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Graphics Processors (GPUs)

* Much of our attention so far has been devoted to making a single core
run a single thread faster
 |f your workload consists of thousands of threads, everything looks
different:
— Never speculate: there is always another thread waiting with work you
know you have to do
— No speculative branch execution, perhaps even no branch prediction
— Can use FGMT or SMT to hide cache access latency, and maybe even main
memory latency

— Control is at a premium (Turing tax avoidance):
 How to launch >10,000 threads?
 What if they branch in different directions?
* What if they access random memory blocks/banks?

* This is the “manycore” world
* |nitially driven by the gaming market — but with many other applications
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A first comparison with CPUs
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® “Simpler” cores

® Many functional units (FUs) (implementing the SIMD model)

® Much less cache per core; just thousands of threads and
super-fast context switch

® Drop sophisticated branch prediction mechanisms
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NVIDIA G80 (2006)

H o ” H
Host CPU Bridge [ System memory 16 cores, each with 8 “SP” units
16x8=128 threads execute in parallel
Sketchy (but you need a lot more threads to fill the machine)
information — '”tlerface I Each core issues instructions in
. Viewport/clip/
on graphics  (|nput assembler setup/raster/zcull “warps” of 32
primitive | |
: Vertex work Pixel work Compute work | Each core up to 24-way FGMT
processing distribution distribution distribution )
I I I <
I I I I [ I I I N
TPC TPC TPC TPC TPC TPC TPC TPC CD
| 1| Il 1| |1 1| L 1|1 Il 111 | -
| 1| Il 1| |1 1| L 1|1 Il 111 | %‘
SM S SM S S SM SM SM S SM SM SM SM S SM S t
| )|l ([ [l Il 11|l ||l 1| { |l Il (| |IE I{l 1]l |l ([ |11 NI 11|l I | <
| 1|l ([ 1L 1|l Il ||l 1| { |l Il (| IL I{] 11|l || ([ 1L NI 11|l I | N
[ )|l ([ [l )|l ||l ||l 1| { |l Il (| |IE I{l 11|l | ([ 1L |l 1|l I | o
SP || 5P SP || 5P aP || SP SE 1| 5P SP 1| SP SP | SP aSP 1| SP sP 53| |SF‘ SFl |EF‘ P SP || 5P SP 1| SP SP || 5P SP | 5P SP || 5P aP || 5P %
SP || 5P SP || 5P SP || SP SF || 5P SP || SP aP |1 5P SP || SP SP 53| |SF‘ EFl |EF' SP SP || 5P SP || SP SP || SP SP || 5P SP || SP P || 5P 8
sp||se ||| s || 5P selsP ||l sP || sP sp||se |||l sP || =P sP || se ||l] sP 5=| |SF‘ SFl |EF' SP sp||sP |||l sF || P skl se||| 5P| sP sp||se (| 5P || 5P 9
S | B Bl | B se|lse |||l 5P || sP sp|lse ||| 5P| sP se|| se ||| sP ::,:l |%P -”:Fl |1=P SP se|lse ||l sF || sP se||sP |||l 5P| sP S ER N ER | ER ol
I {22 | =
Shared Shared Shared Shared Shared Shared Shared Shared | | Shared | | Shared Shared Shared Shared Shared Shared Shared —
mermory memary Memary Moy mermory MEmory MEmory memaory MEmory memaory MEmory memary Mermary Memaory MEmaory memaory E
Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit qV]
e || || T || || e || || e || || = =
I I I I | I I I I I I I | | I I p)

Interconnection network

—/

Ragter opeTration Processor ( Il?OP)

| | | |
ROP ROP ROP * ROP ROP ROP
DRAM DRAM DRAM DRAM DRAM DRAM
No L2 cache coherency problem, data can be in only one cache. Caches are small ROP performs colour and depth frame buffer

operations directly on memory
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 10



Texture/Processor Cluster (TPC)
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NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)
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e SMC: Streaming
Multiprocessor controller

e MT issue: multithreaded
instruction fetch and issue
unit

e C cache: constant read-only
cache

e | cache: instruction cache

« Geometry controller:
directs all primitive and
vertex attribute and
topology flow in the TPC

e SFU: Special-Function Unit,
compute trascendental
functions (sin, cos, log X,
1/X)

e Shared memory: scratchpad
memory, i.e. user managed
cache

» Texture cache does
interpolation




NVIDIA’s Tesla micro-architecture
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Combines many of the ideas we have learned about:

