Advanced Computer Architecture
Chapter 10 — Multicore, parallel, and cache
coherency

Part 2:
Cache coherency protocols — “snooping”

November 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3, 4t and 5t
eds), and on the lecture slides of David Patterson, John Kubiatowicz and

Yujia Jin at Berkeley
Hennessy and Patterson 6" ed: Section
5.2, pp377

Part 2

What you should get from this

Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things | hope you will learn from this very brief
iIntroduction are:

» Why power considerations motivate multicore
W Why is shared-memory parallel programming attractive?
W How is dynamic load-balancing implemented?

i Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

W What is the cache coherency problem

W There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

W How are atomic operations and locks implemented?
W Eg load-linked, store conditional
W What is sequential consistency?
W Why might you prefer a memory model with weaker consistency?

W For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

Implementing shared memory: multiple caches

|
| |

Processor 0 Processor 1 Processor 2
W Suppose processor 0 loads memory location X

X is fetched from main memory and allocated into processor 0’ s cache(s)

Multiple caches... and trouble

|
| |

Processor 0 Processor 1 Processor 2
W Suppose processor 1 loads memory location X

W X is fetched from main memory and allocated into processor 1’ s cache(s) as well

Multiple caches... and trouble

|
| |

Processor 0 Processor 1 Processor 2
W Suppose processor 0 stores to memory location X

 Processor 0’ s cached copy of X is updated
W Processor 1 continues to used the old value of X

Multiple caches... and trouble

Processor 0 Processor 1 Processor 2

W Suppose processor 2 loads memory location X

» How does it know whether to get x from main memory,
processor 0 or processor 1?

Multiple caches... and trouble

|
| |

Processor 0 Processor 1 Processor 2
Two issues:

« How do you know where to find the latest version of the cache line?

 How do you know when you can use your cached copy — and when you have to
look for a more up-to-date version?

Cache consistency (aka cache coherency)"”
w Goal (?):

» “Processors should not continue to use out-of-date data
indefinitely”

w Goal (?):

®» “Every load instruction should yield the result of the most
recent store to that address”

I Goal (?): (definition: Sequential Consistency)

®» “the result of any execution is the same as if the operations
of all the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program”
(Leslie Lamport, “How to make a multiprocessor computer that

correctly executes multiprocess programs ” (IEEE Trans
Computers Vol.C-28(9) Sept 1979)

Two pages. 3,300 citations. 70 citations in 2020... htips://en.wikipedia.org/wiki/Leslie _Lamport

https://en.wikipedia.org/wiki/Leslie_Lamport

3

Implementing Strong Consistency: update1

» How about when a store to address x occurs,
we update all the remote cached copies?

» To do this we need either:
» [0 broadcast every store to every remote cache

» Or to keep a list of which remote caches hold the
cache line

» Or at least keep a note of whether there are any
remote cached copies of this line (“SHARED” bit
per line)

w But first...now well does this update idea
work?

14

Implementing Strong Consistency: update...

Problems with update

1. What about if the cache line is several
words long?

N

Each update to each word in the line leads to a
broadcast

2. What about old data which other processors
are no longer interested in?

N
.
N

We'll keep broadcasting updates indefinitely...
Do we really have to broadcast every store?

It would be nice to know that we have exclusive access
to the cacheline so we don’t have to broadcast
updates...

A more cunning plan... invalidation

w Suppose instead of updating remote cache lines,
we invalidate them all when a store occurs?

w After the first write to a cache line we know there
are no remote copies — so subsequent writes don't
lead to communication

w After invalidation we know we have the only copy

® |s invalidate always better than update?
=» Often

=» But not if the other processors really need the new data as soon as
possible

" To exploit this, we need a couple of bits for each
cache line to track its sharing state

(analogous to write-back vs write-through caches)

snooping

Snoopmg cache Snooplng cache Snoopmg cache
controller controller ontroller
Processor Processor 1 Processor 2

 Snooping cache controller has to monitor all bus
transactions

m And check them against the tags of its cache(s)

Each cacheline can be The “Berkeley" Protocol

in one of four states:
Idea: When a store to

— INVALID this cacheline occurs,
— VALID : clean, potentially shared, unowned broadcast an

— SHARED-DIRTY : modified, possibly shared, owned [nvalidation on the bus
unless the cache line is

