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These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th and 5th 

eds), and on the lecture slides of David Patterson, John Kubiatowicz and 
Yujia Jin at Berkeley

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache 
coherency

Part 3:

Atomic operations, concurrency control primitives, 
and memory consistency models
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What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the 
surface.  The critical things I hope you will learn from this very brief 
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more 
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on 
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce 
the broadcasting
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Synchronization and atomic operations
Why Synchronize? 

We need to know when it is safe for different 
processes to use shared data

Issues for Synchronization:

We need some kind of uninterruptable primitive to fetch 
and update memory (atomic operation)

We can build user level synchronization operations using 
this primitive (lock/unlock, barrier, fetch-and-add, etc)

Synchronization can be a bottleneck – we need:

Fast non-contended path

Efficient in the high-contention case

fair
Hennessy and 

Patterson 6th ed 

section 5.5 pp412
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Uninterruptable operations to Fetch from and Update Memory

Historically there have been several different atomic primitives 
directly implemented in hardware - eg

Test-and-set: tests a value and sets it if the value passes the 
test

Fetch-and-increment: it returns the value of a memory location 
and atomically increments it

0 => synchronization variable is free 

Atomic exchange: interchange a value in a register for a value in 
memory

For example you could use atomic exchange to implement a lock:

0 => synchronization variable is free 

1 => synchronization variable is locked and unavailable

Set register to 1 & swap

New value in register determines success in getting lock  

0 if you succeeded in setting the lock (you were first)

1 if other processor had already claimed access

Key is that exchange operation is indivisible
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Uninterruptable operations to Fetch from and Update Memory

Test-and-set

Fetch-and-increment 

Atomic exchange

These operations all consist of a load 
and a store, that must be executed 
indivisibly

This is plausible in a single-core 
machine

This is plausible if implemented in the 
memory

•  Eg in a GPU

But how can we do this efficiently in 
a multicore processor with a cache 
coherency protocol?
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Atomics in GPUs

GPUs generally 
have no cache 
coherency 
protocol for the 
L1 caches

So atomic 
operations on 
global memory 
have to be 
handled in the L2 
cache controllers

Understanding and Using Atomic Memory Operations Lars Nyland & Stephen Jones, NVIDIA GTC 2013

https://on-demand.gputechconf.com/gtc/2013/presentations/S3101-Atomic-Memory-Operations.pdf

Accelerating Atomic Operations on GPGPUs Sean Franey and Mikko Lipasti 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1081.2165&rep=rep1&type=pdf
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How can we implement an uninterruptable instruction to Fetch and 
update memory in a cache-coherent multicore?

Hard to have read & write in one instruction - so use two instead

Load linked (or load locked) + store conditional

Load linked returns the initial value

Store conditional returns 1 if it succeeds 

Succeeds if there has been no other store to the same memory 
location since the preceding load) and 0 otherwise

Ie if no invalidation has been received

Example: using LL/SC to do atomic exchange:
 try: mov R3,R4   ; mov exchange value

 ll R2,0(R1) ; load linked
 sc R3,0(R1) ; store conditional
 beqz R3,try   ; branch store fails (R3 = 0)
 mov R4,R2   ; put load value in R4

Example: fetch & increment:
 try: ll R2,0(R1) ; load linked

 addi R2,R2,#1 ; increment (OK if reg–reg)
 sc R2,0(R1) ; store conditional 
 beqz R2,try   ; branch store fails (R2 = 0)

LL and SC are used on RISCV, Alpha, ARM, MIPS, PowerPC

Eg see https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf pg 48

Implementation:

Check that no 

invalidation for the 

target line has 

been received 

This idea 

generalises to 

…transactions...

EXCH

Fetch-and-inc

Confusing to reuse 

https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
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User level synchronization operations using exchange

Spin locks: processor continuously tries to acquire, spinning 
around a loop trying to get the lock

  li R2,#1  
 lockit: EXCH R2,0(R1) ;atomic exchange
  bnez R2,lockit ;already locked?

