Advanced Computer Architecture
Chapter 10 — Multicore, parallel, and cache
coherency

Part1:

Power, multicore, the end of the free lunch, and how
to program a parallel computer

Shared-memory versus distributed-memory
November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (37, 4t and 5t
eds), and on the lecture slides of David Patterson, John Kubiatowicz and
Yujia Jin at Berkeley

Part 1

What you should get from this

Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things | hope you will learn from this very brief
iIntroduction are:

» Why power considerations motivate multicore
W Why is shared-memory parallel programming attractive?
W How is dynamic load-balancing implemented?

i Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

W What is the cache coherency problem

W There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

W How are atomic operations and locks implemented?
W Eg load-linked, store conditional
W What is sequential consistency?
W Why might you prefer a memory model with weaker consistency?

W For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

Moore’s Law: The number of transistors on microchips doubles every two years [SUgWERE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

in Data

50,000,000,000 GC2IPU €AMD Epyc Rome
72- gngée&n Phj Centriq 2400 320 QAWSDCErawtonQ
core AMD Epyc
IBM z13 Storage Controller Apple A12X Bionic
i gt \\., 8 Qg 8,
| I
5,000,000,000 AUoR O mAIn S0C , QAMD Ryzen 7 3700X
61-core-Xeon-Phi 03
12-core POWERS © “HiSilicon Kirin 710
8-core Xeon Nehalem-EXa glO core Core i7 Broadwell-E
Dual- Slxltcore ><820n 7400 8 © ° Dual- ggréoimg!)%j?r?sd?gl%q§%§oadwell V]
ual-core tanium 2€p Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 Pentium D Presler \ - powERs g © 0 o Quad core + GPU Core i7 Haswell
500.000.000 ltsnii}wj&gn 2 Wth © °C0|e e Apple A7 (dual-core ARM64 "mobile SoC")
y 2 : AL . OAMD K10 quad- core 2M L3
[tanium 2 Madison 6M € Core 2 Duo Wolfdale
Pentium D Smithfields Core Duo Conroe
[tanium 2 McKinley € © KCell Y Core 2 Duo Wolfdale 3M
100.000.000 Pentium 4 Prescott- 2M° ‘\Q(Iore 2 Duo Allendale
Pentium 4 Cedar Mill
¥ 4 AMB K8° Pentium 4 Prescott
50.000.000 Pentium 4 Northwood,
= i Pentium 4 Willamette € Peﬁmgﬁlafl'tjwnlahn QAtom
Pentium Il Mobile Dixon QARM Cortex-A9
AMD K7 @Pentium Il Coppermine ek
AMD Ké6-
10,000,000
AMD K6 QgenhHlB Il F'<1attm§|
5,000,000 PRt Pro° = hug\lel um [Deschutes
Klamath
Pent—iumo AMD K5
SA-110
Intel 80484,
1,000,000 el 80459 Pkaono
Tl Expl 32-hit,
500’000 \séprr?ggnsne ch1;>° AR&OO
Intel 803860 \ntel° Q ARM 3
Motorola 68020
°DEC WRL
100,000 - MUl Titan °
Vel SO
50,000 ©intel 80186
Intel 8086€p €y Intel 8088 o QARM 2 AR?A 6
°ARM 1
10,000 4 Mokayg!a 65C816 Novix d .
, TM52000----- Zlog 780 O .. B NC4016 Foranu P ate, see.
5,000 RCA 18021 Sbtel 8085 e .
Intel 800! "
o P6 https://ourworldindata.org/moores-law
otorola 4502
Intel 4004 ©500
1,000
a2 v O UG AMIC A O LIS S S SIS
By Max Roser - https://ourw |ndaﬁwrgluﬂbadleD%/OSﬂ'?anmstd}%ount’\o’ver tu{h- 0-; Z(ﬁ\B png, bﬁ BY-: §A¢4 0, '\ '\' '\ '\/ q/ q/ "L q/ q/ q/ q/ q/ q/ q/ (l/

https:Ilcommons.wikimed.ia..org/wl.lndex php”cur[d 79751151. . .
Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)

OurWorldinData.org - Research and data to make progress against the world’s largest problems.

Year in which the microchip was first introduced

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

t_1970-2020.png

r_count#/media/File:Moore's_Law_Transistor_Coun

https://en.wikipedia.org/wiki/Transisto

https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law

107 |

10° |

10° |
104 |
10° |
10° |
10" b
10° |

50 Years of Microprocessor Trend Data

Price per
transistor?

