=0; i <= N; i++) Three copies of the non-

. c[i]=a[i]+b[i]} : vectorised loop body to

g } . align the start address of

the vectorised code on a
32-byte boundary

If the alignment of the Basically the same

opera nd pOinte rs is not s vectorised code as before

. Three copies of the non-
knOWH] vectorised loop body to
gcc reports: mop up the additional

test.c:6:3: note: loop vectorized

test.c:6:3: note: loop peeled for vectorization to enhance alighment iterations in case N is not
test.c:6:3: note: loop turned into non-loop; it never loops. divisible by Vil
test.c:6:3: note: loop with 3 iterations completely unrolled :
test.c:1:6: note: loop turned into non-loop; it never loops.

test.c:1:6: note: loop with 4 iterations completely unrolled

(&)

Aoutput (06) g++ (GCC-Explorer-Build) 5.4.0 - 578ms (59348)

| asked chatgpt to turn this back into C code:

#include <immintrin.h> // For SSE/AVX instructions

void process_arrays(float *dst, const float *src1, const float *src2, int n) {

}

if (n<=0){
return; // No work to do for non-positive sizes

}

int aligned_start = ((uintptr_t)src1 & 15) >> 2; // Align offset calculation
aligned_start = (-aligned_start) & 3; // Calculate start for alighment
if (aligned_start > n) {

aligned_start = n; // Prevent overflow

}
int remainder = n >4 ? aligned_start : n;

// Process initial unaligned elements

for (inti=0; i < remainder; ++i) {
dst[i] = srcl[i] + src2[i];

}

int processed = remainder;

// Vectorized processing
if (n>4){
int chunks = (n - remainder) / 4;
for (inti=0; i< chunks; ++i) {
__m128 vecl =_mm_loadu_ps(srcl + processed); // Load 4 floats from srcl
__m128 vec2 =_mm_loadu_ps(src2 + processed); // Load 4 floats from src2
__m128 result =_mm_add_ps(vecl, vec2); // Add the vectors
_mm_storeu_ps(dst + processed, result); // Store result in dst
processed += 4;
}
}

// Process remaining elements

while (processed < n) {
dst[processed] = src1[processed] + src2[processed];
++processed;

}

13

Compiler Explorer

C++ source #1 % O > | x86-64 gcc 5 4 (Editor #1, Compiler #1) C++ X u]

Av | HMsavelload | +Addnew.~ G+ v | x86-64gcc54 ¥ .03 -foptinfo
1 VOld add (_Float *C s I A-: :’:[):1[)” N s+ Intel Demangle WLibraries = 4 Addnew ~ , B
2 float *a, :

float *b, 5 Check whether the memory
int N) regions pointed to by ¢, b and

{ a might overlap

3
4
5
6 for (int i=0; i <= N; i++)
7 c[i]=a[i]+b[i]; :
8 } Three copies of the non-
: vectorised loop body to align
the start address of the
vectorised code on a 32-byte

boundary

Basically the same vectorised

If the pointers might be EERIR E5 IDEVEE

I- . Three copies of the non-
dallases: :

vectorised loop body to mop
gce reports: up the additional iterations in
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop versioned for vectorization because of o case N is not divisible by 4

possible aliasing o ;

test.c:6:3: note: loop peeled for vectorization to enhance alignment - Non-vector version of the Ioop
test.c:6:3: note: loop turned into non-loop; it never loops. = for the case when ¢ m|ght
test.c:6:3: note: loop with 3 iterations completely unrolled .

test.c:1:6: note: loop turned into non-loop; it never loops. overlap with a or b
test.c:1:6: note: loop with 3 iterations completely unrolled

A Output (07) g++ (GCC-Explorer-Build) 5.4.0 - 464ms (71118)

[&]

What to do if the compiler just won’t vectorise
your loop? Option #1: ivdep pragma

vold add (float *c, float *a, float *b)

{
#fpragma 1ivdep
for (int 1=0; i1 <= N; i++)
cli]=al1]+tb[1];

J

IVDEP (lgnore Vector DEPendencies) compiler hint.
Tells compiler “Assume there are no loop-carried dependencies”

This tells the compiler vectorisation is safe: it might still not vectorise

What to do if the compiler just won’t vectorise
your loop? Option #2: OpenMP 4.0 pragmas

volid add (float *c, float *a, float *b)
{

- fpragma omp simd

for (int i1i=0; 1 <= N; 1i++)
cli]=alil+b[1];

}
Indicates that the loop can be transformed into a SIMD loop
(i.e. the loop can be executed concurrently using SIMD instructions)

#pragma omp declare simd
void add (float *c, float *a, float *b)

functionwise: |

}
"declare simd" can be applied to a function to enable

SIMD instructions at the function level from a SIMD loop

xc=*a+*b;

Tells compiler “vectorise this code”. It might still not do it...

Source: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

16

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

What to do if the compiler just won’t vectorise
yvour loop? Option #3: SIMD intrinsics:

vold add (float *c, float *a, float *b)
{

- ml28* pSrcl = (ml28%*) a;
- ml28* pSrcz = (ml28%*) b;
- ml28* pDhest = (ml28%*) c;
for (int 1=0; 1 <= N/4; i++)
*pDest++ = mm add ps(*pSrcl++, *pSrcl++);

}
Vector instruction lengths are hardcoded in the data types and

Intrinsics

This tells the compiler which specific vector instructions to
generate. This time it really will vectorise!

