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Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache 
coherency

Part1:

Power, multicore, the end of the free lunch, and how 
to program a parallel computer

Shared-memory versus distributed-memory 
November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th and 5th 

eds), and on the lecture slides of David Patterson, John Kubiatowicz and 
Yujia Jin at Berkeley
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What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the 
surface.  The critical things I hope you will learn from this very brief 
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more 
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on 
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce 
the broadcasting
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By Max Roser - https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=79751151
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For an update, see: 

https://ourworldindata.org/moores-law 

https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
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https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

You see this graph kind of everywhere.  You might wonder whether this is the whole story….

Price per 

transistor?

Chiplets?

Wafer-scale? 

DRAM?  Flash? 

Fab cost, die cost?
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Power is the critical constraint
Dynamic power vs static leakage

Dynamic: Power is consumed when signals change

Static: Power is consumed when gates are powered-up

“Dennard Scaling”: dynamic power gets smaller if we 

make the transistors smaller

“the end of Dennard Scaling”: static leakage starts to 

dominate, especially at high voltage (that is needed for 

high clock rate)

Power vs clock rate

Power increases sharply with clock rate because 

High static leakage due to high voltage

High dynamic switching

Clock vs parallelism: much more efficient to use

Lots of parallel units, low clock rate, at low voltage 
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What can we do about power?

Compute fast then turn it off! (“race-to-sleep”)

Compute just fast enough to meet deadline

Clock gating, power gating

Turn units off when they’re not being used

Functional units

Whole cores...

Dynamic voltage, clock regulation

Reduce clock rate dynamically

Reduce supply voltage as well

Eg when battery is low

Eg when CPU is not the bottleneck (why?)

Run on lots of cores, each running at a slow clock rate

Turbo mode

Boost clock rate when only one core is active
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Why add another processor?

Increasing the complexity of a single CPU leads to diminishing 
returns

Due to lack of instruction-level parallelism

Too many simultaneous accesses to one register file

Forwarding wires between functional units too long - inter-cluster communication takes 
>1 cycle

Pollack’s rule, “performance scales as the square root of design complexity”

• More clock rate = much more power

• We can often do better with more cores running at a lower clock rate

Number of transistors
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Smallest working CPU

Further simultaneous 

instruction issue slots 

rarely usable in real 

code 
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How to program a parallel computer?

Shared memory makes parallel 
programming much easier:

 for(i=0; I<N; ++i) 

par_for(j=0; j<M; ++j) 

  A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

  B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in 
parallel

With distributed memory we would 
have to program message passing to 
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:
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How to program a parallel computer?

Shared memory makes parallel 
programming much easier:

 for(i=0; I<N; ++i) 

par_for(j=0; j<M; ++j) 

  A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

  B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on each row in parallel

Second loop operates on each column in 
parallel

With distributed memory we would have 
to program message passing to transpose 
the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:
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How to program a parallel computer?

Shared memory makes parallel 
programming much easier:

 for(i=0; I<N; ++i) 

par_for(j=0; j<M; ++j) 

  A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

  B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in 
parallel

With distributed memory we would 
have to program message passing to 
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

• Shared memory is 

convenient

• Shared memory is fast – 

communicate with just a 

load/store
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How to program a parallel computer?

Shared memory makes parallel 
programming much easier:

 for(i=0; I<N; ++i) 

par_for(j=0; j<M; ++j) 

  A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

  B[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in 
parallel

With distributed memory we would 
have to program message passing to 
transpose the array in between

With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

• Shared memory is 

convenient

• Shared memory is fast – 

communicate with just a 

load/store

• Shared memory is a trap!