Chiplets?

Wafer-scale?
DRAM? Flash?

Fab cost, die cost?

* 2 Vo
A 4

1970

1980

1990

2000

2010 2020

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

*i.uq .I'.--m;l Frequency (MHz)
[| [|

Typical Power
(Watts)

Number of

*| Logical Cores

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

You see this graph kind of everywhere. You might wonder whether this is the whole story....

E Dynamic power vs static leakage
E Dynamic: Power is consumed when signals change
B Static: Power is consumed when gates are powered-up

E “Dennard Scaling”: dynamic power gets smaller if we
make the transistors smaller

E “the end of Dennard Scaling”: static leakage starts to
dominate, especially at high voltage (that is needed for
high clock rate)

B Power vs clock rate
B Power increases sharply with clock rate because
B High static leakage due to high voltage
B High dynamic switching
B Clock vs parallelism: much more efficient to use
B Lots of parallel units, low clock rate, at low voltage

What can we do about power?

Compute fast then turn it off! (“race-to-sleep”)

B Compute just fast enough to meet deadline

Clock gating, power gating

B Turn units off when they’re not being used
B Functional units

B Whole cores...

Dynamic voltage, clock regulation

B Reduce clock rate dynamically

B Reduce supply voltage as well

B Eg when battery is low

B Eg when CPU is not the bottleneck (why?)

B Run on lots of cores, each running at a slow clock rate

Turbo mode
B Boost clock rate when onlv one core is active

Why add another processor?

/

Further simultaneous
instruction issue slots
rarely usable in real
code

Smallest working CPU

performance

»

Number of transistors
" Increasing the complexity of a single CPU leads to diminishing
returns
® Due to lack of instruction-level parallelism
®» Too many simultaneous accesses to one register file

®» Forwarding wires between functional units too long - inter-cluster communication takes
>1 cycle

® Pollack’s rule, “performance scales as the square root of design complexity”
* More clock rate = much more power
e \We can often do better with more cores running at a lower clock rate

How to program a parallel computer?

» Shared memory makes parallel :
programming much easier: _ -
for(i=0; I<N; ++i) l
par_for(j=0; j<M; ++j)
Ali.j] = (A[i-1,j] + A[i,j])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; j<M; +1j)
B[i,j] = (Ali,j-1] + A[i,j])*0.5;

Loop 1:

» First loop operates on rows in parallel

w» Second loop operates on columns in _
parallel Loop 2:

» With distributed memory we would
have to program message passing to
transpose the array in between

» With shared memory... no problem!

How to program a parallel computer?

» Shared memory makes parallel :
programming much easier: _ =
for(i=0; I<N; ++i) !
par_for(j=0; j<M; ++j)
Ali,j] = (A[i-1,j] + A[i,j])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; j<M; +1j)
BIi,jl = (A[i,j-1] + A[i,j])*0.5;

Loop 1:

 First loop operates on each row in parallel

» Second loop operates on each column in _
parallel Loop 2:

» With distributed memory we would have
to program message passing to transpose
the array in between

» With shared memory... no problem!

Core 0
Core 1
Core 2
Core 3

How to program a parallel computer?

» Shared memory makes parallel :
programming much easier: _ - J
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
Ali,j] = (A[i-1,j] + A[i,j])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)

BJi,j1 = (A[i,j-1] + A[i,j1)*0.5; « Shared memory is
convenient

.] « Shared memory is fast —
First loop operates on rows in parallel RSt s s A ey

» Second loop operates on columns in load/store
parallel

» With distributed memory we would
have to program message passing to
transpose the array in between

» With shared memory... no problem!

How to program a parallel computer?

» Shared memory makes parallel :
programming much easier: _ - J
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
Ali,j] = (A[i-1,j] + A[i,j])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)

BJi,j1 = (A[i,j-1] + A[i,j1)*0.5; « Shared memory is
convenient

.] « Shared memory is fast —
First loop operates on rows in parallel RSt s s A ey

» Second loop operates on columns in load/store
parallel - Shared memoryisa !

» With distributed memory we would
have to program message passing to
transpose the array in between

» With shared memory... no problem!