17

8

What to do if the compiler just won’t

Basically... think of each vectorise your loop? Option #4: SIMT

lane as a thread

Or: vectorise an outer
loop: Use predication to handle:

| e nested if-then-else
#fpragma omp simd

for (int 1=0; i<N; ++1i) { y VVhHEIOOpS
if(){..} else {..)} * For loops
for (int J=..) {..) e Function calls
while (...) {..}
£ (...)

)
In the body of the

vectorised loop, each lane
executes a different
iteration of the loop —
whatever the loop body

code does More later — when we look at GPUs

C @& godboltorg

—_— Watch C++ Weekly to learn new C++ ‘
— EEPMLSIRLEE ‘ Add..~ ” More ~ [y X ‘ Sharew || Other~ || Policies ™
features
C source #1 X o X x86-64 icc 19.0.1 (Editor #1, Compiler #1) C X o X
A~ BSave/load +Addnew..~ WV Vim C v x86-64 icc 19.0.1 v @ -xCORE-AVX512 -qopt-zmm-usage=h
1 // icc: -xCORE-AVX512 -qopt-zmm-usage=high -qo A-
2 #define ALIGN __attribute__ ((aligned (64)))
3 //#define ALIGN 0O 0O 0O 0O
4 11010 Ja.out .LXO0: lib.f: text // \s+ Intel Demangle
5 float ALIGN c[1024];
6 float ALIGN a[1024]; B Libraries¥ <4 Add new.. > 9§ Add tool..~
7 float ALIGN b[1e24]; | 1 add: |
8 2 xor eax, eax
9 3 .B1.2: # Preds ..B1.2 ..Bl.1
10 void add () 4 vmovups zmm@, ZMMWORD PTR [a+rax*4]
11 { 5 vaddps zmml, zmm@, ZMMWORD PTR [b+rax*4]
12 for (int i=0; i < 1024; i++) 6 vmovups ZMMWORD PTR [c+rax*4], zmml
13 c[i]=a[i]+b[i]; 7 add rax, 16
14 } 8 cmp rax, 1024
9 jb ..B1.2 # Prob 99%
10 vzeroupper
11 ret
C' B Output (0/0) xB6-64icc 19.0.1 § - 679ms (86148)
#1 with x86-64 icc 19.0.1 X o X

A~ [OWrap lines

Compiler returned: ©

Cc

& godbolt.org

— Add ” > Watch C++ Weekly to learn new C++ - - e
= Add... > [| More ~ Sharew || Other~ olicies =
—_— EXPLORER C 0 features 1a 1€l ICles
C source #1 X O X | x86-64 icc 19.0.1 (Editor #1, Compiler #1) C X o X
A~ @Save/load +Addnew..~ W Vim C v x86-64 icc 19.0.1 v & -xCORE-AVX512 -qopt-zmm-usage=h

1 // icc: -xCORE-AVX512 -qopt-zmm-usage=high -qo® A~

2 #define ALIGN __ attribute__ ((aligned (64)))

3 //#define ALIGN 0 0 0 0

4 11010 Ja.out LX0: lib.f: text // \S+ Intel Demangle

5 float ALIGN c[1024];

6 float ALIGN a[1024]; & Libraries~ =+ Add new..~ %3 Add tool..~

7 float ALIGN b[1e24]; 1 add: N

3 int ALIGN ind[1624:|_; 2 xor eax, eax

9 3 ..B1.2: # Preds ..B1.2 ..Bl.1

10 void add () 4 vmovups zmm®, ZMMWORD PTR [ind+rax*4]

11 { 5 vpcmpegb ki1, xmm@, xmme

12 for (int i=0; i < 1024; i++) _ 6 vpxord zmml, zmml, zmml

13 c[i]=a[i]+b[ind[i]]; 7 vgatherdps zmm1{k1}, DWORD PTR [b+zmm@+*4]

14, } 8 vaddps zmm2, zmml, ZMMWORD PTR [a+rax*4]

9 vmovups ZMMWORD PTR [c+rax*4], zmm2
. . . add rax, 16
Indirection: b[ind[]] cmp rax, 1024
We h ist taini t f int jb ..B1.2 # Prob 99%
€ Nave a register containing a vector or pointers vzeroupper

We need a “gather” instruction: et

 Avector load

* That loads from a different address in each lane

(how can this be implemented efficiently??)

C' EOutput (0/0) x86-64icc 19.0.1 § - 946ms (93598)