 Many fetch-execute processor devices (16 “SMs”)

* Each one uses fine-grain multithreading (FGMT) to run 32 “warps” per SM
NVIDIA is confusing about terminology!
Warps on a GPU are like threads on a CPU
Threads on a GPU are like lanes on a SIMD CPU

 MT issue selects which “warp” to issue from in each cycle (FGMT)
 Each warp’s instructions are actually 32-wide SIMD instructions

* Executed in four steps, using 8 SPs (“vector pipelining”, Ch08)

e With lanewise predication (Ch08)

 Each SM has local, explicitly-programmed scratchpad memory
» Different warps on the same SM can share data in this “shared memory”

e SM’s also have an L1 data cache (but no cache-coherency protocol)

* The chip has multiple DRAM channels, each of which includes an L2 cache
(but each data value can only be in one L2 location, so there’s no cache
coherency issue at the L2 level)

 There are also graphics-specific mechanisms, which we will not discuss
here (eg a special L1 “texture cache” that can interpolate a texture valuey



Host CPU H Bridge |—| System memory I e S I a l I l e I I I O ry’
GPU °
| Host interface i I
l T InNterconnec
|Input assembler solupfiasierzoul 4
I I
Vertex work Pixel work Compute work
distribution distribution distribution C O n t ro
I | |
[ [ [ [ | [ [ |
TPC TPC TPC TPC TPC TPC TPC TPC
[ 1{ |1 1( (1 1] |1 1 I 1{ |1 1{ |1 |
[ 1{ |1 i 1] |l 1) | I 1| |1 1{ |1 |
SM SM SM SM SM M SM SM SM SM SM M SM SM SM SM
[ I [ 1L 111 1| |1 1| 11l ] 1| ||l 1| |1 1| {11E 1| [T 11 |l (L (I I |
[ 1L [ 11 1111 I 11 111 M C—|| |l 1 [ ([T Il ([ 111 I ]
I | —
(0 3 {3 [ [ [ | R [
1 | () (| | | | T O | fE | (D ) | O | (T
SSSSSS ﬁ' Shared Shared Shared Shared Shared Shared ar E Shared Shared Shared Shared Shared
MEmo ! Memol IMamol ! I'I'NE.'I"I"IOI'! Memol ! memol ! memory memony 0 mel memoil ! I"I"ISI”I'IOF:'l_I IITEFI"ICII'! ITISI”I'IOI! memorg
Texture unit Texture unit Texture unit Texture unit Texiure Texture unit Texture unit
|| (| = |_ [ ]
I I [ [ | | | | | | | | [ [ [ [
( Interconnection network )
[ [ [ ] | |
RoP * "oP * "oP * FoP * RoP * RoP *
DRAM DRAM DRAM DRAM DRAM DRAM

ISM’s ﬂl)so have an L1 data cache (but no cache-coherency protocol — flushed on kernel
aunc
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but each data value can only be in one L2 location, so there’s no cache coherency issue
at the L2 level

Tesla has more features specific to graphics, which are not our focus here:
— Work distribution, load distribution
— Texture cache, pixel interpolation
— Z-buffering and alpha-blending (the ROP units, see diagram) 13



CUDA: using NVIDIA GPUs for general computation

TPC
Geometry controller * Designed to do rendering

SMC * Evolved to do general-purpose computing
SM SM (GPGPU)

| cache | cache

—— —But to manage thousands of threads, a new
Soaore | 1T Coaone programming model is needed, called CUDA
(Compute Unified Device Architecture)

—CUDA is proprietary, but the same model lies
behind OpenCL, an open standard with
implementations for multiple vendors’ GPUs
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srullsrul| |[srullsrul| | © GPU evolved from hardware desighed specifically
Shared Shared around the OpenGL/DirectX rendering pipeline,
memory memaory . .
with separate vertex- and pixel-shader stages

