
November 2025

Paul Kelly

These lecture notes are partly based on:

• Contributions to the lecture slides from Luigi Nardi (postdoc at Imperial and Stanford, now 

academic at Lund, Sweden), Fabio Luporini (Imperial PhD, postdoc, now CTO, 

DevitoCodes), and Nicolai Stawinoga (Imperial PhD, postdoc, now researcher at TU Berlin)

• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)

Data-Level Parallel Architectures: GPUs

Advanced Computer Architecture 

Chapter 9

Lisa Su, CEO of AMD, launching the rx6000 series Jensen Huang, CEO of NVIDIA, launching the RTX 30 Series GPUs



Graphics Processors (GPUs)
• Much of our attention so far has been devoted to making a single core 

run a single thread faster

• If your workload consists of thousands of threads, everything looks 
different:

– Never speculate: there is always another thread waiting with work you 
know you have to do

– No speculative branch execution, perhaps even no branch prediction

– Can use FGMT or SMT to hide cache access latency, and maybe even main 
memory latency

– Control is at a premium (Turing tax avoidance):
• How to launch >10,000 threads?

• What if they branch in different directions?

• What if they access random memory blocks/banks?

• This is the “manycore” world

• Initially driven by the gaming market – but with many other applications
8



A first comparison with CPUs

9

S
o

u
rc

e
: 
h

tt
p

:/
/d

o
c
s.

n
v
id

ia
.c

o
m

/c
u

d
a
/c

u
d

a
-c

-p
ro

g
ra

m
m

in
g

-g
u

id
e
/

• “Simpler” cores

• Many functional units (FUs) (implementing the SIMD model)

• Much less cache per core; just thousands of threads and 

super-fast context switch

• Drop sophisticated branch prediction mechanisms

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n


NVIDIA G80 (2006)
16 cores, each with 8 “SP” units

16x8=128 threads execute in parallel
(but you need a lot more threads to fill the machine) 

Each core issues instructions in 
“warps” of 32 

Each core up to 24-way FGMT

Sketchy 
information 
on graphics 

primitive 
processing

No L2 cache coherency problem, data can be in only one cache. Caches are small

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

ROP performs colour and depth frame buffer 
operations directly on memory

10

S
tr

e
a

m
in

g
 P

ro
c
e
s
s
o

r 
A

rr
a
y
 (

S
P

A
)

Raster operation processor (ROP)



NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Texture/Processor Cluster (TPC)

11

•SMC: Streaming 

Multiprocessor  controller

•MT issue: multithreaded 

instruction fetch and issue 

unit

•C cache: constant read-only 

cache

• I cache: instruction cache

•Geometry controller: 

directs all primitive and 

vertex attribute and 

topology flow in the TPC

•SFU: Special-Function Unit, 

compute trascendental 

functions (sin, cos, log x, 

1/x)

•Shared memory: scratchpad 

memory, i.e. user managed 

cache

•Texture cache does 

interpolation

•SM: Streaming Multiprocessor

•SP: Streaming Processor



NVIDIA’s Tesla micro-architecture
Combines many of the ideas we have learned about:

• Many fetch-execute processor devices (16 “SMs”)
• Each one uses fine-grain multithreading (FGMT)  to run 32 “warps” per SM 

NVIDIA is confusing about terminology! 
Warps on a GPU are like threads on a CPU
Threads on a GPU are like lanes on a SIMD CPU

• MT issue selects which “warp” to issue from in each cycle (FGMT)

• Each warp’s instructions are actually 32-wide SIMD instructions
• Executed in four steps, using 8 SPs (“vector pipelining”, Ch08)
• With lanewise predication (Ch08)

• Each SM has local, explicitly-programmed scratchpad memory 
• Different warps on the same SM can share data in this “shared memory”

• SM’s also have an L1 data cache (but no cache-coherency protocol)

• The chip has multiple DRAM channels, each of which includes an L2 cache 
(but each data value can only be in one L2 location, so there’s no cache 
coherency issue at the L2 level)

• There are also graphics-specific mechanisms, which we will not discuss 
here (eg a special L1 “texture cache” that can interpolate a texture value)12



Tesla memory, 
interconnect, 

control

• SM’s also have an L1 data cache (but no cache-coherency protocol – flushed on kernel 
launch)