Shared-memory parallel - OpenMP

¥ OpenMP is a standard design for language extensions for
shared-memory parallel programming

w Language bindings exist for Fortran, C, C++ and to some
extent (eg research prototypes) for Java and C#

» Implementation requires compiler support — as found in
GCC, clang/llvm, Intel's compilers, Microsoft Visual Studio,
Apple Xcode

w Example:

for(i=0; I<N; ++i) ..
#pragma omp parallel for (OpenMP is just one tool

for(j:O; j<|\/|; +.|.j) for shared-memory

. C s parallel programming —
Ali,j] = (A[i-1,j] + A[i,j]))*0.5;
[1] = (Al-1,] (1) ’ there are many more, but
#pragma omp parallel for :
_ _ it exposes the most
for(i=0; I<N; ++i)

for(j=0; j<M; ++j) important issues)

All,j] = (AliJ]-1] + Ali,j])*0.5;

Implementing shared-memory parallel loop

for (i=0; i<N; i++) {| | if (myThreadld() == 0)
C[i] = A[i] + BJil; i = 0; Barrier(): block
} barrier(); ! > until all threads
Il on each thread reach this point
while (true) {
local_i = FetchAndAdd(&i);
§:> if (local_i >= N) break;
¥ “self-scheduling” loop Cl[local_i] = A[local_i] + B[local_i];
" FetchAndAdd() is atomic }
operation to get next un- barrier();
executed loop iteration: ’

Int FetchAndAdd(int *i) { —
lock(i) Optimisations:
L * Work in chunks
T - Avoid unnecessary barriers
= - Exploit “cache affinity” from loop to loop
unlock(i);
return(r): There are smarter ways to implement
) FetchAndAdd....

We could use locks:

Implementing Fetch-and-add

Int Fet.chAndAdd(lnt A I Using locks is rather expensive (and we should discuss
lock(i); how they would be implemented)
r="; I But on many processors there is support for atomic
*I = *i+1; increment
unlock(i); W So use the GCC built-in:
return(r); __sync_fetch_and_add(p, inc)
}
I Eg on x86 this is implemented using the “exchange and
add” instruction in combination with the “lock” prefix:
LOCK XADDL r1 r2
W The “lock” prefix ensures the exchange and increment
are executed on a cache line which is held exclusively
Combining:

® |n a large system, using FetchAndAdd() for parallel loops will lead to

contention

I But FetchAndAdds can be combined in the network

W \When two FetchAndAdd(p,1) messages meet, combine them into one
FetchAndAdd(p,2) — and when it returns, pass the two values back.

More OpenMP

#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)

for (i=0; i < n; i++)
result = result + (a[i] * bJi]);

w default(shared) private(i):

All variables except i are
shared by all threads.

w» schedule(static,chunk):

Iterations of the parallel loop
will be distributed in equal
sized blocks to each thread in
the “team”

» reduction(+:result):

performs a reduction on the
variables that appear in its
argument list

= A private copy for each variable is
created for each thread. At the end
of the reduction, the reduction
operator is applied to all private
copies of the shared variable, and
the final result is written to the
global shared variable.

http://www.lInl.gov/icomputing/tutorials/openMP/#REDUCTION

Distributed-memory parallel - MPI
» MPI (“Message-passing Interface) is a standard API for parallel
programming using message passing
w Six basic calls:
® MPI_Init - Initialize MPI

® MPI_Comm_size - Find out how many processes there are
®» MPI_Comm_rank - Find out which process | am

®» MPI|_Send - Send a message (MPI is just one tool for distributed-
®» MPI_Recv - Receive a message memory parallel programming — there
®» MPI_Finalize - Terminate MPI are many more, but it exposes the

i Key idea: collective operations LMostimportant issues)

®» MPI_Bcast - broadcast data from the process with rank "root" to all other processes of
the group

®» MPI|_Reduce — combine values on all processes into a single value using the operation
defined by the parameter op (eg sum)

» MPI_AlIReduce — MPI_Reduce and then broadcast so every process has the sum

w Essential advice: Single-Program, Multiple Data (SPMD)
i Each process has a share of the data,
b Every process shares the same control-flow

MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
m “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO j=1, m problems!)
DO =1, n
B(i,j)=0.25%(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
END DO
END DO

® To do this in parallel we
could simply partition the
outer loop

®» At the strip boundaries, we
need access to a column of
neighbour data values

=®In MPI we have to make this
communication explicit

28

Stencils in OpenMP

while ('converged) {

#pragma omp parallel for private(j) collapse(2)
for(i=0; j<N; ++j)

for(j=0; j<M; ++j)

B[i][j]=0.25*(A[i-1]0]+AlI+][]+ALNIG-1]1+ALI+1]);