- e “Unified” architecture arose from increased
sophistication of shader programs

We focus initially on NVIDIA architecture and terminology. AMD GPUs are quite similar, and

the OpenCL programming model is similar to CUDA. Mobile GPUs are somewnhat different
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CUDA Execution Model

* CUDA is a C extension

— Serial CPU code C"”E = =Y
eria
— Parallel GPU code (kernels) Code
e GPU kernel is a C function Grid 1
— Each thread executes kernel code Kernel Block  Block  Block
T = (00 (1, 0) (2, 0)
— A group of threads form a thread | ; 1
block (1D, 2D or 3D) Block” Block ' Block
. . Serial ©4 1) @21
— Thread blocks are organised into a Code S — R
grid (1D, 2D or 3D) " Gridz
— Threads within the same thread Kemel | | 7
block can synchronise execution, ]
and share access to local scratchpad Block (1, 1)
memory -

Key idea: hierarchy of parallelism, to handle thousands of
threads

Thread blocks are allocated (dynamically) to SMs, and run
to completion

Source: CUDA programming guide

Threads (warps) within a block run on the same SM, so can
share data and synchronise

Different blocks in a grid can’t interact with each other



~_global  wvoid daxpy(int N,
double a,
double* x,
double* y) {

int i = blockIdx.x *
blockDim.x + CUDA
threadIdx.x; kernel

if (i < N)
y[i] = a*x[1i] + y[1]~

CPU code to launch
kernel on GPU

int main () {
// Kernel setup
int N = 1024;
int blockDim = 256;
int gridDim = N / blockDim;

// Invoke DAXPY :

C version for
daxpy(n, 2.0, x, y); comparison
// DAXPY in C

void daxpy (int n,
double a,
double* x,
double* y) {
for(int i=0; i < n; ++1i)
y[i] = a*x[1i] + yI[i]:;
} fully parallel loop

CUDA example: DAXPY

// These are the threads per block
// These are the number of blocks

daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);, // Kernel invocation

N Kernel invocation (“<<<...>>>”’) corresponds to enclosing loop nest, managed b
P g P g y

hardware
» Explicitly split into 2-level hierarchy:

blocks (256 threads that can share ‘“‘shared’” memory), and grid (N/256 blocks)
» Kernel commonly consists of just one iteration but could be a loop

» Multiple tuning parameters trade off regli6ster pressure, shared-memory capacity

and parallelism



PTX Example (SAXPY code) >

NVIDIA

cvt.u32.ul6 S$Sblockid, %ctaid.x; // Calculate i from thread/block IDs
cvt.1n32 .16 Sblocksize, %ntid.x;
ext.u32.ul6 Stid, ftid.=;
mad24.lo.u32 51, Sbhblockid, Sblocksize, Stid:;
1ld.param.u32 $n, [N]; // Nothing fodo if n< i
setp.le.u32 $pl; Sn, Si; ~_global  wvoid daxpy(int N,
@Spl bra $L finish; double a,

double* x,
mul.lo.u32 Seffset, $i, 4; // Load y[i] double* y)
ld.param.u32 Syaddr, [Y]; int i = blockIdx.x *
add.u32 $ya§dr, Syaddr, Soffset; blockDim.x +
ld.global.f32 Sy i, [$yaddr+0]; _ threadIdx.x;
ld.param.u32 Sxaddr; [X]:; // Load Xx[i] : :
add.u32 $xaddr, S$xaddr, Soffset; it (1 <N . .
1d.global.£32 $x i, [$xaddr+0]; yla] = a*x[1] + ylal;
1d.param.f32 Salpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32 Sy 1, Salpha, Sx iy Sy i;

st.global «£32 [Syaddr+0], 8y 1i;

SIE: Finish: exit;

This is PTX: a pseudo-assembly code that is translated to proprietary ISA

Threads are scheduled in hardware

Each thread is provided with its position in the Grid through registers %ctaid, %ntid, %tid

p1is a predicate register to determine the outcome of the “if”

The conditional branch “@%$p1 bra $L_finish” may be (probably is) translated to predication in the target ISA

(Joy Lee and others, NVIDIA)