• The chip has multiple DRAM channels, each of which includes an L2 cache 
• but each data value can only be in one L2 location, so there’s no cache coherency issue 

at the L2 level

• Tesla has more features specific to graphics, which are not our focus here:
– Work distribution, load distribution
– Texture cache, pixel interpolation
– Z-buffering and alpha-blending (the ROP units, see diagram) 13



CUDA: using NVIDIA GPUs for general computation

• Designed to do rendering
• Evolved to do general-purpose computing 

(GPGPU)
–But to manage thousands of threads, a new 

programming model is needed, called CUDA 
(Compute Unified Device Architecture)

–CUDA is proprietary, but the same model lies 
behind OpenCL, an open standard with 
implementations for multiple vendors’ GPUs

• GPU evolved from hardware designed specifically 
around the OpenGL/DirectX rendering pipeline, 
with separate vertex- and pixel-shader stages

• “Unified” architecture arose from increased 
sophistication of shader programs

14

We focus initially on NVIDIA architecture and terminology.  AMD GPUs are quite similar, and 

the OpenCL programming model is similar to CUDA.  Mobile GPUs are somewhat different



CUDA Execution Model
• CUDA is a C extension

– Serial CPU code
– Parallel GPU code (kernels)

• GPU kernel is a C function
– Each thread executes kernel code
– A group of threads form a thread 

block (1D, 2D or 3D)
– Thread blocks are organised into a 

grid (1D, 2D or 3D)

– Threads within the same thread 
block can synchronise execution, 
and share access to local scratchpad 
memory 

Key idea: hierarchy of parallelism, to handle thousands of 
threads

Thread blocks are allocated (dynamically) to SMs, and run 
to completion

Threads (warps) within a block run on the same SM, so can 
share data and synchronise

Different blocks in a grid can’t interact with each other

Source: CUDA programming guide



// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, 

           double a, 

         double* x,

double* y) {

    for(int i=0; i < n; ++i)

       y[i] = a*x[i] + y[i];

} fully parallel loop

int main(){

// Kernel setup

  int N = 1024;

  int blockDim = 256; // These are the threads per block

  int gridDim = N / blockDim; // These are the number of blocks

  daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y); // Kernel invocation

}

CUDA example: DAXPY

 Kernel invocation (“<<<…>>>”) corresponds to enclosing loop nest, managed by 

hardware 

 Explicitly split into 2-level hierarchy: 

blocks (256 threads that can share “shared” memory), and grid (N/256 blocks)

 Kernel commonly consists of just one iteration but could be a loop

 Multiple tuning parameters trade off register pressure, shared-memory capacity 

and parallelism
16

__global__ void daxpy(int N, 

                      double a, 

                      double* x, 

                      double* y) {

    int i = blockIdx.x * 

            blockDim.x + 

            threadIdx.x;

    if (i < N)

        y[i] = a*x[i] + y[i];

}

CUDA 

kernel

C version for 

comparison

CPU code to launch 

kernel on GPU



(Joy Lee and others, NVIDIA)

• This is PTX: a pseudo-assembly code that is translated to proprietary ISA 

• Threads are scheduled in hardware

• Each thread is provided with its position in the Grid through registers %ctaid, %ntid, %tid

• p1 is a predicate register to determine the outcome of the “if”

• The conditional branch “@$p1 bra $L_finish” may be (probably is) translated to predication in the target ISA 



19

Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

BLOCK 1
(DAXPY 0-255)

BLOCK 2
(DAXPY 256-511)

BLOCK 3
(DAXPY 512-767)

BLOCK 4
(DAXPY 768-1023)

BLOCK x
(…)

BLOCK x+1 

(…)

BLOCK x+2 

(…)

SIMD + MIMD: blocks are the unit of 

allocation of work to SMs



20

……..