#pragma omp parallel for private(j) collapse(2)
for(i=0; |<M; ++j)

fOI'(j=O; j<M; ++j) First loop nest depends on A and

A[l][J] - B[l][]], produces new values for A — so we
} have to “double-buffer” into B, and
copy the new values back (after a
barrier synchronisation)

(we have omitted code to determine whether convergence has
been reached)

MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
m “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO j=1, m problems!)
DO i=1,n
B(i,j)=0.25*(A(i-1,))+A(i+1,))+A(i,j-1)+A(i,j+1))
END DO
E N D DO Each processor computes values for its own, disjoint slice of the data

® To do this in parallel we
could simply partition the
outer loop

®» At the strip boundaries, we
need access to a column of
neighbour data values

=®In MPI we have to make this
communication explicit

MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
m “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO j=1, m problems!)
DO i=1,n
B(i,j)=0.25*(A(i-1,j)+A(i+1,))+A(i,j-1)+A(i,j+1))
END DO
EN D DO Each processor’s slice of work depends on a larger slice of the data

® To do this in parallel we

Proc 2

could simply partition the Allocates
outer loop space for
. . the larger

®» At the strip boundaries, we stice on
need access to a column of o

neighbour data values

=®In MPI we have to make this
communication explicit

MPI| Example: stencil

w “stencil” example: each element
IS updated using a weighted
sum of neighbour values

DO j=1, m
DO i=1, n

(“Stencils” arise in solving differential
equations, image filtering, and
convolutional neural networks. There
are thousands of research papers on
efficient implementation of stencil
problems!)

B(i,j)=0.25"(A(i-1,))+A(i+1,))+A(i,j-1)+A(i,j+1))

END DO
END DO

® To do this in parallel we
could simply partition the
outer loop

®» At the strip boundaries, we
need access to a column of
neighbour data values

=®In MPI we have to make this
communication explicit

“Halo” region is allocated on each processor, updated by messages

Proc 2 has
“halo!!
regions for

its left and
right
neighbours

MPI Examp|e: stencil (“Stencils” arise in solving differential '
equations, image filtering, and
m “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO j=1, m problems!)
DO i=1,n
B(i,j)=0.25%(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
END DO
END DO

® To do this in parallel we
could simply partition the
outer loop

®» At the strip boundaries, we
need access to a column of
neighbour data values

=®In MPI we have to make this
communication explicit

MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
m “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO j=1, m problems!)
DO i=1,n
B(i,j)=0.25%(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
END DO
END DO

® To do this in parallel we
could simply partition the
outer loop

®» At the strip boundaries, we
need access to a column of
neighbour data values

=®In MPI we have to make this
communication explicit

I Compute number of processes and myrank 34

MP| Example: initialisation CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)

w SPMD I compute size of local block
®» “Single Program, Multiple Data” m = nlp
®» Each processor executes the IF (myrank.LT.(n-p*m)) THEN
program m = m+1
®» First has to work out what part it is to END IF
play | Compute neighbors
IF (myrank.EQ.0) THEN
®» “myrank” is index of this CPU left = MPI_PROC_NULL
®» “comm” is MPI “communicator” — ELSE left = myrank - 1
abstract index space of p processors END IF
IF (myrank.EQ.p-1)THEN
» |n this example, array is partitioned right = MPI_PROC_NULL
into slices ELSE right = myrank+1
END IF

! Allocate local arrays
ALLOCATE (A(0:n+1,0:m+1), B(n,m))

(Continues on next slide)

W Example: IMain Loop
Jacobi2D DO WHILE(.NOT.converged)

=» Sweep over A
computing
moving
average of
neighbouring
four elements

=» Compute new
array B from A,
then copy it
back into B

» This version
tries to overlap
communication
with
computation

I compute boundary iterations so they’re ready to be sent right away
DO i=1, n
B(i,1)=0.25*(A(i-1,j)+A(i+1,))+A(i,0)+A(i,2))
B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))
END DO
I Communicate
CALL MPI_ISEND(B(
CALL MPI_ISEND(B(
CALL MPI_IRECV(A(
CALL MPI_IRECV(A(
I Compute interior
DO j=2, m-1
DO i=1, n
B(i,j)=0.25*(A(i-1,j)+A(i+1,))+A(i,j-1)+A(i,j+1))
END DO
END DO
DO j=1, m
DO i=1, n
A(ij) = B(i,))
END DO
END DO
I Complete communication
DO i=1, 4 /
CALL MPI_WAIT(req(i), status(1.i), ierr) B(1:n,1) B(1:n,m)
END DO

—

1,1),n, MPl_REAL, left, tag, comm, req(1), ierr)
1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)
1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)
1,m+1),n, MPl_REAL, right, tag, comm, req(4), ierr)

END DO

35

MPI| vs OpenMP

»Which is better — OpenMP or MPI?