#1 with x86-64 icc 19.0.1 X o X

A~ [OWrap lines

Compiler returned: ©

< C & godboltorg

— Watch C++ Weekly to learn new C++ ,
— EQPMLEI&EE ‘ Add..~ H More > [y X Sharew || Other~ || Policies >
features
C source #1 X O X x86-64 icc 19.0.1 (Editor #1, Compiler #1) C X O X
A~ BSave/load +Addnew..¥ WV Vim C = x86-64icc 19.01 v & -xCORE-AVX512 -qopt-zmm-usage=h
1 // 1cc: -xCORE-AVX512 -qopt-zmm-usage=high -qo’ A~
2 #define ALIGN __attribute__ ((aligned (64)))
3 //#define ALIGN O O 0 0
4 11010 Ja.out LXO: lib.f: text / \s+ Intel Demangle
5 float ALIGN c[10824];
6 float ALIGN a[1024]; & Libraries~ < Addnew..~ % Add tool..~
7 float ALIGN b[1824]; 1 add: T
8 2 xor eax, eax
9 void add () 3 ..Bl.2: # Preds ..B1.2 ..Bl1l.1
1e { 4 vmovups zmm@, ZMMWORD PTR [a+rax*4]
11 for (int i=6; i < 1024; i++) L 5 vaddps zmml, zmm@, ZMMWORD PTR [b+rax*4]
12 // if (a[i]!=e.0) 6 vmovups ZMMWORD PTR [c+rax*4], zmml
13 c[i]=a[i]+b[i]; 7 add rax, 16
14 } 8 cmp rax, 1024
9 jb ..B1.2 # Prob 99%
10 VZeroupper
11 ret
c EOutput (0/0) x86-64icc 19.0.1 § - 1086ms (3614B)
#1 with x86-64 icc 19.0.1 X o X

A~ [OWrap lines

Compiler returned: ©

6

C & godboltorg

—* COMPILER ‘ . [Watch C++ Weekly to learn new C++] ,_ .
—3 Add..~ || More~ X Sharew || Other~ || Policies >
C EXPLORER features
C source #1 X O X | x86-64 icc 19.0.1 (Editor #1, Compiler #1) C X O X
A~ R save/load < Addnew..¥ WV Vim C M x86-64 icc 19.0.1 v @& -xCORE-AVX512 -qopt-zmm-usage=h
1 // icc: -xCORE-AVX512 -gopt-zmm-usage=high -qo A~
2 #define ALIGN __attribute__ ((aligned (64)))
3 //#define ALIGN 0 0 0 0
4 11010 Ja.out .LX0: lib.f: text /! \s+ Intel Demangle
5 float ALIGN c[1824];
6 float ALIGN a[1824]; E Libraries~ = Addnew..~ €2 Add tool..~
7 float ALIGN b[1824]; 1 add:]
8 2 xor eax, eax
9 void add () 3 vpxord zmme, zmm@, zmme
10 { 4 ..Bl1.2: # Preds ..B1.2 ..Bl.1
11 for (int i=0; i < 1024; i++)] 5 vmovups zmml, ZMMWORD PTR [a+rax*4]
12 if (a[i]!=e.9) 6 vempps ki, zmml, zmme, 4
13 c[i]=a[i]+b[i]; 7 vaddps zmm2, zmml, ZMMWORD PTR [b+rax*4]
14 } 8 vmovups ZMMWORD PTR [c+rax*4]{k1}, zmm2
9 add rax, 16
10 cmp rax, 1e24
Conditional: a[i]!=0.0 Jb B2 # Prob 9%
. L. vzeroupper
We have a register containing a vector of Boolean ret
predicates
We use a predicated vector instruction
Lanes with inactive predicates are idle
C' EOutput (0/0) x86-64icc 19.0.1 § - cached (38678)
o X

#1 with x86-64 icc 19.0.1 X

A~ [OWrap lines

Compiler returned: ©

Vector execution alternatives

Implementation may execute n-wide vector operation with an n-wide ALU
— or maybe in smaller, m-wide blocks

i vector pipelining:
» Consider a simple static pipeline

» Vector instructions are executed serially, element-by-element,
using a pipelined FU — or in n-wide chunks if your FU is n-wide

» We have several pipelined Fus

» “vector chaining” — each word is forwarded to the next instruction
as soon as it is available

» FUs form a long pipelined chain
i uop decomposition:
» Consider a dynamically-scheduled 0-0-0 machine
» Each n-wide vector instruction is split into m-wide uops at decode
time
» The dynamic scheduling execution engine schedules their
execution, possibly across multiple FUs

» They are committed together

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecturel1-vector.pdf

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Vector pipelining — "chaining’

Vector Vector Vector
Scalar | Memory Pipeline Multiply Pipeline Adder Pipeline
CPU VMP VPO VP1
lhai.v >
hmul.vv >
sadd.vv > AAAAAAAA
addu g>@ AAAAAAAA
lhai.v AAAAAAAA
hmul.vv S AAAAAAAAAAAAAAAA
sadd.vv AAAAAABESAAAAAAAA
addu > AAAAAAAAAAAAAAAAN
AAAAAAAAAAAAAAAAN
l AAAAAAAA
time

Vector FUs are 8-wide - each 32-wide vector instruction is executed in 4 blocks

® " A Operations

2> |nstruction issue

Forwarding is implemented block-by-block

So memory, mul, add and store are chained together into one continuously-

active pipeline

Uop decomposition - example

AMD Jaguar

Low-power 2-issue dynamically-
scheduled processor core

Supports AVX-256 ISA
Has two 128-bit vector ALUs

256-bit AVX instructions are split
into two 128-bit uops, which are
scheduled independently

Until retirement

A “zero-bit” in the rename table
marks a register which is known to
be zero

So no physical register is
allocated and no redundant
computation is done

Figure from http://www.realworldtech.com/jaguar/4/ which includes more detail

Branch
Predictors

Instruction
Fetch Unit

k 4

[L2 ITL

-

BHU ITLB

Y

32KB L1 I-Cache (2 way) }

Jaguar Core

32B™

A 4

)

(16x16B Instr

uction Buffer]

