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November 2025

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and Patterson’s 
Computer Architecture, a quantitative approach (3rd, 4th and 5th eds), and on the 

lecture slides of David Patterson, John Kubiatowicz and Yujia Jin at Berkeley

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache 
coherency

Part 4:

Scalable shared-memory – directory-based cache 
coherency protocols

Hennessy and Patterson 6th ed Section 5.4 pp404

COSMOS: UK National Cosmology Supercomputer.  SGI Altix UV 2000 with 

1536 cores and 12.2TB RAM, globally accessible (delivered 2012)
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What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the 
surface.  The critical things I hope you will learn from this very brief 
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more 
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on 
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce 
the broadcastingP

a
rt

 4



4Large-Scale Shared-Memory Multiprocessors:
Directory-based cache coherency protocols

 Snooping cache coherency protocols rely on a bus:

For broadcasting invalidations and read requests

To establish global ordering on events

The bus inevitably becomes a bottleneck when many processors 
are used

So snooping does not work

So we need to use a more general interconnection network

 DRAM memory is also distributed (Non-Uniform Memory 
Architecture, NUMA)

 Each node allocates space from local DRAM

 Copies of remote data are made in cache

Major design issues:

How to find and represent the “directory" of each line?

How to find a copy of a line?
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Larger 
shared-
memory 

multiproces
sors

Separate Memory per Processor, Local or Remote access via memory controller

Directory per cache that tracks state of every block in every cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?

PLUS: In memory => simpler protocol (centralized/one location)

MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

How do we prevent the directory being a bottleneck? 

Distribute directory entries with memory, each keeping track of which cores have copies of 

their blocks
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Case study:
Sun’s S3MP

Protocol Basics

S3.MP uses distributed 
singly-linked sharing lists, 
with static homes

Each line has a “home" 
node, which stores the root 
of the directory

Requests are sent to the 
home node

Home either has a copy of 
the line, or knows a node 
which does
A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Browne, G. Aybay, and D. Lee. 
1993. The S3.mp architecture: a local area multiprocessor. In Proceedings of the 
fifth annual ACM symposium on Parallel algorithms and architectures (SPAA '93). 
ACM, New York, NY, USA, 140-141. 
DOI=http://dx.doi.org/10.1145/165231.165249
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S3MP: Read Requests
Simple case: initially only the home has the data:

• Home replies with the data, creating a 

sharing chain containing just the reader

Curved 

arrows show 

messages, 

bold straight 

arrows show 

pointers
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S3MP: Read Requests - 
remote

More interesting case: some other 
processor has the data

Home passes request to first processor in 
chain, adding requester into the sharing 
list
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S3MP - 
Writes

If the line is exclusive (i.e. dirty bit is set) no message is required

Else send a write-request to the home
Home sends an invalidation message down the chain

Each copy is invalidated (other than that of the requester)

Final node in chain acknowledges the requester and the home

Chain is locked for the duration of the invalidation
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When a read or write 
requires a line to be 
copied into the 
cache from another 
node, an existing line 
may need to be 
replaced

Must remove it from 
the sharing list

Must not lose last 
copy of the line

S3MP - Replacements
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Finding your data

How does a CPU find a valid copy of a specified 
address’s data?

1. Translate virtual address to physical

2. Physical address includes bits which identify “home” 
node

3. Home node is where DRAM for this address resides

4. But current valid copy may not be there – may be in 
another CPU’s cache

5. Home node holds pointer to sharing chain, so always 
knows where valid copy can be found
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ccNUMA summary
S3MP’s cache coherency protocol implements strong consistency

Many recent designs implement a weaker consistency model… 

S3MP uses a singly-linked sharing chain

Widely-shared data – long chains – long invalidations, nasty 

replacements

“Widely shared data is rare”

In real life:

IEEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list

SGI Origin 2000: 64-bit vector sharing list

Origin 2000 systems were deliverered with 256 CPUs

Sun E10000: hybrid multiple buses for invalidations, separate switched 

network for data transfers

Multi-node and multi-socket SMP clusters – 

Next slide!
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Recall: Intel Haswell e5 2600 v3

A complex hybrid coherency scheme

ccNUMA in real life… 

Intel®Xeon® Processor E5-2600 v3 Product Family Die Configuration

Haswell builds upon Sandy Bridge’s scalable interconnect and shared cache

12

14-18 Core (HCC)

12

Daniel Molka, Daniel Hackenberg, Robert Schone, and Wolfgang E. 

