Advanced Computer Architecture
Chapter 10 — Multicore, parallel, and cache
coherency

Part 4:

Scalable shared-memory — directory-based cache
coheren ‘ rotocols _

5 i November 2025

COSMOS: UK National Cosmology Supercomputer. SGI Altix UV 2000 with Paul H J Kelly
1536 cores and 12.2TB RAM, globally accessible (delivered 2012)

These lecture notes are partly based on the course text, Hennessy and Patterson’ s
Computer Architecture, a quantitative approach (3, 4% and 5" eds), and on the
lecture slides of David Patterson, John Kubiatowicz and Yujia Jin at Berkeley

Hennessy and Patterson 6t" ed Section 5.4 pp404




Part 4

What you should get from this

Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things | hope you will learn from this very brief
iIntroduction are:

» Why power considerations motivate multicore
W Why is shared-memory parallel programming attractive?
W How is dynamic load-balancing implemented?

i Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

W What is the cache coherency problem

W There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

W How are atomic operations and locks implemented?
W Eg load-linked, store conditional
W What is sequential consistency?
W Why might you prefer a memory model with weaker consistency?

W For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting



Large-Scale Shared-Memory Multiprocessors:*
Directory-based cache coherency protocols

W Snooping cache coherency protocols rely on a bus:
W For broadcasting invalidations and read requests
# To establish global ordering on events

W The bus inevitably becomes a bottleneck when many processors
are used

®» So snooping does not work
®» So we need to use a more general interconnection network

W DRAM memory is also distributed (Non-Uniform Memory
Architecture, NUMA)

® Each node allocates space from local DRAM
®» Copies of remote data are made in cache
W Major design issues:
® How to find and represent the “directory" of each line?
®» How to find a copy of a line?
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W Separate Memory per Processor, Local or Remote access via memory controller

® Directory per cache that tracks state of every block in every cache
® Which caches have a copies of block, dirty vs. clean, ...

" Info per memory block vs. per cache block?
®» PLUS: In memory => simpler protocol (centralized/one location)

®» MINUS: In memory => directory is f(memory size) vs. f(cache size)

" How do we prevent the directory being a bottleneck?
Distribute directory entries with memory, each keeping track of which cores have copies of

their blocks
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ACM, New York, NY, USA, 140-141.
DOl=http://dx.doi.org/10.1145/165231.165249



S3MP: Read Requests

W Simple case: initially only the home has the data:

HOME - 1. Read Request
EXCLUSIVE
‘\\_\M E
2. Take Shared
/Curved \
arrows show
messages,
bold straight
HOME 5 arrows show
SHARED \ pointers
2 \_ _/

Home replies with the data, creating a
sharing chain containing just the reader
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S3MP: Read Requests -
remote

" More interesting case: some other
processor has the data

" Home passes request to first processor in
chain, adding requester into the sharing
list
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# If the line is exclusive (i.e. dirty bit is set) no message is required

# Else send a write-request to the home
®» Home sends an invalidation message down the chain
® Each copy is invalidated (other than that of the requester)
® Final node in chain acknowledges the requester and the home

¥ Chain is locked for the duration of the invalidation



S3MP - Replacement§3
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Finding your data

» How does a CPU find a valid copy of a specified
address’s data?
1. Translate virtual address to physical

2. Physical address includes bits which identify “home”
node

3. Home node is where DRAM for this address resides

4. But current valid copy may not be there — may be in
another CPU’ s cache

5. Home node holds pointer to sharing chain, so always
knows where valid copy can be found



ccNUMA summary

w» S3MP’ s cache coherency protocol implements strong consistency
=» Many recent designs implement a weaker consistency model...
w S3MP uses a singly-linked sharing chain

®» \Widely-shared data — long chains — long invalidations, nasty
replacements

» “Widely shared data is rare”
w |n real life:
=» |[EEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list
®» SGI Origin 2000: 64-bit vector sharing list
® Origin 2000 systems were deliverered with 256 CPUs

=» Sun E10000: hybrid multiple buses for invalidations, separate switched
network for data transfers

®» Multi-node and multi-socket SMP clusters —
» Next slide!
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Two-socket configuration
(“cluster-on-die” mode)

Each cache line has 2 bits of directory indicating whether the line is held in other nodes: remote-
invalid, snoop-all (potentially modified copy exists), or shared (multiple clean copies exist)

CA: “cache agent”

=

On L2 miss, core sends request to a Cache Agent on its node (based on physical address)
The Cache Agent checks for a local L3 hit — but if miss, passes request to Home Agent

¥ ¥ ¥

Invalidations and read requests are propagated to other nodes accordingly by the Home Agent
i+ Directory information for frequently-exchanged lines are cached in the Home Agent (8 bits)

