Advanced Computer Architecture
Chapter 10 — Multicore, parallel, and cache
coherency

Part 3:

Atomic operations, concurrency control primitives,
and memory consistency models

November 2025
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3, 4t and 5t
eds), and on the lecture slides of David Patterson, John Kubiatowicz and
Yujia Jin at Berkeley

Part 3

What you should get from this

Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things | hope you will learn from this very brief
iIntroduction are:

» Why power considerations motivate multicore
W Why is shared-memory parallel programming attractive?
W How is dynamic load-balancing implemented?

i Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

W What is the cache coherency problem

W There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

W How are atomic operations and locks implemented?
W Eg load-linked, store conditional
W What is sequential consistency?
W Why might you prefer a memory model with weaker consistency?

W For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

Synchronization and atomic operations
» Why Synchronize?

» We need to know when it is safe for different
processes to use shared data

w |ssues for Synchronization:

»\Ve need some kind of uninterruptable primitive to fetch
and update memory (atomic operation)

®»\\Ve can build user level synchronization operations using
this primitive (lock/unlock, barrier, fetch-and-add, etc)

®» Synchronization can be a bottleneck — we need:
®» Fast non-contended path
» Efficient in the high-contention case
» fair

Hennessy and

Patterson 6t" ed
section 5.5 pp412

Uninterruptable operations to Fetch from and Update Memory5

Historically there have been several different atomic primitives
directly implemented in hardware - eg

w Test-and-set: tests a value and sets it if the value passes the
test

w Fetch-and-increment: it returns the value of a memory location
and atomically increments it
= 0 => synchronization variable is free

w Atomic exchange: interchange a value in a register for a value in
memory
For example you could use atomic exchange to implement a lock:
0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
®» Set register to 1 & swap
=» New value in register determines success in getting lock
® 0 if you succeeded in setting the lock (you were first)
® 1 if other processor had already claimed access
= Key is that exchange operation is indivisible

Uninterruptable operations to Fetch from and Update Memory6

These operations all consist of a load
and a store, that must be executed

b Test-and-set indivisibly

W Fetch-and-increment & This is plausible in a single-core
machine

 Atomic exchange
This is plausible if implemented in the

memory
. Egina GPU

 But how can we do this efficiently in
a multicore processor with a cache
coherency protocol?

7
Host CPU H Bridge HSyStem memaory At0m|CS In GPUS
ostmaracs] v | I GPUs generally

I
sonewpORISD! have no cache
|
etibuon Gounon | [CARe e Coherency
[I I
I I I I | [I]
I TPC I TPC i TPC il TPC e TPC Al TPC I TPC it TPC I prOtOCOI for the
[1 |[| 1 |[11 |[1|1 1 |[i]
| SM 1 SM | | SM | SM | | SM | SM | | SM il SM | | SM | SM | L1 CaCheS
[|l 111 [|L 1|] [][I 1({ 1L 1{ L I {][||]
R R EEE EEEENEEIEE | | e So atomic
=== R IR =N EEEE N R .
nn|ms||=a(zn oo zs/zn|zs(zn operations on
=) =i = = == global memory

Shared
e e

|t
i
SB
]
B

o
I|m
B

2

‘:

Interconneotlon network have to be

mn s e s | (000 e 12

DRAM DRAM DRAM DRAM DRAM DRAM

Accelerating Atomic Operations on GPGPUs Sean Franey and Mikko Lipasti
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1081.2165&rep=rep1&type=pdf

Understanding and Using Atomic Memory Operations Lars Nyland & Stephen Jones, NVIDIA GTC 2013
https://lon-demand.gputechconf.com/gtc/2013/presentations/S3101-Atomic-Memory-Operations.pdf

How can we implement an uninterruptable instruction to Fetch and
update memory in a cache-coherent multicore?