Nagel. Cache Coherence Protocol and Memory Performance of the 

Intel Haswell-EP Architecture. ICPP2015 (2015_ICPP_authors_version.pdf (tu-dresden.de))

18-core chip with two rings

Two-socket configuration
(“cluster-on-die” mode)

HA: “home agent”

CA: “cache agent”

Each cache line has 2 bits of directory indicating whether the line is held in other nodes: remote-
invalid, snoop-all (potentially modified copy exists), or shared (multiple clean copies exist)

On L2 miss, core sends request to a Cache Agent on its node (based on physical address)

The Cache Agent checks for a local L3 hit – but if miss, passes request to Home Agent

Invalidations and read requests are propagated to other nodes accordingly by the Home Agent

Directory information for frequently-exchanged lines are cached in the Home Agent (8 bits)
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https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
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Summary and Conclusions
Caches can be used to form the basis of a parallel computer 
supporting a single, shared address space

Bus-based multiprocessors do not scale well due to broadcasts and 
the need for each cache controller to snoop all the traffic

Larger-scale shared-memory multiprocessors require a cache directory 
to track where copies are held

Hierarchical and hybrid schemes can work, with snooping within a 
cluster of cores, and a directory scheme at the cluster level

ccNUMA: each node has a fragment of the system’s DRAM, every 
physical address has a unique “home” node

COMA: each node (sometimes called a NUMA domain) has a fragment 
of the system’s DRAM, but data is migrated between NUMA domains 
adaptively

NUCA: cache is distributed, so access latency is non-uniform (and 
management may include dynamic/adaptive placement strategies)
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Notes for questions
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Directories
A directory in a cache coherency protocol is a mechanism to track which remote 

caches need to be invalidated when a store is executed

A cache requires invalidation if it might contain a copy of the cache line targeted 

by the store

One idea might be to keep (with every cache line that we own) a bit vector, with a 

bit set for each destination to which an invalidation should be sent

Eg in SGI’s Origin2000, every cache line has a 64-bit directory 

In S3MP the directory is represented as a singly-linked list, pointed to by a field in 

the main-memory location when the cache line lives

There are alternatives.  For example we could keep a small number of bits with 

each cache line, indicating whether there might be a copy of the line 

In another cache on this chip

In another cache in this socket

When the remote chip receives the invalidation message, it may 

use a “snoop filter” to track which caches within this chip require 

invalidation – this in-turn requires directory information
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Under what circumstances might there be contention at a cache 

controller?

Gaussian elimination 
with partial pivoting:

We iterate along 
the diagonal of the 
matrix

At each step we 
pick the best row 
to perform an 
elimination step

The row least 
likely to cause 
rounding errors

Then we do the 
elimination in 
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68 

The pivot row is 
picked on each 
iteration

Then every 
processor reads it

• So every 
processor 
requests data 
from the cache 
controller holding 
the pivot row

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
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Under what circumstances might there be contention at a cache 

controller?

Gaussian elimination 
with partial pivoting:

We iterate along 
the diagonal of the 
matrix

At each step we 
pick the best row 
to perform an 
elimination step

The row least 
likely to cause 
rounding errors

Then we do the 
elimination in 
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68 

The pivot row is 
picked on each 
iteration

Then every 
processor reads it

• So every 
processor 
requests data 
from the cache 
controller holding 
the pivot row

Sarah A. M. Talbot, Paul H. J. 

Kelly:

Adaptive Proxies: Handling 

Widely-Shared Data in 

Shared-Memory 

Multiprocessors (Research 

Note). Euro-Par 2000: 567-572 

https://link.springer.com/conte

nt/pdf/10.1007/BFb0024734.pd

f 

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://dblp.org/pid/60/732.html
https://dblp.org/pid/60/732.html
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://dblp.org/db/conf/europar/europar2000.html#TalbotK00
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
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Can you think of an example of a program that creates long sharing chains 

which are frequently invalidated?