® Recall: Intel Haswell e5 2600 v3 Daniel Molka, Daniel Hackenberg, Robert Schone, and Wolfgang E.
Nagel. Cache Coherence Protocol and Memory Performance of the

® A complex hybrid coherency scheme Intel Haswell-EP Architecture. ICPP2015
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Summary and Conclusions

Caches can be used to form the basis of a parallel computer
supporting a single, shared address space

Bus-based multiprocessors do not scale well due to broadcasts and
the need for each cache controller to snoop all the traffic

Larger-scale shared-memory multiprocessors require a cache directory
to track where copies are held

" Hierarchical and hybrid schemes can work, with snooping within a
cluster of cores, and a directory scheme at the cluster level

ccNUMA: each node has a fragment of the system’s DRAM, every
physical address has a unique “home” node

COMA: each node (sometimes called a NUMA domain) has a fragment
of the system’s DRAM, but data is migrated between NUMA domains
adaptively

NUCA: cache is distributed, so access latency is non-uniform (and
management may include dynamic/adaptive placement strategies)



Notes for questions



Directories

A directory in a cache coherency protocol is a mechanism to track which remote
caches need to be invalidated when a store is executed

A cache requires invalidation if it might contain a copy of the cache line targeted
by the store

One idea might be to keep (with every cache line that we own) a bit vector, with a
bit set for each destination to which an invalidation should be sent

» Egin SGI’'s Origin2000, every cache line has a 64-bit directory

In S3MP the directory is represented as a singly-linked list, pointed to by a field in
the main-memory location when the cache line lives

There are alternatives. For example we could keep a small number of bits with
each cache line, indicating whether there might be a copy of the line

» |In another cache on this chip

» [n another cache in this socket

* When the remote chip receives the invalidation message, it may

I 4 A .1 I S, | B B B P L A P PR -g g = g g = g =& g
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controller?

Under what circumstances might there be contention at a cache

ey I

# using Gaussian elimination, find x where A*x = b #

a1 Leaad 2]
PROC in situ gaussian elimination = (REF MAT a, b)REF MAT: (

# Note: a and b are modified "in situ", and b is returned as x #

FOR diag TO UPB a-1 DO
INT pivot row := diag; SCAL pivot factor := ABS a[diag,diag];
FOR row FROM diag + 1 TO UPB a DO # Full piveoting #
SCAL abs a diag = ABS a[row,diag];
IF abs a diag>=pivot factor THEN
pivot row := row; pivot factor := abs a diag FI
oD;
# now we have the "best" diag to full pivot, do the actual pivot #
IF diag ME pivot row THEN

# afpivot row,] =:= a[diag,]; XXX: unoptimised # #DB#
a[pivot row,diag:] =:= a[diag,diag:]; # XXX: optimised #
b[pivot row,] =:= b[diag,] # swap/pivot the diags of a & b #
FI;

IF ABS a[diag,diag] <= near min scal THEN
raise value error("singular matrix") FI;
SCAL a diag reciprocal := 1 / a[diag, diag];

FOR row FROM diag+l TO UPB a DO

SCAL factor = a[row,diag] * a diag reciprocal;

# afrow,] -:= factor #* a[diag,] XXX: "unoptimised" # #DB#
a[row,diag+1:] -:= factor * a[diag,diag+l:];# XXX: "optimised" #
b[row,] -:= factor * b[diag,]

oD

oD;

Gaussian elimination
with partial pivoting:

» We iterate along
the diagonal of the
matrix

w At each step we
pick the best row
to perform an
elimination step

» The row least

likely to cause
rounding errors

» Then we do the
elimination in
parallel

The pivot row is
picked on each
iteration

Then every
processor reads it

* So every
processor
requests data
from the cache
controller holding
the pivot row
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controller?

Under what circumstances might there be contention at a cache

ey I

# using Gaussian elimination, find x where A*x = b #

a1 Leaad 2]
PROC in situ gaussian elimination = (REF MAT a, b)REF MAT: (

# Note: a and b are modified "in situ", and b is returned as x #

FOR diag TO UPB a-1 DO
INT pivot row := diag; SCAL pivot factor := ABS a[diag,diag];
FOR row FROM diag + 1 TO UPB a DO # Full piveoting #
SCAL abs a diag = ABS a[row,diag];
IF abs a diag>=pivot factor THEN
pivot row := row; pivot factor := abs a diag FI
oD;
# now we have the "best" diag to full pivot, do the actual pivot #
IF diag ME pivot row THEN

# afpivot row,] =:= a[diag,]; XXX: unoptimised # #DB#

a[pivot row,diag:] =:= a[diag,diag:]; # XXX: optimised #
b[pivot row,] =:= b[diag,] # swap/pivot the diags of a & b #
FI;