• Because it encourages 

programmers to ignore 

where the communication is 

happening
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Shared-memory parallel - OpenMP

OpenMP is a standard design for language extensions for 
shared-memory parallel programming

Language bindings exist for Fortran, C, C++ and to some 
extent (eg research prototypes) for Java and C#

Implementation requires compiler support – as found in 
GCC, clang/llvm, Intel’s compilers, Microsoft Visual Studio, 
Apple Xcode

Example:
 for(i=0; I<N; ++i) 

#pragma omp parallel for 

for(j=0; j<M; ++j) 

  A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 #pragma omp parallel for 

 for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

  A[i,j] = (A[i,j-1] + A[i,j])*0.5;

(OpenMP is just one tool 

for shared-memory 

parallel programming – 

there are many more, but 

it exposes the most 

important issues)



22

Implementing shared-memory parallel loop

“self-scheduling” loop 

FetchAndAdd() is atomic 
operation to get next un-
executed loop iteration:

Int FetchAndAdd(int *i) { 

  lock(i);

  r = *i;

  *i = *i+1;

  unlock(i);

  return(r);

}

if (myThreadId() == 0) 

  i = 0;

barrier();

// on each thread

while (true) {

  local_i = FetchAndAdd(&i);

  if (local_i >= N) break;

  C[local_i] = A[local_i] + B[local_i];

}

barrier();

for (i=0; i<N; i++) {

  C[i]  = A[i] + B[i];

}

There are smarter ways to implement 

FetchAndAdd….

Barrier(): block 

until all threads 

reach this point

Optimisations: 

•  Work in chunks

•  Avoid unnecessary barriers

•  Exploit “cache affinity” from loop to loop
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Implementing Fetch-and-addWe could use locks:

Int FetchAndAdd(int *i) { 

  lock(i);

  r = *i;

  *i = *i+1;

  unlock(i);

  return(r);

}

Using locks is rather expensive (and we should discuss 
how they would be implemented)

But on many processors there is support for atomic 
increment

So use the GCC built-in:

__sync_fetch_and_add(p, inc)

Eg on x86 this is implemented using the “exchange and 
add” instruction in combination with the “lock” prefix:

LOCK XADDL r1 r2

The “lock” prefix ensures the exchange and increment 
are executed on a cache line which is held exclusively

Combining:

In a large system, using FetchAndAdd() for parallel loops will lead to 
contention

But FetchAndAdds can be combined in the network

When two FetchAndAdd(p,1) messages meet, combine them into one 
FetchAndAdd(p,2) – and when it returns, pass the two values back.
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More OpenMP

#pragma omp parallel for \

 default(shared) private(i) \

 schedule(static,chunk) \

 reduction(+:result)

for (i=0; i < n; i++) 

 result = result + (a[i] * b[i]); 

default(shared) private(i):

 All variables except i are 
shared by all threads.

schedule(static,chunk):

 Iterations of the parallel loop 
will be distributed in equal 
sized blocks to each thread in 
the “team” 

reduction(+:result):

 performs a reduction on the 
variables that appear in its 
argument list

A private copy for each variable is 
created for each thread. At the end 
of the reduction, the reduction 
operator is applied to all private 
copies of the shared variable, and 
the final result is written to the 
global shared variable. 

http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION
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Distributed-memory parallel - MPI
MPI (“Message-passing Interface) is a standard API for parallel 
programming using message passing

Six basic calls:
MPI_Init - Initialize MPI 

MPI_Comm_size - Find out how many processes there are 

MPI_Comm_rank - Find out which process I am 

MPI_Send - Send a message 

MPI_Recv - Receive a message 

MPI_Finalize - Terminate MPI 

Key idea: collective operations
MPI_Bcast - broadcast data from the process with rank "root" to all other processes of 
the group

MPI_Reduce – combine values on all processes into a single value using the operation 
defined by the parameter op (eg sum)

MPI_AllReduce – MPI_Reduce and then broadcast so every process has the sum

Essential advice: Single-Program, Multiple Data (SPMD)