Runnlng DAXPY (N=1024) on a GPU
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Host (via /O bus, DMA)



Runnlng DAXPY ona GPU
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Multithreaded SIMD Processor

Multithreaded SIMD Processor

DRAM

 Each warp executes 32 CUDA threads |n SIMD Iock-step
« Each CUDA thread executes one instance of the kernel

 Each SM is shared by many warps (possibly from the same or
different blocks)



Runnlng DAXPY ona GPU
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Multithreaded SIMD Processor

Shared
Registers memory

DRAM

Partitioned Partitioned
between between
blocks
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« Each warp executes 32 CUDA threads in SIMD Iock-step
« Each CUDA thread executes one instance of the kernel

 Each SM is shared by many warps (possibly from the same or
different blocks)



SM multithreaded
instruction scheduler

Time

N N N [N N N N N S A A

Warp 8, instruction 11

YVYVYYYVYVYVYVYVYVYVYVYVYVY
L1 1 | 11

| S N GO D A N N N N |

Warp 1, instruction 42

VYVYVYVYVYVYVYVYVYVYVYVYVY
L 11 L1

Y Y SO O NI Y O Y S NN

Warp 3, instruction 95

YVYVYVYVYVYVYVVVVYVVVY

[ ) T | [ i [ Y I ) (O O

Warp 8, instruction 12

YYVYYVYYVYVYVYVYVVYVYVYVY
L 1| L 11

R Y O A S N DO I

Warp 3, instruction 96

VYVYYYVYVYVYVYVYVYVYVYVVY
L1 L1

S I O Y N I G

Warp 1, instruction 43

\4

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
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Single-instruction, multiple-
thread (SIMT)

A new parallel programming model: SIMT

The SM’s SIMT multithreaded instruction unit
creates, manages, schedules, and executes
threads in groups of warps

The term warp originates from weaving

Each SM manages a pool of 24 warps, 24 ways
FGMT (more on later devices)

Individual threads composing a SIMT warp
start together at the same program address,
but they are otherwise free to branch and
execute independently

At instruction issue time, select ready-to-run
warp and issue the next instruction to that
warp’s active threads

23

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)



Judy Schoonmaker
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Reflecting on SIMT

SIMT architecture is similar to SIMD design,
which applies one instruction to multiple data
lanes

The difference: SIMT applies one instruction to
multiple independent threads in parallel, not
just multiple data lanes. A SIMT instruction
controls the execution and branching
behaviour of one thread

For program correctness, programmers can
ignore SIMT executions; but, they can achieve
performance improvements if threads in a
warp don’t diverge

Correctness/performance analogous to the
role of cache lines in traditional architectures

The SIMT design shares the SM instruction
fetch and issue unit efficiently across 32
threads but requires a full warp of active
threads for full performance efficiency
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Branch divergence

* In a warp, threads all take the same path (good!) or diverge!

« A warp serially executes each path, disabling some of the
threads

 When all paths complete, the threads reconverge

* Divergence only occurs within a warp - different warps execute
independently

» Control-flow coherence: when all the threads in a warp goes the
same way we get good utilisation (a form of locality — spatial

branch locality)
Predicate bits: enable/disable each lane

—




SIMT vs SIMD — GPUs without the hype

* GPUs combine many * So basically a GPU core is
architectural techniques: a lot like the processor
— Multicore architectures we have
— Simultaneous studied!
multithreading (SMT) e Butthe SIMT
— Vector instructions programming model
— Predication makes it look different

» Overloading the same architectural concept doesn’t help GPU
beginners

» GPU learning curve is steep in part because of using terms such as
“Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor’ for the SIMD Lane, and ‘““Shared Memory” for Local

Memory - especially since Local Memory is not shared between SIMD
Processors



SIMT vs SIMD — GPUs without the hype

SIMT: SIMD:
* One thread per lane  Each thread may include
 Adjacent threads SIMD vector instructions
(“warp”/”wavefront”) e SMT: a small number of
execute in lockstep threads run on the same
e SMT: multiple “warps” run  core to hide memory
on the same core, to hide latency

memory latency

Which one is easier for the programmer?