Multithreaded SIMD Processor

Multithreaded SIMD Processor

Multithreaded SIMD Processor

WARPSWARPSWarps FUFUFUFUFU

FUFUFUFUFUIF ID

• Each warp executes 32 CUDA threads in SIMD lock-step

• Each CUDA thread executes one instance of the kernel

• Each SM is shared by many warps (possibly from the same or 

different blocks)

Running DAXPY on a GPU

DRAM



21

Multithreaded SIMD Processor

WARPSWARPSWarps FUFUFUFUFU

FUFUFUFUFUIF ID

• Each warp executes 32 CUDA threads in SIMD lock-step

• Each CUDA thread executes one instance of the kernel

• Each SM is shared by many warps (possibly from the same or 

different blocks)

Running DAXPY on a GPU

Registers

Partitioned 

between 

warps

Shared 

memory

Partitioned 

between 

blocks

DRAM



Single-instruction, multiple-
thread (SIMT)

• A new parallel programming model: SIMT

• The SM’s SIMT multithreaded instruction unit 
creates, manages, schedules, and executes 
threads in groups of warps 

• The term warp originates from weaving

• Each SM manages a pool of 24 warps, 24 ways 
FGMT (more on later devices)

• Individual threads composing a SIMT warp 
start together at the same program address, 
but they are otherwise free to branch and 
execute independently

• At instruction issue time, select ready-to-run 
warp and issue the next instruction to that 
warp’s active threads

23
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)



Reflecting on SIMT
• SIMT architecture is similar to SIMD design, 

which applies one instruction to multiple data 
lanes

• The difference: SIMT applies one instruction to 
multiple independent threads in parallel, not 
just multiple data lanes. A SIMT instruction 
controls the execution and branching 
behaviour of one thread

• For program correctness, programmers can 
ignore SIMT executions; but, they can achieve 
performance improvements if threads in a 
warp don’t diverge

• Correctness/performance analogous to the 
role of cache lines in traditional architectures 

• The SIMT design shares the SM instruction 
fetch and issue unit efficiently across 32 
threads but requires a full warp of active 
threads for full performance efficiency

24
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)



26

Branch divergence

• In a warp, threads all take the same path (good!) or diverge!

• A warp serially executes each path, disabling some of the 

threads

• When all paths complete, the threads reconverge

• Divergence only occurs within a warp - different warps execute 

independently

• Control-flow coherence: when all the threads in a warp goes the 

same way we get good utilisation (a form of locality – spatial 

branch locality)
Predicate bits: enable/disable each lane

:

:

if (x == 10)

   c = c + 1;

:

:

     LDR r5, X

     p1 <- r5 eq 10

<p1> LDR  r1 <- C

<p1> ADD r1, r1, 1

<p1> STR  r1 -> C

     :



SIMT vs SIMD – GPUs without the hype

• GPUs combine many 
architectural techniques:
– Multicore

– Simultaneous 
multithreading (SMT)

– Vector instructions

– Predication

• So basically a GPU core is 
a lot like the processor 
architectures we have 
studied!

• But the SIMT 
programming model  
makes it look different

28

 Overloading the same architectural concept doesn’t help GPU 

beginners

 GPU learning curve is steep in part because of using terms such as 

“Streaming Multiprocessor” for the SIMD Processor, “Thread 

Processor” for the SIMD Lane, and “Shared Memory” for Local 

Memory - especially since Local Memory is not shared between SIMD 

Processors



SIMT vs SIMD – GPUs without the hype

SIMT: 

• One thread per lane

• Adjacent threads 
(“warp”/”wavefront”) 
execute in lockstep

• SMT: multiple “warps” run 
on the same core, to hide 
memory latency 

SIMD:

• Each thread may include 
SIMD vector instructions

• SMT: a small number of 
threads run on the same 
core to hide memory 
latency

Which one is easier for the programmer?
29



SIMT vs SIMD – spatial locality & coalescing

SIMT: 
• Spatial locality = adjacent 

threads access adjacent data
• A load instruction can result in 

a completely different address 
being accessed by each lane

• “Coalesced” loads, where 
accesses are (almost) adjacent, 
run much faster

SIMD:
• Spatial locality = adjacent loop 

iterations access adjacent data
• A SIMD vector load usually has 

to access adjacent locations
• Some recent processors have 

“gather” instructions which can 
fetch from a different address 
per lane

• But performance is often 
serialised

30



SIMT vs SIMD – spatial locality & coalescing

SIMT (on GPU): 

This example has terrible 
spatial locality because 
adjacent threads access 
different rows

SIMD (on CPU):

This example has good spatial 
locality because it traverses the 
data in layout order:

32

void add (float *c, float *a, float *b) 

{

for (int i=0; i <= N; i++) {

__m128* pa = (__m128*) &a[i][0]; 

__m128* pb = (__m128*) &b[i][0];   

__m128* pc = (__m128*) &c[i][0];

for (int i=0; i <= N/4; i++)

  *pc++ = _mm_add_ps(*pa++,*pb++);

}

} 

__global__ void add(int N, 

double* a, 

double* b, 

double* c) {

int i = blockIdx.x * 

blockDim.x + 

threadIdx.x;

for (int j=0; j <= N; j++)

c[i][j] = a[i][j] + b[i][j];

}

void add (float *c, float *a, float *b) 

{

for (int i=0; i <= N; i++)

 #pragma omp simd

    for (int j=0; j <= N; j++)

       c[i][j]=a[i][j]+b[i][j];

} 

Needs work!

Using OpenMP

Using intrinsics

0 1 2 0 1 2 0 1 2 …
Row 0 Row 1         Row 2    …

i=0 i=1               i=2    …

Threads with adjacent thread ids access 

data in different cache lines



SIMT vs SIMD – spatial control locality

SIMT: 
• Branch coherence = adjacent 

threads in a warp all usually 
branch the same way (spatial 
locality for branches, across 
threads)

SIMD:
• Branch predictability = each 

individual branch is mostly 
taken or not-taken (or is well-
predicted by global history)

33



NVIDIA Volta GPU (2017)

GV100 with 84 SMs

GV100’s SM includes 8 tensor cores

Each CUDA thread has its own PC and stack, enabling 

dynamic scheduling in hardware to heuristically enhance 

branch convergence

Tensor core computes matrix-matrix multiply on 

FP16s with FP32 accumulation

NVIDIA TESLA V100 GPU

ARCHITECTURE (Aug 2017) https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-

whitepaper.pdf



It is a heterogeneous world 

51

TITAN

4998 GFLOPS

< 400 W

GTX 870M

2827 GFLOPS

< 100 W

TK1

404 GFLOPS

< 20 W

ODROID

170 GFLOPS

< 10 W

Arndale

87 GFLOPS

< 5 W



52

A
R

M
-b

a
se

d
 S

a
m

su
n

g
 E

x
yn

o
s 

7
4

2
0

 S
o

C
R

e
v
e

rs
e

 e
n

g
in

e
e

re
d

Source: http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2 Used in Samsung S6 mobile phone

http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2


spare slides for interest



59

ARM MALI GPU: Midgard microarchitecture

S
o

u
rc

e
: 

h
tt

p
:/

/w
w

w
.a

n
a

n
d

te
c
h

.c
o

m
/s

h
o

w
/8

2
3

4
/a

rm
s-

m
a

li-
m

id
g

a
rd

-a
rc

h
it
e

c
tu

re
-e

x
p

lo
re

d
/4

• Variable number of Arithmetic Pipelines (uncommon feature 
with respect to other GPUs)

• Fixed number of Load/Store and Texturing Pipelines

• In-order scheduling
• This diagram shows only the Shader Core, there is much more 

supporting hardware to make a complete GPU, i.e. tiling unit, 
memory management unit, L2 cache, etc.

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4


Midgard arithmetic Pipe

60

•ARM Midgard is a VLIW design with SIMD characteristics (power efficient)
•So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a single 

long word of instructions (ILP) 
•Support a wide range of data types, integer and FP: I8, I16, I32, I64, FP16, FP32, FP64
•17 SP GFLOPS per core at 500 MHz (if you count also the SFUs)

S
o

u
rc

e
: 

h
tt

p
:/

/w
w

w
.a

n
a

n
d

te
c
h

.c
o

m
/s

h
o

w
/8

2
3

4
/a

rm
s
-m

a
li-

m
id

g
a

rd
-a

rc
h

it
e

c
tu

re
-e

x
p

lo
re

d
/5

•Very flexible SIMD
•Simply fill the SIMD with as 

many (identical) operations 
as will fit, and the SIMD will 
handle it

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5


61

Optimising for MALI GPUs
How to run optimally OpenCL code on Mali GPUs means mainly to 

locate and remove optimisations for alternative compute devices:

•Use of local or private memory: Mali GPUs use caches instead of 

local memories. There is therefore no performance advantage using 

these memories on a Mali 

•Barriers: data transfers to or from local or private memories are 

typically synchronised with barriers. If you remove copy operations 

to or from these memories, also remove the associated barriers

•Use of scalars: some GPUs work with scalars whereas Mali GPUs can 

also use vectors. Do vectorise your code

•Optimisations for divergent threads: threads on a Mali are 

independent and can diverge without any performance impact. If 

your code contains optimisations for divergent threads in warps, 

remove them

•Modifications for memory bank conflicts: some GPUs include per-

warp memory banks. If the code includes optimisations to avoid 

conflicts in these memory banks, remove them

•No host-device copies: Mali shares the same memory with the CPU
Source: http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf


Texture cacheGPUs were built for rendering

Critical element: 

Mapping from a stored texture onto a 
triangular mesh

To render each triangle: 

enumerate the pixels, 

map each pixel to the texture and 
interpolate

Texture cache

Can be accessed with 2d float index

Cache includes dedicated hardware 
to implement bilinear interpolation

Can be configured to 
clamp, border, wrap or mirror at 
texture boundary

Hardware support to decompress 
compressed textures on cache miss

Custom hardware-specific storage 
layout (blocked/Morton) to exploit 2d 
locality

Triangle/pixel enumeration is tiled for 
locality

For more details see Texture Caches, Michael 

Doggett, 

http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett

/pubs/doggett12-tc.pdf



Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp 

Formation and Scheduling for Efficient GPU Control Flow (MICRO 2007)

Nested if-then-else execution



Student question: threads, lanes, warps, blocks

Each warp is an FGMT thread of 32-wide SIMD instructions. The source code for 
a CUDA kernel describes what a CUDA "thread" does; each CUDA thread is 
executed in one lane of the SIMD instruction sequence executed by the warp.

A block is a set of warps that are all running on the same core using FGMT 
(NVIDIA uses the term "SM" for core). 

Because all the warps in block run on the same SM, they can actually cooperate
with one another using (what NVIDIA calls) "shared memory". So you might 
have a phase where all the threads in a block load data into shared memory, 
tyhen they have a barrier, then they can all, in parallel, use that data.

• 1 warp = many threads ; 1 thread = like a lane in CPU so handles one thing at a time ; many threads --> fit 
in a block (so many warps --> 1 block?) ; many blocks --> grid ; many grids --> gpu

• Q2: 1 warp --> has several 32 wide (does wide just mean bits?) vector instructions (so in one instruction 
we could add together 2 1d arrays of size 32 bits?)

• Q4: Also, each warp has "32 wide SIMD vector instructions" and GPUs also follow the SIMT model - so we 
have SIMT as the process describing what's happening with all the warps (ie FGMT threads) and SIMD 
describing what's happening with every instruction handled by one thread (lane like thing inside a warp) 
- is that correct?



Student question: 

register file partitioning

• Each thread refers to the logical register set R0, R1, R2...RN (where N depends 
on how the register file is partitioned - smaller N means we can have more 
FGMT warps sharing the SM's fixed physical register file. 

• This mapping, from logical register to physical register, is done in the 
instruction decode (ID) stage of the pipeline.

• At the risk of being confusing: looking at this using CPU/SIMD terminology, 
each FGMT thread (aka warp) refers to that FGMT thread's logical register set 
of 32-wide vector registers R0, R1, R2...RN. Each SIMT thread (aka thread in 
that warp) refers to its own lane of these vector registers. So the kth CUDA 
thread in a 32-wide warp (0<k<31) refers to lane_k of the vector registers R0, 
R1 etc.

Registers are partitioned by "ID" stage in the lecture slides (is that instruction decode?)

Q: Registers are partitioned by "ID" stage in the lecture slides (is that instruction decode?)



Student 

question: Fixing 

the upper bound 

of a loop in a 

CUDA kernel

Q: "why do we need to do the i < N check?" 

A: The "i<N" check is there to handle the case when N is not a round number. It 
clearly is a very round number in the example - but the daxpy kernel is written 
to handle the case when it isn't. The warp that executes the last iteration is 32-
threads wide - but not all the threads in that warp will have work to do.



