
1

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache
coherency

Part1:

Power, multicore, the end of the free lunch, and how
to program a parallel computer

Shared-memory versus distributed-memory
November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th and 5th

eds), and on the lecture slides of David Patterson, John Kubiatowicz and
Yujia Jin at Berkeley

3

What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things I hope you will learn from this very brief
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

P
a
rt

 1

5

By Max Roser - https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=79751151

h
tt

p
s

:/
/e

n
.w

ik
ip

e
d

ia
.o

rg
/w

ik
i/
T

ra
n

s
is

to
r_

c
o

u
n

t#
/m

e
d

ia
/F

il
e

:M
o

o
re

's
_

L
a

w
_
T

ra
n

s
is

to
r_

C
o

u
n

t_
1

9
7

0
-2

0
2

0
.p

n
g

For an update, see:

https://ourworldindata.org/moores-law

https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law

6

https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

You see this graph kind of everywhere. You might wonder whether this is the whole story….

Price per

transistor?

Chiplets?

Wafer-scale?

DRAM? Flash?

Fab cost, die cost?

7

Power is the critical constraint
Dynamic power vs static leakage

Dynamic: Power is consumed when signals change

Static: Power is consumed when gates are powered-up

“Dennard Scaling”: dynamic power gets smaller if we

make the transistors smaller

“the end of Dennard Scaling”: static leakage starts to

dominate, especially at high voltage (that is needed for

high clock rate)

Power vs clock rate

Power increases sharply with clock rate because

High static leakage due to high voltage

High dynamic switching

Clock vs parallelism: much more efficient to use

Lots of parallel units, low clock rate, at low voltage

9

What can we do about power?

Compute fast then turn it off! (“race-to-sleep”)

Compute just fast enough to meet deadline

Clock gating, power gating

Turn units off when they’re not being used

Functional units

Whole cores...

Dynamic voltage, clock regulation

Reduce clock rate dynamically

Reduce supply voltage as well

Eg when battery is low

Eg when CPU is not the bottleneck (why?)

Run on lots of cores, each running at a slow clock rate

Turbo mode

Boost clock rate when only one core is active

10

Why add another processor?

Increasing the complexity of a single CPU leads to diminishing
returns

Due to lack of instruction-level parallelism

Too many simultaneous accesses to one register file

Forwarding wires between functional units too long - inter-cluster communication takes
>1 cycle

Pollack’s rule, “performance scales as the square root of design complexity”

• More clock rate = much more power

• We can often do better with more cores running at a lower clock rate

Number of transistors

p
e
rf

o
rm

a
n

c
e

Smallest working CPU

Further simultaneous

instruction issue slots

rarely usable in real

code

17

How to program a parallel computer?

Shared memory makes parallel
programming much easier:

 for(i=0; I<N; ++i)

par_for(j=0; j<M; ++j)

 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

 B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in
parallel

With distributed memory we would
have to program message passing to
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

18

How to program a parallel computer?

Shared memory makes parallel
programming much easier:

 for(i=0; I<N; ++i)

par_for(j=0; j<M; ++j)

 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

 B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on each row in parallel

Second loop operates on each column in
parallel

With distributed memory we would have
to program message passing to transpose
the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

C
o

re
 0

C
o

re
 1

C
o

re
 2

C
o

re
 3

19

How to program a parallel computer?

Shared memory makes parallel
programming much easier:

 for(i=0; I<N; ++i)

par_for(j=0; j<M; ++j)

 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

 B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in
parallel

With distributed memory we would
have to program message passing to
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

• Shared memory is

convenient

• Shared memory is fast –

communicate with just a

load/store

20

How to program a parallel computer?

Shared memory makes parallel
programming much easier:

 for(i=0; I<N; ++i)

par_for(j=0; j<M; ++j)

 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

 B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in
parallel

With distributed memory we would
have to program message passing to
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

• Shared memory is

convenient

• Shared memory is fast –

communicate with just a

load/store

• Shared memory is a trap!

• Because it encourages

programmers to ignore

where the communication is

happening

21

Shared-memory parallel - OpenMP

OpenMP is a standard design for language extensions for
shared-memory parallel programming

Language bindings exist for Fortran, C, C++ and to some
extent (eg research prototypes) for Java and C#

Implementation requires compiler support – as found in
GCC, clang/llvm, Intel’s compilers, Microsoft Visual Studio,
Apple Xcode

Example:
 for(i=0; I<N; ++i)

#pragma omp parallel for

for(j=0; j<M; ++j)

 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 #pragma omp parallel for

 for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

 A[i,j] = (A[i,j-1] + A[i,j])*0.5;

(OpenMP is just one tool

for shared-memory

parallel programming –

there are many more, but

it exposes the most

important issues)

22

Implementing shared-memory parallel loop

“self-scheduling” loop

FetchAndAdd() is atomic
operation to get next un-
executed loop iteration:

Int FetchAndAdd(int *i) {

 lock(i);

 r = *i;

 *i = *i+1;

 unlock(i);

 return(r);

}

if (myThreadId() == 0)

 i = 0;

barrier();

// on each thread

while (true) {

 local_i = FetchAndAdd(&i);

 if (local_i >= N) break;

 C[local_i] = A[local_i] + B[local_i];

}

barrier();

for (i=0; i<N; i++) {

 C[i] = A[i] + B[i];

}

There are smarter ways to implement

FetchAndAdd….