A 4

b

[ucode]—{Decode-n] [Decode-n]

(44 Entry FP Retire Queue

2 pops

1-2 Cop™
h

. 1-2Cop™
r b 4

64 Entry Retir

e Control Unit]

i L N r l N r. X * N
18 Entry 20 Entry ;fe?;:y 2?.);':?;
SIMD Scheduler ALU Scheduler Y
L JL) | Queue Queue J
[72 SSE) 64 Integer [12Entry)
L Registers Registers) | AGU Scheduler |
]]

* + k 4 k4 A 4 h 4
(128-bit)| [128-bit [ALU Y [Load Stor A
VALU VALU ALU MUL A“'{’;U AEJ"
L VMUL J{Convert L DIV J L y

128-bit | [12801
FADD Aot 168
)\ Foiv \T\ 168 >

L2 DTLBHU DTLB

-~

.

32KB L1 D-Cache (8 way)

!

o

F 3
168
A

M~
r

.

r '1
Shared 2MB L2 Cache (16 way)

>

http://www.realworldtech.com/jaguar/4/

SIMD Architectures: discussion

Reduced Turing Tax: more work, fewer instructions
Relies on compiler or programmer

Simple loops are fine, but many issues can make it hard
“lane-by-lane” predication allows conditionals to be vectorised, but
branch divergence may lead to poor utilisation

Indirections can be vectorised on some machines (vgather, vscatter)
but remain hard to implement efficiently unless accesses happen to
fall on a small number of distinct cache lines

Vector ISA allows broad spectrum of microarchitectural
implementation choices

Intel’s vector ISA has grown enormous as vector length has been
successively increased

ARM'’s “scalable vector extension” (SVE) is an ISA design that hides
the vector length (by using a special loop branch)

Topics we have not had time to cover

i ARM’s SVE, RISCV vector extensions:

®» a vector ISA that achieves binary compatibility across machines
with different vector width and uop decomposition
i Matrix registers and matrix instructions
» Eg Nvidia’s “tensor cores”

i EXxotic vector instructions

» Collision detect (how to vectorise, for example, histogramming)
®» Permutations
» Complex arithmetic

i Pipelined vector architectures:
» The classical vector supercomputer

i Whole-function vectorisation, ISPC, SIMT

» Vectorising nested conditionals
®» Vectorising non-innermost loops
» Vectorising loops containing while loops

i SIMT and the relationship/similarities with GPUs
®» Coming!

50

Vectors, units, lanes
another attempt to clear up confusion

Let's consider Intel's AVX512 instruction set and its implementation on Skylake processors (all this applies
to other ISAs more or less).

AV512 has 32 vector registers, each 512 bits long (called "zmm0"-"zmm31"). Each register can hold a
vector - eg a vector of 16 32-bit floats (or 8 64-bit doubles). A vector add instruction does element-wise
vector addition on two vector registers, yielding a third 512-bit result. A vector FMA (“fused multiply-
add”) does r[0:15]+=a[0:15]*b[0:15] in one instruction.

Some Skylake products have just one arithmetic unit for executing such instructions, but some fancy ones
have two AVX512 vector execution units. The Skylake microarchitecture can issue up to about 4
instructions per cycle, so two out of every four instructions needs to be a vector FMA if you want to get
maximum performance on such a machine.

The word "lane" is used when you want to think about a sequence of vector instructions, but you want to
focus on just one element at a time - a vertical slice through the instruction sequence.

The word "lane" refers to the same idea as what is sometimes called "single-instruction, multiple thread"
(SIMT). This is how GPUs are programmed - its the idea behind CUDA and OpenCL. Imagine a loop
consisting of scalar (ie non-vector) instructions. That's the SIMT "view" of your code - you see what is
happening "lanewise". Now expand every instruction in the loop into a vector instruction - so the loop
does what it does on a vector of 16 lanes of data. This is the "SIMT->SIMD translation".

SIMT to SIMD translation gets tricky if the loop body contains an if-then. For this, AVX512 uses the idea of
"predication". For this purpose it has one-bit-per-lane predicate registers kO-k7. These registers can be
used to control which lanes of a vector instruction are active and which lanes do nothing.

Summary Vectorisation Solutions

1. Indirectly through high-level libraries/code generators

2. Auto-vectorisation (eg use “-O3 —mavx2 —fopt-info” and hope it
vectorises):

e code complexity, sequential languages and practices get in the
way

e Give your compiler hints and hope it vectorises:
e C99 "restrict" (implied in FORTRAN since 1956)
e #pragma ivdep
3. Code explicitly:
e |In assembly language
e SIMD instruction intrinsics
e OpenMP 4.0 #pragma omp simd
e Kernel functions:
B OpenMP 4.0: #pragma omp declare simd
B OpenCL or CUDA: more later

51

52

* Fun question if you like this sort of thing....