» Hard to have read & write in one instruction - so use two instead

w Load linked (or load locked) + store conditional
®» |_oad linked returns the initial value
®» Store conditional returns 1 if it succeeds

=» Succeeds if there has been no other store to the same memory
location since the preceding load) and 0 otherwise

® |e if no invalidation has been received

w Example: using LL/SC to do atomic exchange: Implementation:
try: mov R3,R4 ; mov exchange value
| R2,0(R1) ; load linked
sC R3,0(R1) store conditiofnal :) Check that no
beqz R3,try ; branch store fails (R3 =0 invalidation for th
mov R4,R2 ; put load value in R4 invall e_l 1on forthe
_ target line has
w Example: fetch & increment: been received
try: |l R2,0(R1) Al LRIl Fetch-and-inc
addi R2,R2,#1 ; increment (OK if reg—reQ) .
SC R2,0(R1) ; store conditional This idea
beqz R2,try ; branch store fails (R2 = 0) generalises to
LL and SC are used on RISCV, Alpha, ARM, MIPS, PowerPC) _..transactions...
Eg see https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf pg 48

https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf

9

User level synchronization operations using exchange

w Spin locks: processor continuousIK tries to acquire, spinning
around a loop trying to get the loc

li R2,#1
lockit: EXCH R2,0(R1) ‘atomic exchange
bnez R2,lockit ;already locked"

» What about in a multicore processor with cache coherency?
®» Want to spin on a cache copy to avoid keeping the memory busy
®» Likely to get cache hits for such variables

" Problem: exchange includes a write, which invalidates all other
copies; this generates considerable bus traffic

w Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

try: li R2,#1

lockit: Iw R3,0(R1) ‘load var
bnez R3,lockit ;not free=>spin
EXCH R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

e }/tha’;t happens when a lock is released when many cores are spinning on the
ock”

#» How much data moves? Who wins?

Fairness: ticket Iocksm

ticketLock _init(int *next_ticket, int *now_serving)

{
}

*now_serving = *next_ticket = O;

ticketLock_acquire(int *next_ticket, int *now_serving)

{
my_ticket = fetch_and_inc(next_ticket);
while (*now_serving != my_ticket) {} // Spin

}

ticketLock_release(int *now_serving)

{

}
w Ticket lock: explicitly hand off access to the next in line

++*now_serving;

w Since the my ticket values are acquired in the order of thread arrival
at the lock, subsequent acquisition of the lock is guaranteed to also
be in this same order. Thus, fairness of lock acquisition is ensured,
enforcing a FIFO ordering. s s rochestor s e T TiokeL ook

https://en.wikipedia.org/wiki/Ticket_lock

Throughput (opens/ms)

core. Each thread repeatedly opens and ¢

Throughput (messages/sec)

1200

1000

800

600

400

200

0

10000

7500

5000

2500

incomin
process
message.

i Ticket locks are better but still behave really badly in bad cases.

For better answers, see:

ki

[

— A

Ticket lock
MCS lock

24

30

Cores
FOPS: creates a single file and starts one |process on each

36

42

48

oses the file.

J—

—A

Ticket lock
MCS lock

24

30

Cores
EXIM is a mail server. A single master process listens for
SMTP connections via TCP and forks a new
or each connection, which accepts the incoming

36

42

48

Lock behaviour with high core™
counts

“A scalable lock is one that generates a constant
number of cache misses per acquisition and
therefore avoids the collapse that non-scalable
locks exhibit. All of these locks maintain a queue
of waiters and each waiter spins on its own queue
entry.”

For example:

* MCS lock maintains an explicit queue of gnode structures

» A core acquiring the lock adds itself with an atomic
instruction to the end of the list of waiters by having the
lock point to its qnode,

» and then sets the next pointer of the gnode of its
predecessor to point to its gnode

« If the core is not at the head of the queue, then it spins on
its qnode.

I Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris and Nickolai Zeldovich, “Non-
Dangerous’, in Proceedings of Linux Symposium (OLS2012):121-

Scalable Locks are
132.

https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf

Memory Consistency Models

» What is consistency? \WWhen must a processor see the new
value? e.g. consider: T Eeey 2T

. S Thread 1) PSR Thread 2 Patterson 6th ed
P1. A=0; s P2: B =0; s section 5.6 pp417
L1: if (B=2=0) .. 12 if(A==0) ..

™ Impossible for both if statements L1 & L2 to be true?
®\What if write invalidate is delayed & processor continues?

w Different processor families implement different memory
consistency models

W Sequential consistency: result of any execution is the same
as if the accesses of each processor were kept in order and
the accesses among different processors were interleaved
=> assignments before ifs above

»SC: delay all memory accesses until all invalidates done

Memory Consistency Models’
" \Weak consistency can be faster than sequential consistency

W Several processors provide fence instructions to enforce
sequential consistency when an instruction stream passes such a
point. Expensive!

" Not really an issue for most programs if they are explicitly
synchronised

= A program is synchronised if all access to shared data are ordered by
synchronisation operations

write (X)

.rélease (s) {unlock}
.a.ué:quire (s) {lock}

read(x)

" Only those programs willing to be nondeterministic are not
synchronised: programs with “data races”

"™ There are several variants of weak consistency, characterised by
attitude towards: RAR, WAR, RAW, WAW to different addresses

T v

T ¥y ¥ ¥ ¥

Summary and Conclusions

Shared memory parallel programs must synchronise
Synchronisation primitives can be executed either
™ at the memory (as seen in GPUs)

™ On in the CPU — but this leads to issues cache coherency traffic when spinning,
and when a contended lock is released

While older ISAs offer test&set, compare-and-swap and atomic exchange as
primitives, these are hard to implement

Load-linked, store-conditional provides a solution that is easy to implement on a
cache-coherent CPU

" Key idea: operation only succeeds if no invalidation occurs in-between
Test-and-test-and-set reduces contention for cache line ownership when spinning
Ticket locks provide fairness
Scalable locks limit coherency traffic on lock release
Weak coherency results from not wanting to stall until invalidation is acknowledged

Weak memory consistency models mean processes cannot reliably observe ordering
of remote events unless explicit synchronisation takes place

Student question: ticket locks

ticketLock_init(int *next_ticket, int *now_serving)

{
}

ticketLock_acquire(int *next_ticket, int *now_serving)

{

*now_serving = *next_ticket = 0;

my_ticket = fetch_and_inc(next_ticket);
while (*now_serving != my_ticket) {} // Spin

Fairness: ticket locks | w

foe

}
ticketLock_release(int *now_serving) "
{
++*now_serving;
}

I Ticket lock: explicitly hand off access to the next in line o
Hi Professor, could you please explain again how ticket lock explicitly hand off access to the next in line?
Thanks.

e
i
e

https://en.wikipedia.org/wiki/Ticket_lock
https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf

The point of the ticket lock is fairness: we ensure that
every thread that attempts to acquire the lock
eventually gets it.

TL;DR:

Since the my_ticket values are acquired in the order of
thread arrival at the lock, subsequent acquisition of
the lock is guaranteed to also be in this same order.
Thus, fairness of lock acquisition is ensured, enforcing
a FIFO ordering.

In more detail:

So suppose one thread A is holding the lock, and will
release it shortly. It holds a value of my_ticket which
matches the now_serving value.

We then have several other threads, B, C, D etc, that
attempt to acquire the lock. They each do the fetch-
and-increment in some sequence - so each thread gets
its own value for my_ticket, each one bigger than the
previous thread.

Their my_ticket values are all larger than now_serving.

Now, thread A releases the lock: it increments
now_serving. Only one thread holds a my_ticket that
matches that value - B, since B was the first. So B will
exit the while loop and proceed, holding the lock.

When B releases the lock, it increments now_serving,
and thread C will gain the lock.

https://en.wikipedia.org/wiki/Ticket_lock

	Default Section
	Slide 1
	Slide 3

	Untitled Section
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Untitled Section
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