Barrier(): block

until all threads

reach this point

Optimisations:

• Work in chunks

• Avoid unnecessary barriers

• Exploit “cache affinity” from loop to loop

23

Implementing Fetch-and-addWe could use locks:

Int FetchAndAdd(int *i) {

 lock(i);

 r = *i;

 *i = *i+1;

 unlock(i);

 return(r);

}

Using locks is rather expensive (and we should discuss
how they would be implemented)

But on many processors there is support for atomic
increment

So use the GCC built-in:

__sync_fetch_and_add(p, inc)

Eg on x86 this is implemented using the “exchange and
add” instruction in combination with the “lock” prefix:

LOCK XADDL r1 r2

The “lock” prefix ensures the exchange and increment
are executed on a cache line which is held exclusively

Combining:

In a large system, using FetchAndAdd() for parallel loops will lead to
contention

But FetchAndAdds can be combined in the network

When two FetchAndAdd(p,1) messages meet, combine them into one
FetchAndAdd(p,2) – and when it returns, pass the two values back.

24

More OpenMP

#pragma omp parallel for \

 default(shared) private(i) \

 schedule(static,chunk) \

 reduction(+:result)

for (i=0; i < n; i++)

 result = result + (a[i] * b[i]);

default(shared) private(i):

 All variables except i are
shared by all threads.

schedule(static,chunk):

 Iterations of the parallel loop
will be distributed in equal
sized blocks to each thread in
the “team”

reduction(+:result):

 performs a reduction on the
variables that appear in its
argument list

A private copy for each variable is
created for each thread. At the end
of the reduction, the reduction
operator is applied to all private
copies of the shared variable, and
the final result is written to the
global shared variable.

http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION

25

Distributed-memory parallel - MPI
MPI (“Message-passing Interface) is a standard API for parallel
programming using message passing

Six basic calls:
MPI_Init - Initialize MPI

MPI_Comm_size - Find out how many processes there are

MPI_Comm_rank - Find out which process I am

MPI_Send - Send a message

MPI_Recv - Receive a message

MPI_Finalize - Terminate MPI

Key idea: collective operations
MPI_Bcast - broadcast data from the process with rank "root" to all other processes of
the group

MPI_Reduce – combine values on all processes into a single value using the operation
defined by the parameter op (eg sum)

MPI_AllReduce – MPI_Reduce and then broadcast so every process has the sum

Essential advice: Single-Program, Multiple Data (SPMD)

Each process has a share of the data,

Every process shares the same control-flow

(MPI is just one tool for distributed-

memory parallel programming – there

are many more, but it exposes the

most important issues)

27

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

28

Stencils in OpenMP

 while (!converged) {

#pragma omp parallel for private(j) collapse(2)

for(i=0; j<N; ++j)

 for(j=0; j<M; ++j)

 B[i][j]=0.25*(A[i-1][j]+A[i+][j]+A[i][j-1]+A[i][j+1]);

#pragma omp parallel for private(j) collapse(2)

for(i=0; j<M; ++j)

 for(j=0; j<M; ++j)

 A[i][j] = B[i][j];

 }

(we have omitted code to determine whether convergence has
been reached)

First loop nest depends on A and

produces new values for A – so we

have to “double-buffer” into B, and

copy the new values back (after a

barrier synchronisation)

29

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

Proc 1

cop-

utes

Proc 2

comp-

utes

Proc 3

comp-

utes

Proc 4

comp-

utes

Each processor computes values for its own, disjoint slice of the data

30

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

Proc 2

allocates

space for

the larger

slice on

which it

depends

Each processor’s slice of work depends on a larger slice of the data

31

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

Proc 2 has

“halo”

regions for

its left and

right

neighbours

“Halo” region is allocated on each processor, updated by messages

32

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

Proc 1

comp-

utes

Proc 2

comp-

utes

Proc 3

comp-

utes

Proc 4

comp-

utes

Proc n

sends to

proc n+1

Proc n+1

sends to

proc n

33

MPI Example: stencil

DO j=1, m
 DO i=1, n
 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 END DO
END DO

“stencil” example: each element
is updated using a weighted
sum of neighbour values

To do this in parallel we
could simply partition the
outer loop

At the strip boundaries, we
need access to a column of
neighbour data values

In MPI we have to make this
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential

equations, image filtering, and

convolutional neural networks. There

are thousands of research papers on

efficient implementation of stencil

problems!)