— What is “vzeroupper” for?

| add:

2 xor eax, eax

3 8y B - ¥ Pragds .:B1.2 .:81.1
- vmovups zmm@, ZMMWORD PTR [a+rax*4]

5 vaddps zmml, zmm@, ZMMWORD PTR [b+rax*4]
6 vmovups ZMMWORD PTR [c+rax*4], zmml

7 add rax, 16

8 cmp rax, 1024

S jb ceBlcd # Prob 99%

10 vzeroupper

11 ret

COMPILER . . _ e : : e
EXPLORER Add... More C++ Insights shows how compilers see your code ‘ Sharev | Other Palicies

C++ source #1 X x86-64 clang (trunk) (Editor #1, Compiler #1) C++ X
A~ B +~ v ~© » x86-64 clang (trunk) -03 -mavx

string.h

A~ ®Output.~ YFiter.~ M Libraries -+ Addnew..> ”Addtool..~
f(* a, * b) f(char*, char*):
memcpy(a, b, 32); | » ymmword ptr [rsi]
} ymmword ptr [1,

e EOutput(/0) x86-64 clang (trunk) i -52

More things in case you'’re interested...

& @] (] 9 httpsy//godbolt.org

& Startpage Search En.. =M Home - BBC News B Staff travel and exp... [Shareable Whiteboa...

C++ source #1 &
A~ @ +~ v B » @ C++

// icx -Ofast -march=znver4 -qopt-report
#define SIZE 10240
#define ALIGN __ attribute__ ((aligned(64)))

int ALIGN A[SIZE];
int ALIGN ind[SIZE];
int ALIGN C[SIZE];
int ALIGN D[SIZE];

[+ BN I«) B Uy B S VO R N I

10 #define IB 32
11 #define JB 32

13 void P()
14 {
15 int i, 3J;

17 for (i=@; i<SIZE; i++) {

18 C[ind[i]] += A[ind[i]] - D[i];
19 }

20}

O The

Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
Gather a vector A[ind[i:i+16]
Subtract the DJi] values:
RHS[0:16]=A[ind[i:i+16]] — DJi:i+16]
Gather the LHS[0:16] = C[ind[i:i+16]]
Add (+=): LHS[0:16] += RHS[0:16]
Scatter: C[ind[i:i+16]] = LHS[0:16]

son Gl es 09

CCC

54

& @] (] 9 httpsy//godbolt.org

& Startpage Search En.. =M Home - BBC News B Staff travel and exp... [Shareable Whiteboa...

C++ source #1 &
A~ B +~ v B » @C++

// icx -Ofast -march=znver4 -qopt-report
#define SIZE 10240
#define ALIGN __ attribute__ ((aligned(64)))

int ALIGN A[SIZE];
int ALIGN ind[SIZE];
int ALIGN C[SIZE];
int ALIGN D[SIZE];

[+ BN I«) B Uy B S VO R N I

10 #define IB 32
11 #define JB 32

13 void P()
14 {
15 int i, 3J;

17 for (i=@; i<SIZE; i++) {

18 C[ind[i]] += A[ind[i]] - D[i];
19 }

20}

55

What would happen if there were duplicate indices in
em ind?

Incrementing through indirection: ind[i]
1. Load a vector ind[i:i+16]
Gather a vector A[ind[i:i+16]
Subtract the DJi] values:
RHS[0:16]=A[ind[i:i+16]] — DJi:i+16]
Gather the LHS[0:16] = C[ind[i:i+16]]
Add (+=): LHS[0:16] += RHS[0:16]
Scatter: C[ind[i:i+16]] = LHS[0:16]

son Gl es 09

& @] (] 9 httpsy//godbolt.org

& Startpage Search En.. =M Home - BBC News B Staff travel and exp... [Shareable Whiteboa...

(E:

COMPILER .,
EXPLORER "%~

v More~ Templates

C++ source #1 &

A~

[+ BN I«) B Uy B S VO R N I

B +-v £ 2 GC++

// icx -Ofast -march=znver4 -qopt-report
#define SIZE 10240
#define ALIGN __ attribute__ ((aligned(64)))

int ALIGN A[SIZE];
int ALIGN ind[SIZE];
int ALIGN C[SIZE];
int ALIGN D[SIZE];

#define IB 32
#define JB 32

void P()
{

int i, 3J;

for (i=@; i<SIZE; i++) {
C[ind[i]] += A[ind[i]] - D[i];
}
)

56

What would happen if there were duplicate indices in
em ind?

1.

son Gl es 09

Incrementing through indirection: ind[i]

Load a vector ind[i:i+16]

Gather a vector A[ind[i:i+16]

Subtract the DJi] values:
RHS[0:16]=A[ind[i:i+16]] — DJi:i+16]

Gather the LHS[0:16] = C[ind[i:i+16]]

Add (+=): LHS[0:16] += RHS[0:16]

Scatter: C[ind[i:i+16]] = LHS[0:16]

'y
ccc C cc

It’s not parallel! We have to sum two (or more)
different values into the same C element

.LCPIA 1:
.long 63

< C @) htips://godbolt.org
P():

2
5 fI .