Gaussian elimination 
with partial pivoting:

We iterate along 
the diagonal of the 
matrix

At each step we 
pick the best row 
to perform an 
elimination step

The row least 
likely to cause 
rounding errors

Then we do the 
elimination in 
parallel

https://rosettacode.org/wiki/Gaussian_eli

mination#ALGOL_68 

The pivot row is 
picked on each 
iteration

Then every processor 
reads it

• So every processor 
requests data from 
the cache controller 
holding the pivot 
row

• So now cache 
copies of the pivot 
row are everywhere

• If the pivot row is 
overwritten later, 
they all have to be 
invalidated

https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
https://rosettacode.org/wiki/Gaussian_elimination#ALGOL_68
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NUMA and its relatives

NUMA: Non-Uniform Memory Architecture

Any machine where some memory is nearer than other memory

Eg two-socket shared-memory machine with DRAM attached to both sockets

CC-NUMA: cache-coherent NUMA

The “home” of each physical address is in a fixed physical location, possibly nearer, possibly 
further away

COMA: cache-only memory architecture

The home of a physical address might be dynamically migrated to be nearer where it is being 
used

S3MP is a NUMA machine – data might be in your core’s local DRAM, or 
remote



44

Ticket lock
Objective: make sure every 
processor that tries to claim 
the lock eventually succeeds

When a thread attempts to 
claim the lock, it is assigned a 
number to wait for 

https://en.wikipedia.org/wiki/Ticket_lock 

https://en.wikipedia.org/wiki/Ticket_lock
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The ptr field stored with a cache block in memory 
points to the head of the sharing chain - it tells you 
where to find the first cache controller that has a copy 
of this cache block (the "state" field tells you whether 
the data held in the memory is in fact up-to-date, or 
whether, instead, the up-to-date data is found in the 
cache pointed to by ptr.

The ptr field in the cache implements the linked sharing 
list. If that cache is the end of the list, its ptr will be null. 
If there is another cache that also has a copy of the 
block, ptr will point to the next cache in the chain.

In the example in the second slide:

Initially, the memory copy of the block in node 5 
carries a null ptr. The "Home exclusive" state tells us 
that the only valid copy of this block is the copy in node 
5's memory. Node 2 does not have a copy of this cache 
block (none of the blocks in the indexed set has a 
matching tag).

After the read-request/take-shared transaction: 
there are now two copies of the data - in the memory 
at node 5, and in the cache at node 2. There is a one-
element sharing chain. The cache block's ptr field in 
node 5's memory holds the id of the cache controller 2 
where the first (and in this case the only) cache line in 
the sharing chain resides. The cache block stored in 
node 2's cache has a ptr field which is null, because 
that's the end of the sharing chain.

Student question: S3MP sharing chains
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Within a single ring, snooping works: every cache 
controller sees every core's invalidations and read-
requests.

So the question is what happens between rings. We 
need some kind of directory - to know that a copy of 
the data might exist in another ring, and (in the two-
socket case) which rings might have a copy.

There is a detailed but more-or-less comprehensible 
explanation of how this was done in Haswell in this 
article:

2015_ICPP_authors_version.pdf (tu-dresden.de)
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-
projekte/benchit/2015_ICPP_authors_version.pdf?lang=en 

Section IV, pages 3-4.

Very briefly: basically each cache line has a state bit 
that indicates whether a copy exists in any remote 
ring. If it does, invalidations and read-requests are 
sent to the "home agent" of all remote rings.

However this is accelerated for highly-shared cache 
lines using a "directory cache" - if a line is in the 
directory cache then more refined directory 
information is available, which allows invalidations and 
read-requests to be sent to a refined subset of remote 
caches.

If you like this sort of thing, you might enjoy the slides 
included in this blog: John McCalpin's blog » Cache 
Coherence Protocols (utexas.edu) 
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-

coherence-protocols/ (scroll down for the slides). The talk is 
about tracking down a performance bug in a large 
supercomputer, caused by associativity conflicts in the 
snoop filter (basically the "directory cache" referred to 
above). Leading to a 28% performance improvement.

Student question: directories in Intel multicore CPUs

https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=en
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
https://sites.utexas.edu/jdm4372/category/computer-architecture/cache-coherence-protocols/
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