36

MPI vs OpenMP
»Which is better — OpenMP or MPI?

» OpenMP is easy!
#» But it hides the communication
» And unintended sharing can lead to tricky bugs

37

MPI| vs OpenMP
»Which is better — OpenMP or MPI?

" OpenMP is easy!
" But it hides the communication
» And unintended sharing can lead to tricky bugs

»MPI is hard work
*You need to make data partitioning explicit
#No hidden communication
»Seems to require more copying of data

38

MPI| vs OpenMP *
»Which is better — OpenMP or MPI?

w» OpenMP is easy!
" But it hides the communication
» And unintended sharing can lead to tricky bugs

» MPI is hard work
»You need to make data partitioning explicit
* No hidden communication
»Seems to require more copying of data

» It’s easier to see how to reduce communication and
synchronisation (?)

w Lots of research on better parallel programming
models...

Ch10 part 1 summary: “
w»Why go multi-core?
i Limits of instruction-level parallelism
i Limits of SIMD parallelism
i Parallelism at low clock rate is energy-efficient
m»How to program a parallel machine?
i Explicitly-managed threads

w Parallel loops
i (many alternatives — dynamic thread pool, agents etc)

m Message-passing (“distributed memory”)
w»Where is the communication?
»Where is the synchronisation?

i Design of programming models and software tools
for parallelism and locality is major research focus

Additional slides for interest and
context

Supercomputers: large distributed-memory machines with fast interconnect
Usually (always?) programmed with MPI (and OpenMP, CUDA within each node)
Managed via batch queue

Supported by parallel filesystem

Image shows “Summit” — funded by US Dept of Energy. “Fastest computer in the
world” 2018-2020. Part of 2014 $325M contract with IBM, NVIDIA and Mellanox

https://www.olcf.ornl.gov/2020/08/10/take-a-virtual-tour-of-ornls-supercomputer-center/

i

Sponsors

Operators

Architecture

Power
Operating
system
Storage
Speed
Purpose

Web site

Yanr

U.S. Department of Energy
IBM

9,216 POWER9 22-core CPUs
27,648 NVIDIA Tesla V100
GPUsl'

13 Mwi2]

Red Hat Enterprise Linux
(RHEL)RIA]

250 PB
200 petaFLOPS (peak)
Scientific research

www.olcf.ornl.gov/olcf-resources
/compute-systems/summit/ &’

Rank

o

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWERS 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWERS 22C 3.1GHz,

NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

https://lwww.top500.org/lists/top500/list/2020/11/

Cores

7,630,848

2,614,592

1,572,480

10,649,600

995,020

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

63,460.0

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,712.0

79,215.0

Power
(kW)

29,899

10,096

7,436

15,371

2,646

TOP500 List (Nov
2020)

Rmax and Rpeak
values are in
Gflops

ranked by their
performance on
the

“to solve a dense
system of linear
equations. For
the TOP500, we
used that version
of the
benchmark that
allows the user
to scale the size
of the problem
and to optimize
the software in
order to achieve
the best
performance for
a given machine”

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack

Rank

ol

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
£48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWERY 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER? 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing C rin Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
2.2GHz, TH Express-2, Matrix-2000, NUDT
National Super Computer Center in Guangzhou

China

JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC
7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR
InfiniBand/ParTec ParaStation ClusterSuite, Atos
Forschungszentrum Juelich (FZJ)

Germany

HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz,
NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC
Eni S.p.A.