What about in a multicore processor with cache coherency?
Want to spin on a cache copy to avoid keeping the memory busy

Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other 
copies; this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it 
changes, then try exchange (“test and test&set”):

  try: li R2,#1  
 lockit: lw R3,0(R1)  ;load var
  bnez R3,lockit  ;not free=>spin
  EXCH R2,0(R1)  ;atomic exchange
  bnez R2,try  ;already locked?

What happens when a lock is released when many cores are spinning on the 
lock?

How much data moves?  Who wins?
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ticketLock_init(int *next_ticket, int *now_serving)

{

     *now_serving = *next_ticket = 0;

}

ticketLock_acquire(int *next_ticket, int *now_serving)

{

     my_ticket = fetch_and_inc(next_ticket);

     while (*now_serving != my_ticket) {} // Spin

}

ticketLock_release(int *now_serving)

{

     ++*now_serving;

}

Fairness: ticket locks

Ticket lock: explicitly hand off access to the next in line
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counts

Ticket locks are better but still behave really badly in bad cases.  
For better answers, see:

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris and Nickolai Zeldovich, “Non-
Scalable Locks are Dangerous”, in Proceedings of Linux Symposium (OLS2012):121-
132. https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf 

“A scalable lock is one that generates a constant 

number of cache misses per acquisition and 

therefore avoids the collapse that non-scalable 

locks exhibit. All of these locks maintain a queue 

of waiters and each waiter spins on its own queue 

entry.”

FOPS: creates a single file and starts one process on each 
core. Each thread repeatedly opens and closes the file.

EXIM is a mail server. A single master process listens for 
incoming SMTP connections via TCP and forks a new 
process for each connection, which accepts the incoming 
message.

For example: 

• MCS lock maintains an explicit queue of qnode structures

• A core acquiring the lock adds itself with an atomic 

instruction to the end of the list of waiters by having the 

lock point to its qnode,

• and then sets the next pointer of the qnode of its 

predecessor to point to its qnode

• If the core is not at the head of the queue, then it spins on 

its qnode.

https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf
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Memory Consistency Models
What is consistency? When must a processor see the new 
value? e.g. consider:

 P1: A = 0;   P2: B = 0;
   .....     .....
  A = 1;    B = 1;
 L1: if (B == 0) ...  L2: if (A == 0) ...

 Impossible for both if statements L1 & L2 to be true?

What if write invalidate is delayed & processor continues?

Different processor families implement different memory 
consistency models

Sequential consistency: result of any execution is the same 
as if the accesses of each processor were kept in order and 
the accesses among different processors were interleaved 
=> assignments before ifs above

SC: delay all memory accesses until all invalidates done

Thread 1 Thread 2

Hennessy and 

Patterson 6th ed 

section 5.6 pp417
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Weak consistency can be faster than sequential consistency

Several processors provide fence instructions to enforce 
sequential consistency when an instruction stream passes such a 
point. Expensive!

Not really an issue for most programs if they are explicitly 
synchronised

A program is synchronised if all access to shared data are ordered by 
synchronisation operations

  write (x)
 ...
 release (s) {unlock}
 ...
 acquire (s) {lock}
 ...
 read(x)

Only those programs willing to be nondeterministic are not 
synchronised: programs with “data races” 

There are several variants of weak consistency, characterised by 
attitude towards: RAR, WAR, RAW, WAW to different addresses
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Summary and Conclusions
Shared memory parallel programs must synchronise 

Synchronisation primitives can be executed either 

at the memory (as seen in GPUs)

On in the CPU – but this leads to issues cache coherency traffic when spinning, 
and when a contended lock is released 

While older ISAs offer test&set, compare-and-swap and atomic exchange as 
primitives, these are hard to implement 

Load-linked, store-conditional provides a solution that is easy to implement on a 
cache-coherent CPU

Key idea: operation only succeeds if no invalidation occurs in-between

Test-and-test-and-set reduces contention for cache line ownership when spinning

Ticket locks provide fairness

Scalable locks limit coherency traffic on lock release

Weak coherency results from not wanting to stall until invalidation is acknowledged

Weak memory consistency models mean processes cannot reliably observe ordering 
of remote events unless explicit synchronisation takes place
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