Proc 1

comp-

utes

Proc 2

comp-

utes

Proc 3

comp-

utes

Proc 4

comp-

utes

Proc n

receives

from proc

n+1

Proc n+1

receives

from proc

n

34

MPI Example: initialisation
! Compute number of processes and myrank

 CALL MPI_COMM_SIZE(comm, p, ierr)

 CALL MPI_COMM_RANK(comm, myrank, ierr)

! compute size of local block

 m = n/p

 IF (myrank.LT.(n-p*m)) THEN

 m = m+1

 END IF

! Compute neighbors

 IF (myrank.EQ.0) THEN

 left = MPI_PROC_NULL

 ELSE left = myrank - 1

 END IF

 IF (myrank.EQ.p-1)THEN

 right = MPI_PROC_NULL

 ELSE right = myrank+1

 END IF

! Allocate local arrays

 ALLOCATE (A(0:n+1,0:m+1), B(n,m))

SPMD
“Single Program, Multiple Data”

Each processor executes the
program

First has to work out what part it is to
play

“myrank” is index of this CPU

“comm” is MPI “communicator” –
abstract index space of p processors

In this example, array is partitioned
into slices

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3

(Continues on next slide)

35

2

!Main Loop

 DO WHILE(.NOT.converged)

 ! compute boundary iterations so they’re ready to be sent right away

 DO i=1, n

 B(i,1)=0.25*(A(i-1,j)+A(i+1,j)+A(i,0)+A(i,2))

 B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))

 END DO

 ! Communicate

 CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr)

 CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)

 CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)

 CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr)

 ! Compute interior

 DO j=2, m-1

 DO i=1, n

 B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

 END DO

 END DO

 DO j=1, m

 DO i=1, n

 A(i,j) = B(i,j)

 END DO

 END DO

 ! Complete communication

 DO i=1, 4

 CALL MPI_WAIT(req(i), status(1.i), ierr)

 END DO

 END DO
http://www.netlib.org/utk/papers/mpi-book/node51.html

Example:
Jacobi2D

Sweep over A
computing
moving
average of
neighbouring
four elements

Compute new
array B from A,
then copy it
back into B

This version
tries to overlap
communication
with
computation

B(1:n,1) B(1:n,m)

36

Which is better – OpenMP or MPI?

MPI vs OpenMP

37

Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI vs OpenMP

38

Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI is hard work

You need to make data partitioning explicit

No hidden communication

Seems to require more copying of data

MPI vs OpenMP

39

Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI is hard work

You need to make data partitioning explicit

No hidden communication

Seems to require more copying of data

It’s easier to see how to reduce communication and
synchronisation (?)

Lots of research on better parallel programming
models…

MPI vs OpenMP

40

Why go multi-core?

Limits of instruction-level parallelism

Limits of SIMD parallelism

Parallelism at low clock rate is energy-efficient

How to program a parallel machine?

Explicitly-managed threads

Parallel loops
(many alternatives – dynamic thread pool, agents etc)

Message-passing (“distributed memory”)

Where is the communication?

Where is the synchronisation?

Design of programming models and software tools
for parallelism and locality is major research focus

Ch10 part 1 summary:

41

Additional slides for interest and

context

42

Additional slides for interest and

context

Supercomputers: large distributed-memory machines with fast interconnect

Usually (always?) programmed with MPI (and OpenMP, CUDA within each node)

Managed via batch queue

Supported by parallel filesystem

Image shows “Summit” – funded by US Dept of Energy. “Fastest computer in the

world” 2018-2020. Part of 2014 $325M contract with IBM, NVIDIA and Mellanox
https://www.olcf.ornl.gov/2020/08/10/take-a-virtual-tour-of-ornls-supercomputer-center/

46

https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov

2020)

• Rmax and Rpeak

values are in

Gflops

• ranked by their

performance on

the LINPACK

Benchmark.