Italy

Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz,
Mellanox InfiniBand HDR, Dell EMC
Texas Advanced Computing Center/Uniy
United States

Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz,
NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE

Saudi Aramco

Saudi Arabia

Cores

7,630,848

2,414,592

1,572,480

10,649,600

955,520

4,981,760

449,280

669,760

448,448

672,520

Rmax
[TFlop/s)

4£2,010.0

148,600.0

94,640.0

93,014.6

63,460.0

61,6445

44,1200

35,4500

23516.4

22,600.0

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,435.9

79,215.0

100,678.7

70,980.0

51,7208

38,7459

55,623.6

Power
(kW)

29,899

10,096

7,438

15,371

2,646

18,482

1,764

2,252

Rank

20

System

Marconi-100 - IBM Pov m AC922, IBM POWER? 14C
3GHz, Nvidia Volta V100, Dual-rail Mellanox EDR Infiniband,
IBM

CINECA

Italy

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries
interconnect , NVIDIA Tesla P100, Cray/HPE

Swiss National Supercomputing Centre (C5CS)
Switzerland

Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon
Phi 7250 68C 1.4GHz, Aries interconnect, Cray/HPE
DOE/NNSA/LANL/SNL

United States

Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570
M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2,
Infiniband EDR, Fujitsu

National Institute of Advanced Industrial Science and
Technology (AIST)

Japan

SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174
24C 3.1GHz, Intel Omni-Path, Lenovo

Leibniz Rechenzentrum

Germany

Hawk - Apollo 9000, AMD EPYC 7742 64C 2.25GHz, Mellanox
HDR Infinib HPE
HLRS - Hochstleistungsrechenzentrum Stuttgart

Germany

Lassen - IBM Power System AC922, IBM POWER? 22C
3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla
V100, 1BM / NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

PANGEA Il - IBM Power System AC922, IBM POWER9 18C
3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta
GV100, IBM

Total Exploration Production

France

TOKI-SORA - PRIMEHPC FX1000, A64FX 48C 2.2GHz, Tofu
inte ct D, Fujitsu

inte , Cray/HPE
DOE/SC/LBNL/NERSC
United States

Cores

347,776

387,872

979,072

391,680

305,856

698,880

286,288

291,024

276,480

622,336

Rmax
[TFlop/s)

21,640.0

21,230.0

20,158.7

19,880.0

19,476.6

19,3340

18,200.0

17,860.0

16,592.0

14,0147

Rpeak
[TFlop/s)

29,354.0

27,1563

320766

26,873.9

25,159.7

23,047.2

19,464.2

27,880.7

Power
(kw]

1,476

2,384

7,578

1,649

3,906

1367

3,939

TOP500 List (Nov
2020)

Rmax and Rpeak
values are in
Gflops

ranked by Rmax
- performance on
the

“to solve a dense
system of linear
equations. For
the TOP500, we
used that version
of the
benchmark that
allows the user
to scale the size
of the problem
and to optimize
the software in
order to achieve
the best
performance for
a given machine”

https://lwww.top500.org/lists/top500/list/2020/11/

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack

Rank

System

El Capitan - HPE Cray

, AMD Instinct M
. HPE

DOE/SC/0ak Ridg
United States

Aurora -
Xeon CPU Max

shot-11, Intel

nne National Laboratory
United States

JUPITER Booster - B
72C 3GHz, NVIDIA G c
JR200, RedHat Enterprise Linux, EVIDE

nfiniBand N
EurcHPC/FZ)

Germany

Eagle - Microsoft NDv on Platinum 8480C 48C 2GHz,

NVIDIA H10

NVIDIA Infiniband NDR, Microsoft Azure

crosott Azure

United States

Supercomputer Fugaku - Superc
4 2GHz, Tofu interconnect D

RIKEN Center for Computational S

Japan

Alps - HPE Cr. 254n, NVIDIA Grace 72C 3.1GHz
NVIDIA GH200 Superchip, Slingshot-11, HPE Cray 05
HPE

Swiss National Supercomputing Centre [CSCS)
Switzerland

Finland

Leonardo - Bu
32C 2.6GHz, N
HDR100 Infiniband, EVIDEN
EurcHPC/CINECA

ltaly

Cores

11,340,000

9,066,176

9,264,128

4,801,344

2,073,600

3,143,520

7,630,848

2,121,600

2,752,704

1,824,768

Rmax
[PFlop/s)

1,809.00

1,3563.00

1,012.00

1,000.00

561.20

477.90

44201

434.90

379.70

241.20

Rpeak
[PFlop/s)

2,821.10

2,085.72

1,980.01

1,226.28

846.84

606.97

537.21

574.84

531.51

306.31

Power
(kw)

29,685

24,607

38,698

15,794

8,461

29,899

7124

7,107

7,494

"