& Startpage Search En.. =M Home - BBC News Staff travel and exp... [0 Shareable Whiteboa... (O The 6 ol e g [AT) Vpcon |th
7 vpbroadcastd- - - -yml, - dword: ptr- [rip:+ .LCPIA 1]

8

(O]
wvpcmpegd - - ymm2, - ymm2 , - ymm2 M M —
= Add..~ More~ Templates 19 g 10215530 1 instruction checks £
EXPLORER Y . [0
2 T e i, o, om0 for duplicate valuess
C++ source #1 & [m] 13 - -VDXOF- - - XMMG, - XMMG, - XmmG . g
@ if . :movad-ymm3.[2mm3 . Add RHS into LHS in ind i'i+16 E
A~ B +- v B » Cos - s e [i:i+16] =
17 « - vpgatherdd - ymm6- {k1}, - ymmword ptr. [4*ymmd- +- C]
1 // icx -Ofast -march=znver4 -qopt-report B - . ii;ﬂﬁj“‘.’m_ W:é ;::2 e zg
2 #de‘Fine SIZE 1az4a e ‘:'-3 - wpscatterdd 1—82;grrmard ptr- [4*ymm3-+ C] {k1},-ymm4 ——
3 #define ALIGN _ attribute__ ((aligned(64))) Zik = (@)
4 ;i .LBE?_I:vmuvdqu-yme ymmword- ptr- [4*rax-+ ind]
5 int ALIGN A[SIZE]; ;; :Ei:ﬁeq'-’xmms Xm:;, :::&51,] RHS |f found, We bra nc}z
6 int ALIGN ind[SIZE]; 2 v e, to a loop over each
7 int ALIGN C[SIZE]; 3 LI Vot vy yme O g ek o P
8 int ALIGN D[SIZE]; DS Count conflicts distinct value
12 sdefine 18 22 . e e, e If no conflicts the
34 . vptest . . ymm7, - ymm? o
. 5 o skip to fast case
i #define JB 32 I g : Eiifﬁﬂe?i::? ;ﬂj - " Rough/y...
.d P() zi .LBB@_3: Add
13 Vol g +« .« -vpermd - . ymm7 , - ymmé, - ymm!
14 { b v e conflicting
15 int i, j; p Z ;Eﬁ:ﬁ:e.qim, TS Janes’ values
16 :i _LBEG—“:]“E' 1680 3 sequentially Unrolled copy
17 for (i=9, i(SIZE; i++) { 4f -+ vpcmpegh - k1, - xmm@, - xmm@
18 C[ind[i]] += A[ind[i]] - D[i]; p L
19 } :9 - vpgatherdd - -ymmé - {k1}, ymmword ptr- [4*ymmd-+ C]
20} S e v, sy s A RHS into LHS
;g -- :Ez‘:;tt-e:ggs' Tm;i:nuzzzsptr [4*ymm3.+ C] {kl},-yr.rmti .
Incrementing through indirection: ind[i] o R S et it L) tEration
56 - Vpmovsxdg - - zZmm3, - ymmd
1. Load a vector ind[i:i+16] L et s, o oyt s o]
59 . vpconflictg « - Zmmb, - Zmm3
0 Q_o 6@ . T zmm 5 - 2
2. Gather a vector Afind[i:i+16] T e, This is addressed by AVX512
6. - Vpxor s ymms , - Ymma, - ym
3. Subtract the D[i] values: P o T flict d N y)
&3 - VpCmpneg . 3 YMME, - ymm
4. RHS[O:16]=A[ind[i:i+16]] _ D[i:i+16] Zz .LBE(;_&:vaUb: -ymrni, ymm:, ymmz Con |Ct etect |nstrUCt|OnS
& - ovpermd - - ymm7 , - ymmé, - ymm .
5. Gather the LHS[0:16] = C[ind][i:i+16]] = @ \hich enable us to catch
71 . vpCmpreq; . , YMmE,, -y, . . .
6. Add (+=): LHS[0:16] += RHS[0:16] > B duplicates and serialise where
74 - Jmp- -.LBBA 7
. . . 75 .LBB@_8:
7. Scatter: C[ind[i:i+16]] = LHS[0:16] o e needed
78

Health warning

* Automatic discovery of parallelism has a bad reputation

— Deservedly! It looks great on simple examples
— But real code has complexity that means it often just doesn’t
happen

* Butin some application domains it can really work

* And some programming languages make it easier, maybe!

— Functional languages lack anti- and output-dependences (but
tend to add higher-order functions and lazy evaluation)

— Some languages control pointer ownership and aliasing

— Some programming models discourage explicit loops and
explicit elementwise subscripting

Feeding curiosity: solving the dependence equation

from z3 import *
N=100
i1=Int("i1")
i2 = Int("i2")
consider a loop like this:
fori=1toN
a[phil(i)] = a[phi2(i)] + b[i]
So the dependence equation is
existsil, i2: 1<i<n s.t. phil(il) == phi2(i2)
def DependenceTest(bounds, dependence_equation):
s = Solver()
s.add(bounds, dependence_equation)
if s.check() == unsat:
print ("No dependence is present")
else:
print("Dependence is found, for example when:")
m = s.model()
print ("i1l = %s (LHS)" % m[i1])
print ("i2 = %s (RHS)" % m[i2])

(not examinable)

Example 1:

print("fori=1to N")

print(" a[i] = a[i-1] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),
i1==i2-1)

——

fori=1toN
ali] = ali-1] + b[i]
Dependence is found, for example when:
il =1 (LHS)
i2 =2 (RHS)

November 25

Feeding curiosity: algorithms for parallelising
compilers - solving the dependence equation

def DependenceTest(bounds, dependence_equation): Exam pIe 1:
s = Solver()

s.add(bounds, dependence_equation) . n s n
if s.check() == unsat: prmt(fori=1toN)
print ("No dependence is present") print(" a[i] = a[i-1] + b[i]")
else:
print("Dependence is found, for example when:") DependenceTeSt(And(|1>=1r |1<N; |2>=1; |2<N);

m = s.model() 1 —— i
print ("1 = %s (LHS)" % ml[i1]) il==i2-1)

print ("i2 = %s (RHS)" % m[i2])