Each process has a share of the data, 

Every process shares the same control-flow

(MPI is just one tool for distributed-

memory parallel programming – there 

are many more, but it exposes the 

most important issues)
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)
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Stencils in OpenMP

 while (!converged) {

#pragma omp parallel for private(j) collapse(2)

for(i=0; j<N; ++j) 

  for(j=0; j<M; ++j) 

      B[i][j]=0.25*(A[i-1][j]+A[i+][j]+A[i][j-1]+A[i][j+1]); 

#pragma omp parallel for private(j) collapse(2)

for(i=0; j<M; ++j) 

  for(j=0; j<M; ++j) 

      A[i][j] = B[i][j];

 }

(we have omitted code to determine whether convergence has 
been reached)

First loop nest depends on A and 

produces new values for A – so we 

have to “double-buffer” into B, and 

copy the new values back (after a 

barrier synchronisation)
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)

Proc 1 

cop-

utes

Proc 2 

comp-

utes

Proc 3 

comp-

utes

Proc 4 

comp-

utes

Each processor computes values for its own, disjoint slice of the data
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)

Proc 2 

allocates 

space for 

the larger 

slice on 

which it 

depends

Each processor’s slice of work depends on a larger slice of the data
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)

Proc 2 has 

“halo” 

regions for 

its left and 

right 

neighbours

“Halo” region is allocated on each processor, updated by messages 
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)

Proc 1 

comp-

utes

Proc 2 

comp-

utes

Proc 3 

comp-

utes

Proc 4 

comp-

utes

Proc n 

sends to 

proc n+1

Proc n+1 

sends to 

proc n
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MPI Example: stencil

DO j=1, m 
 DO i=1, n 
  B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
 END DO 
END DO

“stencil” example: each element 
is updated using a weighted 
sum of neighbour values

To do this in parallel we 
could simply partition the 
outer loop

At the strip boundaries, we 
need access to a column of 
neighbour data values

In MPI we have to make this 
communication explicit

http://www.netlib.org/utk/papers/mpi-book/node51.html

(“Stencils” arise in solving differential 

equations, image filtering, and 

convolutional neural networks.  There 

are thousands of research papers on 

efficient implementation of stencil 

problems!)

Proc 1 

comp-

utes

Proc 2 

comp-

utes

Proc 3 

comp-

utes

Proc 4 

comp-

utes

Proc n 

receives 

from proc 

n+1

Proc n+1 

receives 

from proc 

n
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MPI Example: initialisation
! Compute number of processes and myrank 

 CALL MPI_COMM_SIZE(comm, p, ierr) 

 CALL MPI_COMM_RANK(comm, myrank, ierr) 

! compute size of local block 

 m = n/p 

 IF (myrank.LT.(n-p*m)) THEN 

  m = m+1 

 END IF 

! Compute neighbors 

 IF (myrank.EQ.0) THEN 

  left = MPI_PROC_NULL 

 ELSE left = myrank - 1 

 END IF 

 IF (myrank.EQ.p-1)THEN 

  right = MPI_PROC_NULL 

 ELSE right = myrank+1 

 END IF 

! Allocate local arrays 

 ALLOCATE (A(0:n+1,0:m+1), B(n,m))

SPMD
“Single Program, Multiple Data”

Each processor executes the 
program

First has to work out what part it is to 
play

“myrank” is index of this CPU

“comm” is MPI “communicator” – 
abstract index space of p processors

In this example, array is partitioned 
into slices

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3

(Continues on next slide)
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2

!Main Loop 

 DO WHILE(.NOT.converged) 

  ! compute boundary iterations so they’re ready to be sent right away

  DO i=1, n 

   B(i,1)=0.25*(A(i-1,j)+A(i+1,j)+A(i,0)+A(i,2)) 

   B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1)) 

  END DO 

  ! Communicate 

  CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr) 

  CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr) 

  CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr) 

  CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr) 

  ! Compute interior 

  DO j=2, m-1 

   DO i=1, n 

    B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 

   END DO 

  END DO 

  DO j=1, m 

   DO i=1, n 

    A(i,j) = B(i,j) 

