
1

November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and Patterson’s
Computer Architecture, a quantitative approach (3rd, 4th and 5th eds), and on the

lecture slides of David Patterson, John Kubiatowicz and Yujia Jin at Berkeley

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache
coherency

Part 4:

Scalable shared-memory – directory-based cache
coherency protocols

Hennessy and Patterson 6th ed Section 5.4 pp404

COSMOS: UK National Cosmology Supercomputer. SGI Altix UV 2000 with

1536 cores and 12.2TB RAM, globally accessible (delivered 2012)

3

What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things I hope you will learn from this very brief
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcastingP

a
rt

 4

4Large-Scale Shared-Memory Multiprocessors:
Directory-based cache coherency protocols

 Snooping cache coherency protocols rely on a bus:

For broadcasting invalidations and read requests

To establish global ordering on events

The bus inevitably becomes a bottleneck when many processors
are used

So snooping does not work

So we need to use a more general interconnection network

 DRAM memory is also distributed (Non-Uniform Memory
Architecture, NUMA)

 Each node allocates space from local DRAM

 Copies of remote data are made in cache

Major design issues:

How to find and represent the “directory" of each line?

How to find a copy of a line?

7

Larger
shared-
memory

multiproces
sors

Separate Memory per Processor, Local or Remote access via memory controller

Directory per cache that tracks state of every block in every cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?

PLUS: In memory => simpler protocol (centralized/one location)

MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

How do we prevent the directory being a bottleneck?

Distribute directory entries with memory, each keeping track of which cores have copies of

their blocks

9

Case study:
Sun’s S3MP

Protocol Basics

S3.MP uses distributed
singly-linked sharing lists,
with static homes

Each line has a “home"
node, which stores the root
of the directory

Requests are sent to the
home node

Home either has a copy of
the line, or knows a node
which does
A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Browne, G. Aybay, and D. Lee.
1993. The S3.mp architecture: a local area multiprocessor. In Proceedings of the
fifth annual ACM symposium on Parallel algorithms and architectures (SPAA '93).
ACM, New York, NY, USA, 140-141.
DOI=http://dx.doi.org/10.1145/165231.165249

10

S3MP: Read Requests
Simple case: initially only the home has the data:

• Home replies with the data, creating a

sharing chain containing just the reader

Curved

arrows show

messages,

bold straight

arrows show

pointers

11

S3MP: Read Requests -
remote

More interesting case: some other
processor has the data

Home passes request to first processor in
chain, adding requester into the sharing
list

12

S3MP -
Writes

If the line is exclusive (i.e. dirty bit is set) no message is required

Else send a write-request to the home
Home sends an invalidation message down the chain

Each copy is invalidated (other than that of the requester)

Final node in chain acknowledges the requester and the home

Chain is locked for the duration of the invalidation

13

When a read or write
requires a line to be
copied into the
cache from another
node, an existing line
may need to be
replaced

Must remove it from
the sharing list

Must not lose last
copy of the line

S3MP - Replacements

14

Finding your data

How does a CPU find a valid copy of a specified
address’s data?

1. Translate virtual address to physical

2. Physical address includes bits which identify “home”
node

3. Home node is where DRAM for this address resides

4. But current valid copy may not be there – may be in
another CPU’s cache

5. Home node holds pointer to sharing chain, so always
knows where valid copy can be found

15

ccNUMA summary
S3MP’s cache coherency protocol implements strong consistency

Many recent designs implement a weaker consistency model…

S3MP uses a singly-linked sharing chain

Widely-shared data – long chains – long invalidations, nasty

replacements

“Widely shared data is rare”

In real life:

IEEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list

SGI Origin 2000: 64-bit vector sharing list

Origin 2000 systems were deliverered with 256 CPUs

Sun E10000: hybrid multiple buses for invalidations, separate switched

network for data transfers

Multi-node and multi-socket SMP clusters –

Next slide!

18

Recall: Intel Haswell e5 2600 v3

A complex hybrid coherency scheme

ccNUMA in real life…

Intel®Xeon® Processor E5-2600 v3 Product Family Die Configuration

Haswell builds upon Sandy Bridge’s scalable interconnect and shared cache

12

14-18 Core (HCC)

12

Daniel Molka, Daniel Hackenberg, Robert Schone, and Wolfgang E.