— DIRTY : modified, only copy, owned exclusively “owned”
Read hits are easy. The interesting cases are: (DIRTY)
e Read miss: e Write hit:
— We broadcast the request * No action if line is DIRTY
on the bus e If VALID or SHARED-DIRTY,
— If another cache has the line e an invalidation is sent, and

in SHARED-DIRTY or DIRTY, « the local state set to DIRTY

> L supp.lles. L e Write miss:
o |t sets its line’s state to . Li f
SHARED-DIRTY. We set ine comes from owner (as

with read miss).

our copy to VALID _
e All other copies set to

- ol INVALID, and line in
* the line comes from requesting cache is set to
memory. The state of the DIRTY

e line is set to VALID

Eus invalidate

L

Fead miss

ELs write miss

Write hit oo 4

. . Buks read miss
Write miss

1. INVALID

2. VALID: clean, potentially shared, unowned

3. SHARED-DIRTY: modified, possibly shared, owned
4. DIRTY: modified, only copy, owned

20

Berkeley cache
coherence protocol:
state transition
diagram

The Berkeley
protocol is
representative of
how typical bus-
based SMPs
work

1. INVALID

4. DIRTY: modified, only copy, owned

21

When another core invalidates a line, we flip our copy to INVALID

When another Bus invalidate ,
core broadcasts a J’J.’J Read miss Berkeley cache
write request and . coherence protocol:
we have the data o x 7 When this core state transition
we supply it, and Ij reads an address diagram
T (D [i: not in its cache, it
BLs Write miss - is allocated in the
H“,"-.-"'-.-"I’ite Hit VALID state
The Berkeley
S protocol is
£ 3 :
v representative of
e N how typical bus-
Fte 1l -
o based SMPs
When this core E':LJkS II’E 20 mize work

writes an address Write miss

not in its cache, it
is allocated in the
DIRTY state

When another core broadcasts a read request — and
we have the line (DIRTY or SHARED-DIRTY) we
supply it and flip to SHARED-DIRTY

2. VALID: clean, potentially shared, unowned When a core requests a line but no core holds it, it is
3. SHARED-DIRTY: modified, possibly shared, owned [ESe]s][{-Ye Bige] s W U N Gl Lo o A (i L Bl o) /1 (-1 d)

The job of the cache controller - snooping’

#» The protocol state transitions are implemented by the
cache controller — which “snoops™ all the bus traffic

" Transitions are triggered either by

=» the bus (Bus invalidate, Bus write miss, Bus read miss)
» The CPU (Read hit, Read miss, Write hit, Write miss)

" For every bus transaction, it looks up the directory (cache
line state) information for the specified address

% |f this processor holds the only valid data (DIRTY), it responds to a “Bus read
miss” by providing the data to the requesting CPU

= |If the memory copy is out of date, one of the CPUs will have the cache line in
the SHARED-DIRTY state (because it updated it last) — so must provide data to
requesting CPU

®» State transition diagram doesn’t show what happens when a cache line is
displaced...

Berkeley protocol - summary

w Invalidate is usually better than update

W Cache line state “DIRTY” bit records whether remote copies
exist
®» |If so, remote copies are invalidated by broadcasting message on bus — cache
controllers snoop all traffic
» Where to get the up-to-date data from?
®» Broadcast read miss request on the bus
If this CPU’s copy is DIRTY, it responds
If no cache copies exist, main memory responds

If several copies exist, the CPU which holds it in “SHARED-DIRTY” state
responds

#» |f a SHARED-DIRTY cache line is displaced, ... need a plan

» How well does it work?
®» See extensive analysis in Hennessy and Patterson

+ ¥ ¥

24

There is a design-space of snooping cache protocols...

CPU Read hit _
_ Extensions:
Remote Write or
Miss due to ®» Fourth State: Ownership
address conflict Shared N
Invalid |- R - Shared-> Modified,
CPU Read (read/only) need invalidate only
— Place read mis (upgrade request), don’t
CPU White on bus ¢ read memory

Remote Place Wri Berkeley Protocol

Write Miss on bus
or Miss due to Remote Re

address conflict Write ba

- Clean exclusive state (no
miss for private data on

Write back block block PU Write write)
v Place Write MESI Protocol
- i : s, Cache supplies data when
Modified Miss on Exclusive
(read/write) Bus (read/only) shared state
CPU read hit (no memory access)
read ni lllinois Protocol
CPU write hit CPU Writ

Place Write
Miss on Bus? CPU Read hit

Implementing Snooping Caches

w All processors must be on the bus, with access to both
addresses and data

" Processors continuously snoop on address bus
= |f address matches tag, either invalidate or update

w Since every bus transaction checks cache tags,
there could be contention between bus and CPU access:

® solution 1: duplicate set of tags for L1 caches just to allow
checks in parallel with CPU

®» solution 2: Use the L2 cache to “filter” invalidations
® /f everything in L1 is also in L2 (multi-level inclusion)
® Then we only have to check L1 if the L2 tag matches
®Many systems enforce cache inclusivity
® Constrains cache design - block size, associativity
® Alternative: snoop filter |)

https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/

Implementation Complications

» \Write Races:

=» Cannot update cache until bus is obtained

® Otherwise, another processor may get bus first,
and then write the same cache block!