Is there a loop-carried true dependence? ‘
s2 = Solver()

s2.add(bounds, dependence_equation, i1<i2)

if s2.check() == unsat: fori=1toN
print ("No loop-carried true depende T8 present") . . .
else: a[i] = a[i-1] + bi]
print("Loop-carried true dependence found, for example when:") . .
Dependence is found, for example when:
m = s2.model()
print ("i1 = %s" % mli1]) il =1 (LHS)
print ("i2 = %s" % m[i2]) .
Is there a loop-carried anti-dependence? i2=2 (RHS)
53 = Solver() o Loop-carried true dependence found, for example
s3.add(bounds, dependence_equation, i1>i2)
if s3.check() == unsat: when:
print ("No loop-carried anti-dependence is present") i1=1
else: o 11 =
print("Loop-carried anti-dependence found, for example when:") i2=2
m = s3.model() . . X
print ("i1 = %s" % m(i1]) No loop-carried anti-dependence is present
print ("i2 = %s" % m[i2])

November 25

Feeding curiosity: solving the dependence equation

def DependenceTest(bounds, dependence_equation):
s = Solver()
s.add(bounds, dependence_equation)
if s.check() == unsat:
print ("No dependence is present")
else:
print("Dependence is found, for example when:")
m = s.model()
print ("i1 = %s (LHS)" % m[i1])
print ("i2 = %s (RHS)" % m[i2])
Is there a loop-carried true dependence?
s2 = Solver()
s2.add(bounds, dependence_equation, i1<i2)
if s2.check() == unsat:
print ("No loop-carried true depende T8 present")
else:
print("Loop-carried true dependence found, for example when:")
m = s2.model()
print ("i1 = %s" % m[i1])
print ("i2 = %s" % m[i2])
#Is there a loop-carried anti-dependence?
s3 = Solver()
s3.add(bounds, dependence_equation, i1>i2)
if s3.check() == unsat:
print ("No loop-carried anti-dependence is present")
else: o
print("Loop-carried anti-dependence found, for example when:")
m = s3.model()
print ("il = %s" % m[i1])
print ("i2 = %s" % m[i2])

November 25

Example 2:

print("fori=1to N")

print(" a[i] = a[i] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),
i1==1i2)

——

fori=1toN
ali] = ali] + b[i]
Dependence is found, for example when:
il =1 (LHS)
i2 =1 (RHS)
No loop-carried true dependence is present
No loop-carried anti-dependence is present

Feeding curiosity: solving the dependence equation

def DependenceTest(bounds, dependence_equation):
s = Solver()
s.add(bounds, dependence_equation)
if s.check() == unsat:
print ("No dependence is present")
else:
print("Dependence is found, for example when:")
m = s.model()
print ("i1 = %s (LHS)" % m[i1])
print ("i2 = %s (RHS)" % m[i2])
Is there a loop-carried true dependence?
s2 = Solver()
s2.add(bounds, dependence_equation, i1<i2)
if s2.check() == unsat:
print ("No loop-carried true depende T8 present")
else:
print("Loop-carried true dependence found, for example when:")
m = s2.model()
print ("i1 = %s" % m[i1])
print ("i2 = %s" % m[i2])
Is there a loop-carried anti-dependence?
s3 = Solver()
s3.add(bounds, dependence_equation, i1>i2)
if s3.check() == unsat:
print ("No loop-carried anti-dependence is present")
else: o
print("Loop-carried anti-dependence found, for example when:")
m = s3.model()
print ("il = %s" % m[i1])
print ("i2 = %s" % m[i2])

Example 3:

print("fori=1to N")

print(" a[2*i] = a[2*i-1] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),
2*i1 == 2%*i2-1)

——

fori=1toN
a[2*i] = a[2%*i-1] + b[2%i]
No dependence is present

November 25

Feeding curiosity: solving the deApendence equation

def DependenceTest(bounds, dependence_equation):
s = Solver()
s.add(bounds, dependence_equation)
if s.check() == unsat:
print ("No dependence is present")
else:
print("Dependence is found, for example when:")
m = s.model()
print ("i1 = %s (LHS)" % m[i1])
print ("i2 = %s (RHS)" % m[i2])
Is there a loop-carried true dependence?
s2 = Solver()
s2.add(bounds, dependence_equation, i1<i2)
if s2.check() == unsat:
print ("No loop-carried true depende T8 present")
else:
print("Loop-carried true dependence found, for example when:")
m = s2.model()
print ("i1 = %s" % m[i1])
print ("i2 = %s" % m[i2])
Is there a loop-carried anti-dependence?
s3 = Solver()
s3.add(bounds, dependence_equation, i1>i2)
if s3.check() == unsat:
print ("No loop-carried anti-dependence is present")
else: o
print("Loop-carried anti-dependence found, for example when:")
m = s3.model()
print ("il = %s" % m[i1])
print ("i2 = %s" % m[i2])

November 25

Example 4:

print("fori=1to N")

print(" a[3*i] = a[5%*i-10] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),
3*i1 == 5%i2-20)

fori=1toN

a[3*i] = a[5*1-20] + bJi]
Dependence is found, for example when:
il =5 (LHS)
i2 =7 (RHS)