29



SIMT vs SIMD — spatial locality & coalescing

SIMT:

Spatial locality = adjacent
threads access adjacent data

A load instruction can result in
a completely different address
being accessed by each lane

“Coalesced” loads, where
accesses are (almost) adjacent,
run much faster

SIMD:

30

Spatial locality = adjacent loop
iterations access adjacent data

A SIMD vector load usually has
to access adjacent locations

Some recent processors have
“gather” instructions which can
fetch from a different address
per lane

But performance is often
serialised



SIMT vs SIMD — spatial locality & coalescing

SIMD (on CPU): SIMT (on GPU):
void add (float *c, float *a, float *b) __global _ void add(int N,
{ double* a,
for (int i=0; i1 <= N; i++) double* b,
#pragma omp simd double* c) {
for (lnt j=0; J <= N; j++) int i = blockIdx.x *
. . . . . . blockDim.x +
= +b ;
c[i][J]=al1] [J] [1] []] threadIdx . x;
} Using OpenMP for (int j=0; j <= N; j++)

c[1][]J] = a[1][]J] + b[1][]]~

his example has good spatial
locality because it traverses the
data in layout order:

void add (float *c, float *a, float *b) ThIS example has ter”ble

}

( spatial locality because
for (int i=0; i <= N; i++) { adjacent threads access
__ml28* pa = (__ml28*%) &a[i] [0]; different rows
~ ml28* pb = (_ ml128*%) sb[i] [0];
_ ml28* pc = (_ ml28%) &c[i] [0]; L s i S
for (int i=0; i <= N/4; i++) I I I
*pc++ = mm _add ps (*pa++, *pb++) ; =0 =1 =2

Tk e Threads with adjacent thread ids access
} data in different cache lines




SIMT vs SIMD - spatial control locality

SIMT: SIMD:

* Branch coherence = adjacent * Branch predictability = each
threads in a warp all usually individual branch is mostly
branch the same way (spatial taken or not-taken (or is well-
locality for branches, across predicted by global history)

threads)

33
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Warp Scheduler (32 thread/clk) Warp Scheduler (32 threadiclk)
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Tex

GV100’s SM includes 8 tensor cores

FP16 or FP3? FP16 or FP3?

Tensor core computes matrix-matrix multiply on e (¢
Tensor core computes matrix gk 1L
read warp

Each CUDA thread has its own PC and stack, enabling

dynamic scheduling in hardware to heuristically enhance G300 S G008 S 8880088388 5008 G
Convergence 2222 & -

e > S

ARCHITECTURE (Aug 2017) https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf 32 thread warp with independent scheduling
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spare slides for interest



ARM MALI GPU: Midgard microarchitecture

Shader Core Architecture

Thread Issue

Compute
Data and
Results

Arithmetic
Pipeline

Arithmetic
Pipeline

Load/Score
Pipeline

Texturing
Pipeline

h 4

Thread Completion

Compute
Thread
Creator

Thread Execution = “Tri Pipe”

Triangle
Rasterizer Setup
Unit
¥
Early Z
. e
Z/Stencil
Buffer
Late £
¥
| Blender Tile Buffers

memory management unit, L2 cache, etc.

Tiler Diata
Structures

Textures

Frame
Buffer

* Variable number of Arithmetic Pipelines (uncommon feature
with respect to other GPUs)

* Fixed number of Load/Store and Texturing Pipelines
* |n-order scheduling

\_/ ./ k_/ * This diagram shows only the Shader Core, there is much more
S W supporting hardware to make a complete GPU, i.e. tiling unit,

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
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Midgard arithmetic Pipe

ARM Mali Midgard Arithmetic Pipe

V_MUL

e Simply fill the SIMD with as
many (identical) operations

vV ADD
handle it

V_SFU

FP32 FP32 FP32 FP32

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5

e ARM Midgard is a VLIW design with SIMD characteristics (power efficient)

¢ So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a single
long word of instructions (ILP)

e Support a wide range of data types, integer and FP: I8, 116, 132, 164, FP16, FP32, FP64

* 17 SP GFLOPS per core at 500 MHz (if you count also the SFUs) 50
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Optimising for MALI GPUs