IF ABS a[diag,diag] <= near min scal THEN
raise value error("singular matrix") FI;
SCAL a diag reciprocal := 1 / a[diag, diag];

FOR row FROM diag+l TO UPB a DO

SCAL factor = a[row,diag] * a diag reciprocal;

# afrow,] -:= factor #* a[diag,] XXX: "unoptimised" # #DB#
a[row,diag+1:] -:= factor * a[diag,diag+l:];# XXX: "optimised" #
b[row,] -:= factor * b[diag,]

oD
oD;

Gaussian elimination
with partial pivoting:

i We iterate along
the diagonal of the
matrix

i At each step we
pick the best row
to perform an
elimination step

» The row least

likely to cause
rounding errors

i Then we do the
elimination in
parallel

The pivot row is
picked on each
iteration

Then every
processor reads it

* So every
processor

rgqusts datg_

aTout,

Adaptive Proxies: Handling
Widely-Shared Data in
Shared-Memory

Multiprocessors (Research
Note). Euro-Par 2000: 567-572
https://link.springer.com/conte
nt/pdf/10.1007/BFb0024734.pd
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Can you think of an example of a program that creates long sharing chains
which are frequently invalidated?

ey I

# using Gaussian elimination, find x where A*x = b #

a1 Leaad 2]
PROC in situ gaussian elimination = (REF MAT a, b)REF MAT

# Note: a and b are modified "in situ", and b is returned

FOR diag TO UPB a-1 DO

s K

as x #

INT pivot row := diag; SCAL pivot factor := ABS a[diag,diag];

FOR row FROM diag + 1 TO UPB a DO # Full piveoting #
SCAL abs a diag = ABS a[row,diag];
IF abs a diag>=pivot factor THEN
pivot row := row; pivot factor := abs a diag FI
oD;

# now we have the "best" diag to full pivot, do the actual pivot #

IF diag ME pivot row THEN

# afpivot row,] =:= a[diag,]; XXX: unoptimised # #DB#
a[pivot row,diag:] =:= a[diag,diag:]; # XXX: optimised #
b[pivot row,] =:= b[diag,] # swap/pivot the diags of a & b #
FI;

IF ABS a[diag,diag] <= near min scal THEN
raise value error("singular matrix") FI;
SCAL a diag reciprocal := 1 / a[diag, diag];

FOR row FROM diag+l TO UPB a DO

SCAL factor = a[row,diag] * a diag reciprocal;

# afrow,] -:= factor #* a[diag,] XXX: "unoptimised" # #DB#
a[row,diag+1:] -:= factor * a[diag,diag+l:];# XXX: "optimised" #
b[row,] -:= factor * b[diag,]

oD

oD;

Gaussian elimination
with partial pivoting:

i We iterate along
the diagonal of the
matrix

i At each step we
pick the best row
to perform an
elimination step

» The row least

likely to cause
rounding errors

i Then we do the
elimination in
parallel

The pivot row is
picked on each
iteration

Then every processor
reads it

* So every processor
requests data from
the cache controller
holding the pivot
row

* So now cache
copies of the pivot
row are everywhere

* If the pivot row is
overwritten later,
they all have to be
invalidated
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NUMA and its relatives

NUMA: Non-Uniform Memory Architecture
» Any machine where some memory is nearer than other memory
» Eg two-socket shared-memory machine with DRAM attached to both sockets

CC-NUMA: cache-coherent NUMA

» The “home” of each physical address is in a fixed physical location, possibly nearer, possibly
further away

COMA: cache-only memory architecture

» The home of a physical address might be dynamically migrated to be nearer where it is being
used

S3MP is a NUMA machine — data might be in your core’s local DRAM, or
remote
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ticketLock_init(int *next_ticket, int *now_serving)

{
}

ticketLock_acquire(int *next_ticket, int *now_serving)

{

¥

Objective: make sure every
processor that tries to claim
the lock eventually succeeds

When a thread attempts to
claim the lock, it is assigned a
number to wait for

*now_serving = *next ticket = 9;

my_ticket = fetch_and_inc(next ticket);
while (*now serving != my ticket) {}

ticketLock release(int *now_serving)

{
¥

++*now_serving;

Row

10

Action

Initialized to 0

P1 tries to
acquire lock
(succeed)

P3 tries to
acquire lock (fail
+ wait)

P2 tries to
acquire lock (fail

+ wait)

P1 releases
lock, P3

acquires lock

P3 releases
lock, P2
acquires lock

P4 tries to
acquire lock (fail

+ wait)

P2 releases
lock, P4
acquires lock

P4 releases lock

next_ticket now_serving

0

Four Processor Ticket Lock Example

0

P1
my_ticket

P2
my_ticket

P3
my_ticket

44

P4
my_ticket
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Student question: S3MP sharing chains

| am still quite confused about the ptr in the following slide.