Student question: predicating nested ifs

• You're right: with nested if-then, we need two predicate registers:

if C1 then
S1
if C2 then
S2

• maps to something like:

p1 <- C1
p1: S1
p2 <- C2 & p1
p2: S2 

• We see this not just with Itanium but also GPUs and in SIMD/vector ISAs.

• There have been proposals for instruction set support for predication in nested control flow - in some 
sense a hardware predicate stack.

• In a GPU (or running SIMT on a SIMD ISA) you have the same issue that you had with predication of 
scalar code (as in IA64) - when you think about SIMT execution of the code above (for example if it were 
a CUDA kernel) you would want two predicate bits per lane.

• So you could imagine having a predicate stack per lane.

• This thinking leads to a world of really interesting stuff.  For me the best introduction is the work of 
Caroline Collange:

• Paper: https://hal.archives-ouvertes.fr/hal-00622654/document
• Slides: https://files.inria.fr/pacap/collange/cours/ada2021_gpu_2.pdf

How does predication work in something like IA-64 for instructions that depend on more than 
one branch? Nested if-else statements for example would need 2 1-bit predicate registers

https://hal.archives-ouvertes.fr/hal-00622654/document
https://hal.archives-ouvertes.fr/hal-00622654/document
https://hal.archives-ouvertes.fr/hal-00622654/document
https://hal.archives-ouvertes.fr/hal-00622654/document
https://hal.archives-ouvertes.fr/hal-00622654/document
https://files.inria.fr/pacap/collange/cours/ada2021_gpu_2.pdf


Student question: 

spatial locality in SIMT

• This is part of the 2019-20 paper, Q4.

• Yes the loads in this GPU kernel benefit from spatial locality (the CUDA people call it 
"coalescing").

• In SIMT, the code of the kernel is "vector expanded" - every instruction is expanded to 
operate on vector registers (perhaps 32-wide).  Adjacent iterations of the kernel run in 
adjacent "lanes" of these vector instructions.  So when lane0 accesses A[i], lane1 will 
access A[i+1], etc.  So the vector of load operations will access adjacent locations in 
memory - giving us spatial locality,

• The kernel launch mechanism launches execution of the kernel as grid of blocks - each 
block is executed by a set of warps (aka threads), each of which operates as a 
sequence of vector instructions, executing 32 iterations of the kernel at a time.

How does predication work in something like IA-64 for instructions that depend on more than 
one branch? Nested if-else statements for example would need 2 1-bit predicate registers

Hi, I am a bit confused about the question in the title and whether this 
GPU kernel is exploiting spatial locality?



Student 

question: SIMT


	Slide 1
	Slide 8: Graphics Processors (GPUs)
	Slide 9: A first comparison with CPUs
	Slide 10
	Slide 11
	Slide 12: NVIDIA’s Tesla micro-architecture
	Slide 13: Tesla memory, interconnect, control
	Slide 14: CUDA: using NVIDIA GPUs for general computation
	Slide 15: CUDA Execution Model
	Slide 16: CUDA example: DAXPY
	Slide 17
	Slide 19: Running DAXPY (N=1024) on a GPU
	Slide 20: Running DAXPY on a GPU
	Slide 21: Running DAXPY on a GPU
	Slide 23: Single-instruction, multiple-thread (SIMT)
	Slide 24: Reflecting on SIMT
	Slide 26: Branch divergence
	Slide 28: SIMT vs SIMD – GPUs without the hype
	Slide 29: SIMT vs SIMD – GPUs without the hype
	Slide 30: SIMT vs SIMD – spatial locality  & coalescing
	Slide 32: SIMT vs SIMD – spatial locality  & coalescing
	Slide 33: SIMT vs SIMD – spatial control locality
	Slide 50: NVIDIA Volta GPU (2017)
	Slide 51: It is a heterogeneous world 
	Slide 52
	Slide 56: spare slides for interest
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Texture cache
	Slide 63
	Slide 65: Student question: threads, lanes, warps, blocks
	Slide 66: Student question: register file partitioning
	Slide 67: Student question: Fixing the upper bound of a loop in a CUDA kernel
	Slide 68: Student question: predicating nested ifs
	Slide 69: Student question: spatial locality in SIMT
	Slide 70: Student question: SIMT