   END DO 

  END DO 

  ! Complete communication 

  DO i=1, 4 

   CALL MPI_WAIT(req(i), status(1.i), ierr) 

  END DO

 END DO 
http://www.netlib.org/utk/papers/mpi-book/node51.html

Example: 
Jacobi2D

Sweep over A 
computing 
moving 
average of 
neighbouring 
four elements

Compute new 
array B from A, 
then copy it 
back into B

This version 
tries to overlap 
communication 
with 
computation

B(1:n,1) B(1:n,m)
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Which is better – OpenMP or MPI?

MPI vs OpenMP
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Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI vs OpenMP
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Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI is hard work

You need to make data partitioning explicit

No hidden communication

Seems to require more copying of data

MPI vs OpenMP
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Which is better – OpenMP or MPI?

OpenMP is easy!

But it hides the communication

And unintended sharing can lead to tricky bugs

MPI is hard work

You need to make data partitioning explicit

No hidden communication

Seems to require more copying of data

It’s easier to see how to reduce communication and 
synchronisation (?)

Lots of research on better parallel programming 
models…

MPI vs OpenMP
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Why go multi-core?

Limits of instruction-level parallelism

Limits of SIMD parallelism

Parallelism at low clock rate is energy-efficient

How to program a parallel machine?

Explicitly-managed threads

Parallel loops 
(many alternatives – dynamic thread pool, agents etc)

Message-passing (“distributed memory”)

Where is the communication?

Where is the synchronisation?

Design of programming models and software tools 
for parallelism and locality is  major research focus

Ch10 part 1 summary: 
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Additional slides for interest and 

context



42

Additional slides for interest and 

context

Supercomputers: large distributed-memory machines with fast interconnect

Usually (always?) programmed with MPI (and OpenMP, CUDA within each node)

Managed via batch queue

Supported by parallel filesystem

Image shows “Summit” – funded by US Dept of Energy.  “Fastest computer in the 

world” 2018-2020.  Part of 2014 $325M contract with IBM, NVIDIA and Mellanox
https://www.olcf.ornl.gov/2020/08/10/take-a-virtual-tour-of-ornls-supercomputer-center/
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https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov 

2020)

• Rmax and Rpeak 

values are in 

Gflops

• ranked by their 

performance on 

the LINPACK 

Benchmark. 

• “to solve a dense 

system of linear 

equations. For 

the TOP500, we 

used that version 

of the 

benchmark that 

allows the user 

to scale the size 

of the problem 

and to optimize 

the software in 

order to achieve 

the best 

performance for 

a given machine”

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack
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https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov 

2020)

• Rmax and Rpeak 

values are in 

Gflops

• ranked by Rmax 

- performance on 

the LINPACK 

Benchmark

• “to solve a dense 

system of linear 

equations. For 

the TOP500, we 

used that version 

of the 

benchmark that 

allows the user 

to scale the size 

of the problem 

and to optimize 

the software in 

order to achieve 

the best 

performance for 

a given machine”

https://www.top500.org/lists/top500/list/2020/11/

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack
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https://www.top500.org/lists/top500/list/2020/11/

• TOP500 List (Nov 

2025)

• Rmax and Rpeak 

values are in Gflops

• ranked by Rmax - 

performance on the 

LINPACK 

Benchmark

• “to solve a dense 

system of linear 

equations. For the 

TOP500, we used 

that version of the 

benchmark that 

allows the user to 

scale the size of the 

problem and to 

optimize the 

software in order to 

achieve the best 

performance for a 

given machine”

• https://www.top500.

org/statistics/sublis

t/ 

https://www.top500.org/lists/top500/list/2025/11/ 

http://www.top500.org/about/linpack
http://www.top500.org/about/linpack
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/statistics/sublist/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
https://www.top500.org/lists/top500/list/2025/11/
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https://datacenterfrontier.com/inside-a-google-data-center-2020-version/Google datacentres
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Google Data Center, Council Bluffs Iowa. Image Credit: Caddavis.photography from United States, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons
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What are parallel computers used for?