20

Isambard-Al phase 2 - HPE Cray EX254
72C 3.1GHz, NVIDIA 6H200 Sup

S, HPE

University of Bristol

United Kingdom

n, NVIDIA Grace

gshot-11, HPE

Tuolumne - HPE Cray

EuroHPC/BSC
Spain
NVIDIA Grace 72C

, HPE Cray

Discovery 6 - HPE Cray

3.1GHz, NVIDIA GH200 Superchip, Slingshot-
0S, HPE
ExxonMobil

United States

ABCI 3.0 -HPEC
21GH A

SoftBank Corp.
Japan

Shaheen Ill - GPU - HPE C
3.1GHz, NVIDIA GH20
0S, HPE

King Abdullah University of Sc

Saudi Arabia

Eos NVIDIA DGX SuperP0D - NVIDIA

56C 3.8GHz, NVIDIA H100, Infiniband

GX H100. Xeon

A Corporation
United States

MAXIMUS-384 - Po
8570 56C 46Hz, AMD
TS, DELL

Maximus
United States

1,028,160

1,161,216

718,848

663,040

806,208

479,232

662,256

574 464

485,888

976,896

216.50

20810

202.40

17530

164.20

14510

135.40

12280

121.40

11450

278.58

28888

338.49

249 44

218.44

181.49

151.88

155.21

188.65

25115

3,387

5.300

4,159

3,596

1,980

TOP500 List (Nov
2025)

Rmax and Rpeak
values are in Gflops

ranked by Rmax -
performance on the

“to solve a dense
system of linear
equations. For the
TOP500, we used
that version of the
benchmark that
allows the user to
scale the size of the
problem and to
optimize the
software in order to
achieve the best
performance for a
given machine”

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/

Google datacentres https://datacenterfrontier.com/inside-a-google-data-center-2020-version/

Ly = T— pro-

TR

Google Data Center, Council Bluffs lowa. Image Credit: Caddavis.photography from United States, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

What are parallel computers used for?

. -,
BB P oo
K _

http://lwww.coloandcloud.com/wp-content/uploads/2011/12/Quincy-Data-Center-Facilities-1024x634.jpg

Kolos datacentre, at Ballangen (Norway), inside the Arctic circle. Notyetbuilt — was
planned to expand to 600,000m? and 1,000MW, using cheapest electricity in Europe

https://kolos.com/

R?

Cerebras CS-1

1.2 trillion transistors (cf largest GPUs,
FPGAs, Graphcore etc ca. 30 billion)

« Ca.400,000 processor cores

- Ca.18GB SRAM

« TDP ca.17KW

« SRAM-to-core bandwidth “9 petabytes/s”

« Claimed 0.86PFLOPS (partially reduced
precision floating point) on stencil CFD
application

'iq”Ei' Singghe lile Single die . Wafer Scale Engina

W :

| 1TTEH | \ E
E ':-'Lh FMAL -._:‘ E g \ .
= F====""5 5 3‘:.“": ——

https://lwww.cerebras.net/beyond-ai-for-wafer-scale-compute-setting-records-in-
computational-fluid-dynamics/

Student question: Sequential composition of parallel loops)

How to program a parallel computer?

» Shared memory makes parallel
programming much easier:
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)
Ali,j] = (A[i,j-1] + A[i,j))"0.5;

-

I think the problem is that the explanation could be clearer. Here is my attempt to clarify:

How to program a parallel computer?|

» Shared memory makes parallel
programming much easier:
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
Alij] = (A[i-1] + Aij))*0.5; Loop 1:
par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)
Here it says that the first loop operate on rows in parallel. Should it not be columns in pari B[i'j] = (A[i,j-1] - A[i'j])'o,s;
par_for loop is on j, which corresponds to the columns.

S

» First loop operates on rows in parallel
» Second loop operates on columns in
parallel

» With distributed memory we would
have to program message passing to
transpose the array in between

» With shared memory... no problem!

Loop 2:

m First loop operates on each row in parallel

» Second loop operates on each column in
parallel n'-°°p <

The same goes for the second loop. It operates on rows in parallel?

So is this an error in the slides?

» With distributed memory we would have
to program message passing to transpose
the array in between

» With shared memory... no problem!

In the first loop nest, core 0 is assigned a chunk of row 0, then a chunk of row 1, up to row N.
In the second loop nest, core 0 is assigned a chunk of whole rows.

So core 0 needs to read data that was produced by core 1, core 2 and core 3.