• “to solve a dense

system of linear

equations. For

the TOP500, we

used that version

of the

benchmark that

allows the user

to scale the size

of the problem

and to optimize

the software in

order to achieve

the best

performance for

a given machine”

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack

47

https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov

2020)

• Rmax and Rpeak

values are in

Gflops

• ranked by Rmax

- performance on

the LINPACK

Benchmark

• “to solve a dense

system of linear

equations. For

the TOP500, we

used that version

of the

benchmark that

allows the user

to scale the size

of the problem

and to optimize

the software in

order to achieve

the best

performance for

a given machine”

https://www.top500.org/lists/top500/list/2020/11/

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack

48

https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov

2025)

• Rmax and Rpeak

values are in Gflops

• ranked by Rmax -

performance on the

LINPACK

Benchmark

• “to solve a dense

system of linear

equations. For the

TOP500, we used

that version of the

benchmark that

allows the user to

scale the size of the

problem and to

optimize the

software in order to

achieve the best

performance for a

given machine”

• https://www.top500.

org/statistics/sublis

t/

https://www.top500.org/lists/top500/list/2025/11/

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/

49

https://datacenterfrontier.com/inside-a-google-data-center-2020-version/Google datacentres

50

Google Data Center, Council Bluffs Iowa. Image Credit: Caddavis.photography from United States, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

51

What are parallel computers used for?

http://www.coloandcloud.com/wp-content/uploads/2011/12/Quincy-Data-Center-Facilities-1024x634.jpg

52

https://kolos.com/

Kolos datacentre, at Ballangen (Norway), inside the Arctic circle. Not yet built – was

planned to expand to 600,000𝒎𝟐 and 1,000MW, using cheapest electricity in Europe

53

Cerebras CS-1

• 1.2 trillion transistors (cf largest GPUs,

FPGAs, Graphcore etc ca. 30 billion)

• Ca.400,000 processor cores

• Ca.18GB SRAM

• TDP ca.17KW

• SRAM-to-core bandwidth “9 petabytes/s”

• Claimed 0.86PFLOPS (partially reduced

precision floating point) on stencil CFD

application

https://www.cerebras.net/beyond-ai-for-wafer-scale-compute-setting-records-in-

computational-fluid-dynamics/

54

Student question: Sequential composition of parallel loops

55

Student question: Cache misses due to successive parallel loops

Q: you mention that the accesses to A[i,j-1] and A[i,j] in the last line of

the second loop will cause cache misses. Please could you elaborate on

this? Do we get cache misses because of the data that was allocated

into the cache during the execution of the first loop?

• The first loop nest assigns to array A; the second one reads from it.

• Let's suppose that the first "par_for" loop runs on four cores - if M=100, then core0 might get

iterations j=0:24, core1: 25:49, core3: 50:74, core 3: 75:99.

• When core0 executes the store instructions for the assignment "A[i,j] = (A[i-1,j] + A[i,j])*0.5;", it

acquires ownership of the cache line on which A[i,j] falls. In fact core0 is going to acquire all the

cache lines on which elements A[i,0:24] lie. Core1 will acquire A[i,24:49], etc.

• Now consider the second loop nest. This time we parallelise over i - so if N=10, core0 will get

iterations i=0:2, core1: 3:5, core2: 6:8, core3: 9:11.

• Now core0 is going to read all 100 elements of each of the rows of A that it needs - that is,

A[i,0:99]. So is core1, ditto core2, core3. So core0 will broadcast read requests for the whole row,

and all the snooping cache controllers will be involved in providing this data.

• The same will happen with the other cores - there will be a storm of read requests.

Incidentally, if you were programming this with MPI, you could use an MPI_Broadcast() operation to achieve this effect much more

efficiently. You might wonder whether there is some way to achieve the effect of such a broadcast in a cache coherency protocol; see

Sarah Talbot's PhD work, Using proxies to reduce controller contention in large shared-memory multiprocessors

https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf

https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf

56

Student question: Neighbour exchange in stencil loop

TL;DR: we split the domain into strips; each processor looks after a

strip. There's a dependence - a data flow, between each processor

and its left- and right-neighbours.

In detail:

We compute the values on the boundary in the first "DO i=1,n"

loop. This computes values for the left column (B(1:n,1). ((And in

the second line it computes the values for the right column,

B(1:n,m).))

The calculation of the left boundary uses A(1:n,0) and A(1:n,2) - the

values of the columns to the left and the right of the column

B(1:n,1).

So the thing to understand here is that the subdomain that this

processor is reading has five regions:

A(1:n,0) // read from the left neighbour processor

A(1:n,1) // computed by this processor using A(1:n,0) above [and

then sent to the left neighbour]

A(1:n,2:m-1) // computed by this processor using only data

computed on this processor

A(1:n,m) // computed by this processor using A{1:n,m+1) below

[and then sent to the right neighbour]

A(1:n,m+1) // read from the right neighbour processor

	Default Section
	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Untitled Section
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

	Untitled Section
	Slide 41: Additional slides for interest and context
	Slide 42: Additional slides for interest and context
	Slide 46
	Slide 47
	Slide 48

	Untitled Section
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