How to run optimally OpenCL code on Mali GPUs means mainly to
locate and remove optimisations for alternative compute devices:
eUse of local or private memory: Mali GPUs use caches instead of
local memories. There is therefore no performance advantage using
these memories on a Mali
eBarriers: data transfers to or from local or private memories are
typically synchronised with barriers. If you remove copy operations
to or from these memories, also remove the associated barriers
eUse of scalars: some GPUs work with scalars whereas Mali GPUs can
also use vectors. Do vectorise your code
e Optimisations for divergent threads: threads on a Mali are
independent and can diverge without any performance impact. If
your code contains optimisations for divergent threads in warps,
remove them
e Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid
conflicts in these memory banks, remove them
eNo host-device copies: Mali shares the same memory with the CPU

Source: http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUIO538F mali t600 opencl dqg.pdf
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i GPUs were built for rendering Texture cache

i Critical element:

®Mapping from a stored texture onto a
triangular mesh

Texture mapping

# To render each triangle: - Format/
' Calculator Tex. Decomp.
®enumerate t.he pixels, TR,
®»map each pixel to the texture and FIFO
interpolate |
Ta - h
m Texture cache o r?are Cache

®»Can be accessed with 2d float index

®(Cache includes dedicated hardware
to implement bilinear interpolation

®»Can be configured to
clamp, border, wrap or mirror at

texture boundary
Fig. 5. An overview of a texture cache architecture. The texture mapping
*Hardware SU pport to deCOm preSS unit provides texture coordinates for which a memory address is calculated.

. The address is sent to the tag compare to determine if the data is in the cache.
com pressed teXtU res on CaChe MISS If the data isn’t in the cache, a request is sent via the crossbar to the L2 cache.

Any state associated with the original request is sent into a FIFO to return
to the texture mapping unit with the texel data. Once the data arrives in the

*CUStom hardwa re-S peCIﬁC Sto rage cache, or is already available in the cache, it is returned to the texture mapping
Iayout (blocked/Morton) to explort 2d unit. If the data is compressed, it is decompressed and any formatting that is

I It required is done.
Oca I y For more details see Texture Caches, Michael

*Trlangle/plxel enumeratlon IS tlled for http://fileadmin.cs.Ith.se/cs/PersonaI/l\/Iichael_%ooggggeet;[{
|Ocal|ty /pubs/doggett12-tc.pdf

L1 Texture cache

Crossbar




Nested if-then-else execution

+ Ret./Reconv. PC  Next PC_ Active Mask
- G 1111
AT G F 0001
l_ TOS —» G B 7110
B/1110 (c) Initial State
l_ _l Ret./Reconv. PC ~ Next PC  Active Mask
\ - G 1111
C/1000 D/0110 F/0001 G = 0007
|—* r' G E T110__| (i)
E D 0110 [ (i)
E/1110 TOS —> E C 1000 |(iii)
(d) After Divergent Branch
> G111 | Ret./Reconv. PC Next PC_ Active Mask
- G 1111
G F 0001
(a) Example Program TOS —» e E EEL
(e) After Reconvergence
A B C D E F G A
— - | — | —
e @& 0 & _> _D _> _> e & & @&
—> =i - —>
—> —> = | —

l - :> Time

(b) Re-convergence at Immediate Post-Dominator of B

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow (MICRO 2007)



Student question: threads, lanes, warps, blocks

- 1 warp = many threads ; 1 thread = like a lane in CPU so handles one thing at a time ; many threads --> fit
in a block (so many warps --> 1 block?) ; many blocks --> grid ; many grids --> gpu

« Q2: 1 warp --> has several 32 wide (does wide just mean bits?) vector instructions (so in one instruction
we could add together 2 1d arrays of size 32 bits?)

* Q4: Also, each warp has "32 wide SIMD vector instructions" and GPUs also follow the SIMT model - so we
have SIMT as the process describing what's happening with all the warps (ie FGMT threads) and SIMD
describing what's happening with every instruction handled by one thread (lane like thing inside a warp)
- is that correct?

Each warp is an FGMT thread of 32-wide SIMD instructions. The source code for
a CUDA kernel describes what a CUDA "thread" does; each CUDA thread is
executed in one lane of the SIMD instruction sequence executed by the warp.