http://www.coloandcloud.com/wp-content/uploads/2011/12/Quincy-Data-Center-Facilities-1024x634.jpg
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https://kolos.com/

Kolos datacentre, at Ballangen (Norway), inside the Arctic circle.  Not yet built – was 

planned to expand to 600,000𝒎𝟐 and 1,000MW, using cheapest electricity in Europe
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Cerebras CS-1

• 1.2 trillion transistors (cf largest GPUs, 

FPGAs, Graphcore etc ca. 30 billion)

• Ca.400,000 processor cores

• Ca.18GB SRAM

• TDP ca.17KW

• SRAM-to-core bandwidth “9 petabytes/s”

• Claimed 0.86PFLOPS (partially reduced 

precision floating point) on stencil CFD 

application

https://www.cerebras.net/beyond-ai-for-wafer-scale-compute-setting-records-in-

computational-fluid-dynamics/
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Student question: Sequential composition of parallel loops
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Student question: Cache misses due to successive parallel loops 

Q: you mention that the accesses to A[i,j-1] and A[i,j] in the last line of 

the second loop will cause cache misses. Please could you elaborate on 

this? Do we get cache misses because of the data that was allocated 

into the cache during the execution of the first loop?

• The first loop nest assigns to array A; the second one reads from it.  

• Let's suppose that the first "par_for" loop runs on four cores - if M=100, then core0 might get 

iterations j=0:24, core1: 25:49, core3: 50:74, core 3: 75:99.

• When core0 executes the store instructions for the assignment "A[i,j] = (A[i-1,j] + A[i,j])*0.5;", it 

acquires ownership of the cache line on which A[i,j] falls.  In fact core0 is going to acquire all the 

cache lines on which elements A[i,0:24] lie.  Core1 will acquire A[i,24:49], etc.

• Now consider the second loop nest.  This time we parallelise over i - so if N=10, core0 will get 

iterations i=0:2, core1: 3:5, core2: 6:8, core3: 9:11.

• Now core0 is going to read all 100 elements of each of the rows of A that it needs - that is, 

A[i,0:99].  So is core1, ditto core2, core3.  So core0 will broadcast read requests for the whole row, 

and all the snooping cache controllers will be involved in providing this data. 

• The same will happen with the other cores - there will be a storm of read requests.

Incidentally, if you were programming this with MPI, you could use an MPI_Broadcast() operation to achieve this effect much more 

efficiently.  You might wonder whether there is some way to achieve the effect of such a broadcast in a cache coherency protocol; see 

Sarah Talbot's PhD work, Using proxies to reduce controller contention in large shared-memory multiprocessors  

https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf 

https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
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Student question: Neighbour exchange in stencil loop

TL;DR: we split the domain into strips; each processor looks after a 

strip. There's a dependence - a data flow, between each processor 

and its left- and right-neighbours.

In detail:

We compute the values on the boundary in the first "DO i=1,n" 

loop. This computes values for the left column (B(1:n,1). ((And in 

the second line it computes the values for the right column, 

B(1:n,m).))

The calculation of the left boundary uses A(1:n,0) and A(1:n,2) - the 

values of the columns to the left and the right of the column 

B(1:n,1).

So the thing to understand here is that the subdomain that this 

processor is reading has five regions: 

A(1:n,0) // read from the left neighbour processor

A(1:n,1) // computed by this processor using A(1:n,0) above [and 

then sent to the left neighbour]

A(1:n,2:m-1) // computed by this processor using only data 

computed on this processor

A(1:n,m) // computed by this processor using A{1:n,m+1) below 

[and then sent to the right neighbour]

A(1:n,m+1) // read from the right neighbour processor
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