Loop-carried true dependence found, for example
when:

il1=5

i2=7

Loop-carried anti-dependence found, for example
when:

il1=15

i2=13

S1: A[0]1:=0 Feeding curiosity (not examinable)
fori=1to 8 Loop-carried dependences can
S2: Al :=Ali-1] + B[] sometimes still be parallelised

i Appears to be inherently sequential

B[2
[2] A[1]
B[3] A[2]
&+
B[4] A[3]
G+
BIS1 S Af4)
)
BISI - A[5]
o
BI71 5-ALe]
8181 - Ar7
O

S1: A[0]1:=0 Feeding curiosity (not examinable)
fori=1to 8 Loop-carried dependences can
S2: Al :=Ali-1] + B[] sometimes still be parallelised

i Appears to be inherently sequential

B[1] w But parallel is possible:

B[2] A[1] B: |1 ([1|1 {111 1] 1
B[3] %3 A[2] >51: A [a [[1a][1][1] +
B[4] O A[3] Az 1|l 2 2222 2] 2
B[5] %3 A[4] >>2: 1 [2]221212] +
B[6] O A[5] A2:| 1 || 2|/ 3]||4a]lallall 4] 4
B[7] % A[6] >>4: 1|2 3| 4] +*
B[8] D A[7] As:| 1|l 2| 3|lalls5| 6| 7| s

A[8] Parallel scan” or “parallel prefix sum

S1: A[0]1:=0 Feeding curiosity (not examinable)
fori=1to 8 Loop-carried dependences can
S2: Al :=Ali-1] + B[] sometimes still be parallelised

i Appears to be inherently sequential

i But parallel implementation is possible

>>1: 1 + i Each step is a
vector-paraliel
Al:| 1 2 2 2 2 2 2 2 operation
>>2: - | ') + i Of decreasin
b&hhk \ cive 'ng
A2:]1 1 2 3 4 4 4 4
>>4: —~— , +
S » We have log(N)
A3:| 1 2 3 4 5 6 7 8 steps

“Parallel scan” or “parallel prefix sum”

S1: A[0]1:=0 Feeding curiosity (not examinable)
fori=1to 8 Loop-carried dependences can
S2: Al :=Ali-1] + B[] sometimes still be parallelised

i Appears to be inherently sequential

i But parallel implementation is possible

- NN +
S g; A

We can see that the last element is computed with a reduction tree

S1: A[0]1:=0 Feeding curiosity (not examinable)
fori=1to 8 Loop-carried dependences can
S2: Al :=Ali-1] + B[] sometimes still be parallelised

i Appears to be inherently sequential

i But parallel implementation is possible

>>4 - >>5L __ M

A3:| 1 2 3 4 5 6

B: 1 1J 1
>>1: \l <+
A1: 2{2J 2 || 2
>>2: <+
A2: 4 4 4
7

All the elements are computed by reduction trees of depth log(N) — for example element 7

S1: A[0]:=0 Feeding curiosity

fori=1to0 8
S2: AJi] :=AJi-1] + B[]
i Appears to be inherently sequential

i But parallel implementation is possible

>>1: 1 1 1 1 1 1 1

>>2: 1 2 2 2 2 2

>>4: 1 2 3 4

B: [1 2 3 4 5 6 7 8

“Parallel scan” or “parallel prefix sum”

i This is the

“naive” parallel
scan

It does more
work than the
sequential scan —
but it does use
parallelism

There are “work-
efficient” parallel
scans

Eg see Mark
Harris, GPU
Gems Ch39

https://developer.nvidia.com/gp
ugems/gpugems3/part-vi-gpu-
computing/chapter-39-parallel-
prefix-sum-scan-cuda

	Slide 1
	Slide 2: The plan
	Slide 3: Arithmetic Intensity
	Slide 4: Roofline Model: Visual Performance Model
	Slide 5
	Slide 6
	Slide 7: Vector instruction set extensions
	Slide 8: AVX512: vector addition
	Slide 9: More formally…
	Slide 10: Can we get the compiler to vectorise?
	Slide 11: Can we get the compiler to vectorise?
	Slide 12
	Slide 13: I asked chatgpt to turn this back into C code:
	Slide 14
	Slide 15: What to do if the compiler just won’t vectorise your loop? Option #1: ivdep pragma
	Slide 16
	Slide 17
	Slide 18
	Slide 31: Advanced issues: bad access patterns
	Slide 32
	Slide 37
	Slide 38
	Slide 44: Vector execution alternatives
	Slide 45: Vector pipelining – “chaining”
	Slide 46: Uop decomposition - example
	Slide 47: SIMD Architectures: discussion
	Slide 48: Topics we have not had time to cover
	Slide 50: Vectors, units, lanes another attempt to clear up confusion
	Slide 51: Summary Vectorisation Solutions
	Slide 52
	Slide 53: More things in case you’re interested…
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Health warning
	Slide 59: Feeding curiosity: solving the dependence equation
	Slide 60: Feeding curiosity: algorithms for parallelising compilers - solving the dependence equation
	Slide 61: Feeding curiosity: solving the dependence equation
	Slide 62: Feeding curiosity: solving the dependence equation
	Slide 63: Feeding curiosity: solving the dependence equation
	Slide 64
	Slide 65
	Slide 67
	Slide 68
	Slide 69
	Slide 70