A block is a set of warps that are all running on the same core using FGMT
(NVIDIA uses the term "SM" for core).

Because all the warps in block run on the same SM, they can actually cooperate
with one another using (what NVIDIA calls) "shared memory". So you might
have a phase where all the threads in a block load data into shared memory,
tyhen they have a barrier, then they can all, in parallel, use that data.



Running DAXPY on a GPU

Student question:
register file partitioning

Partitioned

i | DRAM

blocks

between

* Each wa{p executes 32 CUDA threads in SIMD lock-step

» Each CUDA thread executes one instance of the kernel

* Each SM is shared by many warps (possibly from the same or
different blocks)

Q: Registers are partitioned by "ID" stage in the lecture slides (is that instruction decode?)

- Each thread refers to the logical register set RO, R1, R2...RN (where N depends
on how the register file is partitioned - smaller N means we can have more
FGMT warps sharing the SM's fixed physical register file.

« This mapping, from logical register to physical register, is done in the
instruction decode (ID) stage of the pipeline.

- At the risk of being confusing: looking at this using CPU/SIMD terminology,
each FGMT thread (aka warp) refers to that FGMT thread's logical register set
of 32-wide vector registers RO, R1, R2...RN. Each SIMT thread (aka thread in
that warp) refers to its own /ane of these vector registers. So the kth CUDA
thread in a 32-wide warp (0<k<31) refers to lane_k of the vector registers RO,
R1 etc.



Student

question: Fixing
the upper bound

of aloop in a
CUDA kernel

CPU code to launch
int main() { kernel on GPU

__global  void daxpy(int N, // Invoke DAXPY Cverdlo )
double a, daxpy(n, 2.0, x, y); comparison
double* x, // DAXPY in C

double* y) { void daxpy(int n,

int i = blockIdx.x * double a,
blockDim.x + CUDA double* x,
threadIdx.x; double* y) {

if (1 < N) for(int i=0; i < n; ++i)

yl[i] = a*x[i] + y[i]; yli] = a*x[i] + y[i];

} } fully parallel loop

// Kernel setup

CUDA example: DAXPY
int N = 1024;

int blockDim = 256; // These are the threads per block
int gridDim = N / blockDim; // These are the number of blocks
daxpy<<<gridDim, blockDim>>> (N, 2.0, x, y); // Kernel invocation

} ', Kernel invocation (““<<<...>>>") corresponds to enclosing loop nest, managed by

hardware
» Explicitly split into 2-level hierarchy:

blocks (256 threads that can share “shared” memory), and grid (N/256 blocks)
» Kernel commonly consists of just one iteration but could be a loop

» Multiple tuning parameters trade off register pressure, shared-memory capacity
and parallelism '

Q: "why do we need to do the i <N check?"

A: The "i<N" check is there to handle the case when N is not a round number. It
clearly is a very round number in the example - but the daxpy kernel is written
to handle the case when it isn't. The warp that executes the last iteration is 32-
threads wide - but not all the threads in that warp will have work to do.



Student question: predicating nested ifs

How does predication work in something like 1A-64 for instructions that depend on more than
one branch? Nested if-else statements for example would need 2 1-bit predicate registers

* You're right: with nested if-then, we need two predicate registers:

if C1 then
S1
if C2 then
S2

 maps to something like:

p1<-C1

p1: S1

p2 <- C2 & p1
p2: S2

« We see this not just with Itanium but also GPUs and in SIMD/vector ISAs.

 There have been proposals for instruction set support for predication in nested control flow - in some
sense a hardware predicate stack.

 Ina GPU (or running SIMT on a SIMD ISA) you have the same issue that you had with predication of
scalar code (as in IA64) - when you think about SIMT execution of the code above (for example if it were
a CUDA kernel) you would want two predicate bits per lane.

« So you could imagine having a predicate stack per lane.