Nagel. Cache Coherence Protocol and Memory Performance of the

Intel Haswell-EP Architecture. ICPP2015 (2015_ICPP_authors_version.pdf (tu-dresden.de))

18-core chip with two rings

Two-socket configuration
(“cluster-on-die” mode)

HA: “home agent”

CA: “cache agent”

Each cache line has 2 bits of directory indicating whether the line is held in other nodes: remote-
invalid, snoop-all (potentially modified copy exists), or shared (multiple clean copies exist)

On L2 miss, core sends request to a Cache Agent on its node (based on physical address)

The Cache Agent checks for a local L3 hit – but if miss, passes request to Home Agent

Invalidations and read requests are propagated to other nodes accordingly by the Home Agent

Directory information for frequently-exchanged lines are cached in the Home Agent (8 bits)

h
tt

p
:/

/w
w

w
.r

e
a
lw

o
rl

d
te

c
h

.c
o

m
/h

a
s
w

e
ll
-c

p
u

/5
/

https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en

20

Summary and Conclusions
Caches can be used to form the basis of a parallel computer
supporting a single, shared address space

Bus-based multiprocessors do not scale well due to broadcasts and
the need for each cache controller to snoop all the traffic

Larger-scale shared-memory multiprocessors require a cache directory
to track where copies are held

Hierarchical and hybrid schemes can work, with snooping within a
cluster of cores, and a directory scheme at the cluster level

ccNUMA: each node has a fragment of the system’s DRAM, every
physical address has a unique “home” node

COMA: each node (sometimes called a NUMA domain) has a fragment
of the system’s DRAM, but data is migrated between NUMA domains
adaptively

NUCA: cache is distributed, so access latency is non-uniform (and
management may include dynamic/adaptive placement strategies)

38

Notes for questions

39

Directories
A directory in a cache coherency protocol is a mechanism to track which remote

caches need to be invalidated when a store is executed

A cache requires invalidation if it might contain a copy of the cache line targeted

by the store

One idea might be to keep (with every cache line that we own) a bit vector, with a

bit set for each destination to which an invalidation should be sent

Eg in SGI’s Origin2000, every cache line has a 64-bit directory

In S3MP the directory is represented as a singly-linked list, pointed to by a field in

the main-memory location when the cache line lives

There are alternatives. For example we could keep a small number of bits with

each cache line, indicating whether there might be a copy of the line

In another cache on this chip

In another cache in this socket

When the remote chip receives the invalidation message, it may

use a “snoop filter” to track which caches within this chip require

invalidation – this in-turn requires directory information

40

Under what circumstances might there be contention at a cache

controller?

Gaussian elimination
with partial pivoting:

We iterate along
the diagonal of the
matrix

At each step we
pick the best row
to perform an
elimination step

The row least
likely to cause
rounding errors

Then we do the
elimination in
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68

The pivot row is
picked on each
iteration

Then every
processor reads it

• So every
processor
requests data
from the cache
controller holding
the pivot row

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68

41

Under what circumstances might there be contention at a cache

controller?

Gaussian elimination
with partial pivoting:

We iterate along
the diagonal of the
matrix

At each step we
pick the best row
to perform an
elimination step

The row least
likely to cause
rounding errors

Then we do the
elimination in
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68

The pivot row is
picked on each
iteration

Then every
processor reads it

• So every
processor
requests data
from the cache
controller holding
the pivot row

Sarah A. M. Talbot, Paul H. J.

Kelly:

Adaptive Proxies: Handling

Widely-Shared Data in

Shared-Memory

Multiprocessors (Research

Note). Euro-Par 2000: 567-572

https://link.springer.com/conte

nt/pdf/10.1007/BFb0024734.pd

f

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://dblp.org/pid/60/732.html
https://dblp.org/pid/60/732.html
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf

42

Can you think of an example of a program that creates long sharing chains

which are frequently invalidated?