55

Student question: Cache misses due to successive parallel loops

. .. em . How to program a parallel computer

Q: you mention that the accesses to A[i,j-1] and A[i,j] in the last line of Shared mamory makes parate | ¥
the second loop will cause cache misses. Please could you elaborate on T oo -
this? Do we get cache misses because of the data that was allocated L _
. . . . * First loop operates on rows in parallel ‘oo oo
into the cache during the execution of the first loop? Seccnd oop puates nconmeete . D
Pt tode

‘o—eo—e—e

transpose the array in between

* With shared memory... no problem!

» The first loop nest assigns to array A; the second one reads from it.

« Let's suppose that the first "par_for" loop runs on four cores - if M=100, then core0 might get
iterations j=0:24, corel: 25:49, core3: 50:74, core 3: 75:99.

« When core0 executes the store instructions for the assignment "A[i,j] = (A[i-1,j] + A[i,j1)*0.5;", it
acquires ownership of the cache line on which A[i,j] falls. In fact coreO is going to acquire all the
cache lines on which elements A[i,0:24] lie. Core1 will acquire A[i,24:49], etc.

« Now consider the second loop nest. This time we parallelise over i - so if N=10, core0 will get
iterations i=0:2, core1: 3:5, core2: 6:8, core3: 9:11.

« Now core0 is going to read all 100 elements of each of the rows of A that it needs - that is,

Ali,0:99]. Sois corel, ditto core2, core3. So core0 will broadcast read requests for the whole row,

and all the snooping cache controllers will be involved in providing this data.
« The same will happen with the other cores - there will be a storm of read requests.

Incidentally, if you were programming this with MPI, you could use an MPI_Broadcast() operation to achieve this effect much more

efficiently. You might wonder whether there is some way to achieve the effect of such a broadcast in a cache coherency protocol; see

Sarah Talbot's PhD work, Using proxies to reduce controller contention in large shared-memory multiprocessors

https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf

56

Student question: Neighbour exchange in stencil loop

I Example: IMain Loop
Jacobi2D DO WHILE(.NOT.converged)

% Sweep over A
computing
moving
average of
neighbouring
four elements

% Compute new
array B from A,

I compute boundary iterations so they're ready to be sent right away
DOi=1,n

B(i, 1)=0.25"(A(i-1,j)+Ai+1,))+A(i,0)+A(i.2))

B(i,m)=0.25" (A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))
END DO
| Communicate
CALL MPI_ISEND

(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr)
CALL MPI_ISEND(

(

(

(),
(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)
CALL MPI_IRECV(A()
CALL MPI_IRECV(A(
! Compute interior
DO j=2, m-1

1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)

B
B
A
A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr)

then copy it DOi=1. n
back into B B(i,))=0.25°(A(i-1,)}+A(+1 [} +A(ij-1)+A(,j+1))
END DO
® This version END DO
tries tooverlap DO j=1, m
communication DOi=1, n
with Al < Bl
computation END DO (i) = B
END DO
| Complete communication
DOi=1,4
CALL MP1_WAIT(req(i), status(1.i), ierr) B(t:n,1) B(1:n,m)
END DO
END DO

We have already calculated the values on the boundary. | think the job is done. Why do we still need to
send the values (CALL MPI_ISEND((B(1,1)...)on the boundary and receive the values for calculating
the boundary (CALL MPI_IRECV(A(1,0...)?

TL;DR: we split the domain into strips; each processor looks after a
strip. There's a dependence - a data flow, between each processor
and its left- and right-neighbours.

In detail:

We compute the values on the boundary in the first "DO i=1,n"
loop. This computes values for the left column (B(1:n,1). ((And in
the second line it computes the values for the right column,
B(1:n,m).))

The calculation of the left boundary uses A(1:n,0) and A(1:n,2) - the
values of the columns to the left and the right of the column
B(1:n,1).

So the thing to understand here is that the subdomain that this
processor is reading has five regions:

A(1:n,0) // read from the left neighbour processor

A(1:n,1) // computed by this processor using A(1:n,0) above [and
then sent to the left neighbour]

A(1:n,2:m-1) // computed by this processor using only data
computed on this processor

A(1:n,m) // computed by this processor using A{1:n,m+1) below
[and then sent to the right neighbour]

A(1:n,m+1) // read from the right neighbour processor

	Default Section
	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Untitled Section
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

	Untitled Section
	Slide 41: Additional slides for interest and context
	Slide 42: Additional slides for interest and context
	Slide 46
	Slide 47
	Slide 48

	Untitled Section
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