« This thinking leads to a world of really interesting stuff. For me the best introduction is the work of
Caroline Collange:

« Paper: https://hal.archives-ouvertes.fr/hal-00622654/document
« Slides: https://files.inria.fr/pacap/collange/cours/ada2021_gpu_2.pdf
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Hi, | am a bit confused about the question in the title and whether this
GPU kernel is exgloiting spatial locality?
1

¢ Consider this function (a CUDA kernel), which adds two vectors. It is to be executed
as an SIMT thread:

--glokal__ veoid vechAddAbs (flecat «A, float +B, fleocat «C, int N) { St d t - ]

int 1 = blockIdx.x = blockDim.x + threadIdx.x; u e n ues IO n

if (B[i] > 0) q u
Cli] = A[i] + B[i];

else

R spatial locality in SIMT

The kernel is launched as follows:

vecAddAbs<<<block.no,block.size>>> (A, B, C, n);

where A, B, and C have already been copied to the GPU device’s memory.
(i) How is predication used in execution of this kernel?

(ii) Do the loads in this kernel successfully exploit spatial locality?

(iti) How could branch incoherence be avoided?

How does predication work in something like 1A-64 for instructions that depend on more than
one branch? Nested if-else statements for example would need 2 1-bit predicate registers

« This is part of the 2019-20 paper, Q4.

* Yes the loads in this GPU kernel benefit from spatial locality (the CUDA people call it
"coalescing").

* In SIMT, the code of the kernel is "vector expanded" - every instruction is expanded to
operate on vector registers (perhaps 32-wide). Adjacent iterations of the kernel run in
adjacent "lanes" of these vector instructions. So when lane0 accesses AJi], lane1 will
access AJi+1], etc. So the vector of load operations will access adjacent locations in
memory - giving us spatial locality,

« The kernel launch mechanism launches execution of the kernel as grid of blocks - each
block is executed by a set of warps (aka threads), each of which operates as a
sequence of vector instructions, executing 32 iterations of the kernel at a time.



considering this slide, for SIMT - each CUDA thread operates on a row of the matrix, and all the CUDA
threads in a warp move one step together, do there threads move only one step at a time - adding up
values in one col of A. B and storing the result in C or can they use vector insturctions to operate on
multiple cols at once like a group of 4 cols and move 4 steps ahead together - like an SIMD lock step?

SIMT vs SIMD - spatial locality & coalescing

SIMD (on CPU):

void add (float *c, float *a, float *b)
{

for (int i=0; i <= N; i++)
#pragma omp simd
for (int j=0; j <= N; j++)
cli][J)=al4][3)+b[4] (3] ;

a thread - once it knows the row

3 S. e?ﬁﬁoayﬁ‘?r compting the

This example has good spatial
locality because it traverses the
data in layout order:

__glcbal __ void add(int N,
double* a,
double* b,
double* c) {
int i = blockIdx.x *
blockDim.x +
threadIdx.x;

|| for (int j=0; j <= N; j++)

e[2][3] = a[i][3] + bI[i][3];

void add (float *c, float *a, float *b)
{
for (int i=0; i <= N; i++) {
__ ml28* pa = (_ ml28*) &a[i]([0];
__ml28% pb = (_ ml28*%) &b[i][0]:
__ml28% pc = (_ ml28%) &c[i][0]:
for (int i=0; i <= N/4; i++)
*pc++ = mm_add _ps(*pa++,*pbt++t)
}

) Using intrinsics

___all the threads take one step |

' This example has terrible

spatial locality because
adjacent threads access
different columns rows

Row 0 Row 1 Row2 ...
Cinaaa M N 0 D 0 O

Student
question: SIMT

v

@ In CUDA the word "thread" is (confusingly) used to refer to the sequence of operations performed by a

lane of the warp. The word "warp" is used to refer to the sequence of SIMD instructions executed by
the hardware*.

So the top-right code shows the source code for a CUDA thread. You can visualise how it's compiled by
thinking of the assembly code for the whole function, where every instruction is expanded to be a 32-
wide SIMD instruction.

The important (and confusing) thing is the way the assignment to i is handled: each lane gets a differen|
value of i - adjacent lanes get adjacent values of i.

(this is achieved using a special instruction that reads a magic register: threadldx is provided in"%tid" -
see (5 641 Lecture).

(* To complicate things further, the warps are dynamically scheduled using fine-grain multi-threading,
but this is not relevant for this question)
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