Gaussian elimination
with partial pivoting:

We iterate along
the diagonal of the
matrix

At each step we
pick the best row
to perform an
elimination step

The row least
likely to cause
rounding errors

Then we do the
elimination in
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68

The pivot row is
picked on each
iteration

Then every processor
reads it

• So every processor
requests data from
the cache controller
holding the pivot
row

• So now cache
copies of the pivot
row are everywhere

• If the pivot row is
overwritten later,
they all have to be
invalidated

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68

43

NUMA and its relatives

NUMA: Non-Uniform Memory Architecture

Any machine where some memory is nearer than other memory

Eg two-socket shared-memory machine with DRAM attached to both sockets

CC-NUMA: cache-coherent NUMA

The “home” of each physical address is in a fixed physical location, possibly nearer, possibly
further away

COMA: cache-only memory architecture

The home of a physical address might be dynamically migrated to be nearer where it is being
used

S3MP is a NUMA machine – data might be in your core’s local DRAM, or
remote

44

Ticket lock
Objective: make sure every
processor that tries to claim
the lock eventually succeeds

When a thread attempts to
claim the lock, it is assigned a
number to wait for

https://en.wikipedia.org/wiki/Ticket_lock

https://en.wikipedia.org/wiki/Ticket_lock

45

The ptr field stored with a cache block in memory
points to the head of the sharing chain - it tells you
where to find the first cache controller that has a copy
of this cache block (the "state" field tells you whether
the data held in the memory is in fact up-to-date, or
whether, instead, the up-to-date data is found in the
cache pointed to by ptr.

The ptr field in the cache implements the linked sharing
list. If that cache is the end of the list, its ptr will be null.
If there is another cache that also has a copy of the
block, ptr will point to the next cache in the chain.

In the example in the second slide:

Initially, the memory copy of the block in node 5
carries a null ptr. The "Home exclusive" state tells us
that the only valid copy of this block is the copy in node
5's memory. Node 2 does not have a copy of this cache
block (none of the blocks in the indexed set has a
matching tag).

After the read-request/take-shared transaction:
there are now two copies of the data - in the memory
at node 5, and in the cache at node 2. There is a one-
element sharing chain. The cache block's ptr field in
node 5's memory holds the id of the cache controller 2
where the first (and in this case the only) cache line in
the sharing chain resides. The cache block stored in
node 2's cache has a ptr field which is null, because
that's the end of the sharing chain.

Student question: S3MP sharing chains

46

Within a single ring, snooping works: every cache
controller sees every core's invalidations and read-
requests.

So the question is what happens between rings. We
need some kind of directory - to know that a copy of
the data might exist in another ring, and (in the two-
socket case) which rings might have a copy.

There is a detailed but more-or-less comprehensible
explanation of how this was done in Haswell in this
article:

2015_ICPP_authors_version.pdf (tu-dresden.de)
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-
projekte/benchit/2015_ICPP_authors_version.pdf?lang=en

Section IV, pages 3-4.

Very briefly: basically each cache line has a state bit
that indicates whether a copy exists in any remote
ring. If it does, invalidations and read-requests are
sent to the "home agent" of all remote rings.

However this is accelerated for highly-shared cache
lines using a "directory cache" - if a line is in the
directory cache then more refined directory
information is available, which allows invalidations and
read-requests to be sent to a refined subset of remote
caches.

If you like this sort of thing, you might enjoy the slides
included in this blog: John McCalpin's blog » Cache
Coherence Protocols (utexas.edu)
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-

coherence-protocols/ (scroll down for the slides). The talk is
about tracking down a performance bug in a large
supercomputer, caused by associativity conflicts in the
snoop filter (basically the "directory cache" referred to
above). Leading to a 28% performance improvement.

Student question: directories in Intel multicore CPUs

https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/

	Default Section
	Slide 1
	Slide 3

	Untitled Section
	Slide 4
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18: ccNUMA in real life…
	Slide 20
	Slide 38: Notes for questions
	Slide 39: Directories
	Slide 40
	Slide 41
	Slide 42
	Slide 43: NUMA and its relatives
	Slide 44: Ticket lock
	Slide 45
	Slide 46

