
332 Advanced Computer Architecture

Exercise 2: Matrix Multiply Exploration

Background

This exercise concerns a familiar computational kernel: matrix–matrix multiplica-
tion. Here’s a simple C implementation:

/*

* Matrix-matrix multiplication for studying cache performance:

* C = AB, where all the matrices are of dimensions N x N

*/

void mm(double A[M][M], B[M][M], C[M][M])

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

C[i][j] = 0;

for (k = 0; k < N; k++) {

C[i][j] += A[i][k] * B[k][j];

}

}

}

}

Systematic investigation

Your job is to characterise the behaviour of various variants of the matrix multiply
program: the straightforward version, as shown in the code above, an interchanged
“ikj” variant, and a more sophisticated, “tiled” version. You can find source code
at

~phjk/ToyPrograms/ACA22-23/MM

Getting started

Log into a Department of Computing Linux teaching lab desk-
top machine

Although it is possible to do this exercise using your own machine, it’s actually
recommended to use a DoC lab machine - not least so that you can leave it running
for hours while you use your own machine for something else! Note that this exercise
is a warmup for the first assessed exercise.

You will need to connect via ssh remotely. First connect to one of the login servers
shell1, shell2, shell3, shell4 — for example as follows:

ssh shell2.doc.ic.ac.uk

1



Then, from there, connect to one of the DoC lab desktop machines. You are rec-
ommended to try texel1, texel2, ... texel44. For example:

ssh texel19

Not all the texel machines are available — keep trying til you find one (ideally an
idle one) 1

The files provided Using one of the DoC CSG Linux systems (level 2, Huxley),
make your own copy of the ACA22-23/MM directory tree by executing the following
Linux commands:

prompt> mkdir ACA22-23

prompt> cd ACA22-23

prompt> cp -r ~phjk/ToyPrograms/ACA22-23/MM ./

(The ./ above is the destination of the copy – your current working directory). You
should now have a copy of the MM directory. Now list the contents:

prompt> cd MM

prompt> make

prompt> ls

Makefile Makefile-blas MM1.c MM2.c MM2.s MM4.c MM5-blas.c scripts

Makefile~ Makefile-blas~ MM1.c~ MM2.c~ MM3.c MM4.c~ MM5-blas.c~

Running them on Linux Now run the programs as follows:

prompt> ./MM1.x86

prompt> ./MM2.x86

prompt> ./MM3.x86

prompt> ./MM4.x86

The goal of this exercise is for you to figure out why the four versions run at different
speeds.

Setting a different problem size The default problem size is 2176 (=2048+128).
You can set a different problem size, e.g. type:

prompt> make clean

prompt> make MYFLAGS=-DSZ=2048 x86

(the make clean deletes the old binaries).

Using SimpleScalar Simplescalar (http://www.simplescalar.com) is a pro-
cessor microarchitecture simulator which we will be using in this and other exer-
cises.

1a list of all the DoC lab machines is here: https://www.doc.ic.ac.uk/csg/facilities/lab/
workstations.

2



Compiling the programs Simplescalar is very slow, so we will rebuild for prob-
lem size 192:

prompt> make clean

prompt> make MYFLAGS=-DSZ=192

And try using the SimpleScalar simulator:

prompt> /homes/phjk/simplesim/sim-outorder ./MM1.ss

The first thing this does is lists the parameters of the architecture being simulated
– all of these details can be changed using command-line arguments. Then it runs
the application, and outputs details of how the processor microarchitecture and
memory hierarchy were used2.

Sim-outorder simulates the full microarchitecture of quite a complicated CPU. If
we only want to model the memory hierarchy we can use sim-cache, which is much
faster:

prompt> /homes/phjk/simplesim/sim-cache ./MM1.ss

Using a script to run a sequence of simulations A script “varycachesize”
has been provided for running a sequence of experiments over a range of cache sizes
of direct-mapped cache. For example:

prompt> ./scripts/varycachesize ./MM1.ss 64 8192

(it is worth finding a fast, unshared machine for this). The output format is comma-
separated to be easy to plot; the miss rate is column 4:

prompt> ./scripts/varycachesize ./MM1.ss 256 8192 > varycachesize_MM1_256_8192.csv

You can edit the script to study the effect of other cache parameters. You can edit
it to use sim-outorder, so you can study other microarchitecture features.

What to do

Plot a graph that shows how the L1 data cache miss rate (as measured with Sim-
pleScalar) for MM 1,2 and 3 varies with cache size. The range of 64–8192 is inter-
esting.

Returning to the performance of the four variants on the x86 machine, explain why
the four versions have different performance.

Paul H.J. Kelly, Luigi Nardi, Anton Lokhmotov, Carlo Bertolli and Graham Markall,
Imperial College, 2022

2For problem size 192 this takes about 30 seconds

3