S Case study:
’ ' Sun’s S3MP

.«/ e ,,( Y
SN
i | Protocol Basics
W S3.MP uses distributed
I Each line has a “home"
node, which stores the root

singly-linked sharing lists,

with static homes
éa;]e\)_ ﬁein'o‘ry~ IR .
(cmlr‘, S state pv - data of the directory

I Requests are sent to the
home node

P

U me amy pr o dam # Home either has a copy of
- I the line, or knows a node
B which does

| would like to know. Where the pointers are pointing to in the processors 5 and 2 in the following
example:

S3MP: Read Requests

I+ Simple case: initially only the home has the data:

HOME 1. Read Request
EXCLUSIVE ‘\
el I
2. Take Shared
Curved \
arrows show
messages,

bold straight

HOME arrows show
SHARED pointers
Y,

-

Home replies with the data, creating a
sharing chain containing just the reader

i The ptr field stored with a cache block in memory

points to the head of the sharing chain - it tells you
where to find the first cache controller that has a copy
of this cache block (the "state" field tells you whether
the data held in the memory is in fact up-to-date, or
whether, instead, the up-to-date data is found in the
cache pointed to by ptr.

The ptr field in the cache implements the linked sharing
list. If that cache is the end of the list, its ptr will be null.
If there is another cache that also has a copy of the
block, ptr will point to the next cache in the chain.

In the example in the second slide:

Initially, the memory copy of the block in node 5
carries a null ptr. The "Home exclusive" state tells us
that the only valid copy of this block is the copy in node
5's memory. Node 2 does not have a copy of this cache
block (none of the blocks in the indexed set has a
matching tag).

After the read-request/take-shared transaction:
there are now two copies of the data - in the memory
at node 5, and in the cache at node 2. There is a one-
element sharing chain. The cache block's ptr field in
node 5's memory holds the id of the cache controller 2
where the first (and in this case the only) cache line in
the sharing chain resides. The cache block stored in
node 2's cache has a ptr field which is null, because
that's the end of the sharing chain.



Student question: directories in Intel multicore CPUs
ccNUMA in real life...

Core j Core

Tt Hororw veatwon dtech Comihaswell oy

ml il
Y YIY YN
source node
peer node

18-core chip with two rings 2 g
st ootz
Node 1 Node 3 % Core jf Core “
Node 0 Noda 2 % [requesting core] [responsible CAs| [Fesponsible HA| —» request — response

Vo o

Two-socket configuration
(“cluster-on-die” mode)

HA: “home agent”
CA: “cache agent”

# Each cache line has 2 bits of directory indicating whether the line is held in other nodes: remote-
invalid, snoop-all (potentially modified copy exists), or shared (multiple clean copies exist)

On L2 miss, core sends request to a Cache Agent on its node (based on physical address)
The Cache Agent checks for a local L3 hit — but if miss, passes request to Home Agent

Invalidations and read requests are propagated to other nodes accordingly by the Home Agent

¥y ¥ ¥ 7

Directory information for frequently-exchanged lines are cached in the Home Agent (8 bits)

2 Reca": |nte| H aswe" e5 2600 V3 Daniel Molka, Daniel Hackenberg, Robert Schone, and Wolfgang E.
Nagel. Cache Coherence Protocol and Memory Performance of the

® Acomplex hybrid coherency scheme e/ Hasuel-£P Architecture. ICPP2015,

in this example, | was wondering how this is implementing snooping? | understood snooping to be

monitoring the interconnection bus for reads/writes etc. and causing the state transition from this. This

implementation above seems mainly to be directory based as far as | can tell
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Within a single ring, snooping works: every cache
controller sees every core's invalidations and read-
requests.

So the question is what happens between rings. We
need some kind of directory - to know that a copy of
the data might exist in another ring, and (in the two-
socket case) which rings might have a copy.

There is a detailed but more-or-less comprehensible
explanation of how this was done in Haswell in this
article:

Section IV, pages 3-4.

Very briefly: basically each cache line has a state bit
that indicates whether a copy exists in any remote
ring. If it does, invalidations and read-requests are
sent to the "home agent" of all remote rings.

However this is accelerated for highly-shared cache
lines using a "directory cache" - if a line is in the
directory cache then more refined directory
information is available, which allows invalidations and
reaﬁ-requests to be sent to a refined subset of remote
caches.

If you like this sort of thing, you might enjoy the slides
included in this blog:

(scroll down for the slides). The talk is
about tracking down a performance bug in a large
supercomputer, caused by associativity conflicts in the
snoop filter (basically the "directory cache" referred to
above). Leading to a 28% performance improvement.
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