
1

November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th and 5th

eds), and on the lecture slides of David Patterson, John Kubiatowicz and
Yujia Jin at Berkeley

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache
coherency

Part 2:

Cache coherency protocols – “snooping”

Hennessy and Patterson 6th ed: Section

5.2, pp377

3

What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things I hope you will learn from this very brief
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

P
a
rt

 2

6

Implementing shared memory: multiple caches

Suppose processor 0 loads memory location x

x is fetched from main memory and allocated into processor 0’s cache(s)

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

First-level cache

CPU

second-level cache

Interconnection network

Main memory

x

Processor 0 Processor 1 Processor 2

7

Multiple caches… and trouble

Suppose processor 1 loads memory location x

x is fetched from main memory and allocated into processor 1’s cache(s) as well

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory

x

Processor 0 Processor 1 Processor 2

8

Multiple caches… and trouble

Suppose processor 0 stores to memory location x

Processor 0’s cached copy of x is updated

Processor 1 continues to used the old value of x

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory

x

Processor 0 Processor 1 Processor 2

9

Multiple caches… and trouble

Suppose processor 2 loads memory location x

How does it know whether to get x from main memory,
processor 0 or processor 1?

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache
X?

CPU

second-level cache

Interconnection network

Main memory

x

Processor 0 Processor 1 Processor 2

10

Multiple caches… and trouble

Two issues:

• How do you know where to find the latest version of the cache line?

• How do you know when you can use your cached copy – and when you have to
look for a more up-to-date version?

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache
X?

CPU

second-level cache

Interconnection network

Main memory

x

Processor 0 Processor 1 Processor 2

12

Cache consistency (aka cache coherency)

Goal (?):

“Processors should not continue to use out-of-date data
indefinitely”

Goal (?):

“Every load instruction should yield the result of the most
recent store to that address”

Goal (?): (definition: Sequential Consistency)

“the result of any execution is the same as if the operations
of all the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program”

(Leslie Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs” (IEEE Trans
Computers Vol.C-28(9) Sept 1979)

Two pages. 3,300 citations. 70 citations in 2020… https://en.wikipedia.org/wiki/Leslie_Lamport

https://en.wikipedia.org/wiki/Leslie_Lamport

13

Implementing Strong Consistency: update

How about when a store to address x occurs,
we update all the remote cached copies?

To do this we need either:

To broadcast every store to every remote cache

Or to keep a list of which remote caches hold the
cache line

Or at least keep a note of whether there are any
remote cached copies of this line (“SHARED” bit
per line)

But first…how well does this update idea
work?

14

Implementing Strong Consistency: update…

Problems with update

1. What about if the cache line is several
words long?

Each update to each word in the line leads to a
broadcast

2. What about old data which other processors
are no longer interested in?

We’ll keep broadcasting updates indefinitely…

Do we really have to broadcast every store?

It would be nice to know that we have exclusive access
to the cacheline so we don’t have to broadcast
updates…

15

A more cunning plan… invalidation

Suppose instead of updating remote cache lines,

we invalidate them all when a store occurs?

After the first write to a cache line we know there
are no remote copies – so subsequent writes don’t
lead to communication

After invalidation we know we have the only copy

Is invalidate always better than update?
Often

But not if the other processors really need the new data as soon as
possible

To exploit this, we need a couple of bits for each
cache line to track its sharing state

(analogous to write-back vs write-through caches)

18

snooping

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache
X?

CPU

second-level cache

Interconnection network – “bus”

Main memory

x

Processor 0 Processor 1 Processor 2

Snooping cache
controller

Snooping cache
controller

Snooping cache
controller

Snooping cache controller has to monitor all bus
transactions

And check them against the tags of its cache(s)

19

The “Berkeley" Protocol
Idea: When a store to
this cacheline occurs,
broadcast an
invalidation on the bus
unless the cache line is
exclusively “owned”
(DIRTY)

• Write hit:

• No action if line is DIRTY

• If VALID or SHARED-DIRTY,

• an invalidation is sent, and

• the local state set to DIRTY

• Write miss:

• Line comes from owner (as
with read miss).

• All other copies set to
INVALID, and line in
requesting cache is set to
DIRTY

• Read miss:

– We broadcast the request
on the bus

– If another cache has the line
in SHARED-DIRTY or DIRTY,

• it supplies it

• It sets its line’s state to
SHARED-DIRTY. We set
our copy to VALID

– Otherwise

• the line comes from
memory. The state of the

• line is set to VALID

– INVALID

– VALID : clean, potentially shared, unowned

– SHARED-DIRTY : modified, possibly shared, owned

– DIRTY : modified, only copy, owned

Each cacheline can be
in one of four states:

Read hits are easy. The interesting cases are:

20

Berkeley cache
coherence protocol:

state transition
diagram

1. INVALID

2. VALID: clean, potentially shared, unowned

3. SHARED-DIRTY: modified, possibly shared, owned

4. DIRTY: modified, only copy, owned

The Berkeley

protocol is

representative of

how typical bus-

based SMPs

work

21

Berkeley cache
coherence protocol:

state transition
diagram

1. INVALID

2. VALID: clean, potentially shared, unowned

3. SHARED-DIRTY: modified, possibly shared, owned

4. DIRTY: modified, only copy, owned

The Berkeley

protocol is

representative of

how typical bus-

based SMPs

work

When this core

reads an address

not in its cache, it

is allocated in the

VALID state

When this core

writes an address

not in its cache, it

is allocated in the

DIRTY state

When another core broadcasts a read request – and

we have the line (DIRTY or SHARED-DIRTY) we

supply it and flip to SHARED-DIRTY

When another

core broadcasts a

write request and

we have the data

we supply it, and

flip to INVALID

When another core invalidates a line, we flip our copy to INVALID

When a core requests a line but no core holds it, it is

supplied from main memory (no “owner”)