=» Two step process:
® Arbitrate for bus
® Place miss on bus and complete operation

= |f miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

=» Split transaction bus:

® Bus transaction is not atomic:
can have multiple outstanding transactions for a block

® Multiple misses can interleave,
allowing two caches to grab block in the Exclusive state

® Must track and prevent multiple misses for one block
" Must support interventions and invalidations

Implementing Snooping Caches

w Bus serializes writes, getting bus ensures no one else can
perform memory operation

» On a miss in a write-back cache, may have the desired copy and
it's dirty, so must reply

» Add extra state bit to cache to determine shared or not
w Add 4th state (MESI)

tdmmary
w Implementing a consistent view of shared memory is tric

W Hit-under-miss reorders reads
w Prefetching re-orders reads

» Do we wait for invalidations to be acknowledged before
continuing?

w \We can only promise a limited notion of consistency
For small systems, a “snooping” scheme works

W Each core’s cache controller sees all read misses, write
misses and invalidations

#» And checks tags of its caches in case action is required
w Exploiting multi-level inclusion to filter the check

 There is a design space of cache coherency protocols, that
track exclusive ownership, and determine which core
supplies data — or whether it comes from memory

W Implementation issues are much more complex than
described here

Student question: "SHARED-DIRTY” ’

Q: If two cores are sharing a dirty bit, and core 1 decided to go ahead and write this to MM,
would this make core 1 have flag VALID? Also, what happens to core 2? What's it's state?
Also just a sanity check, if core j requests from core i, they both share the tag SHARED DITY
right? Just want to make sure

A: re: "they both share the tag SHARED DIRTY" - not right
« Each cache line can be in the SHARED DIRTY state in at most one cache.
« "Shared-dirty" means that

(1) the data is "dirty": the main-memory copy is out of date due to a write [also true of DIRTY]

(2) The cache that holds the line in the "SHARED-DIRTY" line is responsible for providing the
data if another core makes a read request on the shared bus. The cache controller sees
the read request, checks and sees that the read address matches a line that it holds, and
that that line is in the SHARED-DIRTY state - so it responds by providing the data. [also
true of DIRTY, but afterwards the line transitions from DIRTY to SHARED-DIRTY] (this
"responsible for providing the data" is also called "ownership").

(3) SHARED DIRTY means that another cache might hold a copy of the line (in the VALID state)
(because of (2) above). So if this core wants to write to this cache line, it needs to
invalidate the remote copies. [in contrast, DIRTY means that there are no remote copies,
so the write can proceed without sending an invalidation message]

You might (might....) find this rather scary-looking Wikipedia page helpful - search for the
Berkeley protocol section: Cache coherency protocols (examples) - Wikipedia

Student question: Instruction cache coherency

Hello

In the slides from Qualcomm about the Snapdragon processor, the L1 instruction cache and Load-Store
data cache are described as being fully coherent. What does that mean in this context?

Comment Edit Delete Endorse =**

1 Answer

Paul Kelly srare
24 seconds ago

As discussed briefly in-class | think, this is about the case when a core (perhaps the same core, perhaps
another) stores to an address which is cached in a core's instruction cache.

So we could imagine a thread that writes some code into its memory then jumps to it (as a JIT might do)

Or a thread in a (mult-threaded) Java Virtual Machine (JVM) process, that JITs a Java bytecode method
into memory, and then another thread in that JVM tries to execute that code.

We also have the situation where the operating system kernel loads code from a file into a process'’s
virtual address space (eg when you launch a process). It then finds an idle core to actually run that
code. That core may have an I-cache full of instructions from some other now-dead process.

But with a fully-coherent I-cache, the physical addresses of the recycled region of the physical address

space will be invalidated when the code is loaded, so the core where the process runs will fetch the up-
to-date instructions.

31

	Default Section
	Slide 1
	Slide 3

	Untitled Section
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