22

The job of the cache controller - snooping

The protocol state transitions are implemented by the
cache controller – which “snoops” all the bus traffic

Transitions are triggered either by
the bus (Bus invalidate, Bus write miss, Bus read miss)

The CPU (Read hit, Read miss, Write hit, Write miss)

For every bus transaction, it looks up the directory (cache
line state) information for the specified address

If this processor holds the only valid data (DIRTY), it responds to a “Bus read
miss” by providing the data to the requesting CPU

If the memory copy is out of date, one of the CPUs will have the cache line in
the SHARED-DIRTY state (because it updated it last) – so must provide data to
requesting CPU

State transition diagram doesn’t show what happens when a cache line is
displaced…

23

Berkeley protocol - summary
Invalidate is usually better than update

Cache line state “DIRTY” bit records whether remote copies
exist

If so, remote copies are invalidated by broadcasting message on bus – cache
controllers snoop all traffic

Where to get the up-to-date data from?
Broadcast read miss request on the bus

If this CPU’s copy is DIRTY, it responds

If no cache copies exist, main memory responds

If several copies exist, the CPU which holds it in “SHARED-DIRTY” state
responds

If a SHARED-DIRTY cache line is displaced, … need a plan

How well does it work?
See extensive analysis in Hennessy and Patterson

24

Remote

Read

Place Data

on Bus?

There is a design-space of snooping cache protocols…

Extensions:
Fourth State: Ownership

Remote

 Write

or Miss due to

address conflict

Write back block

Remote Write or

Miss due to

address conflict

Invalid
Shared

(read/only)

Modified

(read/write)

CPU Read hit

CPU Read

CPU Write

Place Write

Miss on bus

CPU Write

CPU read hit

CPU write hit

Exclusive

(read/only)

CPU Write

Place Write

Miss on Bus? CPU Read hit

Remote Read

Write back

block

• Shared-> Modified,
need invalidate only
(upgrade request), don’t
read memory
Berkeley Protocol

• Clean exclusive state (no
miss for private data on
write)
MESI Protocol

• Cache supplies data when
shared state
(no memory access)
Illinois Protocol

Place read miss

 on bus

Place Write

Miss on

Bus

26

Implementing Snooping Caches

All processors must be on the bus, with access to both

addresses and data

Processors continuously snoop on address bus

If address matches tag, either invalidate or update

Since every bus transaction checks cache tags,

there could be contention between bus and CPU access:

solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPU

solution 2: Use the L2 cache to “filter” invalidations

If everything in L1 is also in L2 (multi-level inclusion)

Then we only have to check L1 if the L2 tag matches

Many systems enforce cache inclusivity

Constrains cache design - block size, associativity

Alternative: snoop filter
(https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-

performance-variability-on-intel-xeon-platinum-8160-processors/)

https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/
https://sites.utexas.edu/jdm4372/2019/01/07/sc18-paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-8160-processors/

27

Implementation Complications
Write Races:

Cannot update cache until bus is obtained

Otherwise, another processor may get bus first,
and then write the same cache block!

Two step process:

Arbitrate for bus

Place miss on bus and complete operation

If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

Split transaction bus:

Bus transaction is not atomic:
can have multiple outstanding transactions for a block

Multiple misses can interleave,
allowing two caches to grab block in the Exclusive state

Must track and prevent multiple misses for one block

Must support interventions and invalidations

28

Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else can
perform memory operation

On a miss in a write-back cache, may have the desired copy and
it’s dirty, so must reply

Add extra state bit to cache to determine shared or not

Add 4th state (MESI)

29

Summary
Implementing a consistent view of shared memory is tricky

Hit-under-miss reorders reads

Prefetching re-orders reads

Do we wait for invalidations to be acknowledged before
continuing?

We can only promise a limited notion of consistency

For small systems, a “snooping” scheme works

Each core’s cache controller sees all read misses, write
misses and invalidations

And checks tags of its caches in case action is required

Exploiting multi-level inclusion to filter the check

There is a design space of cache coherency protocols, that
track exclusive ownership, and determine which core
supplies data – or whether it comes from memory

Implementation issues are much more complex than
described here

30

Student question: “SHARED-DIRTY”
Q: If two cores are sharing a dirty bit, and core 1 decided to go ahead and write this to MM,

would this make core 1 have flag VALID? Also, what happens to core 2? What's it's state?

 Also just a sanity check, if core j requests from core i, they both share the tag SHARED DITY

right? Just want to make sure

A: re: "they both share the tag SHARED DIRTY" - not right

• Each cache line can be in the SHARED DIRTY state in at most one cache.

• "Shared-dirty" means that

 (1) the data is "dirty": the main-memory copy is out of date due to a write [also true of DIRTY]

 (2) The cache that holds the line in the "SHARED-DIRTY" line is responsible for providing the

data if another core makes a read request on the shared bus. The cache controller sees

the read request, checks and sees that the read address matches a line that it holds, and

that that line is in the SHARED-DIRTY state - so it responds by providing the data. [also

true of DIRTY, but afterwards the line transitions from DIRTY to SHARED-DIRTY] (this

"responsible for providing the data" is also called "ownership").

 (3) SHARED DIRTY means that another cache might hold a copy of the line (in the VALID state)

(because of (2) above). So if this core wants to write to this cache line, it needs to

invalidate the remote copies. [in contrast, DIRTY means that there are no remote copies,

so the write can proceed without sending an invalidation message]

You might (might....) find this rather scary-looking Wikipedia page helpful - search for the

Berkeley protocol section: Cache coherency protocols (examples) – Wikipedia

31

Student question: Instruction cache coherency

	Default Section
	Slide 1
	Slide 3

	Untitled Section
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

